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Abstract—Forest machines are manually operated machines 
that are efficient when operated by a professional. Point clean-
ing is a silvicultural task in which weeds are removed around a 
young spruce tree. To automate point cleaning, machine vision 
methods are used for identifying spruce trees. A texture analy-
sis method based on the Radon and wavelet transforms is im-
plemented for the task. Real-time GPU implementation of algo-
rithms is programmed using CUDA framework. Compared to 
a single thread CPU implementation, our GPU implementation 
is between 18 to 80 times faster depending on the size of image 
blocks used. Color information is used in addition of texture 
and a location estimate of the tree is extracted from the detec-
tion result. The developed spruce detection system is used as a 
part of an autonomous point cleaning machine. To control the 
system, an integrated user interface is presented. It allows the 
operator to control, monitor and train the system online. 

I. INTRODUCTION 
IELD and service robotics have made a considerable im-
pact in agriculture and forestry industries. Many ad-

vanced robotic solutions have been proposed in the area. For 
example, a prototype of a legged forest machine was already 
developed in the late 90’s by John Deere [1]. Recently, the 
motivation to mechanize silvicultural operations has in-
creased in the Nordic countries and several new forest ma-
chine concepts have been developed [2]. Our current re-
search focus is to develop a new concept of autonomous 
cleaning of young spruce trees.  

Silvicultural cleaning is used to relieve chosen conifers 
from competing, naturally regenerated, broadleaved trees 
[3]. The current solution to clean the surroundings of young 
spruce is either manual work or using mechanized human 
operated machines. In addition, the cleaning operation can 
be carried out chemically. However, it has some environ-
mental concerns and a strong public opposition [4]. Point 
cleaning is a practical precommercial thinning method, in 
which the cleaning is performed within a certain radius 
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around the main stem [5].  
In order to operate in natural forest environment, the 

autonomous forest machine requires advanced sensors and 
methods to detect the target spruce tree among other vegeta-
tion. Texture and color features could be used to separate 
spruce from other vegetation. There is a lot of variation in 
the environment and a single texture or color method may 
not be sufficient for the task. Multiple methods can be used 
together to acquire enough different features from the image 
to detect the target reliably. The drawback is that a compe-
tent detection algorithm can be computationally highly com-
plex to solve. In order to use texture analysis and detection 
methods in a closed loop controlled system, the algorithm 
should be computed relatively fast and in deterministic time. 

In order to detect spruces among other vegetation, texture 
detection methods by Jafari-Khouzani et al. were tested [6, 
7]. They claim that their rotation invariant multiresolution 
texture analysis using Radon and wavelet transforms is more 
robust to additive noise than Log-polar wavelet signatures or 
multichannel Gabor filtering. Our initial results for spruce 
detection were successful. Although the algorithms are 
computationally complex, they were selected for real time 
implementation. According to [8], the Radon transformation 
for an image of size 128x128 on a work station computer 
with 3.06GHz and 2GB RAM takes 482ms, and their con-
tending methods take 543ms and 159ms for the same image. 
This computation time for a single image block is too slow 
for a real-time system requiring hundreds of image blocks to 
be analyzed for a single frame.  

The development in graphics processing units has made 
many computationally expensive machine vision algorithms 
available in real-time applications. This paper presents an 
efficient CUDA GPU implementation for Rotation-invariant 
multiresolution texture analysis using Radon and wavelet 
transforms by Kourosh Jafari-Khouzani and Hamid Solta-
nian-Zadeh [6]. The texture detection method is improved 
using additional color features. In addition, a GPU imple-
mentation of k-NN feature detector is used to classify image 
blocks. An estimated location of a tree is extracted from the 
classification results. The location is used to control a crane 
of a forest machine.  

Autonomous point cleaning is performed by our research 
platform that uses a prototype of a point cleaning tool. The 
tool is attached to a forest crane which is attached to an agri-
cultural tractor. Together these components form a small-
scale forest machine which is depicted in Fig. 1. 
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Fig. 1.  The small-scale forest machine with a point cleaning tool in 

realistic environment. Young spruce trees are searched among 
other vegetation using a camera attached to the point cleaning tool 

and a machine vision system dedicated to the task. 

II. HARDWARE AND ENVIRONMENT 
The small-scale forest machine used in the experiments 

consists of an agricultural tractor, Valtra T132, and a forest 
crane, Kesla 305T. The prototype point cleaning tool was 
made by Pentin Paja. The agricultural tractor and the forest 
crane are designed to work as a research platform for an 
autonomous forest machine. The forest crane is instru-
mented for autonomous operation [9]. The prototype point 
cleaning tool is depicted in Fig. 2. It is used to remove com-
peting vegetation around the target plant by lowering the 
tool on the target and cutting other vegetation around it us-
ing hydraulic-operated blades. 

Aiming the point cleaning tool on the target tree is diffi-
cult as the tool is freely hanging on the tip of the crane far 
from the cabin. Therefore, a camera lift has been developed 
to enable a camera to be attached to the point cleaning tool. 
Using the camera lift, a wide scene can be imaged through 
the central hole. When the tool is lowered on the target to 
cut the surrounding vegetation, the camera is lifted up en-
closing the camera to a sealed metal box protecting it from 
hitting the tree. The camera lift is shown closed in Fig. 1 and 
open in Fig. 2. A typical view of the camera is shown in Fig. 
3. In images Fig. 2 and Fig. 3, the cleaning tool is approxi-
mately in the same place. 

The camera attached to the cleaning tool is DFK 41AU02 
color camera made by The Imaging Source. Camera data is 
collected in raw format at 15 fps using a resolution of 
1280x960 pixels. A lens with a focal length of 6.5mm is 
used to acquire a wide field of view. The camera shutter and 
gain are regulated using a custom automatic controller 
which is controlling the amount of overexposured pixels. 
The idea of control is simple; the amount of pixels with the 
highest possible intensity value is used as a reference when 
shutter time and gain are controlled. Simultaneously, the  

 
Fig. 2.  The point cleaning tool is in operation on a test field. The 
camera lift is opened to allow camera to shoot through the central 
hole. The autonomous forest machine was demonstrated on a test 

field of a few planted spruces among other vegetation.  

 
Fig. 3.  Camera image used to search young spruce trees. The cam-
era is shooting through the central hole of the point cleaning tool. 

The tool is approximately at the same place than in Fig. 2. 

 
gain is minimized and the shutter time is limited to a prede-
fined maximum value to avoid motion blur. Automatic gain 
and shutter control are crucial while working outdoors, as 
brightness is varying and robust computer vision is required. 
In addition, the object detection method has to cope with 
shadows and changing illumination. 

Operational tests demonstrating the behavior of the sys-
tem were run on a small test field with five planted spruces 
and a set of deciduous trees and high grass complicating the 
task. The test field is shown in Fig. 2 and Fig. 3. In compari-
son, Fig. 1 shows the system in a more realistic scene than 
our test field is. 



 
 

 

III. METHODS 

A. Rotation-invariant Radon and wavelet features 
Texture analysis is done only on the intensity image. To 

reduce the computational load, the image is first cropped so 
that the visible parts of the point cleaning tool are left out. 
The image is then divided into smaller blocks that are proc-
essed and classified individually. Block sizes of 32x32, 
64x64 and 128x128 pixels were used. The blocks are always 
overlapping each other by half of the block size, i.e. when 
using blocks with size 32x32 pixels; they overlap their 
neighboring blocks by 16 pixels each. Thus, the texture 
analysis is done for a grid with nodes 16 pixels apart. 

The texture analysis is based on a method proposed by 
Jafar-Khouzani et al. [6] that uses Radon and Wavelet trans-
forms for creating rotation invariant analysis. Rotation in-
variant features are chosen because the viewpoint is directly 
from above and young spruce trees are roughly radial sym-
metric. A circular hard limiting windowing function is used 
to shape the image block radial symmetric. A sample block 
of 64x64 pixels selected from the intensity channel of image 
in Fig. 3 is shown in Fig. 4A. The selected block is trans-
formed using Radon and translation-invariant wavelet trans-
forms. 

The Radon transform is a two-dimensional transform. 
Each pixel in the transformed image is the sum of pixel in-
tensities along a line at a given angle and a distance from the 
center of the image. The angle is mapped on the x-axis and 
the distance on the y-axis in the transform result which is 
shown in Fig. 4B. The Radon transform of an image block is 
normalized using a transform of the windowing function 
itself. Rotation in the original block is seen as translation 
along the x-axis in the Radon transform.  

 

Fig. 4.  The texture feature computation procedure in three steps: 
A) an intensity image block of size 64x64 pixels with a windowing 

function, B) a Radon transform computed from A, and  
C) a wavelet transform computed from B. 

According to Martin Brady [10], for image of size NxN, 
majority of Radon transforms have computational complex-
ity of O(N³). His discretized version has complexity of 
O(N²logN). However, we implemented the standard, non-
discretized version of the Radon transform for simplicity. 

The wavelet transform is used to decompose the Radon 
transformed image to different frequency bands. As the goal 
is to use rotation-invariant texture analysis, translation in the 
x-direction in the Radon image should not affect final fea-
tures. Jafar-Khouzani et al. [6] proposed that instead of us-
ing a normal 2D-wavelet transform, a translation invariant 
wavelet transform [11] should be used in the x-axis and 
normal wavelet transform in the y-axis. The Haar wavelet is 
used for its simplicity. We used three wavelet levels causing 
nine sub-bands and a residual. They are all depicted in Fig. 
4C. High frequency bands are on the bottom and the low 
frequency on the top. 

B. Color features 
It is intuitive to use color information in aid of texture in 

spruce detection algorithm. In the article by Yu-Ichi Ohta et 
al. [12] about color information for natural image region 
segmentation, they conclude that the best color features for 
segmentation are I1 = (R+G+B)/3, I2’ = (R-B), and I3’ = 
(2G-R-B)/2. In their study, the three features were signifi-
cant in this order. These same orthogonal color channels 
were later successfully used by Brian Steward and Lei Tian 
in real-time weed detection [13]. They called channels to I 
(intensity), RB (redness or blueness), and EG (excessive 
green) respectively, forming an EGRBI color transform. The 
color channels are presented in Fig. 5 along with the original 
RGB color image. The image in the figure is cropped from 
the example image in Fig. 3. 

 
Fig. 5.  The color features are calculated from EGRBI transformed 
image, which consists of Intensity (B), Extensive Green (C), and 

Red-Blue (D) channels. The original image is depicted in (A). 
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As depicted in Fig. 5, the spruce can be visually detected 
from the channels of EGRBI color transformed image. Es-
pecially the RB image usually shows spruces with brighter 
intensity than surrounding plants. In addition, spruce shoots 
are brightly visible in the EG channel. 

As the field is imaged in natural light, there usually are 
shadows in the image. In addition to the natural shadows, 
the point cleaning tool casts shadows over the plants on a 
sunny day. In the natural images, EG and RB channels are 
usually correlated with the intensity channel. Therefore, EG 
and RB color channels were normalized pixel-vise by divid-
ing EG and RB channels with the I channel. These new 
color features EG’ = EG / I and RB’ = RB / I were averaged 
around the same image blocks used in the texture analysis. 

C. Feature extraction and k-NN classifier 
The texture features used in the classification are calcu-

lated using the mean of square roots of absolute values for 
each sub-band in the wavelet transform. These features were 
used because Jafar-Khouzani et al. [6] found out that it gave 
better results compared to traditional energy and uniformity 
measures. 

Training of the classifier is done with images selected us-
ing the user interface. The operator marks the spruce tree 
from the training image with two circles. The inner circle 
defines a zone where everything is certainly a part of spruce. 
All features outside the second circle are considered as 
background i.e. non-spruce. The training data is constructed 
as a set of features extracted and labeled using these images 
and circles labeling the training data. 

Classification is done using the k-NN classifier with 
Euclidian distance to classify each image block into an ap-
propriate class. In this algorithm, an unknown sample is 
assigned to the class most commonly represented in the col-
lection of its neighborhood [14]. The k-NN classifier 
neighborhood size, k was chosen to have value 7. Instead of 
sharp classification result, the classifier is used to calculate 
the number of votes for classes. These votes are later used to 
find the estimate for the location of the spruce tree. 

D. CUDA GPU computation 
To realize the machine vision algorithms in real time, the 

vast parallel computation power of Graphic Processor Units 
(GPUs) was utilized. CUDA i.e. Compute Unified Device 
Architecture, an architecture developed by Nvidia was used. 
The GPU is used to calculate the Radon and wavelet trans-
forms and to extract features. Also, the k-NN classification 
is implemented on CUDA. 

CUDA optimization requires a lot of testing and tuning. 
There are three basic strategies to increase the performance 
of the CUDA code [15]: increasing the parallel execution, 
optimizing memory usage and optimizing instruction usage. 
The CUDA platform has profiling tools to examine the per-
formance of different implementations. 

Inside the GPU, there are a number of parallel processor 
cores; our laptop computer has 192 of them. Each of these 

cores can run many so called threads. These threads are not 
similar to a thread on a CPU. Each GPU thread is running 
the same kernel at the same instruction.  As switching be-
tween these threads is very fast, it is often wise to break 
down the algorithm to thousands of small threads that are 
run parallel and consecutively. For example, other threads 
can continue to next instruction while one still waits for the 
data from memory. 

Data transfer between CPU and GPU is often a bottleneck 
in total system performance. Therefore, it is wise to load the 
input data to the GPU memory, do multiple consecutive 
tasks on the GPU and load the end result back to the CPU. 
There are multiple types of memory inside the GPU: global 
memory, local memory, shared memory and texture mem-
ory. Each of these memory types has their advantages and 
limitations.  

We decided to use texture memory to store the image data 
used as input to the Radon kernels. Accessing texture mem-
ory is quite fast and the interpolation required in the Radon 
transform can be achieved automatically. In the Radon trans-
form, different threads inside a CUDA block are calculating 
different orientations for the same image block, and there-
fore the texture caches can be utilized effectively. 

Optimizing instruction usage consists mainly of minimiz-
ing expensive instructions and avoiding branching in the 
code. Trigonometric functions are much more expensive 
than normal arithmetic operations. Branching causes some 
of the threads to be paused temporally on a single core until 
the code paths converge again. Therefore branching should 
be avoided and all parallel kernels should have similar code 
paths. 

As implementing algorithms efficiently on the GPU re-
quires more effort and experimentation than on a CPU, it is 
not reasonable to do everything on the graphics card. There-
fore, we have implemented only the most expensive algo-
rithms on the GPU. These algorithms were: the Radon trans-
form, the wavelet transform, the feature extraction, and the 
K-nearest classification. Limited effort was expended on 
optimization, so further gains in efficiency are possible. 

E. Reference CPU implementation 
The Radon and wavelet transforms and the feature extrac-

tion were implemented in a single thread CPU-code as well. 
These algorithms were used as a reference for GPU compu-
tation. The CPU implementation was accomplished using 
OpenCV library. The Radon transform for CPU was also 
optimized by rearranging data for more optimal memory 
access. This allowed the use of fast arithmetic operations on 
arrays in OpenCV. This optimization works well with multi-
ple similar parallel blocks, which are computed simultane-
ously. Matlab has a built in Radon transform function. Our 
CPU and GPU implementations were compared to the Mat-
lab implementation to get a comparable reference for the 
computational power of our computer. 



 
 

 

F. Detection method in real-time control loop 
In order to use texture and color classification result to 

visual servoing the forest crane, the target location and de-
tection quality of the target has to be extracted from the clas-
sification result. We estimated the target spruce location by 
first counting the number of spruce votes for every classified 
image block in the grid. The voting was done in the k-NN 
detector by counting spruce detections from the seven near-
est neighbors in the features extracted and labeled from the 
training data. The maximum number of spruce votes is 
therefore seven and the minimum is zero.  

The location of the target is estimated from the classifica-
tion results by calculating a median for the votes in x and y 
directions separately for the whole grid. Only grid cells with 
votes more than a set threshold were counted in. A threshold 
of spruce votes larger than three was used to filter out non-
spruce detections and to take into account only the votes 
with most spruces in k-NN neighborhood. 

The median gave a robust estimate of a center location of 
a large blob of high spruce-voted image blocks. The actual 
location was refined by using a weighted average over 
spruce votes near the median location. The quality of the 
tree detection was estimated by counting the sum of spruce 
votes inside a circle centered to the estimated location. The 
circle size was tuned to correspond to an average target tree. 

If there were enough total votes inside the given circle 
compared to the sum of all votes in the grid, the spruce tree 
was detected. Because of the comparison between the blob 
and the surroundings, the detection was prevented when 
there were too much spruce votes in the grid. Only relatively 
small-sized high-spruce-voted blobs were assumed to repre-
sent real spruce detection. 

To filter out random detections around the image, a heu-
ristic dependency between adjacent detections was intro-
duced. To actually detect a spruce tree, we required the de-
tection to occur in two adjacent frames spatially close to-
gether. This requirement prevented any random detection 
only from a single frame.  

The final detection result was used in visual servoing the 
forest crane and the point cleaning tool. Although our algo-
rithms are fast, there is still substantial delay between the 
image acquisition and the detection result. The delay was 
minimized by using custom data transfer protocols and 
software to acquire and transmit the camera image to the 
computer controlling the system. The image acquisition and 
transfer times were estimated with a high accuracy. The 
pose of the forest crane was recorded and the pose of the 
camera was estimated at the time of image acquisition. The 
crane was controlled using the estimated relative pose of the 
target spruce. 

The automatic point cleaning was performed by first 
scanning through the field by using a predesigned path. 
When the spruce was detected, the tool was controlled over 
the center of the detected tree and lowered down after the 
swaying was damped. The actual cutting operation was not 
performed in our test as the hydraulic actuator was removed 
from the tool. After the operation, the tool was lifted and the 
search for a next spruce continued. 

G. Data visualization in user interface 
A user interface was developed for controlling and moni-

toring the forest crane and to train and test the spruce detec-
tion system. The user interface depicted in Fig. 6 shows the 
real-time camera image from the point cleaning tool and 
draws the detection result over the image. The point clean-
ing tool is attached to a rotator that allows it to rotate around 
its axis. The camera image is rotated on the screen to stabi-
lize image in spite of the rotation of the tool. All parameters 
affecting to the image and spruce detection can be changed 
online. 

 
Fig. 6.  A user interface for training the classifier and tracking 

young spruce trees. The same interface is used to remote control 
the forest crane. The controlled forest crane and the tool are shown 

in the background. 

The detection result was drawn on the real-time image us-
ing colored dots. The size of a dot corresponds to the 
amount of spruce votes around the current image block. The 
final detection result (see section III.F) was shown to the 
driver with a blue circle around the target tree. In remote 
controlling mode, operator can drive the crane over a certain 
spot by clicking it on the screen. Similarly, the operator can 
label new training data online to the spruce detector (see 
section III.C). In the demonstration, the user interface was 
used outside the cabin as shown in Fig. 6.  

In practice, the k-NN classifier can be trained online by 
driving the point cleaning tool over a young spruce tree and 
selecting it with a few mouse clicks. The left click is setting 
a center point of an inner circle to include all the features 
inside to a spruce class. The right click is setting a larger 
circle to include the surrounding points to a non-spruce 
class. The mouse wheel is used to scale both of the circles.  

Using this method to collect training data from the envi-
ronment, a few spruces can be easily trained for the classi-
fier. By this way, the training data and the classified images 
are more similar than by collecting the training data set be-
forehand possibly in different conditions or illumination. 



 
 

 

IV. RESULTS 
The detection algorithm was implemented and optimized 

for GPU and CPU separately. A single frame consisting of 
multiple blocks was processed at a time. Multiple frames 
were used to calculate the average block computation times. 
The computation times for an average block of size NxN are 
presented in Table I for N of 32, 64 and 128 using CPU and 
GPU implementations. The total amount of blocks in a sin-
gle frame depends on the block size. When the block size 
was 32x32, there were 2778 blocks. On sizes 64x64 and 
128x128, there were 687 and 163 blocks respectively. The 
computations were done using a laptop computer with Core 
i7-3820QM processor and NVIDIA Quadro K2000M 
Graphics Card. Only one thread was used for CPU computa-
tions. 

Radon transform was computed for 2N orientations. It 
was also computed using Matlab R2012A and built-in ra-
don.m function as a reference for the CPU implementation. 
As the results in Table I  show, the CUDA implementation 
is in total 18 times faster than CPU for 32x32 block size. For 
larger block sizes, the total speedup is 25 and 79 times for 
image blocks of size 64x64 and 128x128 respectively. The 
computation times for Radon transform and for total time 
are plotted as a function of block size in Fig. 7 and Fig. 8. 

 
In the small field test, four out of the five spruce trees 

were successfully found and cleaned using the automatized 
forest machine. The detection result of a example image is 
depicted in Fig. 9. Subfigure A shows the original test image 
and B shows the detection result computed for blocks of size 
32x32 with 16 pixel overlap. Therefore, the texture and 
color classification is done on a grid of every 16th pixel. As 
there are 2778 image blocks computed for every frame, the 
total time for processing is 30.6 milliseconds. The classifica-
tion time depends on the amount of training data. When the 
data consisted of 2000 features, the classification took 8 
milliseconds per frame. Therefore, theoretically, the system 
can process 25 frames per second. However, our camera 

runs only at 15 fps and thus our level of algorithm optimiza-
tion was sufficient. The speed of our system allows a lot 
more training data to be used. This can be an advantage as 
different lighting and environmental conditions are taken 
into account. 
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Fig. 7.  Radon transform time using GPU, CPU and Matlab. The 

GPU implementation is many orders of magnitude faster than  
CPU and Matlab implementations.  
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Fig. 8.  Total computation time using GPU, and CPU. The total 

computation time includes all computation steps: Radon and wave-
let transforms, feature extraction and k-NN classification.  

The quality of spruce detection was tested using a data re-
corded from the field tests with five spruces. The data from 
other four spruces than the target tree shown in Fig. 9 was 
trained to the k-NN detector. The test and training data were 
from the same test and therefore had similar lighting condi-
tions and weather. Therefore, the test results are slightly 
overoptimistic. The spruce tree detection in Fig. 9 is drawn 
using a blue circle. The tree is found at the center of a blob 
of large spruce detector votes. Spruce votes are depicted 
using orange dots. The size of a dot corresponds to the 
amount of spruce votes around the current image block.  

TABLE I 
COMPUTATION TIMINGS FOR AN AVERAGE BLOCK  

Block Size Operation Matlab 
(µs) 

CPU 
(µs) 

CUDA  
(µs) 

32x32 Prepare  0.14 3.51 
 Radon 777 111.11 4.14 
 Wavelet  81.82 2.38 
 Features  21.19 2.18 
 Total  215.44 12.11 
     

64x64 Prepare  1.26 11.73 
 Radon 5872 1089.28 34.04 
 Wavelet  319.38 7.59 
 Features  71.14 6.24 
 Total  1470.58 59.63 
     

128x128 Prepare  16.82 43.50 
 Radon 47301 20780.30 190.71 
 Wavelet  1266.36 12.94 
 Features  291.95 24.71 
 Total  21345.10 270.96 
     



 
 

 

 
Fig. 9.  The detection result for a typical spruce. A) The original 

image and B) the block-vice detection result plotted on the image. 
Larger orange dot means more spruce votes in the neighborhood of 
k-NN classifier. The blue circle represents an estimate for location 

of the spruce tree. 

The quality used to estimate the detection reliability is 
plotted in Fig. 10. The decision threshold is drawn with a 
red dashed line. Areas, where the quality is below the esti-
mated threshold, are not used to control the forest crane and 
are drawn using gray color in the figure. The Euclidean dis-
tance from the reference to the detected spruce was meas-
ured and it is plotted in Fig. 11. The reference data for 
spruce detection was generated by clicking the approximate 
center location of a spruce tree in every image separately. In 
the data, the tool is lifted over the spruce and the target is 
therefore moving from left to right during image sequence. 
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Fig. 10.  The estimated spruce detection quality in sequential im-

ages as the tool is lifted over the young spruce tree. At the left and 
right edges of the figure, the tree is at the edge of the image. The 

gray area in the figure states that the quality is under the used 
threshold drawn using a red dashed line. 
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Fig. 11.  The error to reference measurement in pixels as the tool is 
lifted over the young spruce tree. At the left and right edges of the 
figure, the tree is at the edge of the image, and the detection is not 
as reliable as in the center of the figure. Similarly as in Fig. 10, the 
gray area in the figure states that the quality is under the same de-
termined threshold. The detection error is usually within 50 pixels. 

As it can be seen from Fig. 11, the detection error is usu-
ally less than 50 pixels when the quality is high enough. 
With the large image indexes shown in the right part of Fig. 
10 and Fig. 11, the tree is in the edge of the image and is 
seen only partly. The error increases as the target tree is go-
ing out of the view. This systematic error in the system is 
not crucial for the operation as the tree is controlled towards 
the center of the image. The robust accuracy of less than 50 
pixels at the center areas of the image is enough to be suc-
cessfully used in visual servoing the point cleaning tool over 
the target. 

The Fig. 9 is the 34th image of the test result plotted in 
Fig. 10 and Fig. 11. In the image, most of the k-NN detector 
spruce detections are inside the blue circle drawn in Fig. 9B. 
Therefore, the quality plotted in Fig. 10 is quite high, as the 
quality is estimated by summing all spruce votes inside the 
circle and dividing it with a sum of all spruce votes in the 
image. The greediness of spruce detector can be adjusted 
using the detection threshold. 

V. DISCUSSION 
The operational tests demonstrating the system were run 

on a small field with only five planted spruces and a set of 
deciduous trees and high grass complicating the task. The 
quality of spruce detection is therefore reported only briefly. 
We have focused to the real-time implementation of Radon 
and wavelet texture detection algorithm in visual servoing 
task in a complex environment. We have reported the speed 
gains which can be achieved using GPU computing. In addi-
tion to the fact that GPU is faster, the use of GPU computa-
tion frees CPU resources. 

The quality of the spruce detection was tested against 
hand made reference measurements. In practice, the imple-
mented spruce detection system was accurate enough to be 
used in visual servoing the forest crane and to point clean 
surrounds of the planted spruces on our test field. More ad-
vanced tests should be carried out in a real spruce plantation. 
Similarly, the developed user interface was mainly built for 
testing purposes, and more intuitive user interface should be 
developed. The future version could have a multipoint touch 
screen to make the interface for labeling the training data 
and controlling the crane easier. Similarly, the system could 
be tracking the operator and train new features automatically 
as the forest machine is operated manually. 

A more detailed validation of the quality of spruce classi-
fication is still required. A more comprehensive data set has 
been collected for evaluating the quality of spruce detection 
algorithms and the GPU implementation. In this paper, we 
have used only Radon transform based texture detection 
methods. Different texture detection methods, for example 
Gabor filtering should be evaluated using the comprehensive 
data set. More detailed performance of our spruce detection 
algorithm will be published later. 
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