
9HSTFMG*agagdh+

ISBN 978-952-60-6063-7 (printed)
ISBN 978-952-60-6064-4 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934 (printed)
ISSN 1799-4942 (pdf)

Aalto University
School of Science
Department of Computer Science
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 14

/2
015

Joakim
 K

oskela
A

 Secure P
eer-to-P

eer A
pplication F

ram
ew

ork
A

alto
 U

n
ive

rsity

Department of Computer Science

A Secure Peer-to-Peer
Application Framework

Joakim Koskela

DOCTORAL
DISSERTATIONS

Aalto University publication series
DOCTORAL DISSERTATIONS 14/2015

A Secure Peer-to-Peer
Application Framework

Joakim Koskela

A doctoral dissertation completed for the degree of Doctor of
Science (Technology) to be defended, with the permission of the
Aalto University School of Science, at a public examination held at
the lecture hall T1 of the school on 2 February 2015 at 12.

Aalto University
School of Science
Department of Computer Science

Supervising professor
Professor Jukka K. Nurminen

Thesis advisor
Professor Andrei Gurtov

Preliminary examiners
Professor George C. Polyzos, Athens University of Economics and
Business, Greece
Professor Róbert Szabó, Budapest University of Technology and
Economics, Hungary

Opponent
Professor Klaus Wehrle, RWTH Aachen University, Germany

Aalto University publication series
DOCTORAL DISSERTATIONS 14/2015

© Joakim Koskela

ISBN 978-952-60-6063-7 (printed)
ISBN 978-952-60-6064-4 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934 (printed)
ISSN 1799-4942 (pdf)
http://urn.fi/URN:ISBN:978-952-60-6064-4

Unigrafia Oy
Helsinki 2015

Finland

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Joakim Koskela
Name of the doctoral dissertation
A Secure Peer-to-Peer Application Framework
Publisher School of Science
Unit Department of Computer Science

Series Aalto University publication series DOCTORAL DISSERTATIONS 14/2015

Field of research Network architectures and security

Manuscript submitted 25 February 2011 Date of the defence 2 February 2015

Permission to publish granted (date) 18 November 2014 Language English

Monograph Article dissertation (summary + original articles)

Abstract
The nature of the Internet has changed dramatically. From a modest research network, it has

evolved into one of the most important fabrics of our modern society, affecting the lives of
billions each day. We rely on it for everything from performing our daily chores to accessing
rich media and keeping in touch with our friends.

Despite this change, service provisioning has largely remained intact. Services are provided
in a centralized manner, resulting in bottlenecks and vulnerable collections of, often
unwittingly, submitted sensitive information. Peer-to-peer (P2P) technologies have the
potential to provide a better alternative for future networking. P2P services distribute the load
from a single node to a network of peers, relying on the resources of the end-users themselves.
Not only does it remove the bottlenecks, it has the potential to provide a more personal and safe
networking environment.

In this dissertation, we inspect the feasibility and implications of a generic, cross-application,
P2P framework. We present the design and implementation of a framework that uses
existing infrastructure and advanced networking protocols to create a secure environment.
Using this framework, applications are able to benefit from P2P networking without having to
deploy new infrastructure or implement complex connection- and identity management. Users
benefit from using a single, strong, cross-application identity management and having better
control over their data. This improves the trust within the system and enables new ways of
dealing with security threats.

We demonstrate the feasibility of the framework by evaluating the performance and usability
of the prototype implementation. This provides a model for future networking applications and
insight into the security and usability issues these will face.

Keywords peer-to-peer, security, mobility, identity management, application frameworks

ISBN (printed) 978-952-60-6063-7 ISBN (pdf) 978-952-60-6064-4

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942

Location of publisher Helsinki Location of printing Helsinki Year 2015

Pages 198 urn http://urn.fi/URN:ISBN:978-952-60-6064-4

Preface

This thesis is the result of my work at Helsinki Institute of Information

Technology (HIIT) during 2007-2013. First and foremost, I like to thank

the institution and its staff, especially my foreman and instructor Andrei

Gurtov, for supporting me during this time. It has been an inspiring envi-

ronment to work in, and without the great colleagues, interesting conver-

sations and opportunities to connect with researchers all over the world,

this dissertation would not have been completed. Furthermore, I owe my

gratitude to my supervisor Jukka Nurminen for encouragement and pa-

tience during the final phases of the process. I am also grateful to my

former supervisor Antti Ylä-Jääski for the assistance in the beginning,

and Zhonghong Ou for providing valuable feedback on early drafts of this

dissertation.

I wish to thank my colleagues and co-authors Juho Heikkilä, Kristiina

Karvonen, Dmitry Korzun, Sasu Tarkoma, Theofanis Kilinkaridis, Nicho-

las Weaver, Mark Allman, Jani Hautakorpi and Gonzalo Camarillo for

the cooperation during these years, helping me refine ideas, as well as my

writing. In addition, I have had the pleasure to work with several brilliant

people, whose input has been invaluable. I would like to thank Miika

Komu, Samu Varjonen, Ramya Sri Kalyanaraman, Andrey Khurri, Boris

Nechaev, Dmitriy Kupsov, Tatiana Polishchuk, Andrey Lukyanenko, Ilya

Nikolaevskiy, Oleg Ponomarev, Ruishan Zhang, Cheevarat Jampathom

and Ajit Kumar for being great colleagues, and friends.

The work was completed as part of various projects at HIIT, including

Trustworthy Internet (TrustInet), Infrastructure for HIP (InfraHIP), Se-

cure Peer-to-Peer Services Overlay Architecture (SPEAR), NordicHIP for

which the Future Internet Graduate School (FIGS), FICNIA, TEKES, the

Academy of Finland, the NLnet foundation and funding partners deserve

recognition for enabling.

1

Preface

I would also like to express my gratitude to the research institutions

and groups I have collaborated with during these years. My visit at the

International Computer Science Institute (ICSI) in Berkeley, California

influenced my approach to research greatly, and I will always be grateful

for the warm welcome and support I received. I am glad to have met, and

visited, the people from the Distributed Systems Group at RWTH Aachen

University, especially Tobias Heer, René Hummen and Stefan Götz, who

provided interesting conversations and good company. Finally, I would

like to thank Miika Tuisku and Tommo Reti for giving me the opportu-

nity to work with the Helsinki Institute of Physics Technology Programme

(HIP-TEK) at CERN, Geneva, which provided an insight into the commer-

cial aspects of distributed computing, as well as fresh ideas.

I want to thank the pre-examiners of this dissertation, professor George

C. Polyzos of the Athens University of Economics and Business, and pro-

fessor Róbert Szabó of Budapest University of Technology and Economics,

and professor Klaus Wehrle of RWTH Aachen University for agreeing to

serve as my opponent.

Finally, I thankmy family and friends for the support, love and guidance

I have always received. Especially Ulli for the love and compassion you

have shown, I look forward towards sharing the joys and challenges of the

exciting times to come.

Helsinki, January 13, 2015,

Joakim Koskela

2

Contents

Preface 1

Contents 3

Author’s Contribution 7

List of Figures 11

List of Tables 13

List of Abbreviations 15

1. Introduction 19

1.1 Problem statement . 21

1.2 Methodology and tools . 23

1.3 Structure of Dissertation . 25

2. Background 27

2.1 Peer-to-peer technologies . 27

2.1.1 Peer-to-peer network structures 28

2.1.2 Network topologies . 29

2.1.3 Peer-to-peer network examples 30

2.1.4 Applications of peer-to-peer networking 33

2.1.5 Tradeoffs of peer-to-peer networking 34

2.2 Public-key cryptography . 37

2.3 Key-based identity schemes 39

2.3.1 Transport Layer Security and HTTPS 39

2.3.2 PGP . 40

2.3.3 Opportunistic personas 41

2.3.4 Identity revocation . 41

2.4 The Session Initiation Protocol 42

3

Contents

2.4.1 SIP security . 45

2.4.2 SIP and VoIP SPAM prevention 46

2.5 Peer-to-peer SIP . 49

2.5.1 Decentralized SIP . 50

2.5.2 RELOAD . 51

2.6 The Host Identity Protocol . 53

2.6.1 HIP overlay networking 56

2.7 Teredo . 57

2.8 P2P HTTP . 58

2.8.1 Web caching . 58

2.8.2 Personal web services 59

2.8.3 P2P social networking 60

2.9 Bloom filters . 60

3. A secure peer-to-peer framework 63

3.1 System overview . 65

3.1.1 Identity management 66

3.1.2 Overlay infrastructure 67

3.1.3 Connectivity . 68

3.2 Prototype implementation . 69

3.2.1 Architecture . 70

3.2.2 Overlay use . 72

3.3 Application integration . 74

3.3.1 SIP . 75

3.3.2 HTTP . 76

3.3.3 Towards a generic framework 77

3.4 Summary . 77

3.4.1 Technological advances 78

3.4.2 Related work . 78

4. Evaluation 81

4.1 Networking performance . 81

4.1.1 Test set-up . 82

4.1.2 Connection delay . 83

4.1.3 Latency . 85

4.1.4 Throughput . 85

4.2 Performance on a mobile device 87

4.2.1 Connection delay . 88

4.2.2 CPU usage . 90

4

Contents

4.3 Load on storage . 92

4.4 Summary . 97

5. Privacy extensions 99

5.1 Problem scope . 100

5.2 Solution model . 102

5.2.1 Storage key obfuscation 103

5.2.2 Usability considerations 103

5.3 Implementation . 104

5.4 Bootstrapping and configuration 106

5.5 Validation . 106

5.5.1 Optimizing the data management 109

5.5.2 Data usage . 110

5.6 Summary . 111

6. Secure P2P Web 113

6.1 Securing Web content . 114

6.1.1 Page structure . 114

6.1.2 Content components 114

6.1.3 User-generated content 115

6.1.4 Security policies . 116

6.1.5 Implementation . 117

6.1.6 Related work . 120

6.2 P2P Web cache . 121

6.2.1 Data management strategies 121

6.2.2 Self-adjusting expiration 125

6.2.3 Validation . 126

6.2.4 Security considerations 126

6.2.5 Related work . 128

6.3 Discussion . 129

7. Preventing unwanted traffic 131

7.1 Relationship-based filtering 132

7.2 Related work . 133

7.3 BloomBuddies . 135

7.3.1 Threat model . 136

7.3.2 Relationship keys . 137

7.3.3 Detecting relationship-specific keys 138

7.3.4 Security analysis . 140

5

Contents

7.3.5 Scalability . 145

7.4 Implementation . 147

7.5 Summary . 149

8. Usability 151

8.1 Related work . 152

8.2 Research questions and methodology 153

8.3 The study . 154

8.3.1 The Initial Interviews 154

8.3.2 The Online Questionnaire 156

8.3.3 Creating and Testing a Paper Mock-up UI 158

8.3.4 Mock-up user test and analysis 160

8.3.5 VoIP UI . 161

8.4 Conclusions . 163

9. Trials and future work 165

9.1 Application experiments . 168

9.2 Future work . 172

10.Conclusions 175

Bibliography 177

Appendix A P2P HTTP cache advertisement algorithm 193

6

Author’s Contribution

The work for this dissertation started at the TrustInet 1 project with the

intent of studying how trust-based solutions can be used to enhance secu-

rity in distributed environments. The project begun with simple experi-

ments on call filtering using a P2P SIP prototype. It quickly grew into a

generic platform for evaluating security mechanisms in distributed appli-

cations. As of today, the platform has been used for experimenting with a

number of security mechanisms and different applications.

The main contributions of this dissertation are:

• The design and evaluation of a cost-effective secure P2P application frame-

work. Using a prototype for mobile devices, we evaluate our P2P appli-

cation framework that enables applications to securely communicate in

distributed environments. The feasibility of our framework is demon-

strated using performance measurements, protocol analysis and usabil-

ity evaluation. Using infrastructure based on redundancy of indepen-

dent unreliable resources, we show that networks can be built cost-

effectively, and quantify their limitations. Through these evaluations,

we show that our framework provides a less expensive, but secure, al-

ternative for building generic overlay networks.

• A secure model for P2P web. We design and evaluate P2P web inte-

gration using a novel security scheme and a distributed caching model.

Combined with the security mechanisms of our framework, it provides

protection both from eavesdropping and malicious content. Unlike tra-

ditional approaches to distributed caching, we do not assume all nodes

to be trustworthy, but include the security needed to provide authen-

ticity and protect the privacy of users. The model is evaluated using a

1Trustworthy Internet (TrustInet) http://trustinet.hiit.fi

7

Author’s Contribution

prototype implementation.

• A privacy-enhancement scheme for identity-based P2P networks. We an-

alyze the privacy issues of strong identity-based P2P networks and de-

velop a generic scheme that allows users to hide their actions frommem-

bers of the overlay, while still leveraging resources shared by those. The

scheme is implemented and evaluated, with special focus on the per-

formance and usability of the solution. To our knowledge, this is the

first complete attempt at solving privacy issues in P2P networks based

on persistent identities, as traditional approaches concentrate only on

hiding the current owner of a dynamic identity.

• A privacy-conscious mechanism for traffic filtering in P2P environments

based on relationships. We developed a Bloom filter- based solution for

virally sharing relationship information, suited for traffic filtering. We

analyze the security issues of viral relationship sharing, and present a

novel protocol for the safe, and privacy-preserving, distribution of these.

The scheme is evaluated with metrics recorded from from real-life so-

cial networks, and compared to current solutions with regards to the

security of the solution and overhead. We show that it efficiently pro-

tects both sides of an exchange, and provides, with a high degree of

certainty, a relationship path between the two while keeping the inter-

mediate links anonymous.

This dissertation does not address the specifics of any particular P2P

overlay protocol. Topics such as churn, routing overhead and network-

level scalability are not discussed as far as they concern the overlay struc-

ture. We concentrate on the structure and security of applications using

these overlays, and leave the networking details to the designers of those

protocols.

The design of the framework was done jointly with Juho Heikkilä and

Andrei Gurtov, although the author acted as the main architect and was

responsible for implementing, and evaluating, the prototype. The de-

sign was published in [64] and [98]. In [64], the author contributed to

the architecture description and was responsible for developing a method

for efficiently distributing the service discovery process. The identity

model, and use of mobile cross-application identities, is a topic the author

brought to the framework from his related research [104]. The author

8

Author’s Contribution

was responsible for designing a generic interface which allowed the inte-

gration of external identity management systems, as well as to integrate

the system used in [104].

Application support, web integration and cooperative caching, as de-

scribed in [98][99], was designed and implemented by the author. The

author was also responsible for designing and executing the feasibility

evaluations, as well as developing the optimizations.

The P2P web security enhancements are based on work done jointly

with Nicholas Weaver, Mark Allman and Andrei Gurtov on adding attri-

bution and integrity to web pages using cross-application identities [104].

The author was responsible for developing the concept, and conceiving

a way of integrating it into web pages and servers, as well as the de-

velopment of the prototype system. The author was also responsible for

adapting the concept to P2P environments, and integrating it with the

P2P framework.

The privacy enhancements were conceived and designed by the author.

The prototype implementation and functional evaluation was completed

jointly by the author and Cheevarat Jampathom. The results were pub-

lished in a conference paper [103] written jointly with Professor Sasu

Tarkoma of the University of Helsinki.

The study of the usability aspects of the security solutions, and VoIP in

general, was done by Theofanis Kilinkaridis and Kristiina Karvonen. The

author was responsible for providing technical details, and for defining the

bounds for the paper mock-ups. The initial user interface for the security

enhancements was designed by the author, although influenced by dis-

cussions with Theofanis Kilinkaridis and Kristiina Karvonen. The work

of evaluating the interface, and subsequent improvements, were done by

Kristiina Karvonen, Sanna Shibasaki and the author. Parts of this work

has been published in [102] and [101].

Filtering traffic based on social networks (relationships) is a topic con-

ceived by the TrustInet project group and developed by Juho Heikkilä.

The author’s role was to design an alternative mechanism suitable for

fully P2P networks. The author was responsible for studying how Bloom

filters could be used in a secure, and privacy preserving manner, and con-

ceiving and implementing the solutions presented in this thesis. This

work was has been published in [100].

9

Author’s Contribution

10

List of Figures

2.1 Types of network services . 28

2.2 Peer-to-peer network topologies 30

2.3 A Chord ring . 32

2.4 Chord lookup . 32

2.5 RSA encryption . 38

2.6 SIP architecture . 43

2.7 SIP INVITE example . 44

2.8 SIP call establishment . 45

2.9 RELOAD architecture . 52

2.10 HIP in the networking stack 55

2.11 Teredo address composition 58

3.1 Design principles. 64

3.2 System overview . 65

3.3 Identity management . 67

3.4 Prototype architecture . 71

3.5 Registration packet structure 73

3.6 Olclient module management 74

4.1 Connection delay . 84

4.2 Average RTT and HTTP response times 85

4.3 Throughput . 86

4.4 Packet dissection . 87

4.5 Connection delay on Nokia N810 88

4.6 Call set-up delay with HIP . 89

4.7 Call set-up delay without HIP 89

4.8 Call set-up delay averages . 89

4.9 CPU utilization during VoIP call 91

4.10 CPU utilization during P2P connection 93

11

List of Figures

4.11 P2P HTTP caching algorithm results 95

6.1 The HTML source of a signed block. 118

6.2 The signed block after processing. 118

6.3 A CSS style sheet declaration highlighting the trustworthi-

ness of the content. 119

6.4 Traffic pattern of a HTTP session 123

6.5 Pauses between subsequent requests to the same host. . . . 124

6.6 The effect of the publishing delay on the total number of

cache advertisements and accessibility. 125

6.7 P2P HTTP caching algorithm results 127

7.1 Viral propagation of Bloom filters 135

7.2 BloomBuddies key exchange 141

7.3 Bloom filter expansion . 146

8.1 Application main UI paper mock-up 159

8.2 UI presenting the user’s relation to the caller. 159

8.3 Introducing contacts with and without recommendations. . . 160

8.4 Choosing privacy mode . 160

8.5 Control interface . 162

8.6 UI of the VoIP application. 162

9.1 SIP gateway flow . 171

12

List of Tables

2.1 SIP SPAM types . 47

2.2 SPAM prevention techniques 48

4.1 RTT between network elements 83

5.1 Hash to SIP AOR mapping . 107

5.2 Traffic log before privacy enhancements 108

5.3 Traffic log after privacy enhancements 108

5.4 Traffic log after reset . 109

5.5 Results of the storage use measurements. 111

6.1 HTTP cache expiration times 122

13

List of Tables

14

List of Abbreviations

AOR Address of Record

API Application Programming Interface

BEET Bound End-to-End Tunnel

BEX Base Exchange

CPU Central Processing Unit

DHCP Dynamic Host Configuration Protocol

DHT Distributed Hash Table

DNS Domain Name System

DSL Digital Subscriber Line

ESP Encapsulated Security Payload

BSD Berkeley Software Distribution

GB Giga Byte

GHz Giga Hertz

GNU Gnu’s Not Unix

GUI Graphical User Interface

HI Host Identity

HIIT Helsinki Institute for Information Technology

HIP Host Identity Protocol

HIPBONE HIP-Based Overlay Networking Environment

HIPL HIP for Linux

HIT Host Identity Tag

HTTP HyperText Transfer Protocol

HTTPD HTTP Daemon

HTTPS HTTP Secure

ICE Interactive Connection Establishment

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronics Engineers

IETF The Internet Engineering Task Force

15

List of Abbreviations

IM Instant Messaging

IP Internet Protocol

IPSec IP Security Architecture

ISP Internet Service Provider

ITU International Telecommunication Union

KB Kilo Byte

KDE K Desktop Environment

LAN Local Area Network

MAC Media Access Control

MB Mega Byte

MD5 Message-Digest algorithm 5

MTU Maximum Transmission Unit

NAT Network Address Translation

OS Operating System

P2P Peer-to-Peer

P2PSIP Peer-to-Peer SIP

PC Personal Computer

PGP Pretty Good Privacy

PHP PHP: Hypertext Preprocessor

PKI Public Key Infrastructure

POTS Plain Old Telephone System

RAM Random Access Memory

RFC Request For Comments

RPC Remote Procedure Call

RSA Rivest, Shamir and Adleman

RSS Really Simple Syndication

RTT Round Trip Time

RVS Rendezvous Server

SHA Secure Hash Algorithm

SIP Session Initiation Protocol

SOAP Simple Object Access Protocol

SPIT Spam over Internet Telephony

TCP Transmission Control Protocol

TLS Transport Layer Security

UA User Agent

UDDI Universal Description Discovery and Integration

UDP User Datagram Protocol

UI User Interface

16

List of Abbreviations

URL Uniform Resource Locator

USB Universal Serial Bus

VoIP Voice over IP

WLAN Wireless LAN

WOT Web of Trust

WSDL Web Services Description Language

WWW World Wide Web

XML eXtensible Markup Language

17

List of Abbreviations

18

1. Introduction

Peer-to-peer (P2P) systems have been a popular research topic during the

past years, as they have the potential to offer more reliable, fault-tolerant

and cost-efficient networking. As these systems are built on the resources

of the participating client nodes themselves, they are not dwarfed by

the reliability, trustworthiness and performance of dedicated ’bottleneck’

servers. The advantages are well known, and over the past decade, we

have seen a surge of applications which to some degree rely on P2P tech-

nologies.

Although the concept is as old as computer networking, service provi-

sioning has long followed a centralized model. A widespread, serious,

interest in P2P service provisioning did not begin before the end of the

last century when file-sharing systems such as Napster 1, the Gnutella

network, and more recently BitTorrent and the Skype2 messaging appli-

cation, managed to demonstrate the enormous potential of P2P technolo-

gies in providing scalable solutions to otherwise infeasible services.

Meanwhile, the nature of the Internet has evolved from an encyclopedic-

like directory of information to a social medium, where people interact

and express themselves. Much of the content we see on the Internet today,

such as photographs, blog posts and product reviews, is produced by the

users themselves. Even sites without user generated content often embed

elements that enable social interaction, such as like and share- buttons

that allow users to recommend content to others. However, the end-user

has no real control over how this information is used. The billions of bits

of data produced each day are stored in the service providers’ databases,

creating vast collections of sensitive information.

In addition to being more scalable, P2P technologies have the potential

1http://www.napster.com
2http://www.skype.com

19

Introduction

to provide a safer networking environment for this modern, social, Inter-

net. As the users themselves take part in the provisioning, they have

better control over how information is managed. However, P2P- based

services are still few in today’s Internet, and considered special, tech-

nically complex. Each one has required carefully designed solutions for

connectivity issues and security threats, that fit the characteristics and

environment of that particular application.

This has lead to highly specialized solutions optimized for a single cause,

and to the deployment of specifically tailored infrastructure. The service

model is decided early on, and the application is built very aware of the

network topology, whether P2P or centralized, it operates in. Chang-

ing the underlying service model is costly, requiring a fundamental re-

evaluation of how the application works, and many known, and unknown,

issues to be solved. Furthermore, as P2P implies that a provider relin-

quishes some of the control over the service, investing in P2P is commit-

ment that is hard to justify unless there are immediate benefits, such as

when the application is exceptionally resource intensive.

The topic of this dissertation is to address the application-level issues

that raise the threshold for utilizing distributed service provisioning. By

designing a generic P2P application framework, we have created an envi-

ronment that allows us to study the requirements of these applications,

and to quantify and develop solutions to the problems encountered. How-

ever, our focus is not on solely P2P-specific issues, but rather on how ap-

plications should be designed, and what it would mean for them, to be

oblivious to the underlying network structure. This would enable services

that can be hosted either way, thus easing the transition for both existing,

as well as completely new, types of applications to special environments.

Compared to existing research on P2P networking, our focus is not on

the structure and protocols of the overlay network, but rather on how

applications, even existing ones, adapt to environments without a fixed

structure or trusted authority. We sketch an overall architecture within

which different, current or future, network protocols can be used. Sec-

ondly, we do not assume a specific type of networking application, but

examine the issues common to all, independent of their data transfer pat-

terns or other characteristics. We do not assume that the applications are

even aware of the underlying framework, but create a system which can

be combined even with unmodified legacy applications.

Much of our work revolves around the synergy and security of applica-

20

Introduction

tions, i.e., how a dispersed set of users can bootstrap new applications and

communicate safely without a centralized authority. But we also examine

more practical issues, such as ensuring availability and fairness. Creat-

ing a P2P framework that could explore these issues has conventionally

been a daunting task, requiring commitment and investment to both the

framework and the applications meant to use it. Fueled by the recent ex-

plosion of consumer-oriented cloud services, our insight is that not only

can we utilize existing, readily available infrastructure and protocols to

provide such a framework, but we can adapt existing applications to it.

As the work presented in this dissertation is based on experiments us-

ing our generic P2P framework for mobile devices, we begin by reviewing

the design, placing special emphasis on the strong identity scheme which

is the cornerstone of the system’s security. Through evaluations and mea-

surements, we show that P2P overlays can be deployed at low cost using

readily available generic cloud resources, while remaining secure and re-

sponsive.

We continue by describing the application-level issues we have stud-

ied in this environment, and presenting our solutions. First we study

the privacy issues related to using the unreliable peer resources in P2P

networks. We develop a simple scheme, and discuss the usability impli-

cations of it. Secondly we address relationships and trust in distributed

systems using a novel privacy- conscious introduction mechanism. We

continue by examining data availability and fairness in these networks by

studying a distributed web caching scheme and presenting the improve-

ments to a novel incentives mechanism for data distribution. We finish

with our findings from a study of the usability of distributed communica-

tion systems, presenting our solutions to making security usable in these

environments.

1.1 Problem statement

The goal of the research of this dissertation is to develop and explore dif-

ferent aspects of a secure P2P framework. We believe that P2P provides

a more natural fit for future networking applications, as the focus is in-

creasingly shifting towards mobile access and user- centric interaction.

However, creating new applications for these environments is difficult.

There are a number of issues to consider, including deployment, security

and usability, to which no obvious solutions exist. These are the problems

21

Introduction

we are addressing. Specifically, the main research problems are stated as

follows.

i How do we design a P2P framework that is easily deployable in both

present and future networking environments?

ii How do we manage identities and security without a centralized au-

thority?

iii How do we design a generic framework that supports a wide range of

applications and networking models?

As for the first question, deployability is a key issue when designing

new software. Our goal is not to design the most efficient network proto-

col, but rather to create a framework that is practical and can actually be

deployed in the current, and future, Internet. An efficient way of achiev-

ing good deployability is to re-use existing technologies and resources in

an innovative manner, which is the approach we have taken. To better

adapt to future networks, we set out with few requirements or assump-

tions regarding the intended network environments. By abstracting the

resource management based on the least common denominator of what is

available today, our goal is to develop a robust framework which not only

is deployable in various networks, but also migrates easily between those.

Aiming at producing a truly P2P framework, suitable even for mobile

and ad-hoc networks, we need a design that replaces the traditional cen-

tralized approach to identity management with a distributed solution.

The integrity of identities is a crucial prerequisite for any type of secu-

rity, however, it is not the only issue related to identity management in

distributed environments. Privacy and how peers relate to each other, the

trust between users, must also be carefully considered.

As P2P systems form a network between the participating nodes, used

to collectively perform tasks and manage resources, the network itself be-

comes the service provider. Where there once was a trusted, centralized

component, we now have a collection of possibly non-trusted nodes. Most

P2P systems have few mechanisms in place for controlling how informa-

tion is propagated within the network. Considering a P2P telephony ap-

plication, signaling exchange made through the network (such as media

content, call set-up, messaging or presence information) can potentially

be intercepted and abused, or forged, by any one of the peers. This raises

concerns about privacy and how to protect information, as well as places

the dependability of the nodes in the spotlight.

Without a trusted provider to govern users and protect us from mali-

22

Introduction

cious peers, we have to rethink how we establish and use trust in these

environments. We can only rely on what we know ourselves, our experi-

ences, as well as what we have heard from others we trust. Furthermore,

as computer networks spread across borders and cultures, even the no-

tion of what is correct, or trustworthy, will differ. We should explore how

we can design a model that uses our own knowledge and assumptions to

judge what is safe, while providing a sufficient level of security.

Also, as we are designing a P2P framework, we should consider iden-

tity and content management broadly, including how different applica-

tions could benefit from having unified framework-managed identities.

We should consider what it means to have users represented in a unified

manner across different applications. It may create new opportunities

and ways of communicating, but can also carry unwanted side effects. We

should rethink what content and information sharing in such an environ-

ment means. By using strong identities and different types of networking,

we transform on-line sharing from being tied to a specific service provider

to an activity where the service providers and networks we choose act

merely as a medium for communication.

Finally, as the purpose of the framework is to serve a range of applica-

tions instead of only a few (as most existing P2P systems), one of the re-

search problems is to examine and design ways in which applications can

interact with it. In addition to new application programming interfaces

(APIs), this includes support for existing legacy applications such as voice

and video-call applications. We want to create a framework which can

transform these from a centralized model into P2P applications suitable

for private, mobile or ad-hoc networks. This requires careful planning of

the application interfaces the framework provides, and other integration

details.

1.2 Methodology and tools

Large parts of the research is based on experiments conducted using an

implementation of a P2P application framework prototype. The approach

has therefore been a combination of background research, empirical eval-

uation, experimental analysis and engineering effort.

The process for researching the topics of this dissertation is best de-

scribed as an iterative process. After a research problem arose, the topic

was analyzed, identifying possible sub-components and the areas of the

23

Introduction

application framework it affected. Literature surveys were conducted

throughout the process, to identify possible solutions and gain a deeper

understanding of the issues. The first steps towards a solution to the

problems were taken using qualitative analysis. The factors affecting the

problem, and possible solution models were sketched. This was followed

by initial empirical analysis of the proposed solutions, where prototypes

and simulations were implemented and experimented with using either

real-world, or constructed, data sets. Following the initial validation, a

prototype for the framework was implemented and evaluated, usually us-

ing the Python plug-in interface of the framework. The solution was fur-

ther optimized and improved based on the results, or discarded if it was

found faulty or infeasible. Finally the implementation was finalized, and

deployed.

Much of the experimental results were obtained from a test-bed set up at

the Helsinki Institute for Information Technology (HIIT) office in Espoo,

Finland. For certain experiments that required data sets not feasible to

collect as part of this dissertation, models from well-known sources (such

as real-world social networks) were used.

The primary platform for the research was the Nokia Internet tablet

N810. Although these are not considered to be a high-end mobile devices

today, feature-wise they represent what we expect from a modern, hand-

held, computing environment. The N810 was selected due to its good

availability at the start of the research, as well as for its excellent de-

velopment environment. The framework was developed using the Meamo

SDK3, which relies on the Scratchbox4 cross-compilation toolkit. The soft-

ware engineering was done using desktop- and laptop computers, using

the Vim5 (Vi iMproved) and GNU Emacs6 editors and the GNU toolchain

and compiler collection7.

The early prototypes, as well as most server-side software, were built

using the Python8 interpreter. Measurements were conducted using a

range of tools, including iperf, ping, wget and curl on Debian-based desk-

top computers. Hip for Linux (HIPL) version 1.0.4 was used to provide

HIP support, and Miredo 1.1.5 for Teredo networking. A set of bash shell

3http://maemo.org/development/
4http://www.scratchbox.org
5http://www.vim.org
6http://www.gnu.org/emacs/
7http://gcc.gnu.org
8http://www.python.org

24

Introduction

scripts, as well as LibreOffice9 was used to summarize the data and con-

struct charts.

1.3 Structure of Dissertation

The dissertation is organized as follows. Background on the relevant tech-

nologies and existing systems which have influenced our work, or show

similarities, is given in Chapter 2. Following the background, we present

the rational behind, the design and finally the implementation of our so-

lution in Chapter 3. We explain the different assumptions and require-

ments that affected the design, and how these were met. We continue by

describing the key design principles and how these are applied to current

and future networking environments, complete with an overview of the

prototype implementation. In Chapter 4 we review the implementation,

providing results from our evaluation of it. Through network performance

measurements, observations from use on mobile devices and static analy-

sis of the protocols we assess the feasibility of our approach.

This is followed by chapters discussing in detail different security en-

hancements and other features we have studied using the framework.

Chapter 5 explores privacy issues in distributed environments, and de-

scribes the design and implementation of a privacy-enhancing mode for

our framework.

Chapter 6 addresses two fundamental challenges of P2P Web: security

and accessibility. We present a novel method for adding accountability

to the web, which combined with a cooperative caching scheme enables

a secure and usable Web experience in distributed environments. Chap-

ter 7 describes our work with relationship-based traffic filtering, where

we present a novel Bloom filter- based scheme for distributing relation-

ship information in a privacy- conscious and secure manner.

Finally, we directed our attention to the usability of our solution, and

P2P communication in general. In Chapter 8 we study attitudes and as-

sumptions towards mobile P2P communication, and describe the user in-

terface design process. We analyzed the usability of the current prototype

and identified how the issues discovered could be improved. This disser-

tation ends with a discussion on the current status, together with future

work in Chapter 9, and conclusions in Chapter 10.

9http://www.libreoffice.org

25

Introduction

26

2. Background

This chapter presents an overview of the technologies and existing work

relevant to our framework. We start by reviewing P2P concepts and tech-

nologies. We continue by introducing public-key cryptography and the

concept of strong identities. We conclude by presenting relevant network

communication protocols and reviewing security and connectivity issues

seen in the Internet today.

2.1 Peer-to-peer technologies

The modern understanding of a P2P system is a distributed communica-

tion system where the end-users themselves contribute resources to sus-

tain the system. By contrast, the current model for providing most of the

network-based services is through a centralized approach. In these sys-

tems, the service provider operates all the resources (such as servers and

networking capabilities) needed to maintain the service, while the users

only connect to access those. Even though the service itself provides inter-

action and cooperation between users, on the networking-level users only

interact with the service provider. The content shared (such as images or

chat messages) is actually only shared with the service provider, who can

then decide how it is used, or to whom it is made visible.

P2P systems allow users to network without service providers, by hav-

ing the resources needed to maintain the system provided by the par-

ticipating users themselves. Although P2P-like networking in different

forms has been utilized since the dawn of the Internet, it has rarely been

between the end-users themselves, but rather between different types of

nodes within the network (distributed services). The modern type of P2P

networking, where the end-users’ devices actively participate to provide

the service, was popularized in late 1990 by file-sharing systems. Fig-

27

Background

ure 2.1 illustrates these different ways of providing networking services.

Figure 2.1. Different types of network services. Centralized services are provided by
a (logically) single node, while distributed use a network of interconnected
nodes. Peer-to-peer services utilize the resources of the end-users.

P2P networking is an active area of research, and over time we have

seen numerous contributions helping the technology to evolve into being

more reliable and robust. The first modern P2P systems were quite sim-

ple, often relying on a centralized resource lookup service, and using P2P

connections only for data traffic. Modern systems incorporate efficient

information lookup without a single point of failure, advanced network

traversal techniques and anonymization of both content and users. In

the following we review different classifications of P2P systems, includ-

ing real-life examples of them. Furthermore, we summarize the different

advantages and issues with using P2P technologies.

2.1.1 Peer-to-peer network structures

P2P systems can be divided into structured and unstructured based on

the algorithm used to organize the network and propagate information

within it. Structured P2P systems are based on organizing the network so

that information is sought in a deterministic manner using a specific algo-

rithm, such as a Distribute Hash Table (DHT). These systems are based

on assigning identifiers to nodes and organizing the nodes so that data

destined for a specific node identifier can be routed in an efficient manner.

Data lookup is commonly based on assigning identifiers to the resources

from the same name space as the node identifiers, and distributing the

responsibility of these based on the proximity to the node identifiers.

Unstructured P2P systems are constructed in a more ad-hoc manner,

where nodes join the network at random locations. Information propaga-

tion is usually relatively inefficient, often relying on flooding and time-

to-live values. In many ways these mimic the natural patterns of infor-

mation propagation; knowledge is shared with those that happen to be in

the vicinity. Unstructured P2P networks are therefore better suited for

28

Background

casual information sharing, for systems where simplicity and proximity

is appreciated. Structured P2P systems are designed for systems where

performance and completeness is of key importance.

Unstructured P2P systems can further be divided into three subgroups

based on the architecture of the network: Centralized, Pure and Hybrid

P2P systems.

2.1.2 Network topologies

Centralized P2P systems are systems where a single centralized node is

used for various tasks such as resource lookup (indexing) or for bootstrap-

ping the system. The centralized node acts as a rendezvous for the peers,

allowing them to locate each other, while the actual application data (e.g.,

a file transfer) is exchanged directly between the peers. Although the ap-

plication data is exchanged without interference of the centralized node,

these systems share many of the problems of centralized client-server sys-

tems such as single-point of failure and performance bottlenecks. How-

ever, these are also the easiest to create, manage and use. With central-

ized access control and authentication, the peers are relieved from much

of the responsibility of keeping the system secure. This is also reflected

in the usability of the applications, as they differ hardly at all from those

based on centralized networking. In many ways, these can be seen as

merely a variation of centralized systems where only a single task is del-

egated to P2P networking.

Pure P2P systems are systems where all peers contribute equally to the

system. These systems do not suffer from having a single point of failure,

but can be inefficient as queries may have to traverse a large number of

peers as each single one has a very limited view of the network. These are

also the most complex to set up and manage. System designers have to

consider issues such as routing, security and usability carefully. Without

a central authority, it is hard to identify and exclude malicious or mis-

behaving peers. Verifying that the data exchanged through the network

is correct and remain unaltered while in transit requires a good secu-

rity framework. Routing within the network also becomes complex as the

peers responsible for forwarding packets may enter and leave at will.

Hybrid P2P systems try to combine the best features of both pure and

centralized P2P systems. In hybrid networks, a subset of the peers (often

referred to as super peers) is given more responsibility based on their

resources or strategic position within the network. These do not suffer

29

Background

from having a single point of failure as centralized systems, while offering

better performance than pure P2P systems. The super peers are used

for rendezvous and indexing of resources, reducing the amount of peers

requests need to traverse. Figure 2.2 depicts the different types of P2P

network topologies.

Figure 2.2. Illustration of the different types of P2P network topologies.

2.1.3 Peer-to-peer network examples

In the following, we review the details of two P2P protocols, one using a

structured architecture and one using an unstructured one to illustrate

the difference.

Gnutella

The Gnutella network is considered to be the first completely decentral-

ized P2P network to gain a wide popularity. The Gnutella network was

created for sharing files using keyword searches. Its primary task is to

route user-made content queries and the corresponding responses, as well

as to assist in creating the connections for the actual file transfer. The

original Gnutella network consisted entirely of nodes of equal value that

all participated in the maintenance of the network. When joining the net-

work, a node established a pre-defined number of connections (originally

five) to peers already within the network. The location of these nodes

were found using, for instance, dynamic lists stored on well-known web

locations.

When submitting a query, it was forwarded to each of the connected

peers, who further forwarded it to their connections. Queries contained a

hop-counter (time to live, TTL, counter), which was increased each time.

This counter thus kept track of the spread of the query, and queries were

dropped after traversing a specific distance (originally seven hops) to pre-

vent the network from being filled with infinite queries.

30

Background

The Gnutella network was in this manner fully distributed and put

an equal amount of load on each peer. However, due to the flooding

mechanism, the traffic within the network grows exponentially relative

to the network size. This leads to the system easily being overloaded,

and is therefore not considered scalable. To overcome these problems,

and also enable lighter, resource-constrained clients, the Gnutella proto-

col has since evolved. Currently it features a hybrid architecture where

super nodes, nodes with greater network and processing capacity, connect

to a large number of hosts and serve as a proxy for regular clients. Fur-

thermore, due to this new architecture, the maximum hop count of queries

has been limited and experiments have been made for routing the query

responses directly to the query initiator’s super node instead of through

the Gnutella network.

Chord

The Chord [167] protocol is one of the first structured P2P protocols

developed. It provides an m-bit key-based lookup with an O(logN) node

traversal guarantee (where N is the number of nodes in the system) for

finding a piece of content in a P2P network. The size of the key space

(value of m) is chosen according to the intended use of the system to pro-

vide a space sufficiently large to minimize the probability of overlapping

key values. Applications of chord use these keys, in a hash table- manner,

to retrieve pieces of data from the network, hence the term distributed

hash table (DHT).

The Chord network is often illustrated as a ring where the participating

nodes and content are distributed. Each node is assigned a position on

the ring numbered 0 to 2m (where m is the key space size). Chord relies

on consistent hashing (such as SHA-1[43]) to assign the position (e.g., the

hash value of the node’s IP address) as well as for generating the content

keys. The statistically unique and uniformly distributed properties of the

hash function in use are integral for the Chord network to create a well-

balanced network.

When joining a Chord network, the node is assigned its position (peer

identifier) from the key space. With this assignment, it is given respon-

sibility for maintaining all content which have a key value in the range

between itself and the previous node on the Chord ring. Due to the prop-

erties of the key- and position-assigning algorithms, in a network with K

keys and N nodes, each node is responsible for roughly K/N keys.

Each node maintains an up to m-entry table of the successor nodes (the

31

Background

Figure 2.3. A 6-bit Chord ring illustrating the finger nodes of node 0.

closest node clockwise on the ring) for the values n + 2i, where i ranges

from 0 to m. When receiving a query for a key, unless the node itself

is responsible for it, the query is forwarded using this table to the closest

preceding node on the ring (which may forward it further). As these finger

tables are logarithmic, each forward will bring the query closer to the

responsible node by at least half of the remaining distance.

Figure 2.4. Illustration of the message propagation in Chord when fetching key 43.

Figures 2.3 and 2.4 illustrate the finger table and lookup process respec-

tively in a six-bit Chord ring. Other structured P2P protocols include the

Content-Addressable Network (CAN) [139], Tapestry [182], Pastry [147]

and Kademlia [116] These represent the early work on structured P2P

systems and DHTs, and are often the basis for current research. The key

differences between these are found in how they manage the exchange

of nodes in the network, routing logic and the amount of redundancy in

32

Background

connections and data placement. The exchange (joining and leaving) of

nodes often result in a flood of maintenance traffic, which is important to

optimize as it can overload the network in real-life scenarios. Redundancy

and routing logic on the other hand affects the performance and stability

of the networks.

2.1.4 Applications of peer-to-peer networking

As previously noted, P2P networking is not a novel concept, in fact, much

of the Internet is built on the same concepts. Even among the first In-

ternet applications to gain a wide popularity we find examples, such as

email and Usenet news (Network News Transfer Protocol, NNTP), that

are based on a decentralized model. Even though these were truly P2P

systems, as the hosts participating in the network were also used by the

end-users (even if through remote terminals), with the introduction of

personal computing the participating nodes took on the role of service

providers for the end-users’ clients. It was not until it became common

for end-users to handle multimedia and other large data that the need for

P2P networking re-emerged.

With the surge of home Internet connectivity, the amount and ease of

sharing data on a wider scale grew exponentially. However, sharing was

very limited compared to current standards, often in private circles inac-

cessible to the public. Using P2P data transfers enabled public sharing

systems to emerge, as it significantly decreased the load on the sharing

sites. Today, file sharing remains the most popular use of P2P network-

ing, with one application in particular, BitTorrent1, responsible for a large

share of all Internet traffic.

Another popular use for P2P is within personal communication applica-

tions. The best known example of these is Skype 2, a free communication

system allowing voice and video telephony, as well as instant messaging

and file sharing. Although the system is closed and uses proprietary tech-

nology, analysis has shown that it operates using a hybrid P2P network

model [17]. This can be seen as a key enabler in its success, as a cen-

tralized model would have required large investments in infrastructure

which might have made it impossible to offer the service for free. Other

P2P communication systems and initiatives have since emerged, includ-

ing Peer-to-Peer SIP (P2PSIP), presented in more detail in Chapter 2.5.

1http://www.bittorrent.com
2http://www.skype.com

33

Background

Structured P2P networks are often used in systems where the perfor-

mance and completeness can be guaranteed. Due to these characteristics,

they can be used also for storing and retrieving data, rather than just as

a fabric for pairing peers. Examples include distributed data storage and

file systems [148] [36], caching [76] [175] and content search (such as the

FAROO3 and YaCy4). These systems have been shown to be robust and

reliable even though a large portion of the overlay’s nodes would fail [36].

Furthermore, structured P2P networks can also be used in conjunction

with unstructured P2P systems. Especially centralized P2P systems can

benefit from replacing the centralized components with a structured P2P

network for increased robustness, as demonstrated by the Bittorrent DHT

tracker.

2.1.5 Tradeoffs of peer-to-peer networking

P2P systems have several benefits over traditional client-server systems.

As the peers contribute resources (network bandwidth, storage or compu-

tation power), the total capacity of the network increases as peers join,

which makes it more scalable in theory. Except for centralized P2P sys-

tems, the network may also become more reliable and robust as there is

no single point of failure. However, as P2P networks use the resources

of the clients, weak clients can negatively impact the performance of the

whole network. Furthermore, the additional load put on the clients may

be problematic for some (such as mobile devices), where power consump-

tion is critical and the storage capacity is limited.

However, the performance and efficiency of even the tinyest computing

devices evolve over time, giving us more capacity and networking capa-

bility per Watt of energy. In recent studies, it has been shown that even

for small hand-held mobile devices (such as PDAs and smartphones), P2P

networking is by no means infeasible [125] [129] [126]. Furthermore, it

has been shown that it is possible to modify, or tune, P2P systems into be-

ing better suited for mobile devices [91] [89] [90]. For instance, by paying

attention to communication patterns and implementing smart idle sens-

ing [60] and grouping of messages [14], or using probabilistic message

dropping [92] substantial energy savings can be made while maintain-

ing acceptable network performance. Another approach is to leverage the

mobility of nodes, which has resulted in systems such as PReCinCt which

3http://www.faroo.com/
4http://yacy.net/

34

Background

leverage proximity of the nodes for optimal performance [153].

Minimizing the negative impact weakly performing clients have on the

network has been an important topic for P2P research. Unless the net-

work is designed to consider the performance of the nodes in its structure,

the network may easily become unresponsive. There are a number of

reasons for clients to perform poorly in P2P networks. Resource-limited

clients, such as mobile phones, simply do not have the computing power

or storage capabilities of desktop computers. Furthermore, the network

connection may be slow, congested or unreliable. Furthermore, the client

may also cheat by showing poor performance even though having suffi-

cient resources. For instance, network connectivity might be billed by the

amount of data transferred. This, of course, forms a very strong incentive

for the user to minimize his involvement in the P2P network. This prob-

lem of free-riding [8] can be mitigated in different ways; by minimizing the

amount of these peers in the network, or their impact on the performance.

By providing the right incentives for users to share their resources,

users are discouraged from free-riding, increasing the overall network

performance and preventing even a total collapse [87]. These incentives

can either be positive (rewarding the user when following the rules), or

negative (punishing the user for performing poorly). The success of the

Bittorrent protocol is, to a large extent, due to its incentive system. The

Bittorrent protocol uses a so-called tit-for-tat mechanism for deciding how

resources are distributed. This mechanism forces users to simultaneously

share data of the files they are downloading in order to maintain a good

download speed, leading to fairer sharing [34]. The Bittorrent network

itself uses a centralized- or distributed P2P model, where trackers (either

single nodes or DHTs) keep track of the files shared, and the users sharing

them.

The success of Bittorrent has since led to extensive analysis of it [77]

[135], resulting in mathematical modules for how different conditions and

behavior affect its performance [136], as well as being seen as a standard

to which new protocols are compared [155]. Furthermore, the tit-for-tat

incentive mechanism used in Bittorrent has been questioned, leading to

numerous improvements [20] [133] [109] [154]. Of course, Bittorrent is a

relatively simple P2P application where the incentive mechanism is de-

signed for rather short-sighted goals (maximum momentary throughput

from immediately connected peers). For complex and long-lived systems,

a more fine-tuned and widespread reputation system needs to be deployed

35

Background

[47]. These need to be closely integrated with the identity management of

the network to be efficient [48].

However, as there will always be peers that cannot affect their poor per-

formance (due to resource constrictions), introducing incentives only to

weed out the free-riders does not address the issue completely. By design-

ing the P2P network in an intelligent manner which acknowledges the

different restrictions of the individual nodes, we can avoid potential bot-

tlenecks. By using different types of hybrid P2P network architectures,

the traffic flow can be optimized. With smarter routing methods, the im-

pact of congested and poorly performing peers can be minimized [172]

[97]. And by using replication and redundancy in data storage, availabil-

ity is increased [112].

Security is, however, harder to manage in P2P systems. As users rely

on each other, there are usually ample opportunities for malicious activ-

ities. Impersonation, denial of service and distribution of bogus or ma-

licious content are some of the problems seen today. Intermediate peers

can easily modify or misroute traffic. Sybil attacks [42] are one of the most

well-known threats to P2P systems. Named after the pseudonym used in

a well-known study on multiple personality disorder, it involves creating

multiple personas within the P2P network to be in a stronger position to

perform malicious activities. By having a stronger presence in the net-

work, attacks can misroute traffic, efficiently cutting off selected targets

completely (also known as an eclipse [160]), amongst others. This has led

to research of reputation-based prevention techniques, using either the

overlay as storage (for votes, feedback and complaints) [37] [180] [85] [5],

or by distributing the information as part of the network signaling [183]

[140]. Although these techniques improve the security and reliability of

the P2P networking, trust remains an issue.

Privacy in P2P systems is also often an issue. By contributing to the

network, end-users run a higher risk of exposing, either accidentally or in-

advertently, sensitive information [54]. Without an anonymization mech-

anism, the identities of the participants are also more exposed, as there

is no third party through which data is exchanged. P2P networks lacking

the proper encryption also allows intermediate peers to follow (eavesdrop

on) or even disrupt the communication. Furthermore, as services and

data can be provided by anyone, it can lead to irresponsible behavior on

the part of the providers. Today we see viruses and other malware being

distributed with the help of P2P file-sharing systems.

36

Background

Operations over collections of content, such as searches, are also prob-

lematic. Per definition, each node in a P2P system has only a partial view

of the network, and for a complete query, the request must be processed

by multiple nodes. This is problematic in structured P2P networks in

particular, where the precise routing algorithms are not well suited for

the inexactness of common content queries. Although innovations such

as range queries [12] [158] [58] and efficient multi-attribute searches [51]

[156] [62] [21] [114] have been developed, P2P systems are still seen to

excel best with rather simple bandwidth-intensive applications.

2.2 Public-key cryptography

Traditional computer cryptography is based on using a cryptography func-

tion f() that transforms a piece of data, plaintext, into encrypted data us-

ing a secret key S. The same key is used to transform the encrypted data

back to its original format, hence often referred to as symmetric cryptog-

raphy. The process seems intuitive as it is similar to real-world message

concealment methods used since ancient times. Although symmetric cryp-

tography does well in protecting the data from eavesdropping, it requires

that the secret key is known by the parties exchanging data. It essen-

tially requires that there is a pre-established relationship between each

of the communicating actors, and that each one is trusted not to expose

the secret to third parties as it would invalidate the whole system.

To solve this problem, a public key, or asymmetric, cryptography was

proposed by Ralph Merkle in 1974, although first published by Whitfield

Diffie and Martin Hellman in 1976 [40]. By leveraging the characteristics

of exponentiation, these systems allow two previously unknown parties to

establish a shared secret over an insecure channel. This key-negotiation

scheme introduced the notion of using a key pair with a mathematical

relation, of which one part is kept secret while the other can be exchanged

over an open channel. The latter part is used for encrypting while the

former, secret, part for decrypting.

The first practical public key cryptography scheme was published in

1978 by Rivest, Shamir and Adleman, today known as RSA [142]. The

secret, private, and public key pair in RSA is chosen based on mathemat-

ical relationships to two randomly chosen prime numbers p and q. The

public key consists of the two numbers e and n, where n is the product of

the chosen prime numbers and e a co prime with (p−1)(q−1). The private

37

Background

key d is calculated to satisfy an inverse relationship with these, as shown

in Figure 2.5. The public key can now be openly distributed and used to

encrypt information, which can only be encrypted using the private key.

But the reverse is also true; the private key can be used to encrypt in-

formation that can be decrypted with the public key. Although the two

keys do share a mathematical tie and can be deduced from each other,

the security of RSA is based on the computational difficulty of factoring

large primes. Choosing sufficiently large values for the two prime num-

bers makes it practically impossible to determine the private key from the

public.

Choose two random large primes, p and q. Compute

n = pq

ϕ(n) = (p− 1)(q − 1)

Choose the public key e as

1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1

The private key d is now

d = e−1 modϕ(n)

Encrypting a message m to cipher c

c = me mod n

Decrypting a cipher c

m = cd mod n

Figure 2.5. The relationship between the public and private keys in RSA, and how en-
cryption and decryption is performed.

RSA solves the problem of a pre-shared secret as the public key used to

encrypt information can now be openly distributed. But due to the inverse

relationship of the two keys, it also offers another important feature; the

ability of verifying the source of data. As content encrypted with the pri-

vate key can be decrypted using the public key, messages can be digitally

signed using RSA. The message (or a digest of it) is encrypted by the au-

thor using the private key and added to the message. The recipient uses

the public key to decrypt this attachment, compare it to the message con-

tent and thus verify that the sender is the owner of the private key. The

recipient can therefore not only verify the source of the data, but also its

integrity.

Asymmetric encryption schemes offer many advantages over symmetric

ones, but also some drawbacks. As the keys share a mathematical rela-

tionship, they can be produced from each other. As stated, the security is

based on choosing large enough prime numbers which makes it practically

38

Background

impossible. The process is also computationally much more demanding,

although in practice most implementations take a hybrid approach, where

the content itself is encrypted using a symmetric key which is appended,

encrypted using the public key.

2.3 Key-based identity schemes

As public key encryption offers the possibility of verifying the source of

messages, these have been widely adapted for different identity schemes.

Public key identity schemes are based on binding a real-life identity to a

public key pair, assuming that only the rightful owner of the identity is

in possession of the private key. As the key pair essentially becomes the

identity, we can securely verify the source of any information published

and authenticate peers without the involvement of a third-party trusted

service.

As the public key (essentially a large number) is unintuitive for peo-

ple to manage, most applications use a mechanism for mapping human-

readable identifiers (names) to the actual keys. This can be done through

third-party certification or by a leap-of-faith procedure on first contact.

Third-party certification is achieved by having a trusted third party sign-

ing a piece of data (certificate) which provides the mapping of an identifier

to a public key. The security is based on having the trusted third party’s

identity (public key) distributed beforehand (often pre-installed in appli-

cations). Leap-of-faith is the process of storing the public key locally on

first contact.

2.3.1 Transport Layer Security and HTTPS

One of the most well-known public key identity schemes in use is the site

certification used in the secure version of the Hypertext Transport Proto-

col (HTTP). HTTP Secure, HTTPS [141], is the technology for wrapping

HTTP connections within Transport Layer Security (TLS [39]) connec-

tions. The TLS protocol supports both client and server authentication us-

ing electronic certificates. Modern web browsers come pre-packaged with

a number of public keys of trusted certification authorities. These issue

certificates for different web sites, which are presented to the user when

visiting their sites. Certificates may also be chained, signed by multiple

keys. The resulting system follows the X.509 public key infrastructure

39

Background

(PKI) standard defined by the ITU-T.

Although HTTPS has been a key enabler for the modern web ecosys-

tem and proven over time to be resilient to a number of attacks, it has

received its share of critique. Aside of a few exceptions, the critique has,

however, concentrated on the use of the protocol, rather than the protocol

itself. Without clear implementation guidelines, implementations have

often trivialized the authentication of the protocol, using it primarily as a

solution for securing only the data transfer. Warnings of invalid or irre-

solvable server certificates have often been minimal, causing all but the

most scrupulous users to ignore them [151]. This has enabled man-in-

the-middle attacks and impersonation, allowing attackers to gain access

to valuable credentials. Furthermore, as the protocol can be used in con-

junction with normal HTTP, web service providers often utilize it for the

most sensitive parts (such as login forms), while other data access (such

as image loading) is done through unsecured connections. This creates

opportunities for session theft for anyone that is able to listen in on the

traffic (as is possible, for instance, in open wireless LAN networks).

Furthermore, the HTTPS model can be seen as outdated with regards

to the economics of the modern web. We have long since passed the time

when a single web site contained content from a single producer. Today,

web sites may include content from a myriad of sources such as advertise-

ments and user-generated media. The HTTPS model, however, only au-

thenticates the hosting server, not the actual source of the content, mak-

ing it impossible to independently judge the trustworthiness of it [104].

The lesson to be learned from HTTPS is thus that when creating a secu-

rity solution, we should be careful not only when designing the protocol,

but also pay attention to how it is implemented and used.

2.3.2 PGP

Another notable public key identity scheme is Pretty Good Privacy (PGP)

best known for its use for securing e-mail [24]. Although current versions

support certificate authorities, the first versions were based on utilizing a

web-of-trust (WOT) for binding identities to keys. As a public key identity

scheme, PGP is based on each user having a key pair of which the public

part is made publicly available. However, without a trusted certificate

authority anyone is able to publish keys which they claim belong to a

specific person. The WOT scheme is based on other users verifying (or

attesting to) a key belonging to the person it claims to.

40

Background

When entering the system users ask others, already using PGP, to elec-

tronically sign an identity certificate containing the public part of their

key and information about the person (name and validity). This signed

certificate verifies that the key actually belongs to the real-life person

with the given name. These peer signatures are commonly agreed upon

in person, tying the scheme to actual human relationships. As the signing

peers also have had their identities verified similarly, it creates a network

between the users of PGP which can be traversed to find a link, path, be-

tween ourselves and a previously not encountered identity. This creates

an identity verification scheme based on social connections and trust.

2.3.3 Opportunistic personas

The Opportunistic Personas [10] concept provides an interesting alterna-

tive to traditional identity management. Based on a model similar to

PGP, where users use self-signed identities, it does not emphasize on es-

tablishing certain knowledge of the real-life owner (persona) of an iden-

tity. Instead, it is based on forming an opinion using our history with

that actor. Traditional identity schemes try to tie an electronic identity

to a real-world actor, either through third party certificates, WOTs or out

of band communication. How we interact with that identity is based on

our attitude towards the presumed owner. The Opportunistic Personas

scheme differs as it tries to remove the dependency on both that, some-

what fragile, link between the presumed owner and the identity, as well

as what we think we know or assume about the owner. Instead it proposes

that applications use only knowledge from previous encounters to adjust

their attitude towards an identity.

The full potential of the scheme is seen when it is used across appli-

cations to automatically record our history, or track record, with other

actors. For instance, placing voice calls to a persona could automatically

whitelist and prioritize emails received from the same actor, as we are

likely to have a relationship with it. Although the scheme has obvious

security issues and is not suited for all applications, it can provide a prac-

tical and more deployable model for others.

2.3.4 Identity revocation

A problem common for all public-key identity schemes surfaces when an

identity is compromised, i.e., when the private key is exposed to an unau-

41

Background

thorized party. As the secrecy of the private key is the cornerstone of the

security in public key cryptography, a compromised identity becomes es-

sentially worthless. Furthermore, in case the compromised identity is of

a trusted authority, everything verified by it becomes questionable. Al-

though there does not exist a method for regaining an identity after it has

been compromised, modern system include mechanisms to minimize the

risk and mitigate the damage. Electronic certificates issued by trusted

authorities are given a specific life time, which results in compromised

identities to be invalidated after they expire. This period (start and end

dates) are embedded within the issued certificate to prevent tampering.

Most systems also have a revocation mechanism for explicitly blacklist-

ing known compromised keys. However, these require each entity in the

system to actively update its database, which can be problematic in dis-

tributed systems. Web-of-trust schemes can also be used in combination

with out-of-band communication and real-world relationships to invali-

date identities in decentralized systems. As these are based on informa-

tion from only partly trusted sources (the opinions of others), these should

be used carefully. To minimize the risk of an identity becoming compro-

mised, systems can be built with using a layered approach. The real, or

root, identity is stored in a highly trusted location (for instance a tamper-

proof smart card), and used only to sign self-generated secondary identi-

ties. These secondary identities, often with short life times, are used for

day-to-day activities, and can be handled more freely.

2.4 The Session Initiation Protocol

The Session Initiation Protocol (SIP) [146] is an Internet Engineering

Task Force (IETF) standardized text-based protocol for establishing and

controlling multimedia sessions. SIP is used to negotiate session parame-

ters, such as media encoding and transport addresses, and to update these

as needed. SIP has proven to be functionally diverse and has gained wide

acceptance, with several open source and proprietary voice over IP (VoIP)

and instant messaging (IM) clients available. SIP end-points, called User

Agents (UAs), can exchange data directly, but in most cases a network of

SIP servers are used. These help in locating other users, routingmessages

and setting up direct connections.

SIP users are referred to by an email-address- like identifier, the SIP

Address of Record (SIP AOR). The SIP architecture defines a component

42

Background

called the Location service and Registrar for keeping track of the location

of users. As the SIP identity is based on domain names, it is common for

each domain that provides SIP services to host its own registrar server.

As the location of users change over time, users register with this server

(located by a DNS service record), announcing their current location. To

establish sessions, the SIP clients use the Location services to reach the

other user. The registrar servers are thus responsible for an important

part of the system security, as they manage the identities and authenti-

cate UAs, preventing identity spoofing and theft.

The SIP architecture also specifies another type of server, the SIP proxy

server, which can be used as a gateway for users either for administrative

reasons (network security policies might block certain types of traffic) or

to ease the burden on the clients. These proxies commonly handle all

signaling from and to the client, and are thus able to modify the session

parameters. This can be used, for instance, to set up media channels for

clients within closed networks, but allows also easy access to manipulate

the behavior of SIP applications. By creating custom SIP proxies, it is

easy to add new functionality (such as message filtering or statistics) or

create gateways to other communication networks (such as to the public

switched telephone network, PSTN). Figure 2.6 illustrates the architec-

ture of SIP.

Figure 2.6. Illustration of the SIP architecture. Users uses proxies and registrars to
forward signaling.

The standard SIP session begins with both parties of the session regis-

tering, using the REGISTER message, with the Location service of their

domains. As SIP can be used both over reliable (TCP) and unreliable

(UDP) transport protocols, the REGISTERmessage is acknowledged with

43

Background

a response containing an HTTP-like response code. This code indicates

whether the registration was successful (code 200), or whether password

authentication is required or an error occurred. Following a successful

registration, the initiating user sends an INVITE message addressed to

the other party through its proxy. The proxy will locate the SIP proxy

of the recipient’s domain and forward the message, possibly adding pa-

rameters, such as Via: entries used for routing responses. The message

is further forwarded to the intended recipient, who answers with a re-

sponse indicating whether the session (such as a VoIP call) is accepted or

not. This is routed back to the initiator who, in turn, responds with a fi-

nal ACK message acknowledging the response. The responding user (and

proxies in between) may also return intermediate responses used to track

the progress of the session establishment. These (such as the code 180,

Ringing, response) can be used by the SIP UA to simulate the dial-tone

behavior of PSTN.

INVITE sip:bob@p2psip.hiit.fi SIP/2.0
Via: SIP/2.0/UDP 127.0.0.1:6060;rport;branch=z9hG4bKdtbjuppq
Max-Forwards: 70
To: <sip:bob@p2psip.hiit.fi>
From: "Eve" <sip:eve@p2psip.hiit.fi>;tag=psjgk
Call-ID: odbydyiaylbjmdx@hafnium.pc.hiit.fi
CSeq: 907 INVITE
Contact: <sip:eve@127.0.0.1:6060>
Content-Type: application/sdp
Allow: INVITE,ACK,BYE,CANCEL,OPTIONS,PRACK,REFER,NOTIFY,SUBSCRIBE,INFO,MESSAGE
Subject: Meeting
Supported: replaces,norefersub,100rel
User-Agent: Twinkle/1.4.2
Content-Length: 303

v=0
o=twinkle 1934341310 1078326224 IN IP4 127.0.0.1
s=-
c=IN IP4 127.0.0.1
t=0 0
m=audio 8000 RTP/AVP 98 97 8 0 3 101
a=rtpmap:98 speex/16000
a=rtpmap:97 speex/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:0 PCMU/8000
a=rtpmap:3 GSM/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15
a=ptime:20

Figure 2.7. An example of a SIP INVITE message for initiating a VoIP session. The
initiator and recipient are highlighted. Session media formats and transport
addresses are contained in the body of the message.

The session parameters are conveyed within the INVITE message and

its response. The initiating user populates the INVITE message with in-

formation on which transport-level address it is expecting the media traf-

fic as well as the codecs or formats it supports. The responding user in-

spects these to find suitable ones that are supported by both, and sends

these, along with its transport-level addresses, in the response. Figure 2.7

44

Background

displays a sample INVITEmessage containing parameters for a voice call.

Figure 2.8 shows the messages exchanged in a complete call set-up in SIP.

In addition to basic session management, SIP has a long list of extensions

to support features such as presence [143], instant messaging [29] and file

transfers [28].

BobEve Eve’s proxy Bob’s proxy

Internet

REGISTER

200 OK

REGISTER

200 OK

INVITE

100 TRYING INVITE

180 RINGING

200 OK

200 OK

180 RINGING

ACK

ACK

Eve places
the call

The call
is connected

Bob’s phone
rings

Bob answers
the phone

The call
is connected

Figure 2.8. Sequence diagram of the messaging involved in establishing a SIP session.

2.4.1 SIP security

The SIP protocol was designed as a simple, easy to use, open protocol for

multimedia sessions. The emphasis was on creating a protocol that is easy

to understand, versatile and extendable, rather than a strict, secure, com-

munication platform. The base specification of the SIP protocol contains a

number of security vulnerabilities that can be exploited by different par-

ties [53]. These touch on almost all areas of communication, including

authentication, privacy and integrity. Although security extensions have

since been proposed (and standardized), all systems do not implement

these, or can be tricked into degrading the security to a lower level.

SIP uses for data transport protocols such as UDP and TCP. This means

that it naturally inherits all the security threats associated with these,

including service denial through TCP syn flooding. However, the base

specification does not require the use of any additional transport security,

leaving the signaling and media traffic susceptible to eavesdropping, in-

terception and modification by common networking tools. Furthermore,

common SIP deployments rely heavily on the DNS system, leaving them

vulnerable also to DNS-based threats. This can be clearly seen in the SIP

authentication procedure.

45

Background

SIP authentication is usually based on a pre-shared password. Users

connect to the registrar server of their domain and prove themselves us-

ing an HTTP digest authentication [50] exchange. This application-level

authentication covers only specific fields of the signaling messages, and

only certain messages. Moreover, it only authenticates the SIP client to

the server, providing ample opportunities for different man-in-the-middle

attacks. The registration, and thus identity, of the client can be captured

using message replays, legitimate calls can be disconnected or redirected

and unauthorized calls can be made. This can be used to launch DOS

attacks against a user or monetary loss through billing attacks [181]. As

the clients (as well as intermediate SIP proxies) rely on the DNS system,

the attacker need not even physically be in the same network, but may

utilize a DNS vulnerability such as cache poisoning to capture the traffic.

SIP security is, however, evolving. The use of both end-to-end as well

as hop-to-hop security has been standardized, although not mandated.

These rely on technologies such as TLS [39] and S/MIME [138] to protect

the confidentiality and integrity of the signaling. Many SIP UA clients

also support encrypted media formats such as Secure RTP (SRTP) [18],

which prevents eavesdropping on the sessions.

2.4.2 SIP and VoIP SPAM prevention

As SIP has emerged as the prevailing open standard for Internet-based

communication, many have feared that it will shortly be overwhelmed by

the same problems as traditional email. SIP (and VoIP in general) SPAM

prevention has subsequently been vividly discussed, resulting in a num-

ber of proposals as well as commercial products. The issue was noted also

by the people responsible for the SIP base protocol, resulting in an Inter-

net RFC discussing the issue [145]. It addresses the issue quite holisti-

cally, identifying different types of SPAM (Table 2.1) and listing a number

of high-level conceptual solutions. The key observation in this analysis is

that a strong identity scheme is needed to enable most approaches. With-

out identities that have value, spammers can easily generate new ones or

impersonate others. Temporary, so-called throw-away, domains can also

be registered at low cost to provide an abundant supply of SIP identities

for spammers.

The importance of verifiable identities has been addressed in the IETF

through various proposals. In [81] the authors describe a simple scheme

where SIP proxies add information to the signaling indicating whether

46

Background

Table 2.1. The possible types of SPAM in SIP systems [145].

Type Description

Call Unwanted VoIP calls. Includes marketing calls both by

humans and pre-recorded messages, scams and identity

theft through social engineering.

IM Unwanted instant messaging. Marketing and scams, im-

personation, link baits.

Presence Requests for permission to follow ones presence may in-

clude marketing messages.

they have verified the sender (for instance through password authentica-

tion). However, this scheme only applies to specific trusted environments

as these headers can easily be forged by malicious proxies. A more se-

cure and scalable scheme for verifying the authenticity of messages is pre-

sented in [132]. This scheme builds on public-key cryptography, requiring

domains to electronically sign the messages originating from their users.

A hash value is calculated over certain immutable values in the messages

by the domain’s internal proxy. Before forwarding the message, the proxy

signs this hash with a domain-specific key, and adds the signature as well

as instructions on how to retrieve the domain’s public key. The receiving

domain is expected to fetch this domain key and check that the message

has not been tampered with during transit. Furthermore, by signing the

messages, the source domain proxy is assumed to have authenticated the

user, which guarantees that a message was actually sent by the user it in-

dicates. However, these schemes address only the verification of an iden-

tity within the context of that identity’s domain, and can be circumvented

by using rogue domains or domains that easily provide new identities.

A secure identity scheme is only the start of SPAM prevention in SIP

and other communication systems. A number of techniques for dealing

with SPAM have subsequently been proposed. These can be divided into

one of three general categories: i Non-intrusive methods that operate ei-

ther in the network or at the end-user’s client. These work without in-

teracting with either the initiator or the responder, halting SPAM before

it reaches its target. ii Caller interactive methods that interact, or chal-

lenge, the caller in some way to prevent (or make it costly) to distribute

SPAM. iii Intrusive methods that require the responder to interact with

the system. Table 2.2 presents an overview of these.

Some of the proposed VoIP SPAM prevention techniques are quite gen-

47

Background

Table 2.2. Schemes for SPAM prevention in Internet communication systems.

Type Description

N
on

-i
n
tr
u
si
ve Content filtering Filter instant messages and files based on static

analysis of the content.

Black / Whitelists Prevent or allow only specific users.

Call patterns Detect suspicious communication patterns in

VoIP or IM indicating non-human or unwanted

communication.

C
al
le
r
in
te
ra

ct
iv
e

Turing tests Present different sorts of challenges to the

caller to verify that it is a human.

Resource dedication Provide the caller with computational puzzles

or other resource-demanding tasks before con-

necting the call.

Query intent Query the intent of the communication prior to

connecting a call to repel (honest) telemarke-

teers.

In
tr
u
si
ve

Feedback The responder provides feedback after the call

on whether it was SPAM. Used in conjunction

with black lists or reputation systems.

Payment at risk Before establishing a connection, the caller

commits to pay in case the communication is

SPAM. Requires feedback from the responder.

48

Background

eral, adopted from email systems, such as black- and whitelisting. The

crucial difference between VoIP and email SPAM prevention is naturally

the real-time nature of VoIP. Static content analysis (which traditional

email SPAM prevention largely relies on) cannot be used as such. But

on the other hand, the real-timeliness of VoIP allows us to analyze the

source of the call more thoroughly, even interact with it before passing

the call through. Call signaling analysis could be seen as the nearest

VoIP equivalent of email content analysis. For instance, the authors in

[113] propose a system which uses different call characteristics to iden-

tify spammers based on assumptions such as that spammers usually do

not receive calls, do not place more than one call per recipients and that

the call-terminating partner is usually the same. The scheme presented

in [178] builds on some of the same principles, but adds user feedback

combined with machine learning algorithms to produce more accurate re-

sults.

Following the development of the email ecosystem, where SPAM is cer-

tainly not hand written for each recipient separately, VoIP SPAM is feared

to become mostly based on playback of pre-recorded messages. However,

as the VoIP calls are real-time, different types of Turing [171] tests (able

to detect automated calls) present an interesting way to combat SPAM.

These can either present the caller with a question, or puzzle, which is

easily solved by a human, but hard to automate. These can be deliv-

ered within the call (e.g., a voice synthesizer asking to repeat a text or

press certain dial buttons), or as an instant message or image file (e.g., a

CAPTCHA [174]). Alternatively, the voice pattern can be analyzed to de-

tect speaking patterns abnormal for normal humans. The authors of [137]

present a system where the caller’s reactions to a pre-recorded greeting

message is analyzed to detect abnormal speaking patterns, such as dou-

ble talk. These Turing tests can be made to initiate automatically before

the user is notified of the call, transferring the call to the user only after

they have been passed.

2.5 Peer-to-peer SIP

Although SIP is not bound to a server-based architecture, for any sizable

system a network of trusted servers needs to be deployed. This creates

administrative burdens, introduces single points of failure, as well as lu-

crative targets for attacks. Furthermore, the traditional model does not

49

Background

allow for ad-hoc sessions in isolated networks as we need to be able to con-

nect to the different components of the SIP architecture. These, amongst

others, are arguments that have ignited the development of fully decen-

tralized, peer-to-peer (P2P), SIP systems. These are referred to as P2PSIP

systems. There has been a number of proposals, mainly from the research

community concerning experimental and proof-of-concept systems. In the

following we review a number of these systems, as well as provide an

overview of the standardization efforts of P2PSIP in the IETF.

2.5.1 Decentralized SIP

The SESSI (Seamless Service Interworking in Heterogeneous Mobile and

Ad-Hoc Networks) project at Helsinki University of Technology developed

as part of their research a prototype [159] [108] of a SIP proxy suitable

for ad-hoc and P2P scenarios. The proxy used the service location pro-

tocol (SLP) [61] to establish sessions in ad-hoc networks, and the design

allowed interworking with global networks [84] as well. The security was

based on public key cryptography, with strong authentication and a rela-

tively complex service-oriented permission model. The SESSI framework

provided an early model for decentralizing SIP (and other services) in ad-

hoc scenarios, but was not focused on creating one that could seamlessly

move between these and global networks.

The SIPPeer adaptor [161] [83], developed at Columbia University, re-

placed the SIP Locator functionality with a Chord-based DHT which was

established between the participating nodes. Furthermore, SIPPeer of-

fered advanced features such as offline messaging, directory services and

Network Address Translation (NAT) traversal. However, security had

not been a key research goal and authentication used an email-based

validation scheme, and the session security was not addressed. In re-

lated research at Columbia University, the use of an external DHT as SIP

proxy replacement was examined [162], with some ideas integrated into

SIPPeer. Specifically, support for the OpenDHT [127] public service, run

on PlanetLab [134], was developed. The integrity of the data was pro-

tected using public key signatures.

SoSIMPLE is a SIP-based P2P communication model developed at the

College of William and Mary [23]. SoSIMPLE is based on using a DHT

as a distributed SIP proxy, similar to the work at Columbia University.

It also touched on advanced topics such as NAT traversal and presence

management, but did not provide a clear solution for security. Similar

50

Background

research was done at the Nokia Research Center [115], however, concen-

trating on the feasibility of such systems for mobile devices. Although the

architecture was similar, focus was on experimenting with prototypes on

mobile phones, examining the feasibility through call set-up time mea-

surements.

The research within the DECICOM project at the University of Oulu

has continued on the same track, contributing much to the current under-

standing of the feasibility of P2P communication systems in mobile envi-

ronments. Although the research started with P2P SIP, using an imple-

mentation based on a (now expired) IETF protocol proposal, it has since

evolved into other application domains, including P2P web services [106]

[105]. The focus has not only been on the architecture, but also the overall

feasibility of P2P applications in mobile environments in terms of usabil-

ity, energy consumption and cost. This has resulted in extensive analysis

on energy consumption as well as the effect different types of overlay al-

gorithms and conditions have on mobile systems [88] [130] [128].

Part of the work in the DECICOM project was done in conjunction with

Hautakorpi et. al. at Ericsson Research Nomadiclab. Based on the same

protocol as the prototypes constructed in Oulu, the research was extended

towards a broader view of distributed networking. The application sup-

port was extended from simply P2PSIP to a generic framework for appli-

cations such as HTTP, email and DNS [63]. Furthermore, integration of

P2PSIP systems with commercial networks (IP Multimedia Subsystem,

IMS) was analyzed [65].

The P2PNS system presented in [19] provides an interesting model for

P2P computing. It describes a generic name-lookup service which uses a

two-part process where the identity is first resolved to an overlay NodeId,

which is further mapped to an actual IP address. It is also one of the

first to explicitly plan for application other than SIP from the beginning,

as well as presenting a security scheme for fully distributed networks

without a centralized CA (based on cryptographic puzzles).

2.5.2 RELOAD

Recently the IETF has recognized the need for a standard for a P2P SIP

protocol, and is currently working on standardizing the data protocol and

architecture in the P2PSIP working group [74]. The current version of the

P2PSIP protocol draft defines a highlymodular framework supporting dif-

ferent applications (called Usages) as well as overlay network types [79].

51

Background

This framework, called REsource LOcation And Discovery (RELOAD),

has an architecture which consists of the modules Message Transport,

Storage, Topology plug-in, Forward and Link Management, depicted in

Figure 2.9. This architecture provides a very general model for overlay

networking, in which the implementer can choose between different types

of routing algorithms (the Forwarding and Link Management module)

without affecting the other parts of the system. This creates an inter-

operable and reusable framework that can be adopted for a wide range of

distributed applications. As stated in [79], SIP is only one possible usage,

and there have been proposals for usages such as conferencing [95] [69]

and Simple Network Management Protocol (SMNP) [131].

Application

Real
Internet

SIP Usage Legacy IPXMPP Usage

Forwarding &
Link Management

Message
Transport

Storage

Topology
Plugin

DTLSTLS

Transport

(Routing)

Network

Link

Application

Transport

Network
Link

Internet Model
Equivalent
in Overlay

Reload
Architecture

Figure 2.9. The RELOAD architecture, adapted from [79]. RELOAD creates a virtual
network stack by separating the Topology plug-in and LinkManagement into
their own modules.

Hosts in a RELOAD instance are assigned a unique NodeId, which is

used for addressing within the network as well as by the Topology plug-

ins to construct the overlay. The Topology plug-in uses the Forwarding

and Link Management module to establish and maintain peer connec-

tions according to the overlay algorithm in use. The Message Transport

52

Background

module provides end-to-end communication for the applications, Usages,

by querying the Topology plug-in for routing information and using the

Link Management module to transmit packets. The Storage module is

responsible for storing overlay data.

The applications, Usages, are provided a generic API for storing and re-

trieving overlay data, discovering services and establishing direct connec-

tions to remote users. This API is independent of the underlying network

structure, making it possible to upgrade routing algorithms and transport

protocols without affecting the application itself. The security of RELOAD

is based on strong identities. Each node maintains a cryptographic iden-

tity, which is used to sign all messages. Furthermore, the data stored in

the overlay is also signed, and secure protocols (such as TLS and DTLS)

are used for transport. The identities can be issued (signed) by a trusted

third party or, especially in closed networks, be self-signed.

SIP-based applications use this framework for three primary operations

(the SIP Usage): registration, lookup and connection establishment [80].

Registering a SIP identity (SIP Address of Record, SIP AOR) with the

overlay is done by creating a data packet containing the SIP AOR and

a NodeId (the identifiers used for nodes in the overlay) or another SIP

AOR, through which the user can be reached. This packet is stored in the

network under a key made from the hash of the SIP AOR. The session sig-

naling is exchanged directly between peers. To establish this connection,

the calling party fetches the data packet and sends an AppAttachmessage

to the NodeId of the target. This initiates an Interactive Connectivity Es-

tablishment (ICE) [144] procedure, during which address candidates are

gathered, and sent to the target through the overlay network. These ad-

dress candidates are transport-level addresses (Internet protocol, IP, ad-

dress and a UDP or TCP port) through which the peer is reachable. As

a host can have multiple addresses due to multihoming and network ad-

dress translation, of which not all can be used by a remote peer (in case

of closed local networks or firewalls), the different address candidates are

tried until a working connection is made.

2.6 The Host Identity Protocol

The Host Identity Protocol (HIP) provides a communication architecture

that separates the network location from the identity. End-points are

bound to cryptographically generated identities, which are dynamically

53

Background

mapped to network locations, providing transparent node mobility and

multihoming. The HIP architecture is described in the IETF Request For

Comments (RFC) document 4423 [121], with the protocol details and ex-

tensions currently being standardized by the HIP working group [72].

The identity in HIP, the Host Identifier (HI), is the public part of a pub-

lic key pair, making the binding secure and self-authenticating. However,

applications more commonly use a 100-bit hash of the HI, the Host Iden-

tity Tag (HIT), as an IPv6 address with an ORCHID class prefix [123] for

referring to the end-point. This way applications usingHIP do not address

hosts as legacy applications do when networking. Instead, the communi-

cation is between the actual identity of the remote party, not the host on

which it is assumed to reside. This creates a more secure and identity-

focused networking environment. Furthermore, although most of the cur-

rent implementations do operate on a host-level, the HIP protocol itself

allows almost any network resource to be assigned identities. We could

assign users, hosts, applications, services or even individual network ses-

sions their own identity, which are all accessed in the same manner using

HIP. This identity-based networking paradigm is highly relevant as the

penetration of Internet connectivity increases, and becoming embedded

in different types of devices (as in the Internet of things) [59].

HIP is architecturally located between the transport and network layer

in the network stack, creating a new thin waist as illustrated Figure 2.10.

The HIP stack translates application-used network addresses, the HITs

or their IPv4 representations (Local Scope Identifiers, LSIs), into routable

IP addresses with which it initiates a four-way handshake where the iden-

tities are verified and connection details negotiated. Data transfer with

the end-point is done using any transport protocol (e.g., TCP or UDP),

which is encapsulated for transit using a security protocol such as IPSec

[82]. This can further be encapsulated for NAT or proxy traversal, which

can be further assisted by third party relays (HIP Relays) and Rendezvous

Servers (RVS). The NAT traversal of HIP is based on the use of UDP en-

capsulation, and the use of the Interactive Connectivity Establishment

(ICE) methodology [144].

The translation from HI to network location is done using different

types of lookup services. Although the traditional lookup service of the

Internet, the DNS, can be used, due to the self-certifying properties of

the identities used in HIP, more scalable and dynamic systems are possi-

ble. The lookup service can therefore even be based on different types of

54

Background

HIP

HIT

Network

IP IPv6

Transport layer

UDPTCP SCTP

Application layer

SIPHTTP SMTP FTP DNS

Physical layer

Ethernet DSL USBWLAN

Link layer

PPPMAC ATM ARP

Application

IP addr : port

IP addr

Application

Host ID : port

IP addr

Host IDNew waist

Legacy IP With HIP

Figure 2.10. HIP creates a new thin waist between the transport and network layer of
the networking stack. End-points are addressed using cryptographic iden-
tities instead of network locations.

distributed topologies consisting of ordinary (not controlled by a trusted

third party) peers. Tampering is prevented by cryptographically signing

the locator mapping with the respective Host Identity. There has been

on-going interest in the scalability of HIP, with efforts put into distribut-

ing not only the lookup of identity-locator mappings, but also connection

establishment. The original HIP architecture introduced the RVS and

HIP Relay for enabling hosts between firewalls or strict NATs to connect.

Although these can be distributed and are designed to maintain only a

minimal amount of state, it still creates dependency points within the

network that could potentially become overloaded. The Hi3 architecture

[122] addressed the issue by introducing a fully distributed lookup and

connectivity overlay based on Secure-i3 [9] [166]. In this architecture,

hosts published the initial connection establishment packets to the over-

lay, where they are fetched by interested parties using a publish-subscribe

model.

HIP is a maturing protocol with currently a number of implementations

available for Microsoft Windows, Mac OSX, Linux and FreeBSD [170] [68]

[67]. Also, Helsinki Institute for Information Technology (HIIT) main-

55

Background

tains RVS servers for public use. HIP for Linux [68] is an open source

implementation of the HIP protocol for Linux-based systems. The project

has been developed at HIIT and features a number of extensions such as

NAT traversal, mobility and RVS support. As HIPL is also available for

Linux-based mobile systems, it was chosen as the platform for our proto-

type.

2.6.1 HIP overlay networking

As HIP provides a model where the identity of connection end-points are

not tied to the network structure, the model itself can be adopted to dif-

ferent types of underlying network architectures. Recently the IETF HIP

working group [72] has explored the possibility of combining HIP with

overlay networks, resulting in the HIP Based Overlay Networking (HIP

BONE) proposal [27]. The proposal defines a model that does not rely

on the traditional Internet protocol addresses for locators. Instead, it

utilizes different types of overlay networks for routing packets based on

the HITs. This proposal is designed to enable overlay-based applications

(such as P2P applications) to be better able to use HIP. These applica-

tions would often benefit from the security and mobility that HIP could

provide, but due to their distributed nature cannot rely on the IP-based

routing that HIP has previously required. The HIP BONE proposal ad-

dresses this issue by defining the required extensions for HIP to support

overlay network-based routing.

However, the HIP BONE framework provides only a high-level model

for HIP overlay networking, with the integration details left for applica-

tion designers. One of the overlay networks which has been proposed as

an instance for the HIP BONE framework is the IETF P2PSIP protocol,

RELOAD. The RELOAD protocol (discussed in Chapter 2.5.2) provides an

overlay network framework for different types of distributed applications,

such as multimedia communication. The authors of [93] describe an alter-

ation to the base RELOAD framework, which updates some of the func-

tionality of the Forwarding and Link Management module to be based on

HIP (and associated network security protocols). This draft also specifies

a model for combining the identities used in HIP and RELOAD, as well

as how the different RELOAD message types should be used to convey

HIP-related parameters. However, it relies on relatively new extensions

to HIP, most notably the multi-hop routing extension [25] and the data

packet extension [26], and should be considered highly experimental.

56

Background

2.7 Teredo

Teredo [71] is an IPv6 over IPv4 tunneling protocol designed to traverse

NATs and other network middleboxes through the use of UDP encapsula-

tion and hole punching techniques [49]. Teredo uses a public server, the

Teredo server, for initializing the connection between the Teredo clients,

removing the need for each client to have a public IP address. The Teredo

protocol is designed to be simple and light, both in packet overhead and

load on the Teredo server. The server load is kept minimal by only for-

warding the initial packet and encoding the state into the Teredo IPv6

addresses. This has contributed to its popularity, and Teredo is currently

available for a wide range of operating systems (including a built-in sup-

port in Microsoft Windows), with a number of organizations maintaining

open, free, Teredo servers.

Teredo was developed as an improvement to the 6to4 [30] IPv4 to IPv6

transition protocol which required the hosts to obtain public, globally ac-

cessible, IPv4 addresses. On initialization, the client hosts, Teredo clients,

contact a public Teredo server through IPv4 UDP, which assigns them a

unique IPv6 Teredo address. Before assigning this address, the server will

check the type of NAT (if any) the client resides behind (using a secondary

source IP address for probing). The client address consists of five fields, as

depicted in Figure 2.11. The first field is the Teredo prefix, 2001:0000/32

and the second the Teredo server’s public IPv4 address. The third field

contains a 16-bit flag field which is used to indicate the type of NAT the

client is behind. The rest of the address contains the public IPv4 ad-

dress of the client or its NAT and the port number used (as seen by the

server). When contacting another Teredo client, that client’s server ad-

dress is decoded from the Teredo IPv6 client address, and an initial ses-

sion set-up packet (Teredo bubble) is sent. This is forwarded by the server

to the client, which decodes the initiating client’s IPv4 address from the

received packet, and tries to establish a connection by sending ICMPv6

ping packets directly to it (hopefully opening a route through any possible

middleboxes in between).

Teredo does have a few drawbacks. The additional encapsulation and

server relaying obviously adds a small amount of overhead compared to

native IPv6 connectivity. More importantly, the NAT traversal method

used is simple, and does not penetrate all types of NATs. Although exten-

sions have been developed to the core Teredo specification to improve the

57

Background

Figure 2.11. The Teredo client address contains the Teredo prefix, the server’s IPv4
address, flags indicating NAT type and the client’s public IPv4 and port.
Adapted from [71].

NAT traversal capabilities, some undocumented while others, such as the

SymTeredo proposal [70], not, they have not been officially integrated to

the Teredo protocol.

2.8 P2P HTTP

P2P web services have received a fair amount of interest through a num-

ber of proposals [16] [52] [152] [44]. Web services is a term used to de-

scribe a service model where remote procedure calls are made over HTTP

using technologies such as Simple Object Access Protocol (SOAP) for data

exchange, Universal Description Discovery and Integration (UDDI) and

Web Service Definition Language (WSDL) for service discovery. This model

is based on a centralized lookupmechanism, where services are registered

and found using a single service broker.

The proposals for P2Pweb services depict architectures where end-users,

the peers, could act as both consumers and providers of services, using a

distributed lookup mechanism for rendezvous. Although in line with our

goals, these proposals concentrate on distributing the lookup, ignoring

deployment details such as network obstacles (middleboxes) and certain

security aspects (strong identities). Although suitable for limited environ-

ments, these do not scale to global networks.

2.8.1 Web caching

Distributed web caching and content sharing is a topic closely related to

P2P HTTP. These systems focus on locating static resources (such as im-

ages or markup pages) using the HTTP protocol, instead of establishing

a connection with an end-point for dynamic interaction. Although there

are a large number of proposals in this area [157] [165] [110] [179], the

Squirrel web cache [76] serves as a good example for demonstrating the

key ideas as it provides a clear model that has been thoroughly analyzed

[33].

58

Background

The Squirrel web cache is based on creating a structured (Pastry-based

[147]) overlay between the peers in which responsibility for content is di-

vided equally between the peers according to the address, the Uniform

Resource Location (URL), of the content. Requests are delegated to the

peer responsible for that content, which can act according to two dif-

ferent schemes proposed by the authors of Squirrel [76]. In the home-

store scheme the responsible node either returns the content (if cached)

or fetches it from the source server. In the directory scheme the responsi-

ble node maintains a list of peers that have recently accessed the content,

and forwards the request to one of those. In content distribution schemes,

similar models can be used to distribute the load between the peers of

the network. These schemes however, focus on the efficient distribution of

the load, without considering connectivity issues or security, and are thus

suited only for networks with trusted peers.

2.8.2 Personal web services

Nokia’s Research Center has developed a personal mobile web server for

Symbian Series60-based smartphones [119]. This Apache HTTPD [13]

based software can serve both static content and dynamic, context-de-

pendent, pages written in PHP5 or Python6. These mobile web pages are

thus able to serve as a personal information center integrated with the

core mobile applications. For instance, information from the phone’s cal-

endar can be utilized as well as any photographs or short messages found

on the device. Compared to the P2P web service proposals, connectivity

has been carefully addressed, as it presents one of the greatest challenges

in cellular environments. To reach the mobile web server, the system re-

lies on a public server for relaying all data traffic. Although this adds to

the latency, it is considered satisfactory for the intended use.

Opera Unite7 offers a similar P2P web experience for desktop comput-

ers. Instead of a dedicated server application, it is based on JavaScript

applications that are run within the Opera web browser itself. As with

the mobile web server, it uses a centralized model for authentication and

rendezvous, and does not provide an interface for external applications.

It does embrace the concept of P2P web services by packaging the ap-

plications into so-called Unite service packages, and providing a catalog

5PHP: Hypertext Preprocessor http://www.php.net.php
6Python programming language, http://www.python.org
7Opera Unite, http://unite.opera.com/

59

Background

service for easy distribution.

2.8.3 P2P social networking

With the overwhelming popularity of social networking services seen to-

day, a number of projects have sprung up that aim to create decentralized

versions of these services. Although these can be seen as instances of the

personal web services discussed in Chapter 2.8.2, they are specially tai-

lored for social networking only. These create a social overlay for different

types of activities, instead of a generic HTTP network. The driving force

behind these is often also rooted in the fear of the power and control the

popular centralized social networking sites have over people, not so much

in developing a more scalable solution for these services. As users become

more dependent on social networking services, providing themwith status

updates, images and other personal information, concern has been raised

over how this growing amount of sensitive data is being used. For in-

stance, selling it to advertisers (to provide targeted advertisements based

on interests) can provide a lucrative source of income. Furthermore, sud-

den changes in site policies could publicly reveal more data than users

expect, which could lead to embarrassment or be used for social engineer-

ing and even identity theft.

P2P social networking projects such as Diaspora, GNUSocial and Apple-

Seed are creating rich web-based environments where users can connect

and interact without handing information over to a third party. The data

is stored locally, and shared only with trusted friends. This gives users

more control over their on-line identity, but with a number of drawbacks.

Users must host the social networking software on their local computers,

and be able to connect with their friends to share. This ties the service to

specific computers, and requires them to be regularly connected to the In-

ternet. In practice, the users need to set up a personal web server running

fairly complex software. Furthermore, these need to be publicly exposed

to the Internet, allowing incoming connections, which can be problematic

for normal home-users.

2.9 Bloom filters

Bloom filters, conceived by Burton H. Bloom [22], are space-efficient prob-

abilistic data structures used to determine whether an element is part

60

Background

of a set. Although several variations exist, the basic Bloom filters use k

different hash functions to compress the element’s into a k- bit signature,

which is stored in the m- bit Bloom filter.

An empty Bloom filter consists of m bits, all set to zero. When adding

an element, we use the k hash functions to obtain k bit positions within

m, which are set to one. As compressing a hash value into a single bit

entry (essentially performing a modulo m) will cause collisions between

the signatures of different elements, the Bloom filters are probabilistic in

nature. We can therefore determine with certainty whether an element is

not part of a set, but only within a certain probability whether it is part

of it. To keep these false-positives low, the values of m (filter size) and k

(number of hash functions) needs to be chosen according to the expected

size of the set [177].

When adding a value to a Bloom filter, the probability that a single bit

within anm- sized filter will be set by single hash function is 1

m
. After this

single insertion, the probability that a randomly chosen bit is unset (not

set by that hash function) is therefore 1− 1

m
. When using k hash functions,

the probability that a single bit remains unset after the insertion of a

single element becomes then (1− 1

m
)k, and after n elements (1− 1

m
)kn with

the implication that the probability that the bit is set 1− (1− 1

m
)kn. For an

arbitrary value to be falsely seen as present in the Bloom filter, we need

all k hash functions to produce a value that is set in the filter. Therefore,

the false positive probability becomes:

p = (1− (1−
1

m
)kn)k (2.1)

The advance knowledge of the number of elements any filter will store

becomes especially problematic when these Bloom filters are passed and

edited by multiple users. A too optimistic choice of values for m and k

(small filter size) will easily result in overfull filters, rendering the con-

tent useless. On the other hand, a filter that is too large, in proportion

to the number of elements stored in it, looses its efficiency and becomes

essentially a bloated hash table. Being able to scale these filters dynami-

cally has therefore, quite naturally, gained much attention with a number

of more or less efficient schemes proposed.

Scalable Bloom Filters (SBF) [11] presents a scheme where Bloom fil-

ters are grown dynamically to keep the false positive probability within

a specific bound. The filters are expanded adding new slices when the

fill ratio (percentage of bits set) of the filter exceeds a pre-defined value.

61

Background

These new slices are subsequently used for adding new elements, and de-

termining memberships is done by checking all slices. In order to keep

the false positive probability from linearly increasing, the fill restrictions

are tightened for each successive slice (by increasing the size of the filters

or lowering the fill ratio threshold). For instance, by doubling the size of

each new slice, the total error probability will be the sum of a geometric

series, for which we can choose the parameters so it converges at a specific

value. Dynamic Bloom Filters (DBF) [57] presents a similar scheme, but

with looser control over the growth of the total error ratio.

Although both schemes adds a degree of dynamicity, providing a more

efficient way of using Bloom filters without knowing beforehand the ele-

ment count, they do change the basic structure of Bloom filters. As the

filters become structurally matrices, certain operations (such as unions

and intersections) are complicated or impossible.

62

3. A secure peer-to-peer framework

Our research begun with the design of a P2P framework, whose primary

purpose was to serve as a platform for studying applications in provider-

less environments. However, the architecture of the framework itself was

also in focus, as we aimed to address the topic as broadly as possible,

including deployability and cost, which relates to how the network, and

therefore our framework, is built. The framework should be able to oper-

ate in different types of networking environments, with different types of

data. As discussed in Chapter 1, the common approach to P2P network-

ing is to create unique systems, each tailored for a specific application or

environment. Our focus was not on a specific application, but rather an

easily deployable utility that could be adapted to different uses.

As the trend in personal computing is clearly moving towards mobile

environments and embedded devices, with location-independent connec-

tivity, one of the key influences on the design was the requirements of

these mobile, resource-limited, devices. Although the features, capabil-

ities and processing power of mobile devices are growing exponentially,

there are certain factors (such as cost of cellular networking and battery

life) that will continue to limit what is feasible. This lead us to the follow-

ing requirements that the design should fulfill.

Mobility and strong identities. The popularity of different types of

Internet- enabled devices has shown that users are not tied to a single

one, but choose one based on convenience, location or mood, to access the

same service. As many of these, especially hand-held mobile devices, are

often carried on person and tend to change network location frequently,

the framework should support both identity, and network, mobility. We

can not rely on devices being accessible at fixed locations for a long pe-

riod of time, or that the network around them remains static. Therefore,

we should not rely on trusted authorities to authenticate and secure the

63

A secure peer-to-peer framework

Figure 3.1. The design principles and their importance for different use-cases and envi-
ronments.

users, but instead use a strong, self-verifying, identities.

Reliance on infrastructure and closed environments.. Aside from

authentication, the framework should not rely on other infrastructure ei-

ther, but be able to operate in completely closed environments. Connec-

tion establishment and peer lookup is commonly performed using public

servers, or well-known peers. However, future networking environments

may become more fragmented than today, for instance due to security con-

cerns, or personal- and proximity networking. The framework can still

use public nodes to ease connection establishment, but should not be com-

pletely reliant on them.

Connectivity and end-to-end security. Users should be able to con-

nect, independent of their location. As a large proportion of the end-hosts

may reside behind various network obstacles (such as firewalls or NATs),

the framework should provide a solution for traversing these. We also

need to provide multiple layers of security. Data may traverse through in-

termediate nodes, and should be protected against eavesdropping and in-

transit modification. Finally, data management. The framework should

be optimized for mobile devices, minimizing the amount of data these need

to process, in order to spare memory and power consumption. Figure 3.1

summarizes these aspects, together with their importance for different

types of users.

In the following chapter, we review the design and implementation of

our framework in order to provide the context of the research. Lastly, we

64

A secure peer-to-peer framework

highlighting the technological advances of the framework compared to the

state of the art.

3.1 System overview

By definition, a fully distributed P2P system treats all peers equal and

relies only on these, the end-user devices and applications, to operate.

However, to achieve the required level of security and connectivity in all

environments, two additional roles were introduced in our design: the

identity authorities and the overlay infrastructures. Following is a high-

level review of the actors of the framework, illustrated in Figure 3.2.

Figure 3.2. The components of the P2P framework. In addition to the users and peers,
identity authorities and overlay infrastructures can be present. P2P connec-
tions are made using a data protocol such as HIP.

The peers are the ordinary end-users’ nodes. These devices run either

applications that are able to directly communicate with the overlay, or a

P2P framework daemon that connects legacy applications to the system.

Connections between peers are established using a suitable data proto-

col, such as HIP BONE (as explained in Chapter 2.6.1). Furthermore,

the peers contain everything needed to manage their security themselves,

which make them independent, and able to move between different types

of environments easily.

The identity authorities are trusted nodes that solve the introduction

problem in larger environments. These act as authorities, providing ver-

ification that an identity (a public key) belongs to a specific user through

a digital certificate. Without these authorities, it is hard to keep track

of identities, and impossible to verify new ones, leading to impersonation

65

A secure peer-to-peer framework

and misbehavior, as malicious activity is hard to attribute to a specific

peer. Essentially these authorities ensure uniqueness and consistency of

identities.

TheOverlay infrastructures are collections of network resources that

can be utilized for more efficient networking. These can be anything from

simple on-line storage sites to public peers and overlay networks. These

entities need to offer only semi-persistent storage in order to be useful.

3.1.1 Identity management

Our framework uses a strong, public key-based identity scheme, on which

much of the security is based. Each user generates (or is provided) a pub-

lic key pair which is used as their unique electronic identity in the system.

This key pair is used for authentication during data session, and to elec-

tronically sign and encrypt the data packets stored in remote storage and

overlays. As the integrity and confidentiality of data is thus ensured, we

are less dependent on the quality of the underlying storage service.

However, as public keys are both inconvenient and unintuitive to man-

age directly, the system binds these identities to human-readable identi-

fiers, names. Similar to how domain names are mapped to IP addresses,

only these names are exposed to the end-user and the client applications

when referring to other users. These identifiers follow an email-like user-

name-domain structure, which allows for flexibility, as the uniqueness of a

name can easily be controlled within the context of a specific domain. Fur-

thermore, similar schemes are widely used in current applications, mak-

ing it easier to adapt legacy applications to our framework. For securely

mapping the identifiers to public keys, we use electronic certificates.

The identity authorities are trusted third-party certificate authorities

used to securely introduce peers to each other. These authorities issue

certificates presented during peer connections, that bind the public key

of a user to the user’s unique name. Compared to public-key infrastruc-

tures, identity authorities do not follow a hierarchy, and can be created

at will, as long as both parties of a session trust the same. For instance,

enterprises can maintain their own authority for issuing certificates to

corporate-specific identifiers. At the same time, users can also trust the

certificates issued by an authority created within a small group of close

friends.

Although the scheme requires the users to trust the authorities behind

the root certificates, it is not designed to provide trust between the users.

66

A secure peer-to-peer framework

The goal is merely to provide a guarantee of the uniqueness of an identity

in order to prevent identity theft and spoofing (much like the authentica-

tion scheme specified by OpenID [3]).

Furthermore, the identity authorities are not the only way in which

peers can be introduced. The framework does not require that the iden-

tity certificates are issued by any specific authority, but support also cer-

tificates issued by other peers the user trusts, similar to the web-of-trust

used by PGP. This flexibility enables identity mobility by allowing users

to issue temporary certificates even of their own identity. For instance,

instead of transferring ones identity to a rental device, we can just issue

a certificate that borrows our identity for as long as we use the device.

Alternatively, we can utilize third party identity- and key management

systems. For instance, SafeSlinger[46] provides an easy-to-use and secure

system for exchanging public keys within a group of users. These keys, or

identities, can be accessed from other applications using their API.

Establishing actual trust in users is a complex and highly subjective

decision, resolved on a completely different layer. The identity scheme

only verifies that the name a user is using actually corresponds to his

cryptographic identity, when processed within the framework. Figure 3.3

illustrates this process, and how identities are handled in our model.

Figure 3.3. A high-level view of the identity handling. Users and applications use identi-
fiers, names, when addressing remote peers. The identity management of the
framework translates these into identity keys using the overlays. The iden-
tity of the local user is used to verify the mapping, using identity authorities,
stored contacts or relationship information.

3.1.2 Overlay infrastructure

The overlay infrastructures are resources that provide lookup- and ren-

dezvous services that assist peers in finding, and connecting, to each other,

similar to what overlays and BitTorrent trackers do. The framework is

not tied to a single overlay or type of network resource, and can even op-

67

A secure peer-to-peer framework

erate without any. The type of resources that may be used include both

ones created specifically for the framework, such as overlay networks, and

dedicated servers or public, well-known, peers. The requirement for act-

ing as one consists of providing some storage space and offering a simple

key-based interface for accessing data.

The framework defines a very basic set of operations that these re-

sources must support. At a minimum, these include only the three storage

operations put, get and remove. In addition to these, the framework can

make use of signed operations, publish-subscribe services and message

routing. The signed operations are designed to ease the burden on the

clients when fetching data published by a specific peer. Instead of the

client having to filter the response entries, the overlay can be instructed

to do so before returning the results.

For best performance, the storage services should naively support an in-

dexing scheme based on cryptographically generated keys, such as hash

digests. These are primarily used for locating peers by retrieving self-

published information packages that are indexed, for example, using the

digest of the identity identifier. As the storage services are open and even

unreliable (with regards to availability and eavesdropping), there are a

number of security issues to consider. The data packages are signed, elim-

inating spoofing, but polluting the storage with invalid entries is still pos-

sible. The signed storage operations are designed to mitigate this threat,

as the storage would only accept properly signed content and is able to

filter the request results according to the signer. In Chapter 5 we discuss

our privacy extensions which further address these issue by obfuscating

the lookup keys.

3.1.3 Connectivity

As different environments and applications may require different types of

data protocols and connection types, we do not limit ourselves to a specific

data transfer protocol, but instead create a flexible model where we allow

different types of existing (and possible future) protocols to be used. This

modularity is however hidden from the client applications, presented only

through a common interface. In our model, as we do not rely on overlay

routing being possible, we need efficient methods for traversing the net-

work obstacles present today that prevent direct connections.

Our focus has been on using the existing, stable, solutions Teredo [71]

and the Host Identity Protocol (HIP) [121]. Currently these protocols are

68

A secure peer-to-peer framework

the most promising candidates for enabling P2P connections for ordinary

end-users. Although competing technologies, such as routable IPv6 ad-

dresses and Mobile IP, has had some success, they are still inaccessible to

many and do not solve network middlebox traversal completely.

By using HIP, we also relieve the application layer from solving a num-

ber of other issues. HIP is designed with security in mind, and provides

strong authentication between end-points and encryption of the data traf-

fic. Furthermore, HIP provides features such as connection mobility and

multihoming which enables hosts to move between networks seamlessly.

More recently, as discussed in Chapter 2.6.1, there has been work on stan-

dardizing extensions for HIP to support certificate-based authentication

and construction of overlays based on the Host Identities. These show

great potential for further improving the usefulness of HIP in P2P sce-

narios.

Teredo provides a widely deployed and slightly lighter platform for NAT

and other middlebox traversal. Although lacking the security of HIP, com-

bined with a transport security, it is a potent alternative for P2P connec-

tions.

3.2 Prototype implementation

A working prototype implementation was needed to gain sufficient experi-

ence and insight into potential issues of the framework design. We needed

to asses the usability of applications adapted to our P2P model, and the

feasibility and performance of overlays constructed using only simple, and

possible unreliable, components (as described in Chapter 3.1.2). Further-

more, we needed a prototype which would operate in the same types of en-

vironments and devices we see future applications being used on, namely

mobile networks and hand-held devices. The applications should portray

the activities we expect users to engage in, not only demonstrate the tech-

nical performance of the framework.

This led us to design the prototype as a network proxy for existing,

legacy, application, replacing the centralized service provisioning these

rely on today with our distributed model. Although integrating the frame-

work as a part of specific applications, or even constructing completely

new ones could provide a more seamless experience, our approach made

integration easier, allowing us to experience with more, and different

types or applications.

69

A secure peer-to-peer framework

The prototype was implemented on the GNU/Linux operating systems.

Linux was chosen for its versatility, as it allowed us to experiment with

applications both on personal computers as well as hand-held mobile de-

vices and smartphones. The prototype was designed with the limita-

tions of mobile Linux operating systems (such as Maemo 1 and MeeGo
2) in mind, as an efficient background daemon. The prototype was imple-

mented in the C language, with only a few external library dependencies,

making it easy to port to different types of Linux environments.

The daemon acts as a network proxy, intercepting traffic from local ap-

plications which it maps, in an application specific manner, to our P2P

model. In the following we will review some of the details of the im-

plementation that are important for understanding how the experiments

were conducted.

3.2.1 Architecture

The prototype was designed to be highly modular, making it easy to exper-

iment with new components and features. This modularity was achieved

by separating functionality into units offering clear interfaces for perform-

ing tasks, receiving updates and modifying the behavior of the module.

For instance, following a successful peer connection establishment, an

event is issued which modules can dynamically choose to receive. These

can be used, for instance, to initiate data synchronization between the

two.

At the core of the prototype is an asynchronous, multi-threaded, event

engine (the processor module). The event-based architecture enables

complex concurrency, while supporting also long-lived tasks through worker

threads. Application events (e.g., signaling for a VoIP call) may result in

a large number of networking operations, such as lookup and connection

establishment, which would easily stall the whole system otherwise. Fig-

ure 3.4 depicts the architecture of the prototype’s components.

The ident module contains the identity-related logic. It manages the

locally stored identities and performs all identity-related cryptographic

operations. It also provides an interface for utilizing identities from ex-

ternal identity modules, either as the primary identity, or as temporary

ones by acquiring certificates authorizing it for a fixed period of time. This

design allows for mobility, as we can use identities stored on smart cards

1The Maemo development platform. http://maemo.org
2http://meego.com

70

A secure peer-to-peer framework

sipp

SIP application
support

extapi

HTTP proxy, registration
interface, Web cache

olclient

Overlay lookup
and routing

conn

Connection
management

ident

Identity management

processor

Core services
IPC, configuration, event handling

netio

Networking utilities

overlay modules

Overlay network support

hipapi

HIPL support

opendht

OpenDHT support

broadcast

LAN Broadcast

pymod

Python run-time
environment

ac

access control

trustman

Trust management

identity module

identity module

crypt

Crypto library

utils

General data management

Core modules

Application
interfaces

Low-level
utilities

Figure 3.4. A high-level overview of the modules of the prototype.

or mobile phones while accessing the network from a untrusted computer.

In addition to managing the identity, the ident module keeps track of

relationships, and provides access control and trust management based

on these. Though sub-modules, it maintains a database of application-

provided reports about encounters with external identities (users). These

reports contain information such as the context of the encounter (e.g.,

voice call or email) and the trust gained or lost, which is summarized and

made available for all other applications using the system. This allows

applications to better identify unknown peers, as they are provided with

a track record- where or how that peer has been encountered before, and

what the peer’s behavior has been.

The conn module manages the data exchange with remote peers. It

provides a simple interface for either packet- or stream-based communi-

cation using only the peer name and a service identifier. These service

identifiers refer to specific application instances, much like port numbers

in TCP. And in a similar manner, modules need to register handlers for

them in order to receive data. Communication with remote peers is thus

completely hidden behind a single interface, independent of the type of

connection used. The prototype supports currently connections made us-

71

A secure peer-to-peer framework

ing HIP, plain IP and Teredo.

The olclient module provides an abstraction for interfacing with the

overlay infrastructures. The actual interaction logic of any overlay is

packaged into sub-modules, which provide a common interface for the

overlay operations discussed in Chapter 3.1.2. The olclient module is-

sues each request on each one of these sub-modules in parallel, returning

the results (e.g., for fetching resources) as they become available. Cur-

rently we have implemented sub-modules for OpenDHT, for a proprietary

web-based hash table lookup, and for local area network (LAN) broadcast-

based lookup. These provide lookup for both global deployments as well

as closed, ad-hoc, networks.

In addition to these, the prototype contains a set of utility modules,

and application-specific modules through which the applications interact.

These are explained in more detail in Chapter 3.3.

3.2.2 Overlay use

For peer lookup and connection establishment, we use a system of reg-

istration packets. The registration packets are electronically signed data

containers that contain all the information needed to establish a direct

connection, including current IP addresses, NAT traversal information

(such as HIP RVS or Teredo addresses). They contain an internal and

external part (as illustrated in Figure 3.5). The internal part contains the

connectivity parameters as well as other, application-specific extensions.

This data is signed with the identity key of the user (the publisher), with

the signature, as well as any relevant identity certificates, contained in

an outer envelope.

The internal part of the registration packet is meant to describe the cur-

rent state of the user. Not only does it contain the connectivity-related

parameters, but it can also include application-specific data such as the

current status of the user, application version or other information rele-

vant to a remote peer.

As these packets are signed, and relatively light-weight, the system is

able to use any type of network storage that offers limited storage and

a way of indexing data. This highlights one of the differences between

our system and many other P2P systems. We do not stress building an

optimal overlay network for locating users and distributing data, but are

able to use a number of existing services for it, even simple web-sites.

This approach is similar to the peer discovery mechanism of BitTorrent,

72

A secure peer-to-peer framework

Figure 3.5. Contents and structure of the registration packets. In addition to connectiv-
ity information, the internal part may contain application-specific parame-
ters.

where trackers offer a simple interface for storing, and fetching, peer in-

formation. Furthermore, we can use redundancy to create a sufficiently

reliable system, even if the individual storage services are unreliable or

untrusted. This eliminates the need to deploy custom servers to bootstrap

the system, making the system accessible for ordinary users that do not

have the necessary resources or know-how to maintain the infrastructure.

Prime examples of these open, free, storage infrastructures are cloud-

computing services such as Google’s AppEngine3 and Heroku4. These

allow users to deploy web applications, and provide different types of

storage API with database-like features. Using these cloud services, a

suitable storage back-end can be created, as we have done, with little ef-

fort. Other possible infrastructures include Amazon’s SimpleDB service5,

which offers similar free quota-limited services. But even simple file stor-

age services such as DropBox6 can be used, as file names can easily be

3http://www.appengine.com
4http://www.heroku.com
5http://aws.amazon.com/simpledb/
6http://www.dropbox.com/

73

A secure peer-to-peer framework

Figure 3.6. Sequence diagram over how the olclient manages the overlay modules during
get and subscribe calls. The key and return data are processed according to
the type of call (obfuscation, encryption) fore issuing the request or returning
the data.

used as indexes.

The management of the different types of overlay infrastructures (stor-

age and routing services) is contained in so called overlay modules within

the olclient. These modules are registered with the olclient manager ei-

ther at start up or dynamically. The olclient manager controls these mod-

ules and delegates the calls appropriately. For instance, when retrieving

an item, the olclient forwards the request to the appropriate functions of

all of the registered overlay modules. As certain functions, such as re-

trieving data items signed by a specific user, may not be supported by all

modules, the olclient manager simulates the call by examining and filter-

ing the content retrieved using unsigned calls. The process is illustrated

in Figure 3.6.

3.3 Application integration

An important part of validating our P2P model was to be able to use real

use-cases and situations to evaluate it. The prototype model was designed

to be flexible, supporting different types of data models and communica-

tion patterns. But as the prototype was implemented as a network proxy,

it set some limitations on the types of applications we could support with-

out having to modify the applications.

The first type of applications we considered was real-time communica-

tion applications. These are in many ways ideal for P2P communication

systems, as they are based on exchanging data produced by the end-users.

These are also highly personal applications, as we use them to communi-

cate with people we have a relationship with. SIP was chosen as the pri-

mary protocol for real-time communication applications. SIP is an open,

well documented protocol suitable for a wide range of different applica-

74

A secure peer-to-peer framework

tions, including audio- and video calls, instant messaging and file trans-

fers. SIP is also easy to work with, supporting network proxies, and a

convenient messaging syntax. It also enjoys a wide acceptance and de-

ployment, with numerous implementations.

Secondly we focused on creating an interface for HTTP-based applica-

tions. Although HTTP was originally created for the World Wide Web

(WWW), it has been adopted by a wide range of applications as a generic

communication protocol. Even though thought of as a client-server proto-

col, it is not bound to centralized management, making it suitable for P2P

traffic as well. In the following chapters, we present the details of how

these protocols were integrated. We conclude with a discussion on how

the prototype relates to a more generic framework.

3.3.1 SIP

The SIP protocol adapted well to the P2P model, as it uses similar user

identifiers as our framework, and is designed to support network proxies

and processing of the signaling by these. As explained in Chapter 2.4, SIP

supports distributed environments, but uses centralized, domain- based,

authentication and lookup. These we replaced with the framework’s own

identity scheme and lookup, mapping the SIP identifiers (AORs) directly

to the framework’s. Applications (such as a VoIP application) could there-

fore be switched to our framework by simply configuring them to use our

daemon as proxy for all signaling.

This SIP module accepts and interprets SIP signaling, parsing andmod-

ifying certain parameters (such as routing queues) to fit our network

structure. Signaling destined for SIP servers (such as status updates and

registrations) are captured and responded to appropriately. Signaling des-

tined for remote peers (such as VoIP calls), results in a P2P connection to

be established using the framework’s lookupmechanism, and the message

being forwarded. Our implementation supports all standard signaling, as

well as the most common extensions to the protocol. Beside audio- or video

calls, these include instant messaging and presence.

As security is one of the main topics of our research, the SIP module

contains a multi-layered filtering system, with interfaces for examining

and modifying both locally and remotely received signaling. Using these

interfaces, we have added validity checks for the signaling, black- and

white list filtering, and filtering based on social networks (as presented in

Chapter 7). We also modify the session parameters in order to ensure that

75

A secure peer-to-peer framework

the data (such as the audio stream during a phone call) is routed securely

through the encrypted P2P connection. Throughout this processing, the

prototype will still behave as a normal SIP proxy, responding appropri-

ately to the SIP application without the application being aware of it.

3.3.2 HTTP

The HTTP support was implemented to enable P2P exchanges of not only

web- based content, but any type HTTP- based data, such as RSS updates

and remote procedure calls (RPCs) using REST or SOAP interfaces. As

with SIP, the goal was that users could use existing HTTP-based clients

to access these P2P provided services, and standard HTTP servers for

providing them. This required creating an URL mapping scheme, a ser-

vice registration interface and to include authentication data to the HTTP

headers.

In order to support legacy applications, we needed to preserve the URL

syntax of HTTP, and use a mapping mechanism to convert host names to

the identifiers used by the P2P framework. As explained in Chapter 3.2.1,

the prototype uses service identifiers to refer to the applications of, or

services offered by, a peer. We simply mapped the host name of an URL to

the peer name, and the port number to these service identifiers. However,

as the at character (@) of the peer names has a special meaning in HTTP,

it is replaced with the sequence .at.. For instance, the URL

http://alice.at.example.com:1000/get_rss

would result in a request to a service registered as service 1000 on user

alice@example.com.

The HTTP application handler was implemented as both a standard

HTTP proxy as well as a local HTTP server using URL rewriting. As with

SIP, the protocol handler parses the requests and establishes a peer con-

nection in order to forward the request. In order for the recipient to be

able to forward the request to the right HTTP- based server, we added a

service registration interface. This REST- based interface allows applica-

tions to reserve a service number of the local identity by providing a local

TCP port where the requests should be forwarded.

As all P2P HTTP requests will be routed through the local P2P proxy,

they will all seem to be originated from the local host. Although these

requests go through a similar filtering process as SIP, and there are mul-

tiple ways of adding authentication to HTTP, we also include the identity

of the remote peer to each request. The HTTP headers of each request

76

A secure peer-to-peer framework

is rewritten, adding custom X-P2P-From and X-P2P-To headers specifying

the source (remote) and target (local) peer identifiers. Although legacy

applications may not use them, new ones can benefit from this automatic

authentication and single sign on mechanism.

3.3.3 Towards a generic framework

It might seem contradictory to speak of a generic application framework,

as the application protocols we chose to support (SIP and HTTP) each

required separate adapters that both leveraged protocol- specific features.

Supporting additional applications would require analyzing the protocol,

in order to adapt it to the new environment. However, the SIP and HTTP

protocols represent two important types of communication patterns, to

which most other application protocols adhere.

As we move towards new network architectures and applications, we

may need to create new, or improve old, application protocols to better fit

those environments. However, the purpose of the prototype is not to show

how any application can be integrated, but that most any type of applica-

tion can. The SIP and HTTP protocols were merely two convenient, and

well-suited, protocols for our work.

3.4 Summary

The goal of our framework has been to design a platform that enables

experiments with networking applications in a distributed environment

to study the issues they face. As the nature of the Internet is evolving

beyond what it is designed for, there has been an active debate on new

architectures. Many of the proposals put forth [96][168] show a trend to-

wards models that favor more decentralized architectures. In these we

have to rethink how applications operate, when there is limited access

to established authorities. Although the architectures themselves have

received a lot of attention, the impact these have on the design and oper-

ation of applications is often ignored. We have designed and implemented

a framework that emulate these environments, in order to study the se-

curity and usability issues of the applications.

Secondly, our framework is designed to be usable today, easily deployed

in both current and future networks. The security is based on strong

identities, which also allows for features such as mobility. The underlying

77

A secure peer-to-peer framework

theme in our model is to tie these identities more closely to the application

we use, and therefore to how we interact. By having a solid foundation for

identifying not only hosts, but the users behind application instances, and

even individual data, we can gain a more profound view of our network

environment. This can be used to create a much richer context around

the information we handle, enabling us to make better decisions. Our

framework presents thus a more user-oriented environment for applica-

tions than the current host- (and network-) oriented one of today.

3.4.1 Technological advances

The implementation relies heavily on the HIP protocol and strong identi-

ties to provide connectivity and security. Although these components are

not novel, the fact that we demonstrate how the model enables provider-

less overlays that can be deployed easily, and cost-efficiently, binding cryp-

tographic identities to application instances to enhance security and con-

trol, we feel is of value. In short, the advantages of our model, compared

to the current state of the art are:

I A cross-application identity model that authenticates users not only on

a host level, but can even be used to control single application instances.

Compared to existing models, this provides more accurate identification,

as the user is better able to control which applications are able to use

his credentials. Remote peers, and even network middleboxes, also have

more control. For instance, the model enables remote peers to block, or

whitelist, network access for a single application, instead of applying the

same policy to all traffic from the host.

II Use of generic networking resources (such as on-line storage and

cloud services) to create a platform for different types of applications and

services. Currently new services require support from dedicated net-

work resources. We demonstrate, through prototype validation and per-

formance measurements, that by combining a HIP-based identity man-

agement and overlay with a generic lookup mechanism, it is feasible to

construct private, and public, P2P overlay networks.

3.4.2 Related work

Our framework shares some aspects with existing P2P frameworks and

applications. However, as it is designed as a P2P framework, not bound

to any single application, it does differ substantially from most. For in-

78

A secure peer-to-peer framework

stance, content sharing systems, arguably the most prominent use of P2P

today, operate with such different prerequisites and goals, that only cer-

tain details can be compared. These systems are optimized for locating

and acquiring content without much care for the source, while we concen-

trate on the interaction and relationships between the nodes.

It does share some architectural similarities with BitTorrent, as noted

in Chapter 3.1.2. Our overlay infrastructures serve a similar function,

and operate in a similar manner, as the trackers of BitTorrent. As with

BitTorrent, we require only a simple interface to be provided by these

resources, while the implementation of those are left to the maintainer.

The end-user can participate, as in the BitTorrent DHT overlays, but is

not required. Furthermore, the system is not bound to a specific set of

these network resources, and does not have to maintain a connection after

suitable peers have been located. This eases the deployment of the sys-

tem, and adds resilience, as it can use multiple simultaneously. Although

the incentive mechanism is often quoted as the reason for BitTorrent’s

success, the minimalistic requirements for deployment has made it very

approachable and easily adaptable.

Of the more generic systems, the RELOAD protocol (discussed in Chap-

ter 2.5.2) comes, in many ways, the closest. Similar to our framework,

it provides P2P networking for applications that provide interaction be-

tween users, but without being tied to a specific type of application. Com-

pared to content sharing systems, the purpose is to establish links be-

tween the applications, not only fetch content. In these systems identity

management becomes important, and RELOAD has opted a for public

key- based scheme similar to ours. This enables secure authentication and

for verifying the authenticity of content published in the overlay through

electronic signatures.

However, REALOAD targets more established and stable environments

than we do. Although it has a very modular architecture for supporting

different types of overlay management, it does require that peers partic-

ipate, and features even dedicated trusted nodes, the enrollment servers,

for assigning responsibility. The network itself is relied on to perform cer-

tain tasks, such as access control, while our framework does not place any

trust in the overlay infrastructures. Furthermore, even though RELOAD

is not bound to a specific application, it does serve only a single one at

a time. An identity is bound not only to a user, but also a specific appli-

cation. Our framework unifies all interaction from a user under a single

79

A secure peer-to-peer framework

identity. This enables us to easier form relationships with our peers, as we

can interact in different ways while being confident of the other’s identity.

80

4. Evaluation

During our research, we have applied our prototype to different envi-

ronments and uses, recording the implementation’s behavior and perfor-

mance. To demonstrate the feasibility of our model, we present the most

essential of these evaluations. First, we examine the networking perfor-

mance. This is important for understanding how the technologies dis-

cussed impact the responsiveness and overall experience of the applica-

tions. We continue by evaluating the prototype on a mobile device, show-

ing how well the proposed framework performs, and the resource require-

ments in terms of CPU and memory. Lastly we present the results from

our experiments with different overlay infrastructures, quantifying the

resource usage and requirements for deploying a network.

By examining the framework from these angles, we believe that the

evaluation provides a good understanding of the feasibility of our model.

Not only in terms of the hardware that we can expect to support it, but

also how easy it would be to deploy and the user experience.

4.1 Networking performance

The goal of the network performance evaluationwas to determine whether

the technological solution we have outlined can deliver a satisfactory user

experience for ordinary users. Three configurations were used. First

utilizing HIP for both NAT traversal and security. Secondly using only

Teredo for NAT traversal. Finally we evaluated a combination of Teredo

and HIP. In this configuration the data was secured using HIP, but encap-

sulated for NAT traversal using Teredo. Although using the native NAT

traversal extensions of HIP is surely more efficient than combining the

two protocols, it can require RVS servers that are not as widely deployed

as Teredo. This makes the hybrid approach an interesting alternative

81

Evaluation

for secure, and NAT-traversing, connections. Three characteristics were

measured; the initial connection set-up time, latency and the effect of the

protocols’ overhead on bandwidth.

4.1.1 Test set-up

The measurements were performed using the P2P HTTP interface of the

prototype. The client peer issued a request for pre-configured resources

on the serving peer, and the duration of the different faces of the request

processing were recorded separately. The resources were served by using

the Apache HTTPD server that had been configured (registered) to accept

connections through the P2P prototype. The P2P HTTP client was run

on a Linux-based 2.2 GHz Intel Core 2 Duo desktop computer with 2 GB

of RAM, and the P2P HTTP server on a 1.4 GHz Intel Core 2 Duo laptop

with 4 GB of RAM. The computers were running the Debian GNU/Linux

4.0 operating system with a standard 2.6.28 version of the Linux kernel.

The HIP for Linux (HIPL) version 1.0.4 [68] stack was used for HIP and

Miredo 1.1.5 [118] for Teredo connectivity.

The overlay infrastructure we used for lookup was a simple Google Ap-

pEngine storage application consisting roughly of 20 lines of code. This

application offers an HTTP interface for storing and retrieving arbitrary

blocks of data using 160 bit keys. Similar to the interface offered by

OpenDHT [127], each item has an expiration date and can be protected

from unauthorized removal by a password. The default server for Miredo,

teredo.remlab.net was used for Teredo, and HIIT’s public RVS, ashen-

vale.infrahip.net, as the HIP RVS server.

As our framework is designed to enable new services to be deployed eas-

ily, without additional infrastructure investments, the main target group

are ordinary home users. The evaluation was therefore designed to mea-

sure the performance of the framework in networking environments that

ordinary, residential, users are faced with. Although this does introduce

more uncontrollable interfering factors than when done in a controlled

setting, the results describe better the performance of the framework from

the user’s point of view. With this in mind, the network performance eval-

uation was designed with the serving host behind a NAT on a residential

digital subscriber line (DSL) broadband connection. The client host was

placed 16 network hops away, on a different autonomous system. This

provided a realistic scenario for what can be expected in terms of net-

work quality for the potential users. The average round-trip times (RTT)

82

Evaluation

Table 4.1. Round trip time (RTT) between network elements.

Source host Target RTT

Serving Client 194.2ms σ 0.7

Serving Lookup 37.6ms σ 0.2

Serving Teredo server 186.9ms σ 0.1

Serving HIP RVS 194.0ms σ 0.5

Client Lookup server 26.7ms σ 0.1

Client Teredo server 50.3ms σ 1.4

Client HIP RVS 1.0ms σ 0.0

between the network elements is presented in Table 4.1 to illustrate the

quality of the connections.

4.1.2 Connection delay

The connection delay is the time required to establish a P2P connection

and respond to a request, illustrating how quickly users are able to con-

nect to new peers. This delay was recorded using an internal logging

mechanism of the prototype which automatically recorded the duration of

each of the four main phases of the connection establishment. These are

the Lookup, the lookup of the registration packet for the remote peer. Con-

nect is the time needed to establish the actual P2P connection. Auth is the

duration of the handshake, during which the identity of the remote peer

is verified. Remote is the time the remote peer processes and responds to

the request. Finally Misc contains the sum of all additional processing

needed to establish the connection. This includes possible DNS lookups

and various internal processing.

As a result of the NAT traversal, the initial connection establishment

is more time consuming than subsequent requests. Both Teredo and HIP

use UDP hole-punching techniques, which are based on UDP encapsu-

lation and relaying of the first packet through an intermediate (Teredo

server or HIP RVS). Figures 4.1(b)-4.1(d) show the times recorded for ten

requests for each one of the three configurations. Between each request,

both peers were reset to provide a fresh setting.

Teredo performs as expected, adding only the RTTs needed to involve

the Teredo server to the connection process, resulting in an average of

83

Evaluation

1281 ms total. The HIP-based connections performed worse. The HIP

connection establishment adds an additional 3000 ms to the process, with

the total averaging 4026 ms. Only a small fraction (100 ms in Misc) can

be explained by additional chores related to HIP (such as mapping HITs

to IP addresses). As this delay is present both when relaying through the

RVS and Teredo server, the HIP NAT traversal cannot be blamed either.

(a) HIP connection delay. (b) Teredo connection delay.

(c) HIP / Teredo connection delay. (d) Connection delay averages.

Figure 4.1. End-to-end connection delay in residential networks when using different
transport protocols. Ten samples were measured for each configuration. The
duration of each of the phases of the connection establishment are stacked to
form the total.

After performing additional experiments and researching the problem,

it was found to be due to the Linux kernel dropping the first packet of

the IPSec ESP BEET tunnels created by HIPL. By default, HIPL uses the

kernel-based IPSec, setting up appropriate routing tables for packets ad-

dressed with HITs. These result in the HIPL daemon being activated to

perform the BEX when a packet destined for a new HIT is received. The

first packet is subsequently dropped by the kernel while waiting for the

BEX to complete. As the system uses TCP for the P2P proxy connections,

the connection is completed only after the TCP retransmission timer ex-

pires, resulting in a new packet being sent.

Although this issue may be addressed in future versions of the HIPL

implementation, it should be noted that this affects only the initial con-

nection set-up, not subsequent requests.

84

Evaluation

Figure 4.2. Average RTT and HTTP response times for each connection type. Plain TCP
HTTP connections were not possible as the serving host was behind a NAT.

4.1.3 Latency

The latency was measured using pre-established connections. This pro-

vides a view of what the end-user would experience after the initial con-

nection establishment, in terms of the responsiveness of the services. Fig-

ure 4.2 depicts the average RTT measured using ICMP ping packets for

each connection type, as well as the corresponding response times for the

actual HTTP content. The HTTP response time was measured by issuing

a request for a small (50 bytes) web page. The time recorded is the time

between the client application issuing the request and when it actually

had received the content.

The figures are very similar between the different connection techniques.

After the initial set-up, each protocol sends the packets directly between

the hosts, adding only protocol encapsulation. The slightly longer times

for the HIP/Teredo combination connections can be explained by the ad-

ditional encapsulation and processing.

4.1.4 Throughput

The throughput was measured as the maximum rate at which the serving

host is able to deliver data over a TCP connection. The measurements

were done using the iperf network performance measurement tool. Fig-

ures 4.3(a)-4.3(b) show the results when using the three different con-

nection techniques as well as without any encapsulation (plain TCP) as

reference. Each measurement was run for a duration of 20 seconds to

85

Evaluation

(a) Throughput, per sample. (b) Throughput, average.

Figure 4.3. Throughput measured in Kbit/s when using different connection types.

obtain a stable result.

It should be noted, as seen in the graphs, that these are highly suscepti-

ble to external influences (other users, link quality and the Internet Ser-

vice Provider, ISP, policies), but still provide an insight to how these pro-

tocols affect the performance. As the figure shows, the encapsulation does

have a noticeable effect on the overall bandwidth. Both HIP and Teredo

decreased the maximum bandwidth from 426 Kbit per second to 394 Kbit

per second, a decrease of 8%. Perhaps surprisingly, the HIP/Teredo combi-

nation resulted only in an additional 1.5% decrease from that value, with

a maximum bandwidth of 388 Kbit per second.

Figure 4.4 compares the total IP packet size generated by a 238 byte

HTTP request using the different connection types. As the figure shows,

Teredo and HIP add approximately an equal amount of overhead to the

data packets (40 and 42 bytes in this example, although the ESP header

length may vary due to padding). This corresponds quite well to the

throughput measurements. It should be noted that although the Tere-

do/HIP combination adds the most overhead, it is only 42 bytes more per

packet. Although this is roughly a 33% increase in the total amount of

overhead compared to plain Teredo, it is below three percent of a typical

network MTU of 1500 bytes.

In this example, our prototype is responsible for generating roughly 30

bytes per HTTP request of additional data (modifications made to the

original HTTP request, packet type- and stream-management identifiers).

This is a relatively high figure, and can surely be optimized in future re-

visions.

86

Evaluation

Figure 4.4. Comparison and content of a packet containing 238 bytes of application data
produced by the different protocols.

4.2 Performance on a mobile device

For evaluating the framework’s performance on mobile devices, we used

Nokia Internet tablets (N800 and N810), as they feature a suitable OS for

the prototype and currently represent lower-end smart phones in terms of

hardware specifications (which highlights any issue we face).

We used the built-in Internet call and instant messaging application for

conducting the evaluation. This application supports the SIP protocol,

and can therefore be used together with the P2P framework without mod-

ifications. During our evaluation, we used the devices in two different

network environments. Connectivity is provided through a wireless LAN

(WLAN) interface, which we used both in managed (connected to a WLAN

access point), and ad-hoc modes. This provided a view of how the applica-

tion performs when connected to a global network, as well as the usability

in closed networks.

The most notable issue was the latency created by the HIP base ex-

change. As noted by Khurri et. al. [94], the throughput of IPSec on these

devices is sufficient for the data of multimedia sessions, but the delay

caused by the base exchange is considerable. As our prototype provides

no indications of the state of the HIP stack, it can lead to frustration as

the user is unsure whether the call is progressing. However, this affects

only the initial connection set-up. Subsequent requests are not affected,

87

Evaluation

and are delivered with the latency comparable to that measured in Chap-

ter 4.1.3.

4.2.1 Connection delay

(a) HIP connection delay. (b) HIP connection delay after initial BEX.

(c) Connection delay using plain TCP. (d) Connection delay averages.

Figure 4.5. Measured connection delay on Nokia N810 with and without HIP.

The connection delays were measured using two Nokia N810 Internet

tablets connected through an ad-hoc WLAN network. The tablets were

situated near by, to minimize possible network interference. This al-

lowed us to concentrate on the performance of the tablets, as the impact of

the network has already been evaluated previously. Local network UDP

broadcast was used for the lookup. We used HIP for the P2P connections,

but also compared with using plain TCP to highlight the affect the strong

security has on these devices.

The connection delay was recorded by the same internal logging mech-

anism, presented in Chapter 4.1.2, over ten calls. Three sets of measure-

ments were taken. First using HIP for the P2P, and resetting both devices

between each call. This illustrates the delay of the initial request (or call)

between the mobile devices. Secondly we measured the delay when a HIP

connection had been pre-established, illustrating the delay of subsequent

requests between the two. Finally we measured ten calls when the P2P

connection is established without HIP.

88

Evaluation

Figures 4.5(a)-4.5(d) show the time recorded for each of the three sets.

Using HIP on these mobile devices increases the initial connection delay

substantially. However, after a connection has been established, HIP af-

fects the performance only slightly.

(a) VoIP application inactive. (b) VoIP application active.

Figure 4.6. Call set-up delay with HIP.

(a) VoIP application inactive. (b) VoIP application active.

Figure 4.7. Call set-up delay without HIP.

Figure 4.8. Call set-up delay averages.

In order to understand how the overall experience is impacted by these

delays, we measured also the overall call set-up delay. This is the total

delay a user experiences, which includes both the delay caused by the

networking stack, as well as the time required by the VoIP application

89

Evaluation

for processing the signaling and updating the UI. In addition to the three

configurations used for the connection delay (HIP, pre-established HIP

and plain TCP), the call delay was also measured when a P2P connection

had been pre-established (subsequent calls to the same peer). Further-

more, the call delay was measured both while the receiver was initially

idle, as well as when the VoIP application had been pre-loaded.

Figures 4.6-4.8 show the times measured for each of these configura-

tions. Although 4.5 seconds for establishing the HIP connection (Fig-

ure 4.5(d)) seems long, the additional delay caused by the built-in VoIP

application is much longer. As Figure 4.8 shows, merely starting the ap-

plication consumes approximately two seconds, leading up to an over ten

second average delay when placing a call to a remote user without a pre-

established connection.

4.2.2 CPU usage

As the results presented in Chapter4.2.1 showed, although the perfor-

mance of the prototype on the mobile N810 tablets may seem poor, it is not

excessively worse than the overall application experience of those devices.

The Nokia N810, released in 2007, features a 400 MHz single core ARM

processor (TI OMAP 2420) and 128 MB of RAM. With the rapid develop-

ment pace of electronics, this represents a rather low-end mobile device

today, when modern smartphones feature multiple core processors, effi-

cient 3D graphics capabilities and giga bytes of RAM. However, by mea-

suring the CPU usage on the Internet tablets, we can analyze how the

lack of processing power affects the framework. This can be used as an

indicator for how future, more efficient, devices may cope with the system.

We measured the CPU usage of the Nokia N810 tablets during the

connection delay measurements presented in Chapter 4.2.1. The mea-

surements were done by polling the Linux CPU usage counter (available

through the /proc/stats device) at 0.5 seconds intervals. This provides

data on what types of tasks the processor has been occupied with during

each of the 0.5 second intervals. The CPU utilization can be calculated by

subtracting the different tasks (such as kernel and user processes, inter-

rupt request processing) from the total.

Figures 4.9(a)-4.9(c) shows the CPU utilization measured when placing

the calls in the three different configurations. The measurements have

been adjusted as close as possible to start at time zero for each itera-

tion, and depict identical sessions where the recipient answers the call

90

Evaluation

and keeps it open for 10 seconds. The left-hand side graphs show all of

the individual measurements plotted in the same graph, while the right-

hand graphs show the averages of these, as well as a typical instance (the

median for each point).

(a) HIP, including initial BEX handshake.

(b) HIP, with pre-established connection (no BEX).

(c) Without HIP

Figure 4.9. The CPU utilization on a Nokia N810 Internet tablet when making a 10 sec-
ond long P2P VoIP call. The right-hand graph shows all 10 measurements,
while the left-hand the average (dotted line) and median (continuous line).

A clear pattern can be seen in each on of the graphs. When initiating

the call, the CPU utilization rises sharply to 100%, as the VoIP application

initializes itself and the P2P proxy establishes the peer connection. As the

signaling is transmitted to the remote user, the CPU utilization drops, as

it waits for a reply. At 6-10 seconds into the measurement, depending

on the connection establishment type, it rises again as the response is

received and the call connected. It continues relatively low (at 10-20%) as

91

Evaluation

the call is in progress, but rises again as the call is disconnected.

Although the initial spike in CPU utilization lasts longer for when no

pre-established HIP association exists (Figure 4.9(a)), it is only one or two

seconds more than in the other cases. Furthermore, the spikes when the

call is finally connected and disconnected have little to do with the P2P

prototype, as these do not require the prototype to perform additional pro-

cessing. We can conclude that the P2P prototype itself is not as restricted

by the low processing power of the Nokia N810 as its own built-in VoIP

application, which was partly illustrated by the call delay measurements

as well. In addition, the use of HIP for the data connection does not seem

to be an obstacle, as the CPU usage remains at approximately 20% during

the call (compared to 10% when not using HIP).

To measure the CPU usage of only the P2P prototype during calls more

accurately, we repeated the measurements using the P2P HTTP interface

of the proxy. This removes the load caused by the VoIP application, high-

lighting the processing characteristics of the P2P prototype. The measure-

ments were done using the wget command-line utility, adding a minimal

amount of additional load. As we wanted to measure only the CPU usage

during connection establishment, the recipient peer did not have a HTTP

server responding, but returned an error instead.

Figures 4.10(a)-4.10(c) shows the results of ten measurements for each

connection type. As the graphs show, the BEX of the HIP connection es-

tablishment consumes significantly more processing power than the rest

of the exchange. Again, the use of HIP for the data connection is not an

issue, as the CPU usage after the BEX (Figure 4.10(b)) is only slightly

higher, on average, compared to the non-HIP (Figure 4.10(c)) connection.

4.3 Load on storage

As our framework establishes direct P2P connections using information

(the registration packets) stored in the overlay infrastructure, the load on

these storage service presents the main factor affecting the scalability of

the system. Increasing the number of users does not increase the load on

individual peers, or affect the connections between these, only the load

on the storage service. The number of peers the storage service can serve,

and how well, limits thus how large a population is able to use the system.

The overlay infrastructures, as explained in Chapter 3.1.2, need only to

provide a simple key-based data storage service. In our prototype, we im-

92

Evaluation

(a) HIP, including initial BEX handshake.

(b) HIP, with pre-established connection (no BEX).

(c) Without HIP

Figure 4.10. The CPU utilization on a Nokia N810 Internet tablet when making a P2P
connection. The right-hand graph shows all 10 measurements, while the
left-hand the average (dotted line) and median (continuous line).

plemented support for a simple HTTP- based interface containing three

key- based operations: get, set and remove. During our evaluation, we

monitored the network traffic and recorded that storing a registration

packet generated roughly 3.2 kilo bytes (KB) of upstream, and fewer than

200 bytes of downstream data in total when using this HTTP-based stor-

age interface. A single lookup resulted in approximately the same amount

of data, although in reverse directions. Storing a packet required also

roughly 3.2 KB of storage space.

Considering a system of a thousand users updating their status once

every five minutes (as was the default in our prototype), maintaining the

system would generate approximately 900 MB of upstream and 56 MB of

93

Evaluation

downstream traffic in 24 hours, with 3.1 MB stored in the database at any

time (assuming old packets are replaced when updated). Using the figures

from Facebook1, arguably the most popular social networking site today,

the average number of friends per account was 190 as of May 2011 [173].

Assuming a similar social network, and that each user would contact, on

average, each one of his contacts once a day, it would add another 37.1 MB

of upstream and 593.8 MB of downstream traffic. This interaction would

total in 937.1 MB upstream and 650 MB downstream traffic per 24 hours,

with 3.1 MB of data stored at any given time.

To better understand the scalability and cost efficiency of the frame-

work, we examined the pricing policies of Google’s AppEngine andHeroku,

two commercial platform as a service (PAAS) providers. Although there

are other similiar cloud- hosting services, these are amongst the most

popular, and offer representative pricing models.

Both Google’s AppEngine and Heroku offer different pricing plans, in-

cluding a limited free one, based on the amount of resources (storage,

processing power and bandwidth) that are used by the application. Cur-

rently the AppEngine limits the free service to 1 GB of data transfer per

24 hours, and 1 GB of indexed storage per application2. Heroku offers

more bandwidth (2 TB per month), but allows only 10’000 entries to be

stored in a relational database in its free offering3. Considering our ex-

ample of a thousand user population, both of the free plans offer enough

resources to meet our demands in terms of bandwidth and storage.

Beyond the free offering, the two follow different pricing models. Google’s

AppEngine scales in a fine grained manner, dividing the resources into

very specific components. For instance, inserting an entry to the database

consumes 1-7 so called write operations, depending on whether an old en-

try is updated and the indexing used. Retrieving a value consumes 1-2

read operations and 0-1 small operations, depending also on the database

set up. Each of these operations have separate quotas, and can, together

with a wide array of other resources (such as storage space, bandwidth or

CPU utilization), be increased independently in small increments.

Heroku, on the other hand, offers fixed plans with specific performance

guarantees that are purchased beforehand. Compared to Google’s Ap-

pEngine, these plans are much simpler, concentrating on easily under-

1http://www.facebook.com
2https://developers.google.com/appengine/docs/quotas
3https://www.heroku.com/pricing

94

Evaluation

stood resources such as storage space, CPU utilization and add-on soft-

ware. Extending our naive resource consumption model beyond one thou-

sand users, we see in Figure 4.11(b) the total cost of hosting different sized

networks on these two platforms, when considering expenses related to

the bandwidth use and storage- related costs.

(a) Cost of hosting, small networks.

(b) Cost of hosting, large networks.

Figure 4.11. The cost, per month, of hosting different sized networks on Google Ap-
pEngine and Heroku. The first figure shows the cost for smaller networks,
using the same scale for the cost of both systems. The second figure uses
different scales due to the dramatic difference in cost.

As the figure shows, Heroku provides orders of magnitude less expensive

hosting for our simple key-store application as the network size grows.

For instance, hosting a one million peer network would results in band-

width- and storage costs of over 42 thousand dollars per month on Google

95

Evaluation

AppEngine4, while the same application on Heroku could suffice with a

nine dollar plan (as of November 2013), mostly due to the looser band-

width restrictions and unrestricted database access on Heroku. These

calculations do not account for additional CPU resources required for pro-

cessing the requests, which would increase the cost depending on the

quality of the hosted application’s implementation and the performance

requirements.

In order to verify these assumptions, we implemented storage services

offering the HTTP- based interface on these platforms, as well as a stand-

alone version, and experimented with a small-scale simulation. We cre-

ated an application mimicking the requests made by the clients, and de-

ployed a 450 node network, simulating a medium sized community, us-

ing our department resources as well as the PlanetLab network. Both

the Google AppEngine and Heroku applications were deployed using the

free service plans of both. The stand-alone version was implemented as

a Python application using an in-memory database, and deployed on a

Linux-based 2.2 GHz Intel Core 2 Duo desktop computer with 2 GB of

RAM on the same local network as the client nodes.

We ran the applications for five days for each of the three storage im-

plementations. Each one of the client nodes made a registration request

using actual registration packages (stored under unique keys) once per 10

minutes. Call set-up was simulated by having each application request

190 randomly chosen registration packets per 24 hours. We recorded the

both the success rate of the registrations and call- set ups, as well as the

average response times.

The results were in line with our assumptions. The stand-alone and

Heroku- hosted applications performed well, with low latency and vir-

tually no operation errors (the success rate for all requests were over

99.99%). The Google AppEngine displayed also good response times on

all requests (indicating that the server never became overloaded), but the

daily quota was quickly filled (on average within 59 minutes after the

daily reset).

The quota that was first exceeded was the Datastore Write Operations,

of which only 50 thousand operations is available per day in the free ser-

vice plan. Following it was the Datastore Small Operations, recording

4The calculations were based on the data consumption of our prototype imple-
mentation. The price quotes represent therefore the worst case scenario, as a
production-grade version would surely be more optimized.

96

Evaluation

database management operation such as row counts, whose quota was ex-

ceeded on average after 185 minutes. The third quota that got exceeded

was the Database Read Operations, on average after 11 hours of the sim-

ulation. All other resource consumption of the Google AppEngine appli-

cation remained within their limits.

The storage space consumption (bytes stored in the databases) remained

far below the quotas on the commercially hosted services, and the band-

width use on Google AppEngine was only 8% of the downstream limit and

14% of upstream5. Heroku does not provide values for the bandwidth

utilization, but the fact that virtually all requests were completed suc-

cessfully indicates that the use was within the limits of the free service

plan.

4.4 Summary

The evaluation has shown that our prototype, and thus the model we have

proposed, is feasible both for different types of network environments,

and different types of devices. By using low-end mobile devices, we have

demonstrated that even though we emphasize security, the model does

not pose an unbearable burden on the devices when operating normally.

Furthermore, by creating storage services using free cloud resources, we

have shown that private overlays can be created using freely available

network resources. However, the evaluation did highlight some of the

weak points of the model.

The call set-up delays and CPU utilizationmeasurements of Chapter 4.2

did show that although the performance of low-end mobile devices is suf-

ficient for casual communication, the devices can not serve a larger crowd

by themselves. The authentication procedure required for the strong se-

curity is resource-demanding, which can easily lead to mobile devices be-

ing exhausted connection requests. Malicious exploitation of this weak-

ness can be subverted using different types of filtering (as discussed in

Chapter 7). Application that require maintaining a large set of connec-

tion should however be hosted on more powerful nodes.

The storage evaluations showed that although it is possible to host over-

lays using only free resources, the nature of the limitations of these dif-

fer, which affect how they can be used. Our experience with the cloud-

5The lower than expected downstream utilization was attributed to Google Ap-
pEngine’s use of HTTP transport compression.

97

Evaluation

provided storage services showed that even though a resource might at

first seem suitable (in terms of bandwidth and storage quotas), there

might be other issues that make them unusable for our model.

98

5. Privacy extensions

Privacy in P2P systems has been an actively discussed topic for a number

of years, with research touching on a range of issues. Protecting users

and their actions is difficult in P2P systems that rely on the close coop-

eration between nodes. Much of the work in this area has concentrated

on hiding the real identities of users [120] [54] [111]. This has often been

the most pressing concern in existing networks where users of content-

sharing systems risk legal reprimands, or are threaten by political and

social oppression when the networks are used to express ideas and opin-

ions. As long as the users cannot be identified or traced, there is no need

to hide the actions (such as content requests) unless the content itself

contains something revealing.

As we are creating a generic application framework based on strong,

persistent, identities, we need to re-examine the privacy issues. When

the services are provided by the end-users, networking also becomes more

personal, revealing not only what we do, but also with whom we interact,

and the relationships we have.

Communication applications, such as Internet telephony, are prime ex-

amples of applications that are very personal in nature, and where the

need for privacy is well understood. These have traditionally relied on a

system of trusted, centralized, servers for authentication and setting up

connections. The privacy of the users, with respect to the system oper-

ator, is non-existent. Although protective measures, such as phony ac-

counts, source address hiding and encryption of the data streams can be

used, the operator has all the means to track the call records and other

communication made through the system. This may not be a concern for

most consumers, since the operator is often seen as trusted; however, for

companies and governments this raises more fundamental issues. For in-

stance, many companies block the Skype communication application as

99

Privacy extensions

its call routing protocol is proprietary which makes it impossible for to

verify its security.

As described in Chapter 2.1, P2P systems form a network between the

participating nodes, used to collectively perform tasks and manage re-

sources. P2P communication systems, in particular, use this network to

replace the centralized service provider, and relies on it everything from

connecting the calls to managing presence, contact lists and other data.

In the model we are proposing, the role of the trusted service provider

is taken by the overlay infrastructures. The control of these is shared

amongst the peers, with the implication that anyone that is part of the

network can track the communication made through it. As these opera-

tions, and data, are so inherently bound to the users involved (through

electronic signatures), simply hiding the source of requests becomes ir-

relevant. Furthermore, as we are designing a system to be used with

different types of overlay infrastructures, we cannot rely on being able to

control who within those infrastructures are allowed to access our data.

A more systematic privacy mechanism is needed.

In this chapter, we examine a simple application-level model for enhanc-

ing privacy in distributed communication systems based on persistent

identities. We review the details of the threat in current systems, which

we follow by presenting our solution, discussing its benefits, tradeoffs and

possible alterations. As the model imposes restrictions on the accessibil-

ity of users, we continue by discussing issues related to the usability of

the solution. Finally we present how the model was implemented, and

compare it to existing privacy enhancement schemes for P2P systems.

5.1 Problem scope

As there are few public P2P systems based on strong, persistent, identi-

ties deployed today, there has not been much effort put into solving the

privacy issues in these environments. The common approach has been to

encrypt the data passed within the overlay, although it still leaves the sig-

naling (between whom the data has passed) vulnerable. This is also the

approach taken by the IETF P2PSIP working group [74], arguably the

most prominent attempt at creating an open standard for these systems.

As described in Chapter 2.5, the P2PSIP protocol defines a highly modu-

lar framework supporting different applications (called Usages) as well as

overlay network types [78]. The network module of this framework offers

100

Privacy extensions

message routing, key-based storage and connectivity services through a

common interface, independent of the underlying network structure. Al-

though there are few restrictions, the underlying network is assumed to

be a distributed hash table (DHT)-like structured network, with efficient

key-based routing, where the storage service scatters the data throughout

the network.

The P2PSIP protocol defines three operations for the SIP Usage; reg-

istration, lookup and connection establishment, which correlates to our

model of registration packet management and use of overlay infrastruc-

tures for connection establishment. Registration and lookup is based on

managing data packets in the network under keys made from the hash of

SIP AORs. Connections are established by completing an ICE procedure,

where address candidates are exchanged by routing data packets over the

network. These operations offer a number of opportunities for curious, or

malicious, users to eavesdrop.

Assuming a DHT-like overlay (such as Chord), where responsibility for

data is assigned using a key proximity function, any node with a suitable

NodeId, along with every node in-between, is able to intercept registra-

tions. Even if these nodes were trustworthy, it is trivial to request the

information using the public SIP AOR. To establish a SIP session, the

caller fetches the registration packet for the responder, and connects us-

ing the Attach function. Again, the node maintaining the registration

packet, and all nodes in-between, can easily monitor from whom the user

receives calls. And even though that path is secured, Attach-related mes-

saging offers yet another opportunity to track the call.

As noted in the draft [78], end-to-end encryption of the payload could

be used to mitigate some of these, although still leaving the storage keys

and NodeIds exposed. Also, a strong authentication mechanism and a

restricted identity acquirement procedure would prevent peers from po-

sitioning themselves in the network, decreasing the possibility for eaves-

dropping and sabotage in large networks [42]. Although our model rely on

a different mechanism for connection establishment, we do face the simi-

lar privacy issues when publishing the registration packets, as these are

publicly available in the overlay infrastructures under well-known keys.

The problem at hand is to introduce privacy mechanisms to P2P com-

munication that prevent intermediate nodes from intercepting and track-

ing the communication through the overlay, such as call signaling, while

maintaining strong, persistent, identities. We need a system that does not

101

Privacy extensions

rely on cooperation from the overlay, but can be used with our model of un-

trusted, key-based, storage services. This results in a privacy mechanism

that is portable and easily adopted to other systems as well. Although,

as we will see, the mechanism may be simple, the key is to construct it

so that it is efficient and usable, with the risks and potential trade-offs

understood by the end-users.

5.2 Solution model

The aim was to design a simple model which sets no additional require-

ments on the underlying storage service, using only the get, put and re-

move primitives. In addition to making the scheme adaptable to other,

similar systems, it does not prevent the use of additional privacy-related

enhancements, such as source address hiding, for even greater security.

The strong, cryptography-based, identity scheme used by our framework

plays a key role in protecting the privacy of users. It allows users to pro-

tect the integrity of their data and make it accessible only for specific

peers using public key encryption. Similarly to the P2PSIP protocol, this

is the first step of the privacy enhancement: to encrypt the signed regis-

tration packet using the public key of peers that with whom we may want

to establish a session. We therefore publish this data only for a specific

set of trusted peers.

By encrypting the registration packets, as well as any other data we

store in the storage services, we ensure that only the intended recipient

is able to read the details of that data. In the case of the registration

packet, the user status, connectivity information and other application

information is safe. But as the keys used for storing registration packets

map directly to the public identities, encrypting the content of these pack-

ets alone does not prevent intermediate peers from tracking connections.

Size analysis can be used to identify registration packets and by monitor-

ing the keys used to store and request these, we can determine both who

is available as well as the recipient of a call. Although buffering and de-

coy packets can be used to make it harder, it seems unavoidable that the

storage keys should also be obfuscated.

102

Privacy extensions

5.2.1 Storage key obfuscation

So far, we have assumed that users need to possess only the public keys

of the trusted peers in order to publish registration packets. We could

consider a scheme where the storage key (the name of the publisher) is

also encrypted using these. However, this is easily broken in systems were

the public keys are well known, as in our model. An eavesdropper could

simply re-construct this key, and continue monitoring who is present by

following the updates made to the data.

We could protect the publisher by publishing the encrypted registration

packets using a storage key tied to the recipient. For instance, if both

Alice and Bob would like to share their presence with Eve, they would

both publish their registration packets under the same key. As the key

for this index is shared and the content encrypted, intermediate nodes

cannot determine who the packets concern. This protects the publishers,

but reveals information about the recipient, such as the number of friends

and availability (a lookup reveals that Eve is online and probably about

to call someone).

The most practical solution we found is to simply use shared secrets to

obfuscate the storage keys. After encrypting the registration packet, the

storage key is formed by combining the shared secret with the user iden-

tifier and computing a hash digest, similar to a password salting scheme.

The key will appear random, revealing nothing about either the source or

recipient of the packet.

5.2.2 Usability considerations

Besides the technical details, the scheme introduces a number of usabil-

ity issues that need to be considered. The need for a privacy-enhancing

scheme might be unclear for many users accustomed to traditional com-

munication systems operated by a trusted provider. Also, how such a

scheme affects the usability of the system, how certain contacts or ser-

vices might become unreachable as a result, is not apparent.

When activated, we need to have both the public key and a shared secret

with everyone that may wish to communicate with. Otherwise we, or

any service we are providing, will appear unavailable, offline. This might

make it seem as an extension of a presence scheme, allowing us to lay

hidden from unwanted contacts, or signaling when we are available. This

may cause confusion as there are already application-level controls for

103

Privacy extensions

this. However, the purpose of the privacy scheme is not to limit who is able

to contact you, but to hide who does. This forms a layer below presence,

which in turn is used to filter visibility. Furthermore, although shared

secrets are often associated with close relationships, the model encourages

users to establish these with anyone they are in contact with. The aim is

to affect only the visibility of the P2P sessions, not to define the access

control policy.

As the scheme requires users to possess each other’s public keys, as well

as have established a shared secret prior to contact, bootstrapping is a

problem. High-security systems and concerned users might go through

the trouble of creating and distributing these manually. However, most

users do not appreciate the limitations and extra work, and would be sat-

isfied with a partial open exposure, at least at times, but with the privacy

enhancements used whenever possible. The shared secrets could then be

agreed on during the first contact, stored to be used for subsequent ses-

sions. This means that users may apply the enhancements using different

policies, and we will not know whether a peer is using them at any spe-

cific instance. The scheme becomes configurable, with options reflecting

both the privacy requirements we have, as well as the ones we assume

the remote peers do.

This leads us to the question of how to present these options, modes,

to the user. Although related to the traditional concept of presence, it

has a slightly different meaning and effect, not familiar from centralized

systems. In the following chapter, we present how this is solved in our

model, discussing also the potential issues with our solution.

5.3 Implementation

The implementation of the privacy extensions included creating a local

peer database and modifying how the data in the distributed storage is

managed. The prototype maintains a database of the public keys and

shared secrets of all the peers it has been in contact with. Although it is

possible to manually configure a shared secret, a simple key-negotiation

protocol was implemented, which automatically establishes (or reconfig-

ures) a shared secret when connected.

The privacy enhancements, affecting how the registration packets are

retrieved and published, are activated from the settings of the prototype.

After analyzing different use-cases, we came to the conclusion that three

104

Privacy extensions

different modes are needed:

Open. The registration package is published using both the open and

secret storage keys. Lookup is done using only the open key, even when a

shared secret has been established with the recipient.

Relaxed. As in the Open mode, the registration package is published us-

ing both keys. The lookup differs; if a shared secret has been established,

only the secret storage key is used, otherwise the open one.

Paranoid. When set to paranoid, only the secret keys are used, both

when publishing and performing lookups.

The Paranoid mode is the most secure; the prototype uses the privacy

enhancement fully, revealing as little as possible. But as discussed in

Chapter 5.2.2, for the enhancements to be usable, we also need to have

an option of being openly exposed, at least temporarily. The need for two,

nearly identical, modes is based on the assumption that nodes might get

reset at times for different reasons, losing the database of shared secrets.

This would result in two peers being in incompatible states, as one would

assume they share a secret while the other one does not.

The Relaxed mode operates using a best-effort principle. Whenever a

shared secret has been established, the privacy extensions are used with-

out even trying the open key. By falling back to the open key, we would

avoid the additional Open mode. But this could be seen as a violation

of the privacy of the recipient, if in Paranoid mode. By falling back on

the use of open keys in the Relaxed mode, either by using subsequent or

simultaneous lookups, we might reveal a relationship between the two.

Furthermore, the usability also improves, as the user knows beforehand

whether the privacy enhancements are used. The usability of our solution

is examined in more detail in Chapter 8.

Although the privacy enhancements primarily affect the management

of the registration packets, the overlay management was extended to sup-

port generic privacy-aware overlay use. These extensions to the olclient

module allows applications to specify a recipient for any data published

and the expected source for the data retrieved. Using this information, it

is able to apply the same privacy policies used for the registration pack-

ets to all data. This allows us to share application data, such as off-line

messages and web-cache indexes (discussed in Chapter 6) in a privacy-

conscious manner.

105

Privacy extensions

5.4 Bootstrapping and configuration

The Relaxed mode is thought of as being the default scheme for most

users. As a shared secret is negotiated during the initial session, it will

provide a level of privacy without requiring pre-shared secrets and man-

ual configuration. After establishing the shared secrets, users can switch

to the Paranoid mode to prevent intermediate nodes from tracking their

status (by preventing the publication of the open, unencrypted, registra-

tion packets).

These modes could also be implemented using warnings and a reachabil-

ity setting. When attempting a connection to a contact without a shared

secret, the system would warn the user, providing an option of canceling

the request. The reachability setting would control whether the open reg-

istration packet is published; whether people with whom the user does

not have a shared secret would be able to connect. However, these would

require cooperation with the applications that use the framework (e.g.,

the VoIP applications) in order to provide a meaningful experience.

The Open mode is intended primarily as a fall-back, in case of a reset of

the database of shared secrets, for instance after re-installing the software

or when changing devices. After such events, it does require that both the

user, and his contacts, at least temporarily switch to a lower (Relaxed or

Open) scheme in order to be able to connect. Although the database would

surely be saved, or synchronized, during these upgrades, establishing re-

lationships with users using the Paranoid mode still presents an issue.

Although the problem can be mitigated using various introduction- mech-

anisms, we may still need to resolve to out-of-band- communication and

manual configuration in some cases.

5.5 Validation

To validate the privacy enhancements, we created a small test environ-

ment of four users to simulate a group of privacy-conscious peers. The

goal was to verify the effectiveness of the privacy enhancements by an-

alyzing what could be deducted from the traffic. Furthermore, we hope

to get a better understanding of application privacy in general, including

factors beyond the control of the prototype that may impact the privacy

of users. The prototype, with the privacy enhancements, was deployed on

hand-held Nokia N810 Internet tablets. Each tablet was equipped with a

106

Privacy extensions

unique identity, and the Internet call application configured to use it as

the SIP account. The tablets were given to a set of test users, who were

asked to use them for instant messaging, voice and video calls.

The tablets were connected using a standard IEEE 802.11b Wireless

LAN (WLAN) access point with a Dynamic Host Configuration Proto-

col (DHCP) server to provide IP addresses within the 10.0.0.0/8 private

domain. The prototype was configured to use HIP for session security.

To simulate a P2P overlay, we used LAN broadcast as the back-end for

the distributed storage and lookup. To evaluate the enhancements, we

recorded and analyzed the network traffic generated by the tablets, sim-

ulating the worst-case scenario where an intermediate can log all overlay

infrastructure traffic. The purpose was to analyze what can be deduced

from the logs before and after the privacy enhancements.

Initially the prototype running on the tablets was set to the Open pri-

vacy mode. Although the keys used in the lookup are hashes of the SIP

AORs (and not readable identifiers), the identifiers they correspond to can

be read from the clear-text response. After a short while, we had compiled

a mapping of these, together with the IP address used by each peer (pre-

sented in Table 5.1).

Table 5.1. The hash to SIP AOR relationships found, with responsible IP address.

A sample from the recorded traffic is presented in Table 5.2. From the

log we see Alice establishing a connection to Carol at 157 seconds. Even

though the actual data traffic is secured by HIP, the pattern of relatively

short IPSec ESP bursts provides clues of an instant messaging session.

At 182 seconds, we see how Dave contacts Bob. The continuous flow of

ESP suggests a voice or video call. At 195 seconds we see traffic again,

most likely instant messages, exchanged between Alice and Carol.

After the initial session, the privacy mode was set to Paranoid, and the

devices rebooted to reset any existing IPSec security associations. A short

sample from the traffic is shown in Table 5.3. Although we cannot de-

termine what was sought at 91 seconds, it is fairly certain that a call

was made between Dave and Alice. The lookup response is encrypted,

but the size fits within what we would expect of an encrypted registra-

107

Privacy extensions

Table 5.2. Samples of the traffic log before the privacy enhancements.

tion package, and the data traffic matches the pattern of a voice or video

call. The IP addresses used for the lookup and response reveal the peers

involved, assuming the hosts were provided the same addresses by the

DHCP server as before. Furthermore, the HITs used in the data traffic

reveal with certainty the identities of the communicating peers.

Table 5.3. Samples of the traffic log with the privacy enhancements in use.

To simulate the use of additional source-address- hiding techniques, the

HIP Host Identity database was reset on all devices, and the DHCP server

configured to provide addresses from a different IP range. A sample of the

traffic is shown in Table 5.4. We can still see that a voice or video call is

made, but the peers remain unknown. We cannot identify the identifier

for whom registration packets are sought, and the content of the response

is encrypted. The IP addresses are also unidentifiable, as are the HITs

used in the HIP BEX.

As the traffic analysis shows, the privacy enhancement does a fair job

ensuring that the data managed in P2P communication systems reveal as

little as possible on the application level. However, for complete privacy,

we need to consider other factors as well. Using HIP to secure the data

108

Privacy extensions

Table 5.4. Samples of the traffic log with the IP andHIT reset, and privacy enhancements
in use.

connections provides many benefits, but identifies the end-points to out-

siders as well. Even without HIP and IP, hardware Media Access Control

(MAC) addresses, or other host identification schemes might be used for

the same purpose. Although the session data is encrypted, traffic analysis

may reveal the type of content. However, these issues are considered out

of scope for our work, as they relate to the general problem of communi-

cations privacy, and are being addressed by work such as the SlyFi [55]

design. Our focus is only on the data managed by the distributed storage,

and what it reveals; an issue specific to P2P systems.

5.5.1 Optimizing the data management

Although our model does well in protecting the privacy of users from in-

termediate nodes, it has tradeoffs. It increases the amount of data stored

in the overlay, as the registration packets need to be published separately

for each peer. Furthermore, it also requires that the peers perform a large

amount of cryptography. Even though the packets contain only the infor-

mation needed to connect, and are therefore relatively small (commonly a

few KB of uncompressed data), the overhead is noticeable and can become

overbearing.

As presented in Chapter 4.3, assuming an average of 190 contacts per

user, periodically updating a unique, 3.2 KB, registration packet for each

one would require transferring 608 KB per update, or over 6.5 MB per

hour assuming a five minute refresh period (eleven updates per hour).

Even though these loads may be manageable for high-end mobile devices,

they still create an unnecessarily large burden on the storage system.

Applying compression before encrypting the data may ease the storage

requirements, but it does nothing to lessen the amount of requests the

storage service has to process, as each entry still needs to be updated

separately.

A simple, but efficient, optimization is to publish only links to the reg-

109

Privacy extensions

istration packet for each user, while the registration packet itself would

only be published once. On initialization, a random index key for the

registration packet would be generated (the packet key). Furthermore,

a new, symmetric, encryption key would be generated, used to encrypt

the packet before it is published under the packet key. For each user, a

small link packet would be produced that contain the packet key, and the

symmetric encryption key needed to decrypt the content. This link packet

would be encrypted using the identity key of the contact, and published

under an index key according to the privacy scheme.

When retrieving the registration packet for a contact, only the link pack-

age is retrieved initially. The peer decrypts this using his identity key, and

finds the packet key and the encryption key used for it. The space saved

using this method is substantial: assuming 1024 bit RSA identity keys,

and sizes for the packet- and encryption keys so that the link package can

be encrypted using the identity key directly (e.g., 512 bit encryption key

and a 160 bit packet key), the link package would, theoretically, occupy

only 128 bytes. For the average user with 190 contacts, it means that only

24.3 KB of storage is needed to store the registration packet for all con-

tacts using the privacy scheme. Compared to the unoptimized approach,

this represents a drop of 96.0%.

Although the space savings are substantial, more importantly is the fact

that updating the registration packet for all contacts requires only a sin-

gle request. Neither the encryption or package key, contained in the link

packages, need to be updated, only the registration packet they point to.

Therefore, after the initial setup (creation and publication of the links),

the link- scheme does not, in theory, generate more traffic then when not

using the privacy enhancements at all. The cryptographic load on the

hosts decrease as well, as there is only one packet to encrypt and sign for

each update. In practice however, the link packages need to be periodi-

cally refreshed, depending on the type of storage service used.

5.5.2 Data usage

In order to confirm our assumptions regarding the data use, we recorded

the traffic related to the publication of the registration packets when us-

ing the different privacy modes. The set-up was similar to what is de-

scribed in Chapter 4.3 to quantify the load on the storage service. We had

a single peer, configured with 190 contacts, using a web-based storage ser-

vice. This storage service application was configured to record the amount

110

Privacy extensions

Table 5.5. Results of the storage use measurements using the privacy enhancements.

Disabled Normal Linked

Requests, total 133 25269 2416

Requests, per hour 11.1 2105.8 201.3

KB transferred, total 422.5 81972.6 2560.1

KB transferred, per hour 35.2 6831.1 213.3

Stored entries 1 190 191

Stored data, KB 3.2 616.4 189.3

and size of each request the client made, as well as the total number of

entries stored in its database.

The data traffic was recorded over a 12 hour period using three differ-

ent client modes: with the privacy extensions disabled, with the privacy

extensions enabled using per-contact updates, and with the privacy ex-

tensions enabled using the link- scheme. The registration was published

with a short validity and updated once every five minutes. The link pack-

ages (when using the link- scheme), however, were published with a long

expiration time and updated only once an hour. The results of these mea-

surements are presented in Table 5.5.

As the results show, the values measured as in line with our assump-

tions. The differences between the expected and measured values in the

optimized mode is due to the data formats used in the prototype. Each

of the link- packages used the prototype’s generic XML package format,

which increased the size of the entries from the theoretical minimum.

However, as the results show, even without further compression, the data

usage of the optimized scheme does remain within reasonable limits. With

an average of 201.3 requests per hour (or 3.4 requests per minute) and

213.3 KB of data transfer per hour, it is manageable even for resource-

limited mobile devices.

5.6 Summary

This Chapter has dealt with the privacy issues in P2P systems based on

persistent, strong, identities. We have highlighted the problems and pre-

sented a simple mechanism for hiding our activities, while adhering to a

very generic way of accessing overlays. By not requiring changes in the

structure or logic of the overlays, this mechanism can be applied to most

111

Privacy extensions

existing systems.

The value lies in acknowledging the problem, and tackling the usabil-

ity issues our solution (or similar ones) unavoidably leads to, due to the

different operating modes (which are further examined in Chapter 8).

The model we have presented can be used as a blueprint for new, or

existing, systems based on similar philosophies (such as P2PSIP). How

it is implemented can vary depending on the nature of the application,

but our model outlines the problems, and possibilities, there are. Our

model shares many of the aspects of current technologies for privacy en-

hancement (such as Freenet[32], TOR [41] and OneSwarm [75]) in that

it provides protection from eavesdroppers, whether these are within the

overlay or outside of it. It does not provide attribution- free publishing

and consumption of content, although this could be achieved by applying

one of the technologies previously listed to the overlay. The main advan-

tage of our model is that it does not require changes to the overlay, and

is, to the best of our knowledge, the first attempt at providing a complete

solution, not only to the technical challenges, but also usability issues.

112

6. Secure P2P Web

The World Wide Web (WWW) is arguably one of the most popular services

on the Internet. The first web pages were simple: a bit of textual infor-

mation with embedded hyperlinks coupled with small graphics, authored

by a single author and delivered by a single server. As explained in Chap-

ter 3.3.2, these are well suited for P2P delivery, similarly to other services

based on HTTP. However, modern web pages are more complex and the

user’s experience of “the web” is often developed from myriad components

from a variety of providers and systems. For instance, a simple blog post

might include (i) content from the blogger, including the posts themselves,

a set of thematic images and backgrounds, etc., (ii) content from the blog

hosting services, which could include navigational aids, logos, etc., (iii)

content from third-parties associated with the blogger or the hosting ser-

vice (e.g., advertisements) and (iv) content from numerous readers who

left comments to the given post. The number of actors contributing to a

conceptually simple “web page” is potentially enormous.

Security in theWWWarchitecture is based on authenticating, and trust-

ing, the source server and securing the data during transport. The tradi-

tional assumption is that the content as secure as the server hosting it.

Within the context of P2P web, it means that we must grant the same

trust to each peer hosting any piece of content we access, or alternatively,

only access content from those we trust. This undermines the value of

P2P, especially in open systems, as we might not even know most of the

peers participating in the network. We need a way of securing the content

of the P2P web, so that not only static web resource, but also interactive

web applications can partly be hosted on untrusted peers. Secondly, we

need to address the availability of web resources, so we do not have to rely

on only a few trusted peers to access the content.

In this chapter, we introduce a model to secure the P2P web by adding

113

Secure P2P Web

integrity and accountability to not only web pages, but also individual ele-

ments. This not only allows web resources, and applications, to be hosted

by untrusted peers, but also protects the user from possibly malicious con-

tent on these pages. Furthermore, we present a novel scheme for cooper-

ative P2P Web caching. Together these construct a secure and accessible

P2P web environment.

6.1 Securing Web content

The approach we have taken to secure the P2PWeb is by using the strong

identities provided by the framework, and utilizing the flexibility of HTML’s

syntax to implement integrity and accountability into web pages. This

allows for an unobtrusive, backwards- compatible way of verifying web

content.

6.1.1 Page structure

The first aspect of securing content concerns protecting the integrity of the

overall web page, which in our framework is done by using the author’s

private key to cryptographically sign the markup document. This signa-

ture is included in a new HTTP header, along with the author’s public key

(the identity). Protecting the integrity of the page structure is not crucial

for the securing the individual content components (discussed below), but

only for conveying the overall intended composition of those components.

Providing over-arching page integrity is similar to signing data packets

published in the overlay, except that the integrity (or lack of) is visible to

the application (web browser). This allows for flexibility, as we can verify

the content even if it is not distributed by the original author. Further-

more, the application can, in some cases, choose to ignore it in case the

content components are intact, as we will shortly see.

6.1.2 Content components

The HTML syntax is based on tags, such as <div>, that both structure

the document and define part of the appearance of elements. These tags

support attributes containing information that can be used for anything

from indexing the page, to defining behavior. Some attributes, such as

id, are standardized, but in practice HTML allows liberal use of custom

attributes which have application-specific meaning.

114

Secure P2P Web

The basis of our approach to securing individual content components is

to add cryptographic signatures to content blocks within the web page.

Different blocks can therefore be authored by different users with in-

tegrity and accountability information that directly map the content to

the author. This gives browsers and end users the ability to enforce pol-

icy decisions on what components to render, omitting possibly malicious

components based on their knowledge of the authors. The signatures are

included in custom attributes of the HTML tags, making them rendable

by nearly all legacy browsers (which will ignore unknown attributes).

We offer two approaches for securing these elements. First, the signa-

ture can be interpreted literally, meaning that the signature is made from

the actual markup within the tag. This ensures that the content of the tag

is precisely what the author intended and allows for no possibility of the

site maintainer customizing the look or formatting of the content. This

tradeoff may well be useful in some circumstances. The second approach

is to add the signed content as a custom attribute to the tag, and use it for

decorating the content when rendering the page. The data is provided in a

safely encoded (base64) format, which is decoded, validated and inserted

into marked locations within the content.

Although technologies such as Cascading Style Sheets (CSS) provide a

degree of customization without changing the markup of a page, the sec-

ond approach gives the maintainer more freedom in designing the site’s

look and feel because it separates the content from the formatting. How-

ever, in some cases the formatting of the content is fundamental to the

content (justifying the first approach). For instance, consider an HTML

table. In this case, the content author may wish to secure the formatting

to ensure that rows and columns are constructed properly. Our frame-

work treats both options as valid and leaves the decision of which to use

to the author.

In addition to signing the content in the markup, we may include signa-

tures for external objects. For instance, we may include images, scripts or

other content from outside the system (the normal “centralized” web).

6.1.3 User-generated content

In order for the the content securing scheme to be useful, we need a

method for users to produce signed content suitable for it. This we achieve

by cryptographically signing user-submitted data to a web page (such as a

blog submission) with the user’s identity. This enables the web site to re-

115

Secure P2P Web

ceive signed blocks of data, which it can then be used as a secure content

component accountable to the author. This does require careful planning

of the web site structure so that the submitted data will be usable as con-

tent. This is achieved by defining the format of the custom data tags to

match the HTTP POST syntax.

6.1.4 Security policies

So far, we have only discussed the mechanics of methods for verifying the

source of web content, without considering how that information is used

or affects the web browsing experience. As explained in Chapter 3.2.1,

the framework provides information about the identities, from which we

can asses the trustworthiness of an actor. Content from trusted sources is

fairly easy to handle. However, there are different approaches to dealing

with untrusted content. The harshest option is to block untrusted content

completely, not rendering or loading it at all. Although effective against

potential threats, this easily cripples the browsing experience, rendering

the web useless. A less sever option is to sanitize the content by turning

all or part of the markup into plain text. As for the presentation, we could

prevent certain elements which can result in disturbing the layout of the

site (such as positioned <div>s), while allowing changes in text color or

other minor modifications.

Functional components—such as embedded JavaScript or external Flash

applications—could be either disabled completely or allowed to run in

a restricted environment. Sandboxing such content is effective but re-

quires close cooperation from the run-time environment. JavaScript, due

to its dynamic nature, allows partial restrictions to be applied within the

browser. We could for instance disable popups, network access (“Ajax”)

or browser redirects. Obviously, when content is received with an invalid

signature great precaution should be taken, preferably not rendered at

all. The particulars of how which of these restrictions are imposed and

how they are applied are policy decisions and should be set according to

the browser preferences (either set by the user or an administrator). We

stress that these policies are local and not assigned by remote web pages

or components thereof.

116

Secure P2P Web

6.1.5 Implementation

As part of our research, we created a prototype implementation to gain

a better understanding of the feasibility, technical challenges and usabil-

ity of our model. The prototype was implemented as a Mozilla Firefox

plugin for Linux, which connects to the P2P framework through the in-

terfaces described earlier, in order to access the identity and relationship

database. The plugin consists of three parts; an XPCOM1component that

processes the raw HTTP streams, a JavaScript application that alters the

rendering and a small user interface for displaying security information

and for controlling the security policies of the prototype.

As a Firefox plugin, the development and deployment was considerably

easier than actually modifying the browser, but this model did also impose

restrictions which meant that all features could not be completed. The

prototype has, however, provided a initial understanding of how the model

we sketched could be implemented, and the technical challenges.

Page signing

We use custom HTTP headers for both indicating support for the mech-

anism and for carrying page signatures. Support for the scheme is indi-

cated (both by the client and server) with the X-OP-Supports: true HTTP

header. Page signatures are inserted in the X-OP-SignatureHTTP header

(SHA-1-based RSA signatures in our prototype). Finally, the X-OP-Key

HTTP header contains the user’s public key, base64 encoded.

The stream processor inserts these headers in every request made by

the browser, signaling to supporting servers that pages should be signed.

The browser plugin, acting as a Firefox stream decoder, verifies the page

signatures before passing the content to the renderer. The result of this

verification is stored in the instance variables of the page window, acces-

sible for the other components of the plugin.

The stream processor also captures and signs the data of HTTP POSTs

made by the browser to supporting sites (enabling user-generated content

to be secured). These signatures are carried in the same headers as used

by the server for the page signatures.

Content processing

Our plugin alters the rendering process by executing a JavaScript appli-

1XPCOM (Cross Platform Component Object Model) is the component model
used by Firefox to expose much of the functionality (as object components) of the
browser to plugins, and allow custom components to be added or replace existing
ones.

117

Secure P2P Web

cation after constructing the initial DOM tree. This approach has flaws

(allowing possible malicious JavaScript or content to be loaded), but al-

lows post-processing of the page, and alterations similar to what a proper

implementation would do.

Our prototype supports only the second of the two methods of securing

content elements discussed in Section 6.1.2—by including both the data

and signatures in element attributes. Three attributes are used: op_key

contains the public, op_signature contains the signature, and op_data for

the actual signed data. Both the signature and key are (as in the HTTP

headers) base64 encoded. The data attribute contains the data as URL-

encoded key-value pairs as this is the format in which we encode HTTP

POSTs. Therefore, data posted by users can be used unmodified in these

blocks.

These tags were rendered by decorating the content instead of com-

pletely replacing it. After verifying the signature, the plugin uses the

key-value data to complete fields within the tag. The target locations are

found by matching the keys of the source data to the element identifiers

(ids). As these are page-unique, we use the parent tag ID as a prefix to

create an unique namespace within it. For instance, a <div> with an ID

ofmsg01 and a data key title caused the renderer to replace the content of

the child element with the idmsg01_title. To support better customization

of the appearance, the rendering processor adds the result of the verifica-

tion as an attribute op_status to the element. This is used to select a

suitable style when rendering. Figures 6.1 and 6.2 illustrate this process.

Figure 6.1 displays (truncated for readability) a signed <div>, which is

rendered (when judged as trusted) as shown in Figure 6.2.

<div id="sdiv5" class="entry"
 op_data="header=Hi&message=Testing+123"
 op_signature="OyjONQTCAR6Mv/sBjRaF.."
 op_key="LS0tLS1CRUdJTiBQVUJMSUMgS0..">

<div>Posted 11:43:51</div>
<div id="sdiv5_header"></div>
<div id="sdiv5_message"></div>

</div>

Figure 6.1. The HTML source of a signed block.

<div id="sdiv5" class="entry"
 op_status="trusted">

<div>Posted 11:43:51</div>
<div id="sdiv5_header">Hi</div>
<div id="sdiv5_message">Testing 123</div>

</div>

Figure 6.2. The signed block after processing.

118

Secure P2P Web

div.entry[op_status="trusted"] {
 background: green; font-size: large;
} div.entry[op_status="invalid"] {
 display: none;
} div.entry[op_status="untrusted"] {
 background: red; font-size: small;
}

Figure 6.3. A CSS style sheet declaration highlighting the trustworthiness of the con-
tent.

As only the content of certain elements is modified, it allows the site

maintainer to control the visual appearance. Using the op_status at-

tribute, the site maintainer can provide a style sheet (such as the one

illustrated in Figure 6.3) highlighting in a site-specific manner the trust-

worthiness of the content blocks.

Before rendering the data values, the plugin sanitizes the data accord-

ing to security policies. In our current prototype, we support only full

sanitation (escaping all markup) which normally is applied to all content,

although the user can choose to bypass this from trusted personas (i.e.,

that have a good trust score).

Control interface

The control interface of our prototype is used to display information

about the current page and the signed tags, as well as to control how

the content is rendered. The interface is implemented as a small popup-

menu located at the bottom status panel, showing the trust status of the

current page, similar to HTTPS indicators. The controls allows the user

to block or completely hide untrusted and invalid data blocks, and choose

whether to sanitize content from trusted identities.

The prototype uses the relationship information got from the P2P frame-

work to classify the page as being either trusted, untrusted or invalid. In

addition to this classification, the interface can display a simple human-

readable description of the track record, such as You trust this person,

knowing him well (through browsing).

External objects

Our approach to external objects (such asmedia files or JavaScript source

code) embedded in a page mirrors our handling of the tags, by adding

op_signature and op_key attributes to elements such as , <script>

and <object>.

Due to how the page rendering in Firefox is structured, we are not able

to intercept or prevent these external objects from being loaded. How-

ever, we experimented with post-processing images, changing how they

119

Secure P2P Web

are displayed based on the trustworthiness of the keys. As with content

tags, images can be hidden completely, blocked or displayed with a warn-

ing.

Server library

As our mechanism only affects the HTTP headers and HTML content,

it can be implemented on servers using server-side scripting (without

changes to the HTTP server itself).

We created a PHP library for Apache’s HTTP server which automates

the page signing process. Applications need only initialize the library with

their private keys, and call flush() at the end of each page transmission.

The library connects to the P2P framework, and uses its identity to sign

the content.

6.1.6 Related work

Ourmechanism is similar to the scheme used by different browser plugins

(such WebPG [4], Mailvelope [1]) to sign or encrypt either whole pages or

individual sections. These typically focus on web mail, but some support

more generic use. However, the focus of any of these is only on validat-

ing the source and data integrity, without considering how the content is

handled. The schemes appear also too rigid to be easily adapted by web

applications in a systematical manner.

Sandboxing individual HTML elements is discussed in [2] and shares

ideas with our approach. In particular, the idea of downgrading the priv-

ileges of individual content components. However, [2] considers only how

elements could be protected from each other and does not consider pro-

tecting the user from the content.

To our knowledge, our scheme presents the first systematical approach

for increasing security by adding accountability to the web that is com-

patible with modern sites featuring user generated content. With this

approach, we area able to decouple the web page’s trustworthiness from

that of the serving node’s, making it possible to securely host content any-

where. This is important for P2P web, as replication is crucial for acces-

sibility and performance due to the relative instability of peers compared

to traditional Internet servers.

120

Secure P2P Web

6.2 P2P Web cache

Having addressed security concerns regarding web content in an environ-

ment consisting of untrusted peers, we focused on addressing availability

in P2P web. We approached the topic through the use of distributed web

caching, instead of active content distribution, as it provides a simpler,

unobtrusive, way of replicating content. Peers do not need to retrieve and

host content they have no use for themselves, which lowers the threshold

for participating in the absence of a working incentives mechanism.

As reviewed in Chapter 2.8.1, there exists multiple solutions for build-

ing a distributed web cache, and building one for P2P networks is only

a matter of engineering. However, using a traditional approach to dis-

tributed caching results in a system with a large amount of maintenance

traffic. This may not be a problem for the intended audience of the propos-

als presented in Chapter 2.8.1 (such as data centers), but are problematic

for devices such as mobile, battery- operated, handsets. Therefore, we

decided to focus on the data management in order to identify what the pa-

rameters are that affect how data should be cached, in order to optimize

the maintenance of a distributed cache in P2P networks.

6.2.1 Data management strategies

The initial P2Pweb caching scheme we set out with follows a very straight-

forward approach to distributed caching. Each piece of content cached

results in a single entry in the overlay (advertising the availability of

it). The size of the local content store is managed using a simple least-

recently used (LRU) algorithm. As the storage fills up, the content that

has been least recently accessed will be discarded. Although this elemen-

tary data management scheme does demonstrate the usefulness of dis-

tributed caching, it has its drawbacks.

The diversity of the available content suffers. As the content within

the cache is replaced using a local LRU, it leads to popular sites being

over-represented. As a large number of the users will cache the same,

frequently accessed content, it will push out less popular items. A better

approach would be to use a cooperative replacement algorithm, which con-

siders also the popularity of the content within the whole P2P community.

For instance, a specific percentage of the LRU stack would be dedicated

to rare content. When expelling content from the cache, these would be

spared even though they have been less used than other content.

121

Secure P2P Web

Table 6.1. Dissection of the expire-times indicated in the HTTP headers of cacheable con-
tent.

Expire Objects % of cacheable content

0 seconds 365 13.8%

5 min or less 5 0.2%

2 hrs or less 106 4.0%

24 hrs or less 69 2.6%

1 year or less 315 11.9%

76 years or less 1189 45.0%

> 76 years 596 22.6%

Furthermore, as each one of the cached content items (each URL) pro-

duces an entry in the overlay storage, the scheme generates a large amount

of entries, and traffic. A single web page can consist of dozens of images,

style sheets and other components that all need to stored and individually

advertised in the overlay. This could be improved using different types of

content grouping based on the URLs and context. In order to optimize

the data management strategies for the proxy, we recorded and analyzed

the traffic log of a common2web-browsing session. Over the course of 30

minutes of active web browsing, 3771 HTTP requests were made, and

over 34 mega bytes (MB) of content data received. Of these requests,

2643 (70%) were considered cacheable (according to the HTTP headers),

which accounted for over 25 MB (73%) of the data. Furthermore, of these

cacheable objects 80% were marked suitable for long-term (over 24 hours)

caching (as presented in Table 6.1).

Although these figures represent only a single, specific, web-browsing

session, they show that, at least for the sites visited, there is a large

amount of content that can be cached for a longer period. This indicates

that a cooperative caching scheme is not dependent on instantaneous, or

quick, propagation of updates to the cache index in order to be useful. As

much of the content can be cached for more than a day, we can delay the

2We recorded the requests and meta data of a 30 minute long web browsing
session consisting of visits, and engagement, with popular sites from the Alexia
top 500 sites (http://www.alexia.com/topsites). Although this obviously provides
merely a snapshot of how a specific user used a particular set of sites, the log is
used to provide clues into what the parameters are that can be optimized in a
cooperative caching scheme.

122

Secure P2P Web

individual advertisements, and perform batch-updates instead to mini-

mize storage- and traffic overhead. Analyzing the request log further, we

see that it consists of irregular bursts instead of a constant stream of re-

quests (Figure 6.4). This is, of course, expected as requests are made only

when the user loads a new page, after which there is a quiet period when

the page is viewed.

Figure 6.4. A snapshot of the traffic pattern of a typical web browsing session. The re-
quests appear in bursts, as the user loads new pages. Each new page gener-
ates multiple requests as images, scripts, and other linked content is loaded.

Inspecting our traffic log, we find that the bursts found there consist

on average of 37.2 request to 1.7 different hosts over a 2.8 second period.

Although this varies depending on the site structure, the ones present in

this log seem to be using only few hosts for serving each page. A simple

improvement would therefore be to group the cached content according to

the URLs. For instance, all content within the same URL path, or from

the same host, could be grouped together in a single advertisement. The

overlay key for this would be constructed of the URL path or host name.

Although the scheme would decrease the number of entries in the overlay,

it would also lead to more frequent updates to those, as the addition or

removal of a single item within the group requires a new advertisement.

However, as indicated by Table 6.1, much of the content have so long ex-

piration times that we can afford to delay the advertisements without

rendering the scheme useless.

Inspecting the logs further, we find that the average pause between

these bursts is 152 seconds, slightly over 2.5 minutes, meaning that on

average, the user spent 2.5 minutes on each page. In order to efficiently

group advertisements according to host (or site), we need to be able to

predict when the user has is unlikely to generate more requests to the

site, as that would be the optimal time to publish the advertisement. By

analyzing the pauses between accesses to content from the same site, we

find that the vast majority (96%) is accessed within ten seconds of the

123

Secure P2P Web

previous request (due to the request bursts). However, of the remaining,

78% is accessed within 220 seconds, as shown in Figure 6.5.

Figure 6.5. The number of pauses between 10 and 1500 seconds between requests to the
same host. For instance, a 1200 second pause between requests to a single
host were encountered two times.

This shows that for the browsing session we are inspecting, after 220

seconds had passed since the last request to a particular host, it was

highly unlikely that the user would visit that site again. In order to more

precisely measure the potential benefits from grouping, and delaying the

cache advertisements, we created a simulator for the caching mechanism.

The simulator performed a chronological walk-through of all requests,

grouping the cacheable objects based on the source host. After a spe-

cific time had passed, during which there had been no new entries from

the host, the advertisement was published, with the counters re-set. Fig-

ure 6.6 shows a graph over how the total number of cache advertisements,

and the average accessibility delay, were affected when varying the pub-

lishing delay. The accessibility delay is the time between when an object

has been received, and when a advertisement containing it is published.

As the figure shows, the overhead (amount of advertisements) drops

rapidly when the delay is increased up to 100 seconds, after which it slows

down and eventually settles at around 135. With 110 unique hosts in the

sample, this means only a 23% overhead compared to the ideal (one ad-

vertisement per host), and a 51% drop from the worst-case scenario (with-

out any delay). However, as the accessibility delay is directly tied to the

publishing delay (as it is always equal or greater), it does rise linearly,

prompting us to select the publishing delay based on a good balance be-

tween the overhead and accessibility.

124

Secure P2P Web

Figure 6.6. The total number of cache advertisements published, and the average acces-
sibility delay depending on the length of the publishing delay. Total number
of unique hosts in this sample was 110.

6.2.2 Self-adjusting expiration

In order to automatize this process, we created a self-adjusting caching

algorithm (presented in the Appendix) that strives to optimize the acces-

sibility without increasing the overhead. It is initialized by providing two

values describing the accessibility that the user is striving for: the maxi-

mum delay and the average. The maximum delay (Cache.MAX_DELAY in

the listing) is the ceiling for how long a cached object is kept without being

advertised, while the average (Cache.AVERAGE_DELAY) is the average

time the user is striving for. The algorithm keeps track of the publishing

times, and adjusts the publishing delay accordingly in order to converge

the average towards the user-defined value. Furthermore, it records the

time at which each object is added, and forces a advertisement to be pub-

lished after the user-defined maximum amount of time has passed, unless

the objects have been already advertised due to a publishing delay- time-

out.

Furthermore, it tries to optimize the accessibility by slowly decreasing

the publishing delay, even though the accessibility delay is less than the

user-defined value. But only until it encounters an advertisement “miss”;

an object that would have been included in a previous advertisement, had

the publishing delay been greater than the current value, but less than

the user-defined average limit. With this addition, the algorithm will de-

crease the accessibility delay, but only until the overhead (the number of

advertisements) increases, at which point it will back off by restoring the

publishing delay.

125

Secure P2P Web

6.2.3 Validation

In order to measure the performance of this algorithm, we recorded over

34 hours more of active web browsing over the duration of one week,

which we analyzed using a Python implementation of the algorithm. The

web browsing logs were obtained by using a HTTP proxy that recorded

the time of each request, complete with the HTTP headers relevant to

caching. From these entries the un-cacheable requests were removed, and

the remaining used as data for the simulator implementation. The logs

were collected from two separate hosts during daily web usage and com-

bined into a single continuous log (with inactive periods removed). As be-

fore, although this analysis reveals only how well the algorithm performs

against the web browsing patterns of the test subjects, it does provide a

view into what the tradeoffs are when optimizing the accessibility.

Figure 6.7(a) shows how the accessibility delay is varies during the

course of the sessions, and how the publishing delay is adjusted accord-

ingly when the target accessibility delay is set to 290 seconds. The graph

shows also how the accessibility delay would develop without adjustments

(the static mode), when the publishing delay is fixed at the 290 seconds.

Figure 6.7(b), on the other hand, shows the cumulative amount of adver-

tisements produced by the two modes, as well as the ratio between the

self-adjusting (dynamic) and static mode.

Over the course of the sessions, the self-adjusting (dynamic) algorithm

produced 1762 advertisements, with an average accessibility delay of 113.8

seconds, while without adjustments (publishing delay set to 290 seconds)

it produced 1498 advertisements, with an average accessibility delay of

364.1 seconds. For these specific sessions, it means that the self-adjusting

algorithm increased the number of advertisements by 17.6%, while de-

creasing the accessibility delay by 68.8%. Overall, we can conclude that at

least for the types of browsing behavior we analyzed, the self-adjusting al-

gorithm decreases the accessibility delay substantially while moderately

increasing the overhead.

6.2.4 Security considerations

The P2P web cache provides one approach to increase content availabil-

ity and reduce stress on centralized nodes, but includes also a number of

serious security threats. An obvious threat is that the content advertised

cannot be verified. Without any protective mechanisms, malicious users

126

Secure P2P Web

(a) The development of the accessibility delay.

(b) The cumulative amount of advertisements.

Figure 6.7. The development of the accessibility delay and publishing delay, as well as
the cumulative amount of advertisements produced, during the web browsing
sessions when using the self-adjusting algorithm. The values for the static
mode is provided for comparison.

are free to advertise the availability of popular content which could in

fact be viruses or false data. Through the security scheme presented in

Chapter 6.1, we can verify that the content is what the author intended,

and limit the damage of untrusted content through sandboxing and sani-

tation. But this does not prevent peers from wasting time and bandwidth

retrieving falsely labeled data.

Currently our prototype fetches content only from peers that have been

verified by a trusted identity authority. Although this limits who is able

to claim having possession of any content, it relies on the integrity of the

identity authorities, which can vary. A more personal solution is pre-

127

Secure P2P Web

sented in Chapter 7, originally intended to prevent unwanted traffic, that

can also be used for deciding which peers to use as content sources in P2P

web caching.

In addition to the threat of distributing false content, P2P web cache

raises privacy concerns. As the proxy publicly advertises the content

cached by the user, it acts as an open browsing history log. Furthermore,

as some sites may adapt its content or content URLs to a specific user,

it may contain sensitive data unless the HTTP headers have been appro-

priately set. But the issue does not only affect the user caching content.

The users requesting the content expose as well their browsing habits,

although to a lesser degree. This touches on the general issue of web

anonymity, which is hard to solve, especially as our framework is based

on relationships and strong identities.

It is clear that we should be very careful when choosing what data to

cache. This includes scrutinizing the content and related metadata (such

as HTTP headers), in order to find clues to the nature of the content. Fur-

thermore, it could also involve changing the browser’s behavior. Similarly

to the anonymized (or incognito) modes offered by many web browsers, we

could have an open, or sharing, mode with clear visual clues. The browser

would warn the user (or switch automatically) whenever browsing sites

not meant to be cached (for instance, sites with a login form).

6.2.5 Related work

As reviewed in Chapter 2.8.1, there exists several solutions for decentral-

ized, or P2P, web caching. These are designed as either more scalable

alternatives to traditional, centralized web caches, or for environments

without a dedicated infrastructure. They rely on close cooperation be-

tween the nodes, and concentrate on efficient distribution of data (com-

monly using a set DHT algorithm). Our focus is not on the structure

of the network or efficient data distribution, but on optimizing how data

availability is announced in networks without a set structure. This can be

coupled with other distributed web caching solutions in order to minimize

the maintenance traffic.

128

Secure P2P Web

6.3 Discussion

For P2P web to be viable, we need to address the inherit security threats

and availability issues. The web has become the most popular applica-

tion on the Internet, and subsequently an important channel for malware

distribution and other malicious activity. Currently we rely on the repu-

tation of the site, and the organization behind it. However, this does not

fully work even today, as we have seen cases where reputable sites have,

inadvertently, hosted malicious content. In P2P web even this becomes

void, as we, in order to increase availability, may have to rely on complete

strangers to host content.

The framework we present has the potential to offer the security crucial

for P2P web, but there are also downsides. These include the additional

processing required to sign and verify web content, increases the size of

web pages and the resulting increased load on peers. Also, the scheme

may not work well with certain types of content, such as streaming media.

On the other hand, the mechanism works well with existing protocols,

making it possible for servers to simultaneously serve clients that support

the scheme and those that do not. Using the indicators in the HTTP re-

quest headers, we can select which peer receive the secured version, while

omitting the signed version—and resulting overhead—for those that will

not use it. Even if legacy clients do get the secure content, the syntax

is backwards-compatible and users will have to rely on existing solutions

(such as script blocking) for security.

To address the availability issues, we propose the use of distributed web

caching, for which there are exists multiple solutions. Our contribution

is to design a scheme which makes these safe to use even in untrusted

environments, and to outline a strategy for optimizing the maintenance

traffic. This is important especially for battery- powered devices, which is

the focus of our P2P framework.

129

Secure P2P Web

130

7. Preventing unwanted traffic

In the past years, unwanted and abusive messaging has penetrated al-

most all areas of the Internet, plaguing users by not only being distract-

ing, but also by potentially carrying malicious content (viruses) and using

up computing- and network resources. As we design a new networking

model, we should address this problem, especially as the aim is to create a

secure framework for applications hosted by the users themselves. These

are often more vulnerable than traditional infrastructure, as they do not

have the same resources to defend themselves. Many security threats in

our environment have been solved by using secure data protocols (such as

HIP) and a strong identity scheme (as described in Chapter 3.1.1). How-

ever, these do little to shield the user from unsolicited communication,

spam, that would waste the already limited resources of mobile devices.

There is a clear incentive for spam. Perhaps the most widely studied

manifestation is email spam, which has grown exponentially from virtu-

ally zero to a vast majority of all email traffic [117][163]. It is estimated

to cause tens of billions of Euros in losses due to lost productivity, soft-

ware crashes and identity theft [164]. Although counter measures, such

as spam filters and virus scanners, have been deployed, some of the spam

will always reach its goal. Even though this may only be a small fraction

(as low as 0.00001% [86]), it is enough for the activity to continue to be

profitable.

In communication systems, spam is not confined to merely emails or

comments on blogs posts, but includes unwanted VoIP (Spam over In-

ternet Telephony, or SPIT) and other unsolicited application data pos-

sibly infecting the target with malicious code. Especially mobile users

would suffer due to the additional mobile data transfer charges and bat-

tery drainage. This problem has been anticipated, even dubbing VoIP as

the next medium for spammers [35]. A number of products have been

131

Preventing unwanted traffic

developed to address the issue (such as [45][107]), and members of the

IETF SIP working group [73] have also recognized the problem, express-

ing their thoughts and possible solutions (as described in Chapter 2.4.1).

However, these mostly rely on the presence of a centralized authority and

are, in many parts, irrelevant for P2P environments.

Without a central authority, it is hard to keep track and block peers that

engage in this activity. Detecting a rogue peer as it establishes VoIP calls

to a thousand users simultaneously is easy in centralized environments.

But it is impossible for a single user to notice this, as it has no overview of

the whole system. The users of P2P networks can only rely on what they

know themselves or have learned from others.

For our framework, we have studied the use of relationships for pre-

venting unwanted and abusive traffic. This is well suited for P2P envi-

ronments as it does not require a complete view of the whole system or a

large, up-to-date, database of the tell-tale signs of malicious activity. We

only need to keep a record of the peers we interact with, and exchange

this information with others. Compared to existing relationship-based

solutions, we focus on the privacy of users, and develop a probabilistic

method for discovering social connections.

7.1 Relationship-based filtering

Relationships create a network of trust between users. Considering some-

one a friend implies that we trust that person to a certain degree. Fil-

tering traffic based on these friendships, for instance allowing friends to

connect unquestioned, while subjecting others to closer inspection, seems

natural and straightforward. However, it leads to a very strict model

where establishing new relationships is hard. We would need to use

out-of-band channels and manual configuration to establish new relation-

ships, or subject each peer to limited trial periods during which we moni-

tor and assess the trustworthiness of that peer.

We have explored different ways of sharing relationship information for

establishing trust between users, in other words, solving the traditional

introductory problem in distributed systems. For instance, if Alice wants

to connect to Bob, who does not know Alice beforehand (and is wary of

accepting new connections), Alice might not get through. But if they both

have a mutual friend Carol, Alice could use her as reference. By leverag-

ing Bob’s trust in this mutual friend, Alice would seem more trustworthy

132

Preventing unwanted traffic

(or at least more accountable) and Bob would be more likely to accept the

connection.

However, we wanted to extend the model from only one-hop social links

(friend of friend, FoF) to multiple. We wanted a model where we could

measure the distance to peers within our social network, and make deci-

sions based on that information. In distributed systems, only the users

themselves know who their friends are. Therefore, we need a way of

sharing this information between users, so that the social links can be

unveiled. This, however, raises two fundamental questions:

i How do we know whether the information is correct?

We need to verify that a claim of friendship is not made only by the

subject itself, but also by the partner it claims to be friends with.

ii What is the incentive for participating, as it requires us to reveal our

contacts?

We need to protect the privacy of the users. Few are willing to openly

publish a list of all of their acquaintances. We need a way to anonymize

this information while still be able to fairly confidently establish the path

between users in a social network. This lowers the threshold for partici-

pating.

We approached the problem using a distributed relationship-sharing

mechanism based on bloom filters.

7.2 Related work

Finding common friends is a fundamental feature of most social network-

ing services. Furthermore, there has also been a number of attempts at

creating independent systems for providing this service in a more generic

manner for any application that may benefit from that information. The

Pathfinder, designed by Juho Heikkilä, is a good example of such a sys-

tem. Architecturally it is similar to the identity authorities described in

Chapter 3.1.1. That is, a trusted third party service which can be dis-

tributed to several instances as long as both parties of a session trust the

same instance. Therefore, it solves the two fundamental questions by hav-

ing trusted Pathfinder nodes (information correctness), and by only using

anonymized data (lowering threshold for participating).

The Pathfinder provides an interface for users to submit their contact

list in an anonymized format. The anonymization is done by revealing

only the digest value (hash) of the names of the friends. The Pathfinder

133

Preventing unwanted traffic

can use these to establish a network between users (as the hash of a user

name is consistent), even though it does not know the actual identity of

those users. Connection initiating peers query the Pathfinder to estab-

lish a link between themselves and the target peer. The Pathfinder uses

an efficient algorithm for traversing its internal database, and returns a

signed statement containing the shortest path found. This is presented

by the initiating peer during connection establishment[66][100].

Although the Pathfinder (or similar systems based on trusted nodes)

provides a solution for discovering social links, it has a number of draw-

backs. The most apparent being accessibility. Our framework is designed

for distributed environments, where access to external networks or spe-

cific nodes may not always be possible. Secondly, it requires that both

users as well as all intermediate acquaintances trust, and use, the same

Pathfinder. The Pathfinder could to some extent be used in distributed

systems, as it does not need to be a single centralized component. In

overlay networks, we could share the responsibility amongst a number

of trustworthy peers. These Pathfinders could also collaborate, creating

an overlay between themselves for discovering social links. However, this

does not solve the problem completely.

On the other hand, attempts at solving this problem by using fully dis-

tributed mechanisms often have a number of security concerns. For in-

stance, the Loaf system uses viral propagation of Bloom filters constructed

from contact lists[31]. Users create these filters using the email addresses

of known, trusted, contacts, and attach them to the email they send.

These are then used by the recipients for whitelisting email received from

unknown addresses.

The loaf system has many of the traits we are looking for. It is fully

distributed, and provides some degree of privacy. However, on closer in-

spection, the security is superficial. As the filters are publicly distributed,

they are easy to obtain. Engineering a value to fit into a pre-defined Bloom

filter is easy with any modern computing device. Even a low false posi-

tive probability of 1% would only take 100 attempts to overcome. Fur-

thermore, it is possible to check for well-known addresses in the filters,

revealing parts of the contact list. Furthermore, the loaf scheme extends

only to friends of friends, which is less than we require.

134

Preventing unwanted traffic

7.3 BloomBuddies

The BloomBuddies scheme was designed to address these shortcomings

by using a multi-level viral model to spread relationship information and

a novel procedure for discovering common friends using Bloom filters. The

viral distribution mechanism is simple; when establishing a peer connec-

tion, both users share information about their contacts. Through this

exchange, the list of friends of friends (one social hop) of that contact is

obtained. However, as both users also have information regarding the

contacts of their other friends (acquired similarly), the peers continue the

procedure by exchanging those as well. This results in a list of contacts

two hops away. This pattern is continued until a predefined hop distance.

As explained in Section 2.9, most variants of Bloom filters can be com-

bined (creating a union of all entries) by a simple bit-for-bit OR operation.

Therefore, instead of storing, and sharing the multi-hop Bloom filters sep-

arately, we simply combine all filters at the same hop distance that we

have received. By keeping these levels of filters separate, we can check

not only whether a previously unknown identity is somehow connected to

us, but also at which distance in our social network. Figure 7.1 illustrates

this process.

Figure 7.1. Viral propagation of relationship Bloom filters. For each hop, C’s information
gets pushed into a higher-level filter.

The simplest way of using these Bloom filters to spread relationship

information is to simply define a standard filter size and add the identity

of each contact (their public key) to the filter. However, this raises both

security- and privacy concerns, as discussed earlier. Scalability is also an

issue. With each passing, the number of elements in the filters may grow

exponentially, easily overfilling filters designed originally for only a single

node’s contacts. In the following, we address these issues, enabling secure

and trustworthy viral distribution of relationship information.

135

Preventing unwanted traffic

7.3.1 Threat model

Before describing the scheme, we define the security threats of a loaf-

like, simple scheme in order to assess how successful we are in overcom-

ing those. The goal of the scheme is to discover a social link between a

connection establishing (or calling) party, and the target (callee) in a se-

cure manner without compromising the privacy of either. For our model,

we inspect the threats from the point of view of what a malicious peer

belonging to each of the different types of actors within this scenario may

hope to gain. These are the following:

Caller. As the primary purpose of the scheme is to filter connections

based on social trust, the caller has the most to gain from being dishon-

est. The primary goal for a malicious caller is to be seen as much closely

connected to the target than he is. As noted, in an environment where the

identities are self- generated (whether signed by a trusted third party or

not), it is easy to generate identities until one matching a Bloom filter is

found, falsely identifying the caller as belonging to a friend’s contacts.

Callee. The callee, although generally considered only as the potential

victim of an attack, may also misuse the scheme by luring users into con-

necting to it. As it is the caller’s duty to prove the relationship between the

two, the callee will obtain information during the handshake. Unless the

protocol is well designed, the caller might reveal too much. This includes

information that can be used to gain other users’ trust, or in performing

off-line analyzes of the social environment.

Intermediates. An intermediate is a peer that is a member of the

social link between the caller and callee. In general, we consider these

trusted with regards to correctly propagating the Bloom filters. After all,

the scheme is built on leveraging the trust for our contacts (the interme-

diates) in order to form new relationships. As any filter passing through

intermediates will always be one social hop further away than the inter-

mediate, there is no motive to alter the filters passing through, as they

will never be trusted more than the intermediate himself. However, there

is a privacy concern with handing over our filters to these. Even though

we trust our contacts to propagate the filters correctly, we do not want

them to be able to analyze the content (i.e., discover our other contacts).

Outsiders. An outsider is a peer that is neither an end-point of the

connection, nor part of any social link between the two. The main threat

of the outsiders, in our scenario, is to be able to analyze the structure of

136

Preventing unwanted traffic

the social network from publicly available information.

We should note that these roles are often shared. For instance, the callee

and caller may possess the same information as intermediates, and there-

fore be considered as posing the same threat (discover our other contacts).

And each of the three other types can also act as outsiders. These cate-

gories merely reflect different positions peers can be in, and what they

may strive to unlawfully gain. Furthermore, these specify only the roles

within a one-directional authentication. For a complete authentication,

we would employ mutual authentication where the roles of the callee and

caller are exchanged.

7.3.2 Relationship keys

The first step we take is to prevent outsiders and intermediates from be-

ing able to dissect and analyze the contents of the filters (and therefore

the structure of the social network) by obfuscating the entries (contacts)

put into them. As noted, this analysis is possible if the public, well known,

identifiers of users are used. In order to prevent this, we replace the public

identifier with a value seemingly without any correlation to the identity,

but that can be proved by the owner of the identity to be tied to it. As we

are using public key- based identities, we use an electronic signature of

the identity key. This value is impossible to construct without the private

key of the signature, but can easily be verified and tied to the identity.

Although this prevents intermediates from arbitrarily dissecting the

Bloom filters to find well-known public identifiers, it is only assuming

that the intermediates themselves are not friends with those contacts.

The signature value should be regarded as a secret, which users should

only give out to people that they trust. However, as keeping a shared se-

cret amongst all contacts is hard, users can create a set of relationship

keys which are used according to the type of relationship. For instance,

one key could be dedicated to close, trusted, friends, while another for

mere acquaintances. During connection establishments, the caller would

only need to prove that he is the owner of one of the keys that appear in

the filter by providing a signature made by that key over his identity key,

as well as the public part of the signature key.

If the filters a specific callee trusts are well known, or otherwise re-

vealed, this scheme does not efficiently prevent users from engineering

public keys whose signatures of an identity fit into a specific filter. We can

enhance the scheme by inserting additional values to the filter that tie

137

Preventing unwanted traffic

the key used to it more strongly. For instance, we could add the key itself.

Finding a false positive key in that model can be compared to finding two

interlinked random values that both pass as members of the Bloom filter.

This would decrease the probability from the false positive probability p

to p2, meaning that for a filter with an error probability of one percent, an

average of ten thousand keys have to be generated to find a match. Al-

though the scheme can be extended even more (e.g., by adding signatures

of signatures), it would also increase the amount of data, and still remain

breakable given sufficient computing resources. We need a more efficient

method to decrease the probability of successfully generating a matching

key.

7.3.3 Detecting relationship-specific keys

Although the relationship keys prevent outsiders from generating iden-

tity keys matching the same Bloom filter patterns as specific well-known

users’, it requires that either the caller reveals his relationship keys, or

the callee the filters he trusts. As discussed, the caller can decrease his

dependency on a single key by using a set of keys, or even relationship-

specific ones, which are revealed only when needed. The problem is how

to know which ones to reveal to whom; assessing in which of our contacts’

network a specific user might reside. We need a scheme that allows the

communicating parties to compare and discover keys that they may have

in common, without either one revealing too much. This we achieve using

Bloom filter intersections.

Instead of the calling party sending the key signatures in plain text,

they are also added to a Bloom filter, which is given to the callee. By

sending the signatures in a Bloom filter, the calling party does not need

to reveal the keys directly, but rather in a anonymized, probabilistic man-

ner. As the filter contains multiple entries (possibly even false entries,

decoys), it can not be used to discover the Bloom filter pattern for the in-

dividual entries, as it is impossible to know which bit positions relate to

a single entry. The callee is therefore unable to discover a Bloom filter

pattern for any single one of the caller’s keys, to be used to construct a

fake relationship key in order to gain trust with other users.

However, the purpose of this filter is not to single out a specific key sig-

nature that might be present in the remote user’s relationship filters, but

instead limit the scope. The remote user uses this filter to perform an

intersection over the relationship filters he trusts, and sends back the re-

138

Preventing unwanted traffic

sult. The caller can now check which entries are still present and select

one of those keys to present to the callee. As with the previous schemes,

we can lower the false positive rates using multiple values of the same

key (adding signatures of signatures), lowering the probability that a re-

lationship key is falsely identified as being in the trusted filters. It is, of

course, possible that more than one of the caller’s relation keys exist in

the callee’s filters, in which case the caller selects one to be used.

The caller does, in any case, need to finally reveal a relationship key

present in the intersection linking him to the callee. A dishonest callee

could therefore forge the intersection by simply returning the Bloom fil-

ter containing the keys untouched (signaling that they all match). This

would prompt the caller to reveal one, even though he is not linked to the

callee. The dishonest callee would subsequently use that key to analyze

the structure of the social network, or to create a new key matching the

same Bloom filter pattern and thereby gain the same social status as the

caller. However, this can be prevented using decoy keys. By creating a

number of temporary, throw-away, keys, not used in any relationship, and

inserting those into the filter passed to the callee, the caller has a range

of keys to present to dishonest callees without revealing any of the real

relationship keys.

This still does not solve the problem of the caller creating specially engi-

neered keys to fit the remote party’s trusted filters. In fact, by returning

the intersection of the key signatures and the trusted filters, the remote

user reveals a subset of the ones he definitely trusts. Even though the

trusted filters are kept secret, the caller will gain insight into those. For-

tunately, there are a couple of mechanisms we can use to minimize this

leakage. First however, we need to impose strict limits on the false pos-

itive probability (health) of the caller’s key filter. By limiting the false

positive probability of this Bloom filter, we efficiently limit what can be

deducted from the result of the intersection, as explained in more detail

in Chapter 7.3.4. In addition to this limit, we use partial intersections

and key escrow.

With partial intersections, we divide the relationship filters into two

separate parts; a public part which is used for the intersection, and a pri-

vate part which is used only for verification. When establishing a relation-

ship, both parties share the public part of a key they associate with the re-

lationship, together with a signature of their own identity key, made with

that relationship key. The relationship key is added to the public part of

139

Preventing unwanted traffic

the relationship filter, while the signature to the private part. During con-

nection establishment, the caller creates a Bloom filter composed of all the

relationship keys he has used (along with any number of decoys), which

is passed to the callee who intersects it with the public part of the rela-

tionship filters he trusts. After the intersection, the caller will discover

which of his relationship keys may be present in the callee’s filters. If one

is found, it is presented to the callee, along with the signature over the

caller’s identity key. The callee can now verify that the caller is linked by

checking the private relationship filter for the inclusion of the signature.

Although the scheme requires the maintenance of two separate filters

for each hop, the total amount of data that has to be distributed (the re-

lationship filters) will not increase. Compared to using a single filter with

two different values per key (the relationship key and the signature), we

would need to double the filter size in order to see similar false positive

probabilities as we see when using two separate filters. Therefore, as ex-

plained in Chapter 7.3.4, the total amount of data will remain the same.

Another mechanism the callee can employ to prevent the caller from

opportunistically generating, or choosing matching, off-line generated, re-

lationship keys after receiving the intersection is to require the caller’s

relationship keys to be escrowed before returning the intersection result.

The callee simply asks the caller to provide all of the possible relation-

ship keys, each encrypted with a different unrelated encryption key, in

advance. After identifying a match in the intersection result, the caller

will point out which of the keys was found, and provide the decryption

key (along with the signature) so the callee can verify the claim. The

complete process is illustrated in Figure 7.2.

7.3.4 Security analysis

As Bloom filters are probabilistic data structures, the security of any sys-

tem built on these will inherently display similar, probabilistic, charac-

teristics. As explained in Chapter 2.9, the probability of a fault (false

positive) depends on the structure of the Bloom filters, and the amount

of data contained. Our goal is therefore to clarify how these parameters

affect the overall security of the BloomBuddies scheme, in order to define

the minimum requirements for using it safely. We examine the security

of the BloomBuddies scheme according to the threat model presented in

Chapter 7.3.1.

As described in Chapter 7.3.2, the threats posed by intermediates and

140

Preventing unwanted traffic

Figure 7.2. The BloomBuddies scheme illustrated. Alice needs to prove that there is a
social link between her and Bob through one or more intermediates (Carol).

outsiders are prevented by using specifically constructed relationship keys

instead of identity keys as the Bloom filter entries. Even though this pre-

vents the detection of specific users in a particular filter (within a certain

probability), it is still possible to gain an understanding of the overall

social network by reviewing and comparing filters. If relationship keys

are re-used between different contacts, it is possible to compare different

filters and approximate how many common contacts these contain. Fur-

thermore, the size and fill ratio reveals the number of entries in a filter,

which corresponds to the number of contacts of a person. However, as the

false positive probability of a filter depends on the ratio between the fil-

ter size and number of entries, by increasing the size of the filters we are

able to add false entries without compromising the security of the system.

141

Preventing unwanted traffic

We can therefore prevent size analysis by defining a standard number of

entries each user inserts into their filter, whether they are real entries or

not.

However, as the purpose of the BloomBuddies scheme to promote trust

in the caller, our main concern is that the caller would be able to gain

a better standing than deserved with the callee. If we assume that the

system is otherwise secure (i.e., the relationship filters and -keys are not

leaked), the most straightforward approach is for the caller to find a public

key pair that is falsely identified as present in the callee’s relationship

filters.

By dividing the relationship filters into two parts, both the public key

and the signature of the caller’s identity, would need to fit into two sepa-

rate filters. As discussed in Chapter 7.3.2, within our context, these can

be thought of as two linked random values. The probability of finding

such a key pair is therefore the product of the probability of matching

two random values into these filters. With mpub, kpub, npub representing

the size, number of hash functions and entries of the public part of the re-

lationship filter, and mpriv, kpriv, npriv respectively the parameters for the

private filter, the total probability of finding such a key becomes:

p = (1− (1−
1

mpub

)kpubnpub)kpub ∗ (1− (1−
1

mpriv

)kprivnpriv)kpriv (7.1)

As each relationship will insert one entry into both parts, we can assume

that the number of entries, and the filter parameters (size, hash functions)

are the same for both filters. The probability becomes then:

p = (1− (1−
1

m
)kn)2k (7.2)

This means that the probability of being falsely identified as a member

of a relationship filter (both the false key and its signature matching) is

the square of the filter’s two components (public and private parts). For

instance, with an upper limit of 1% false positive probability on the com-

ponents, the total probability is 0.01%. In other words, the caller would

need to, on average, perform 10000 connection establishment attempts,

with different keys, in order to succeed. We can compare this probability

with having both entries (a total of 2 ∗ n entries) in the same filter of size

m2. The false positive probability (for one entry) will then be:

p2 = (1− (1−
1

m2

)k2n)k (7.3)

142

Preventing unwanted traffic

As we require that two interlinked values are falsely identified as present,

the error probability will then be p22. In order for this to be equal to the

error probability of using two separate filters, we need to solve the size of

the filter (m2) from the following equation:

(1− (1−
1

m
)kn)2k = (1− (1−

1

m2

)k2n)2k (7.4)

Solving m2, we have:

m2 =
1

1−
√
1− 1

m

(7.5)

Which converges towards 2 ∗ m, meaning that m2 will need to be two

times m for the same error probability. Therefore, having two different

filters requires only as much total data as maintaining two values in the

same filter. The benefit of using two-part filters is to limit how much the

caller is able to learn from the intersection result that can be used in

subsequent attempts.

The callee will naturally strive to reveal as little as possible, preferably

only the entries that legitimately correspond to relationship keys owned

by the caller. The goal is therefore to minimize the number of bits set in

the intersection result, in other words, the false positive probability. For

an entry to be present in the intersection, it has to be present in both

of the filters of the intersection. The false positive probability of the re-

sulting filter is therefore the product of the probability of the two source

filters. We can therefore limit the false positive probability of the result

by adjusting either one of the sources. As the caller-provided key filter is

composed during the connection establishment, it is the natural target for

this adjustment.

Even though the callee is in this way able to control the false positive

probability of the intersection result, it does not prevent an attack. Even

though the intersection result would have an extremely low false positive

error probability, with enough computing resources it is still possible to

engineer a key matching the result. Furthermore, with each subsequent

connection attempt the caller is able to further familiarize himself with

the public part of the callee’s trusted filters. It is the private parts of the

filters that ultimately provide verification of the relationship.

The purpose of the public part of the filter is, as explained in Chap-

ter 7.3.3, to allow the caller to choose which key (or keys) to reveal, as well

as to discover rogue callees through the use of false entries. As described,

143

Preventing unwanted traffic

the false positive probability of the intersection result is the product of

the probabilities of the source filters; key filter and the public part of a

trusted filter.

p∩ = pkeyfilter ∗ ppublic (7.6)

Assuming healthy filters (for instance, 1% false positive probability per

filter), for a relationship key to erroneously to be indicated as present in

the intersection result is low (0.01% in our example). Having more than

one of the relationship keys present in the intersection result is certainly

possible, but having any of the false ones is always due to the false positive

probability as these keys are not used for any valid relationship.

Considering a rogue callee, the only way in which he will succeed in lur-

ing the caller into revealing a relationship key is for the key to be present

in the intersection result. As the callee does not know which bits of the

filter belong to valid relationship keys, the intersection filter will have to

be produced at random. This means that the relation between the proba-

bility of a valid relationship key to remain in the filter versus a false will

follow the relationship between the amount of valid keys in the key filter

and false ones. Therefore, by adding a large amount of decoys, for instance

ten times the number of valid relationship keys, the probability of finding

decoys in these rogue intersection filter will be much higher than encoun-

tering a valid relationship key, independent on how populated the filter

is. In our example, for each valid relationship key found will, on average,

entail that ten false ones are found as well. With the intersection false

positive probability of 0.01%, the probability for a rogue callee to succeed

(i.e., produce a filter with a valid relationship key present, but no false

entries) is p10
∩

= 0.000110 = 10−40, in practice none. However, we should

acknowledge that the presence of a false entry does not automatically rule

the callee as dishonest, as the probability of finding these will directly fol-

low the false positive probability of the intersection result. Instead, the

process should be re-iterated with a new set of false entries.

The process does not prevent a malicious callee from performing a man

in the middle (MIM) attack between two users who are known to have a

relationship. As the malicious callee will use legitimate intersection fil-

ters provided by the real callee, the caller will become convinced of the

relationship and reveal the relationship key. In order for the malicious

callee to fabricate a relationship with the legitimate callee, he would then

have to either choose to rely on the false positive probability of the pri-

144

Preventing unwanted traffic

vate filters, or engineer a key that both fit the intersection result (the

public part of a relationship filter) and whose signature is guaranteed to

be present in the private part of the relationship filter.

As the malicious callee can not access the private part of the relation-

ship filters, this signature would need to have the exact same Bloom filter

pattern as the caller’s relationship key signature. Even though it is pos-

sible to generate such a key, the amount of work needed is magnitudes

more than fitting a key into even the most strict key- or relationship fil-

ter. Essentially the false positive probability of a filter with only one entry.

Furthermore, in order to protect the caller, we can still employ mutual au-

thentication where the callee is forced to prove its relationship with the

caller.

7.3.5 Scalability

In order for Bloom filters to be efficient, we need to have a fairly good

estimate of how much information they will carry. However, in the decen-

tralized environments we target, the assumptions regarding the amount

of social links we need to convey using the BloomBuddies scheme may

vary from person to person. This makes it hard to define a standard size

for the BloomBuddy filters. As Bloom filters do not allow us to merge,

intersect and compare different sized filters in the way required, we need

a scheme that allows us to scale the filters without loosing these basic

properties, in order to allow participants to choose the size of their filters

themselves.

As discussed in Section 2.9, several schemes have been proposed that

increase the filter size dynamically. However, these are based on the as-

sumption that we only need to know whether individual elements are

present and does not allow us to compare complete filters, as required

in our scheme.

We base our method for scaling on the use of modulo for mapping the

bit positions, and the observation that the growth of the false positive

probability for each addition depends on the filter size. Adding the same

elements to a larger filter increases the fill ratio less than adding them to

a smaller one. Therefore, by adjusting the filter size, even though the fill

ratio and false positive probability remain the same, we can preemptively

slow down the growth of the false positive probability. This will provides

us with larger filters, which in the end will allow us to insert more ele-

ments while keeping the error rate at an acceptable level.

145

Preventing unwanted traffic

To be able to increase the filter size without access to the source ele-

ments, we use a budding approach; we create clones of the filter and ap-

pend these until the required size is reached. The Bloom filters we use are

essentially bit fields where each set position corresponds to the modulo of

the hash values of the elements. As these depend on the size of the filter,

we need to ensure that the values get repositioned where they would have

been inserted in a filter of the new, expanded, size. But as we do not have

the source elements (only the modulo of the hash), we cannot determine

the correct bit locations for an arbitrary filter size. However, as the values

are the remainder of the hash values divided by the filter size, by multi-

plying the filter size with a positive integer, we can calculate the potential

positions where they could reside.

As we double the size of the divisor (the filter size), the remainder stays

unchanged if the dividend is less than the original divisor. In case the

dividend is between the original and the new divisor, the remainder will

increase by as much as the value of the original divisor. Continuing fur-

ther, if the dividend is between two and three times the size of the original

divisor, the remainder will stay unchanged. We can see that the remain-

der will always either stay unchanged, or increase with as much as the

size of the original divisor. Similarly when multiplying the divisor by

three, the remainder will be either at the same position, increase by the

size of the original divisor or increase two times the size of the original

divisor. Therefore, by duplicating the bit field into the new space, we are

sure to include the modulo of all of the elements with respect to the new

filter size, as depicted in Figure 7.3.

Figure 7.3. Increasing the size of an 8-bit filter containing the values 6, 9, 15 and 20.
Each expansion appends a copy of the original filter.

In addition to providing a way of dynamically adjusting the filter size as

the number of entries increase, more importantly, the scheme allows us

to create unions and intersections of filters of different sizes. As we set

146

Preventing unwanted traffic

each of the potential bit positions for the elements, the intersection will

contain all elements that are present in both filters. And as the false pos-

itive probability of the resulting filter depends only on the false positive

probability of the source filters (which remains unchanged throughout the

budding process), it is not affected.

As intermediate nodes are now able to scale the filters they process,

users can choose to use different sized filters according to their own as-

sumptions and estimates of the maximum number of entries. This allows

for flexibility in the network, as we do not need to define a global, cau-

tiously chosen, standard for the size of the filters. This would likely be too

large for most users, diminishing the efficiency sought from using Bloom

filters in the first place. Furthermore, we are now able to define false pos-

itive probability limits on the filters created by a remote peers (the key

filters and one-hop relationship filters) independent of how many entries

they will contain. As the size of these filters no longer matters, the re-

mote peer can choose a suitable size that will fit all the elements while

maintaining the required error probability.

7.4 Implementation

The relationship-based filtering was implemented in the prototype as an

access control filter (as mentioned in Chapter 3.3.1) for the SIP module.

This module performed filtering of incoming sessions (voice and video call,

instant messaging) based on the social distance between the caller and

recipient. The module used the trustman module’s services to acquire this

relationship. Support for both the Pathfinder and BloomBuddies were

implemented.

The BloomBuddies scheme was implemented using power of two- sized

Bloom filters with an initial size of 32 KB (262’144 bits), and five inde-

pendent hash functions. The default false positive probability limit of

the implementation was set to 5% (i.e., the limit for considering filters

healthy). The optimal value for the filters’ parameters (the size of the

filter and number of hash functions to use) depends on the expected num-

ber of entries, as explained in [169]. We based our values on the social

networking study presented in [173], which found that a user with an av-

erage of 100 friends has, on average, 40’300 non-unique friends-of-friends.

Our configuration represent the optimal parameters for filters containing

this amount, while maintaining an estimated false positive probability of

147

Preventing unwanted traffic

4.4%.

The implementation followed the BloomBuddy scheme described previ-

ously. A relationship was formed by creating a new public key pair, of

which the public part and, signature of our own identity key, was shared

and stored in two-part filters. Four levels (social hops) of filters were used,

meaning that three levels were exchanged during each update, resulting

in 192 KB of data (two filters per level), when adhering to the initial filter

size. However, at each update the filter size is re-examined by estimating

the final fill rate per level using the average of the filters acquired. This

affects the size peers instruct their neighbors to use for the filters they

provide, in order to maintain a maximum of 5% false positive probability.

During connection establishment, the callee requests a key filter with

a false positive probability of at most 1% from the caller. The caller con-

structs this filter calculating the optimal size for a filter containing 100

times more keys than he has shared, and subsequently adds 100 fake en-

tries for each valid one to it. After the intersection, the result is checked

for these fake entries, and a re-iteration (with a new set of entries) is per-

formed if one is found. The connection is dropped, as a precaution, if fake

entries is found after the second intersection. Otherwise the first relation-

ship key found (if any) is provided, together with a signature of the caller’s

identity key. The callee compares these with the private and public parts

of the relationship filters, and in case a match is found, provides the hop

level of it to the access control module.

Reviewing the security analysis of Chapter 7.3.4 using the default con-

figuration of our implementation, we can conclude that the scheme pro-

vides a reasonably trustworthy method for discovering social connections.

Using the terminology of Chapter 7.3.1, outsiders are unable to gain in-

sight into the social network, as explained previously. However, inter-

mediate nodes are able to estimate the size of the social circles they are

connected to, but as we are using unique keys for each relationship, can-

not compare the filters in order to find common acquaintances.

As for malicious callers, the probability of finding a public key match-

ing the relationship filter at a specific level is, at most (when the filters

are filled to the 5% limit), p = p2relationshipfilter = 0.052 = 0.0025, or 0.25%.

However, after the first attempt an intersection of the received filters can

be made, and keys matching it produced. The probability of succeeding

will eventually be limited only by the false positive probability of the pri-

vate part of the relationship filter. As it is at most 5%, it would require

148

Preventing unwanted traffic

an average of 20 attempts. We should note that these figures are only for

the most crowded of the relationship filters, usually the most distant (4

hops). The filters containing more closely related contacts will, in most

cases, have significantly lower false positive probabilities as they contain

several orders of magnitude less entries.

Although an attacker performing a MITM- attack will be able to expose

a relationship key used by the caller, the damage will be contained to

only one specific relationship key. As for gaining trust with a legitimate

callee, an attacker must rely on the same false positive probabilities as a

malicious caller, or engineer a key matching the same Bloom filter pattern

as the caller’s. As we are using 32 KB filters and five hash functions, the

probability of finding one is p = (1− (1− 1

262′144
)5)5 = 2.5∗10−24, or 2.5 per

septillion attempts.

The relationship-based filtering was applied to VoIP and instant mes-

sage sessions. The user could configure the maximum social path length

which he was willing to accept sessions from. In practice however, the

graphical user interface (GUI) was designed so that one of four settings

could be used; Everyone, Friends only, Friends of friends and In your net-

work. Everyone indicates that all connections are allowed while Friends

only and Friends of friends allow only the ones made by people close to

you. In your network is designed to allow anyone that has some sort of

social link to you. We review the usability of our solution in Chapter 8.

7.5 Summary

We have presented a Bloom- filter based method for discovering social con-

nections between users. By using viral distribution and a novel protocol

for exchanging filters, we can safely discover links of up to a predefined

distance. Compared to existing solutions, our model is fully distributed,

protects the privacy of both parties and reduces the possibility of cheating

efficiently. Although we have presented it as a mechanism for discover-

ing common acquaintances, it can be used to discover links between any

type of information, as long as the two parts of the exchange are able to

implement the interactive discovery protocol.

However, the BloomBuddies scheme is not perfect. It is based on prob-

abilistic data structures, which means that there is a possibility for false

identification given sufficient time and computing resources. It should

therefore be used carefully, together with measures to prevent automated

149

Preventing unwanted traffic

attacks. To our knowledge, it is the first scheme that solves the introduc-

tory problem in fully distributed environments, addressing the privacy

and security concerns of all parties involved.

150

8. Usability

The underlying theme of this dissertation is to examine how network-

ing services and applications can be constructed to operate in a secure

manner, while not being reliant on a centralized trusted provider. The

model we have outlined implements privacy protecting methods and uti-

lizes technologies such as the Host Identity Protocol to secure the commu-

nication and, if used properly, to minimize the risks involved.

However, due to the fundamental differences in how the services are pro-

vided, the threats may not be immediately understood by the end users.

In order to provide real security and privacy, users should have a basic

understanding of the threats and be able to properly use the security tech-

nology. In practice, poor usability has often been more detrimental to sys-

tem security than the weaknesses in the underlying security mechanisms

[149]. Users are unable to detect security indicators, and demonstrate

click fatigue when running into security warnings [150]. Even when a

user sometimes does take the time to look at the security indicators and

consider the warning, he may still fail to interpret and utilize this infor-

mation correctly [38]. This leads to users falling prey to relatively simple

social engineering attacks [15].

Despite the risks associated with Internet- based services (e.g., VoIP),

some users prefer these over traditional alternatives for their easy avail-

ability. In P2P- based variants, the security issues become even more

tangible. As previously reviewed, P2P systems harness the shared re-

sources of (possibly malicious) end-users to provide the service, creating

even more opportunities for exploitation The additional security mecha-

nisms we have presented are designed to mitigate these risks, but need

also to be presented to the user in a way that is both understandable and

usable. This is even more challenging with the demands and constraints

of the mobile environments we are targeting.

151

Usability

User studies are needed to understand how, when and what to commu-

nicate to the users about these security mechanisms and the threats in-

volved, in order to understand how these should best be managed. In this

chapter we provide a comprehensive look into the usability challenges of

our system through the use of a P2P VoIP application on a mobile device

implementing the additional security features. We have gathered user

feedback via interviews, an online questionnaire and a UI paper mock-up.

We present and analyze the data gathered on users’ views and attitudes

towards the emerging application and on Internet telephony in general.

8.1 Related work

It is commonly believed that the challenges in making security usable

markedly differ from the demands of so-called traditional usability [176]

[149]. A key difference is that few, if any, errors can be allowed not to

jeopardize the overall security. This means that the common trial-and-

error way to learn the use of a new application will not work learning how

to manage security.

Security and usability are often seen as competing goals – a classic ex-

ample is usability of passwords: a password that is easy to remember is

weak, and strong passwords are hard to remember [15] [38]. Security and

usability also compete in another way: in [7] the authors found that users

often give up security for easy access. In other words, if security becomes

an obstacle in conducting everyday tasks, it gets turned off [124]. Apart

from the competition between the two, also bad usability hinders secu-

rity management: users may even be aware of the risks based on their

experience, familiarity with the domain or sender, and of the presence of

security features, but are unable to make appropriate security decisions

due to bad usability [38].

When it comes to usable security for VoIP and more specifically P2P

VoIP, not much is known about the current usability issues or how P2P

VoIP users behave and why, especially in a mobile environment. In [56]

is provided some insight into the user behavior and motivations of Skype

users, when they investigated how P2P VoIP traffic in Skype differs from

traffic in P2P file-sharing networks or from traffic in traditional voice-

communication networks. According to [56], there were some remarkable

differences in the usage patterns of Skype users as compared with the

usage of traditional P2P file-sharing systems such as KaZaA, which also

152

Usability

have their problems with usability.

8.2 Research questions and methodology

Our research concentrated first on finding out about relevant user habits

that are likely to affect the usage of P2P VoIP application on a mobile

device, and what the current level of understanding related to the security

of such an application is. Our aim was also to find out any relevant user

habits related to security in the context of using a mobile device, as these

may affect what components a mobile user interface for presenting the

security options should concentrate on. Our research questions (RQ) for

this part were formulated as follows.

RQ1. Which current usage patterns (computer, mobile phone, informa-

tion security) are relevant for the usage of our application and, on a more

general level, for managing secure P2P VoIP on a mobile device?

RQ2. What is the current level of understanding of security related to

P2P VoIP on a mobile device? What do users use as reference point for

understanding the security of the emerging application?

RQ3. What are the privacy needs in using P2P VoIP on a mobile device?

Furthermore, we wanted to collect feedback and impressions for propos-

als for the interface design for controlling the security features (presented

in Chapter 5 and 7), which we then implemented as a P2P VoIP applica-

tion using our prototype implementation of the P2P system. We were most

interested in how users, who were not experts in security or in informa-

tion and communication technologies, would be able to grasp the concept

and successfully use the application. However, we still wanted our users

to be fluent computer and mobile phone users – possible early adopters.

The security mechanisms of the application are such that they require a

decent understanding of the underlying networking concepts to be fully

grasped. The target demographic of the study was therefore chosen so

that the full details of the mechanisms (and thus of any unexpected be-

havior) would not be well understood, but the areas to which they relate,

and the risks involved, would be familiar. This would allow us to study the

layman’s impressions of the issues of our study, without having to dwell

into the precursory concepts.

We used a mixed-method approach to get several types of information

on the user requirements and on the usability of the system: 1) semi-

structured interviews, 2) an online questionnaire and 3) user testing of

153

Usability

user interface mock-ups and 4) on a functional UI.

8.3 The study

We started our study with user interviews, in order to understand the

current user attitudes and behavior relevant to our study. We chose to

perform interviews, as it allows to probe more deeply into the topics, find-

ing subtleties that are hard to discover with more fixed-form methods. At

this point, we only had our research questions and a rough outline of the

area, so we wanted to encourage the subjects to bring up any issue that

he or she might associate with the topic. The aim was to gain a compre-

hensive understanding of people’s attitudes towards mobile security, not

only their views on the topics in our initial outline.

On basis of the outcomes, we created an online questionnaire of the most

important issues, to gather more responses than is possible through in-

terviewing alone to form a understanding of the general attitude towards

these issues. We chose an on-line questionnaire, as it has been proven to

be a cost-efficient technique for gathering data from a larger population.

The goal was to quantify the concerns discovered during the interviews.

The combined findings were then used to inform the design of the first

paper mock-up user interface.

The mock-up was subjected to user reviews and feedback under moder-

ated semi-formal usability testing sessions. The feedback gained on these

sessions served as input for the VoIP application UI on a Nokia N810 In-

ternet tablet, which was also subjected to user reviewing and feedback

under moderated semi-formal usability testing sessions, where users con-

ducted several test tasks with the mock-up, at the same time discussing

their experiences and thoughts about the mock-up with the moderator.

We will now present each phase of the conducted study in more detail.

8.3.1 The Initial Interviews

The initial interviews were conducted with 9 users, aged 18-25, 6 male

and 3 female. Most had a bachelor degree, three in computer science. By

the time of the interview all the participants had approximately 2-3 years

of VoIP experience. However, none of the participants had ever used VoIP

application on any mobile device. Interviews took 45 minutes each and

focused on finding out about users’ experiences and preferences that were

154

Usability

likely to be related to usage of VoIP. We also inquired about users’ general

knowledge of both computer security and security in VoIP applications.

We found out that all had received unexpected contact attempts via a

VoIP application, however most had rejected the contact attempt. The in-

terviewees usually only interacted with their contacts via VoIP, but were

unable to reliably estimate how many buddies they had on their contact

lists and how frequently they used VoIP. Mobile telephony was the most

frequent way to contact friends, but Internet telephony was quite popu-

lar too, to avoid long-distance call charges. Four interviewees mentioned

dropped calls as an undesirable aspect of calling through Internet.

The interviewees exhibited typical security attitudes, considering them-

selves relatively knowledgeable about security yet unable to explain basic

security related terms such as phishing. But the more the participant

seemed to know about security, the less he considered himself to under-

stand it, and vice versa: the more ignorant felt the safest. This finding on

mismatch between estimated skill level and awareness on security could

in our view be of crucial importance: falsely based carelessness can create

an easy attack point. However, the interviewees realized on some level

that there were more risks related to Internet calling, yet one user be-

lieved VoIP to be the safest calling method available.

Reasons for the general mistrust of VoIP were manifold: one user ex-

pressed he did not trust VoIP because “they [the service provider] can sell

my profile info.” Although this opinion affects the overall trust in VoIP,

it shows lack of trust towards the provider rather than being afraid of an

actual attack and is not as such related to the actual security of VoIP. In

users’ mind this worry was, however, part of the security concerns. This

is an important finding as it is crucial for the UI design that it encom-

passes what users find as relating to security, even when from a technical

viewpoint it might not be related to security. To trust or distrust may

depend on such false assumptions and conceptualizations, and if ignored,

may stop the user from using the system.

The interviews revealed that there are some reservations towards the

security of VoIP, but concrete reasons were hard to pin down, as the un-

derstanding of the concepts varied. Therefore, in order to be able to de-

scribe any security mechanism efficiently, we sought to quantify how fa-

miliar different security-related terms are through the questionnaire, and

if there are some that are misunderstood. Furthermore, as the trust in the

service providers was an issue, we needed to assess how important privacy

155

Usability

in VoIP is, which affects how security settings related to it would be re-

ceived, and whether these settings could make VoIP be more attractive.

Finally, in order to gain insight into the usefulness of the social filtering

mechanism, and therefore how obtrusive dialogs related to it would be,

we wanted to know how common unsolicited VoIP calls or messaging is,

and how familiar people are with the associated dangers.

8.3.2 The Online Questionnaire

The link to the questionnaire was sent to several mailing lists and news-

groups to draw users. We also tried to gain respondents through Facebook

by advertising the study on one researcher’s personal Facebook account.

The questionnaire can be viewed at https://survey.hiit.fi/index.php?sid=-

57695&lang=en. With 44 questions, the questionnaire began with basic

demographic questions (age, gender, education, nationality, native lan-

guage), and then continued with questions on telephony usage in general:

preference on the type of telephony used (mobile, land-line or Internet

telephony), and on previous experiences on Internet telephony (if any)

and on their current level of understanding of security: password prac-

tices, information sources for security, worries related to security and pri-

vacy and which applications they currently trusted. We then asked if they

recognized some security related terms such as phishing and pharming.

Finally, the last questions dealt with the respondent’s reactions to previ-

ous connection attempts, if any, from unknown callers or chatters over a

VoIP application. This part is relevant for the P2P VoIP calling, where

such connection attempts present a realistic use case.

Many questions were conditional, with the aim of having respondents

only go through questions that were relevant to their experiences: if a re-

spondent had used Internet telephony, the questionnaire would consist of

questions on the usage habits: how often, with whom, for what purposes,

and which applications the respondent was using for Internet telephony.

If a respondent had never used Internet telephony, she was presented

with questions on why not.

The questionnaire ended with a request for contact details for a possible

invitation to test “a new user interface for a mobile VoIP application” –

we recruited our mock-up testers among the questionnaire respondents.

If the respondent did not enter their contact details at this point, they

remained anonymous.

We received a total of 103 complete responses, 51/51 male/female (one

156

Usability

respondent did not state gender). The majority of the respondents (43%)

were 25-29 years old. The respondents came from 28 countries; their ed-

ucational background was diverse. The data was analyzed against the

research questions:

VoIP was the preferred calling method only by 12% of the respondents.

Unlike the interviewees, 14% of the respondents had used VoIP on some

type of mobile device (other than laptop): a typical usage was calling and

chatting. 65% were interested in having VoIP services on their mobile

devices, although often for infrequent exploratory use only. The most an-

noying feature of VoIP applications were delays, unexpected connection

breakdowns, noise in the channel, and bad quality of voice.

The respondents seemed to associate security with passwords, viruses,

privacy, confidentiality, and integrity of personal information. They see-

med to be aware of computer security in general; 93% said they discuss

issues related to security with other people. The majority was aware of at

least one major system attack and had had personal experience of being

infected by a virus as well. 32% believed they are very well informed

about security. Only 6% believed to be badly informed about security.

On security related behavior, 42% stated that it was easy to remem-

ber their passwords; 81% did not write down their passwords while 71%

were using same password for multiple services. The main security con-

cern was loss of personal data, none was using a good password policy.

Passwords were categorized into “simple” and “complicated”, in terms

of their memorability and structure. The simple passwords were used

for “non-sensitive” services such as University accounts – or e-mail ac-

counts, which were somewhat surprisingly considered non-sensitive by

many users. The more complex ones were for systems used for financial

transactions.

The majority was unaware of encryption in VoIP applications. Only one

participant wished for encryption in VoIP, and three felt encryption should

depend on the nature of the call. Though the need for security seemed

small, the respondents showed relatively strong concerns towards online

privacy. When asked whether they believe their online activities can be

monitored, 50% had wondered if their Internet calls could be listened to,

and 60% had wondered if unauthorized parties could read their chat ses-

sions. The percentage of users that never thought about being violated

was 24% for calls and 21% for chats. Users seemed to believe that no one

would even try to eavesdrop on their conversations: “Who cares to know

157

Usability

what I’m talking about!”.

The finding is in line with earlier work: most users tend to fall in the cat-

egory “privacy pragmatists”, who are aware, but relatively careless about

privacy, ready to trade it off for a bargain [6].

In order to understand how users deal with privacy violations, we asked

whether they had received via VoIP a call, or chat request, from someone

not on their contact list. Almost one third had had at least one such a call

and almost half at least one such chat request. 17% rejected the call and

14% also subsequently blocked the caller. For chats, 15% replied but 22%

blocked the stranger.

We also attempted to analyze the amount of trust users have for online

applications and services, and how they decide what to trust. 46% were

neutral regarding trust in VoIP; only 3% were absolutely trusting and

only 3% did not trust VoIP at all.

8.3.3 Creating and Testing a Paper Mock-up UI

Next, we crafted a set of paper mock-ups for the P2P VoIP application for

gathering user feedback. The goal was to study how interface proposals

for the security mechanisms presented in this dissertation would be per-

ceived on a mobile device. Although the mechanisms apply to all services

provided through the P2P system, the mock-ups (and later user interface)

was focused on VoIP, as it provides a familiar use-case.

As the questionnaire had confirmed that privacy was an important is-

sue for people, the paper mock-up UI covered use cases mostly related to

dealing with unknown peers. These were:

Use case 1: User is calling

Use case 2: User receives a call

Use case 3: Introducing a buddy.

Use case 4: Managing your security/privacy settings

Figure 8.1 shows the main UI on the paper mock-up. Online and offline

contacts were visualized with green (online) and gray (offline). The main

UI also included personal information of the user (1), profile preview (2),

dial pad (3), status (4) and the social distance mode (5). The personal

information included the user’s name, profile picture and a personal, ed-

itable, message. The “Profile preview” showed how other users see the

profile. The dial pad was used for calls to people not on the contact list.

The status could be set to On, Away, Invisible or Off, and the social dis-

tance mode was used to filter incoming connections based on how well the

158

Usability

Figure 8.1. Application main UI paper mock-up.

user is connected to the caller.

Use case 1 and 2: User is calling and receives a call.

When receiving a call, a button with a question mark appeared next to

the caller that, when pressed, displayed the social link we have to the

caller. As examples of these information displays, we presented mock-ups

such as Figure 8.2(a)-8.2(b), showing how the user is related to the caller.

(a) 2-hop connection with the caller. (b) 3-hop connection with the caller.

Figure 8.2. The interface presenting the user’s relationship to the caller.

One central concept was hops, the social distance between two users in

a network of buddies. We were interested in what number of hops would

still increase the trustworthiness of the caller.

Use case 3: Introducing a buddy.

In our design, “introduction” was possible only from a direct buddy to an-

other buddy. The introductions could be done with or without recommen-

dation. A recommendation was given as free-form text (Figures 8.3(a)-

8.3(b)).

Use case 4: Managing your security/privacy settings.

The default settings consisted of five parts: communication, modes, sta-

tus, buddy list and recent. The modes allowed the user to change the

159

Usability

(a) Starting the introduction for a person in

contact list.

(b) Choosing to introduce a contact with or

without a recommendation.

Figure 8.3. Introducing contacts with and without recommendations.

privacy mode (Figure 8.4).

Figure 8.4. Choosing privacy mode.

8.3.4 Mock-up user test and analysis

We subjected the mock-up design to a semi-formal usability test where

users were asked to observe and comment on the paper prototype against

the four use cases. Users first filled in their demographic data and were

then introduced to the use cases. Their reactions to the paper prototype

were first observed and then discussed with the test moderator. Six uni-

versity students between 18-24 years old, two female and four male par-

ticipated in the study.

The main UI seemed relatively understandable: Users were able to

match the functions with the right buttons. It was easy for users to in-

terpret the various colors for buddies in the contact list. All users could

identify correctly the buttons for calling, chatting and sending mail.

Use case 1 and 2: User is calling and receives a call.

The first two use cases were easily understood. In use case 2 (receiv-

ing a call), a question mark button was presented, which was designed to

reveal more information about the caller. Almost all participants under-

stood this. However, everyone did not understand how this information

was obtained and found our UI solutions awkward. One user proposed

that the icon be changed into a magnifying glass, in order to show that it

would lead you to more detailed information; another proposed alterna-

160

Usability

tively clicking on the profile picture of the caller to get more information.

The concept of displaying a common buddy was well understood, and

liked. However, some users claimed they would answer the call indepen-

dent of what is shown of the caller. Unconcerned with privacy, they stated

that accepting a call from a previously unknown person would depend on

their mood and current activities.

However, judging by the reactions to the mock-ups, it seemed that most

users would not answer a call coming from a user further than one hop

away: Four users stated they would only answer calls from at most a

buddy of a buddy. One user would answer only to buddies’ calls, and one

user would answer a call even within four hops. An interesting sugges-

tion for how to indicate your relationship to a person was to add a button

with a number inside. The number would indicate the number of common

friends. Pressing the button would reveal a list of these common buddies.

Users could also prevent themselves from appearing on such lists by an

option in the personal settings. User could also choose to be visible only

as an anonymous “common buddy”, without revealing their name.

Use case 3: Introducing a buddy.

The concept of introduction seemed easy to grasp. However, some users

misinterpreted the icon. One user mistook “introduction” as a way to ob-

tain additional information about the user; another user mistook it for an

invitation to a chat session. One user also misunderstood the direction

of the introduction. Finally, one user assumed introductions were possi-

ble only among buddies concurrently online, even though this was not the

case.

Use case 4: Managing your security/privacy settings.

Although a new concept, most users seemed to understand that modes

were somehow related to security and privacy. One participant however

related the term “mode” to emotional states and mood, believing that this

would affect the layout and look of the profile.

8.3.5 VoIP UI

Based on the feedback from the mock-up user tests, we created a status

bar control menu, as well as a VoIP prototype application for the Nokia

N810 Internet Tablet. The status bar control was implemented for the

Internet tablets, which mimicked the native presence status control. In

addition to the presence control (online status), we added two new items;

the privacy settings and call filtering. These were implemented as sub

161

Usability

menus to the control menu, allowing the user to set the privacy mode

(Open, Relaxed and Paranoid) and the call filtering (Friends only, Friend

of friend, In your network and Everyone), as illustrated in Figure 8.5.

Figure 8.5. Snapshots of the Maemo status bar control interface. Both the privacy mode
and the call filtering could be configured, although the status of only one of
these were shown in the status bar icon.

The VoIP application provided standard instant messaging and voice

calls between users, as well as the ability to send and receive recommen-

dations and introductions. The application’s main interface (Figure 8.6(a))

consisted of a contacts manager where detailed information about con-

tacts could be viewed. This included images of the contact, simulated

location- and social networking updates, and any recommendations given

or received. The user could call, start a chat session or introduce (and

recommend) the contact to other users. Based on the feedback from the

mock-up tests, we clarified the direction of introductions through arrows,

and emphasize that the functionality was available even though the con-

tact was offline.

(a) The main UI of the prototype application

on Nokia N810.

(b) The extended call-notification view.

Figure 8.6. User interface for the P2P- aware VoIP application.

Upon receiving VoIP calls, an information panel was presented as part

of the phone call alert (Figure 8.6(b)). It contained images, recommen-

dations, the user’s social connection to the caller, as well as simulated

publicly available information (twitter tweets, search engine results) re-

garding the caller. This was designed to provide a richer experience than

162

Usability

what the ’awkward’ mock-ups had offered, providing a context to the so-

cial link (i.e., through what sort of communities the caller might be linked

to the callee).

8.4 Conclusions

In this chapter we have described how we have gathered user feedback

through different phases of creating the application and its UI in order

to make the emerging application and its unfamiliar security functional-

ity as understandable and usable to its intended users as possible. The

information gathered relates to current usage of mobile and Internet tele-

phony, and their perceived security. At each new phase of the design, we

used the previously gathered user feedback as input to guide the design

to better reflect user needs for the emerging application.

Privacy, both in terms of protecting your communication, as well as

knowing how to deal with unsolicited requests, is becoming more impor-

tant each day, affecting the type of communication technology we choose.

Our approach of utilizing social links has been well received, but the man-

ner in which they are presented has an impact of its perceived trustwor-

thiness. The interfaces we have created were considered a step in the

right direction, and can easily be adopted to similar systems.

However, only usage over an extended period of time would reveal if

the application enables security and privacy management that is both

acceptable and also desirable for the end users, and what will the effects

of habituation be on the actual usage.

163

Usability

164

9. Trials and future work

As part of the project, we conducted a trial of the prototype system within

the networking research group at Helsinki Institute for Information Tech-

nology HIIT.We distributed approximately 20 Nokia N810 Internet tablets

to our colleagues, with the encouragement that they would use the pro-

totype system for P2P voice and video calls. The goal of the trial was to

evaluate the system through hands-on experience. We hoped to gain feed-

back on both the concept itself, as well as the usability of our solutions

and actual implementation. As these were distributed in an early phase

of the development, we also expected the trials to help the implementation

process, as a larger user base could reveal programming faults faster.

The first challenge was to execute a smooth deployment of the test envi-

ronment. Instead of pre-installing all of the software and settings neces-

sary, we wanted to evaluate methods could also be used by real users, out-

side of our trials, to set up their own network. This would provide insight

into the deployment issues of the framework. Therefore, the only mod-

ification we decided to perform to the tablets was to upgrade the Linux

kernel version to support IPv6 and other extensions required by the HIP

daemon. This is an unusual and technical operation not commonly per-

formed by end-users.

During our evaluation with HTTP-based applications, we often had to

create different types of wrappers around the applications to make them

work with the interface provided by the framework (described in Chap-

ter 3.3.2). As examples of HTTP-based applications, we created a P2P file-

sharing application and a personal photocaster. The client applications

were often easy to configure. Most desktop web browsers can easily be set

to use the HTTP proxy interface of the prototype, resulting in intuitive

andmemorable URLs for the user (e.g., http://alice.at.p2pship.org/media).

The podcast client we used lacked support for HTTP proxies, but could use

165

Trials and future work

the URL-based interface. With the server software, we were required to

bundle additional bootstrapping applications or -scripts, as these needed

to be registered with the P2P proxy in order to serve requests.

SIP-based multimedia applications were much easier to use with the

system. The design of the SIP ecosystem fits the framework much better,

as registration of the clients is built into the protocol and these rely on the

SIP servers to relay traffic for them. All SIP applications we encountered

could be used unaltered with the prototype, just by configuring them to

use the P2P proxy as a SIP proxy.

To ease the installation of the software, we set up an application reposi-

tory containing the pre-compiled software packages. These are databases

containing software that the graphical application manager of the tablet

uses. Furthermore, the Maemo OS supports a mechanism of adding new

software repositories to the application manager by opening specially for-

matted repository configurations files. We created one for our repository

and distributed it through a web site as well as by email. This enabled

the prototype system to be installed with a few clicks using the built-in

application manager.

The next challenge was to configure the prototype system. As discussed

in Chapter 8.3.5, the security settings of the framework were accessed

through a status bar plug-in. The identities, however, still required man-

ual initialization and importing to be accessible by the prototype. Further-

more, these would also need to be signed by a trusted identity authority

in order to prevent impersonation.

The identity acquirement was solved by creating a web-based identity

authority service site. The site featured a simple interface for requesting

an identity and used email verification, limited to the hiit.f i domain, to

tie the identity to a real user. The identities were signed by an identity

authority created especially for the trials, and downloaded (after being

reviewed) in XML-formatted data files with the suffix .identity.

The prototype software package contained in addition to the software

a mime-type definition and a desktop integration description. The mime-

type definition added a new file type to the Maemo OS, the P2PSHIP iden-

tity package. This was designed to identify the identity packages down-

loaded from the identity service (files with the suffix .identity), and were

given the mime type application/x-p2pship-identity. The desktop inte-

gration description contains information about software, such as the type

of software, the services it provides and how it should be categorized (e.g.,

166

Trials and future work

a game, utility or graphics application). It also defined the content types

which the application manages. By adding the newly created mime type

as content type for the prototype, the identities would be automatically

installed from the web site after being downloaded.

Although the trial environment is still active, we can at this point high-

light some observations. It has helped us in improving the prototype,

identifying faults and unexpected complications. The installation proce-

dure can be considered successful, as each one of the participants was

able to install the software and acquire an identity with low effort. It

seemed that configuring the actual device was even harder: at the start of

the trial, many experienced problems connecting to each other. It seemed

that the users had formed two groups which could connect internally, but

not with each other. The problem was found to be the time zone setting

of the tablets. While initiating the device, it requires the user to config-

ure the current time and date. What went unnoticed by many was that

it also required you to specify the time zone. This resulted in some of the

users using the default (GMT), while others had configured the correct

(EEST). As these are two hours apart, the registration packets with a va-

lidity of one hour were either expired or not yet valid between two users

of different time zones.

Another observation has been the importance of presence. As discussed

in Chapter 3.3.1, we did not implement full presence support in the SIP

module. This was a clear underestimation of its importance, as it may

cause users to restrain from using the system (and seek an alternative

communication channel), as they are not sure whether the user will re-

spond. Finally, the power-saving techniques used by the tablets often

caused problems. As it is a mobile, resource-limited device with a lim-

ited power supply, it has advanced methods of powering down components

when not active. One of these is the WLAN interface and the networking

stack. In centralized communication systems, the communication appli-

cation periodically polls the service provider for updates, keeping a line

open for incoming requests. In the P2P system, this is not always the

case, which caused users to be unavailable unless they had engaged in

some sort of network activity recently. This, however, can be addressed by

maintaining artificial connections or actively participating in an overlay

network.

167

Trials and future work

9.1 Application experiments

The trial environment has inspired the development of a number of addi-

tional extensions and framework-aware applications that illustrate how

the environment can used. In the following we provide a brief description

of some of these.

ShipSharing. ShipSharing is a web-based social content-sharing ap-

plication that utilizes the P2P HTTP interface of the prototype. The goal

was to create a web-based content-sharing site that allows users to better

control how and to whom the content is exposed. We created a small social

networking site, similar to Facebook1, that lets users establish friendships

and interact with each other. The site featured a personal wall (writable

note board accessible for the user and his friends) and a content-sharing

page for each user. The site allowed content such as images, videos and

documents to be shared with users that had been accepted as friends.

However, the site used the P2P framework for actually delivering the con-

tent.

A content management application, implemented in the Python script-

ing environment of the prototype, was installed on the user’s device. This

provided content-sharing services through the P2P HTTP interface by

featuring a generic interface that accepted requests for sharing content

(opening a dialog allowing the user to choose the content to be shared)

and accessing the content that had been shared. When adding content to

the social networking site, it was not uploaded to the site itself. Instead,

the site used the framework to issue a P2P request to the user’s content

management application requesting for new content to be shared. After

the user had chosen the content to share (or rejected the request), the

content itself was not transmitted, only an identifier used as index by the

content management application.

The social networking site used this index when rendering the user’s

shared content page. As the site did not have possession of the actual

content, it only linked it to the site by providing a reference to the content

sharing application of that user. This meant that the actual content was

fetched using P2P HTTP from the user when viewing the page, with the

content management application allowing the owner to restrict to whom

the content was shared. The user could set rules for how content was

shared, which could result in some being shown while other content was

1http://www.facebook.com

168

Trials and future work

inaccessible.

The experience we got from using the site was encouraging. Although

the content sharing suffered from availability issues (users being offline

or on slow Internet connections), the concept itself seemed to work. And

as we only experimented with one application, we have not explored the

full potential of such a system. The content-sharing application attached

to the P2P framework provided, as stated, a very generic interface. The

requests for sharing of content provided a parameter specifying the type

of content to be shared. This enables the same application to be used for

other sites (and content types) as well, which would in turn allow the user

to manage the content shared throughout all these sites from one location.

We later ported the content sharing web application to the popular so-

cial networking site Facebook as well. This was possible through the

Facebook application interface, which allows third-party applications to

be used within it. Although the social networking is managed by Face-

book, the content is transferred P2P, allowing users to better control with

whom content is shared. The application is hosted at

http://apps.facebook.com/shipsharing.

CoffeeSipper. The CoffeeSipper prototype consists of a custom SIP-

based Internet video call application designed for the Internet tablets.

When receiving a call, it automatically answers it and begins to stream

the video feed from the built-in camera. It was originally intended as a

playful P2P version of the Trojan room coffee camera2, but can be used for

any type of surveillance. Furthermore, support for SIP instant messaging

has been added, allowing users to send messages which are shown on the

display. The application is maintained at the SPEAR project repository3.

DoorPlates. The DoorPlates application consists of a UI and a custom

SIP client that is intended to replace the static room door plates (dis-

playing the names of the inhabitants) seen in offices. By replacing these

plates with an Internet tablet, we are able to provide additional, and more

dynamic, information. For instance, the SIP presence of the inhabitants

could be indicated on the UI. Status information can be sent directly from

the inhabitant’s P2P SIP application using an instant message to the door

plate. When away, visitors could use the door plate to make a video call or

leave a message, which is delivered as an instant message. The system is

also maintained at the SPEAR project repository.

2http://en.wikipedia.org/wiki/Trojan_Room_coffee_pot
3http://code.google.com/p/p2pship

169

Trials and future work

SIP Gateway

The SIP integration enabled the framework to be used with a range of

real-time communication software, but only to communicate with other

users of the P2P network. This was experienced as restrictive and incon-

venient, as other applications were needed to contact friends that were

not part of the trial. Furthermore, there may be communication systems

that can not be converted to the P2P model, as they need centralized con-

trol for special security policies or billing. This led us to examine how the

P2P SIP communication could interact and co-exist with traditional, cen-

tralized, SIP architectures. In more general terms, we set out to find how

P2P real-time communication systems can co-exist with centralized ones.

This would provide a more realistic user experience, as we are able to use

the same application for all our communication, whether P2P or not.

Interaction with an external SIP system was designed using a gateway

architecture. The SIP signaling is routed to a gateway adaptor plug-in

of the prototype, which forwards it to an external SIP server. Although

each user can act as a gateway itself, the gateway may also reside on

a remote peer. This might be useful for corporate environments, where

the management of the external accounts is centralized to a stable, well-

connected and -protected, peer server.

The gateway functionality was implemented in the prototype using redi-

rection rules. When receiving SIP signaling, the target of the message is

compared against a set of regular expressions to see whether the mes-

sage should be sent to the recipient directly, or redirected to another

peer. For instance, a rule stating that targets matching the expression

.∗@example.com should be redirected to gateway@p2p.example.com, would

result in all signaling to users of the example.com domain to be routed to

the peer gateway@p2p.example.com.

A remote gateway peer consists of two functionally separate entities: the

gateway peer (a P2P peer), and the attached gateway adaptor. The gate-

way peer receives the redirected signaling and compares it against its own

set of rules. These rules includes who is allowed to use the gateway (the

source peer of the SIP signaling), for whom it relays (the recipient of the

messages) and where the gateway adaptor is located (network address).

If the signaling conforms to these rules, the SIP message is sent to the

gateway adaptor for processing. The gateway adaptor is also responsible

for translating the identities of the SIP signaling into those used by the

external system through an account-mapping database.

170

Trials and future work

The gateway adaptor is in this way responsible for maintaining the user

accounts of the external systems and mapping these to the P2P identities.

For instance, a gateway to Skype mightmap the identity alice@p2psip.info

to alice_on_skype. A one-to-one mapping is not strictly necessary (all iden-

tities can be configured to a single one), but this would lead to all calls

from within the P2P system seeming to be coming from the same user.

Furthermore, receiving calls from the external system would not be possi-

ble, as the external identity maps to several P2P identities. The gateway

adaptor performs this substitution and forwards the message to the proxy

of the external system. Figure 9.1 illustrates this flow. The gateway adap-

tor is naturally also responsible for keeping the registrations to the exter-

nal systems alive. This might cause confusion when placing calls from

the external system, as the user may seem available (as the registration

is maintained by the gateway adaptor), but the actual recipient is not.

Figure 9.1. Sample signaling flow when placing a call to a user of an external system.

The gateway adaptor can be part of the local proxy, but is designed as

a separate entity and may be moved to another location, as discussed. In

general, as it will contain the usernames and passwords to the external

system for all the users it serves, it will be a trusted authority and pro-

tected accordingly. This does create a lucrative target for attacks, which

is a weakness of the design. However, as noted, some systems may re-

quire such a set-up, as the interface to the external system might not be

accessible to normal users, such as company-internal telephone systems.

Systems with weak security can also benefit from being accessible only

through a gateway peer, as they can leverage the strong security offered

by the P2P framework. But for accessing normal public systems, a dedi-

cated remote peer is not needed.

171

Trials and future work

9.2 Future work

The framework presented in this dissertation has been designed as a plat-

form for exploring different issues applications operating in future net-

works may face. We have concentrated our efforts on building a generic

model deployable in current networks, compatible with existing applica-

tions. The model is simple, providing applications with basic connectiv-

ity and identity management, designed to be portable to different types

of network environments. This has provided a good start, allowing us

to rapidly develop our system and concentrate on addressing security is-

sues. To proceed however, we will need to look beyond integrating existing

applications and consider how future applications, aware of the network

environment, are designed.

We will continue the work by designing a run-time environment for na-

tive applications of the framework. This environment will provide appli-

cations greater access to the overlay network, not only for connection es-

tablishment, but also for features such as shared storage. We believe that

this will allow us to examine how future applications will use network

services, which correlates to how the networks need to be structured. Our

aim is to develop an interface which provides applications with a suffi-

cient amount of flexibility to accomplish complex tasks while remaining

simple and adaptable to different environments.

This will take us towards more data-oriented networking architectures

and publish-subscribe paradigms, which we have so far only brushed upon,

to be able to achieve the level of efficiency needed. Although many such

models have been proposed, the details of how exactly different types of

applications would be implemented in these environments has not been

explored. We would examine the most popular networking applications

and services used today and see how, if at all, they can be adapted to

distributed environments. In these environments, we imagine each peer

having the applications themselves, but often an incomplete or not cur-

rent view of the data set. This raises questions about who is allowed to

modify the shared database, or whose input we accept, which can result

in highly subjective views of the available data. This is what we intent to

explore with the native applications.

Another development track we will continue on is the identity man-

agement. As the legacy applications are currently unaware of the cross-

application identities, we are unable to fully leverage the potential syn-

172

Trials and future work

ergy. By allowing applications access to the identity management and

trust database could enable more precise and secure application behavior.

173

Trials and future work

174

10. Conclusions

As the Internet grows closer to the limits of what the current architec-

ture can handle, we look for new solutions in network management and

application design which would allow for more robust, scalable and effi-

cient networking. Currently network services are dominated by central-

ized models. Large data sets are stored on (logically) single nodes, and

users are forced to route traffic great distances through remote servers,

even when both parties are physically near, sharing the same local access

point.

Distributed models and use of P2P technologies in application design

has been a natural step towards a more scalable networking environ-

ment. On the network level, we see data-oriented and publish-subscribe

architectures proposed as solutions, providing better network efficiency

for many applications.

The concept of P2P and distributed applications is well known and there

exists a myriad of different implementations today. However, these are

exclusively highly focused applications, completing only a single task or

providing a specific service. For each one, new infrastructure has to be

deployed, security issues resolved and an identity scheme established. As

we look for new solutions, we must also realize that it is not only the

size of the network, the amount of content and users, that has grown,

but the way the network is used has changed as well. Today we access

the Internet from a variety of different devices in different places, using a

multitude of access technologies.

In this dissertation, we have explored the implications of a generic,

cross-application, P2P framework. With this framework, we have tried

to simulate a future networking environment that applications may face,

and studied security and other issues associated with it. We have shown

through a prototype implementation that such a framework can be de-

175

Conclusions

ployed in existing networks by using existing infrastructure and advanced

networking protocols, and can be used even by current, existing, applica-

tions.

Much of our research has revolved around identity management and

trust. We have identified, and addressed, privacy issues and experimented

with leveraging cross-application identities to create a safer networking

environment. Finally, we have highlighted the importance of identity mo-

bility and how these may form the cornerstone of networking security in

the future.

We feel that our work has been fruitful, and provided a way of exper-

imenting with different models for how applications could work in the

networking environments we are headed for. Much of the research on fu-

ture networking has been concentrated on either efficient network archi-

tectures or enhancing the application use in the current architecture. In

this dissertation, we have combined these and examined how applications

could be enhanced and adopted to a future networking environment.

176

Bibliography

[1] Mailvelope–openpgp encryption for webmail.
https://www.mailvelope.com/.

[2] The <module> tag. http://json.org/module.html.

[3] Openid foundation website. http://openid.net/. Referenced: 2010-02-24.

[4] Webpg–bringing gnupg/pgp to the web browser. https://webpg.org/.

[5] Karl Aberer and Zoran Despotovic. Managing trust in a peer-2-peer in-
formation system. In Proceedings of the tenth international conference on
Information and knowledge management, CIKM ’01, pages 310–317, New
York, NY, USA, 2001. ACM.

[6] Mark S. Ackerman, Lorrie Faith Cranor, and Joseph Reagle. Privacy in
e-commerce: examining user scenarios and privacy preferences. In Pro-
ceedings of the ACM Conference on Electronic Commerce, 1999.

[7] Anne Adams and Martina Angela Sasse. Users are not the enemy. Com-
mun. ACM, 42(12):40–46, December 1999.

[8] Eytan Adar and Bernardo A. Huberman. Free riding on Gnutella. First
Monday, 5(10), October 2000.

[9] Daniel Adkins, Karthik Lakshminarayanan, Adrian Perrig, and Ion Sto-
ica. Towards a more functional and secure network infrastructure. Tech-
nical Report UCB/CSD-03-1242, 2003.

[10] Mark Allman, Christian Kreibich, Vern Paxson, Robin Sommer, and
Nicholas Weaver. The strengths of weaker identities: opportunistic per-
sonas. In Proceedings of the 2nd USENIX workshop on Hot topics in secu-
rity (HOTSEC’07), pages 1–6, Berkeley, CA, USA, 2007. USENIX Associa-
tion.

[11] Paulo Sérgio Almeida, Carlos Baquero, Nuno Preguiça, and David Hutchi-
son. Scalable bloom filters. Inf. Process. Lett., 101(6):255–261, March 2007.

[12] Artur Andrzejak and Zhichen Xu. Scalable, efficient range queries for grid
information services. In Proceedings of the Second International Confer-
ence on Peer-to-Peer Computing (P2P ’02), page 33, Washington, DC, USA,
2002. IEEE Computer Society.

[13] Apache HTTP Server Project. http://httpd.apache.org/.

177

Bibliography

[14] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun
Venkataramani. Energy consumption in mobile phones: a measure-
ment study and implications for network applications. In Proceedings of
the 9th ACM SIGCOMM conference on Internet measurement conference,
IMC ’09, pages 280–293, New York, NY, USA, 2009. ACM.

[15] Dirk Balfanz, Glenn Durfee, Rebecca E. Grinter, and Diana K. Smetters.
In search of usable security: Five lessons from the field. IEEE Security &
Privacy, 2(5):19–24, 2004.

[16] Farnoush Banaei-kashani, Ching chien Chen, and Cyrus Shahabi. Wspds:
Web services peer-to-peer discovery service. In Proceedings of the Interna-
tional Conference on Internet Computing, pages 733–743, 2004.

[17] S. A. Baset and H. G. Schulzrinne. An analysis of the skype Peer-to-Peer
internet telephony protocol. In Proceedings 25th IEEE International Con-
ference on Computer Communications (INFOCOM 2006), 2006.

[18] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman. The
Secure Real-time Transport Protocol (SRTP). RFC 3711 (Proposed Stan-
dard), March 2004. Updated by RFC 5506.

[19] Ingmar Baumgart. P2pns: A secure distributed name service for p2psip.
In Proceedings of the 2008 Sixth Annual IEEE International Conference on
Pervasive Computing and Communications, pages 480–485, Washington,
DC, USA, 2008. IEEE Computer Society.

[20] A. R. Bharambe, C. Herley, and V. N. Padmanabhan. Analyzing and Im-
proving a BitTorrent Networks Performance Mechanisms. In Proceedings
of the 25th IEEE International Conference on Computer Communications
(INFOCOM 2006), April 2006.

[21] Ashwin R. Bharambe, Mukesh Agrawal, and Srinivasan Seshan. Mercury:
supporting scalable multi-attribute range queries. SIGCOMM Comput.
Commun. Rev., 34(4):353–366, 2004.

[22] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13:422–426, July 1970.

[23] David A. Bryan, Bruce Lowekamp, and Cullen Jennings. Sosimple: A
serverless, standards-based, p2p sip communication system. In AAA-
IDEA, pages 42–49. IEEE Computer Society, 2005.

[24] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. OpenPGP
Message Format. RFC 4880 (Proposed Standard), November 2007. Up-
dated by RFC 5581.

[25] G. Camarillo and A. Keränen. Host Identity Protocol (HIP) Multi-Hop
Routing Extension. RFC 6028 (Experimental), October 2010.

[26] G. Camarillo and J. Melen. HIP (Host Identity Protocol) Immediate Car-
riage and Conveyance of Upper- layer Protocol Signaling (HICCUPS).
http://www.ietf.org/internet-drafts/draft-ietf-hip-hiccups-05.txt, July 2010.
Work in progress.

178

Bibliography

[27] G. Camarillo, P. Nikander, and J. Hautakorpi. IP BONE: Host
Identity Protocol (HIP) Based Overlay Networking Environment.
http://www.ietf.org/internet-drafts/draft-camarillo-hip-bone-00.txt,
November 2007. Work in progress.

[28] B. Campbell, R. Mahy, and C. Jennings. The Message Session Relay Pro-
tocol (MSRP). RFC 4975 (Proposed Standard), September 2007.

[29] B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitema, and D. Gurle. Ses-
sion Initiation Protocol (SIP) Extension for Instant Messaging. RFC 3428
(Proposed Standard), December 2002.

[30] B. Carpenter and K. Moore. Connection of IPv6 Domains via IPv4 Clouds.
RFC 3056 (Proposed Standard), February 2001.

[31] Maciej Ceglowski and Joshua Schachter. Loaf, a simple emailextension
for contactrecognition using bloomfilter. http://loaf.cantbedone.org. Refer-
enced: 2010-02-24.

[32] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.
Freenet: A distributed anonymous information storage and retrieval sys-
tem. In Proceedings of the International Workshop on Designing Privacy
Enhancing Technologies: Design Issues in Anonymity and Unobservability,
pages 46–66, New York, NY, USA, 2001. Springer-Verlag New York, Inc.

[33] Florence Clevenot and Philippe Nain. A simple fluid model for the anal-
ysis of the squirrel peer-to-peer caching system. In Proceedings of IEEE
INFOCOM, Hong Kong, March 2004.

[34] Bram Cohen. Incentives build robustness in BitTorrent.
http://bitconjurer.org/BitTorrent/bittorrentecon.pdf, May 2003.

[35] N.J. Croft and M.S. Olivier. A model for spam prevention in IP telephony
networks using anonymous verifying authorities. In Proceedings of the
ISSA New Knowledge Today Conference, April 2005.

[36] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion
Stoica. Wide-area cooperative storage with cfs. SIGOPS Oper. Syst. Rev.,
35:202–215, October 2001.

[37] Ernesto Damiani, De Capitani di Vimercati, Stefano Paraboschi,
Pierangela Samarati, and Fabio Violante. A reputation-based approach
for choosing reliable resources in peer-to-peer networks. In Proceedings of
the 9th ACM conference on Computer and communications security, CCS
’02, pages 207–216, New York, NY, USA, 2002. ACM.

[38] Alexander J. DeWitt and Jasna Kuljis. Aligning usability and security: a
usability study of polaris. In Lorrie Faith Cranor, editor, SOUPS, volume
149 of ACM International Conference Proceeding Series, pages 1–7. ACM,
2006.

[39] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard), August 2008.

[40] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, IT-22(6):644–654, 1976.

179

Bibliography

[41] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th Conference on USENIX
Security Symposium - Volume 13, SSYM’04, pages 21–21, Berkeley, CA,
USA, 2004. USENIX Association.

[42] John R. Douceur. The sybil attack. In Revised Papers from the First In-
ternational Workshop on Peer-to-Peer Systems (IPTPS ’01), pages 251–260,
London, UK, 2002. Springer-Verlag.

[43] D. Eastlake 3rd and P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC
3174 (Informational), September 2001. Updated by RFC 4634.

[44] Fatih Emekci, Ozgur D. Sahin, Divyakant Agrawal, and Amr El Abbadi.
A peer-to-peer framework for web service discovery with ranking. In Pro-
ceedings of the IEEE International Conference on Web Services (ICWS ’04),
page 192, Washington, DC, USA, 2004. IEEE Computer Society.

[45] Eyeball AntiSPIT Server. http://www.eyeball.com/products/anti_spit_ser-
ver.html.

[46] Michael Farb, Yue-Hsun Lin, Tiffany Hyun-Jin Kim, Jonathan McCune,
and Adrian Perrig. Safeslinger: easy-to-use and secure public-key ex-
change. In Proceedings of the 19th annual international conference on Mo-
bile computing and networking, MobiCom ’13, pages 417–428, New York,
NY, USA, 2013. ACM.

[47] Michal Feldman and John Chuang. Overcoming free-riding behavior in
peer-to-peer systems. SIGecom Exch., 5:41–50, July 2005.

[48] Michal Feldman, Christos Papadimitriou, John Chuang, and Ion Stoica.
Free-riding and whitewashing in peer-to-peer systems. In Proceedings
of the ACM SIGCOMM workshop on Practice and theory of incentives in
networked systems, PINS ’04, pages 228–236, New York, NY, USA, 2004.
ACM.

[49] Bryan Ford, Pyda Srisuresh, and Dan Kegel. Peer-to-peer communication
across network address translators. In Proceedings of the annual confer-
ence on USENIX Annual Technical Conference (ATEC ’05), pages 13–13,
Berkeley, CA, USA, 2005. USENIX Association.

[50] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luo-
tonen, and L. Stewart. HTTP Authentication: Basic and Digest Access
Authentication. RFC 2617 (Draft Standard), June 1999.

[51] Prasanna Ganesan, Beverly Yang, and Hector Garcia-molina. One torus to
rule them all: Multi-dimensional queries in p2p systems. In Proceedings
of the 7th International Workshop on the Web and Databases (WebDB’04).
ACM Press, 2004.

[52] Guido Gehlen and Linh Pham. Mobile web services for peer-to-peer appli-
cations. In Consumer Communications and Networking Conference, 2005.
CCNC. 2005 Second IEEE, pages 427 – 433, 2005.

[53] Dimitris Geneiatakis, Georgios Kambourakis, Tasos Dagiuklas, Costas
Lambrinoudakis, and Stefanos Gritzalis. SIP security mechanisms: A
state-of-the-art review. In Proceedings of the 5th International Network
Conference, pages 147–155. ACM, 2005.

180

Bibliography

[54] Nathaniel S. Good and Aaron Krekelberg. Usability and privacy: a study of
kazaa p2p file-sharing. In Proceedings of the SIGCHI conference on Human
factors in computing systems (CHI ’03), pages 137–144, New York, NY,
USA, 2003. ACM.

[55] Ben Greenstein, Damon McCoy, Jeffrey Pang, Tadayoshi Kohno, Srini-
vasan Seshan, and David Wetherall. Improving wireless privacy with
an identifier-free link layer protocol. In Proceeding of the 6th interna-
tional conference on Mobile systems, applications, and services (MobiSys
’08), pages 40–53, New York, NY, USA, 2008. ACM.

[56] Saikat Guha, Neil Daswani, and Ravi Jain. An experimental study of
the skype peer-to-peer voip system. In Emin Gün Sirer and Ben Y. Zhao,
editors, IPTPS, 2006.

[57] Deke Guo, Honghui Chen, and Xueshan Luo. Theory and network appli-
cations of dynamic bloom filters. In Proceedings of the 25th Annual Joint
Conference of the IEEE Computer and Communications Societies (INFO-
COM, 2006.

[58] Abhishek Gupta, Divyakant Agrawal, and Amr El Abbadi. Approximate
range selection queries in peer-to-peer systems. In Proceedings of the First
Biennal Conference on Innovative Data Systems Research (CIDR), pages
141–151, 2003.

[59] Andrei Gurtov. Host Identity Protocol (HIP): Towards the Secure Mobile
Internet. Wiley and Sons, 2008.

[60] Selim Gurun, Priya Nagpurkar, and Ben Y. Zhao. Energy consumption
and conservation in mobile peer-to-peer systems. In Proceedings of the 1st
international workshop on Decentralized resource sharing in mobile com-
puting and networking, MobiShare ’06, pages 18–23, New York, NY, USA,
2006. ACM.

[61] E. Guttman, C. Perkins, J. Veizades, andM. Day. Service Location Protocol,
Version 2. RFC 2608 (Proposed Standard), June 1999. Updated by RFC
3224.

[62] Matthew Harren, Joseph M. Hellerstein, Ryan Huebsch, Boon Thau Loo,
Scott Shenker, and Ion Stoica. Complex queries in dht-based peer-to-peer
networks. InRevised Papers from the First InternationalWorkshop on Peer-
to-Peer Systems (IPTPS ’01), pages 242–259, London, UK, 2002. Springer-
Verlag.

[63] G. Lopez D. Hautakorpi, J. Camarillo. Framework for decentralizing
legacy applications. In Proceedings of the 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGRID ’09), pages 544
– 549.

[64] J. Hautakorpi, G. Camarillo, and J. Koskela. Utilizing HIP (Host
Identity Protocol) for P2PSIP (Peer-to-peer Session Initiation Proto-
col). http://www.ietf.org/internet-drafts/draft-camarillo-hip-bone-00.txt,
December 2007. Work in progress.

[65] J. Hautakorpi, A. Salinas, E. Harjula, and M. Ylianttila. Interconnecting
P2PSIP and IMS. In Proceedings of the Second International Conference on

181

Bibliography

Next GenerationMobile Applications, Services and Technologies (NGMAST
’08), pages 83 – 88, Sep 2008.

[66] Juho Heikkilä and Andrei Gurtov. Filtering SPAM in P2PSIP communities
with Web of Trust. In Proceedings of the First International ICST Confer-
ence on Security and Privacy in Mobile Information and Communication
Systems (MobiSec 2009), pages 110–121, 2009.

[67] HIP for inter.net Project. http://www.hip4inter.net/.

[68] HIP for Linux. http://hipl.hiit.fi.

[69] Liao Hongluan, Peng Jin, Yu Zhenyu, and Wang Yiwen. A reload usage
for distributed conference media processing. http://www.ietf.org/internet-
drafts/draft-liao-p2psip-dcmp-01.txt, October 2010. Work in progress.

[70] Shiang-Ming Huang, Quincy Wu, and Yi-Bing Lin. Enhancing teredo ipv6
tunneling to traverse the symmetric nat. Communications Letters, IEEE,
10:408 – 410, May 2006.

[71] C. Huitema. Teredo: Tunneling IPv6 over UDP through Network Address
Translations (NATs). RFC 4380 (Proposed Standard), February 2006.

[72] IETF HIP working group. http://www.ietf.org/html.charters/hip-
charter.html.

[73] IETF P2PSIP WG. http://www.ietf.org/dyn/wg/charter/simple-
charter.html.

[74] IETF P2PSIP working group. http://www.ietf.org/html.charters/p2psip-
charter.html.

[75] Tomas Isdal, Michael Piatek, Arvind Krishnamurthy, and Thomas Ander-
son. Privacy-preserving p2p data sharing with oneswarm. In Proceedings
of the ACM SIGCOMM 2010 Conference, SIGCOMM ’10, pages 111–122,
New York, NY, USA, 2010. ACM.

[76] Sitaram Iyer, Antony Rowstron, and Peter Druschel. Squirrel: a decen-
tralized peer-to-peer web cache. In Proceedings of the twenty-first annual
symposium on Principles of distributed computing (PODC ’02), pages 213–
222, New York, NY, USA, 2002. ACM.

[77] M. Izal, Guillaume Urvoy-Keller, Ernst W. Biersack, P. A. Felber,
A. Al Hamra, and L. Garcés-Erice. Dissecting BitTorrent: Five Months in
a Torrent’s Lifetime. In Passive and Active Network Measurement, pages
1–11. 2004.

[78] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne. RE-
source LOcation And Discovery (RELOAD). http://www.ietf.org/internet-
drafts/draft-ietf-p2psip-reload-00.txt, July 2008. Work in progress.

[79] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne.
REsource LOcation And Discovery (RELOAD) Base Protocol.
http://www.ietf.org/internet-drafts/draft-ietf-p2psip-base-07.txt, February
2010. Work in progress.

182

Bibliography

[80] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne. A
sip usage for reload. http://www.ietf.org/internet-drafts/draft-ietf-p2psip-
sip-05.txt, July 2010. Work in progress.

[81] C. Jennings, J. Peterson, andM. Watson. Private Extensions to the Session
Initiation Protocol (SIP) for Asserted Identity within Trusted Networks.
RFC 3325 (Informational), November 2002.

[82] P. Jokela, R. Moskowitz, and P. Nikander. Using ESP transport for-
mat with HIP. http://www.ietf.org/internet-drafts/draft-ietf-hip-esp-06.txt,
June 2007. Work in progress.

[83] K. Singh and H. Schulzrinne. Peer-to-peer internet telephony using sip.
In Wu chi Feng and Ketan Mayer-Patel, editors, NOSSDAV, pages 63–68.
ACM, 2005.

[84] Linda Källström, Simone Leggio, Jukka Manner, Tommi Mikkonen,
Kimmo E. E. Raatikainen, Jussi Saarinen, Sanna Suoranta, and Antti
Ylä-Jääski. A framework for seamless service interworking in ad-hoc net-
works. Computer Communications, 29(16):3277–3294, 2006.

[85] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The
eigentrust algorithm for reputation management in p2p networks. In Pro-
ceedings of the 12th international conference on World Wide Web, WWW
’03, pages 640–651, New York, NY, USA, 2003. ACM.

[86] Chris Kanich, Christian Kreibich, Kirill Levchenko, Brandon Enright, Ge-
offrey M. Voelker, Vern Paxson, and Stefan Savage. Spamalytics: an
empirical analysis of spam marketing conversion. In Proceedings of the
15th ACM conference on Computer and communications security, CCS ’08,
pages 3–14, New York, NY, USA, 2008. ACM.

[87] Murat Karakaya, Ibrahim Korpeoglu, and Özgür Ulusoy. Free riding in
peer-to-peer networks. IEEE Internet Computing, 13:92–98, March 2009.

[88] Otso Kassinen, Erkki Harjula, and Mika Ylianttila. Suitability of dht-
based peer-to-peer session initiation protocol for wireless distributed ser-
vices. In Proceedings 12th International Symposium on Wireless Personal
Multimedia Communications, September 2009.

[89] Otso Kassinen, Zhonghong Ou, Mika Ylianttila, and Erkki Harjula. Ef-
fects of peer-to-peer overlay parameters on mobile battery duration and
resource lookup efficiency. In Proceedings of the 7th International Con-
ference on Mobile and Ubiquitous Multimedia, MUM ’08, pages 177–180,
New York, NY, USA, 2008. ACM.

[90] Koskela T Kassinen O and Ylianttila M. Using unstructured service sup-
plementary data signaling for mobile peer-to-peer invocations. In Proceed-
ings 12th International Symposium onWireless Personal Multimedia Com-
munications, Sendai, Japan, September 2009.

[91] I. Kelenyi and J.K. Nurminen. Energy-consumption in mobile peer-to-peer
- quantitative results from file sharing. In IEEE International Conference
on Communications Workshops, 2008. ICC Workshops ’08., pages 164 –
168, Beijing, May 2008.

183

Bibliography

[92] Imre Kelényi and Jukka K. Nurminen. Optimizing energy consumption
of mobile nodes in heterogeneous kademlia-based distributed hash tables.
In Proceedings of the 2008 The Second International Conference on Next
Generation Mobile Applications, Services, and Technologies, pages 70–75,
Washington, DC, USA, 2008. IEEE Computer Society.

[93] A. Keränen, G. Camarillo, and J. Mäenpaa. Host Identity Protocol-
Based Overlay Networking Environment (HIP BONE) Instance
Specification for REsource LOcation And Discovery (RELOAD).
http://www.ietf.org/internet-drafts/draft-ietf-hip-reload-instance-03 .txt,
January 2011. Work in progress.

[94] A. Khurri, E. Vorobyeva, and A. Gurtov. Performance of host identity proto-
col on lightweight hardware. In Proceedings of the ACM SIGCOMMWork-
shop on Mobility in the Evolving Internet Architcture MobiArch’07, pages
27–34. ACM, 2007.

[95] A. Knauf, G. Hege, T C. Schmidt, and M. Waehlisch. A reload usage
for distributed conference control (DisCo). http://www.ietf.org/internet-
drafts/draft-knauf-p2psip-disco-01.txt, December 2010. Work in progress.

[96] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolin-
skiy, Kye Hyun Kim, Scott Shenker, and Ion Stoica. A data-oriented
(and beyond) network architecture. SIGCOMM Comput. Commun. Rev.,
37(4):181–192, 2007.

[97] Dmitry Korzun, Boris Nechaev, and Andrei Gurtov. Cyclic routing:
Generalizing lookahead in peer-to-peer networks. In Proceedings ot
the 7th IEEE/ACS Int’l Conf. on Computer Systems and Applications
(AICCSA2009), pages 697–704. IEEE Computer Society, May 2009.

[98] Joakim Koskela. A HIP-based peer-to-peer communication system. In
Proceedings of the 15th International Conference on Telecommunications
(ICT2008), pages 1–7, June 2008.

[99] Joakim Koskela and Andrei Gurtov. A secure peer-to-peer web framework.
In Proceedings of the 2010 IEEE International Symposium on A World of
Wireless, Mobile and Multimedia Networks (WoWMoM), WOWMOM ’10,
pages 1–6, Washington, DC, USA, 2010. IEEE Computer Society.

[100] Joakim Koskela, Juho Heikkilä, and Andrei Gurtov. Poster abstract: a
secure P2P SIP system with SPAM prevention. Mobile Computing and
Communications Review, (3):26–29.

[101] Joakim Koskela, Kristiina Karvonen, and Theofanis Kilinkaridis. Usable
and secure P2P VoIP for mobile use. In International Journal of Mobile
Human Computer Interaction (IJMHCI) Accepted for publication, Hershey,
PA, USA, 2015. IGI Global.

[102] Joakim Koskela, Kristiina Karvonen, Theofanis Kilinkaridis, and Andrei
Gurtov. Secure and usable P2P VoIP for mobile devices. In Proceedings
of the 12th international conference on Human computer interaction with
mobile devices and services, MobileHCI ’10, pages 439–442, New York, NY,
USA, 2010. ACM.

184

Bibliography

[103] Joakim Koskela and Sasu Tarkoma. Simple peer-to-peer SIP privacy.
In Proceedings of the First International ICST Conference on Security
and Privacy in Mobile Information and Communication Systems (MobiSec
2009), pages 226–237, 2009.

[104] Joakim Koskela, Nicholas Weaver, Andrei Gurtov, and Mark Allman.
Securing web content. In Proceedings of the 2009 workshop on Re-
architecting the internet (ReArch ’09), pages 7–12, New York, NY, USA,
2009. ACM.

[105] Timo Koskela, Janne Julkunen, Jari Korhonen, Meirong Liu, and Mika
Ylianttila. Leveraging collaboration of peer-to-peer and web services. In
Proceedings of the 2008 The Second International Conference on Mobile
Ubiquitous Computing, Systems, Services and Technologies, pages 496–
501, Washington, DC, USA, 2008. IEEE Computer Society.

[106] Timo Koskela, Nonna Kostamo, Otso Kassinen, Juuso Ohtonen, and Mika
Ylianttila. Towards context-aware mobile web 2.0 service architecture. In
Proceedings of the International Conference on Mobile Ubiquitous Com-
puting, Systems, Services and Technologies, pages 41–48, Washington, DC,
USA, 2007. IEEE Computer Society.

[107] TaiJin Lee, JongIl Jeong, HyungJong Kim, HyunChul Jeong, and YooJae
Won. User reputation based voip spam defense architecture. In Pro-
ceedings of the 23rd international conference on Information Networking
(ICOIN’09), pages 161–165, Piscataway, NJ, USA, 2009. IEEE Press.

[108] Simone Leggio, Jukka Manner, and Kimmo E. E. Raatikainen. A secure
sip-based instant messaging and presence framework for ad-hoc networks.
In GLOBECOM. IEEE, 2006.

[109] Dave Levin, Katrina LaCurts, Neil Spring, and Bobby Bhattacharjee. Bit-
torrent is an auction: analyzing and improving bittorrent’s incentives. In
Proceedings of the ACM SIGCOMM 2008 conference on Data communica-
tion, SIGCOMM ’08, pages 243–254, New York, NY, USA, 2008. ACM.

[110] Prakash Linga, Indranil Gupta, and Ken Birman. A churn-resistant peer-
to-peer web caching system. In Proceedings of the 2003 ACM workshop
on Survivable and self-regenerative systems (SSRS ’03), pages 1–10, New
York, NY, USA, 2003. ACM.

[111] Yi Lu, Weichao Wang, B. Bhargava, and Dongyan Xu. Trust-based privacy
preservation for peer-to-peer data sharing. Systems, Man and Cybernetics,
Part A, IEEE Transactions on, 36(3):498–502, May 2006.

[112] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and
replication in unstructured peer-to-peer networks. In Proceedings of the
16th international conference on Supercomputing, ICS ’02, pages 84–95,
New York, NY, USA, 2002. ACM.

[113] D. MacIntosh, R. Vinokurov. Detection and mitigation of spam in ip tele-
phony networks using signaling protocol analysis. In Advances in Wired
and Wireless Communication, 2005 IEEE/Sarnoff Symposium on.

[114] Verdi March and Yong Meng Teo. Multi-attribute range queries on read-
only dht. In Computer Communications and Networks, 2006. ICCCN 2006.

185

Bibliography

Proceedings.15th International Conference on, pages 419–424, Arlington,
VA, USA, 2006.

[115] M Matuszewski and E Kokkonen. Mobile p2psip - peer-to-peer sip com-
munication in mobile communities. In Consumer Communications and
Networking Conference, 2008. CCNC 2008. 5th IEEE, pages 1159 – 1165,
Las Vegas, NV, Jan 2008.

[116] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer infor-
mation system based on the xor metric. In Revised Papers from the First
International Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 53–65,
London, UK, 2002. Springer-Verlag.

[117] Messaging Anti-Abuse Working Group. Email metrics program: the net-
work operator’s perspective, report #7, April 2008.

[118] Miredo : Teredo IPv6 tunneling for Linux and BSD.
http://www.remlab.net/miredo/.

[119] Mobile Web Server. http://betalabs.nokia.com/betas/view/mobile-web-
server.

[120] Anirban Mondal and Masaru Kitsuregawa. Privacy, security and trust in
p2p environments: A perspective. International Workshop on Database
and Expert Systems Applications, pages 682–686, 2006.

[121] R. Moskowitz and P. Nikander. Host Identity Protocol (HIP) Architecture.
RFC 4423 (Informational), May 2006.

[122] P. Nikander, J. Arkko, and B. Ohlman. Host identity indirection infras-
tructure (hi3). In The Second Swedish National Computer Networking
Workshop, November 2004.

[123] P. Nikander, J. Laganier, and F. Dupont. An IPv6 Prefix for Overlay
Routable Cryptographic Hash Identifiers (ORCHID). RFC 4843 (Exper-
imental), April 2007.

[124] Donald A. Norman. The way I see it: When security gets in the way. ACM
interactions, 16(6):60–63, November 2009.

[125] J.K. Nurminen and J. Noyranen. Energy-consumption in mobile peer-to-
peer - quantitative results from file sharing. In Consumer Communications
and Networking Conference, 2008. CCNC 2008. 5th IEEE, pages 729 – 733,
Las Vegas, NV, Jan 2008.

[126] J. Korhonen M. Ylianttila O. Kassinen, E. Harjula. Battery life of mobile
peers with umts and wlan in a kademlia-based p2p overlay. In Proceedings
of the 20th Personal, Indoor and Mobile Radio Communications Sympo-
sium (PIMRC09), Tokyo, Japan, Sep 2009.

[127] OpenDHT: A Publicly Accessible DHT Service. http://www.opendht.org/.

[128] Z. Ou, E. Harjula, and M. Ylianttila. Effects of different churn models
on the performance of structured peer-to-peer networks. In Proceedings of
the 20th Personal, Indoor and Mobile Radio Communications Symposium
(PIMRC09), Tokyo, Japan, Sep 2009.

186

Bibliography

[129] Zhonghong Ou, Erkki Harjula, Otso Kassinen, and Mika Ylianttila. Fea-
sibility evaluation of a communication-oriented p2p system in mobile en-
vironments. In Mobility Conference. ACM, 2009.

[130] Zhonghong Ou, Erkki Harjula, Otso Kassinen, and Mika Ylianttila. Per-
formance evaluation of a kademlia-based communication-oriented p2p sys-
tem under churn. Comput. Netw., 54:689–705, April 2010.

[131] Y. Peng and Y. Meng. An snmp usage for reload.
http://www.ietf.org/internet-drafts/draft-peng-p2psip-snmp-00.txt, Oc-
tober 2010. Work in progress.

[132] J. Peterson and C. Jennings. Enhancements for Authenticated Identity
Management in the Session Initiation Protocol (SIP). RFC 4474 (Proposed
Standard), August 2006.

[133] Michael Piatek, Tomas Isdal, Thomas Anderson, Arvind Krishnamurthy,
and Arun Venkataramani. Do incentives build robustness in BitTorrent?
In Proceedings of 4th USENIX Symposium on Networked Systems Design
& Implementation (NSDI 2007), Cambridge, MA, April 2007. USENIX.

[134] PlanetLab: An open platform for developing, deploying and accessing
planetary-scale services. http://www.planet-lab.org/.

[135] Johan Pouwelse, Pawel Garbacki, Dick Epema, and Henk Sips. The Bit-
torrent P2P File-Sharing System: Measurements and Analysis. In Miguel
Castro and Robbert van Renesse, editors, Peer-to-Peer Systems IV, volume
3640 of Lecture Notes in Computer Science, chapter 19, pages 205–216.
Springer Berlin / Heidelberg, Berlin/Heidelberg, 2005.

[136] Dongyu Qiu and R. Srikant. Modeling and performance analysis of
bittorrent-like peer-to-peer networks. SIGCOMM Comput. Commun. Rev.,
34:367–378, August 2004.

[137] Jürgen Quittek, Saverio Niccolini, Sandra Tartarelli, Martin Stiemerling,
Marcus Brunner, and Thilo Ewald. Detecting spit calls by checking human
communication patterns. In ICC, pages 1979–1984. IEEE, 2007.

[138] B. Ramsdell. Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 3.1 Message Specification. RFC 3851 (Proposed Standard), July
2004.

[139] Sylvia Ratnasamy, Paul Francis, Scott Shenker, and Mark Handley. A
scalable content-addressable network. In Proceedings of ACM SIGCOMM,
pages 161–172, 2001.

[140] Thomas Repantis and Vana Kalogeraki. Decentralized trust management
for ad-hoc peer-to-peer networks. In Proceedings of the 4th international
workshop on Middleware for Pervasive and Ad-Hoc Computing (MPAC
2006), MPAC ’06, pages 6–, New York, NY, USA, 2006. ACM.

[141] E. Rescorla. HTTP Over TLS. RFC 2818 (Informational), May 2000. Up-
dated by RFC 5785.

[142] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21:120–126, 1978.

187

Bibliography

[143] J. Rosenberg. A Presence Event Package for the Session Initiation Protocol
(SIP). RFC 3856 (Proposed Standard), August 2004.

[144] J. Rosenberg. Interactive Connectivity Establishment (ICE): A Protocol
for Network Address Translator (NAT) Traversal for Offer/Answer Proto-
cols. http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt, Octo-
ber 2007. Work in progress.

[145] J. Rosenberg and C. Jennings. The Session Initiation Protocol (SIP) and
Spam. RFC 5039 (Informational), January 2008.

[146] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Proto-
col. RFC 3261 (Proposed Standard), June 2002. Updated by RFCs 3265,
3853, 4320, 4916.

[147] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentral-
ized object location and routing for large-scale peer-to-peer systems. In
IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware), pages 329–350, November 2001.

[148] Antony Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Dr-
uschel. Scribe: The design of a large-scale event notification infrastruc-
ture. Networked Group Communication, pages 30–43, 2001.

[149] Martina Angela Sasse and Ivan Flechais. Usable security – why do we
need it? how do we get it? Security and Usability: Designing secure sys-
tems that people can use, page 18, 2005.

[150] Stuart E. Schechter, Rachna Dhamija, Andy Ozment, and Ian Fischer. The
emperor’s new security indicators. In Proceedings of the 2007 IEEE Sym-
posium on Security and Privacy, SP ’07, pages 51–65, Washington, DC,
USA, 2007. IEEE Computer Society.

[151] Stuart E. Schechter, Rachna Dhamija, Andy Ozment, and Ian Fischer. Em-
perors new security indicators: An evaluation of website authentication
and the effect of role playing on usability studies. In Proceedings of the
2007 IEEE Symposium on Security and Privacy, 2007.

[152] Cristina Schmidt and Manish Parashar. A peer-to-peer approach to web
service discovery. World Wide Web, 7(2):211–229, 2004.

[153] Huaping Shen, Mary Suchitha Joseph, Mohan Kumar, and Sajal K.
Das. Precinct: A scheme for cooperative caching in mobile peer-to-peer
systems. International Parallel and Distributed Processing Symposium,
1:57a, 2005.

[154] Alex Sherman, Jason Nieh, and Clifford Stein. Fairtorrent: bringing fair-
ness to peer-to-peer systems. In Proceedings of the 5th international confer-
ence on Emerging networking experiments and technologies, CoNEXT ’09,
pages 133–144, New York, NY, USA, 2009. ACM.

[155] Rob Sherwood, Ryan Braud, and Bobby Bhattacharjee. Slurpie: A coop-
erative bulk data transfer protocol. In Proceedings of IEEE INFOCOM,
Hong Kong, March 2004.

188

Bibliography

[156] Shuming Shi, Guangwen Yang, DingxingWang, Jin Yu, Shaogang Qu, and
Ming Chen. Making peer-to-peer keyword searching feasible using multi-
level partitioning. In Proceedings of the 3rd IPTPS, pages 151–161, 2004.

[157] Weisong Shi, Kandarp Shah, YonggenMao, and Vipin Chaudhary. Tuxedo:
A peer-to-peer caching system. In Proceedings of PDPTA, pages 981–987,
2003.

[158] Yanfeng Shu, Beng Chin Ooi, and Kian lee Tan. Supporting multi-
dimensional range queries in peer-to-peer systems. In Proceedings of
the Fifth IEEE International Conference on Peer-to-Peer Computing (P2P
2005), pages 173–180, 2005.

[159] JukkaManner Simone Leggio, Antti Hulkkonen, and Kimmo Raatikainen.
Session initiation protocol deployment in ad-hoc networks: a decentralized
approach. In Proceedings of the International Workshop on Wireless Ad-
Hoc Networks, May 2005.

[160] A. Singh, T. W. Ngan, P. Druschel, and D. S. Wallach. Eclipse Attacks
on Overlay Networks: Threats and Defenses. In INFOCOM 2006. 25th
IEEE International Conference on Computer Communications. Proceed-
ings, pages 1–12, 2006.

[161] K. Singh and H. Schulzrinne. SIP PEER: A session initiation protocol
(sip)-based peer-to-peer internet telephony client adaptor. Ínternet, at
http://www1.cs.columbia.edu/ kns10/publication/sip-p2p-design.pdf, 2005.

[162] Kundan Singh and Henning Schulzrinne. Using an external DHT as a
SIP Location Service. Technical Report CUCS-007-06, Comp. Ci. Dept.,
Columbia University, 2006.

[163] spamhaus.org. Effective spam filtering.
http://www.spamhaus.org/effective_filtering.html. Referenced: 2010-
02-24.

[164] spamunit.com. Spam statistics. http://www.spamunit.com/spam-
statistics/. Referenced: 2010-02-24.

[165] Tyron Stading, Petros Maniatis, and Mary Baker. Peer-to-peer caching
schemes to address flash crowds. In Peer-to-Peer Systems, pages 203–213,
Heidelberg, 2002. Springer Berlin.

[166] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet indi-
rection infrastructure. In Proceedings of the 2002 conference on Applica-
tions, technologies, architectures, and protocols for computer communica-
tions (SIGCOMM ’02), pages 73–86, 2002.

[167] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proceedings of the 2001 conference on Applications, tech-
nologies, architectures, and protocols for computer communications, SIG-
COMM ’01, pages 149–160, New York, NY, USA, 2001. ACM.

[168] Jing Su, James Scott, Pan Hui, Jon Crowcroft, Eyal de Lara, Christophe
Diot, Ashvin Goel, Menghow Lim, and Eben Upton. Haggle: Seamless
networking for mobile applications. In John Krumm, Gregory D. Abowd,

189

Bibliography

Aruna Seneviratne, and Thomas Strang, editors,Ubicomp, volume 4717 of
Lecture Notes in Computer Science, pages 391–408. Springer, 2007.

[169] Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz. The-
ory and practice of bloom filters for distributed systems. IEEE Communi-
cations Surveys and Tutorials, 14(1):131–155, 2012.

[170] The OpenHIP project. http://www.openhip.org/.

[171] Alan M. Turing. Computing Machinery and Intelligence. Mind, LIX:433–
460, 1950.

[172] Andrew Twigg. A subjective approach to routing in p2p and ad hoc net-
works. In Proceedings of the 1st international conference on Trust manage-
ment, iTrust’03, pages 225–238, Berlin, Heidelberg, 2003. Springer-Verlag.

[173] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. The
anatomy of the facebook social graph. CoRR, abs/1111.4503, 2011.

[174] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford.
CAPTCHA: Using Hard AI Problems For Security. In Proceedings of Euro-
crypt, volume 2656, pages 294–311, 2003.

[175] LiminWang, Kyoung Soo Park, Ruoming Pang, Vivek Pai, and Larry Peter-
son. Reliability and security in the codeen content distribution network. In
Proceedings of the annual conference on USENIX Annual Technical Con-
ference, ATEC ’04, pages 14–14, Berkeley, CA, USA, 2004. USENIX Asso-
ciation.

[176] Alma Whitten and J. D. Tygar. Why johnny can’t encrypt: A usability
evaluation of pgp 5.0. In Proceedings of the 8th Conference on USENIX Se-
curity Symposium - Volume 8, SSYM’99, pages 14–14, Berkeley, CA, USA,
1999. USENIX Association.

[177] Wikipedia. Bloom filter. http://en.wikipedia.org/wiki/Bloom_filter. Refer-
enced: 2010-02-24.

[178] Yu-SungWu, Saurabh Bagchi, Navjot Singh, and Ratsameetip Wita. Spam
detection in voice-over-ip calls through semi-supervised clustering. In
DSN, pages 307–316. IEEE, 2009.

[179] Li Xiao, Xiaodong Zhang, and Zhichen Xu. On reliable and scalable peer-
to-peer web document sharing. In Proceedings of the 16th International
Parallel and Distributed Processing Symposium (IPDPS ’02), page 228,
Washington, DC, USA, 2002. IEEE Computer Society.

[180] Li Xiong and Ling Liu. Peertrust: Supporting reputation-based trust for
peer-to-peer electronic communities. IEEE Trans. on Knowl. and Data
Eng., 16:843–857, July 2004.

[181] Ruishan Zhang, Xinyuan Wang, Xiaohui Yang, and Xuxian Jiang. Billing
attacks on sip-based voip systems. In Proceedings of the first USENIX
workshop on Offensive Technologies, pages 4:1–4:8, Berkeley, CA, USA,
2007. USENIX Association.

190

Bibliography

[182] Ben Y. Zhao, John Kubiatowicz, Anthony D. Joseph, Ben Y. Zhao, John Ku-
biatowicz, and Anthony D. Joseph. Tapestry: an infrastructure for fault-
tolerant wide-area location and routing. Technical report, UC Berkeley,
2001.

[183] Yingwu Zhu and Haiying Shen. Trustcode: P2p reputation-based trust
management using network coding. In Proceedings of the 15th interna-
tional conference on High performance computing, HiPC’08, pages 378–
389, Berlin, Heidelberg, 2008. Springer-Verlag.

191

Bibliography

192

Appendix A P2P HTTP cache
advertisement algorithm

Following is a meta-code listing for the P2P HTTP caching algorithm dis-

cussed in Chapter 6.2.1.

1 class Advertisement :

2 """An advertisement for objects originating from a single host."""

3

4 def __init__(self, cache):

5 self.requests = []

6 self.cache = cache

7

8 # The oldest unpublished object

9 self.oldest = 0

10 # The furthest point in time we have valid objects

11 self.valid_until = 0

12

13 def publish(self, time):

14 """Publishes an advertisement """

15

16 # Record the accessibility delay

17 for request , request_time in self.requests:

18

19 # Include only objects that are still valid

20 if request_time + request.expire > time:

21 self.cache.published.items += 1

22 self.cache.published.delay += time - request_time

23

24 self.last_publish = time

25 self.oldest = 0

26

27 def add_event(self, request , time):

28 """Adds an object to the advertisement """

29

30 # Record the pause since the last request

31 pause = time - self.last_update

32 self.last_update = time

193

Appendix A P2P HTTP cache advertisement algorithm

33

34 # Check whether this was a ’miss’

35 if pause > self.cache.PUBLISH_DELAY and

36 pause < self.cache.AVERAGE_DELAY :

37 self.cache.ad_miss = True

38

39 # Update the time of the longest valid object

40 if request.expire + time > self.valid_until:

41 self.valid_until = request.expire + time

42

43 self.requests.add(request , time)

44

45 class Cache:

46 """The cache - keeps track of all advertisements """

47

48 def __init__(self, avg = 300, max = 15*60):

49 self.ad_miss = False

50 self.published_count = 0

51 self.published.delay = 0

52 self.published.items = 0

53 self.advertisements = {}

54

55 # The average delay we strive to

56 self.AVERAGE_DELAY = avg

57 # The maximum delay limit

58 self.MAX_DELAY = max

59

60 # Initially, the publish delay is set to the strived -to average

61 self.PUBLISH_DELAY = self.AVERAGE_DELAY

62

63 # By how much we should increase / decrease the timeouts

64 self.PUBLISH_INCREASE = 0.1

65

66 def check(self, time):

67 """Checks whether we should publish or adjust the timouts"""

68

69 # For each host, check whether we should publish an advertisement

70 for ad in self.advertisements :

71

72 # if there has been activity , we have valid objects

73 # and a timeout has passed , publish

74 if ad.last_update > ad.last_publish and ad.valid_until > time:

75 if (ad.last_update + self.PUBLISH_DELAY) < time

76 or (ad.oldest + self.MAX_DELAY) < time:

77 ad.publish(time)

78 self.published_count += 1

79

194

Appendix A P2P HTTP cache advertisement algorithm

80 # Adjust the timeouts based on the average accessibility delay

81 if self.published_count > 10:

82 acc_delay = self.published.delay / self.published.items

83 adjustment = 0

84

85 # Decrease timeout if we are over the average

86 if acc_delay > self.AVERAGE_DELAY :

87

88 # The decrease is proportional

89 diff = acc_delay - self.AVERAGE_DELAY

90 adjustment = (diff * self.PUBLISH_DELAY)) / acc_delay

91 else:

92

93 # Otherwise, decrease the timeout , unless..

94 adjustment = self.PUBLISH_INCREASE * self.PUBLISH_DELAY

95

96 # ..we had a miss: increase the timeout

97 if self.ad_miss:

98 adjustment = -adjustment

99

100 self.PUBLISH_DELAY -= adjustment

101

102 # Re-set the counters

103 self.ad_miss = False

104 self.published_count = 0

105 self.published.delay = 0

106 self.published.items = 0

107

108 def process_event (self, request , time):

109

110 # Add each event to the host-specific advertisements

111 ad = self.advertisements [request.host]

112 if ad is None:

113 ad = Ad(self)

114 self.advertisements [request.host] = ad

115

116 ad.add_event(request , time)

117

118

119 # The cache

120 cache = Cache()

121

122 # Point of entry for the cache simulator. The all_events array

123 # contains all requests , ordered by time.

124 all_events = load("browsing.log")

125 for time in range(1, all_events.max_time):

126 for request in all_events.requests_at[time]:

195

Appendix A P2P HTTP cache advertisement algorithm

127 cache.process_event (request , time)

128

129 # Each second , check whether we should publish or adjust the timeout

130 check.cache(time)

196

9HSTFMG*agagdh+

ISBN 978-952-60-6063-7 (printed)
ISBN 978-952-60-6064-4 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934 (printed)
ISSN 1799-4942 (pdf)

Aalto University
School of Science
Department of Computer Science
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 14

/2
015

Joakim
 K

oskela
A

 Secure P
eer-to-P

eer A
pplication F

ram
ew

ork
A

alto
 U

n
ive

rsity

Department of Computer Science

A Secure Peer-to-Peer
Application Framework

Joakim Koskela

DOCTORAL
DISSERTATIONS

	Aalto_DD_2015_014_Joakim_Koskela_verkkoversio

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

