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Sway Estimation using Inertial
Measurement Units for Cranes with a

Rotating Tool

Jouko Kalmari ∗ Heikki Hyyti ∗ Arto Visala ∗

∗Department of Automation and Systems Technology,Aalto University,
P.O. Box 15500, 00076 Aalto, Finland (e-mail:jouko.kalmari@aalto.fi,

heikki.hyyti@aalto.fi, arto.visala@aalto.fi).

Abstract: Cranes have often a freely hanging load or tool that starts easily swaying. Anti-sway
control requires that the angles and angular velocities of the swinging object are measured.
Some cranes can also rotate the tool with a hydraulic motor, and in many cases this rotator
angle should also be known. Instrumenting all three axes, two swaying and one rotating axis,
with traditional rotary encoders can be challenging. We propose an extended Kalman filter
based system using two inertial measurement units. This system can measure the swaying in
both directions and estimate the rotator angle. Computer vision system is used as reference.
The initial results show that the error is approximately 5 degrees in the rotator angle and 2
degrees in the sway angles. The observer runs at 100 Hz on an embedded microcontroller.

Keywords: Extended Kalman filters, inertial measurement units, observers, gyroscopes,
accelerometers, sensor fusion

1. INTRODUCTION

Forest machines are complex and highly effective machines
used to harvest and collect trees from forests. They are also
used in other forestry tasks, such as planting and cleaning.
These machines are nowadays manually operated and
require skilled labor. In order to alleviate the workload,
it is necessary to automate some of the work. Easy tasks
have already been automated, but boom control in the
forest machine is still in practice manually operated. There
is therefore a need for an automatically controlled boom in
forestry. However, the task is challenging, and for example
Billingsley et al. (2008) state that forestry is a demanding
area for robotics.

To automatically control a forest machine, the hydraulic
boom and the tool have to be instrumented. The hydraulic
boom is usually instrumented using linear position sensors
or rotation encoders. The three-axis rotation of the tool
relative to the boom is more complicated as the tool is
freely hanging from the tip of the boom with a shackle and
a rotator (see Fig. 1). It is challenging to instrument the
shackle and the rotator angles because the tool is often in
contact with different obstacles. All instrumentation has to
be covered with a sturdy metal casing. This is impractical
for the freely hanging shackle and for the hydraulically
controlled rotator which can rotate multiple rounds around
its axis. Installing joint sensors is challenging due to the
mechanical structure of the shackle and the rotator.

In forest machines, the hydraulic rotator turns the tool
attached to the boom. The value of the rotator angle
is required in certain tasks. For example, we installed
a video camera on the tool for observing tree seedlings
from above. The exact camera pose was needed to use
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Fig. 1. The platform and instrumentation.

the extracted information. The three angles of the shackle
and the rotator are required in many similar cases in which
automation is introduced to machines that have a boom
and a freely hanging tool attached.

In our research platform, we have a point cleaning machine
attached to a hydraulic boom that we want to control
automatically. The point cleaning machine is used in the
weeding of young tree plants. The point cleaning machine
and instrumentation are depicted in Fig. 1. The tool starts
to sway when the boom is moved, but human operators
are quite good at damping the swaying. To achieve good



results in automatic boom control, an anti-sway control is
needed. Therefore, the swaying needs to be measured or
estimated.

To ease the angle estimation and the implementation
of the anti-sway control, the shackle angles are defined
to be zeros when the tool is stationary. We want to
measure angles in respect to the direction of gravity,
not to the actual joint angles. The direction of gravity
is estimated separately and the actual joint angles can
be calculated from the combined results. In addition,
estimates of angular velocities are required to attain a good
feedback control.

There are different approaches for measuring the swaying.
For example, Schaper et al. (2011) have proposed a system
to measure the load position of harbor cranes using gyro-
scopes attached to the ropes. However, Singer et al. (1997)
state that the measurement of the swaying is not required
when input shaping is used. Input shaping is used as open
loop control to damp the swaying for example on a gantry
crane.

There are many approaches to tracking a rigid object using
computer vision (Lepetit and Fua, 2005). For example,
fiducial markers can be attached to the object or natural
features, such as the edges or texture of the object can be
used. Kawai et al. (2008) have used an image sensor to
track the position of the container relative to a container
crane. They use a camera pointing downwards and two
landmarks attached to the spreader of the crane. The
system is used only to measure only the position of the
spreader.

Instead of using conventional sensors or computer vision
to measure tool orientation, we use two identical inertial
measurement units (IMUs). One of the units is attached
to the tip of the boom and the other is attached to the
tool. We use an extended Kalman filter (EKF) to estimate
the angles that we are interested in.

2. METHODS

Our system (see Fig. 1) consists of a tool that is attached
to a boom with a shackle and a rotator. The shackle allows
the tool to sway forward and backward and left to right,
and the rotator is utilized for turning the attachment.

We are using measurements from two IMUs to estimate
the motion of the tool. The first IMU is installed into the
tip of the boom and second on the tool itself. The second
IMU needs to be installed after the rotator because we also
want to measure the rotator angle. Our goal is to represent
how the motion of the tip affects the motion of the tool.
After we know the dynamics, we can create the Kalman
filter for the estimation of the shackle and rotator angles.
This observer will also estimate corresponding angular
velocities.

The underlying assumption is that by comparing the
accelerations and angular velocities of the tip of the boom
and the angular velocities of the tool, we can estimate the
pose and motion of the tool. We will also assume that the
system dynamics resembles that of a pendulum with two
axes and that there is some friction damping the swaying.
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Fig. 2. Kinematic model of the system.

We are assuming that there are no external forces except
gravity.

2.1 Hardware

We use two identical self-built IMUs, both of which have
three-axis gyroscopes and accelerometers. Our IMUs have
ADXL345 three-axis digital accelerometer and ITG-3200
three-axis digital gyroscope chips (Analog Devices (2011)
and InvenSense (2010)). Both of the sensors are connected
to a fast mode I2C interface, which operates at 400 kHz
frequency. This sensor setup is used to calculate inertial
measurements from the tool and from the boom tip. Both
sensor setups are connected using separate I2C interfaces
to an embedded microcontroller board (ARM Limited
(2012)), where the EKF is computed at 100 Hz frequency.
The estimated angles and angular velocities are finally sent
to the computer controlling the boom via CAN bus.

The EKF uses angular velocities measured by the gyro-
scopes and accelerations measured by the accelerometers.
All measurements contain gain and bias that correlates
with the temperature. We performed a calibration of the
gyroscope biases to remove the angular drift, which is
caused by the integration of biased angular velocities. A
small bias remained after the temperature compensation
and calibration. The remaining small biases were removed
using a bias estimator, which removed long term average
from the angular velocities to minimize the drift.

IMUs were self-built because measurements from both
inertial measurement units had to be combined in the
EKF in real time and we need the raw angular velocity
and acceleration data at high frequency. In addition, our
solution is a lot more inexpensive than the solution using
two commercial three-axis inertial measurement units. The
downside was that the calibration was tricky and time
consuming.



2.2 Kinematic description

The position and the alignment of the boom tip and the
tool is presented using in total seven variables. Fig. 2 shows
the basic kinematic model.

The position of the tip of the boom in respect to the world
coordinate system is defined by xb,yb and zb. The position
of the tip of the boom is not measured directly. Instead, the
accelerations of the boom tip are used. The tip is rotated
by θ around the z-axis compared to the world coordinates.
This new frame, called boom tip coordinate system, has
z-axis pointing up, y-axis is pointing forward, and x-axis
to the right.

The position of the tool relative to the boom tip is
presented with three parameters α, β and γ. Rotations
occur in the following order: α around x-axis, β around y-
axis, and γ around z-axis (see Fig. 2). If both α and β are
zero, the z-axis of tool is perpendicular to the world z-axis
(i.e. the direction of gravity). Position of the mass center
of the tool, or the tool position, relative to the boom tip
is 

xtb = −l2 sin (β)

ytb = l3 sin (α)

ztb = −l3 cos (α)

, (1)

where l1is the distance between first and second shackle
axis, l2 is the distance of the second axis and center of
mass of the tool, and l3 is:

l3 = l1 + l2 cos (β) . (2)

Position of the tool in the world coordinates can be
calculated using boom tip position xb,yb,zb and angle θ:


xt = xb + xtb cos (θ)− ytb sin (θ)

yt = yb + xtb sin (θ) + ytb cos (θ)

zt = zb + ztb

. (3)

The relation between the measured accelerations in boom
tip coordinate system (ẍm,ÿm and z̈m) and the accelera-
tion of the tip in the world coordinate is following:


ẍb = ẍm cos (θ)− ÿm sin (θ)

ÿb = ẍm sin (θ) + ÿm cos (θ)

z̈b = z̈m

. (4)

The actual IMU will not always have z-axis pointing
upwards. This challenge is easily corrected using a simple
filter. The filter estimates the direction of the gravity using
accelerometers and gyroscopes and gives the boom tip
accelerations in the corrected coordinates.

2.3 Dynamics

Lagrangian dynamic formulation is utilized to solve the
dynamic equations of the system. Lagrangian is the dif-
ference of kinetic and potential energy of a mechanical
system:

L = T − V. (5)

Any given joint torque τi of the system can be calculated
using the Lagrangian:

τi =
d

dt

∂L

∂θ̇i
− ∂L

∂θi
. (6)

The Lagrangian formulation is used for example when
dynamics of a robot manipulator is constructed (e.g Craig,
2005, p. 182).

In order to use the Lagrangian formulation, the kinetic and
potential energy of the system is calculated. All the mass
of the system is assumed to be in one point and therefore
it has no rotational inertia. If the inertial tensor of the
system was taken account, the complexity of the dynamic
equations would increase significantly. In our case, the
angular velocities are low and we assume the rotational
inertia to be insignificant.

To specify the kinetic energy of the system, the velocity
of the mass in x-, y- and z-directions are calculated. The
velocities are calculated by differentiating equation (3) in
respect to time.

The kinetic energy of swinging mass is:

T =
1

2
mv2 =

1

2
m
(
ẋ2t + ẏ2t + ż2t

)
= 0.5m(ẋb + l2 sin (β) sin (θ) θ̇
−l3 cos (α) sin (θ) α̇

−l3 sin (α) cos (θ) θ̇

−l2 cos (β) cos (θ) β̇

+l2 sin (α) sin (β) sin (θ) β̇)2

+0.5m(ẏb − l2 sin (β) cos (θ) θ̇
+l3 cos (α) cos (θ) α̇

−l3 sin (α) sin (θ) θ̇

−l2 cos (β) sin (θ) β̇

−l2 sin (α) sin (β) cos (θ) β̇)2

+0.5m(żb + l3 sin (α))α̇

+l2 cos (α) sin (β) β̇)2

(7)

Potential energy of the system is dependent only of the
distance of the mass in z-direction to an arbitrary reference
height. From the definition of potential energy and (1) and
(3) we get

V = mgh = mg (zb − l3 cos (α)) . (8)

Now the Lagrangian (6) is used to solve the torques
affecting the joints. The acceleration are also substituted
with (4).

τα = ml3( l3α̈
+ cos (α) ÿm + sin (α) (z̈m + g)

−2l2 sin (β) α̇β̇

−l2 cos (α) sin (β) θ̈

−l3 sin (α) cos (α) θ̇2

−2l2 cos (α) cos (β) β̇θ̇)

(9)

and



τβ = ml2( l2β̈
− cos (β) ẍm − sin (α) sin (β) ÿm
+ cos (α) sin (β) (z̈m + g)
+l3 sin (β) α̇2

+ sin (α) (l1 cos (β) + l2)θ̈

+ sin (β)
(
l1 − l3 cos (α)

2
)
θ̇2

+2l3 cos (α) cos (β) α̇θ̇)

. (10)

Dynamic model can be constructed by solving the angular
accelerations α̈ and β̈ from equations (9) and (10). In
addition to gravitation and forces that move the tool, there
are forces that damp the swaying, for example friction
in the joints and drag. In fact, the second joint of the
shackle assembly in our test setup is equipped with a
brake preventing excess swinging. There are many models
developed to describe friction (see for example Olsson
et al. (1998)). We are using the viscous friction model
where the force, or in our case the torque, is proportional
to the angular velocity. This model does not represent
accurately the real friction, but is simple to use and
requires identification of only one parameter per joint.
As the mass of the tool is assumed to be constant, it is
separated from the friction parameters bα and bβ . Now
the torques that damp the swaying can be expressed as:

{
τα = −bαmα̇
τβ = −bβmβ̇

. (11)

2.4 Extended Kalman Filter

Extended Kalman filter (EKF) is used as the actual
observer. The usage of the EKF requires that inputs u,
states x and measurements y are selected. The EKF is
based on the dynamic model of a system presented in the
following way:

x(k + 1) = f [x(k),u(k)]
y(k) = h [x(k),u(k)]

(12)

Note the inclusion of controls in the measurement function
h [x(k),u(k)].

The dynamic model constructed from equations (9), (10)
and (11) is in continuous time. The discrete equivalents for
these equations are determined using the Euler approxima-
tion. The discretization step is chosen to be ∆t = 0.01s. As
a consequence, the main loop of our filter will be running
100 Hz in the embedded controller.

As our primary goal is to measure the shackle angles α
and β, and rotator angle γ, these are natural choices for
states. As the dynamic equations are of second degree the
angular velocities α̇ and β̇ are also required in the state
vector. The state vector is:

x =
[
α β γ α̇ β̇

]T
(13)

Some of the actual measurements of a system can be
introduced as inputs or controls to the system, not used
as measurements. Our goal is to keep the state vector and
matrix sizes as small as possible. Thus, the measurements
that are in the dynamic equations will be chosen as

inputs. These inputs are the accelerations, the angular
velocity and angular acceleration of the boom tip. Also,
the measured tool rotation around z-axis is chosen as an
input to the system. The control vector is:

u =
[
ẍm ÿm z̈m θ̇m θ̈m γ̇m

]T
(14)

The angular velocities α̇ and β̇ can not be measured
directly as the second IMU is attached to the tool turned
by the rotator. The angular velocities measured by the
second IMU are called ωx, ωy and ωz. These angular
velocities can be presented as a function of the angles
and angular velocities of the system using the following
relations:


ωx = ω1 cos (γ) + ω2 sin (γ)

ωy = −ω1 sin (γ) + ω2 cos (γ)

ωz = γ̇m = γ̇ + sin (β) α̇+ cos (α) cos (β) θ̇

, (15)

where unrotated angular velocities of the tool, ω1 and ω2,
are calculated using:

{
ω1 = cos (β) α̇− cos (α) sin (β) θ̇

ω2 = β̇ + sin (α) θ̇
. (16)

The first two lines in the equation (15) are used as the
measurement in the extended Kalman filter. The third line
is incorporated into the state model of the filter.

Now the state model, f [x(k),u(k)], used in the Kalman
filter is:



x
∗

1 = x1 + ∆tx4
x

∗

2 = x2 + ∆tx5
x

∗

3 = x3 + ∆t (u6 − sin (x2)x4 − cos (x1) cos (x2)u4)

x
∗

4 = x4 + ∆t(−bα/l23x4 + sin (x1) cos (x1)u24
+(− cos (x1)u2 − sin (x1) (u3 + g)

+2l2 sin (x2)x4x5 + l2 cos (x1) sin (x2)u5
+2l2 cos (x1) cos (x2)x5u4)/l3)

x
∗

5 = x5 + ∆t(−bβ/l22x5 + (cos (x2)u1
+ sin (x1) sin (x2)u2 − cos (x1) sin (x2) (u3 + g)

−l3 sin (x2)x24 − sin (x1) (l1 cos (x2) + l2)u5
− sin (x2) (l1 − l3(cos (x1))2)u24
−2l3 cos (x1) cos (x2)x4u4)/l2)

,

(17)

where l3 = l1 + l2 cos (x2) .

The measurement model h [x(k),u(k)] is:


y1 = (cos (x2)x4 − cos (x1) sin (x2)u4) cos (x3)

+ (x5 + sin (x1)u4) sin (x3)

y2 = − (cos (x2)x4 − cos (x1) sin (x2)u4) sin (x3)

+ (x5 + sin (x1)u4) cos (x3)

.

(18)

The time indexing of the states and measurements are
left out from the (17) and (18) due to space restrictions.



Table 1. Parameters

Symbol Name Value
l1 distance of 1. and 2. axle 0.22 m
l2 distance of 2. axle and center of mass 2.09 m
bα 1. axle friction 0.5 1

s
bβ 2. axle friction 2.0 1

s

Instead, a notation is used where x
∗

n = xn (k + 1) and
xn = xn (k).

The covariance matrices needed in the estimation process
are calculated from the state and measurement functions
(17) and (18) with the Jacobians :

F (k) =
∂f (k)

∂x
|x=x̂(k|k)

H (k + 1) =
∂h (k + 1)

∂x
|x=x̂(k+1|k)

(19)

The parameters of the dynamic system are presented on
Table 1. Parameter l1is measured directly from the shackle.
Rest of these parameters were estimated from the data.
Kalman filter has two covariance matrices, W and V,
that describe the uncertainty of the state transitions and
the measurements. W and V were defined as diagonal
matrices. The diagonal of the W had values: [0.000001
0.000001 0.00001 0000.1 0000.1]. The diagonal of V was:
[0.01 0.01]. Greater values were given to states that were
affected by the noise of the sensors.

3. RESULTS

The tests with reference measurement setup were done
indoors. There were a few different tests, only one of which
is presented in this chapter. The boom was moved left,
right, up and down. The point cleaning machine, which
was used as the swaying tool, was lowered to the ground
four times.

Reference data were collected using two computer vision
cameras having a frame rate of 17.4 frames per second.
297 images from one camera were selected as the basis for
the reference data. In each image a certain set of clearly
visible points were manually clicked and a model of the
point cleaning machine was fitted to the data. A single
frame of the reference image data is shown in Fig 3. We
estimate that the accuracy of the reference measurement
is less than 2◦.

The results presented here are calculated off-line in Matlab
using the IMU data collected in the tests. All the states
of the estimator had initial values set to zeros. The initial
state covariance matrix was a diagonal matrix with large
value on the rotator angle covariance, and lower value on
the other ones. This was due to the assumption that there
was large uncertainty in the rotator angle.

Fig. 4 shows the estimated rotator angle and the reference.
After the estimate has converged at around 70 seconds, the
difference between estimate and reference is around -6◦ to
5◦. If the transitions, where the tool rotates quickly, are
not taken into account, the error is from -5◦ to 3◦ after the
convergence. First two swaying happening at 21.5 - 43.6 s
and 55.8 - 70.3 s are highlighted.

Fig. 3. A single frame used in the reference measurement.
Manually selected markers are shown.
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Fig. 4. Estimated rotator angle and a reference.
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Fig. 5. Estimated shackle angles α and β with a reference.



Fig. 5 depicts the estimated shackle angles α and β. When
the estimated angles are compared to the reference, there
is often a difference of 1-2◦. However, the timing and
amplitude of the signals match very well. The swaying of
the tool is quite modest, the maximum amplitudes of the
estimated α- and β-angles are 9.0◦ and 14.8◦ respectively.

4. DISCUSSION

The estimated rotator angle in Fig. 4 shows that the results
are very promising. It is important to notice that if there
is no motion in the system, there is no new information
for the filter, and the rotator angle estimate starts to
drift. The amount of drifting depends on the quality of
the gyroscopic measurements. The actual swaying starts
at 21.5 seconds, but the rotator angle estimate starts to
converge to the correct value almost immediately after the
filtering was started. We suppose that this is due to the
small vibrations caused by the engine of the tractor. As
soon as the tool starts to sway, the estimate starts to
converge more rapidly. In our case, the accuracy of the
rotator angle estimate is more than sufficient, for example
to rotate the camera image shown to the driver.

Roughly speaking, the quality of the sway angle and
angular velocity estimates depends on the accuracy of the
rotator angle estimate. If the shackle angles and angular
velocities are used in feedback control, small errors in
the measurements should not be a problem. Fig. 5 shows
that the difference between the reference and the estimate
is on the same magnitude as accuracy of the reference
measurement.

At the end of the measurement, α and β estimates do
not converge to zero even though the boom has stopped
moving. When the boom is stationary, these angles should
go to zero. One possible explanation for this is the bias
error in the boom tip acceleration measurements.

There are some challenges in our approach. The dynamic
model for example has some drawbacks. The rotational
inertia is not taken into account. If the tool is rotated
when it is swaying, the gyroscopic forces turn the tool
in a way that our dynamic model does not capture. In
the future, a more complex model should be built and
the results compared. Also, the viscous friction model
utilized is quite simplistic and a more realistic one might
improve the results further. The basic assumption behind
our equations is that there are no external forces and
the tool moves like a two-dimensional pendulum. When
the tool for example hits the ground or is used to grab
something, these assumptions are not valid any longer.
The observer uses only the gyroscope measurements from
the IMU attached to the tool. One improvement would be
to incorporate the measured tool accelerations. However,
this would make the Kalman filter more complex and
computationally expensive.

The developed extended Kalman filter is somewhat com-
plex. There are many multiplications and additions re-
quired as the state model and the Jacobian matrices are
updated at each iteration. There is also the challenge of
determining good values for the filter covariance matrices.
It might be possible to implement a similar filter as a non-
linear observer, for example as a sliding mode observer.

This could simplify the estimation process and reduce the
possibility of programming errors while implementing the
filter on embedded hardware.

By using inertial measurements to estimate all rotation an-
gles between the tool and the boom, we can cost-effectively
and robustly instrument the tool. Inertial sensors tolerate
high accelerations and can be encased inside the tool to
endure mechanical stress better than conventional instru-
mentation would. In this paper we have shown that our
solution can be quite accurate, and that it can be used in
real time on an embedded measurement system.
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