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Abstract18

The growing environmental awareness and the apparent conflicts between economic and19

environmental objectives turn energy planning problems naturally into multi-objective20

optimization problems. In the current study, mixed fuel combustion is considered as an option to21
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achieve tradeoff between economic objective (associated with fuel cost) and emission objective22

(measured in CO2 emission cost according to fuels and emission allowance price) because a fuel23

with higher emissions is usually cheaper than one with lower emissions. Combined heat and24

power (CHP) production is an important high-efficiency technology to promote under the25

emission trading scheme. In CHP production, the production planning of both commodities must26

be done in coordination. A long-term planning problem decomposes into thousands of hourly27

subproblems.  In this paper, a bi-objective multi-period linear programming CHP planning model28

is presented first. Then, an efficient specialized merging algorithm for constructing the exact29

Pareto frontier (PF) of the problem is presented. The algorithm is theoretically and empirically30

compared  against  a  modified  dichotomic  search  algorithm.  The  efficiency  and  effectiveness  of31

the algorithm is justified.32

33

Keywords:  Combined heat and power production; Multi-objective linear programming; Energy34

optimization; Energy efficiency, Environmental/economic dispatch.35

36
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Nomenclature37

Indices38

t Index  of  a  period  or  a  point  in  time.  The  period t is between points t-1 and t. In our39

problem, period length is one hour.40

p, q Super/subscripts or prefixes for power and heat.41

Index Sets42

J Set of extreme points of the operating regions of all components including non-generating43

components (e.g., contracts). ( U Uu uJJ
Î

= ).44

Ju Set of extreme points of the operating region of component u ÎU,45

U Set of all components including non-generating components.46

Parameters47

 (pj,t,pj,t,qj,t) Extreme point j ÎJu of operating region of component u ÎU (fuel consumption,48

power, heat) in MW in period t.49

ce,t  Emission allowance price in €/ton for period t.50

cf(j),j, t Price of fuel f(j) in €/MW at  plant u ÎU  and the same for j ÎJu in period t.51

cp±,t Power sales/purchase price in €/MW on the power market in period t.52

cq+,t Heat surplus penalty cost in €/MW in period t.53

ηf(j) Specific CO2 emission in ton/MW for fuel f(j)  at plant u ÎU and the same for j ÎJu.54

Pt Power demand in MW in period t.55

Qt Heat demand in MW in period t.56
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T Number of periods over the planning horizon.57

Decision variables58

xj,t Variables encoding the operating level of each component in terms of extreme points j ÎJ59

in period t.60

xp±,t Power sales and purchase volume in MW on the power market in period t.61

xq+,t Heat surplus variable in MW  in period t.62

Notation associated with multi-objective optimization algorithms63

MA Merging Algorithm64

MDSA Modified Dichotomic Search Algorithm65

DSA Dichotomic Search Algorithm66

YN Non-dominated set of the problem67

YN,t Non-dominated set of the period t  subproblem68

M
NY Non-dominated set of the problem generated by MA69

MD
NY Non-dominated set of the problem generated by MDSA70

max,NY Max non-dominated set of the problem, ).1|(|1||
1 ,max, -+= å =

T

t
M

tNN YY71

72
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1. Introduction73

The increasing concerns about environmental impacts of energy production have become an74

integral part of energy policy planning. To combat climate change, the European Union (EU) has75

launched an emission trading scheme (ETS) since 2005 and has simultaneously promoted clean76

production  technologies  with  smaller  emissions  [1].  The  EU-ETS  is  now  by  far  the  largest77

emission market in the world, covering more than 11 thousand power stations and industrial78

plants in 31 countries, as well as airlines. The emission market utilizes the market force to reduce79

emission cost-efficiently.80

81

CHP production means the simultaneous production of useful heat and electric power in a single82

integrated process. It can utilize the excess heat that would be wasted in conventional power83

production and thus can achieve higher efficiency. For example, the efficiency of a gas turbine is84

typically between 36-40% when used for power production only, but over 80% if also the heat is85

utilized.  CHP is considered an environmentally beneficial technology due to its high energy86

efficiency compared to conventional separate heat and power production. This leads to significant87

savings in fuel and emissions, typically between 10-40% depending on the technique used and88

the system replaced [2].89

90

Considering the fact that fossil based technologies are currently dominant [3] for supplying heat91

and power all over the world and CHP is an important technology to improve the energy overall92

efficiency of heat and power production, we study here using a fuel mix (including biomass) [3, 4]93

as an option to implement the transition into future sustainable low-carbon energy systems. A94

suitable fuel mix can achieve tradeoff between economic objective (associated with fuel cost) and95
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emission objective (measured in CO2 emission cost according to fuels and emission allowance96

price) [5]. Usually, a fuel with higher emissions is cheaper than one with lower emissions. We97

have considered using multi-objective linear programming (MOLP) approaches to deal with a98

medium-  or  long-term  CHP  environmental/economic  dispatch  problem  (EED),  which  can  be99

viewed as a subproblem of long term generation expansion CHP planning problem [6]. It means100

that  the  plant  characteristics  are  assumed to  be  convex.   It  has  been  commented  by  [7]  that  the101

convexity assumption is not as limiting as it may seem. Multiple criteria decision making102

approaches, including MOLP, have for a long time been used in energy planning for both103

traditional power-only and heat-only systems [8-10] as well as for poly-generation including104

CHP systems [11].  Some recent research related to applying MOLP for dealing with poly-105

generation planning can be referred to [12, 13].106

107

In the long term generation expansion planning context [14], for a given investment decision, the108

operation subproblem, which is used to estimate operating costs, is a long term EED problem109

when emission impacts need to be considered. The long term EED problem can be simplified into110

a sequence of single period subproblems without dynamic constraints. The natural period length111

is typically one hour.  This simplification may be necessary for at least two reasons. First, the112

longer planning horizon (15 or 20 years) means that the size of the problem is large and it is113

difficult to handle the problem efficiently without simplification. Second, in a broader context of114

risk analysis where numerous scenarios need to be considered, each scenario corresponds to a115

deterministic long term planning problem that must be solved efficiently. Simulation based116

scenario analysis [15-22] is a widely used approach and the computational effort is usually large.117

118
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For the single objective case, operating costs of the multi-period planning problem without119

dynamic constraints can be obtained simply by summing up the results of single period120

subproblems. However, it is not a trivial problem in the multi-objective optimization context121

because typically there is no single global optimal solution. The solution process consists of122

identifying a representation of the Pareto frontier (PF) with a number of non-dominated outcomes123

in the objective space, which correspond to efficient solutions in the decision space. For the124

MOLP, the continuity of the PF [23] means that the number of non-dominated outcomes used to125

represent the PF can be rather large. Therefore, the computational effort can be huge, even126

though each non-dominated outcome can be obtained in polynomial time.  For the bi-objective127

case, all of the non-dominated outcomes for representing the PF can be obtained by solving a128

series  of  weighted-sum functions.  One  approach  is  called dichotomic search [24] and the other129

approach is called parametric simplex method [23].130

131

To  the  best  of  the  authors´  knowledge,  no  research  is  reported  to  deal  specifically  with  the  bi-132

objective multi-period CHP planning problem with no dynamic constraints.  A possible reason133

for this may be that it is the simplest multi-period planning problem and most people think that a134

general solution approach can handle it. However, it is not true. An efficient solution approach to135

the problem is demanding in the context of risk analysis and generation expansion planning and it136

is not a trivial task to solve it efficiently if the planning horizon is large.137

138

The  contributions  of  the  current  study  can  be  summarized  as  follows.  First,  we  have  defined  a139

fuel mix setting for the bi-objective CHP EED problem. Second, we have presented an efficient140

iterative merging algorithm (MA) for constructing the exact PF for the bi-objective LP CHP141

planning problem on the basis of the PF for the single period subproblem. The MA utilizes the142
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convexity of the PF by arranging slopes of two consecutive non-dominated outcomes in each143

period in a non-decreasing order. Third, we have conducted theoretical time complexity analysis144

for the MA and for a traditional algorithm to justify the efficiency of the MA. Finally,  we have145

done numerical experiments using both real and artificially derived plants to show the146

applicability of the MA in practice.  It is worth mentioning that the current research is a new147

extension of our specialized efficient algorithms for single objective optimization [25, 26] to the148

multi-objective context and to achieve sufficient efficiency for dealing with environmental149

impacts taking emission costs explicitly as an objective.150

151

The paper is organized as follows. Section 2 describes the model of the individual CHP plant as152

well as the model of the bi-objective CHP planning problem considering fuel mix. Section  3153

presents two algorithms. The first one is a modified dichotomic search algorithm (MDSA) for a154

general bi-objective LP problem and  the second one is a specialized merging algorithm (MA) for155

constructing  the  exact  PF  for  the  problem  in  the  current  study.  Then,  these  two  algorithms  are156

compared theoretically through time complexity analysis.  Section 4 reports the computational157

results with both real and artificially derived CHP plants.  A comparison is made between MDSA158

and  MA  in  terms  of  representation  of  the  PF  and  solution  efficiency  to  validate  the  theoretical159

analysis.160

2. Problem description161

In addition to generating units (CHP plant, power-only plant, heat-only plant), a CHP system162

may consists of non-generating components such as various bilateral purchase and sales contracts.163

All components (plants and contracts) can be modeled based on a unified technique as discussed164
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below. In the subsequent discussion, “plants” refer to generating units while “components”165

include both generating units and non-generating components. For the system under study,166

different  types  of  fuels  with  different  specific  CO2 emissions  are  combusted  at  plants  but  it  is167

required that one plant should only combust one fuel to facilitate emission calculation.  Usually a168

fuel  with  higher  emissions  is  cheaper  than  one  with  lower  emissions.  For  example,  coal  is169

cheaper than natural gas.  It means that there is a tradeoff between fuel cost and emission cost.170

Under ETS, the CHP planning problem is to simultaneously optimize the overall net acquisition171

costs for power and heat as well as emission costs associated with providing power and heat. The172

emissions for the plant are caused by the fuel combusted at the plant. The emissions for the non-173

generating component are based on a reference system (e.g., coal-fired condensing power plant174

for power component or coal-fired boiler for heat component). The net acquisition costs consist175

of actual production costs (fuel costs), costs for purchasing components subtracted by revenue176

from selling the produced energy.  The planning horizon is usually long (multiple years) in a177

strategic long-term planning problem.178

2.1 CHP plant model179

Here we assume, for the sake of simplicity, that the plant characteristics are convex, which allows180

us to use a linear programming (LP) solver for the environmental/economic dispatch (EED)181

problem. In addition, the PF is also convex for the MOLP.  In the following, we present the182

convex CHP model in a simplified way to facilitate readers understand the system model in183

Section 2.2.  The detailed description of the plant characteristics was referred to our previous184

research (e.g. [25-29]). Note that this is the background information for the study and not related185

to the contributions for the current study as well as for all of our previous studies.186
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In  a  CHP  plant,  power  and  heat  generation  are  interdependent.  Let Pu,t, Qu,t, and Cu,t=187

=Cu,t(Pu,t,Qu,t) denote the hourly power generation, heat generation and operating cost of plant u188

respectively. The model of a convex CHP plant be represented by a convex combination (see e.g.189

[30, 31]) of extreme points (cj,t, pj,t, qj,t ) (the coordinate of operating cost, power and heat) for the190

operating region as follows.191

å Î
=

uJj tjtjtu xcC ,,, ,192

å Î
=

uJj tjtjtu xpP ,,, ,193

å Î
=

uJj tjtjtu xqQ ,,, , (1)194

1, =å Î uJj tjx ,195

0, ³tjx , jÎJu.196

Here the variables xj,t  are  used  for  forming  the  convex  combination  and Ju is  the  index  set  of197

extreme points of plant u.  Note that formula (1) represents a feasible operating region instead of198

a single point. In the current study, power (Pu,t) and  heat (Qu,t) generation of each plant as well199

as associated cost (Cu,t) can be determined by the power and heat demand of the system (refer to200

(5) and (6)) as well as other constraints in the system model (3)-(8). The xj,t  can be determined201

by solving model (3)-(8) and then Cu,t, Pu,t and  Qu,t  can be determined according to the first three202

equations of (1) for each plant.203

If  emissions  need  to  be  considered  explicitly,  it  is  convenient  to  directly  transform the  extreme204

characteristic points (cj,t, pj,t, qj,t )  into  fuel  characteristic  points  (pj,t, pj,t, qj,t ) if a single fuel is205

combusted in the plant, where pj,t is the fuel consumption corresponding to the extreme point.206
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The cost is mainly determined by fuel consumption, i.e., tjtjjtj cc ,,),(, pf= , where cf(j),j,t is the price207

of fuel f(j)  combusted at plant u and the same for jÎJu.  Let hf(j) denote specific CO2 emission208

for fuel f(j), Fu,t and  Eu,t denote hourly fuel consumption and emissions associated with Pu,t and209

Qu,t. Then210

å Î
=

uJj tjtjtu xF ,,, p ,211

.,)(,, å Î
=

uJj tjjtjtu xE fhp (2)212

 Similarly, the fuel consumption and associated emissions of the plant can be determined213

according to (2) if xj,t  is determined.214

The above modeling technique (1) has been used in CHP planning [7, 25-29, 32]. In conjunction215

with (2), emissions associated with heat and power generation can be considered in planning.216

Non-CHP  components  (power-only  or  heat  only)  can  be  modeled  as  special  cases  of  the  CHP217

plant model (1) with either qj,t = 0 (in power components) or pj,t =0  (in heat components). For the218

non-generation components such as contracts, the fuel characteristics are obtained based on the219

fuel specified for the reference system as mentioned before.220

 2.2 Problem formulation221

When dynamic constraints are ignored, the multi-period CHP planning problem considering fuel222

mix is simply represented as the sum of independent period subproblems.  The bi-objective223

planning problem under study is represented as a vmin optimization problem. The operator vmin224

means vector minimization. The vmin problems arise when more than one objective is to be225

minimized over a given feasible region.226

227
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vmin ( )( )å åå å = Î= Î +++-- ++-+
T

t Jj tjtejtj
T

t Jj tqtqtptptptptjtjjtj xcxcxcxcxc
1 ,,)(,1 ,,,,,,,,),(, , ff hpp   (3)228

229

subject to230

,1, =å
Î uJj

tjx   uÎU, t = 1,…,T, (4)231

ttptp
Jj

tjtj Pxxxp =-+ +-
Î
å .,,, , , t = 1,…,T, (5)232

,,,, ttq
Jj

tjtj Qxxq =- +
Î
å t = 1,…,T, (6)233

xj,t ³ 0,  j Î J, t = 1,…,T, (7)234

xq+,t , xp±,t ³ 0, t = 1,…,T. (8)235

236

The above model (3)-(8) is a bi-objective LP model for the CHP planning.  The first objective in237

(3) is to minimize the overall net acquisition costs over the planning horizon, which consists of238

actual total production costs (fuel costs), i.e., the sum of Cu,t (the  first  equation  of  (1))  for  all239

components, costs for purchasing components subtracted by revenue from selling the produced240

energy. It also includes the penalty for the heat surplus. The second objective is to minimize the241

emission costs of components, i.e., the sum of Eu,t (the second equation of (2)) for all components.242

The minimum and maximum power and heat generation limits of the components are implicitly243

reflected in the component characteristics. In this formulation, the convex combination for each244

plant in each period is encoded by a set of xj,t variables, indicating the operating level of each245

plant in terms of extreme points of the operating region, whose sum is one (4) (the last equation246

of (1))  and that are non-negative (7) (the constraint of (1)).  Constraints (5) and (6) define the247

power  and  heat  balances.   The  first  terms  in  left-hand  sides  of  (5)  and  (6)  indicate  power  (the248

second equation of (1)) and heat (the third equation of (1)) generation quantities for all249
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components,  respectively.   Since  the  power  can  be  freely  bought  (xp-,t)  and  sold  (xp+,t)  on the250

market at price cp-,t  and cp+,t, the power demand (5) can always be satisfied.  The model can be251

infeasible only when the heat production capacity is insufficient. The heat balance (6) states that252

that the demand Qt  in each period t must be satisfied and if the acquisition of heat exceeds the253

demand, the surplus xq+,t  lead to penalty cost cq+,t in the first objective of the objective function254

(3).255

256

For the above formulation, the power market can be treated as a power plant with large enough257

capacity. For the single objective problem with the above first objective as the objective, the258

problem can be solved by Power Simplex algorithm [25]. If the power transaction cost is ignored259

and electric power can be freely traded (bought or sold) on the market, then the model can be260

simplified to the formulation in [26]. Then the efficient envelope-based algorithm presented there261

can be used to solve the problem.  Note that emission costs associated with the power market are262

not explicitly reflected in the formulation. They are implicitly considered in the power price.  If263

the emission allowance price is a constant, the formulation is equivalent to simultaneously264

minimizing net costs and emissions. This is the traditional way to model the EED problem [33].265

3. Solution approach266

In this section, the optimality concept for multi-objective optimization is reviewed first. Then, a267

modified dichotomic search algorithm (MDSA) for solving a general bi-objective LP problem is268

presented and the time complexity of the algorithm is given. Next, the procedure for merging269

algorithm (MA) for solving problem (3)-(8) is presented and the time complexity of the algorithm270

is also given.  Finally, MA and MDSA are compared theoretically.271
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3.1 Optimality concept for multi-objective optimization272

Let X denote the set of feasible solutions in the decision space and Y their images in the objective273

space. The image of solution xÎX is f(x)  =  (f1(x),…,fr(x)), where r ³2.  Solving multi-objective274

optimization problem here is interpreted as generating its efficient set XE  in  the  decision  space275

and corresponding image YN = f(XE) in the decision space Rr, called Pareto  frontier (PF)  or non-276

dominated set.277

278

The dominance relations are defined based on the componentwise ordering of Rr, for y1, y2Î Rr,279

rkyyyy kk ,...,1,2121 =£Û£  and 21 yy ¹280

rkyyyy kk ,...,1,2121 =<Û<281

The relations ³ and > are defined accordingly.282

283

For the vmin problem, rRxf Î)(  is dominated by rRxf Î)(  if )()( xfxf £ .284

XE = {xÎX: there exists no Xx Î  with )}()( xfxf £ .285

286

For the MOLP, the PF is convex and continuous.  In principle, the extreme efficient solutions287

(EESs) are sufficient to characterize the PF because all the efficient solutions of the problem can288

be obtained by the convex combination of EESs.  The image of the EES in the objective space289

corresponds to the extreme point of the PF, called extreme non-dominated outcome.290

Accordingly,  the  images  of  the  non-extreme  efficient  solutions  are  called  non-extreme  non-291

dominated outcomes. The PF for the bi-objective vmin LP problem is a piecewise linear convex292
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curve as shown in Figure 1, where point ‘· ’ represents an extreme non-dominated outcome while293

point ‘ o ’ represents a non-extreme non-dominated outcome.294

f2(x)

f1(x)

´

·

·
·

·
· o

...

·

295

Figure 1  The PF profile of bi-objective vmin LP problem.296

297

Now we introduce the concept for slopes of the PF, where PF:={ |}|,...,1),,( 21 N
kk Ykyy = .  Assume298

that the elements in PF are arranged according to an increasing order of the first objective, i.e.299

||
1

1
1

NYyy <<L .  It means that ||
2

1
2

NYyy >>L  . The slopes )1,( +kkg  of  the  PF  are  defined300

according to two consecutive non-dominated outcomes301

1||,...,1,)1,(
1

1
1

2
1

2 -=
-
-

=+ +

+

Nkk

kk

Yk
yy
yykkg (9)302

The slopes of the PF assume a non-decreasing profile according to the convexity of the PF.303

304

In the following, we introduce notation for the current problem. Let xt and x denote the decision305

variable vector in period t and over the entire planning horizon, respectively.306

tqtqtptptptptjJj tjjtjtt xcxcxcxcxfy ,,,,,,,,),(,1,1 )( +++--Î
+++-== å fp (10)307

å Î
==

Jj tjtejtjtt xcxfy ,,)(,2,2 )( fhp (11)308

å =
==

T

t txfxfy
1 111 )()( (12)309
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å =
==

T

t txfxfy
1 222 )()( (13)310

The weighted-sum function with a weight vector ),( 21 lll =  is defined as311

)()()( 2211 xfxfxf ll +=λ (14)312

3.2 Modified dichotomic search algorithm (MDSA)313

The dichotomic search algorithm (DSA) was a general approach for solving the bi-objective LP314

problem. It was first developed by [24] for solving the bi-objective LP transportation problem. In315

the multi-objective combinatorial optimization context, it was mainly used to find the supported316

non-dominated outcomes for the problem [34, 35]. The supported non-dominated outcomes of317

the problem can be obtained by solving a series of weighted-sum functions while the unsupported318

non-dominated outcomes cannot be reached by any weighted-sum function [36].  To facilitate319

discussion, we call the algorithms presented in [24], [34] and [35] DSA1, DSA2 and DSA3,320

respectively.  These algorithms are the same in the basic principle that attempts to enumerate all321

possible new non-dominated outcomes between two known non-dominated outcomes. There are322

slight differences in the structure of the algorithm and in determining whether a new outcome is323

dominated or not. DSA1 and DSA3 adopt an iterative procedure while DSA2 adopts a recursive324

procedure.  For determining whether a new outcome is dominated or not, the new outcome is325

compared with only two known non-dominated outcomes on which the weight vector is based for326

DSA1 and DSA3 while the new outcome is compared against all known outcomes explicitly for327

DSA2.328

329

For our problem, it is found that the comparison scheme to determine whether the new outcome330

is dominated or not for DSA1 and DSA3 is not sufficient to guarantee that the algorithm work331
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properly because it is possible that new outcome coincides with other known non-dominated332

outcomes.  The reason behind this originates from the fact that it is possible for DSA to generate333

non-extreme non-dominated outcome.  A modified DSA (MDSA) proposed on the basis of DSA3334

is given below.335

336

Algorithm 1. Modified dichotomic search algorithm (MDSA) for solving the bi-objective vmin337

LP  problem.338

Step 1. Compute the lexicographic minimal (lexmin) solutions x1 and x2 with respect to f1 and f2,339

respectively. Let )}:)(),(min{(lexarg 211 Xxxfxfx ÎÎ and340

)}:)(),(min{(lexarg 122 Xxxfxfx ÎÎ .Let y1:= f(x1), y2:= f(x2), V:= Æ and k:=2.341

Step 2. Let R:={y1,…,yk} with kyyy 1
2
1

1
1 L<<  . If R\V ={yk}, then stop; otherwise let342

}\:min{arg 1 VRyyy i ÎÎ .343

Step 3. Let 1
221 : +-= ii yyl  and ,: 1

1
12

ii yy -= +l   form weighted-sum function (14).344

Step 4. Compute the single objective optimal solution x  with respect to (14). If 1
111 )( +<< ii yxfy345

and ii yxfy 22
1

2 )( <<+ , then 1+ky := )(xf  and R:=R È yk+1; otherwise let V:=V È yi. Let346

k := k+1 and go to Step 2.347

348

At the end of the procedure, Set R corresponds to YN, i.e., |R|  =  |YN| and the non-dominated349

outcomes are arranged in an increasing order of the first objective in the set.350

351

It can be seen from Algorithm 1 that the main modification lies in how to determine whether the352

new outcome is dominated or not at Step 4. The comparisons remain restricting to two known353
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non-dominated outcomes but comparison scheme changes from directly comparing with the two354

non-dominated outcomes of DSA3 to locating the position of the new outcome.  This scheme355

originates from the convexity property of the PF, i.e., if the new outcome is located between the356

two consecutive non-dominated outcomes on which the weight vector is based, then it is not357

dominated; otherwise, it is dominated (coincides with the known non-dominated outcomes).  This358

is  due  to  the  fact  that  DSA  allows  multiple  (more  than  two)  outcomes  with  the  same  slope  to359

coexist, i.e., the coexistence of the extreme and the non-extreme non-dominated outcomes.   The360

remaining modification is just an adaption of DSA3 from solving vmax to solving vmin problem.361

For example, maximalàminimal, lexmaxàlexmin and arglexmaxàarglexmin  as  well  as  the362

ranking order at Step 2.363

364

Lemma 1. The  time complexity of Algorithm 1 for solving a general bi-objective LP problem  is365

O(h(n,m)  |YN|), where h(n,m) is the time complexity of  solving the corresponding single366

objective LP problem and n and m are  number  of  variables  and  number  of  constraints  for  the367

problem.368

369

Proof:  To generate YN, the number of weighted-sum functions (single objective problems) to370

solve is |R|+|V|  =  |YN|+|YN|-1=2|YN|-1 according to the terminating condition at Step 2 of371

Algorithm 1.  The time complexity of solving one single objective problem is h(n,m).  Thus, the372

time complexity of Algorithm 1 for solving a general bi-objective LP problem is O(h(n,m)|YN|).373

�374

375
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Corollary 1. The time complexity of solving problem  (3)-(8) is O(g(ns,ms)T|YN|), where g(ns,ms)376

is time complexity of solving a single period subproblem of (3)-(8) and ns= |J|+3  and ms = |U|+2377

are number of variables and number of constraints for the single period subproblem.378

3.3 Merging algorithm (MA)379

The idea of the merging algorithm (MA) is based on the convexity of the PF for the MOLP. If380

non-dominated outcomes are arranged in an increasing order of the first-objective, then, for the381

vmin problem, slopes of the PF assume a non-decreasing order profile as mentioned in Section382

3.1.   This profile is true for both the PF of the single period subproblem and the PF of the multi-383

period problem. If the single period subproblem is independent of each other, then slopes of the384

PF for the single period subproblem should be maintained in slopes of the PF for the multi-period385

problem as illustrated in Figure 2. Consequently, the PF of multi-period problem is the386

accumulative results of the single period subproblem in terms of slopes.387

388

´

·

·
·

·
·

·

·
·

· ·
·

389

 Figure 2. The PF of a single period subproblem and PF of the multi-period problem390

391

In Figure 2, sub-figures (a) and (b) are the PF of a single period t  subproblem and the PF of the392

multi-period problem including period t, respectively.  All slopes in the single period subproblem393
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will appear in the multi-period problem.  For example, ),( BAg  and ),( EDg  in (b) are the same394

as ),( BAg  and ),( EDg  in (a). ),( AB ¢g  and ),( DB¢g in  (b)  come  from  other  periods  than t.395

),( CBg  and ),( DCg  in (a) should be located between points A¢ and B¢  in (b).  However, the396

absolute coordinates of the points in (b) should be the sum of the coordinates for the single period397

subproblems.398

399

In the following, the algorithm for merging the PF of the two-period problem is first given. Then400

the algorithm for generating the PF of the problem (3)-(8) is presented.401

402

Let YN,t denote the set of  non-dominated outcomes for period t subproblem. If |YN,t| = 1,  then it is403

a trivial case to merge, it is simply to add each non-dominated outcome of the other period with404

( 1
,2

1
,1 , tt yy ). In the following assume that |YN,t| ³ 2 and non-dominated outcomes {( k

t
k

t yy ,2,1 , ), k =405

1,…,YN,t } are arranged in an increasing order of the first objective. The slopes of the PF for two406

periods t1 and t2 are sequentially chosen according to a non-decreasing order to obtain the PF of407

the two-period problem.  The algorithm is given below.408

409

Algorithm 2. Procedure for merging the PF of two periods410

Step 1.  Initialization. k:= 1, i:=1, j:=1.411

Step 2.412

            if (|YN,t1| = 1 or |YN,t2| =1)413

if (|YN,t1| = 1)414

for (k = 1 to |YN,t2|)415

., 2,2
1

1,222,1
1

1,11
k

tt
kk

tt
k yyyyyy +=+=416
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end for417

                    else418

                           for (k= 1 to |YN,t1|)419

., 1
2,21,22

1
2,11,11 t

k
t

k
t

k
t

k yyyyyy +=+=420

end for421

                     end if422

else423

while (i <|YN,t1| or j<|YN,t2| )424

while (i <|YN,t1| and j<|YN,t2|)425

., 2,21,222,11,11
j

t
i

t
kj

t
i

t
k yyyyyy +=+=426

k:= k+1.427

if ( )1,()1,( 21 +<+ jjii tt gg428

i := i+1..429

else if ( )1,()1,( 21 +=+ jjii tt gg430

i := i+1, j := j+1.431

else432

j := j+1433

end while434

                            while (i <|YN,t1|)435

., 2,21,222,11,11
j

t
i

t
kj

t
i

t
k yyyyyy +=+=436

k:= k+1, i := i+1.437

end while438

                           while (j <|YN,t2|)439
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., 2,21,222,11,11
j

t
i

t
kj

t
i

t
k yyyyyy +=+=440

k:= k+1, j := j+1.441

end while442

                     end while443

., 2,21,222,11,11
j

t
i

t
kj

t
i

t
k yyyyyy +=+=444

end if445

446

At the end of Algorithm 2, k is the number of non-dominated outcomes for two periods. k=447

max(|YN,t1| , |YN,t2|) if  |YN,t1| =1 or |YN,t2| =1 and k £ 1|||| 2,1, -+ tNtN YY  otherwise. It is clear that the448

time complexity of Algorithm 2 is O(k).  The output of Algorithm 2 is {( kiyy ii ,...1),, 21 = }449

450

Algorithm 3. Merging algorithm (MA) for generating the PF of problem (3)-(8).451

Step 1. t:= 1,  call Algorithm 1 to generate the PF:= {( ||,...1),, ,,2,1 tN
i

t
i

t Yiyy = } of period t452

subproblem, t2:= t; t:= t+1.453

Step 2.454

while (t<T+1)455

                Call Algorithm 1 to generate the PF:= {( ||,...1),, ,,2,1 tN
i

t
i

t Yiyy = } of period t subproblem;456

t1:= t.457

                 Call Algorithm 2 to generate PF:= {( },...1),, 21 kiyy ii =  by merging PF:=458

{( ||,...1),, 1,1,21,1 tN
i

t
i

t Yiyy = } and PF:= {( ||,...1),, 2,2,22,1 tN
j

t
j
t Yjyy = }.459

if (t<T)460

                        |YN,t2|:= k, i
ty 2,1 := iy1 , i

ty 2,2 := iy2 , i =1,…,k.461
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end if462

t:= t+1.463

end while464

465

Lemma  2.   |YN| = O(T) and the time complexity of Algorithm 3 for solving problem (3)-(8) is466

O(g(ns,ms)T), where g(ns,ms) is time complexity of solving a single period subproblem of (3)-(8)467

and ns = |J|+3  and ms= |U|+2  are  number  of  variables  and  number  of  constraints  for  the  single468

period subproblem.469

470

Proof:  Assume that slopes of the PF in period t =1,…,T are unique, then471

)1|(|1||
1 ,max, -+= å =

T

t tNN YY , where MY tN £|| ,  and M is a constant. Then ££ |||| max,NN YY472

.)1(1 TM -+  Thus, |YN| = O(T).473

474

The time complexity of generating the PF of a single period subproblem is g(ns,ms) and the time475

complexity of Algorithm 2 is O(|YN|).  According to Algorithm 3, the accumulative effect of T is476

fully reflected in |YN|.  Thus, the time complexity of Algorithm 3 for solving problem (3)-(8) is477

O(g(ns,ms)|YN|) = O(g(ns,ms)T) .�478

3.4 Theoretical comparisons of MDSA and MA479

Let || MD
NY  and || M

NY  denote the size of the non-dominated set of problem (3)-(8) generated by480

MDSA and MA respectively. Both MDSA and MA generate the exact PF for problem (3)-(8).481

|||| MMD
NN YY ³  because MDSA has chance to generate the non-extreme non-dominated outcomes482

while MA only generates extreme non-dominated outcomes. Based on the results of numerical483



Rong, Figueira, Lahdelma, 24/39 11/20/2014

experiments, for the single period problem, it seems that MDSA does not generate non-extreme484

non-dominated outcomes. The number of non-extreme non-dominated outcomes generated by485

MDSA increases as the planning horizon increases.486

487

Moreover, MA is more efficient than MDSA according to Lemma 2 and Corollary 1.  According488

to |YN| = O(T), the time complexity of  MDSA for solving problem (3)-(8) is O(g(ns,ms) T2) while489

the time complexity of MA is O(g(ns,ms) T).  If T is much larger than ns and ms, then g(ns,ms) can490

be treated as a constant and the time complexity of MDSA is reduced to  O(T2) while the time491

complexity of MA is O(T).492

4. Computational experiments493

To evaluate the efficiency and effectiveness of the merging algorithm (MA), the modified494

dichotomic  search  algorithm  (MDSA)  was  used  as  a  benchmark.  In  addition,  to  verify  the495

correctness of MDSA, a general dichotomic search algorithm (DSA) was also implemented,496

where the new outcome is compared against all known non-dominated outcomes explicitly at497

Step 4 of Algorithm 1.  The on-line envelope based (ECON) algorithm developed by [26] was498

used an LP solver for solving the single objective (weighted-sum function) hourly subproblem.499

For  handling  the  small-size  problem,  on  the  average,  ECON is  on  the  average  467  times  faster500

than CPLEX 9.0 according to instances in [26]. CPLEX is general commercial software for501

solving large-scale mathematical programming problems. To facilitate comparison, we here502

provide the relative performance of these two solvers according to test instances in the current503

experiment based on the latest version of CPLEX 12.5 [37].504
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All algorithms (MDSA, DSA and MA) were implemented in C++ in the Microsoft visual studio505

2003 environment. All experiments were carried out on a 2.49 GHz Pentium PC (Dual core CPU)506

with 2.9 GB RAM under Windows XP operating systems.507

4.1 Test problems508

Our test problems were adapted from non-convex problems [38] ignoring the non-convexity509

characteristics. In practice, the non-convexity characteristics may be ignored in some strategic510

planning where capacities of plants are main concerns. The original test problems consist of six511

plants, where there are three real plants and three artificially derived plants modified according to512

real plants. Among the three real plants, one is backpressure (BP) plant (A1) and the other two513

are  combined  steam  and  gas  cycle  (CSG)  plants  (B1  and  C1).  Three  artificially  derived  plants514

(A2, B2 and C2) were constructed by perturbing extreme points and restricting real plants (A1,515

B1 and C1) to operate within certain regions.  In the current study, the fuel combusted at each516

plant needs to be specified explicitly since emission cost is explicitly considered as an objective.517

It is assumed that plants A1 and A2 are coal -fired, plants B1 and B2 are gas-fired and plants C1518

and C2 are oil-fired.  Table 1 summarizes the properties of six plants relevant to the current study.519

Tables 2 and 3 give the fuel characteristics (p, p, q) of three real plants (A1, B1 and C1) and three520

artificially derived plants (A2, B2 and C2), respectively.521

522

Table 1. Properties of CHP plants523

Plant Type  Points Fuel
A1 BP 28 coal
B1 CSG 27 gas
C1 CSG 28 oil
A2 BP 16 coal
B2 CSG 16 gas
C2 CSG 16 oil
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524

Table 2 Fuel characteristic (p, p,q) of three real plants A1, B1 and C1.525

A1 B1 C1
28  27  28

160 48 0 63.636 21 0 127.273 42 0
247.276 81.6 0.001 130.306 43 0.001 187.276 61.8 0.001
309.097 102 0.002 173.34 52 0.002 260.526 85 14
350.009 115.5 0.003 208.743 62.62 0.003 306.818 105 30
234.957 81.6 21.781 203.03 64 3 115.362 42 37.6
309.455 102 21.782 56.824 21 17.64 207.798 85 37.601
386.623 129 21.783 110.256 43 17.641 277.435 103.89 37.602

387.5 129 26 142.129 52 17.643 323.623 114.5 37.603
114.818 48 27.78 185.555 64 17.644 279.616 105 37.604
147.222 48 58 69.333 21 31 140 42 63
229.429 81.6 79 64.286 16 38 128.571 32 76
266.178 102 79.001 125.714 43 45 318.182 129 81
315.155 129 79.002 140.581 52 45.001 248.571 85 89
132.584 30 88 162.69 64 45.002 285.296 105 89.001
281.159 102 92 81.605 21 45.1 325.376 129 89.002
329.852 129 92.001 148.571 52 52 161.829 42 90.7
184.375 48 99.5 170.59 64 52.001 300 105 105
246.667 75 110 116.883 33 57 344.119 129 105.001
155.557 30 110.001 108.642 28 60 233.766 66 114
266.667 80 120 172.603 55 71 225.61 58 127
332.778 108.6 131 143.59 40 72 341.096 109 140
384.507 129 144 197.222 64 78 287.179 79 145
283.125 75 151.5 107.778 16 81 395.833 129 156
302.025 81.6 157 151.852 40 83 213.333 32 160
354.545 100 173 184.416 52 90 303.704 79 167
265.683 60.8 173.001 184.417 52 90.001 374.684 103 193
354.548 100 173.002 165.116 40 102 374.685 103 193.001
311.494 73 198  330.233 79 205

526

Then six (D1-D6) test problems are generated based on different combinations of above six527

plants, where D2 consists of three real plants.  Table 4 shows dimensions (ms, ns) of single period528

test  problems  as  well  as  the  solution  time  of  CPLEX  and  ECON.  The ms and ns represent the529

number of constraints and variables respectively. As mentioned in the beginning of Section 4,530

since the ECON algorithm is used as an LP solver, it means that the transaction costs in the531
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market are ignored, i.e., .,, tptp cc -+ =  Then,  the  power  sales  and  purchase  volume ( tpx ,± ) can be532

replaced by one variable tpx ,  (refer to [26]). Consequently, ns = |J|+2 and ms = |U|+2 respectively.533

To form a valid test problem, the heat demand is generated based on history data of a Finnish534

energy company and Figure 3 shows the daily and weekly patterns of heat demand.  The power535

price is generated based on the spot price history of the Nordic power market [39] and the536

emission allowance price is generated based on uniform distribution within [6.0, 16.0] €/ton537

according to the discussion in [40].  Following the assumption that the fuel with higher emissions538

is cheaper, prices of gas, oil and coal are fixed at 20, 15 and 10 €/MW, respectively.539

540

Table 3 Fuel characteristic (p, p, q) of three artifically derived plants A2, B2 and C2.541

A2  B2  C2
16 16 16

160 48 0 73.333 22 0 146.667 44 0
247.276 81.6 0.001 160.003 48 0.001 167.245 55.19 0.001
340.007 102 0.002 206.673 62 0.002 274.444 95 28.5
385.01 115.5 0.003 225.01 67.5 0.003 116.926 44 35.51

240.421 81.6 21.781 223.684 73 12 250.983 95 35.511
309.455 102 21.782 57.235 22 16.92 284.494 103.89 35.512
396.797 129 21.783 129.842 48 16.921 347.807 121 35.513

387.5 129 26 183.54 62 16.922 309.091 121 49
114.818 48 27.78 219.324 73 16.923 148 44 67
147.222 48 58 73.333 22 33 365.672 145 100
229.429 81.6 79 142.857 48 52 279.577 95 103.5
266.178 102 79.001 167.649 62 52.001 325.364 121 103.501
315.155 129 79.002 186.57 73 52.002 370.899 145 103.502
281.159 102 92 178.571 62 63 350 121 124
329.852 129 92.001 197.103 73 63.001 389.857 145 124.001
384.507 129 144 222.222 73 87 444.444 145 175

542

543
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Figure 3  Daily and weekly heat demand patterns545

546

Table 4 Dimensions of single period problems as well as the solution time of CPLEX and ECON547

Problem |U| Dimension  Solution time (s)
ms ns  CPLEX(0) CPLEX (1) CPLEX(2) ECON

D1 4 6 77 98.734 92.453 93.5 0.0188
D2 3 5 85 95.266 89.25 87.172 0.0187
D3 4 6 101 89.687 90.312 94.391 0.025
D4 5 7 105 89.468 109.25 91.172 0.0265
D5 5 7 117 89.953 97.156 92 0.0282
D6 6 8 103 99.203 100.766 91.812 0.0344
Avg 93.719 96.531 91.675 0.0253

548

For the solution time in Table 4, we solved in sequence 8760 single objective hourly models of549

(3)-(8)  with  the  first  objective  as  the  objective  and  the  CPU  time  of  both  CPLEX  and  ECON550

were  compared.   For  CPLEX,  we recorded  the  time according  to  different  values  of  clock  type551

taking 0, 1 and 2, denoted by CPLEX (0), CPLEX (1) and CPLEX (3), respectively.  According552
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to [37], clock type taking 1, 2 and 0 represents the CPU time and the wall clock time as well as553

the time that CPLEX chooses to record, respectively. The CPU time is the total execution time or554

runtime for which CPU was devoted to a process. The wall clock time is the total physical time555

elapsed.  For  a  pure  sequential  process,  the  CPU  time  should  be  less  than  the  wall  clock  time.556

However, this may be not the case if there are parallel processes involved.  This can be seen from557

the difference between CPLEX (1) and CPLEX (2) in the table. Sometimes, the CUP time is558

larger  while  other  times  the  wall  clock  time  is  larger.   Nonetheless,  no  matter  which  time  that559

CPLEX takes,  the  speed  ratio  of  ECON against  CPLEX is  larger  than  2668 (the  speed  ratio  of560

ECON  against  CPLEX  (2)  for  D6).  The  speed  ratio  of  ECON  against  CPLEX  (1)  is  in  range561

[2929, 4917] with average 3820.  This ratio is much larger than that reported by [26].  In the562

current experiment, the number of characteristic points in the plant is much larger than that in563

previous experiment. One possible reason is the number of characteristic points on the envelope564

is  much smaller  than  that  in  the  plant  for  the  current  instances  and  thus  ECON can  gain  much565

more benefit. According to [26], the points on the envelope are a function of power prices but it566

seems that the number of points on the envelope does not change much with the power price and567

is usually smaller than that in the plant. Similarly, for solving the weighted-sum function (14) of568

the bi-objective problem, the price of emission allowances also affects the points on the envelope.569

However, the trend should be similar. The other reason may be attributed to the test environment570

(computational facilities).571

4.2 Computational results572

We have solved test problems using general DSA, MDSA and MA for different planning573

horizons T (two-week (336 hour), four-week (672), eight-week (1344) and one-year (8760)).  If574
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the planning horizon is less than one year, then we have solved multiple non-overlap planning575

problems for the corresponding horizon within a year for each test problem and the average576

results of the corresponding horizons are obtained.  For example, for an eight-week planning577

horizon, we can form a total of  6 non-overlap planning problems with six starting periods such578

as 1, 1345, 2689, 4033, 5377 and 6721. The numerical results showed that MDSA and the579

general DSA generate the same representation of the non-dominated set for all considered test580

problems. It means that the comparison scheme at Step 4 of MDSA is correct.  In addition,581

MDSA gains a little advantage over the general DSA in terms of solution time. The average582

improvement is between 1% and 2% for the considered test problems.  This may be due to the583

fact that solving weighted-sum functions for DSA is more time consuming than determining584

whether a new outcome is dominated or not.585

586

Table 5   Average number of non-dominated outcomes for MDSA and MA for different planning587

horizons.588

ProblemMDSA  MA
one-year eight-week four-week two-week one-year eight-week four-week two-week

D1 46114 7163.3 3428.3 1794.9 45475 7144.3 3423.1 1793.5
D2 42170 6480.0 3106.9 1629.4 41463 6437.5 3088.6 1621.8
D3 71603 10809.3 5313.3 2745.4 69648 10747.7 5297.8 2741.2
D4 49352 7674.0 3691.4 1912.0 48561 7651.5 3685.2 1909.9
D5 49778 7679.3 3733.2 1927.0 49075 7653.2 3727.2 1925.1
D6 75649 11487.5 5590.5 2909.6 73297 11397.0 5567.2 2902.7

589

In the following, the results of MDSA and MA for different planning horizons are reported.590

Tables 5 and 6 give the size of the non-dominated set and the solution time for MDSA and MA591

respectively.592

593
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Based on Table 5, first, the size of non-dominated set is roughly proportional to T. Second,594

|||| MMD
NN YY ³  and the |||| MMD

NN YY -  increases as T increases, from 4 for two-week horizon to595

1191 for one-year horizon. These results agree with the discussion in Section 3.4.  The above first596

point implies that it may not be a trivial problem to find the exact the PF of the long-term CHP597

planning problem even though dynamic constraints are ignored due to the large size of the non-598

dominated set.  The second point means that the representation of the non-dominated set based on599

the results of MA is compact. According to MA algorithm, if slopes for the PF are unique for all600

single period models, then || M
NY = || max,NY  = ).1|(|1

1 , -+å =

T

t
M

tNY 8.0||/|| max, »N
M

N YY  for601

the problems considered in the experiment. It means that about 20% slopes of the PF for different602

periods coincide.603

604

Table 6  Average solution time (s) for MDSA and MA for different planning horizons.605

ProblemMDSA MA
one-year eight-week four-week two-week one-year eight-week four-week two-week

D1 2349.22 56.64 13.52 3.55 12.59 0.58 0.23 0.10
D2 2114.20 50.77 12.13 3.19 10.97 0.56 0.22 0.099
D3 4607.83 107.78 26.41 6.83 27.42 0.89 0.32 0.13
D4 3321.08 80.77 19.36 5.02 13.72 0.66 0.25 0.11
D5 3764.98 90.88 22.02 5.70 15.11 0.65 0.26 0.11
D6 6905.44 159.99 39.01 10.14 28.66 1.05 0.37 0.15

606

Based on Table 6, the solution time for MDSA is roughly proportional to T2 while the solution607

time for MA is roughly proportional to kT, where k£10.  It  means  that  the  solution  time  of  the608

single period subproblem is bounded by a constant.  This again agrees with the discussion in609

Section  3.4  and  MA  is  much  more  efficient  than  MDSA.  It  is  not  difficult  for  MA  to  handle610

problems for long planning horizons (e.g. 15 or 20 years). On the other hand, the efficiency for611

MA  is  largely  attributed  to  the  efficiency  of  the  solver  for  the  single  period  weighted-sum612
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subproblem.  According to Table 4, it is difficult for MA to handle a yearly planning problem if613

ECON is replaced by CPLEX. Similarly, the MA is also more efficient than the e -method where614

the multi-period problem needs to be solved by a general solver (e.g. CPLEX).  It is easy to see615

that it is even difficult for MDSA to handle a two-week planning problem if ECON is replaced616

by CPLEX.617

618

Finally, we use MA to investigate the effect of emission allowance price on the size of the non-619

dominated set and on the solution efficiency according to yearly planning problems. We use the620

scenario  with  constant  emission  allowance  price  as  a  benchmark.  It  is  equivalent  to  contrasting621

the difference between the traditional EED (EED1) [33] where emissions are treated as the622

second objective and the current EED (EED2) where emission costs are treated as the second623

objective.  Table 7 shows the results.624

625

Table 7  Effect of the emission allowance price on the size of non-dominated set and on the626

solution efficiency for yearly planning problems.627

Problem ||
1 ,å =

T

t
M

tNY EED1  EED2

CPU (s) || M
NY ||/|| max,N

M
N YY  CPU (s) || M

NY ||/|| max,N
M

N YY
D1 65898 4.66 17520 0.31  12.59 45475 0.80
D2 59778 4.52 16812 0.33  10.97 41463 0.81
D3 93734 8.28 31043 0.37  27.42 69648 0.82
D4 76585 5.55 21611 0.32  13.72 48561 0.72
D5 72628 6.53 24191 0.38  15.11 49075 0.77
D6 102003 10.86 37849 0.41  28.66 73297 0.79

628

For both EED1 and EED2, ||
1 ,å =

T

t
M

tNY  are the same. It means that allowance price does not affect629

the size of the non-dominated set for a single period subproblem. However, the size of the non-630
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dominated ( || M
NY )  for  the  EED1  is  much  smaller  because  profiles  of  the  PF  (slopes  for  two631

consecutive non-dominated outcomes) from period to period are similar. Based on632

||/|| max,N
M

N YY , 60% to 70% slopes of the PF for single period subproblems coincide for the633

EED1 while about 20% slopes coincide for the EED2.  This means that the planning problem634

under ETS considering emission costs as the second objective is harder than the traditional635

planning problem considering emissions as the second objective. This also reflects in the solution636

time (CPU(s)).  On the other hand, it can be seen that tradeoff between economic and emission637

objectives is not sensitive to emission allowance price under the fuel mix setting in the sense that638

tradeoff (results of EED1) should exist regardless of emission allowance prices.  It means that it639

is less likely that speculative options for single optimization (aggregating economic and emission640

objective) are recommended to favor the fuel with higher emissions when the emission allowance641

price is lower. In other words, the multi-objective approach can provide better decision support642

under uncertainties of emission allowance market.643

644

The results  of  Table  7  agree  with  the  theoretical  results  of  Lemma 2,  i.e.,  the  solution  time for645

MA is proportional to || M
NY  (the  size  of  the  non-dominated  set).  Prices  of  emission  allowances646

mainly affect  slopes of the PF. In the extreme case,  slopes of PF in each period are unique and647

||/|| max,N
M

N YY =1.  As we mentioned before, D2 is a real instance. We can obtain the worst case648

(largest) solution time of the MA for D2 as 10.97/0.81=14 (s) for a yearly planning problem649

according to Table 7 and Lemma 2. It means that the MA is fully applicable to real world650

planning.651

652
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5 Conclusion653

In this paper, we have presented an efficient specialized merging algorithm (MA) to find the654

exact PF for the bi-objective convex CHP planning problem considering a fuel mix setting.  If the655

fuel with higher emissions is cheaper than that with lower emissions, then plants fired by all656

types of fuels may be put into use. The size of the non-dominated set can be large and is657

proportional to the planning horizon. For a yearly planning problem, the size can be more than 40658

thousand.  Such  a  large  size  challenges  the  solution  of  the  problem  even  though  each  non-659

dominated outcome can be obtained by a polynomial algorithm for the traditional dichotomic660

search algorithm. It  is  difficult  for a general  solver such as CPLEX to handle the problem. The661

efficiency of the MA is justified theoretically and empirically.  The MA is applicable to the long662

term planning problem for risk analysis and generation expansion planning. The MA may lay663

foundation for integrating multicriteria decision analysis and scenario planning [22].664
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