
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s): Hyyti, Heikki & Kalmari, Jouko & Visala, Arto

Title: Real-time Detection of Young Spruce Using Color and
Texture Features on an Autonomous Forest Machine

Year: 2013

Version: Post print

Please cite the original version:
Hyyti, Heikki & Kalmari, Jouko & Visala, Arto. 2013. Real-time Detection of Young
Spruce Using Color and Texture Features on an Autonomous Forest Machine. The 2013
International Joint Conference on Neural Networks. P. 2984-2991. ISSN 2161-4393
(printed). ISBN 978-1-4673-6128-6 (printed). DOI: 10.1109/IJCNN.2013.6707122.

Note: 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

All material supplied via Aaltodoc is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that material may
be duplicated by you for your research use or educational purposes in electronic or print form. You must
obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or
otherwise to anyone who is not an authorised user.

Powered by TCPDF (www.tcpdf.org)

http://www.aalto.fi/en/
http://aaltodoc.aalto.fi
http://www.tcpdf.org

Abstract—Forest machines are manually operated machines
that are efficient when operated by a professional. Point clean-
ing is a silvicultural task in which weeds are removed around a
young spruce tree. To automate point cleaning, machine vision
methods are used for identifying spruce trees. A texture analy-
sis method based on the Radon and wavelet transforms is im-
plemented for the task. Real-time GPU implementation of algo-
rithms is programmed using CUDA framework. Compared to
a single thread CPU implementation, our GPU implementation
is between 18 to 80 times faster depending on the size of image
blocks used. Color information is used in addition of texture
and a location estimate of the tree is extracted from the detec-
tion result. The developed spruce detection system is used as a
part of an autonomous point cleaning machine. To control the
system, an integrated user interface is presented. It allows the
operator to control, monitor and train the system online.

I. INTRODUCTION
IELD and service robotics have made a considerable im-
pact in agriculture and forestry industries. Many ad-

vanced robotic solutions have been proposed in the area. For
example, a prototype of a legged forest machine was already
developed in the late 90’s by John Deere [1]. Recently, the
motivation to mechanize silvicultural operations has in-
creased in the Nordic countries and several new forest ma-
chine concepts have been developed [2]. Our current re-
search focus is to develop a new concept of autonomous
cleaning of young spruce trees.

Silvicultural cleaning is used to relieve chosen conifers
from competing, naturally regenerated, broadleaved trees
[3]. The current solution to clean the surroundings of young
spruce is either manual work or using mechanized human
operated machines. In addition, the cleaning operation can
be carried out chemically. However, it has some environ-
mental concerns and a strong public opposition [4]. Point
cleaning is a practical precommercial thinning method, in
which the cleaning is performed within a certain radius

Manuscript received April 30, 2013. This work was done under the Neo-
Silvix project, which was funded by TEKES, Finnish Funding Agency for
Technology and Innovation and participating companies.

H. Hyyti is a PhD Student with the Autonomous Systems research group,
Department of Automation and Systems Technology, School of Electrical
Engineering, Aalto University, PO Box 15500, FIN-00076 Aalto, Finland
(e-mail: heikki.hyyti@aalto.fi).

J. Kalmari is a PhD Student with the Autonomous Systems research
group, Department of Automation and Systems Technology, School of
Electrical Engineering, Aalto University, PO Box 15500, FIN-00076 Aalto,
Finland (e-mail: jouko.kalmari@aalto.fi).

A. Visala is a Professor with the Department of Automation and Systems
Technology, School of Electrical Engineering, Aalto University, PO Box
15500, FIN-00076 Aalto, Finland, (e-mail: arto.visala@aalto.fi).

around the main stem [5].
In order to operate in natural forest environment, the

autonomous forest machine requires advanced sensors and
methods to detect the target spruce tree among other vegeta-
tion. Texture and color features could be used to separate
spruce from other vegetation. There is a lot of variation in
the environment and a single texture or color method may
not be sufficient for the task. Multiple methods can be used
together to acquire enough different features from the image
to detect the target reliably. The drawback is that a compe-
tent detection algorithm can be computationally highly com-
plex to solve. In order to use texture analysis and detection
methods in a closed loop controlled system, the algorithm
should be computed relatively fast and in deterministic time.

In order to detect spruces among other vegetation, texture
detection methods by Jafari-Khouzani et al. were tested [6,
7]. They claim that their rotation invariant multiresolution
texture analysis using Radon and wavelet transforms is more
robust to additive noise than Log-polar wavelet signatures or
multichannel Gabor filtering. Our initial results for spruce
detection were successful. Although the algorithms are
computationally complex, they were selected for real time
implementation. According to [8], the Radon transformation
for an image of size 128x128 on a work station computer
with 3.06GHz and 2GB RAM takes 482ms, and their con-
tending methods take 543ms and 159ms for the same image.
This computation time for a single image block is too slow
for a real-time system requiring hundreds of image blocks to
be analyzed for a single frame.

The development in graphics processing units has made
many computationally expensive machine vision algorithms
available in real-time applications. This paper presents an
efficient CUDA GPU implementation for Rotation-invariant
multiresolution texture analysis using Radon and wavelet
transforms by Kourosh Jafari-Khouzani and Hamid Solta-
nian-Zadeh [6]. The texture detection method is improved
using additional color features. In addition, a GPU imple-
mentation of k-NN feature detector is used to classify image
blocks. An estimated location of a tree is extracted from the
classification results. The location is used to control a crane
of a forest machine.

Autonomous point cleaning is performed by our research
platform that uses a prototype of a point cleaning tool. The
tool is attached to a forest crane which is attached to an agri-
cultural tractor. Together these components form a small-
scale forest machine which is depicted in Fig. 1.

Real-time Detection of Young Spruce Using Color and
Texture Features on an Autonomous Forest Machine

Heikki Hyyti, Jouko Kalmari, and Arto Visala

F

Fig. 1. The small-scale forest machine with a point cleaning tool in

realistic environment. Young spruce trees are searched among
other vegetation using a camera attached to the point cleaning tool

and a machine vision system dedicated to the task.

II. HARDWARE AND ENVIRONMENT
The small-scale forest machine used in the experiments

consists of an agricultural tractor, Valtra T132, and a forest
crane, Kesla 305T. The prototype point cleaning tool was
made by Pentin Paja. The agricultural tractor and the forest
crane are designed to work as a research platform for an
autonomous forest machine. The forest crane is instru-
mented for autonomous operation [9]. The prototype point
cleaning tool is depicted in Fig. 2. It is used to remove com-
peting vegetation around the target plant by lowering the
tool on the target and cutting other vegetation around it us-
ing hydraulic-operated blades.

Aiming the point cleaning tool on the target tree is diffi-
cult as the tool is freely hanging on the tip of the crane far
from the cabin. Therefore, a camera lift has been developed
to enable a camera to be attached to the point cleaning tool.
Using the camera lift, a wide scene can be imaged through
the central hole. When the tool is lowered on the target to
cut the surrounding vegetation, the camera is lifted up en-
closing the camera to a sealed metal box protecting it from
hitting the tree. The camera lift is shown closed in Fig. 1 and
open in Fig. 2. A typical view of the camera is shown in Fig.
3. In images Fig. 2 and Fig. 3, the cleaning tool is approxi-
mately in the same place.

The camera attached to the cleaning tool is DFK 41AU02
color camera made by The Imaging Source. Camera data is
collected in raw format at 15 fps using a resolution of
1280x960 pixels. A lens with a focal length of 6.5mm is
used to acquire a wide field of view. The camera shutter and
gain are regulated using a custom automatic controller
which is controlling the amount of overexposured pixels.
The idea of control is simple; the amount of pixels with the
highest possible intensity value is used as a reference when
shutter time and gain are controlled. Simultaneously, the

Fig. 2. The point cleaning tool is in operation on a test field. The
camera lift is opened to allow camera to shoot through the central
hole. The autonomous forest machine was demonstrated on a test

field of a few planted spruces among other vegetation.

Fig. 3. Camera image used to search young spruce trees. The cam-
era is shooting through the central hole of the point cleaning tool.

The tool is approximately at the same place than in Fig. 2.

gain is minimized and the shutter time is limited to a prede-
fined maximum value to avoid motion blur. Automatic gain
and shutter control are crucial while working outdoors, as
brightness is varying and robust computer vision is required.
In addition, the object detection method has to cope with
shadows and changing illumination.

Operational tests demonstrating the behavior of the sys-
tem were run on a small test field with five planted spruces
and a set of deciduous trees and high grass complicating the
task. The test field is shown in Fig. 2 and Fig. 3. In compari-
son, Fig. 1 shows the system in a more realistic scene than
our test field is.

III. METHODS

A. Rotation-invariant Radon and wavelet features
Texture analysis is done only on the intensity image. To

reduce the computational load, the image is first cropped so
that the visible parts of the point cleaning tool are left out.
The image is then divided into smaller blocks that are proc-
essed and classified individually. Block sizes of 32x32,
64x64 and 128x128 pixels were used. The blocks are always
overlapping each other by half of the block size, i.e. when
using blocks with size 32x32 pixels; they overlap their
neighboring blocks by 16 pixels each. Thus, the texture
analysis is done for a grid with nodes 16 pixels apart.

The texture analysis is based on a method proposed by
Jafar-Khouzani et al. [6] that uses Radon and Wavelet trans-
forms for creating rotation invariant analysis. Rotation in-
variant features are chosen because the viewpoint is directly
from above and young spruce trees are roughly radial sym-
metric. A circular hard limiting windowing function is used
to shape the image block radial symmetric. A sample block
of 64x64 pixels selected from the intensity channel of image
in Fig. 3 is shown in Fig. 4A. The selected block is trans-
formed using Radon and translation-invariant wavelet trans-
forms.

The Radon transform is a two-dimensional transform.
Each pixel in the transformed image is the sum of pixel in-
tensities along a line at a given angle and a distance from the
center of the image. The angle is mapped on the x-axis and
the distance on the y-axis in the transform result which is
shown in Fig. 4B. The Radon transform of an image block is
normalized using a transform of the windowing function
itself. Rotation in the original block is seen as translation
along the x-axis in the Radon transform.

Fig. 4. The texture feature computation procedure in three steps:
A) an intensity image block of size 64x64 pixels with a windowing

function, B) a Radon transform computed from A, and
C) a wavelet transform computed from B.

According to Martin Brady [10], for image of size NxN,
majority of Radon transforms have computational complex-
ity of O(N³). His discretized version has complexity of
O(N²logN). However, we implemented the standard, non-
discretized version of the Radon transform for simplicity.

The wavelet transform is used to decompose the Radon
transformed image to different frequency bands. As the goal
is to use rotation-invariant texture analysis, translation in the
x-direction in the Radon image should not affect final fea-
tures. Jafar-Khouzani et al. [6] proposed that instead of us-
ing a normal 2D-wavelet transform, a translation invariant
wavelet transform [11] should be used in the x-axis and
normal wavelet transform in the y-axis. The Haar wavelet is
used for its simplicity. We used three wavelet levels causing
nine sub-bands and a residual. They are all depicted in Fig.
4C. High frequency bands are on the bottom and the low
frequency on the top.

B. Color features
It is intuitive to use color information in aid of texture in

spruce detection algorithm. In the article by Yu-Ichi Ohta et
al. [12] about color information for natural image region
segmentation, they conclude that the best color features for
segmentation are I1 = (R+G+B)/3, I2’ = (R-B), and I3’ =
(2G-R-B)/2. In their study, the three features were signifi-
cant in this order. These same orthogonal color channels
were later successfully used by Brian Steward and Lei Tian
in real-time weed detection [13]. They called channels to I
(intensity), RB (redness or blueness), and EG (excessive
green) respectively, forming an EGRBI color transform. The
color channels are presented in Fig. 5 along with the original
RGB color image. The image in the figure is cropped from
the example image in Fig. 3.

Fig. 5. The color features are calculated from EGRBI transformed
image, which consists of Intensity (B), Extensive Green (C), and

Red-Blue (D) channels. The original image is depicted in (A).

A) RGB B) I

C) EG D) RB

A) I-image
bl k

B) Radon

C) Wavelet

As depicted in Fig. 5, the spruce can be visually detected
from the channels of EGRBI color transformed image. Es-
pecially the RB image usually shows spruces with brighter
intensity than surrounding plants. In addition, spruce shoots
are brightly visible in the EG channel.

As the field is imaged in natural light, there usually are
shadows in the image. In addition to the natural shadows,
the point cleaning tool casts shadows over the plants on a
sunny day. In the natural images, EG and RB channels are
usually correlated with the intensity channel. Therefore, EG
and RB color channels were normalized pixel-vise by divid-
ing EG and RB channels with the I channel. These new
color features EG’ = EG / I and RB’ = RB / I were averaged
around the same image blocks used in the texture analysis.

C. Feature extraction and k-NN classifier
The texture features used in the classification are calcu-

lated using the mean of square roots of absolute values for
each sub-band in the wavelet transform. These features were
used because Jafar-Khouzani et al. [6] found out that it gave
better results compared to traditional energy and uniformity
measures.

Training of the classifier is done with images selected us-
ing the user interface. The operator marks the spruce tree
from the training image with two circles. The inner circle
defines a zone where everything is certainly a part of spruce.
All features outside the second circle are considered as
background i.e. non-spruce. The training data is constructed
as a set of features extracted and labeled using these images
and circles labeling the training data.

Classification is done using the k-NN classifier with
Euclidian distance to classify each image block into an ap-
propriate class. In this algorithm, an unknown sample is
assigned to the class most commonly represented in the col-
lection of its neighborhood [14]. The k-NN classifier
neighborhood size, k was chosen to have value 7. Instead of
sharp classification result, the classifier is used to calculate
the number of votes for classes. These votes are later used to
find the estimate for the location of the spruce tree.

D. CUDA GPU computation
To realize the machine vision algorithms in real time, the

vast parallel computation power of Graphic Processor Units
(GPUs) was utilized. CUDA i.e. Compute Unified Device
Architecture, an architecture developed by Nvidia was used.
The GPU is used to calculate the Radon and wavelet trans-
forms and to extract features. Also, the k-NN classification
is implemented on CUDA.

CUDA optimization requires a lot of testing and tuning.
There are three basic strategies to increase the performance
of the CUDA code [15]: increasing the parallel execution,
optimizing memory usage and optimizing instruction usage.
The CUDA platform has profiling tools to examine the per-
formance of different implementations.

Inside the GPU, there are a number of parallel processor
cores; our laptop computer has 192 of them. Each of these

cores can run many so called threads. These threads are not
similar to a thread on a CPU. Each GPU thread is running
the same kernel at the same instruction. As switching be-
tween these threads is very fast, it is often wise to break
down the algorithm to thousands of small threads that are
run parallel and consecutively. For example, other threads
can continue to next instruction while one still waits for the
data from memory.

Data transfer between CPU and GPU is often a bottleneck
in total system performance. Therefore, it is wise to load the
input data to the GPU memory, do multiple consecutive
tasks on the GPU and load the end result back to the CPU.
There are multiple types of memory inside the GPU: global
memory, local memory, shared memory and texture mem-
ory. Each of these memory types has their advantages and
limitations.

We decided to use texture memory to store the image data
used as input to the Radon kernels. Accessing texture mem-
ory is quite fast and the interpolation required in the Radon
transform can be achieved automatically. In the Radon trans-
form, different threads inside a CUDA block are calculating
different orientations for the same image block, and there-
fore the texture caches can be utilized effectively.

Optimizing instruction usage consists mainly of minimiz-
ing expensive instructions and avoiding branching in the
code. Trigonometric functions are much more expensive
than normal arithmetic operations. Branching causes some
of the threads to be paused temporally on a single core until
the code paths converge again. Therefore branching should
be avoided and all parallel kernels should have similar code
paths.

As implementing algorithms efficiently on the GPU re-
quires more effort and experimentation than on a CPU, it is
not reasonable to do everything on the graphics card. There-
fore, we have implemented only the most expensive algo-
rithms on the GPU. These algorithms were: the Radon trans-
form, the wavelet transform, the feature extraction, and the
K-nearest classification. Limited effort was expended on
optimization, so further gains in efficiency are possible.

E. Reference CPU implementation
The Radon and wavelet transforms and the feature extrac-

tion were implemented in a single thread CPU-code as well.
These algorithms were used as a reference for GPU compu-
tation. The CPU implementation was accomplished using
OpenCV library. The Radon transform for CPU was also
optimized by rearranging data for more optimal memory
access. This allowed the use of fast arithmetic operations on
arrays in OpenCV. This optimization works well with multi-
ple similar parallel blocks, which are computed simultane-
ously. Matlab has a built in Radon transform function. Our
CPU and GPU implementations were compared to the Mat-
lab implementation to get a comparable reference for the
computational power of our computer.

F. Detection method in real-time control loop
In order to use texture and color classification result to

visual servoing the forest crane, the target location and de-
tection quality of the target has to be extracted from the clas-
sification result. We estimated the target spruce location by
first counting the number of spruce votes for every classified
image block in the grid. The voting was done in the k-NN
detector by counting spruce detections from the seven near-
est neighbors in the features extracted and labeled from the
training data. The maximum number of spruce votes is
therefore seven and the minimum is zero.

The location of the target is estimated from the classifica-
tion results by calculating a median for the votes in x and y
directions separately for the whole grid. Only grid cells with
votes more than a set threshold were counted in. A threshold
of spruce votes larger than three was used to filter out non-
spruce detections and to take into account only the votes
with most spruces in k-NN neighborhood.

The median gave a robust estimate of a center location of
a large blob of high spruce-voted image blocks. The actual
location was refined by using a weighted average over
spruce votes near the median location. The quality of the
tree detection was estimated by counting the sum of spruce
votes inside a circle centered to the estimated location. The
circle size was tuned to correspond to an average target tree.

If there were enough total votes inside the given circle
compared to the sum of all votes in the grid, the spruce tree
was detected. Because of the comparison between the blob
and the surroundings, the detection was prevented when
there were too much spruce votes in the grid. Only relatively
small-sized high-spruce-voted blobs were assumed to repre-
sent real spruce detection.

To filter out random detections around the image, a heu-
ristic dependency between adjacent detections was intro-
duced. To actually detect a spruce tree, we required the de-
tection to occur in two adjacent frames spatially close to-
gether. This requirement prevented any random detection
only from a single frame.

The final detection result was used in visual servoing the
forest crane and the point cleaning tool. Although our algo-
rithms are fast, there is still substantial delay between the
image acquisition and the detection result. The delay was
minimized by using custom data transfer protocols and
software to acquire and transmit the camera image to the
computer controlling the system. The image acquisition and
transfer times were estimated with a high accuracy. The
pose of the forest crane was recorded and the pose of the
camera was estimated at the time of image acquisition. The
crane was controlled using the estimated relative pose of the
target spruce.

The automatic point cleaning was performed by first
scanning through the field by using a predesigned path.
When the spruce was detected, the tool was controlled over
the center of the detected tree and lowered down after the
swaying was damped. The actual cutting operation was not
performed in our test as the hydraulic actuator was removed
from the tool. After the operation, the tool was lifted and the
search for a next spruce continued.

G. Data visualization in user interface
A user interface was developed for controlling and moni-

toring the forest crane and to train and test the spruce detec-
tion system. The user interface depicted in Fig. 6 shows the
real-time camera image from the point cleaning tool and
draws the detection result over the image. The point clean-
ing tool is attached to a rotator that allows it to rotate around
its axis. The camera image is rotated on the screen to stabi-
lize image in spite of the rotation of the tool. All parameters
affecting to the image and spruce detection can be changed
online.

Fig. 6. A user interface for training the classifier and tracking

young spruce trees. The same interface is used to remote control
the forest crane. The controlled forest crane and the tool are shown

in the background.

The detection result was drawn on the real-time image us-
ing colored dots. The size of a dot corresponds to the
amount of spruce votes around the current image block. The
final detection result (see section III.F) was shown to the
driver with a blue circle around the target tree. In remote
controlling mode, operator can drive the crane over a certain
spot by clicking it on the screen. Similarly, the operator can
label new training data online to the spruce detector (see
section III.C). In the demonstration, the user interface was
used outside the cabin as shown in Fig. 6.

In practice, the k-NN classifier can be trained online by
driving the point cleaning tool over a young spruce tree and
selecting it with a few mouse clicks. The left click is setting
a center point of an inner circle to include all the features
inside to a spruce class. The right click is setting a larger
circle to include the surrounding points to a non-spruce
class. The mouse wheel is used to scale both of the circles.

Using this method to collect training data from the envi-
ronment, a few spruces can be easily trained for the classi-
fier. By this way, the training data and the classified images
are more similar than by collecting the training data set be-
forehand possibly in different conditions or illumination.

IV. RESULTS
The detection algorithm was implemented and optimized

for GPU and CPU separately. A single frame consisting of
multiple blocks was processed at a time. Multiple frames
were used to calculate the average block computation times.
The computation times for an average block of size NxN are
presented in Table I for N of 32, 64 and 128 using CPU and
GPU implementations. The total amount of blocks in a sin-
gle frame depends on the block size. When the block size
was 32x32, there were 2778 blocks. On sizes 64x64 and
128x128, there were 687 and 163 blocks respectively. The
computations were done using a laptop computer with Core
i7-3820QM processor and NVIDIA Quadro K2000M
Graphics Card. Only one thread was used for CPU computa-
tions.

Radon transform was computed for 2N orientations. It
was also computed using Matlab R2012A and built-in ra-
don.m function as a reference for the CPU implementation.
As the results in Table I show, the CUDA implementation
is in total 18 times faster than CPU for 32x32 block size. For
larger block sizes, the total speedup is 25 and 79 times for
image blocks of size 64x64 and 128x128 respectively. The
computation times for Radon transform and for total time
are plotted as a function of block size in Fig. 7 and Fig. 8.

In the small field test, four out of the five spruce trees

were successfully found and cleaned using the automatized
forest machine. The detection result of a example image is
depicted in Fig. 9. Subfigure A shows the original test image
and B shows the detection result computed for blocks of size
32x32 with 16 pixel overlap. Therefore, the texture and
color classification is done on a grid of every 16th pixel. As
there are 2778 image blocks computed for every frame, the
total time for processing is 30.6 milliseconds. The classifica-
tion time depends on the amount of training data. When the
data consisted of 2000 features, the classification took 8
milliseconds per frame. Therefore, theoretically, the system
can process 25 frames per second. However, our camera

runs only at 15 fps and thus our level of algorithm optimiza-
tion was sufficient. The speed of our system allows a lot
more training data to be used. This can be an advantage as
different lighting and environmental conditions are taken
into account.

32x32 64x64 128x128
10

0

10
1

10
2

10
3

10
4

10
5

block size

tim
e

[μ
s]

Radon transform

Matlab
CPU
GPU

Fig. 7. Radon transform time using GPU, CPU and Matlab. The

GPU implementation is many orders of magnitude faster than
CPU and Matlab implementations.

32x32 64x64 128x128
10

0

10
1

10
2

10
3

10
4

10
5

block size

tim
e

[μ
s]

Total

CPU
GPU

Fig. 8. Total computation time using GPU, and CPU. The total

computation time includes all computation steps: Radon and wave-
let transforms, feature extraction and k-NN classification.

The quality of spruce detection was tested using a data re-
corded from the field tests with five spruces. The data from
other four spruces than the target tree shown in Fig. 9 was
trained to the k-NN detector. The test and training data were
from the same test and therefore had similar lighting condi-
tions and weather. Therefore, the test results are slightly
overoptimistic. The spruce tree detection in Fig. 9 is drawn
using a blue circle. The tree is found at the center of a blob
of large spruce detector votes. Spruce votes are depicted
using orange dots. The size of a dot corresponds to the
amount of spruce votes around the current image block.

TABLE I
COMPUTATION TIMINGS FOR AN AVERAGE BLOCK

Block Size Operation Matlab
(µs)

CPU
(µs)

CUDA
(µs)

32x32 Prepare 0.14 3.51
 Radon 777 111.11 4.14
 Wavelet 81.82 2.38
 Features 21.19 2.18
 Total 215.44 12.11

64x64 Prepare 1.26 11.73
 Radon 5872 1089.28 34.04
 Wavelet 319.38 7.59
 Features 71.14 6.24
 Total 1470.58 59.63

128x128 Prepare 16.82 43.50
 Radon 47301 20780.30 190.71
 Wavelet 1266.36 12.94
 Features 291.95 24.71
 Total 21345.10 270.96

Fig. 9. The detection result for a typical spruce. A) The original

image and B) the block-vice detection result plotted on the image.
Larger orange dot means more spruce votes in the neighborhood of
k-NN classifier. The blue circle represents an estimate for location

of the spruce tree.

The quality used to estimate the detection reliability is
plotted in Fig. 10. The decision threshold is drawn with a
red dashed line. Areas, where the quality is below the esti-
mated threshold, are not used to control the forest crane and
are drawn using gray color in the figure. The Euclidean dis-
tance from the reference to the detected spruce was meas-
ured and it is plotted in Fig. 11. The reference data for
spruce detection was generated by clicking the approximate
center location of a spruce tree in every image separately. In
the data, the tool is lifted over the spruce and the target is
therefore moving from left to right during image sequence.

10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

qu
al

ity

image index
Fig. 10. The estimated spruce detection quality in sequential im-

ages as the tool is lifted over the young spruce tree. At the left and
right edges of the figure, the tree is at the edge of the image. The

gray area in the figure states that the quality is under the used
threshold drawn using a red dashed line.

10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

800

er
ro

r t
o

re
fe

rn
ce

 [p
x]

image index
Fig. 11. The error to reference measurement in pixels as the tool is
lifted over the young spruce tree. At the left and right edges of the
figure, the tree is at the edge of the image, and the detection is not
as reliable as in the center of the figure. Similarly as in Fig. 10, the
gray area in the figure states that the quality is under the same de-
termined threshold. The detection error is usually within 50 pixels.

As it can be seen from Fig. 11, the detection error is usu-
ally less than 50 pixels when the quality is high enough.
With the large image indexes shown in the right part of Fig.
10 and Fig. 11, the tree is in the edge of the image and is
seen only partly. The error increases as the target tree is go-
ing out of the view. This systematic error in the system is
not crucial for the operation as the tree is controlled towards
the center of the image. The robust accuracy of less than 50
pixels at the center areas of the image is enough to be suc-
cessfully used in visual servoing the point cleaning tool over
the target.

The Fig. 9 is the 34th image of the test result plotted in
Fig. 10 and Fig. 11. In the image, most of the k-NN detector
spruce detections are inside the blue circle drawn in Fig. 9B.
Therefore, the quality plotted in Fig. 10 is quite high, as the
quality is estimated by summing all spruce votes inside the
circle and dividing it with a sum of all spruce votes in the
image. The greediness of spruce detector can be adjusted
using the detection threshold.

V. DISCUSSION
The operational tests demonstrating the system were run

on a small field with only five planted spruces and a set of
deciduous trees and high grass complicating the task. The
quality of spruce detection is therefore reported only briefly.
We have focused to the real-time implementation of Radon
and wavelet texture detection algorithm in visual servoing
task in a complex environment. We have reported the speed
gains which can be achieved using GPU computing. In addi-
tion to the fact that GPU is faster, the use of GPU computa-
tion frees CPU resources.

The quality of the spruce detection was tested against
hand made reference measurements. In practice, the imple-
mented spruce detection system was accurate enough to be
used in visual servoing the forest crane and to point clean
surrounds of the planted spruces on our test field. More ad-
vanced tests should be carried out in a real spruce plantation.
Similarly, the developed user interface was mainly built for
testing purposes, and more intuitive user interface should be
developed. The future version could have a multipoint touch
screen to make the interface for labeling the training data
and controlling the crane easier. Similarly, the system could
be tracking the operator and train new features automatically
as the forest machine is operated manually.

A more detailed validation of the quality of spruce classi-
fication is still required. A more comprehensive data set has
been collected for evaluating the quality of spruce detection
algorithms and the GPU implementation. In this paper, we
have used only Radon transform based texture detection
methods. Different texture detection methods, for example
Gabor filtering should be evaluated using the comprehensive
data set. More detailed performance of our spruce detection
algorithm will be published later.

A) B)

ACKNOWLEDGMENT
The authors thank Mr Matti Öhman for developing the

camera lift. We thank Mr Raimo Linkolehto for all his help
in building the platform and arranging the tests. In addition
we thank Mr Teemu Kemppainen for the manual reference
measurement. The test locations were coordinated by MTT
Agrifood Research Finland.

REFERENCES

[1] J. Billingsley, A. Visala and M. Dunn, "Robotics in agriculture and
forestry," in Handbook of Robotics, B. Siciliano and O. Khatib, Eds.
Springer-Verlag, 2008, pp. 1065.

[2] H. Hallongren and J. Rantala, "Commercialisation and International
Market Potential of Finnish Silvicultural Machines," Silva Fenn., vol.
46, pp. 583-593, 2012.

[3] S. Härkönen, "Effects of silvicultural cleaning in mixed pine deci-
duous stands on moose damage to scots pine (Pinus sylvestris),"
Scand. J. for. Res., vol. 13, pp. 429-436, 01/01; 2013/02, 1998.

[4] K. Uotila, J. Rantala and T. Saksa, "Estimating the Need for Early
Cleaning in Norway Spruce Plantations in Finland," Silva Fenn., vol.
46, pp. 683-693, 2012.

[5] A. Karlsson, A. Albrektson, B. Elfving and C. Fries, "Development of
Pinus sylvestris Main Stems Following Three Different Precommer-
cial Thinning Methods in a Mixed Stand," Scand. J. for. Res., vol. 17,
pp. 256-262, 01/01; 2013/02, 2002.

[6] K. Jafari-Khouzani and H. Soltanian-Zadeh, "Rotation-invariant mul-
tiresolution texture analysis using Radon and wavelet transforms,"
Image Processing, IEEE Transactions on, vol. 14, pp. 783-795, 2005.

[7] K. Jafari-Khouzani and H. Soltanian-Zadeh, "Radon transform orien-
tation estimation for rotation invariant texture analysis," Pattern Ana-
lysis and Machine Intelligence, IEEE Transactions on, vol. 27, pp.
1004-1008, 2005.

[8] M. R. Hejazi, G. Shevlyakov and Yo-Sung Ho, "Modified discrete
radon transforms and their application to rotation-invariant image
analysis," in Multimedia Signal Processing, 2006 IEEE 8th Workshop
on, 2006, pp. 429-434.

[9] J. Kalmari, T. Pihlajamäki, H. Hyyti, M. Luomaranta and A. Visala,
"ISO 11783 compliant forest crane as a platform for automatic cont-
rol," in Agricontrol 2013, Espoo, Finland, 2013.

[10] M. Brady, "A Fast Discrete Approximation Algorithm for the Radon
Transform," SIAM J. Comput., vol. 27, pp. 107-119, 02/01; 2013/02,
1998.

[11] Jie Liang and T. W. Parks, "A translation-invariant wavelet represen-
tation algorithm with applications," Signal Processing, IEEE Trans-
actions on, vol. 44, pp. 225-232, 1996.

[12] Y. Ohta, T. Kanade and T. Sakai, "Color information for region seg-
mentation," Computer Graphics and Image Processing, vol. 13, pp.
222-241, 7, 1980.

[13] B. L. Steward and L. F. Tian, "Real-time weed detection in outdoor
field conditions," pp. 266-278, January 14, 1999.

[14] E. Gose, R. Johnsonbaugh and S. Jost, Pattern Recognition and Ima-
ge Analysis. Prentice Hall PTR, 1996.

[15] Nvidia, "CUDA C Programming Guide Version 4.2," NVIDIA: Santa
Clara, CA, 2012.

