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Abstract: This paper presents a novel approach to measure tree trunks and to model the ground using a 3D 
laser scanner. The 3D scanner, self-build using two 2D Sick scanners on a rotating base, measures each 
scan line approximately at 45° angle towards the ground and the trees. Single scan lines are segmented to 
find ground and tree returns. 3D point clouds from the surrounding forest are recorded while the measuring 
vehicle is moving. Sequential scan lines are joined together as the pose changes are reduced from the older 
buffered measurements. Laser odometry and inertial measurements are used to measure the pose changes. 
The ground is modeled by fitting a 1m grid to 3D point cloud extracted using a ground return detector. 
Tree trunks are searched from the 3D point cloud using a histogram approach to segment measurements 
into separate point clouds for each tree trunk. Tree trunks are modeled using ten circle features one on the 
other using the extracted point cloud. Instead of using the whole point cloud, mapping is done only for the 
extracted features and the travelled path to save computation time. Our method can detect nearly all tree 
trunks and measure them on short ranges of less than 8m with errors less than 4cm in diameter. 

 

1. INTRODUCTION 

Autonomous navigation and manipulation in unstructured 
environments is a major challenge in robotics. In order to 
work efficiently in the environment, the robotic system needs 
detailed information about the surrounding terrain. It is cru-
cial to be able to avoid obstacles and detect impassable ter-
rain through foliage and vegetation. In many dense environ-
ments and in the northern regions, it is usually not reasonable 
to rely only on satellite navigation. GPS satellites are on quite 
low orbits and therefore, especially in northern regions, tree 
canopy is usually blocking the signal. It is therefore helpful to 
use optical and laser sensors to detect and map the environ-
ment. In our case, the studied environment is Finnish pine 
forest shown in Fig 1. 

In our study the aim is, in addition to navigation and manipu-
lation in forests, to accurately measure and model the trees 
for the forest industry. The measurement system should work 
autonomously without intervening in the work of forest ma-
chines. There is a need for reliable continuous tree detection, 
measurement and mapping system, which uses reliably low 
cost sensors and can measure while the forest machine is op-
erated. Usually in robotic applications, the forest is perceived 
using a tilted or rotated laser scanner, i.e. LiDAR, or a com-
mercial three-dimensional laser scanner.  

In the work by McDaniel, Nishihata, and Brooks (2012) the 
laser scanner was tilted in place to gather 3D data in forest 
environment. In the work by Lalonde et al. (2006) the laser 
scanner was rotated and in study by Henning and Radtke 
(2006) and similarly in the thesis by Forsman (2001) they 
used a Riegl 3D laser scanner to gather data. They all have in 

common that they first gather a 3D data set stationary and 
then analyze it as a 3D point cloud. Instead, we use two ro-
tated 2D scanners and analyze and segment the data from 
individual scan lines while moving. There is practically no 
time delay between measurements on a same scan and there-
fore there is only minor errors caused by pose changes or 
other movement in the environment. Therefore, it is advanta-
geous to segment data using only single scan lines. After the 
segmentation, all data is joined to a 3D point cloud and ana-
lyzed as a whole. The result of segmentation is then added for 
every measurement as extra information for later processing. 

 
Fig. 1.  Measured pine forest and the rotating 3D laser scan-

ner on an all-terrain vehicle driving through the forest 
while measuring. 



 
 

     

 

In our study we use two 45° rotated Sick LMS-200 scanners 
mounted back to back on a rotating base built in our labora-
tory (see Fig. 1). Because of the system setup, we can iden-
tify ground measurements and tree trunks from individual 45° 
rotated scan lines. Therefore we can divide our 3D laser 
scanner data to ground and non-ground returns using the al-
gorithms presented in this paper. Similarly we can identify 
tree edges from individual scans using quite simple edge de-
tectors. This paper presents methods for dividing 3D point 
cloud to different tree trunks and measuring trunk diameters 
at different heights. Tree trunks are modeled as ten circle 
features (locations and radii) on top of each other at heights 
from ground to 10m. 

The three-dimensional forest mapping problem can be re-
duced into a two-dimensional problem using terrain model 
and tree trunk features. The terrain model is used as a refer-
ence height for tree trunk features. This is an efficient way to 
reduce the 3D mapping problem to two dimensions and to 
simultaneously get diameter measurements from tree trunks 
at different heights.  

The presented method is built on a laser odometry method by 
Hyyti et al. (2009). It is assisted with an inertial measurement 
unit (IMU). The error of the estimated pose of the measure-
ment system is kept small enough to gather measurements 
simultaneously as the measuring vehicle moves on a rough 
forest floor. Using our method, the robot or measuring vehi-
cle does not need to remain stationary during data collection 
as in the referred work (McDaniel et al. 2012, Henning, Rad-
tke 2006, Lalonde 2006). 

As the mapping is only done for the extracted features, the 
amount of mapped data is quite small. In comparison large 
point clouds are usually used to build a map in multidimen-
sional SLAM cases, for example in the 6D SLAM article by 
Nüchter et al. (2007). In our work there is no need to handle 
whole point cloud as only extracted features are used in the 
mapping process. This significantly reduces memory and 
processing requirements. 

2. MEASUREMENT SYSTEM AND ENVIRONMENT 

The measurement system consists of a Sick LMS221 laser 
scanner, inertial measurement unit (IMU), GPS and a self-
built 3D scanner. The 3D laser scanner was built by using 
two Sick LMS200 scanners, which were tilted 45° sideways 
on a rotating base (see Fig. 1). Alignment of the Honda all-
terrain vehicle was measured using a Microstrain Inertia-Link 
inertial measurement unit (IMU). A generic GPS-receiver 
from a Ponsse forest harvester was used to gain a global posi-
tion reference for the built map. Unfortunately GPS-receiver 
was not accurate enough to be used as a reference measure-
ment for accuracy of mapping. The self-built 3D laser scan-
ner system shown in Fig. 1 is rotated at approximately 30 
rpm. It thus takes about a second to gather a data set that cov-
ers the full field of view of 360° around the system.  

The Sick LMS221, which was mounted horizontally in front 
of the Honda all-terrain vehicle, is used to measure the pose 
change using the laser odometry method (Hyyti et al. 2009) 
and IMU. The estimated pose changes are compensated from 

the 3D point cloud so that the device can move while measur-
ing. 

The measurements were taken in a forest by Finnish Forest 
Research Institute, Metla. The forest was growing mainly 
sparse pine tree as seen in Fig. 1, but there were denser areas 
with pines, spruces and some deciduous trees around. The 
terrain around the measuring region was diverse, with flat 
and hilly regions. According to the Finnish Forest Research 
Institute, the four most significant tree species in Finland are 
Scots pine (Pinus sylvestris) 65.5%, Norway spruce (Picea 
abies) 23.7%, Downy birch (Betula pubescens) 6.1%, and 
Silver birch (Betula pendula) 2.7% (Metla 2007). 

3. MEASUREMENTS AND POSE COMPENSATION 

The data was collected using a self-built 3D scanner shown in 
Fig. 1. One laser scanner measurement consists of 181 range 
measurements i.e. returns at one degree resolution. This two-
dimensional measurement data i.e. scan line is transformed to 
three-dimensional global coordinates according to the meas-
ured rotation of the base. The scan line is then transformed 
using the pose change of the vehicle which is estimated using 
a combination of the laser odometry method (Hyyti et al. 
2009) and IMU. In the used method a horizontal laser scanner 
data set is correlated with a previous data set. The horizontal 
translations are calculated using the laser odometry method 
and the vertical translation is neglected as the map is built in 
2D using 3D features. The three-axis rotation is measured 
using the IMU. The drifting bias of a yaw angle is estimated 
in the SLAM-process using map and inertial information to-
gether. The whole sensor fusion and mapping process is 
documented in the Master’s Thesis by Hyyti (2009). 

To be able to recognize tree trunks and to model the ground 
using 3D measurements, a lot of scan lines have to be at-
tached together. This is done by buffering collected and 
transformed laser scanner returns in a measurement buffer. 
Old values in the buffer are translated and rotated using the 
estimated pose change of the vehicle. Then, new returns are 
added to the end of the buffer. The buffered point cloud is 
thus transformed according to the current pose of the vehicle. 
The buffer length is determined to half revolution of the 
scanner giving full coverage of the environment. All the re-
turns were indexed to ground, tree or other returns using 
ground detector (see Section 4) and tree trunk detector (see 
Section 5). This segmentation is done for a single scan line 
before adding the measurement into the buffer. 

Pose estimation errors accumulate in the measured 3D point 
cloud. The longer a 3D data set is taken, the more errors are 
cumulated to the data. Therefore, the buffer should be as 
short as possible to get an accurate point cloud. Still, there 
needs to be enough information about environment to detect 
ground and tree trunks. To get a full 360° data set around the 
scanner, a measurement of at least a second duration is 
needed. An example of a pose corrected and buffered point 
cloud is shown in Fig. 2. This data is used to search tree 
trunks and model the ground level. The buffer is essential for 
tree trunk search and modeling, because tree features have to 
be searched from a full point cloud to avoid erroneous detec-
tions or inaccurate tree location and diameter measurements. 



 
 

     

 

 
Fig. 2.  A set of 3D laser scanner measurements viewed from 

side. The measuring vehicle is plotted with a red cross. A 
terrain model is drawn instead of ground returns. 

Errors in the estimated pose change during a time of a second 
proved to be small compared to measuring errors mainly 
caused by inaccuracies in the angle measurements of the self-
built rotating base and inaccuracies in the data of Sick 
LMS200 laser scanner. The most reliable measurements were 
got near the measuring vehicle as there were angular errors in 
the point cloud. We are currently building a new prototype of 
the rotating 3D laser scanner to get more accurate measure-
ment for the rotating base and for the pose of the 3D scanner. 

4. TERRAIN MODELING 

In ground segmenting and terrain modeling phase, every laser 
scan line is first segmented for ground returns. Both of the 
scanners are fixed to the rotating base in 45 degree angle and 
thus every individual scan line contains a part of returns from 
the ground and other part from obstacles upper. The ground is 
usually seen as linearly arranged points in the scan plane at 
least when the ground or measuring vehicle are a lot less than 
45 degrees inclined. The vehicle or forest harvesters can not 
move in such a deep slopes, so it can safely be assumed that 
slope of the terrain and vehicle inclination are lot less than 45 
degrees.  

The ground level is found from a single laser scan by itera-
tively fitting a line to the measured returns at the lower part 
of the data (on the left side in Fig. 3). Returns that are near 
the fitted line or on the left side of the line are marked as 
ground returns. The algorithm assumes that the ground is not 
seen through and is nearly linear. The position of the fitted 
ground line is initially selected to be parallel to y-axis and go 
trough the leftmost returns in the selected window that is 
shown in the right part of Fig. 3. Then the returns that are 
near enough the fitted line are selected as ground returns to 
where the line is refitted. This process is iterated a few times 
using decreasing margins to get a sufficiently reliable esti-
mate of the ground returns.  

The quality of the fitted line is estimated as the amount of 
ground returns (orange points in Fig. 3). Because ground re-
turns are fitted to points with only small distance to line, 
there are enough returns only when there is a flat area. If the 
number of ground returns is smaller than adjusted limit, the 
ground fitting is assumed to be incorrect and no ground re-

turns are found from the current scan. Other line fitting meth-
ods, for example iterative closest point (ICP) should work as 
well, but the heuristic method with only a few iterations was 
used to save computation time. 
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Fig. 3.  Ground return detection for single scan data. The red 

line is the resulting fitted line to orange points represent-
ing detected ground returns.  

All data in the data buffer is segmented according to their 
detection in different detectors. There is a lot more ground 
returns returned from nearer the measuring vehicle than from 
further away. The distribution of ground returns is flattened 
by randomly dropping nearer returns out using empirically 
fitted probability function of detected ground returns as a 
function of range (Hyyti 2009). The size of the point cloud is 
reduced to satisfy memory and processing time requirements. 
The filter leaves enough equally distributed ground returns to 
the ground buffer so that the terrain model can be efficiently 
fitted to the remaining point cloud. 

The terrain model is generated from the remaining equally 
distributed ground returns in the buffer. These points are fit-
ted in 1m grid, where the height is estimated by the median of 
the points around every grid cell. 1m grid is used, because it 
is accurate enough to be used in the remaining tree modeling 
to remove the effect of differences in ground height and it 
still hided small variations in the ground and it was robust 
against errors in the segmentation of ground returns. The 
ground returns after the statistical drop out process and the 
terrain model are depicted in Fig. 4. In the figure the terrain 
model is colored by the height of the model. 

 
Fig 4.  The terrain model using 1m grid with ground returns. 

The measuring vehicle is located at a red cross. 



 
 

     

 

5.  TREE TRUNK SEARCH AND MODELING 

The search for trees is done partly from individual laser scans 
and partly from the buffered measurement set in 3D. Other-
than-ground returns are segmented using a tree edge detector. 
It is used to label the returns to left and right edges of tree 
trunks, tree returns in the middle and other returns. The edge 
detection is done in the 45° tilted 2D scanner coordinates 
using only data of a single scan line. As tree trunks are nearly 
vertical and a scan is 45° orientated, the tree is seen approxi-
mately in 45° angle. The used detector is a process that 
searches for large differences between adjacent scanned an-
gles and detects left and right edges of a tree trunk, as well as 
the tree returns between the detected edges. Similar detectors 
are used in many 2D mapping cases by many authors 
(Guivant, Nebot 2001, Jutila, Kannas & Visala 2007, Bailey, 
Nebot 2001).  

In previous work (McDaniel et al. 2012, Lalonde 2006, Hen-
ning, Radtke 2006, Aschoff, Thies & Spiecker 2004), the tree 
search is done by grouping and segmenting laser scanner 
returns in 3D coordinates. In contrast, in our work, the com-
plex tree search and point cloud grouping operations are sim-
plified by first detecting both tree edges and the tree returns 
between them to remove other noisy measurements from 
point cloud. In addition, the detected ground returns are left 
out of the trunk detection process. 

Tree trunks are searched from the point cloud by selecting 
only labeled tree edge and tree returns. A 2D histogram is 
fitted to this 3D point cloud using a bin width of 0.2m in both 
x and y directions. The trunks are supposed to be nearly ver-
tical so they should be seen as local maximums in the 2D 
histogram. The bin width was selected to be so small (0.2m) 
that no two different trunks can be fitted inside the same bin. 
The number of returns inside one histogram bin is highly 
biased by the measuring range. To separate non-tree meas-
urements from the real trees, a threshold value is used to clas-
sify histogram bins as trees (or non-trees). 

The threshold is determined using a model of a stereotypic 
tree trunk as a function of the measuring range. For simplicity 
in the model, the number of returns is assumed to be equal at 
every steradian in the FOV of the 3D scanner. A solid angle, 
in which the model trunk is seen, is estimated as a function of 
measuring range. The model is depicted in Fig. 5 from side 
on left side and from top on the right side of the figure. 

The visible height of a tree trunk depends on the measuring 
range. If the tree is far enough, the height is cropped to 10 
meters (Zmax in Fig. 5). The tree modeling is only done from 
ground to 10m height and it was therefore reasonable to drop 
out returns higher than 10m from ground. At the first region 
(yellow) in Fig. 5, only the field of view of the 3D scanner is 
limiting the number of returns from the model trunk. At the 
second region (green) the ground is also limiting measure-
ments, and at the third one (cyan) also the upper limit of Zmax 
limits the number of possible returns. Different regions are 
depicted in Fig. 5. 
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Fig. 5.  Estimation of the number of points returned from a 

single tree trunk. The trunk model is viewed from side 
and top. At the region 1 (yellow) the FOV is not re-
stricted, at region 2 (green) the FOV is limited by ground 
and at region 3 (cyan) Zmax limits the FOV. 

The mathematical model is presented in Equation (1), where 
Ω is a solid angle, φ is a polar angle, θ is an azimuthal angle, 
r is the tree range, and d is a diameter of the model trunk. 
Ranges Z0 and Zmax are the limiting constants depending on 
the sensor assembly and the used data. The 45° angle shown 
in Fig. 5 or in Equation (1) is a parameter caused by the con-
struction of the laser scanner. The visible solid angle of the 
model tree trunk is thereby: 
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The number of returns in a histogram bin and the modeled 
limit is shown in Fig. 6. The calculated threshold model is 
used in Fig. 7 to suppress returns from bushes and other 
smaller-than-tree objects. The same trunks that are shown in 
Fig. 6 are shown in the 2D histogram in Fig. 7. The plus sign 
at the centre of the image is the current location of the meas-
urement system. As it can be seen in the 2D histogram, only 
densely packed groups are detected as tree trunks. 
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Fig. 6.  Trunk detections as a function of the measuring range 

together with the threshold function. Red lines are trunk 
candidates and the green circles are accepted tree trunk 
locations. The range is measured from the origin in Fig. 7. 
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Fig. 7.  A part of the 2D histogram. The red points are tree 

trunk candidates and the green circles are accepted tree 
trunk locations. A red plus is the origin where the range in 
Fig. 6 is measured. 

The approximate trunk locations (green circles in Fig. 7) are 
found from the 2D histogram using a local maximum around 
every candidate (red dots) which exceeded the modeled 
threshold function (black curve). Measurements nearer each 
other than 1m are supposed to belong to the same trunk. This 
allows only the largest histogram bin around a same trunk 
(green circles in Fig. 7) to be used in the tree trunk modeling 
phase. 

Tree trunk modeling is done for every tree candidate from the 
previous 2D histogram. All measurements in the buffer ex-
cept ground returns around a tree candidate are taken and a 
3D line is iteratively fitted to the data set discarding the fur-
thest points out as outliers (see Fig. 8). Line fitting is used for 
approximately finding the orientation and location of the tree 
trunk. The amount of outliers is approximated with a distance 
histogram to the fitted line (Hyyti 2009). The first small 
enough histogram distance is detected as first location where 
trunk returns end and most of returns are from foliage or 
branches. There are often quite large amount of outliers in the 
data, but distance histogram can usually classify trunk meas-
urements from foliage. In Fig. 8 the red line is the fitted line 
and black dots are the accepted measurements using the dis-
tance histogram. Magenta dots are detected as outliers. 

 
Fig. 8.  Data filtering, reorientation and tree trunk modeling. 

The black dots are accepted measurements where the red 
circles are fitted. Magenta dots are detected as outliers. 

The line fitting is done using least squares line fitting tech-
nique (Weisstein 2012) for xz- and yz-planes separately. The 
error in the fitting procedure is calculated against z-axis, be-
cause tree trunks are usually aligned vertically. The fitted line 
and the found outliers are shown in Fig. 8a. In the second 
phase, the segmented data is reoriented according to the fitted 
line as shown in Fig. 8b. Next the reoriented data is split into 
a ten overlapping data sets at every height from 1 to 10m on 
top of each other. The data regions overlap by half a meter in 
both directions as the circle fitting phase needs as much data 
as possible. 

At every height where there are enough data points to fit a 
circle, a closed form circle fitting procedure presented by Ian 
Coope (1993) is used to fit circle to measurements. It is used 
iteratively to minimize the effect of outliers. Fig. 9 shows one 
iteration step. The dashed circle is an initial fitted circle. The 
orange area around it is a safe region. Width of the safe re-
gion is the variance of the distances from measurements to 
the fitted circle. One standard deviation is used to detect out-
liers from the circle fitting process. The fitted circle without 
detected outliers is shown in Fig. 9 with solid red line. Found 
outliers are marked with magenta dots in the figure. 
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Fig. 9.  The iterative circle fitting method. Magenta dots are 

outliers and brown dots are accepted measurements at 
first iteration. The red circle is the refitted model. 

The iteration of the algorithm was done three times to get a 
sufficiently accurate estimate of the circle. The number of 
needed iterations was determined empirically and after three 
iterations there were usually no outliers left in the fitted data. 
The location and the radius of the found circle are used as a 
circle feature in the mapping process. For example in the Fig. 
8b there are six successfully fitted circle features on top of 
each other. If any of these steps failed in the feature extrac-
tion, the circle feature was not used. If the detection of all 
circle features on the same tree trunk failed, the whole tree 
was not found in the fitting process. Therefore the map, 
which is mainly used to locate and measure tree trunks, can 
not be directly used in navigation or obstacle detection. In-
stead, the 2D histogram data (Fig. 7), which was used in the 
tree search, could be used in the navigation process to deter-
mine if there are obstacles on the way. 



 
 

     

 

6. RESULTS 

The tree search and modeling was done for the buffered 3D 
point cloud once per second. Fig. 10 presents the tree search 
process in practice. Detected locations are drawn using a red 
circle under each found tree trunk location at ground level. 
All returns from the left and right edges using the tree detec-
tor are drawn in Fig. 10 using orange and black colored dots. 
Only the edge returns are plotted in Fig. 10 to reduce the 
amount of visible data and to demonstrate the quality of the 
low level data segmentation done using a single scan line. 
The figure shows that nearly all trees are found using the 
presented histogram tree search method. The method did not 
find any false trees, but some of the trees were not found in 
all iterations. Thus the extracted tree trunk features are quite 
reliable and can be used with mapping algorithms.  

 
Fig. 10.  The found tree trunks using 2D histogram method. 

The estimated tree trunk locations are plotted at the 
ground level using red circles. Segmented returns from 
right edges are drawn using orange and left edges using 
black colored dots.  

Diameters of the tree trunks at different heights are estimated 
using the circle fitting algorithm. When the range is smaller 
than 8m, nearly all diameters are measured with smaller error 
than 20mm in radius (40mm in diameter). All measured radii 
(half of the diameter) are shown in Fig. 11 as a function of 
measuring range with the average and the standard deviations 
of the data. The figure is generated from all mapped circle 
features by using estimated feature as a reference. The me-
dian circle radius is reduced from all estimates at every tree 
height separately. Unfortunately, there were not accurate 
enough reference data available from the real locations or 
parameters of tree trunks. The reference measurement for tree 
diameter was measured using horizontal laser scanner meas-
uring at an angular resolution of 0.25° and a tree diameter 
estimation method by Jutila, Kannas & Visala (2007).  The 
reference has small uncertainty, which is plotted to Fig. 12 
together with measurements of tree radii from the same tree 
(number 15 in Fig. 13 at the end of a driven path). The refer-
ence and measurements using 3D scanner are taken approxi-
mately around the same height between 1 and 2 meters. The 
result shows that there is an underestimate of approximately 
2cm in the radii (4cm in diameter) estimate of 3D scanner 
compared to the reference measurement.  

The measurements shown in Fig. 11 are nearly normally dis-
tributed except for some erroneous measurements from 
ranges larger than 8m. The angular resolution of the scanner 
limits the measurement accuracy at larger ranges. At long 
range, there are only a few adjacent returns for the same tree 
trunk. While this limitation is taken into account in the map-
ping, the accuracy of trunk measurements can be increased 
by giving more value for measurements taken with sorter 
ranges. 
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Fig. 11.  Difference of radius compared to the median esti-

mate for all circle features in the forest map as a function 
of the measuring range. Most of the data has small varia-
tions but there are some erroneous measurements with 
large radii at ranges larger than 8m. 
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Fig. 12.  Measured tree radii for a single tree at the average 

height of 1 to 2m with reference measurement acquired 
using horizontal laser scanner. There is nearly 2cm differ-
ence between reference measurement and the estimated 
tree radius. The estimate for trunk radius is computed us-
ing median of the data over all ranges. 

Fig. 13 presents a 3D map of a small data set in the forest, as 
one tree (number 15) is approached and then vehicle is re-
versed back to the starting location. In the map, each tree 
trunk is modeled using at maximum ten circles on top of each 
other. Trunks in the map are plotted as a center line in the 
middle of circle features plotted with red color. The map is 
generated using medians of all of the gathered circle features 
at every height. Only those parts of trees are mapped that 
have had enough returns in the circle fitting process to mini-
mize the amount of outliers. The map is generated using the 
mapping method by Hyyti (2009). 
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Fig. 13.  A map of a small data set of a drive to tree 15 and 

back. Tree diameter measurements at different heights are 
plotted with red circles around a centre line of a tree 
drawn with black line. Green line shows the driven path. 

7. DISCUSSION 

The methods in this paper allow tree trunks to be used as fea-
tures to map and measure forest environment. Most of the 
errors and inaccuracies in the current version of the work are 
caused by the inaccurate 3D point cloud measurement. Some 
errors are caused by the movement while measuring. The 
measuring system works in the forest, where there are pillar 
like pine trees with only a few low branches and under-
growth. The method has to be developed further in order to 
use it in denser spruce forest or with younger pine trees with 
more branches or with denser undergrowth. 

The terrain modeling method by fitting a line to single scan 
lines works best when there are only a little undergrowth as 
usually in Finnish pine forest shown in Fig 1. If there are 
large differences in the ground or large amount of vegetation 
or foliage, the ground detector might not found the assumed 
linear ground level. We had only data from the forests that 
had only a little undergrowth and the behavior of the terrain 
detector could not be tested with undergrowth.  

Medians of data were used as an estimate for ground level 
and circle features in the mapping because it is easily com-
putable robust measure of the data. The median was in prac-
tice more robust against outliers than average of the data. 
More complex estimates were not used because the median 
was giving nearly similar values as the average of the data 
without outliers. The accuracy of terrain model was not as 
important as the accuracy of the tree trunk measurements, 
because terrain model was only used to set reference height 
for tree diameter measurements. 

It is quite challenging to get good reference measurement 
from the forest to test the tree trunk detection and measure-
ment algorithms. Highly accurate RTK-GPS won’t work suf-
ficiently under the tree canopy at the northern regions as the 
satellites are seen near the horizon behind the tree canopy and 

all the foliage. The trees are traditionally measured by hand 
using a diameter at breast height and that information is diffi-
cult to combine to measurements of tree profile at different 
heights. In addition, it is laborious to take reference meas-
urements from the whole forest including all tree trunks with 
an accurate location and diameter measurements at different 
heights. We are planning to make an accurate 3D model of a 
forest by using Riegl 3D scanner and stitching the data to-
gether to get reference model of the forest to compare the 
accuracy of our algorithms. 

Similarly we are building a new version of the rotating 3D 
laser scanner to have more accurate measurements from the 
forest. The measurements are more difficult to gather while 
moving, but when building a measurement system for forest 
harvester, it should be possible to measure while moving. If 
the system would require stationary measuring, it would re-
duce the working efficiency of the forest harvester. All of the 
algorithms and methods used in this paper are designed for 
continuous operation and that the high amount of measure-
ment data can be compressed to the mapped features in real 
time.  

8. CONCLUSIONS 

The paper presents a robust method to extract tree trunks 
from a noisy 3D point cloud. The geometry of the self-built 
3D scanner is used as an advantage in the tree trunk and 
ground detection. The first data segmentation is done for sin-
gle scan lines. Returns from adjacent angles are used to detect 
the edges of tree trunks. Because of the 45° angle, the ground 
and different trees can be detected and segmented from a 
single laser scan using presented methods. 

The point cloud data can be buffered and updated in a way 
that the pose changes, which are accumulated during taking a 
whole 3D scan, are compensated out from the final 3D point 
cloud. After the pose compensation, the terrain model and 
separate trees can be searched and modeled from the 3D 
point cloud using the presented 2D histogram method. The 
buffered point cloud needs to be collected at least for one 
second to get 3D measurements equally from every direction 
around the vehicle.  

In our work, the system is used on a platform that moves 
while the 3D scanner is measuring. The measuring and mod-
eling is more challenging as the measuring vehicle is moving. 
By using inertial measurements and a laser odometry method 
designed for forest environment to track pose changes during 
the one second time interval, it is possible to compensate the 
movement from the 3D point cloud.  

The terrain model is used as a reference level for feature ex-
traction and tree trunk modeling. The features can therefore 
be mapped using a 2D map instead of a more complex 3D 
map. The idea of using highly refined features in a SLAM 
process is the key to reduce the calculation complexity and 
simultaneously acquire trunk diameter measurements at dif-
ferent heights in a forest. 
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