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L-band (1-2 GHz) radiometry has been an ongoing research topic in the Department of 

Radio Science and Engineering for a number of years. In addition to remote sensing and 

radioastronomy applications, a radiometer can be used for detecting unwanted radio 

emissions in a protected frequency band. 

A frequency scanning radiometer (FIRaL) for detecting radio interference at the 

frequency interval of 1920 – 1980 MHz is designed and realised in this Licentiate thesis 

work. The aforementioned frequency band is reserved for mobile communication 

applications. The theory of radiometry is presented to the necessary extent in order to 

facilitate the FIRaL radiometer design. The design of the receiver and local oscillator 

electronics and pyramidal horn antenna is presented.  

Radiometer performance is studied by measuring the relevant device parameters in 

laboratory conditions. The feasibility of the radiometer to perform real-world 

interference surveys is tested by on-site measurements. The realised radiometer receiver 

input noise temperature is 661 ± 58 K or better. The radiometer is deemed suitable for 

interference measurements. The preliminary on-site measurements suggests that further 

measurements are feasible in order to study the extent of radio emissions in the 1920 – 

1980 MHz mobile communications band. 
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Radiotieteen ja –tekniikan laitoksella on jo useita vuosia tutkittu L-alueen (1-2 GHz) 

radiometriasovelluksia. Kaukokartoituksen ja radioastronomian ohella radiometreillä 

voidaan tutkia radiotaajuisia häiriöitä suojatuilla taajuusalueilla. 

Tässä työssä on suunniteltu ja toteutettu L-alueen taajuuspyyhkäisevä radiometri 

(FIRaL) 1920-1980 MHz:in taajuusalueelta mahdollisesti löytyvien radiotaajuisten 

häiriöiden tutkimiseen. Edellä mainittu taajuuskaista on varattu 

matkaviestintäsovellusten käyttöön. Radiometria esitellään FIRaL radiometrin 

suunnittelun taustatiedoksi tarvittavalla laajuudella. Vastaanottimen ja 

paikallisoskillaattorin elektroniikan ja pyramiditorviantennin suunnittelu esitellään.  

Radiometrin suorituskykyä tutkitaan mittaamalla kyseisen laitteen parametrit 

laboratorio-olosuhteissa. Radiometrin soveltuvuus käytännön häiriömittauksiin testataan 

tekemällä mittauksia tyypillisessä matkaviestintätukiaseman sijaintipaikassa. 

Rakennetun radiometrin kohinalämpötila on maksimissaan 661 ± 58 K. Radiometri 

todetaan käyttökelpoiseksi häiriömittauksiin. Alustavista mittauksista löytyi 

todennäköisiä häiriölähteitä 1920 – 1980 MHz matkaviestintäkaistalta ja lisätutkimukset 

häiriöiden laajempaan kartoitukseen ovat perusteltuja. 

Avainsanat: Radiometri, radiotaajuiset häiriöt, RF-suunnittelu, kalibrointi 
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1 Introduction 

Electromagnetic spectrum is a limited resource like land and water. Government bodies 

are therefore constantly monitoring and allocating frequency bands for specific usage. 

European Communications Office [1] regulates frequency usage on a continent wide 

basis. Nationally, the Finnish Communications Regulatory Authority (FICORA) is 

responsible for dividing the radio spectrum for different users and applications. 

According to the Radio Frequency Regulation 4, issued on the 4
th

 of November 2009 by 

FICORA, the frequency interval of 1920-1980 MHz in the L-band (1-2 GHz) is 

reserved for International Mobile Telecommunications and specifically for the 

Universal Mobile Telecommunications System (UMTS) base station receiver (RX) 

band [2]. 

The present large scale use of fast electronic devices with possible off-band 

electromagnetic emissions has caused concerns in mobile telecommunications 

operators, whose mobile phone base station technology relies on stable and low RX 

band background noise level. The technology is based on the Wideband Code Division 

Multiple Access (W-CDMA) radio interface which is not particularly susceptible to 

coherent narrowband interference [3]. However, the received W-CDMA radio signal 

power levels are comparable to the background noise floor and, therefore, excessive 

noise level can partially or even totally prevent successful reception of uplink signals 

coming from mobile stations. 

Background noise power level can be measured with sensitive microwave sensors. 

These devices are called microwave radiometers. A microwave radiometer passively 

measures the amount of electromagnetic energy arriving from the scene under 

observation through its antenna beam. Main applications of radiometric measurements 

fall under the title of remote sensing, which include atmospheric temperature retrieval, 

estimation of liquid water of clouds, soil moisture content and snow water content 

measurements, and so on. Microwave radiometry was first developed from the 1930s 

onwards to measure extraterrestial microwave radiation. In Teknillinen korkeakoulu 

(TKK), the Department of Radio Science and Engineering (formerly the Radio 

Laboratory and the Laboratory of Space Technology) has a long history in the 

development of radiometric theory and applications [4], [5], [6] 
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An L-band frequency scanning radiometer for monitoring the UMTS RX band 

background noise is developed and realised in this Licentiate thesis work. The theory on 

which the radiometer design is based is introduced in Chapter 2. In Chapter 3, the 

design of the L-band frequency scanning radiometer is documented. Verification of the 

design is carried out by laboratory tests and on-site measurements presented in Chapters 

4 and 5, respectively. Finally, the work is summarised and the results of this thesis are 

discussed in Chapter 6. 
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2 Radiometry and radiometer systems 

A radiometer measures electromagnetic radiation. Unlike communications or radar 

receivers which usually process phase-coherent signals, a radiometer is mainly used to 

measure phase-incoherent noiselike natural radiation extending the whole 

electromagnetic spectrum. Also, in traditional receivers the signal-to-noise ratio (SNR) 

needs to be as high as possible in order to successfully retrieve the signal information. 

The situation is quite different in a radiometer which measures radiometric signals that 

are often much smaller than the self-emitted noise power of the radiometer. [6] 

This chapter first looks into the physical phenomena of thermal radiation and then 

establishes the relation between power received by an antenna and radiometric 

temperature, followed by determination of the fundamental design constraints of 

radiometers. Finally, the most widely used types of radiometer systems are introduced. 

2.1 Brightness temperature 

When electromagnetic radiation is incident on an object, a part of it is scattered and part 

of it is absorbed by the matter. The absorbed energy increases the thermal energy of the 

object, leading to increase in temperature. In a reverse process the object strives to 

remain in thermodynamic balance with its environment by emitting a part of the thermal 

energy as electromagnetic or “thermal” radiation.  

In an atomic level, the absorption of a photon increases the quantum energy level of the 

particle by some finite amount, resulting in an absorption or emission line spectrum. 

When the number of particles is large, the corresponding increase in number of degrees 

of freedom leads to a continuous emission spectrum. Radiation by an atom is caused by 

collision with another particle and the probability of such an event increases as a 

function of the atom or particle’s kinetic energy. Since kinetic energy of a particle is 

directly related to its thermal energy, the intensity of electromagnetic emission increases 

with temperature. [6] 
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2.1.1 Planck’s blackbody radiation law 

The relation between temperature of a blackbody and radiation intensity is defined by 

Planck’s radiation law. A blackbody is defined as an ideal object which absorbs all 

incident radiation, reflecting none. In order to remain in thermal equilibrium, it also 

emits an equal amount energy. The radiation intensity of a blackbody is 






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12
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kThff
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B ,          (2.1) 

where Bf is the blackbody spectral brightness [Wm
-2

sr
-1

Hz
-1

], h is Planck’s constant,  f is 

frequency, k is Boltzmann’s constant, T is absolute temperature and c is velocity of 

light. Fig. 2.1 demonstrates the blackbody spectral brightness as a function of frequency 

at temperatures of 300 K, 1000 K and 10000 K. [6] 

The low and high frequency parts of the Planck’s radiation law can be approximated 

with the Rayleigh-Jeans law and the Wien radiation law, respectively. In the lower 

frequencies where hf/kT << 1, the exponent function e
hf/kT

 – 1 in Eq. (2.1) can be 

replaced by its approximation hf/kT. Substituting into Eq. (2.1), the Rayleigh-Jeans law 

is obtained as 
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Figure 2.1. Blackbody spectral brightness at 300 K, 1000 K and 10000 K. 
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where λ is wavelength of the blackbody radiation. Planck’s radiation law and  Rayleigh-

Jeans law for a blackbody at 300 K are shown in Fig. 2.2. The maximum error of 

Rayleigh-Jeans law at UMTS RX band is only 0.02 %, validating its use. [6] 

2.1.2 Nonblackbody radiation 

Real materials do not absorb all incident radiation as an ideal blackbody, but they do 

exhibit similar spectral brightness depence as that in Eq. (2.1). The spectral brightness 

of these gray bodies in thermal equilibrium is always less than for a blackbody in equal 

temperature. The total brightness Bbb [Wm
-2

sr
-1

] of a blackbody in a narrow bandwidth 

Δf at microwave frequencies is defined as 

f
kT

fBB fbb 
2

2


.         (2.3) 

For a homogeneous gray body at equal physical temperature, it is possible to define a 

blackbody equivalent brightness temperature. The brightness temperature TB(θ,φ), 

which may be direction-dependent, allows the definition of the gray body brightness 

B(θ,φ) as 
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Figure 2.2. Comparison of Planck’s and Rayleigh-Jeans radiation laws for a blackbody 

at 300 K. 
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Emissivity ε(θ,φ), the ratio between the brightness of a real material and the brightness 

of a blackbody when both materials are in thermal equilibrium is 

 
   

T

T

B

B B

bb




,,
,  .         (2.5) 

Emissivity is always less than or equal to 1 and therefore the brightness temperature of a 

real object is cooler than its actual physical temperature. [6] 

2.2 Antenna temperature 

2.2.1 Power received by an antenna 

When an antenna with an effective area Ar is observing a scene over solid angle Ωt in 

the direction of maximum directivity, the received power can be shown to be 

trmb ABP  ,               (2.6) 

where Bmb is brightness in the main beam direction. Removing the restriction of 

maximum directivity, the power received by an antenna over a finite bandwidth Δf is 
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where Gn is the normalised directivity of the antenna and the ½ factor arises from the 

fact that Bf(θ,φ) is unpolarised and the antenna is polarised. [6] 

2.2.2 Power-temperature relation 

Power-temperature relation can be studied by placing a lossless antenna inside a  

blackbody chamber at constant temperature T and observing the output power at the 

antenna terminals. Over a narrow bandwidth where the spectral brightness Bf is 

approximately constant, the available power is found by inserting Eq. (2.2) into Eq.  

(2.7) and integrating over frequency: 
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Since the integral in Eq. (2.8) is equal to the pattern solid angle Ωp and Ωp is related to 

antenna effective aperture by Ωp = λ
2
/Ar, Eq. (2.8) reduces to 

fkTPbb  .              (2.9) 

Eq. (2.9) establishes a linear relationship between power and temperature. It is also 

analogous to the available noise power of a resistor at temperature T over bandwidth Δf, 

a convenient fact that facilitates radiometer calibration. [6] 

2.2.3 Efficiency and antenna temperature 

Fig. 2.3 shows a typical measurement situation where the antenna delivers an output 

power proportional to the apparent temperature distribution TAP(θ,φ). TAP(θ,φ) is a 

blackbody-equivalent temperature distribution, which corresponds to the sum of 

brightness temperatures representing to the incident electromagnetic energy. Antenna 

radiometric temperature TA is defined as a resistor-equivalent power at the radiometer 

input resulting from the apparent temperature distribution as 

fkTP A .            (2.10) 

Antenna temperature contains components arriving from main beam and side lobe 

directions. The specific objective in microwave remote sensing is to relate the 

brightness temperature in the main beam solid angle to the radiometer output voltage 

Vout, which requires knowledge on side lobe level relative to the main beam and on the 

apparent temperature distribution in the sidelobe direction. For the purposes of 

observing the background noise level in UMTS RX band, the distinction between the  

 

Figure 2.3. Power receiver by antenna is proportional to the surrounding apparent 

temperature distribution [6]. 
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above mentioned components is not relevant. 

So far, an ideal antenna has been considered. A part of the incident radiation is absorbed 

as heat in a practical antenna. Antenna radiation efficiency ηl is defined as the ratio of 

the received power to the incident power. A lossy antenna is also a source of radiation 

itself, corresponding to an output noise temperature TN  

physlN TT )1(  ,           (2.11) 

where Tphys is the physical temperature. The antenna temperature of a lossy antenna '

AT  

is therefore [6] 

physlAlA TTT )1('   .          (2.12) 

2.3 Device noise characterisation 

The purpose of a radiometer is to detect the antenna temperature, which is a fluctuating 

noise-like signal. It is therefore only possible to measure an estimate of the antenna 

temperature. The precision to which the measurement can be performed determines the 

radiometer measurement uncertainty ΔT. ΔT is defined to be equal to the standard 

deviation of a zero-mean Gaussian probability distribution. [6] 

As mentioned earlier, the measurement of radiometric temperature is analogous to the 

measurement of power delivered by a resistor at temperature T to a matched load 

through an ideal rectangular filter of bandwidth B. The thermal noise of the resistor is 

zero mean and has a non-zero root-mean-square (RMS) value. The concept of resistor-

equivalent noise temperature can also be used in the description of any band-limited 

noise source. This facilitates the noise characterisation of a radiometer system, which 

includes many kinds of active and passive devices. [6] 

2.3.1 Input noise temperature 

The concept of effective input noise temperature TE is used in the analysis of output 

noise power of a general linear two-port device. Effective input noise temperature is 

defined to be the temperature of a resistor which, if placed at input of an ideal noise-free 
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device, generates an equal amount of noise power at the device output as a non-ideal 

noisy device. The noise power Pno at the output is 

BGkTP Eno  ,            (2.13) 

where G is the gain of the device and B is the noise bandwidth. In the presence of actual 

input noise temperature TN, the total output noise power is 

 BTTGkP ENno  .           (2.14) 

The noise temperature of a general lossy device (i.e. an attenuator), defined by a loss 

factor L, is 

  physE TLT 1 .           (2.15) 

In case of conventional receivers, the noise performance is usually described by the 

alternative concept of noise factor F. Noise factor is a measure of the degradation of 

signal-to-noise ratio between device input and output ports of the device. The relation 

between effective input noise temperature and noise factor is 

1
0


T

T
F E ,            (2.16) 

where the physical temperature T0 is standardised to 290 K.  [6] 

2.3.2 Noise temperature of a cascaded system 

A radiometer contains an N number of noisy devices. The concept of effective input 

noise temperature is now extended to a cascaded system. Provided that the individual 

devices are impedance matched, the overall effective input noise temperature TE is 

12121

3
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2
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

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ENEE
EE

GGG

T

GG

T

G

T
TT ,     (2.17)  

where TEN and GN are the effective input noise temperature and gain of the Nth stage, 

respectively. It is apparent from Eq. (2.17), that the gain and input noise temperature of 

the first stage of the cascaded system largely determines the total input noise 

temperature. [6] 
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2.3.3 Radiometer noise temperature 

Fig. 2.4 demonstrates the practical situation for a radiometer with an (input) noise 

temperature of TREC. Most often the antenna cannot be directly attached to the 

radiometer input, it is instead connected via a lossy transmission line. Applying Eq. 

(2.17), the effective input noise temperature '

RECT  of the transmission line - receiver 

cascade is 

  RECphysREC LTTLT  1' .       (2.18)  

It is now possible to establish the total output noise power of a radiometer system PSYS 

in terms of the effective input noise temperature at the antenna terminals in Fig. 2.4 by 

combining Eqs. (2.12), (2.15) and (2.18) as 

      BLTTLTTGkBTTGkP RECphysphyslAlRECASYS  11''  ,  (2.19)  

where G is the radiometer overall gain. For a superheterodyne radiometer, bandwidth B 

is typically governed by the intermediate frequency (IF) section. From Eq. (2.19), the 

effective system input noise temperature TSYS is  

    RECphysphyslAlSYS LTTLTTT  11  .     (2.20)  

2.4 Radiometer systems 

The purpose of a radiometer is to measure TA in Eq. (2.20) with a high degree of 

accuracy. The actual output power is proportional to TSYS, G and B according to Eq. 

(2.19). TA is then calculated from Eq. (2.20), provided that ηl, L and Tphys are known.  

 

Figure 2.4. Effective input noise temperature of an equivalent transmission line - noise-

free receiver cascade [6]. 
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The radiometer is calibrated by replacing the antenna with a noise source having a 

known input noise temperature and monitoring the corresponding output power. 

Radiometers typically use square-law detection, in which case the detector output 

voltage is linearly related to the input noise temperature. 

Radiometer measurement performance is determined by two fundamental attributes: 

measurement accuracy and sensitivity. Measurement sensitivity ΔT is equal to the 

smallest perceptible chance in antenna temperature. It depends on radiometer bandwidth 

B, integration time τ and system equivalent input noise temperature TSYS as 

B

T
CT SYS ,         (2.21)  

where C is a constant number (1 or more) depending on the radiometer type [4]. 

Measurement accuracy is defined to be the difference between the actual antenna 

temperature and the measurement result. Main contributors to measurement accuracy 

are calibration precision and specifically the accuracy in which the calibration load 

noise temperatures are known and drifts in gain or radiometer noise temperature. [6] 

2.4.1 Total power radiometer 

Fig. 2.5 depicts a simple kind of system, called the total power radiometer. It consists of 

an antenna, a predection section that processes the input noise signal to be suitable for 

detection in the square-law detector and finally a low-pass filter. In a double-sideband 

receiver configuration, two RF bands of width B centered around the  

 

Figure 2.5. Block diagram of a total power radiometer [6]. 
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frequencies fRF = fLO ± fIF are translated to the intermediate frequency  fIF and amplified. 

In radiometric measurements a single-sideband topology is usually used, where one the 

RF bands is amplified by the RF amplifier and the other band is rejected. The RF-

amplifier bandwidth BRF is often wider than the IF-amplifier bandwidth B, it is therefore 

the latter which determines the predection section bandwidth. After detection, the low-

pass filter is then used to filter out the high frequency components from the detector 

output voltage Vd. Filtering in frequency domain is equivalent to averaging voltage Vd in 

the time-domain over a time interval τ. The resulting radiometer DC output voltage outV  

is 

BGkTCgV SYSdLFout  ,        (2.22)  

where gLF is the low-pass filter gain and Cd is the detector power-sensitivity constant. 

[6] 

The total noise radiometer is simple to construct and use. Its sensitivity is  

 B

TT

B

T
T RECASYS

'' 
 .        (2.23)  

Successful operation, however, requires that output voltage fluctuations due to gain 

variation are much smaller than the variation due to antenna temperature. Low 

frequency gain variations can be effectively filtered by calibrating the radiometer as 

regularly as needed. Fast radiometer gain fluctuations ΔG are harder to avoid and cause 

an rms uncertainty of  








 


G

G
TT SYSG .         (2.24)  

Gain variations can be partly suppressed by maintaining the radiometer at a stable 

physical temperature and regulating the amplifier power supplies. The measurement 

uncertainties due to the measurement of a noise-like signal and due to gain variations 

can be considered uncorrelated. Combining Eqs. (2.23) - (2.24), the total power 

radiometer overall measurement uncertainty (sensitivity) is [6] 
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2.4.2 Dicke radiometer 

Dicke radiometer uses modulation in order to diminish the effect of gain fluctuations 

and variations in radiometer noise temperature. Fig. 2.6 shows a simplified block 

diagram of a Dicke radiometer, where the input is switched periodically between the 

antenna and a stable reference load. The detector output voltage is multiplied with either 

plus or minus one in syncronism with the input switch and then integrated over time. 

The measurement result is therefore only dependent on the difference between '

AT  and 

TREF and independent on the radiometer noise temperature TREC. Modulation frequency 

fS has to be greater than the highest significant component of the gain fluctuation 

spectrum. Most of the gain variations occur at frequencies below 1 Hz and have neglible 

components above 1 kHz. The total measurement uncertainty of a Dicke radiometer is  

     
2

1

2'

22'2'' 22














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





 



 REFA

RECREFRECA TT
G

G

B

TTTT
T


.   (2.26)  

If the radiometer is balanced, in which case '

AT  is chosen to be equal to the average 

antenna temperature resulting from the observed apparent temperature distribution, Eq. 

(2.26) reduces to 

 
B

TT
T RECA

''2 
 .         (2.27)  

The factor 2 in Eq. (2.27) arises from the fact that only half of the integration time is 

spent measuring the antenna temperature. Sensitivity can be improved by modifying the 

modulating signal pulse ratio in order to increase the time interval in which the antenna 

signal is measured. [6], [7] 
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Figure 2.6. Block diagram of a Dicke radiometer [6], [7]. 

2.4.3 Noise-injection radiometer 

Noise-injection radiometer (in Fig. 2.7) improves upon the Dicke radiometer by 

maintaining the antenna temperature continuously equal to the reference load 

temperature. A variable noise source is used to feed a servo loop controlled amount of 

excess noise to the signal path during the interval in which the antenna temperature is 

measured. Fulfilling the balanced condition REFA TT '  at all times virtually eliminates 

the measurement uncertainties due to radiometer noise temperature and gain 

fluctuations. Measurement uncertainty of a noise-injection radiometer is [8] 

 
B

TT
T RECREF

'2 
 .         (2.28)  

 

Figure 2.7. Block diagram of a noise-injection radiometer. '

AT  is kept equal to the 

reference load noise temperature by injecting excess noise temperature TI during 

antenna temperature measurement period [9]. 
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3 Design of the L-band frequency scanning radiometer 

The design and realisation of L-band frequency scanning radiometer is a part of L-band 

Interference Measurements in Urban and Suburban Environment (LIME) project, 

funded by TKK, Nokia Siemens Networks Oy (NSN) and the Finnish Funding Agency 

for Technology and Innovation (Tekes) [10]. The LIME project is related to the work 

done at TKK in the European Space Agency’s (ESA) Soil Moisture and Ocean Salinity 

(SMOS) mission [11]. Within the framework of the SMOS mission, an airborne L-band 

2-D interferometric radiometer HUT-2D was developed at the TKK’s Laboratory of 

Space Science [5], [12]. As a preliminary study in LIME, the HUT-2D instrument was 

used to measure man-made radio interference in the greater Helsinki area within the 

protected part of the L-band (1.4 – 1.427 GHz), which is reserved for radio astronomy. 

A further two L-band instruments for monitoring the L-band are envisaged in the LIME 

project, second of which is the frequency scanning radiometer (FIRaL). The design of 

the FIRaL instrument is based on the technology of the HUT-2D radiometer and the 

other LIME project instrument, the 1.4 GHz radiometer (aL-Band). For background 

information, relevant parts of the previous two are presented in this Chapter. The system 

requirements and specification of the FIRaL instrument are defined next, followed by 

the design of individual system components. 

3.1 Recent radiometer development at TKK 

3.1.1 HUT-2D interferometric radiometer 

The HUT-2D instrument is an interferometric radiometer, which uses aperture synthesis 

for image construction. It has 36 L-band microwave receivers, each measuring the same 

target with integrated dual-polarised microstrip patch antennas and providing in-phase 

(I) and quadrature phase (Q) IF outputs. The receivers are in an U-shaped 2 m x 2 m 

configuration, as shown in Fig. 3.1. The receivers are based on the superheterodyne 

total power radiometer principle, as described in Section 2.4.1. Receiver amplitude 

calibration is performed by an accurately characterised central noise source (CNS) 

having two output power levels of warm and hot. The CNS unit is temperature  
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Figure 3.1. HUT-2D instrument layout showing subsystem locations [5]. 

stabilised with heating elements and associated control electronics. The CNS signals are 

coupled to the receiver input via a single-pole 4-throw switch in the receiver input (Fig. 

3.2). The switch is also used to select either antenna polarisation or a passive calibration 

load at the receiver physical temperature. It is worth pointing out that the placement of 

the RF filter after the RF amplifier in Fig. 3.2 is a compromise, the aim of which is to 

minimise the radiometer noise temperature. It does, however, leave the receiver 

susceptible to possible compression effects due to strong off-band interference signals 

in the RF amplifier bandwidth. [5] 

Other major components of the instrument are the local oscillator subsystem, which 

provides the LO signal for all 36 receivers, a digital correlator for image construction,  

 

Figure 3.2. Block diagram of one of the HUT-2D receivers [5].  
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power supply, operating computer and receiver control boards (RCBs). The 36 RCBs 

are responsible for IF signal sampling, collecting the physical temperature data of 

receivers via sensors and transmission of control signals and supply power to receivers, 

local oscillator and calibration subsystems. [5] 

3.1.2 aL-Band radiometer 

The aL-Band total power radiometer is an enhanced version of a single HUT-2D 

instrument receiver. It features a redesigned RF front-end connected to the HUT-2D 

receiver. The two main objectives are to achieve greater radiometric sensitivity by 

placing the portable RF front-end in the direct vicinity of the used L-band horn antenna 

and obtaining better stability by maintaining the unit in constant temperature with 

controlled heating elements. The heating is realised with transistor driven resistors on a 

thin printed circuit board (PCB), which is placed on the bottom side of a 2 mm 

aluminium plate, the top of which houses the RF front-end PCB. Temperature control is 

governed by thermal control board (TCB) electronics. The design is an adaptation of the 

HUT-2D CNS unit temperature stabilisation. [13] 

The RF front-end in Fig. 3.3 houses an active cold load (ACL) [14] for calibration 

purposes. The ACL is based on a reversely connected low-noise amplifier. The 

equivalent available noise temperature in the amplifier input is less than the physical 

temperature of the amplifier. The realised ACL resistor-equivalent noise temperature is  

 

Figure 3.3 aL-Band RF front-end block diagram [13]. 
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measured to be around 170 K. The aL-Band radiometer is yet to be fully realised. [13] 

3.2 System specifications and design outlines 

The FIRaL is a single channel receiver and is based on the total power radiometer 

principle, which is also used in HUT-2D and aL-Band instruments. The center 

frequency is 1950 MHz instead of 1.4 GHz, necessitating a complete redesign of the 

LO, RF and IF subsystems. The block diagram level design of the new radiometer is 

based on the design of the earlier radiometers. IF sampling and data acquisition will be 

done using a RCB identical to that used in each HUT-2D receiver. Temperature control 

of the RF and IF electronics is realised with a heater board and TCB, similarly as with 

the aL-Band RF front-end. A pyramidal horn antenna for scene observation is designed 

and personal computer (PC) control software is developed. Additionally, an enclosure 

for housing the subsystems is procured and modified. 

System requirements are mainly defined by the LIME project corporate partner NSN. 

The instrument must be able to measure background noise levels between 0 – 1000 K 

with a sensitivity of 10 K or better. The required 3-dB field-of-view for the horn 

antenna is 30° in both E- and H-planes. The receiver has to be able to measure the 

UMTS RX band (1920-1980 MHz) in 1 MHz steps, while having 5 MHz 3-dB 

bandwidth. The radiometer should be small and portable, facilitating measurements in 

demanding locations, such as link masts and roof tops. NSN has provided the specific 

operating band RF front-end components and the requirement is to achieve the best 

possible design with these and other available resources while meeting the 

specifications. 

3.2.1 FIRaL system level design 

FIRaL system level block diagram is illustrated in Fig. 3.4. The system has three main 

physical entities of horn antenna, radiometer main box and control computer. The main 

box houses four separate electromagnetically shielded enclosures for the receiver, LO, 

RCB and TCB printed circuit boards. RCB also has an integrated temperature control 

for the temperature sensitive detector diodes, which perform the square law detection. 

Each of the four subenclosures of the main box have dimensions of 147 mm x 147 mm 

x 25 mm or smaller, leading to a relatively compact main enclosure size. 
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Figure 3.4. FIRaL system configuration. Elements of the main box which are identical 

to those in Task 2, are marked yellow, while elements from HUT-2D instrument are in 

green. LO and RF front-end are new designs [10].  

The receiver PCB houses the single sideband superheterodyne total power radiometer 

RF amplifier, mixer and IF amplifier stages, including an input switch with two antenna 

inputs (only one is used), an input for “hot” ambient temperature calibration load and an 

input for “cold” active calibration load. IF of 70 MHz is chosen, for which the LO board 

provides a programmable LO signal between 1990-2050 MHz, depending on the 

desired RF band. Communication between the control computer and the RCB, LO and 

TCB subsystems is realised through a single PC parallel port and a single PC serial port. 

Development of control software is outsourced to an outside contractor. The control 

computer runs on regular line current and the main box requires 18-36 V (28 V 

nominal) DC power. RCB provides regulated DC power to the receiver and LO boards. 

Fig. 3.5 shows the connections between subsystems. 
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Figure 3.5. FIRaL radiometer system wiring. Antenna is omitted. 

Detailed descriptions of the receiver board, LO board and antenna subsystem designs 

are discussed in the following Sections. RCB and TCB units, along with the receiver 

board temperature stabilisation design are reused from the previously developed 

radiometers and will not be further elaborated here. 

3.2.2 Electronic design flow 

The schematic and PCB designs are implemented with PADS Logic and PADS Layout 

software by Mentor Graphics, respectively [15]. Circuit operation near 2 GHz requires 

proper RF design techniques and microstrip transmission lines with controlled 

impedance levels are used in this work. Fundamental microstrip transmission line 

theory is widely presented in literature and will not be repeated here [16], [17]. In order 

to facilitate the design process, numerical computing software MATLAB by The 

MathWorks [18] and electronic design software Advanced Design System (ADS) by 

Agilent are used [19].   

RF design essentially requires that transmission line impedances are known and that any 

ports which are not equal to the transmission line characteristic impedance are matched. 

Impedance matching can be realised with parallel tuning stubs, serial waveguide 

elements, such as a quarter-wave transformer or a tapered section, or with lumped 

components [16]. The latter technique is used in the FIRaL instrument receiver and LO 

boards in order to keep the circuit layout compact. 
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Impedance matching with lumped components can be realised with two possible ways, 

illustrated in Fig. 3.6. Zo is the transmission line characteristic impedance, ZL = RL + jXL 

is the load impedance, while jX and jB are the serial and parallel matching element 

impedances, respectively. If RL < ZL, the circuit of Fig. 3.6 (a) should be used, 

otherwise the circuit of Fig. 3.6 (b) should be used.  

If the circuit of Fig. 3.6 (a) is used, the reactance X and susceptance B are 

  LLL XRZRX  0                    (3.1)  

 

0

0

Z

RRZ
B

LL
 .                   (3.2)  

There are two possible solutions for matching elements, as seen in Eqs. (3.1) and (3.2). 

A positive X or a negative B implies an inductor, while a negative X or a positive B 

implies a capacitor. In the case of circuit of Fig. 3.6 (b), the element values are 

22

0

22

0

LL

LLLLL

XR

RZXRZRX
B




                  (3.3)  

LL

L

BR

Z

R

ZX

B
X 001

 ,                   (3.4)  

again with two possible solutions. The normalised reactance x = X/Z0 corresponds to an 

inductance L of 

0ZxL  ,                       (3.5)  

 

Figure 3.6. Impedance matching with lumped components [16]. 
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or a capacitance C of 

 01 xZC  ,                     (3.6)  

where ω is angular frequency. Similarly, the normalised susceptance b = BZ0 

corresponds to a capacitance of 

 0ZbC  ,                        (3.7)  

or an inductance of [7], [16], [17] 

 bZL 0 .                       (3.8) 

The circuit design process starts with a high level block diagram presentation. 

Individual circuit schematic blocks are then designed in PADS Logic around the main 

component, e.g., an amplifier, based on datasheet recommendations, while observing 

general guidelines on proper shielding, power supply decoupling and grounding [20]. 

Eqs. (3.1) – (3.8) are solved in MATLAB in order to find an ideal matching network for 

any component ports requiring impedance matching. The actual physical realisation of 

the circuit is then simulated and optimised at the frequency of operation in ADS, based 

on the ideal matching network elements and datasheet guidelines. Finally, the circuit 

block layout is drawn in PADS layout, from which the software files for PCB 

manufacturing can be produced. 

3.3 Receiver board design 

The inputs for receiver design are determined by the specified sensitivity requirement 

and RCB detector block square-law detector response. The IF output power level from 

the receiver PCB must be in the square-law part of the detector diode operating curve, 

while being at a suitable level for successful analog-to-digital conversion (ADC). The 

HUT-2D instrument receiver gains are between 90 to 93 dB [5]. Again for the HUT-2D 

receiver, assuming a total system input noise temperature of 700 K and an IF filter 

bandwidth of 7 MHz [5], the resulting output power is from -12 to -9 dBm, according to 

Eq. (2.14). From previous experience, it is noted that the optimum input power for the 

RCB square-law detector is around 10 dB less than the output power of a single HUT-
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2D receiver. Since the HUT-2D instrument RCB is also used in the FIRaL, an output 

power level of -20 dBm is used for gain calculations. 

Radiometer input power level can be estimated by selecting for example an effective 

input noise temperature of 700 K and an effective antenna temperature of 300 K. 

Recalling that the IF filter bandwidth is 5 MHz, the input noise power is 

  6.101''  BTTkP RECAin  dBm.         (3.9)  

The resulting optimum FIRaL receiver gain is around 82 dB, with any value between 80 

to 90 dB being acceptable. With the above noise temperatures and an integration time of 

250 ms, the measurement sensitivity due to a noise-like measurement signal is 0.9 K 

(Eq. (2.23)). The sensitivity requirement of ΔT ≤ 10 K is easily fulfilled and allows a 

wide margin for gain related measurement uncertainties.  

3.3.1 FIRaL receiver board block diagram level design 

The block diagram of the FIRaL receiver is shown in Fig. 3.7. The input switch with 

antenna input, hot and cold internal calibration loads form the first functional block. RF 

filter with three separate amplifier stages follows the input switch. The next functional 

block is the mixer stage. With the signal mixed to IF, the final functional block consists 

of a 5 MHz band-pass filter, two amplifier stages and a post band-pass filter in order to 

suppress any IF amplifier spurious signals. The design allows flexible switching 

between calibration loads and antenna feed with a 2-bit transistor-transistor logic (TTL) 

level control signal, provides enough gain for successful detection and translates the 

measured signal to 70 MHz IF, while rejecting the mixer mirror frequency (2060-2120 

MHz). 

The receiver is integrated on a 1.27 mm thick, 147 mm x 147 mm Rogers RT/Duroid 

6010 LM PCB material using microstrip technology [21]. Surface mount devices 

(SMDs) are used throughout, facilitating component layout and leaving the whole PCB 

bottomside as a ground layer. The functional blocks in Fig. 3.7 are based on 

commercially available components. Starting from the input, the used components are: 

Hittite HMC241QS16 non-reflective switch [22], UBE Industries MD441 band pass 

filter for UMTS [23], Richardson Electronics RLAS1722A LNA [24], Maxim, Inc. 

MAX2641 LNA (two RF amplifiers and ACL) [25], Maxim, Inc. MAX2681 
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Figure 3.7. High-level FIRaL receiver block diagram. 

downconverter mixer [26], Golledge Electronics MA08181 surface acoustic wave 

(SAW) filter [27], Maxim, Inc. MAX2650 IF amplifier [28], and Mini-Circuits ERA-3+ 

IF amplifier [29]. The final filter is realised with standard passive SMD inductors and 

capacitors. 

The nominal gain and insertion loss values for the FIRaL receiver components in an 

impedance matched configuration are listed in Table 3.1. The second IF filter insertion 

loss is estimated to be 3 dB. The theoretical gain of the receiver is 92.4 dB, when all 

components are optimally matched. The desired gain is somewhat lower and therefore 

the outputs of the two RF amplifiers are left unmatched in order to arrive at an 

estimated gain value of 10 dB per amplifier, which in turn leads to a suitable estimated 

receiver total gain of 83.6 dB. Component noise figures (10·log(F)) are also listed in 

Table 3.1. Typical values for active components are collected from device datasheets. 

The noise figures of lossy components are estimated by considering them purely 

resistive and calculated according to Eqs. (2.15) – (2.16), while noting that Tphys is 

chosen to be equal to T0. However, in case of filters this assumption may not be valid. 

The receiver input noise temperature can be solved by applying Eq. (2.17). The noise 

figures in Table 3.1 must first be converted to input noise temperatures by arranging Eq. 

(2.16) into 

 10  FTTE .           (3.11)  
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Table 3.1 FIRaL receiver gain 

Component Nominal gain Designed gain Noise figure Reference 

 dB dB dB  

Input switch -0.5 -0.5 0.5 [22] 

RF filter -1.0 -1.0 1.0 [23] 

LNA 30 30 0.55 [24] 

RF amp 14.4 10 1.3 [25] 

RF amp 14.4 10 1.3 [25] 

Mixer 8.4 8.4 11.1 [26] 

SAW filter -8 -8 8 [27] 

IF amp  19 19 3.9 [28] 

IF amp 18.7 18.7 2.7 [29] 

Band-pass filter -3 -3 3  

Total gain 92.4 83.6   

The theoretical receiver input noise temperature is then TREC = 175.2 K. The preceding 

result is much less than the 700 K noise temperature, which was used earlier and 

provides a solid basis for further receiver design and fulfills the sensitivity requirement. 

The use of Eq. (2.17) for calculating the input noise temperature of a cascaded system is 

valid when an approximate magnitude of the input noise temperature is studied, 

eventhough the condition of perfect impedance matching is not fulfilled. Ignoring the 

RF amplifier output impedance mismatch leads to negligible error in the calculated TREC 

value, because the receiver input noise temperature is mainly determined by the input 

switch, RF filter and LNA. The input noise temperature of such a cascade is 174.9 K 

(Eq. (2.17)), which is nearly equal to the TREC value of 175.2 K. A somewhat larger 

error occurs when the RF filter input return loss of 18 dB is ignored. Taking account the 

impedance mismatch of the filter result in a RF filter input noise temperature of 69.3 K, 

compared to the 75.1 K value which is obtained when the impedance mismatch is 

ignored. The receiver input noise temperature is similarly diminished to 168.6 K instead 

of 175.2 K.  



 36 

3.3.2 Input switch design 

In the receiver design, 50 Ω transmission lines are used throughout. For the Rogers PCB 

material of 1.27 mm height and an 10.2 effective electrical permittivity, the 

transmission line width is 1.161 mm at 1.95 GHz, while one wavelength is 58.962 mm. 

Figure 3.8 shows the input switch with the accompanying electronics. The switch has 4 

input ports, an output port, two inputs for control, power supply pin, and 8 ground pins. 

Two SMA type cable connectors accept inputs to ports 1 and 2. Only one antenna input 

is used and the second cable connector is terminated with a matched load. Port 4 is 

connected to a 50 Ω SMD resistor, which acts as a hot calibration load. The active cold 

calibration load is attached to port 3. Power supply pins of both the ACL amplifier and 

input switch are connected to the receiver board +5V supply and decoupled with 330 pF 

capacitors. DC blocking capacitors are also placed in the switch input and output 

transmission lines. 

The ACL design was initially based on a reverse connected conjugately matched two- 

port network. In conjugate matching both the input and output ports of the two-port 

network are conjugately matched, refer to [16] or [17] for design equations. During 

preliminary tests it was, however, noted that the response of the actual realised circuit 

differed greatly from the simulated response when conjugate matching for both the 

input and output ports was attempted. Small deviations of the actual component S-

parameter values from the quoted manufacturer data are suspected [30], [31], with the 

resulting overall effect leading to unpredictable circuit behaviour. The practical 

 

Figure 3.8 Input switch circuit schematic. 
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Figure 3.9. RF amplifier circuit schematic. 

solution is to leave the amplifier output port unmatched and match the input port as well 

as possible. The ACL output port is terminated with a 50 Ω chip resistor via DC 

blocking capacitors and the input is matched with an lumped components. 

3.3.3 RF amplifier design 

The RF amplifier functional block consists of the RF filter and three amplifier stages. 

The designed circuit is shown in Fig. 3.9. The RF filter and LNA ports are 50 Ω and 

therefore require no additional impedance matching elements. The two MAX2641 RF 

amplifiers have their inputs matched with lumped components. External DC blocking 

capacitors are placed around the MAX2641 amplifiers, while the LNA is internally DC 

blocked. Each amplifier is supplied with separate decoupled +5V DC.  

3.3.4 Mixer design 

Mixer design revolves around the MAX2681 downconverter mixer (Fig. 3.10). The RF  

 

Figure 3.10. Mixer circuit schematic. 
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input is DC blocked with a capacitor and matched with lumped components. The LO 

input port return loss is less than -15 dB and doesn’t therefore require a specific 

matching circuit. The IF output is matched with lumped components and the inductor 

L9 also provides bias voltage to the output pin. The output pin (pin 6) is not directly 

connected to the decoupled +5V power supply (pin 5), despite appearing to be so in Fig. 

3.10.  

3.3.5 IF amplifier design 

The IF amplifier in Fig. 3.11 has pre- and post filters and two amplifier stages. The first 

filter requires input and output matching circuits, while the following amplifier needs 

DC blocking capacitors and bypassed +5V power supply. The second amplifier external 

components are necessary for biasing and DC blocking. The latter amplifier stage uses 

the mini-Circuit ERA-3+, instead of the MAX2650 amplifier, used in the preceding 

stage, because it has a higher output saturation power level. The output filter is a 3rd 

order butterworth band-pass filter, realised with lumped components [7]. 

3.3.6 Input switch control and power supply design 

Fig. 3.12 shows the receiver PCB board interface to the RCB. The RCB measures the 

receiver board physical temperature with a PT100 sensor. A +5V power supply is 

distributed to the receiver active components via EMC filters [32]. The 2-bit input  

 

Figure 3.11. IF amplifier circuit schematic. 
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Figure 3.12. Power supply and switch control circuit schematic. 

switch control signal is transmitted from the RCB and received by a 74HCT245 non-

inverting octal bus transceiver by Philips Semiconductor [33] and further transmitted to 

the input switch. 

3.3.7 Receiver board layout design 

The designed receiver PCB is shown in Fig. 3.13. Starting from the top right, the signal 

path continues counterclockwise to the bottom right. The input switch with calibration 

loads, RF filter and the LNA are housed in a separate enclosure in order to reduce 

interference from adjoining electronics. Similarly, the following two RF amplifiers, 

mixer and IF section are all separated from each other with metal walls. Power supply 

and switch control signals are distributed from the centre section to the enclosures 

through EMC filters. Signal integrity is further enhanced by filling the board periphery 

outside the traces and component pads with grounded copper. The bottom ground layer 

is connected to the top layer copper shield with plated vias. The vias are visible in Fig. 

3.13 as dots. 
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Figure 3.13. Receiver board top layer layout. 

3.4 LO board design 

The block level LO design is the same as in the HUT-2D instrument. A 147 mm x 147 

mm x 1 mm Rogers 4350B PCB (εr = 3.48) is used for the LO realisation [34]. LO 

frequency parts of the LO board are realised with microstrip technology, similarly as 

with the receiver board design. A VCO (voltage controlled oscillator) by Mini-Ciruit 

[35], operating in the 1.960 – 2.350 GHz frequency range is used to produce the 1990 – 

2050 MHz LO signal. Output power is around 0 dBm, as dictated by the receiver board 

MAX2681 mixer [26]. A programmable clock generator supplies a reference signal to a 

256-to-1 prescaled single channel frequency synthesizer PLL chip, which then drives 

the VCO output to the desired frequency in 1 MHz steps. The LO board block diagram 

is shown in Figure 3.14. The reference clock generator outputs square wave signal, 

which has to be filtered before it can be used as the PLL reference signal. The  
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 Figure 3.14. LO circuit block diagram. 

VCO output signal is split in the 3 dB power divider to the PLL feedback loop and to 

the LO output. An isolator is placed in the LO output path in order to provide a degree 

of immunity from possible reflections arriving from mismatched load impedances. 

3.4.1 Clock generator design 

The VCO PLL reference signal is generated with an AMI Semiconductor FS6377-01 

programmable 3-PLL reference clock generator [36]. The 256-to-1 prescaled single 

channel frequency synthesizer (PLL in Fig. 3.14) used in the main VCO PLL requires a 

7.7734375 – 8.0078125 MHz reference signal in order to produce VCO output at 1990 

– 2050 MHz. The clock generator output frequency is determined by an external crystal 

oscillator and 3 programmable frequency dividers. The output frequency fref value can 

be calculated as 



















PR

F
crystalref

NN

N
ff

1
,        (3.10)  

where fcrystal is the crystal oscillator frequency and NF, NR, and NP are the three divider 

moduli [36]. 

The clock generator design (Fig. 3.15) is realised with a 25 MHz crystal oscillator and 

other external components as recommended by [36]. The clock generator chip is 

programmed via a two signal-line I
2
C bus [37]. The square-wave clock output signal is 

then buffered and the level shifted in a simple operational amplifier (op-amp) circuit. 

The reference clock signal is further processed in a 6th degree Sallen-Key type [38] 8 

MHz low-pass Butterworth filter in order to attenuate the higher harmonics [39].  
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Figure 3.15. Clock generator circuit schematic. 

Following the filter, the reference signal is DC blocked and the output impedance is set 

to 50 Ω. 

3.4.2 VCO phase-locked loop design 

The local oscillator is built around a Motorola MC12179 single channel frequency 

synthesizer [40]. The VCO frequency is divided by 256 and compared with the 

reference in a digital phase/frequency detector. The phase/frequency detector output is 

amplified by a charge pump and sent to the loop filter. The charge pump current output 

enables the use of a passive loop filter. The resulting tuning voltage drives the VCO to 

the desired output frequency. Required external functions for the synthesizer include the 

reference frequency signal, loop filter and VCO.  

The PLL performance is determined by the reference and VCO frequency sideband 

noise performances and the choice of loop filter bandwidth. The loop filter bandwidth 

can be chosen based on three different considerations. If fast tuning speeds are required, 

the filter bandwidth should be maximised. In case the reference frequency sideband 

spurious signals are to be suppressed, the filter bandwidth should be minimised. It is 

also possible to choose the filter bandwidth in order to optimise the sideband noise 

performance. The latter approach is used in this work. [40] 

The loop filter bandwidth is chosen by plotting the VCO and reference signal noise 

sideband spectra and selecting the point where the two curves cross in order to minimise 

the total sideband noise. Fig. 3.16 (a) shows a typical scenario. If the reference 
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oscillator signal is at a lower frequency than the VCO, it is necessary to add the 

resulting increase in phase noise due to frequency multiplication to the reference 

oscillator spectrum (or subtract from the VCO spectrum if it’s frequency is divided). In 

the FIRaL LO board the VCO frequency is divided by 256, reducing the VCO phase 

noise by 20*log(256) = 48 dB. The PLL chip itself is a source of phase noise, increasing 

the reference signal phase noise by 15 dB [40]. Fig. 3.16 (b) shows the comparable 

phase noise spectrums of the VCO and reference oscillator. It is apparent from Fig. 3.16 

(b) that the clock generator reference signal is mush noisier than a typical crystal 

reference and the two curves do not cross at all. For optimum noise performance, the 

FIRaL PLL loop filter bandwidth should be as close to zero as possible. Loop filter 

bandwidth of 2 kHz is chosen in order to keep the settling time reasonable (0.5 ms 

ideal). 

The designed PLL circuit is illustrated in Fig. 3.17. For proper operation, a resistor (R1) 

is needed in place of the crystal oscillator, the reference port is DC blocked (C6) and the 

clock generator is isolated at the VCO frequency with a low-pass filter (L1 and C7). 

 

(a) (b) 

Figure 3.16. Output phase noise spectra. (a) Typical curves for a VCO and crystal 

reference oscillator. The bandwidth is chosen to optimise the overall phase noise 

performance (solid line) [16]. (b) FIRaL LO reference oscillator and VCO phase noise 

spectra. VCO phase noise is taken from literature [35] and the clock generator 

reference is measured with a spectrum analyser. 
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Figure 3.17. VCO PLL circuit schematic. 

The 2 kHz 3rd order passive loop filter is implemented with a resistor and two 

capacitors [40], [41]. The VCO requires +6V DC for operation, +5V DC is fed to the 

other LO board integrated circuits (ICs). Otherwise, the VCO only has the tuning port 

and output port. VCO output signal is DC blocked before split into the PLL chip 

frequency prescaler input and to the output path. The PLL chip prescaler input is 

impedance matched with lumped components. LO board output is then fed through an 

isolator, DC blocked and finally taken out from an SMA connector. 

3.4.3 LO board interface design 

Fig. 3.18 shows the LO PCB interface to the RCB and control computer. The RCB 

provides the LO board with +5 V and +15 V DC power supply. The +15 V supply is 

regulated to +6 V DC to facilitate the VCO. The power supplies are decoupled from rest 

of the circuitry with EMC filters [32]. Two data lines for LO frequency control are 

connected to the clock generator via NFW31SP signal line noise suppression filters by 

Murata [42]. 
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Figure 3.18. LO interface circuit schematic. 

3.4.4 Receiver board layout design 

The designed LO PCB is illustrated in Fig. 3.19. The PCB is divided into three EMC 

enclosures, with the left-hand side housing the main PLL. The right-hand side is further 

divided into the clock generator based reference signal electronics and the connector 

block which also houses the +6 V DC regulator. As with the receiver PCB, the board  

 

Figure 3.19. LO board top layer layout. 
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periphery outside the traces and component pads is shielded with grounded copper. The 

bottom layer is generally used as the ground plane, while being punctuated by a few 

low-frequency signal traces in order to facilitate the overall PCB layout design.  

3.5 Antenna design 

A horn antenna realisation is chosen in order to produce the specified 30 degree 

beamwidth in both E- and H-planes. A pyramidal horn is constructed from a WR-430 (a 

= 109.22 mm x b = 54.61 mm) rectangular waveguide section and an extension with 

linearly increasing cross section in the axial direction. The UMTS radio system operates 

at vertical polarisation and the horn antenna is designed to couple the E-plane direction 

radio emissions to the antenna feed cable. Center frequency free-space wavelength is λ 

= 153.85 mm. The dominant TE10 propagation mode wavelength λg in the WR-430 

waveguide is 

50.216

1

2














f

f c

g


 mm,       (3.11) 

where fc is the TE10 mode cutoff frequency (1.372 GHz) [17], [43]. The waveguide 

 

      (a)            (b) 

Figure 3.20. Designed horn antenna internal dimensions. Waveguide E-plane height a 

= 54.61 mm, waveguide H-plane width b = 109.22 mm, waveguide length l = 108.36 

mm, horn depth R = 243.20 mm, horn aperture E-plane height B = 264.46 mm, and 

horn aperture H-plane width A = 397.27 mm.   (a) Pyramidal horn antenna side-view. 

(b) Pyramidal horn antenna top-view. 
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Figure 3.21. An artistic view of the designed antenna. 

section is λg/2 long and has a λ/4 length E-plane direction probe placed in the middle of 

the waveguide bottom sheet in order to match the 50 Ω antenna feed cable to the 

antenna. One end of the waveguide is short-circuited and the other end is attached to the 

pyramidal horn extension. 

The pyramidal horn horn is designed according to a published method which enables to 

find the physical horn dimensions based on the required half-power beamwidth [44]. 

The method involves solving the two principal plane quadratic phase distribution 

constants [45] t (H-plane) and s (E-plane) iteratively. The horn aperture dimensions A 

and B along with the horn depth R can then be calculated with the knowledge of the 

desired half-power beamwidth. The designed antenna with dimensions is shown in Fig 

3.20. The antenna is construction is further illustrated in Fig. 3.21. A 2 mm thick 

aluminium plate is used for wall material and the structure is held together by riveting 

the plates to L-shaped aluminium profiles. 
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4 Laboratory measurements of the radiometer system 

The radiometer system is constructed according to the design presented in Chapter 3. 

Prior to actual on-site measurements, the radiometer components and operation are 

tested in laboratory conditions. The most important parameters of the radiometer are the 

receiver input noise temperature, gain and IF bandwidth, on which the radiometer 

output voltage is directly dependent. Measurement sensitivity and stability are studied 

by measuring the output for several hours. Radiometer subsystems are also tested, 

including the LO output power, LO spectral quality, antenna radiation patterns, antenna 

gain, and receiver board antenna input return loss. Additionally, overall functionality of 

the radiometer control software and hardware operation is tested.  

4.1 Receiver board measurements 

The most important parts of the receiver board electronics are the input switch and RF 

amplifier functional blocks, since they mainly determine the receiver input noise 

temperature and house the internal calibration loads. The performance evaluation of the 

receiver input sections is conducted by measuring the input return loss. Measurements 

are performed with an Agilent Technologies 8753ES network analyser, which has a 

specified reflection coefficient measurement uncertainty of ± 0.02 dB or better in the 

FIRaL operating frequency [46]. Fig. 4.1 shows the measured input port reflection  
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Figure 4.1. Antenna input port return loss with the input switch closed (on) or open 

(off). 
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coefficient with the front-end switch either switched on or off. The return loss is around 

12 dB with the switch in the “off” state. The documented “off” state” input return loss 

for the used switch is 12 dB or better in the receiver operating frequency [22], which 

implies that the designed input switch circuit is operating properly.  

For the switch “on” state, the reflection coefficient of the antenna port in Fig. 4.1 is -4.3 

dB or 0.59 at the highest point in the radiometer operating band of 1920 – 1980 MHz. In 

this state, the switch is nearly transparent and the receiver input port is in essence 

directly connected to the RF filter input. Therefore, the measured input return loss of 4 

dB is much higher than anticipated, since the documented input return loss of the RF 

filter and LNA are 18 dB and 22 dB, respectively [23], [24]. It is suspected that the RF 

filter and LNA port impedances are not as well matched as specified and are cause of 

the high input reflection coefficient. NSN, the provider of RF filter and LNA 

components, confirmed that they have had similar results in applying these components. 

The component placement and circuit layout is critical and it has required further circuit 

layout development from the LIME project corporate partner NSN for them to reach the 

level of performance as spesified by datasheets. Unfortunately, this information was not 

available during the design of the FIRaL radiometer and the only option within the 

LIME project is to complete the radiometer despite the unideal performance of the RF 

amplifier section.   

The RF filter and LNA port impedance mismatches have a number of implications. 

Firstly, the gain of the receiver is diminished as a part of the input noise power is 

reflected back and the effective loss also increases the radiometer input noise 

temperature. Secondly, the use of the internal calibration loads becomes unfeasible as 

the effective noise temperature of the calibration loads is affected by the multiple 

reflections arising from the impedance mismatches and causes uncertainty in the 

calibration of the calibration loads. Thirdly, stability of the receiver might become 

compromised during long measurements as small changes in the RF port impedances 

can alter the receiver gain and input noise temperature. 
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Figure 4.2. Receiver gain measurement setup. 

4.1.1 Receiver gain 

The receiver gain is measured by injecting a known level of microwave power to the 

antenna input and monitoring the IF output power level with a power meter. The 

measurement setup is depicted in Fig. 4.2. A Rohde & Schwarz SMR 60 signal 

generator is used as the source, and the test signal and IF power are measured with a HP 

437B power meter and HP 8487A power sensor. The source power level is first 

measured by connecting the generator and power meter directly. Next the test signal is 

fed to the receiver via an attenuator and the IF power level is measured. A total amount 

of 70 dB attenuation is inserted between the signal generator and receiver in order to 

avoid overloading the receiver electronics. The insertion loss of the measurement cables 

and coaxial attenuators are measured with the 8753ES network analyser and results are 

corrected accordingly. The corrected measurement results are shown in Fig. 4.3. 
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Figure 4.3. Measured receiver gain. 
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Measurement uncertainty of the test signal power is caused by the power meter 

calibration error (1 %), random errors (0.34 %), and the error caused by the reflection 

coefficients of the generator and meter, ρS (0.33) and ρHP (0.02), respectively. In the 

measurement of IF output power, the multiple reflections caused by the impedance 

mismatches of the signal generator and receiver input board are effectively suppressed 

by the attenuator. Remaining significant measurement error sources are those of random 

nature, error in the measurement of attenuator insertion loss (2.3 %), and errors due to 

the reflection coefficients of the meter and IF output port (ρIF = 0.50). The detailed 

analysis of measurement uncertainties due to multiple sources is not presented here. The 

theory and analysis of measurement uncertainties is presented in [47] and application 

examples can be found in [48]. The calculated measurement uncertainty is ± 0.2 dB 

with confidence interval of 95%. The maximum receiver gain is 83.0 ± 0.2 dB at 1920 

MHz and the minimum is 79.9 ± 0.2 dB at 1955 MHz. The total gain variation in the 

receiver operating band is 3.1 ± 0.3. The realised receiver board gain falls within 

specifications and will provide an IF signal at an appropriate level for the square-law 

detector. 

4.1.2 IF amplifier bandwidth 

The IF amplifier S-parameters are measured with the 8753ES network analyser, from 

which the IF filter 3 dB bandwidth can be found. The test signal was coupled to the IF 

amplifier input via an SMA connector which was temporarily soldered to the receiver 

board and the IF amplifier standard output connector is used as the measurement output 

port. The measurement results are shown in Fig. 4.4. Measurement uncertainties in the  
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Figure 4.4. Measured IF amplifier S-parameters. 
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reflection and transmission responses are ± 0.02 dB and ± 0.1 dB, respectively [46]. 

Maximum gain of 30.15 ± 0.1 dB occurs at 68.65 MHz. The resulting 3 dB bandwidth 

is 5.468 ± 0.035 MHz. Spesified 3 dB bandwidth is 5.5 MHz and the measurement 

result is in agreement [27]. The IF amplifier center frequency is found to be 69.894 ± 

0.012 MHz, by taking the geometric mean of the S21 -3 dB bandwidth boundary 

frequencies. Measured IF amplifier input and output reflection coefficients are -7.12 ± 

0.02 and -5.80 ± 0.02 dB, respectively, at the highest in the IF amplifier bandwidth. 

Reverse transmission S12 is below the network analyser noise floor. 

4.2 LO board measurements 

Significant parameters of the LO subsytem are the LO output power and phase noise of 

the output spectrum. The LO output power is measured with the HP 437B power meter 

and HP 8487A power sensor via an extension cable. The power meter calibration 

introduces measurement uncertainty (1 %). Other sources causing measurement 

uncertainty are the extension cable insertion loss measurement (± 0.1 dB) and the 

reflection coefficients ρLO (0.5) and ρHP (0.02) of the LO board output port and power 

meter sensor input, respectively. Random variation in the power meter reading was 

suppressed by averaging the measurement 32 times. Total measurement uncertainty is ± 

0.2 dB at 95 % confidence interval. The measured LO output power is shown in Fig. 

4.5. The LO power level is 2.0 ± 0.2 dBm at the lowest and 2.7 ± 0.2 dBm at the 

highest. The realised LO output power is at a suitable level for the receiver board mixer 

stage. The LO output signal phase noise spectrum measurement results are collected in 

Table 4.1. According to the phase noise measurement results, the LO output spectrum is  
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Figure 4.5. Measured LO output power. 
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Table 4.1 LO output phase noise spectrum 

Frequency (kHz) 1 10 100 1000 

Phase noise (dBc/Hz) -48 -71 -98 -137 

somewhat noisy and would not perhaps perform well in a typical communications 

receiver. The results are expected as the clock generator PLL reference signal is quite 

noisy. However, for measuring noise-like RF signals, the realised LO output signal 

spectrum is adequate. 

4.3 Antenna measurements 

Antenna measurements are performed in order to quantify the antenna half-power 

beamwidths in azimuth (θaz) and elevation (θel) direction, input impedance matching, 

antenna gain Ga, and radiation efficiency ηl.  

4.3.1 Antenna input impedance matching 

The antenna input impedance matching is measured with the 8753ES network analyser, 

by placing the antenna in an anechoic chamber and measuring the antenna input 

reflection coefficient ρa. The most significant measurement error source causing 

measurement uncertainty is the network analyser residual error of ± 0.02 dB [46]. The 

measurement result is shown in Fig. 4.6, while noting that S11 is equal to the magnitude 

of ρa. The antenna input reflection coefficient is -16.77 ± 0.02 dB or better in the 

radiometer operation band. 
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Figure 4.6. Measured antenna input reflection coefficient. 
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Figure 4.7. Measured azimuth and elevation direction antenna pattern cuts. 

4.3.2 Antenna radiation pattern 

The antenna half-power beamwidth is studied by measuring the antenna radiation 

patterns in azimuth and elevation directions in an anechoic chamber (i.e. free-space 

antenna range) with the far-field method [49]. Fig. 4.7 shows the measured radiation 

patterns. Designed half-power beamwith is 30° in both E- and H-planes and the realised 

values are 30.8° ± 0.2° and 30.3° ± 0.2°, respectively. Random measurement 

uncertainty is ± 0.07° and ± 0.06° in the two directions. Taking in consideration 

possible mesurement uncertainty due to amplitude tapering in the illuminating plane-

wave, antenna impedance matching, polarisation matching, and antenna alignment, the 

total measurement uncertainty is estimated to be ± 0.2° in both directions with 

confidence interval of 95 %. The realised antenna is considered to be usable in the light 

of the design specifications. 

Knowledge of the main E- and H-plane half-power beamwidth allows the estimation of 

antenna directivity. Directivity is defined to be 4π times the ratio of the power radiated 

per unit solid angle in the direction of maximum radiation to the total power radiated by 

the antenna [49]. The exact calculation of directivity requires knowledge of the antenna 

radiation pattern over the 4π solid angle. For a rectangular aperture antenna, such as a 

horn with an uniform amplitude distribution in the E-plane and a cosine amplitude taper 

in the H-plane, the directivity can be estimated to be 
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elaz
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35230
 ,           (4.1) 

where the beamwidths are in degrees [50]. Estimated directivity is, therefore, 37.75 or 

15.8 dB. Calculated measurement uncertainty is ± 0.04 dB [47]. In conclusion, it is 

estimated that the directivity is 15.8 ± 0.1 dB with confidence interval of 95 %. 

4.3.3 Antenna gain 

The pyramidal horn antenna gain is determined with a gain-transfer measurement, in 

which the gain of the antenna under test (AUT) is compared to the gain of a standard 

gain antenna. The gain of the AUT Ga is 

ref

ref

a
a G

P

P
G  ,           (4.2)  

Where Pa is the received power level with the AUT, Pref is the received power level with 

the standard gain antenna and Gref is the gain of the standard gain antenna [16]. 

Estimated measurement uncertainties of the power levels are similar as in the directivity 

measurement (± 0.1 dB) and the standard gain horn gain is 9.4 ± 0.25 dB [51]. The 

measured power ratio Pa /Pref is 5.76 dB and the calculated AUT gain is, therefore, 15.2 

± 0.3 dB, with confidence interval of 95 %. 

Part of the input power accepted by the antenna is lost as dielectric and conductive 

losses. The losses can be quantified with the antenna radiation efficiency ηl, which is 

defined as the ratio of gain and directivity as 

D

G
l  .              (4.3)  

The calculated radiation efficiency of the designed pyramidal horn antenna is 0.87 ± 

0.07, with confidence interval of 95 %. 

4.4 Radiometer calibration 

In order to determine the detector offset, radiometer gain, and receiver input noise 

temperature, the detected output power is measured in four different scenarios. The 

measurement setup is shown in Fig. 4.8. The detected power is first measured with a hot 
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Figure 4.8. Measurement setup in radiometer calibration [52]. 

calibration load placed at the receiver input and then with a cold calibration load. A 

second set of similar measurements are performed with the hot and cold calibration 

loads, while also placing an attenuator at the end of the IF chain and again monitoring 

the detected output power. The output of the RCB square-law detector is of the form 

 RECout TTgVV  0 ,            (4.4)  

where V0 is the detector offset, T is the equivalent noise temperature of a matched load, 

and g is the total gain of the radiometer. From Eq. (2.22), g = gLFCdG. A set of four 

equations from Eq. (4.4), with four unknown parameters of receiver input noise 

temperature, radiometer gain, detector offset, and attenuator loss, are formulated and 

solved. The IF attenuator must be placed before the square-law detector diodes so that 

the detector offset does not change. Furthermore, the IF attenuator must be placed at the 

end of the receiver chain so that the effect on the receiver input noise temperature is 

negligible. The RCB has a programmable attenuator before the detector in order to 

facilitate calibration. [52] 

4.4.1 Receiver input noise temperature 

The receiver input noise temperature is measured with the aforemention method. The 

hot calibration load is a 50 Ω SMA microwave termination at room temperature Th  = 

292.0 K. The termination temperature is measured with a calibrated precision digital 

thermometer Therm 2230-1 by Ahlborn Messtechnik, Germany, which has an estimated 

absolute accuracy of ± 0.1 ºC. The cold calibration load is a 50 Ω SMA microwave 

termination, which is submerged in boiling liquid nitrogen at TLN  = 77.4 K. The cold 
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termination is connected to an insulated 255 mm long coaxial cable and the other end of 

the cable is at room temperature. The effect of the cable on the cold load temperature is 

taken into account by measuring the cable loss beforehand and monitoring the cable 

temperature at 6 points with PT100 sensors during receiver calibration. The PT100 

temperature sensors are placed equidistantly and with the knowledge of the cable loss 

per segment Lc = 1.007, the cold calibration load temperature Tc can be calculated as 
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where Tn is the measured temperature of a cable segment and index n = 1 is at room 

temperature and n = 6 closest to the liquid nitrogen. The calculated cold calibration load 

temperature is Tc = 83.3 ± 1.6 K at 1950 MHz, with confidence interval of 95 %. 

Based on the calculated calibration load temperatures, the resulting receiver input noise 

temperature TREC is as shown in Fig. 4.9. The measured receiver noise temperature is at 

a minimum of 457 K at 1957 MHz and at a maximum of 661 K at 1934 MHz. The 

receiver noise temperature is estimated to be within the dashed lines in Fig. 4.9, based 

on the calculated root-sum-square (RSS) total uncertainty [47]. The measurement 

uncertainty of the receiver noise temperature is discussed in the next section. The 

measurement uncertainty depends on the receiver and detector linearities, detector 

integration time, stability of the receiver stability, and the accuracy in which the 

calibration load temperatures are known. In the case of the FIRaL radiometer, the  
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Figure 4.9. Receiver noise temperature. 
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calibration load temperature uncertainty is the most significant factor, because the 

receiver input impedance mismatch causes additional uncertainty to the calibration load 

temperatures. 

4.4.2 Receiver input noise temperature measurement uncertainty 

In Fig. 4.9, the effect of the measurement cable between the receiver input and 

calibration load and also the effect of the calibration load and receiver input reflection 

coefficients have been taken into account. In the receiver input noise temperature 

measurement, the actual measurement setup is similar to the network in Fig. 4.10. Using 

the notation in Fig. 4.10, TG is the temperature of the noise generator (hot or cold 

calibration load), TR is the equivalent noise temperature generated by the receiver 

towards the generator, which would be absorbed in to a matched load at the receiver 

input, and TIN is the noise temperature of the net power delivered to the receiver. Z01 and 

Z02 are the port 1 and 2 impedances (50 Ω) and RG and RR are the generator and receiver 

input reflection coefficients, respectively. The connecting 2-port network is a coaxial 

waveguide with SMA connectors. R1S and R2S are the port 1 and 2 reflection coefficients 

while looking towards the connecting 2-port, respectively. [6] 

The noise temperature of the net power delivered to the receiver is 

    RphysGIN TTTT  11 ,          (4.6)  

where Γ is mismatch loss factor and Τ is transmission factor. The first term in the right 

side of Eq. (4.6) is the net delivered noise temperature from the generator, the second  

 

Figure 4.10. Receiver front end network [6]. 
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term is the net delivered noise temperature arising from the self-emission of the 

connecting cable, and the third term is the net delivered noise temperature generated by 

the receiver towards the noise generator which is then reflected back towards the 

receiver. In the case where the 2-port network is a uniform transmission line and S11 = 

S22 ≈ 0, the mismatch loss and transmission factors Γ and Τ, respectively, are of the 

form  

  
cos21
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where  

2

21

1

S
LS  ,                  (4.9)  

and angle θ can take any value from 0 to π. [6] 

In the FIRaL receiver calibration, at 1950 MHz, |RG| = 0.027 ± 0.008 or 0.005 ± 0.001, 

where the first value is for the cold load and the second is for hot load, |RR| = 0.59 ± 

0.02, and LS = 1.199 ± 0.014. Let us consider the case when the cold calibration load of 

TG = 83.3 ± 1.6 K is measured. If, based on the receiver board physical temperature, TR 

is estimated to be 315 ± 20 K, the noise temperature of the net power delivered to the 

receiver is 157.8 ± 11.8 K according to Eqs. (4.6) – (4.9). The contribution of the last 

term in the right side of Eq. (4.6) is 110.7 K (mean value), which means that most of the 

net delivered noise power is caused by the backward noise radiation of the receiver, 

which is then reflected back toward the receiver. From Eq. (4.6), the noise temperature 

of this noise radiation is proportional to (1 - Γ)TR. A large value of the mismatch loss 

factor Γ means that for reliable determination of term (1 - Γ)TR, the amount of receiver 

backward noise radiation temperature TR must be accurately known.  Without reliable 

prior knowledge of the receiver noise temperature TREC, the actual value of TR is 

difficult to measure, which causes additional measurement uncertainty of the receiver 

noise temperature calibration. Another consequence of the lack of receiver noise 
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temperature calibration accuracy is that the equivalent noise temperatures of the internal 

calibration loads cannot be reliably determined. It is therefore decided that for on-site 

measurements external calibration loads are used. 

Nevertheless, an estimate of the measurement uncertainty of the receiver input noise 

temperature can be formulated. As with the cold load, a similar analysis of the noise 

temperature of the net delivered noise power to the receiver by the hot calibration load 

is performed. With the known effective hot and cold calibration load temperatures, a set 

of measurements are conducted according to the IF attenuator calibration method [52]. 

The results are shown in Fig. 4.9 and the resulting RSS measurement uncertainty is at 

worst ± 78 K in the radiometer operating band. 

The measured receiver input noise temperature of 457 K to 661 K is larger than the 

value of 175.2 K calculated in Chapter 3. The difference between the result and the 

prediction and also the variation within the the operating band is a direct consequency 

of higher than anticipated frequency dependent losses in the RF front end. The variation 

in the input noise temperature in Fig. 4.9 is most likely caused by corresponding 

variation in the RF filter effective insertion loss. If the noise temperature of the receiver 

cascade is calculated with Eq. (2.17) and the gain values of the input switch and RF 

filter in Table 3.1 are replaced by -1.0 dB and -2.6 dB, respectively, the resulting 

theoretical input noise temperature is 464 K. Similarly, if the input switch gain is -1.0 

dB and the RF filter gain is -3.6 dB, the resulting noise temperature is 660 K. It is 

reasonable to assume that a similar mechanism as was demonstrated above causes the 

higher than anticipated receiver input noise temperature measurement results. 

4.5 Radiometer stability and sensitivity 

The radiometer sensitivity and stability is studied after calibration by measuring a 

matched load at room temperature for several hours at 1930 MHz. The results are 

shown in Fig. 4.11. As seen from the figure, the radiometer output is quite stable. Based 

on the measurement, the calculated radiometer sensitivity is 1.7 K with 500 ms 

integration time. At 1930 MHz, the theoretical radiometer sensitivity due to IF 

bandwidth, integration time, and system noise temperature of 638 K (from Fig. 4.9) is 

0.6 K (Eq. (2.23)). Rearranging Eq. (2.25) and then substituting into Eq. (2.24), the 

radiometer sensitivity due gain fluctuations is  
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Figure 4.11. Radiometer output with 500 ms integration time and at 1930 MHz. 

Measurement was performed in a temperature controlled laboratory room. 
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4.6 Radiometer operation 

The radiometer operation is tested by controlling the radiometer by the operating PC. 

The used PC has a Linux operating system, on top of which the purpose-built LIME-

program runs. The use of the LIME-program is described in a software manual [53]. 

Actual measurements are performed by writing a Linux shell script, which then calls the 

LIME-program to perform a certain amount of measurements at a desired frequency, 

with specific input switch settings, etc. [54]. The output data is formatted into text  

 

Figure 4.12. FIRaL radiometer. 
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files, which can then be processed further with mathematical software tools such as 

MATLAB. No serious hardware or software errors were detected during the laboratory 

tests. Fig. 4.12 shows the radiometer system during the laboratory tests. 
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5 On-site measurements 

On-site measurements are performed in two locations in Espoo. The radiometer 

calibration is performed with external loads. The hot load is a microwave absorber plate 

at ambient temperature, which is placed in front of the horn antenna and sky is used as 

the cold calibration load. As with the laboratory calibration, the measurement 

uncertainty cannot be reliably determined and the measurement results have to be 

analysed accordingly. It is, however, possible to observe whether the measurement band 

is free of radio interference. Clear signal peaks are either emissions from mobile 

stations or possibly of interference origin.  

5.1 Measurements in Otaniemi 

Initial tests are conducted on the roof of the Department of Radio Science and 

Engineering in Otaniemi, Espoo. Possible radio interference is searched by measuring 

the environment by pointing the antenna horizontally towards each of the eight main 

points of compass. Fig. 5.1 shows the results of a frequency sweep while the antenna is 

pointed towards north. The peak at around 1930 MHz is most likely a signal from a 

mobile WCDMA2100-station and therefore not interference. No other signal peaks are 

visible above the noise floor in any directions. The measurements were performed  
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Figure 5.1. Radiometer output as function of frequency while looking towards north. 

Measurement integration time is 10 s. 
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during weekend, which might be a contributing factor to the absence of interfence as the 

operation of electric devices is at a minimum. 

5.2 Measurements in Säteri 

The second location is a rooftop of an NSN office building in Säteri, Espoo. Typical 

measurement responses are shown in Fig. 5.2. Both responses show severe interference 

components, which are at around 1958 MHz in the eastern direction and around 1975 

MHz in the north-eastern direction. Measurements are performed during office hours. 

Corresponding views in the visible spectrum are shown in Fig. 5.3. Fig. 5.2 shows the 

full scale results. They show very high peak values from 13000 to 24000 K. The peaks 

may be uncontrolled mobile stations that are nearby, but there is also some probability 

that the signals are interference, because the high peaks in Fig. 5.2 have unequal  
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Figure 5.2. Radiometer output as function of frequency while looking towards east 

(upper) and north-east (lower). Measurement integration time is 10 s 
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              (a)          (b) 

Figure 5.3. Visible spectrum views towards east (a) and north-east (b). 

bandwidths in different viewing directions. A mobile station signal has a stable 

bandwidth of approximately 5 MHz.  

The eastern view in visible spectrum in Fig. 5.3 (a) shows an office building that, of 

course, is a source of mobile signals. It can also be a source of interference, potentially 

arising from computer and communication systems, lightning and inverter driven aircon 

and ventilation systems. 

Fig. 5.4 shows the same measurements as those in Fig. 5.2, but with a reduced 

brightness temperature scale in order to study the signals outside the very high peaks. 

The view towards east in Fig. 5.4 shows a number of signals from 500 to 1400 K. Some 

of those can be explained by mobile traffic, but not all. It is difficult to distinguish 

which of them are caused by mobile stations and which are interference. That would 

require longer measurements and more detailed analysis, which are beyond the scope of 

these preliminary measurements. 
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Figure 5.4. Closeups of the measured noise spectrums towards east (upper) and north-

east (lower). 

Fig. 5.5 shows the time variation of brightness temperature levels. It is not possible to 

reliably separate between mobile station signals and interference based on Fig. 5.5 

either. Stable low level signals are most probably interference, while low level 

fluctuating signal are quite possibly mobile stations. High level peaks are also 

fluctuating, but it does not exclude the possibility that they could be also of interference 

origin. 
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Figure 5.5. Radiometer responses as a function of time and frequency towards east 

(upper) and north-east (lower). 
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6 Conclusions 

The FIRaL radiometer is completed within the constraints of the LIME project. A 

functional radiometer is designed and realised, and premiliminary on-site measurements 

have been performed. The measurement sensitivity of the radiometer is within the 

project specifications. The absolute measurement accuracy of the FIRaL radiometer 

cannot be defined to the precision which is usually associated with radiometers in 

general, due to the fact that the supplied RF amplifier components do not perform to the 

datasheet specifications. The realised receiver input noise temperature is 661 ± 58 K at 

the highest and 457 ± 76 K at the lowest in the radiometer operating band. 

A redesigned RF amplifier section is needed in the radiometer receiver board before a 

comprehensive measurement campaign of actual WCDMA2100 base station locations is 

performed. The RF amplifier section unidealities also prevented the study and use of the 

most interesting feature of the FIRaL radiometer, namely the internal calibration loads 

and specifically the active cold load. 

It is worth noting that a large bulk of this Licentiate work was spent on studying the 

RCB and TCB board electronics and software which are adopted from earlier 

radiometers developed in the Department of Radio Science and Engineering before they 

could be applied on the FIRaL radiometer. This somewhat tedious, but necessary work 

is not reported here as it is not interesting in terms of RF design or radiometry. 

The results of the preliminary measurements in Säteri, Espoo suggest that the UMTS 

base station receiver band between 1920 – 1980 MHz could be seriously contaminated 

by radio interference and the concerns that gave rise to the LIME project in the first 

place are validated. It is necessary to find further funding in order to improve the RF 

amplifier performance and to perform additional measurements, which can then be 

reported in appropriate scientific publications. 
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