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This article reviews polarizability properties of particles and clusters. Especially the effect of surface geometry is given attention.
The important parameter of normalized dipolarizability is studied as function of the permittivity and the shape of the surface of
the particle. For nonsymmetric particles, the quantity under interest is the average of the three polarizability dyadic eigenvalues.
The normalized polarizability, although different for different shapes, has certain universal characteristics independent of the in-
clusion form. The canonical shapes (sphere, spheroids, ellipsoids, regular polyhedra, circular cylinder, semisphere, double sphere)
are studied as well as the correlation of surface parameters with salient polarizability properties. These geometrical and surface
parameters are essential in the material modeling problems in the nanoscale.
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1. INTRODUCTION

The engineering strive towards always smaller scales in the
structure of matter is obvious even to people who are not
working in the field of materials science. The sole termi-
nology and use of words in popularization of technological
progress may lead us to think that microelectronics is some-
what old-fashioned; nanotechnology is the theme of tomor-
row if not yet today. Progress is indeed great. If measured in
the exact meaning of prefixes, it is thousandfold.

This trend of looking in smaller details happens on sev-
eral fronts. Scientists want to understand the structure of
matter in nanoscales, engineers wish to control structures
with always sharper technological tools, research program
plans dream of the multiplied possibilities of material re-
sponses that this tailoring can provide, and the public ex-
pects new and unseen applications of technology along with
the increased degrees of freedom.

What does the penetration of technology into smaller
scales mean in terms of materials modeling? In particular,
how does it affect the analysis of the electromagnetic prop-
erties of composites? The modeling of the effective prop-
erties of heterogeneous materials requires knowledge about
the properties of the constituent materials and about the
geometrical arrangements how these phases together com-
pose the continuum. Classical homogenization approaches
are based on a quasistatic principle. In other words, the elec-
tromagnetic field solutions are calculated using Laplace’s and

Poisson’s equations instead of the full Maxwell’s equations.
This means that the response of an individual scatterer is in-
stantaneous. No retardation effects are needed over the size
of the scatterer.

If the modeling is hence based on the assumption that
the reaction of a single inclusion is like in statics and its size
is considerably smaller than the wavelength of the operating
electromagnetic field, the road towards smaller scales of the
individual scatterers would not cause any additional prob-
lems. On the contrary, for a given electromagnetic excitation,
the locally quasistatic assumption becomes more and more
acceptable.

How, then, does the nanoscale modeling of heteroge-
neous materials differ from that of microscale or mesoscale?
Certainly, many of the applied principles remain the same.
And the science of materials modeling has provided us very
detailed theories to predict the macroscopic dielectric char-
acteristics of media (for a comprehensive historical review of
these theories, see [1]). This is because the governing laws
of electromagnetics are valid over a broad range of spatial
and temporal scales. Of course, there is a limit since mat-
ter is not infinitely divisible. In the “very small nanoscale,”
the inclusions are clusters in which the macroscopic response
is partially determined by discreteness of the building block
atoms. For example, quantum confinement may affect band
gap sizes in semiconductors and lasers. But in this article we
are not yet manipulating individual atoms and do not take
into account the granularity of matter. Let us concentrate on
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such nanoscale environments where a typical object would
be measured in tens of nanometers. This is much larger than
the atomic dimensions which are of the order of angstroms
(10−10 meters). The classic expression from 1959 by Richard
P. Feynman, “there’s plenty of room at the bottom,” is aston-
ishingly still valid in the era of nanotechnology [2].

But there is another view at the effect of scaling. Not all
remain the same when the amplification in our microscope
is increased and we are dealing with objects of smaller di-
mension. A sphere remains a sphere, be it small or large,
but some of its characteristic parameters change relative to
each other, even if we now neglect the discreteness that ul-
timately has to be faced when moving to molecular scales.
Also in the continuum treatment, the specific surface area of
the sphere (or of any other reasonable object for that mat-
ter) increases in direct proportion to the scale decrease: the
area of the sphere surface divided by the sphere volume is in-
versely proportional to the radius. Then it is to be expected
that the surface effects start to dominate when we are moving
from the ordinary-sized material textures into the smaller-
scale structures. The increased focus on surfaces of individ-
ual scatterers also means that in the modeling of composites
and other heterogeneous materials composed of these type of
inclusions, the interaction effects between neighboring scat-
terers need more attention than in connection to larger-scale
modeling. Interaction forces are not scale-independent. At
the same time as the surface area relative to the volume for
a given particle increases, its surface-area-to-weight ratio in-
creases with a similar pace.

In this article, the basic materials modeling questions are
discussed in connection to the dielectric properties of mat-
ter. Because of the generality of the electric modeling results,
many of the results are, mutatis mutandis, directly applica-
ble to certain other fields of science, like magnetic, thermal,
and even (at least analogously) mechanical responses of mat-
ter. In the chapters to follow, special emphasis is given to
the manner how geometric and surface characteristics af-
fect the response of clusters. Many of the results to be pre-
sented have been published in my previous special articles
that concern the dielectric response of particles of various
shapes. This review connects those results and discusses the
surface-geometrical parameters of various particle polariz-
abilities that are of importance in the modeling of material
effects in the nanoscale.

2. ELECTRIC RESPONSE OF A SPHERICAL SCATTERER

Many materials modeling approaches and theories are based
on the principle of splitting the analysis into two parts: the
whole is seen as composed of a collection of single scatterers
whose response is first to be calculated (or if the mixture is
composed of many different phases, the responses of all of
these phases are needed), and then the global, macroscopic
properties have to be computed as certain interactive sums
of all the component inclusions.

Let us next focus on the first step in this process: the
response of an individual, well-defined inclusion. The qua-
sistatic response parameters of a given object can be gleaned

from the solution of the problem when the object is placed
in vacuum and exposed to a uniform static electric field.

The simplest shape is a sphere. And the simplest internal
structure is homogeneity. The response of a homogeneous,
isotropic, dielectric sphere in a homogeneous, uniform elec-
tric field in vacuum is extraordinary simple: it is a dipolar
field. And the internal field of the sphere is also uniform, di-
rected along the exciting field and of an amplitude dependent
on the permittivity. No higher-order multipoles are excited.

The relations are: the homogeneous internal field �Ei as a

function of the exciting, primary field �Ee reads [3, 4]

�Ei = 3ε0

ε + 2ε0

�Ee, (1)

where ε is the (absolute) permittivity of the spherical object
and ε0 the free-space permittivity. Then obviously the polar-

ization density induced within the sphere volume is (ε−ε0)�Ei
and since the dipole moment of a scatterer is the volume in-
tegral of the polarization density (dipole moment density),
the dipole moment of this sphere is

�p = (ε − ε0
) 3ε0

ε + 2ε0

�EeV , (2)

where V is the volume of the sphere. And from this relation
follows the polarizability of the sphere α, which is defined
as the relation between the dipole moment and the incident

field (�p = α�Ee):

α = 3ε0V
ε − ε0

ε + 2ε0
. (3)

This polarizability is an extremely important characteris-
tic quantity in modeling of dielectric materials. It is true that
polarizability does not tell the whole story about the response
of a scatterer. In case of inclusion, shapes other than spheri-
cal,1 also quadrupolic, octopolic, and even higher-order mul-
tipoles are created (and in the case of dynamic fields, the list
of multiple moments is much longer, see [5] for a concise
treatment of these). Perhaps a more accurate name for the
polarizability we are now discussing would be dipolarizabil-
ity.

Why is this (di)polarizability so essential? In other words,
what makes the dipole moment so distinct from the other
multipole moments? Part of the answer is that the effect of
the multipoles on the surroundings decreases with the dis-
tance in an inverse power. And the higher is the power, the
higher is the order of the multipole. Therefore, the greatest
far-field effect is that of the lowest multipole. Dipole is the
lowest-order multipole except monopole. And monopole is
not counted since a monopole requires net charge, and we are
here dealing with neutral pieces of matter which have equal
amounts of positive and negative charges.

1 And in the spherical case, too, when the exciting electric field is nonuni-
form, the perturbational field is not purely dipolar.
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Figure 1: The polarizability of a dielectric sphere for positive values of the relative permittivity, with linear and logarithmic scales. Note the
negative values for the polarizability for permittivities less than that of free space. The symmetry of the polarizability behavior in the two
limits (high-permittivity, or “conducting” and zero-permittivity, or “insulating”) can be seen from the right-hand side curve.

Therefore, let us concentrate on the (di)polarizability α.
As can be seen from (3), there is a trivial dependence of the
polarizability on the volume. Obviously, the bigger the vol-
ume of the inclusions is, the larger its electrical response is. A
more characteristic quantity would be a normalized polariz-
ability αn, which for the sphere reads

αn = α

ε0V
= 3

εr − 1
εr + 2

, (4)

where the dimensionless quality of this quantity is guar-
anteed by the division with the free-space permittivity ε0.
Note also the use of the relative permittivity of the sphere
εr = ε/ε0.

Here is the response of matter stripped to the very es-
sentials. It is a response quantity of the most basic three-
dimensional geometrical object with one single material pa-
rameter, permittivity. And still, this response function is by
no means trivial. Some of the properties of this function are
very universal as we will see later.

Figure 1 displays the polarizability behavior of a dielec-
tric sphere for positive permittivity values. The obvious lim-
its are seen: the saturation of the normalized polarizability to
the value 3 for large permittivities and to the value −3/2 for
the zero-permittivity.

But it is not unfair to note that the polarizability function
in Figure 1 seems rather monotonous and dull. However, if
the permittivity is freed from the conventional limits within
the domain of positive values, very interesting phenomena
can be observed. To display this, Figure 2 is produced.

In Figure 2, one phenomenon overrides all other polar-
izability characteristics: the singularity of the function for
the permittivity value εr = −2, directly appreciated from
(4). This is the electrostatic resonance that goes in the liter-
ature under several names, depending on the background of
the authors, which can be electromagnetics, microwave engi-

neering, optics, or materials science. This is the surface plas-
mon or Fröhlich resonance [6].

However, the present article does not concentrate on
negative-permittivity materials. Metamaterials [7] form a
large class of media that embrace such negative-permittivity
media and metamaterials in fact are very much in the fo-
cus of today’s research [8, 9]. In the following, let us restrict
ourselves to positive permittivity values. Interesting results
can be extracted about the material response also within this
regime.

Let us collect some of these basic observations that are
most clearly seen from the formula for the polarizability of
the sphere (4), but also valid for other dielectric objects in
the three-dimensionally averaged sense [10]. The normalized
polarizability α(εr), for the permittivity value εr = 1, satisfies
the following:

(i) α = 0 at εr = 1,
(ii) ∂α/∂εr = 1 at εr = 1,

(iii) ∂2α/∂ε2
r = −2/3 at εr = 1.

Indeed, the polarizability is a quite powerful tool in an-
alyzing the dielectric response of single scatterers but also
the response of dielectric mixtures as a whole. The classical
homogenization principles starting from Garnett [11], fol-
lowing through Bruggeman [12], over to the modern refined
theories take careful respect to the polarizabilities of the in-
clusions that make up the mixture they are modeling.

Let us next allow the geometry of the inclusion deviate
from the basic spherical shape.

3. ELLIPSOIDS AND NONSYMMETRY

To gather more information about how the microgeome-
try and the specific surface area have effect on the material
response of dielectric scatterers, let us allow the spherical
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Figure 2: The polarizability of a dielectric sphere when the permit-
tivity is allowed to be negative as well as positive.

form to be changed to ellipsoid. Ellipsoids are easy geome-
tries since the dipole moment of such shaped homogeneous
objects can be written in a closed form, which is a conse-
quence of the fact that the internal field of a homogeneous
ellipsoid in a constant electric field is also constant.2 The am-
plitude of this field is naturally linear to the external field, but
there also exists a straightforward dependence of this field on
the permittivity of the ellipsoid and of a particular shape pa-
rameter, so-called depolarization factor.

Let the semiaxes of the ellipsoid in the three orthogonal
directions be ax, ay , az. Then the internal field of the ellipsoid

(with permittivity ε), given that the external, primary field �Ee
be x-directed, is (a generalization of (1))

�Ei = ε0

ε0 + Nx
(
ε − ε0

) �Ee, (5)

where Nx is the depolarization factor of the ellipsoid in the x
direction, and can be calculated from

Nx =
axayaz

2

∫∞

0

ds
(
s + a2

x

)√(
s + a2

x

)(
s + a2

y

)(
s + a2

z

) . (6)

For the other depolarization factor Ny (Nz), interchange ay
and ax (az and ax) in the above integral.3.

The three depolarization factors for any ellipsoid satisfy

Nx + Ny + Nz = 1. (7)

2 Note, however, that the field external to the ellipsoid is no longer purely
dipolar. In the vicinity of the boundary, there are multipolar disturbances
whose amplitudes depend on the eccentricity of the ellipsoid.

3 A Java applet to calculate the depolarization factors and polariz-
ability components of an arbitrary ellipsoid is located in the URL
address of the Helsinki University of Technology http://users.tkk.
fi/∼mpitkone/Ellipsoid/Ellipsoidi.html

A sphere has three equal depolarization factors of 1/3. For
prolate and oblate spheroids (ellipsoids of revolution),
closed-form expressions can be written for the depolariza-
tion factors [4, 13]. The limiting cases of spheroids are disk
(depolarization factors (0, 0, 1)) and a needle (depolarization
factors (1/2, 1/2, 0)).

From the field relation (5), the normalized polarizability
components follow. In this case where the spherical symme-
try is broken, the polarizabilities are different for different
directions. In the x-direction, the polarizability component
reads

αn,x = εr − 1
1 + Nx

(
εr − 1

) (8)

and the corresponding expressions for the y- and z-
components are obvious. This relation allows quite strong
deviations from the polarizability of the spherical shape. For
a simple example, consider the limits of very large or very
small permittivities. These read

(i) αn,x = 1/Nx, for εr →∞,
(ii) αn,x = −1/(1−Nx), for εr → 0.

And obviously these may possess wild limits when the depo-
larization factors have the allowed ranges 0 ≤ Ni ≤ 1 for any
of the three components i = x, y, z. This hints to the possi-
bilities that with extremely squeezed ellipsoids one might be
able to create strong macroscopic effective responses, at least
if the field direction is aligned with all the ellipsoids in the
mixture.

In addition to the view at the special polarization proper-
ties of a mixture composed of aligned ellipsoids, the isotropic
case is also very important. An isotropic mixture can be gen-
erated from nonsymmetric elements (like ellipsoids) by mix-
ing them in random orientations in a neutral background.
Then the average response of one ellipsoid is a third of the
sum of its three polarizability components:

αn,ave = 1
3

∑

i=x,y,z

εr − 1
1 + Ni

(
εr − 1

) . (9)

The effect of the eccentricity (nonsphericity) of the ellip-
soid is visible from Figure 3 where the average polarizability
is plotted against the permittivity for different ellipsoids.

4. ARBITRARY SHAPE OF THE INCLUSION

If the inclusion has a shape other than the ellipsoid, the elec-
trostatic solution of the particle in the external field does not
have a closed-form solution. Fortunately, for such cases, very
efficient computational approaches have been developed.
With various finite-element and difference-method princi-
ples, many electrostatics and even electromagnetic problems
can be solved with almost any desired accuracy (see, e.g.,
[14, 15]).

Then also the polarizabilities of these arbitrarily shaped
particles can be found. For an arbitrary object, there are now
new geometrical parameters that define the inclusion and
which affect the polarizability, in addition with the permit-
tivity. One of the interesting questions in connection with

http://users.tkk.fi/~mpitkone/Ellipsoid/Ellipsoidi.html
http://users.tkk.fi/~mpitkone/Ellipsoid/Ellipsoidi.html
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Figure 3: The average polarizability of a dielectric ellipsoid (one-
third of the normalized polarizabilities in the three orthogonal di-
rections) for various depolarization factor triplets.

nanostructures is how the specific geometrical and surface
parameters correlate with the amplitude of the polarizability.
A systematic study into this problem would require the nu-
merical electrostatic analysis of very many different scatterer
shapes. And again for those shapes that are nonsymmetric4,
one needs to distill the trace (or the average of the compo-
nents) of the polarizability dyadic, which in the end would
be a fair quantity to compare with the canonical shapes.

Let us review some of the important shapes for which
there does not exist a closed-form solution of the Laplace
equation, or such one only exists in a form of infinite series.
The parameter that tells the essentials about the response is
the normalized polarizability. In the normalized form, the
linear dependence on the volume of the inclusion is taken
away, and the effect of geometry is mixed with the effect of
permittivity.

4.1. Platonic polyhedra

Perhaps the most symmetric three-dimensional shapes after
sphere are the five regular polyhedra: tetrahedron, hexahe-
dron (cube), octahedron, dodecahedron, and icosahedron.
They share with the sphere the following property: the po-
larizability dyadic is a multiple of the unit dyadic. In other
words, the three eigenvalues of polarizability are equal. One
single parameter is sufficient to describe the dipole moment

4 Nonsymmetric in the sense that the polarizability operator has three
distinct eigenvectors; perhaps it is not proper to call such scatterers
anisotropic because anisotropy is commonly associated with the direction
dependence of the bulk material response.

response. Of course, higher-order multipolarizabities are also
present in increasing magnitudes as the sharpness of the cor-
ners of the polyhedra increases.

The dielectric response of these regular Platonic objects
have been solved with a boundary-integral-equation prin-
ciple [16]. An integral equation for the potential is solved
with method of moments [17] which consequently allows
many characteristic properties of the scatterer to be com-
puted. Among them, the polarizabilities of the five Platonic
polyhedra have been enumerated with a very good accuracy.
Also regression formulas turned out to predict the polariz-
abilities correct to at least four digits. These have been given
in the form [16]

αn = α∞
(
εr − 1

) ε3
r + p2ε2

r + p1εr − α0

ε4
r + q3ε3

r + q2ε2
r + q1εr + α∞

, (10)

where p1, p2, q1, q2, q3 are numerical parameters, and α∞ and
α0 are the computationally determined polarizability values
for εr →∞ and εr → 0, respectively. Of course, these param-
eters are different for all five polyhedra. At the special point
εr = 1, the conditions αn = 0, α′n = 1, α′′n = −2/3 are satis-
fied for all five cases. See also [10] for the connection of the
derivatives of the polarizability with the virial coefficients of
the effective conductivity of dispersions and the classic study
by Brown [18] on the effect of particle geometry on the coef-
ficients.

Figure 4 shows the polarizabilities of the various shapes
as functions of the permittivity.5. From these results it can be
observed that the dielectric response is stronger than that of
the sphere, and the response seems to be stronger for shapes
with fewer faces (tetrahedron, cube) and sharper corners,
which is intuitively to be expected. Sharp corners bring about
field concentrations which consequently lead to larger polar-
ization densities and to a larger dipole moment.

4.2. Circular cylinder

Another basic geometry is the circular cylinder. This shape
is more difficult to analyze exhaustively for the reason that it
is not isotropic. The response is dependent on the direction
of the electric field. The two eigendirections are the axial di-
rection and the transversal direction (which is degenerate as
in the transverse plane, no special axis breaks the symme-
try). Furthermore, the description of the full geometry of
the object requires one geometrical parameter (the length-
to-diameter ratio) which means that the two polarizability
functions are dependent on this value and the dipolarizabil-
ity response of this object is a set of two families of curves
depending on the permittivity.

With a computational approach, the polarizabilities of
circular cylinders of varying lengths and permittivities have

5 A Java-applet to calculate the depolarization factors and polarizability
components of Platonic polyhedra is located in the URL address of the
Helsinki University of Technology
http://www.tkk.fi/Yksikot/Sahkomagnetiikka/kurssit/
animaatiot/Polarisaatio.html

http://www.tkk.fi/Yksikot/Sahkomagnetiikka/kurssit/animaatiot/Polarisaatio.html
http://www.tkk.fi/Yksikot/Sahkomagnetiikka/kurssit/animaatiot/Polarisaatio.html
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Figure 4: The polarizabilities of Platonic polyhedra and sphere.
Note that the curve for sphere is always smallest in magnitude, and
the order of increase is icosa, dodeca, octa, hexa, and tetra (which
has the highest curve).

been computed [19]. Again, approximative formulas give a
practical algorithm to calculate the values of the polarizabil-
ities. In [19], these formulas are given as differences to the
polarizabilities of spheroids with the same length-to-width
ratio as that of the cylinder under study. Spheroids are easy
to calculate with exact formulas (8). Since they come close to
cylinders in shape when the ratio is very large or very small,
probably their electric response is also similar, and the differ-
ences vanish in the limits. Obviously, the field singularities of
the wedges in the top and bottom faces of the cylinder cause
the main deviation of the response from that of the spheroid.
Note also [20] and the early work on the cylinder problem
in the U.S. National Bureau of Standards (see references in
[15]).

An illustrative example is the case of “unit cylinder.” A
unit cylinder has the height equal to the diameter [21]. Its
polarizability components are shown in Figure 5. There, one
can observe that its effect is stronger than that of sphere (with
equal volume), but not as high as that of a cube.

4.3. Semisphere

A dielectrically homogeneous semisphere (a sphere cut in
half gives two semispheres) is also a canonical shape. How-
ever, the electrostatic problem where two dielectrically ho-
mogeneous domains are separated by semispherical bound-
aries lead to infinite series with Legendre functions. The po-
larizability of the semisphere cannot be written in a closed
form. However, by truncating the series and inverting the as-
sociated matrix, accurate estimates for the polarizability can
be enumerated [22]. This requires matrix sizes of a couple
of hundred rows and columns. Furthermore, a semisphere as
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Figure 5: A comparison of the polarizability of a unit cylinder and
cube. The unit cylinder has different response to axial and transver-
sal excitations; here one-third of the trace of the polarizability is
taken. Both curves are relative to a sphere with the corresponding
volume and permittivity.

a rotationally symmetric object has to be described by two
independent polarizability components. However, it is more
“fundamental” than cylinder because no additional geomet-
rical parameter is needed to describe its shape.

The axial (z) and transversal (t) polarizability curves for
the semisphere resemble those for the other shapes. The lim-
iting values for low and high permittivities are the following:

αn,z ≈ 2.1894, αn,t ≈ 4.4303,
(
εr −→ ∞)

αn,z ≈ −2.2152, αn,t ≈ −1.3685,
(
εr −→ 0

)
.

(11)

Note here the larger high-permittivity polarizability in the
transversal direction compared to the longitudinal, which is
explained by the elongated character in the transversal plane
of the semisphere. However, in the εr = 0 limit, the situation
is the opposite: a larger polarizability for the axial case (larger
in absolute value, as the polarizability is negative).

4.4. Double sphere

A very important object especially in the modeling of ran-
dom nanomaterials is a doublet of spheres. A sphere is a com-
mon, equilibrium shape. And when a sphere in a mixture
gets into the vicinity of another sphere, especially in the small
scales the interaction forces may be very strong, and the dou-
blet of spheres can be seen as a single polarizing object. Even
more, two spheres can become so closely in contact that they
merge and metamorphose into a cluster. Such a doublet can
be described with one geometrical parameter: the distance
between the center points of the spheres divided by their ra-
dius. The value 2 for this parameter divides the range into
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the two cases whether the doublet is clustered or separate.
Again, this object is rotationally symmetric and needs to be
described by two polarizabilities, axial and transversal.

A solution of the electrostatic problem with douple-
sphere boundary conditions is not easy. It requires either
a numerical approach or a very complicated analysis using
toroidal coordinate system. Several partial results have been
presented for the problem [23–25], but only recently a full
solution for this problem [26] and its generalization [27]
have appeared.

In both limiting cases of the double sphere (the distance
of the center points of the spheres goes either to zero or very
large), both of the normalized polarizability components of
the double sphere approach the sphere value (4). And ob-
viously, it deviates from the sphere value to a largest degree
when the distance between the centers is around two radii
(the distance for maximum deviation depends on the per-
mittivity of the spheres). For the case of εr approaching in-
finity, the case of touching spheres has the following analyti-
cal properties [25, 28]:

αn,z = 6ζ(3) ≈ 7.212; αn,t = 9
4
ζ(3) ≈ 2.705 (12)

with the Riemann Zeta function. Here the axial polarizability
(z) is for the case that the electric field excitation is parallel to
the line connecting the center points of the two spheres, and
if the field is perpendicular to it, the transversal (t) polariz-
ability applies.

5. CORRELATION OF THE POLARIZABILITY WITH
SURFACE PARAMETERS

From the polarizability results in the previous section for var-
ious shapes of inclusions, it is obvious that in the polarizabil-
ity characteristics, sphere is a minimum geometry. In other
words, with a given amount of dielectric material, in a spher-
ical form it creates the smallest dipole moment, and every
deviation from this shape increases its polarizability.6 Also
theoretical results to prove this have appeared in the litera-
ture [28, 29]. But how does the deviation of the dielectric re-
sponse from that of sphere depend on the geometrical differ-
ence between the object and sphere? This is a difficult ques-
tion to answer because there are infinite number of ways how
the shape of a spherical object can begin to differ from that
perfect form.

But intuitively it seems reasonable that all information
about the geometrical and surface details of various prop-
erties of object is encoded the polarizability curves. How-
ever, on the other hand, from a look at the curves for var-
ious objects, one might expect that the curves contain also
very much redundant information. After all, they resemble

6 Here polarizability has to be understood in the average three-dimensional
sense. Of course, some of the polarizability components of an ellipsoid
may be smaller than that of the sphere of the same permittivity and vol-
ume; however, the remaining components are so much larger that the av-
erage will override the sphere value.

Table 1: Characteristic figures for the polarizability of Platonic
polyhedra and sphere. Note the third derivative of αn at εr = 1;
the first and second derivatives are equal for all objects.

αn(εr = ∞) αn(εr = 0) α′n(εr = 0) α′′′n (εr = 1)

Tetrahedron 5.0285 −1.8063 4.1693 0.98406

Cube 3.6442 −1.6383 3.0299 0.82527

Octahedron 3.5507 −1.5871 2.7035 0.78410

Dodecahedron 3.1779 −1.5422 2.4704 0.71984

Icosahedron 3.1304 −1.5236 2.3659 0.70087

Sphere 3 −1.5 2.25 0.66667

each other very much in their global form. As was pointed
out earlier, the polarizabilities of all isotropic scatterers seem
to have equal values, and also equal-valued first and second
derivatives at εr = 1. Table 1 shows the values of the limit-
ing polarizabilities and the derivative at εr = 0 and the third
derivative at εr = 1 for the five polyhedra and sphere.

The results in Table 1 show also that the numerical corre-
lations between the values of the third derivate and the limit-
ing values at low and high permittivities are very high (of the
order of 0.98 and more). Therefore, one could expect that it
is possible to compress very much of the polarizability char-
acteristics into a few characteristic numbers.

Article [30] contains a systematic study of comparing
the amplitudes of the polarizabilities to certain well-defined
geometrical properties of the deformed objects. For regular
polyhedra, the following characteristics tell something about
the object: number of faces, edges, vertices, solid angle sub-
tended by the corners, specific surface area, and radii of the
circumscribed and inscribed spheres. These have been cor-
related against the electrical polarizability parameters with
interesting observations, among which the following is not
unexpected: the polarizability of a perfect electric conduc-
tor (εr → ∞) polyhedron correlates strongly with the in-
verse of the solid angle of the vertex. On the other hand, the
strongest correlation of the polarizability of “perfectly insu-
lating sphere” (in other words the case εr = 0) is with the
normalized inscribed radius of the polyhedron.

6. DISCUSSION

A detailed knowledge of the polarizability of inclusions with
basic shapes gives valuable information about the way such
building blocks contribute to the effective dielectric param-
eters of a continuum. Many models for the macroscopic
properties of matter replace the effect of the particles in the
medium fully by its polarizability. It is to be admitted that
for complex scatterers, this is only a part of the whole re-
sponse which also contains near-field terms due to higher-
order multipoles that is characterized by stronger spatial field
variation close to the scatterer. Nevertheless, dipolarizabil-
ity remains the dominant term in the characteristics of the
inclusion.
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The shortcoming of the direct scaling of the macroscopic
polarization results down to nanoscale is that the results dis-
cussed in this paper are based on quasistatic analysis and are
therefore scale-independent. The modeling principles make
use of the normalized polarizabilities of particles (like (4)).
This remains constant even if we decrease the size of the par-
ticle. On the other hand, the specific surface area of an inclu-
sion increases without limit when its size becomes small. Sur-
face effects dominate in the nanoscale. Clusters more com-
plex than the fairly basic shapes discussed in this paper are
formed.

Of course, the translation of continuum models (like this
analysis of basic shapes and their responses) into smaller
scales is problematic also in another respect. Even if we are
not yet in the molecular and atomic level in the length scales,
this nanoregion is the intermediate area between bulk matter
and discrete atoms. One cannot enter into very small scales
without the need of quantum physical description. This de-
viation from the classical physics description is hiding be-
hind the corner and we have to remember that exact geo-
metrical shapes start to lose meaning in the deeper domains
of nanoscale. Another issue to be connected to the man-
ner how well the shapes remind of those familiar from con-
tinuum three-dimensional world, is whether the nanoclus-
ters are built from exact ordered crystal structure or more
amorphous-like aggregates. One could expect that in the lat-
ter case the “softer” forms (spheres and ellipsoids) would be
more correct approximations to reality. And because the clas-
sical mixing rules very often rely on assumptions of such
scatterer shapes, we might expect that homogenization and
effective medium theories have their place also in materials
modeling in the nanoscale.
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trizitätskonstanten und Leitfähigkeiten der Mischkörper aus
isotropen Substanzen,” Annalen der Physik, vol. 416, no. 7, pp.
636–664, 1935.

[13] L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous
Media, Pergamon Press, Oxford, UK, 2nd edition, 1984.

[14] A. Mejdoubi and C. Brosseau, “Finite-element simulation of
the depolarization factor of arbitrarily shaped inclusions,”
Physical Review E, vol. 74, no. 3, Article ID 031405, 13 pages,
2006.

[15] M. L. Mansfield, J. F. Douglas, and E. J. Garboczi, “Intrinsic
viscosity and the electrical polarizability of arbitrarily shaped
objects,” Physical Review E, vol. 64, no. 6, Article ID 061401,
16 pages, 2001.
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