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Abstract:

Low-density parity-check (LDPC) codes had a renaissance when they were rediscov-

ered in the 1990’s. Since then LDPC codes have been an important part of the �eld

of error-correcting codes, and have been shown to be able to approach the Shannon

capacity, the limit at which we can reliably transmit information over noisy channels.

Following this, many modern communications standards have adopted LDPC codes.

Error-correction is equally important in protecting data from corruption on a hard-

drive as it is in deep-space communications. It is most commonly used for example for

reliable wireless transmission of data to mobile devices. For practical purposes, both

encoding and decoding need to be of low complexity to achieve high throughput and

low power consumption.

This thesis provides a literature review of the current state-of-the-art in encoding

and decoding of LDPC codes. Message-passing decoders are still capable of achieving

the best error-correcting performance, while more recently considered bit-�ipping

decoders are providing a low-complexity alternative, albeit with some loss in error-

correcting performance. An implementation of a low-complexity stochastic bit-�ipping

decoder is also presented. It is implemented for Graphics Processing Units (GPUs) in a

parallel fashion, providing a peak throughput of 1.2 Gb/s, which is signi�cantly higher

than previous decoder implementations on GPUs. The error-correcting performance

of a range of decoders has also been tested, showing that the stochastic bit-�ipping

decoder provides relatively good error-correcting performance with low complexity.

Finally, a brief comparison of encoding complexities for two code ensembles is also

presented.

Keywords: bit-�ipping, coding theory, error-correcting codes, graphics pro-

cessing unit, linear time complexity, low-density parity-check

codes

Language: English
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Chapter 1

Introduction

The �eld of information theory was started by Shannon in 1948 with his “A mathe-

matical theory of communication” (Shannon, 1948). In it he presented the problem

of transmitting information reliably over noisy channels, together with an initial

solution on how to tackle the problem. Although there is a limit to how much

information we can transmit over a channel—the Shannon capacity—Shannon

also showed that we can come arbitrarily close to this limit using error-correcting
codes. Shannon’s work gave answers to a practical and common problem, and

error-correcting codes are today in use in practically every communications

scenario, from mobile networks to deep-space communications, in addition to

reliable storage.

The classical communications problem is the following: we have a string of

bits that we want to send from one place to another. The problem we are facing

is that when we send the bits, some amount of noise will be added along the way

and the receiving end will not receive what we originally sent. Error-correcting

codes attempt to solve this problem by encoding the given string of bits into a

longer string of bits, adding some form of redundancy to the bits that are sent.

The longer string of bits is then sent over the channel and, on the receiving end,

even with a certain amount of noise added to the bits, one can decode the sent bits

uniquely to the original bits. Figure 1.1 presents the situation graphically. The

problem is usually thought of as involving physical transmission of data from

one point to another. However, the problem applies equally well in a situation

where bits are not physically transferred at all. A hard-drive is one such example,

where errors will accumulate over time.

encoding noisy channel decoding

source bits decoded bits

Figure 1.1: Transmission over a noisy channel: given source bits are encoded before

transmission over a noisy channel; decoding of the encoded noisy bits attempts to recover

the source bits.
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Introduction

How could one start to approach the problem of making sure that the right

bits are received? Say that one would like to send the following string of 8 bits:

01001101.

We want to make sure that the receiver does not mistake the bits for any of the

other 2
8 − 1 possible bit strings of length 8 in the case that some of the bits are

�ipped along the way. One way of dealing with this is to send the following string

of bits instead:

000 111 000 000 111 111 000 111.

What we have done is replaced each bit by three occurrences of the same value.

After receiving the longer string of bits, but with possibly some bits �ipped, we

can then decide that we decode the received bits so that for each group of three

bits we set the value of that bit to the majority value. That is, if for example two

or three of the three bits in a group are ones, we decide that the group of three

bits represents a one. With this scheme one of the bits in each group of three bits

can be �ipped and we will still decode the correct string of bits.

The above scheme is called a repetition code which does not work well in

practice. It does, however, demonstrate the essence of error-correcting codes: to

allow us to recover from as many errors as possible, and to do so e�ciently. The

repetition code does the �rst if we repeat each bit enough times, but loses on e�-

ciency as we have to repeat each bit many times to achieve reliable transmission.

On the other hand, keeping the number of repetitions low and �xed maintains

e�ciency but we cannot recover from many errors. The codes considered in this

thesis, low-density parity-check codes, are one type of codes that can do both

tasks well.

Low-density parity-check codes were �rst introduced by Gallager (1962).

Despite the current knowledge of their good properties, the codes were largely

forgotten after their discovery until the 1990’s. The codes were rediscovered

independently by MacKay (1995), as well as Sipser and Spielman (1996). It was

quickly realized that the new codes were largely equivalent to the codes Gallager

�rst presented. Following the rediscovery there has been a considerable amount of

research into low-density parity-check codes. They have been shown to have good

error-correcting properties and have practical algorithms for both encoding and

decoding. Recently, the codes have also been included in standards for wireless

and wired communication, joining and in some cases replacing Turbo codes

(Berrou et al., 2005) which have, together with low-density parity-check codes,

been shown to be able to approach the Shannon capacity.

As the �eld of low-density parity-check codes has grown more mature since

their rediscovery there has been more focus on making the codes perform bet-

ter, as well as improving the algorithms used for encoding and decoding of the
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codes. For example, encoding can as of today not be done in linear time for

general low-density parity-check codes. On the decoding side, most decoders

are linear-time, but there is room for improvement in terms of the constants

involved in implementations. The need for faster practical encoders and, more

importantly, decoders is twofold. First, power consumption is an important factor

in mobile devices, and reducing the complexity of hardware implementations

can have a positive e�ect on the power consumption. Second, faster encoders

and decoders can allow improvements in a combination of throughput, latency

and error-correction. Linear-time encoders and decoders allow us to scale the

so-called block length of low-density parity-check codes, ultimately leading to

better error-correction. Most importantly, encoders and decoders with small con-

stants give practical improvements to error-correction, throughput and latency.

For this reason it is important to consider practical issues when implementing

encoding and decoding algorithms, and not only the theoretical properties of

the algorithms. With this in mind, we will in this thesis review the current state-

of-the-art in encoding and decoding of low-density parity-check codes together

with experimental results on encoding complexity and the error-correcting per-

formance of decoders. Most importantly, this thesis presents a low-complexity

decoder for GPUs.

We will begin with an overview of de�nitions relating to coding theory, de�ne

what low-density parity-check codes are, and look into various code constructions

in Chapter 2. Chapter 3 contains a summary of useful encoding methods, one

of which allows linear-time encoding for a limited but useful set of codes. A

majority of the research is focused the on decoding of low-density parity-check

codes. In Chapter 4 we review the advances in decoding algorithm designs,

which aim to reduce the complexity of the decoders to reach higher throughputs,

and to improve the error-correcting properties of the decoders. In Chapter 5

we present existing work on implementing decoders in hardware, where the

focus generally is to achieve high throughput. Partly, the aim of this thesis is

to provide a comprehensive overview of the current state-of-the-art in low-

density parity-check codes. However, the main contribution of this thesis is the

implementation of a simple decoder implemented for GPUs. The need for simpler

algorithm designs becomes apparent as decoders are implemented in hardware.

The implementation aims at achieving high decoding throughputs by using a

simple design which is easily parallelized. In Chapter 6 we will present some

experimental results concerning encoding complexity, compare �ve decoders in

terms of error-correcting performance, and present results on the performance

of the GPU implementation. We conclude the thesis in Chapter 7.
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Chapter 2

Error-correcting codes

In this chapter we set up the terminology and basic concepts concerning error-

correcting codes. In Section 2.1 we will present the basic concepts concerning

error-correcting codes in general and in Section 2.2 we present three noisy chan-

nels. In Section 2.3 we present low-density parity-check codes, some constructions

of low-density parity-check codes and the most important results relating to them.

By the end of this chapter we will have the prerequisites to consider encoding

and decoding of low-density parity-check codes in the following chapters.

2.1 Preliminaries

There are two main types of codes, of which the �rst adds redundancy to contin-

uous streams of data and the second does so to blocks of data. We will concern

ourselves with the second type of codes, block codes, as low-density parity-check

codes are of this second type. Block codes work with �nite blocks of data, encod-

ing each block of data into a longer block, and each block is independent from

each other. With this, we can de�ne a block code more formally, and since we

will only consider one type of block codes in this thesis we will refer to block

codes simply as codes. We will largely follow the notation and terminology of

Richardson and Urbanke (2008).

Definition 1 (Code)

Let F be a �nite �eld. A code C of block length n and cardinality M is a set
ofM ≥ 2 elements from Fn.

We call the elements of a code its codewords. In contrast, a word refers to a

vector which is part of Fn, but is not necessarily a codeword. We will denote

vectors, or words, from Fn by small bold letters, and the ith element of a vector x
by xi .
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Definition 2 (Linear code)

A linear code C is a code which satis�es

αx + α ′x′ ∈ C, ∀x,x′ ∈ C and ∀α ,α ′ ∈ F.

Low-density parity-check codes are linear codes. A direct consequence of

linearity is that the all-zero word is always a codeword. A second consequence

of the linearity of a code is that the error-correcting performance of the code is

independent of the sent codeword. Hence we usually assume that the all-zero

codeword was sent when examining decoding performance.

The weight of a vector and the distance between two vectors are useful

concepts for analyzing error-correcting codes in terms of the minimum distance
of a code.

Definition 3 (Weight of a vector and distance between two vectors)

The weight of a vector x, denoted by w (x), is the number of nonzero entries in
x. The distance between two vectors x and x′ is d (x,x′) = w (x − x′).

Definition 4 (Minimum distance of a code)

The minimum distance of a codeC is the smallest distance between any two distinct
elements of the code. More precisely, the minimum distance of a code is de�ned as

min

x,x′∈C
x,x′

d (x,x′).

The essence of an error-correcting code is that we map a set of shorter strings

to a set of longer strings, the codewords. In doing so we can increase the distance

between any two elements in the code resulting in the code becoming more

robust to errors. The extent to which we have improved the error-correcting

properties of a code is partly captured by the minimum distance of the code, as a

larger minimum distance means that the code can tolerate more errors while still

allowing decoding to the correct codeword.

Although codes can be formulated on larger �nite �elds, the binary �eld F2

consisting of the elements {0,1} is most commonly used. On the binary �eld the

addition operation is the logical XOR operation. More precisely, 0+ 0 = 1+ 1 = 0

and 1+ 0 = 0+ 1 = 1. The binary �eld can also be represented by the elements in

the set {1,−1}. Instead of mod-2 addition, we now use multiplication, meaning

1 · 1 = (−1) · (−1) = 1 and (−1) · 1 = 1 · (−1) = −1. The �eld will be assumed to

be the binary �eld for the rest of this thesis.
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Noisy channels

We say that a binary code with M elements has log
2
M information bits, as

this is the number of bits of information that we are sending over the channel in

each codeword. The rate of a code is then de�ned as the ratio of information bits

in a codeword to the total number of bits in a codeword.

Definition 5 (Rate of a code)

The rate of a code C with block length n and cardinality M is the number of in-
formation bits sent over the number of total bits sent. More precisely, the rate r (C )
is

r (C ) =
log

2
M

n
.

It will later be convenient to consider ensembles of codes. They are essentially

sets of codes, constructed using some random process, from which codes are

chosen at random. Shannon’s random ensemble is one example.

Example 1 (Shannon’s random ensemble)

Let Shannon(n,M ) denote Shannon’s random ensemble where each code has block
length n andM elements. A code is chosen from the ensemble by choosing each of
theM codewords uniformly at random from Fn

2
.

2.2 Noisy channels

Noisy channels are the fundamental reason that error-correcting codes are used.

For that reason we will take a small detour to look at channels before continuing

to low-density parity-check codes. A binary channel is a mapping {0,1} → S
where S can be a �nite or in�nite set. We will in general denote the sent codeword

by x and the received codeword after transmission over a noisy channel by y.

0

1

0

erasure

1

1 − ϵ

1 − ϵ

ϵ

ϵ

Figure 2.1: The transition diagram for the BEC. The input can have the value 0 or 1, and

will after transmission have changed to an erasure with probability ϵ and stayed at the

input value with probability 1 − ϵ .
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The binary erasure channel (BEC) simply performs the following operation:

with some probability ϵ , a bit becomes an erasure. The set of symbols received

thus has the added erasure symbol. Put di�erently, on the binary erasure channel

we assume that the receiver knows that a bit has been erased but simply does

not know what value the erased bit had originally. The transition diagram of the

BEC is shown in Figure 2.1.

0

1

0

1

1 − ϵ

1 − ϵ

ϵϵ

Figure 2.2: The transition diagram for the BSC. The input can have the value 0 or 1, and

will after transmission on the BSC have �ipped to the other value with probability ϵ .

The binary symmetric channel (BSC) has the same input and output symbols

and is determined by the parameter ϵ , often called the crossover probability. The

crossover probability determines the amount of noise in the channel in the sense

that a bit passing through the channel is simply �ipped from 0 to 1 or from 1 to 0

with probability ϵ . The transition diagram of the BSC is shown in Figure 2.2.

The binary additive white Gaussian noise channel (BAWGNC) maps the set of

input symbols to the set of real numbers. For the BAWGNC it is convenient to

use {1,−1} as the set of input symbols. The mapping for the BAWGNC is

yi = xi + ei

for each bit xi that we wish to send, where ei is an independently and normally

distributed random variable with zero mean and variance σ 2
. That is,

e ∼ N (0,σ 2).

Two quantities are useful when considering the BAWGNC. The signal-to-noise
ratio (SNR) is the ratio of the energy per transmitted bit Es to the energy of the

noise σ 2
. That is, SNR =

Es
σ 2

. Here, Es = 1 because the set of input symbols is

{1,−1}. A related quantity is the ratio of the energy per transmitted information

bit Eb =
Es
r to the double-sided power spectral density N0 = 2σ 2

. Here we have

simply written r for the rate of a code C . The quantities are usually shown in

dB. That is, they are shown as 10 log
10

(
Es
σ 2

)
and 10 log

10

(
Es

2rσ 2

)
. For codes of rate

1

2
the two quantities are the same. The BAWGNC is useful as a model for real

channels.
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Low-density parity check codes

2.3 Low-density parity check codes

A low-density parity-check code, or LDPC code, is de�ned by a matrixH ∈ {0,1}m×n.

The de�ning characteristic of LDPC codes is that H is sparse. This means that H
has O (n) nonzero elements. Given a matrix H the set of codewords is de�ned by

C = {x ∈ {0,1}n | HxT = 0T },

where 0 is the zero vector and we assume that all vectors are row vectors. The

matrixH is referred to as the parity-check matrix, since it requires that a codeword

x have even parity in the so-called parity-check equations

sa =
n∑
i=1

Haixi = 0,

for all a = 1,2, . . . ,m. Each parity-check equation is often called a checksum or

check, and the vector s of sums sa is called the syndrome. If a check has even

parity we say that the check is satis�ed and otherwise we say that the check is

unsatis�ed. Assuming that the parity-check matrix of an LDPC code is of full

rank, the cardinality of the code is M = 2
n−m

. The rate of an LDPC code with a

parity-check matrix of full rank is
n−m
n . A parity-check matrix uniquely de�nes a

code up to row operations, meaning row permutations and additions of one row

to another.

2.3.1 Tanner graph representation

It is often convenient to consider a graph representation of a parity-check matrix.

The graph representation of a parity-check matrix is more commonly referred to

as its Tanner graph (Tanner, 1981). The Tanner graph is a bipartite graph with

two sets of nodes. The �rst set consists of the check nodes, each corresponding

to the rows, or checks, of H . The second set consists of the variable nodes, each

corresponding to a column of H , or a symbol of a word. There is an edge between

a check node a and a variable node i if and only if Hai = 1. Put di�erently, the

Tanner graph corresponding to a parity-check matrix H has an adjacency matrix

given by (
0 H
HT

0

)
.

We denote the neighbors of a node i by N (i ). As a shorthand, the notation N (i ) \ j
means the neighbors of the node i excluding the node j. A parity-check matrix

and a Tanner graph are equivalent up to permutation of rows and columns. In

general, we will also treat a code as equivalent to a parity-check matrix or Tanner

graph, even though a code can be de�ned by more than one parity-check matrix,

and likewise by more than one Tanner graph.
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2.4 LDPC code constructions

The de�nition of LDPC codes does not state how the codes should be constructed.

Next we will look at some ways of doing so. Most importantly, we will present

regular and irregular code ensembles. We will, in relation to code ensembles, also

state two central theorems regarding the performance of codes. In addition, we

will present so-called quasi-cyclic LDPC codes and brie�y look at LDPC codes

used in communications standards.

2.4.1 Regular codes

A simple way to construct an LDPC code results in what is called a regular code.

An (l ,r )-regular LDPC code is de�ned by a parity-check matrix H where each

column of H has weight l and each row has weight r . Such a code has, by double

counting, e =mr = nl ones in its parity-check matrix or, equivalently, e edges in

its Tanner graph representation.

r
a
n

d
o

m
p

e
r
m

u
t
a
t
i
o

n

Figure 2.3: Drawing a random bipartite graph with the con�guration model. In the

above example each node on the left has degree 3 and thus 3 “sockets” indicated by the

small gray nodes connected to each node. Likewise, each node on the right has degree 6

and thus 6 sockets. Thus, there are in total 10 · 3 = 5 · 6 = 30 sockets on each side. We can

then, using a random permutation, connect each socket on the left to a unique socket on

the right. The result is a bipartite graph which may not be simple. That is, it may have

more than one edge connecting a pair of nodes.

One way of constructing a regular code is with the help of a random permu-

tation. For the construction of a regular code it is easiest to think of the code

in terms of its graph representation. As the graph is bipartite we know that the

two sets of nodes will both have e edges incident to them. We then de�ne each

10
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node to have a number of “sockets” equal to the degree of the node. Each socket

will be used to attach one end of an edge to it. If we number the sockets from

1 to e on one side (say, the variable nodes) we can then, given a permutation of

1,2, . . . ,e , connect the sockets of the check nodes to a socket of a variable node

with a number given by the permutation. The model for constructing a graph

in such a way is called the con�guration model (Bollobás, 2001). In this way, we

can construct a random bipartite graph but the graph is not necessarily simple.

That is, there may be multiple edges between a pair of nodes. However, we can

simply draw a new permutation until we get a simple graph. In other words, we

perform rejection sampling to get a simple bipartite graph. More importantly, the

probability of drawing a simple graph approaches zero exponentially only in the

degrees of the nodes and not in the block length n. The probability of drawing a

simple bipartite graph approaches a nonzero constant in the block length given

�xed degrees (Greenhill et al., 2006).

Example 2 (Parity-check matrix of a (3,6)-regular LDPC code)

The following matrix de�nes a randomly generated (3,6)-regular LDPC code of
block length 20. That is, parity-check matrix has 3 ones in each column and 6 ones
in each row.

H =

*......
,

0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 0

0 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1

0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 0

0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1

1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0

0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1

+//////
-

(2.1)

Example 3 (Tanner graph of a (3,6)-regular code)

The Tanner graph corresponding to the parity-check matrix in (2.1) is shown in
Figure 2.4. The convention for drawing Tanner graphs is to draw the variable nodes
as circles on the left-hand side and the check nodes as squares on the right hand side.

2.4.2 Irregular codes

Irregular codes are a more general class of codes, which include the regular case.

The terminology and notation of irregular degree distributions was �rst presented

by Luby et al. (1997). They also presented the idea of optimizing the properties of

a degree distribution using linear programming. Richardson et al. (2000, 2001)

expanded on the work.
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Figure 2.4: The Tanner graph of the parity-check matrix (2.1). The nodes on the left

are the variable nodes and the nodes on the right are the check nodes. The edges cor-

responding to the nonzero entries of the �rst column of (2.1) have been highlighted in

red.

For a code of length n, let Λi be the number of variable nodes of degree i .
Thus

∑
i Λi = n. Likewise, let Pi be the number of check nodes of degree i , such

that

∑
i Pi = m. It must hold that the number of edges emanating from both

sides are equal, so

∑
i iΛi =

∑
i iPi = e . For convenience, we represent the degree

distributions in terms of the following polynomials:

Λ(x ) =
dv∑
i=1

Λix
i

and P (x ) =
dc∑
i=1

Pix
i ,

12
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where dv and dc are the maximum degrees of the variable and check nodes,

respectively. Using this representation we can write

Λ(1) = n and P (1) =m.

We also de�ne the normalized degree distributions

L(x ) =
Λ(x )

Λ(1)
and R (x ) =

P (x )

P (1)
.

The normalized degree distributions give the fraction of nodes with a given

degree. That is, a term Lix
i

in L(x ) means that there are
Li
n variable nodes of

degree i , and likewise for the check nodes.

An (l ,r )-regular code is a special case of an irregular code. We can de�ne a

(l ,r )-regular code with block length n with a degree distribution (Λ(x ),P (x )) =
(nxl , lrnx

r ). Alternatively, in terms of a normalized degree distribution, the (l ,r )-

regular code is de�ned by (L(x ),R (X )) = (xl ,xr ).
As in the case of a regular code, we can generate irregular codes by assigning

unique names to sockets at each variable node, where the number of sockets at

each node is equal to the degree of the node. Using a permutation we then again

assign edges to a pair of variable and check nodes. The only di�erence to the

regular case is that the number of sockets at each node need not be constant for

the variable and check nodes. The probability of drawing a simple graph again

approaches a nonzero constant in the block length n (Greenhill et al., 2006).

2.4.3 Code ensembles and their properties

We have already seen Shannon’s ensemble as an example of a code ensemble.

We can also, with the help of the construction in the previous section, de�ne an

ensemble of irregular LDPC codes. More precisely, an ensemble of irregular LDPC

codes consists of codes constructed using the con�guration model corresponding

to the degree distributions Λ(x ) and P (x ), where the permutations are drawn

uniformly at random. To further simplify analyzing code ensembles we can make

the additional simpli�cation that we do not reject any codes even if they have

duplicate edges. Instead we take the number of edges between two nodes modulo

2. This way we may end up with parity-check matrices which are not of full

rank, but the probability approaches zero as the block length is increased (Di

et al., 2002). We will denote the ensemble of LDPC codes with block length n
constructed using the con�guration model by LDPC(n,Λ,P ).

One of the main results is that for an ensemble of irregular codes constructed

using the con�guration model the codes from the ensemble are concentrated

around the average in terms of error-correcting performance. A second, perhaps

13
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more important theorem is the channel coding theorem by Shannon, which states

that there is a limit to the rate at which we can send information over a channel

with a given level of noise. We will present the case for the BSC here.

Before we state the theorems, let us introduce some additional terminology

commonly used when talking about the performance of codes and decoders. The

error-correcting performance is generally stated in terms of the bit-error rate of

an ensemble of codes paired with a decoder. In the case of codes that have for

example been de�ned in standards, we will of course talk about the bit-error

rate of the single code paired with a decoder. The bit-error rate Pb is simply

the probability that a transmitted bit has, after decoding, the wrong value. The

bit-error rate is often abbreviated BER. One often also talks about the block- or

frame-error rate, which we denote by PB . This is the probability of a decoded

block di�ering from the transmitted block in at least one bit. This is sometimes

abbreviated FER. Figure 2.5 shows typical behavior of an LDPC code in terms

of the bit-error rate and the block-error rate, as a function of the noise and

the block length. Bits were encoded with codes from the (3,6)-regular ensemble

(without duplicate edges) and transmitted over the BSC. The resulting words were

decoded using the so-called sum-product algorithm. One can see a clear limit

where increasing the block length of the code does not improve error-correction.

This is called the threshold of the code and decoder, which we will de�ne more

precisely with Theorem 2.2. The region where the bit-error rate decreases sharply

towards lower levels of noise is called the waterfall region. Following that, one

can see the so-called error �oor. The error �oor is the �at region at lower levels

of noise than the waterfall region. It is typical for LDPC codes to exhibit this

error �oor, although it is not desirable. The error �oor is often caused by some

inherent weakness in the code which leaves some bits particularly prone to being

erroneous (Richardson, 2003).

With the above terminology, we can now state the theorems more precisely.

The theorem regarding concentration around the average code in an ensemble

enables us to choose essentially any code from an ensemble and be nearly certain

that we have picked a code which is representative of the ensemble in general.

We will state the following theorems as presented by Richardson and Urbanke

(2008), omitting the proofs.

Theorem 2.1 (Concentration around the ensemble average)

Let a parity-check matrix H be chosen uniformly at random from an ensemble
LDPC(n,Λ,P ) and let transmission occur over the BEC with erasure probability ϵ .
We decode the received word with l iterations of message-passing decoding and
let Pb (H ,ϵ ,l ) denote the �nal bit-error probability. Then, for a �xed number of
iterations l and for any given δ > 0, there exists an α > 0, α = α (Λ,P ,ϵ ,δ ,l ), such

14
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Figure 2.5: Bit-error rate (left) and block-error rate (right) as a function of the crossover

probability ϵ on the BSC. The following was repeated for each block length 2
i

for

i = 10,11, . . . ,20 until 2
30

total bits were transmitted: draw a new code from the (3,6)-

regular ensemble, assume the all-zero codeword and simulate transmission over the BSC,

decode using 20 iterations of the sum-product decoder. The vertical axis is logarithmic.

A bit- or block-error rate of 0 is not plotted.

that

P
{
|Pb (H ,ϵ ,l ) − EH ′∈LDPC(n,Λ,P )

[
Pb (H

′,ϵ ,l )
]
| > δ

}
≤ e−αn .

Shannon’s channel coding theorem gives us limits on how much information

we can hope to send over a channel. In this setting we consider transmission

over the BSC and look at the block error probability after so-called maximum a

posteriori decoding. The binary entropy function is de�ned by

h(p) = −p log
2
(p) − (1 − p) log

2
(1 − p).

Theorem 2.2 (Shannon’s channel coding theorem for the BSC)

Assume transmission over the BSC with crossover probability ϵ . Let PB (C,ϵ ) be
the block-error rate after transmission on the BSC with crossover probability ϵ using
a code C and decoding using maximum a posteriori decoding. If the rate r satis�es
0 < r < 1 − h2(ϵ ) then

min

C∈Shannon(n,2 brn c )
PB (C,ϵ )

n→∞
−−−−→ 0.

The above theorem says that we can only hope to transmit with a bit-error

rate that approaches zero if the rate of the code is below h(ϵ ) on the BSC. This is

also called the Shannon capacity of the channel. Perhaps more importantly, the

converse also holds: if we transmit at a rate above the capacity of the channel,
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the error probability is bounded away from 0 asymptotically in the block length.

It is often more convenient to consider the behavior with a �xed rate r and let

the crossover probability ϵ vary. In the case that the rate is �xed we want to �nd

the largest ϵ such that the error probability still approaches 0 in the block length.

We will refer to this as the threshold of the channel. That is, the threshold of

the channel gives the limit given any code and decoder with a �xed rate. While

the limit given any code and decoder is useful, we will more often consider the

threshold of a combination of a code and decoder. With a given code and decoder

we then mean by the threshold the largest ϵ such that the error probability

approaches 0 in the block length, using the given code and decoder. Equivalent

results can be shown for the BEC and BAWGNC (Richardson and Urbanke, 2008).

Luby et al. (1998, 2001a,b, 1997) as well as Richardson et al. (2001); Richardson

and Urbanke (2001a) presented a majority of the tools used to analyze random

irregular LDPC code ensembles. An important tool is that of density evolution,

which is a method for determining the threshold under message-passing de-

coding. An approximation to density evolution was presented by Chung et al.

(2001b). Chung et al. (2001a); Richardson et al. (2000) presented optimized degree

distributions with thresholds approaching the Shannon capacity and Richardson

and Urbanke (2001a) generalized many results to more general channels.

Finally, while Chung et al. (2001a); Richardson et al. (2000) presented ensem-

bles that approach the Shannon capacity, this was done in a setting where the

number of iterations and the block length tend to in�nity. Clearly, neither of

these assumptions are feasible in practice. Degree distributions that approach

the Shannon capacity asymptotically can perform badly with a �nite number

of iterations and �nite block lengths. For this reason, designing good codes in

the �nite setting requires slightly di�erent tools. Richardson et al. (2001) note

that density evolution can be applied to some extent to codes of �nite length

which are decoded using a �nite number of iterations. The performance of codes

with practical limitations has been studied by Amraoui et al. (2009); Di et al.

(2002); Richardson (2003); Richardson et al. (2002), and some ways to construct

good �nite-length codes are presented by Mao and Banihashemi (2001); Yue et al.

(2007). Of particular importance for the error-correcting performance of codes

decoded using message-passing algorithms are so-called stopping sets and short

cycles in the Tanner graph. Since the focus of this thesis is more on encoding

and decoding of given codes, rather than code constructions, we will not go into

detail about what makes a good code. However, the intuition behind the reason

for stopping sets and short cycles being problematic is easy to see. Stopping sets

are subsets of the nodes of a Tanner graph in which it is in some sense di�cult

to resolve what the real values of the variable nodes should be. Variables nodes

in a stopping set will therefore often be decoded wrongly, and if the stopping
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sets are large the error �oor of a code will be higher. We will take a closer look

at message-passing decoders in Chapter 4 and why short cycles in the Tanner

graph are harmful for them.

2.4.4 �asi-cyclic LDPC codes

Di�erent constructions of quasi-cyclic LDPC (QC-LDPC) codes were presented

by Tanner et al. (2004) and Myung et al. (2005). The general structure of the

parity-check matrix of a QC-LDPC code is the following: H consists of several

square submatrices, each of which is either the zero matrix or the identity matrix

with the diagonal shifted cyclically to the right by some amount. More precisely,

for a code of length n, the parity-check matrix consists of submatrices of size

z × z. The code is compactly described by a smaller matrix of size

mM × nM =
m

z
×
n

z
,

where we assume that z divides bothm and n. The smaller matrix HM is called

the model matrix. Each entry of the model matrix speci�es the kind of submatrix

at that position in H . A non-negative integer entry speci�es an identity matrix

shifted by the given entry, and “−” speci�es a zero matrix.

Example 4 (WiMAX model matrix)

The rate-1

4
code with block length 2304 and submatrix size 96 in the W iMAX

standard is speci�ed by the model matrix

HM =
*.
,

6 38 3 93 − − − 30 70 − 86 − 37 38 4 11 − 46 48 0 − − − −
62 94 19 84 − 92 78 − 15 − − 92 − 45 24 32 30 − − 0 0 − − −
71 − 55 − 12 66 45 79 − 78 − − 10 − 22 55 70 82 − − 0 0 − −
38 61 1 66 9 73 47 64 − 39 61 43 − − − − 95 32 0 − − 0 0 −
− − − − 32 52 55 80 95 22 6 51 24 90 44 20 − − − − − − 0 0

− 61 31 88 20 − − − 6 40 56 16 71 53 − − 27 26 48 − − − − 0

+/
-
. (2.2)

QC-LDPC codes are convenient because they have a compact description. In

addition, the same model matrix can be used for a range of block lengths. For

example, in the WiMAX standard (IEEE, 2009), the same model matrix de�nes

codes for block lengths from 576 bits to 2304 bits. The description of QC-LDPC

codes above still leaves room for choosing the model matrix in di�erent ways. One

possibility is presented by Myung et al. (2005). The degrees of the model matrix

are retained when it is expanded to the full parity-check matrix and so Myung

et al. propose to choose an appropriate degree distribution for the model matrix

to obtain a parity-check matrix which has similar properties to an irregular code

with the same degree distribution. The positions of the nonzero block matrices

and the shifts are chosen to maximize the girth, meaning the length of the shortest

cycle, of the resulting parity-check matrix, or more accurately of its Tanner graph.

17



Error-correcting codes

The parity-check matrix in Example 4 has additional structure on the right-hand

side, which ensures that the code can be encoded in linear time. We will present

the construction in more detail in the following chapter.

2.5 Codes used in practice

LDPC codes have been included in several standards in the recent years. We

review some of them here as they are of interest for decoding purposes. A code,

once in a standard, remains �xed for the lifetime of the standard. However,

decoders can be changed independently of the codes as inprovements are made

to decoders. Thus it is useful to know the structure of codes used in practice, and

use them as benchmarks for decoding algorithms.

2.5.1 Digital Video Broadcasting

The Digital Video Broadcasting (DVB) standards for terrestrial, satellite and cable

broadcasts (ETSI, 2012, 2013a,b) employ a compact scheme for describing the

codes. The DVB codes are de�ned by o lists of o�sets, each of length oi . The o�sets

determine the positions of the ones in the parity-check matrix. The parity-check

matrix has the following structure:

(
H0 H1 · · · Hs−1 Hp ,

)
where Hp is an m ×m matrix with ones only on the full diagonal and in one

position below the diagonal. The matrices Hi for i = 0,1, . . . ,s − 1 are each of size

m× 360, where 360 is a constant de�ned for all LDPC codes in the DVB standards.

The ith list of o�sets determines the positions of the ones in Hi . Let bia denote the

ath element of the ith list of o�sets. Then, for column j of the full parity-check

matrix H , where the column is within a submatrix Hi , the positions of the ones

in that column are determined by

(bia + (j mod 360)Q ) mod m, ∀a ∈ 1,2, . . . ,oi .

The value Q is another constant de�ned in the standard which is dependent on

the rate of the code. The right-hand side of each parity-check matrix in the DVB

standards is lower triangular which, as we will see in the next chapter, means

that the code can be encoded in linear time.
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2.5.2 WiMAX and WiFi

The WiMAX standard de�nes a few di�erent code types for error-correction.

One of them is LDPC codes (IEEE, 2009). The code type used in the WiMAX

standard is a quasi-cyclic code. It de�nes codes of lengths between 576 and 2304

bits. Example 4 shows the rate-
1

4
code de�ned in the standard. The standard has

de�ned codes of rates
1

2
and

1

4
.

The WiFi standard also uses a QC-LDPC code for error correction. The struc-

ture is the same as in the WiMAX standard. The block lengths are 648, 1296 and

1944 bits with rates of
1

2
,

2

3
,

3

4
and

5

6
.

2.5.3 Ethernet

The Ethernet standard (IEEE, 2012a) also uses LDPC codes for error-correction.

Figure 2.6 shows the parity-check matrix of the rate-0.84 LDPC code de�ned in

the Ethernet standard.

Figure 2.6: The parity-check matrix of the rate-0.84 LDPC code with block length 2048

de�ned in the Ethernet standard. Each black dot denotes a 1 in the parity-check matrix.

2.6 Summary

We have now presented the basics of codes and in particular LDPC codes, which

are a class of binary linear codes with sparse parity-check matrices. Particularly

important are the code constructions. The irregular codes based on the con�g-

uration model are the basis for codes that can in general be encoded in linear

time and perform well under message-passing decoding. The tools developed for

irregular codes can also be used for QC-LDPC codes, and in these are used in

practice in many standards.

One type of LDPC codes that we have left out are codes based on �nite

geometries (Kou et al., 2001). Kou et al. have shown that �nite geometry codes

can have good theoretical properties. However, they often contain high degree

variable and check nodes, which increases the complexity signi�cantly (Cho et al.,

2010). To the best of the author’s knowledge, they have also not been included in

any current communications standards.
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Chapter 3

Encoding of LDPC codes

Although much of the focus in research of LDPC codes has been on decoding
of the codes, encoding is equally important in terms of time complexity. For

general LDPC codes, encoding can not as of today be done in linear time. The

biggest contribution to date is that of Richardson and Urbanke (2001b). They show

that LDPC codes with a carefully chosen degree distribution can be encoded in

linear time. In addition, they show that these codes are good for message-passing

decoders in the sense that they can approach the Shannon limit using message-

passing decoders. Simpler code constructions can also yield linear time encoding

but may not be as good for error-correction.

Encoding consists of taking k information bits and adding parity bits such

that the information bits and the parity bits together form a codeword. The parity

bits are essentially chosen by �rst setting the information bits in �xed positions

of the codeword. Once the information bits have been �xed, the parity bits can

be determined by solving a set of linear equations. The naïve method, which we

will present �rst in Section 3.1, does this by Gaussian elimination. This method

is simple but has quadratic time complexity. In Section 3.2 we will present the

method by Richardson and Urbanke (2001b) where the rows and columns of a

parity-check matrix are only permuted such that the system of linear equations we

are solving is de�ned by a nearly triangular matrix. Doing this reduces complexity

signi�cantly.

3.1 Encoding using the systematic generator matrix

An LDPC code is de�ned by its parity-check matrix H of sizem ×n. By setting H
in an appropriate form we can form what is called a generator matrix of the code.

With the help of the generator matrix G , we can then encode the binary vector u,

also called the information bits, into a codeword x by uG = x. We assume that all

vectors are row vectors. We let k = n −m be the number of information bits.
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Let Im be the identity matrix of sizem ×m. To begin with, we transform the

parity-check matrix into its systematic form

H =
(
−PT Im

)
.

A parity-check matrix can always be brought into the systematic form using

Gaussian elimination without changing the code. This means that we only use

standard row operations: permutations and additions of rows. We can thus for

the purposes of encoding assume that H is in systematic form. Now, given H , we

denote

G =
(
In−m P

)
.

Any word generated by the generator matrix G is a codeword, which we can see

by checking that the syndrome is the zero vector:

HxT = H
(
uG

)T
=

(
−PT Im

) (
u

(
In−m P

))T
=

(
−PT Im

) (
u uP

)T
= (−Pu + Pu)T

= 0T .

We can also see that the resulting codeword is of the form uG = x = (u xp ) =
(xs xp). The �rst part of the codeword, xs , has length k and is called the systematic

part of the codeword. It is also exactly the information bits we wish to send. The

second part, xp , is of length m and contains the parity bits. If we assume that

the parity-check matrix can be brought into systematic form it implies that the

parity-check matrix is of full rank, and if we assume that the parity-check matrix

is of full rank there will be a unique codeword for each word we wish to encode.

We will for the remainder of this thesis assume that the parity-check matrix is

of full rank. As an example, Figure 3.1 shows the generator matrix of the code

speci�ed in the Ethernet standard in systematic form.

While this method can be useful for shorter codes, it becomes impractical for

larger block lengths. For general LDPC codes, the matrix P will be dense, meaning

it will have O (n2) nonzero elements as a result of the Gaussian elimination.

This leads to O (n2) time complexity for the encoding due to the matrix-vector

multiplication. Given that an LDPC code by de�nition only has a linear number

of elements in its parity-check matrix, one could wish that encoding could also

be done in linear time. In the next section we will see how this can be done for

certain codes.
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Figure 3.1: The generator matrix of the rate-0.84 LDPC code with block length 2048

de�ned in the Ethernet standard. Each black dot denotes a 1 in the matrix.

3.2 Encoding with approximate lower-triangular parity-check

matrices

MacKay (1999) introduced the idea of LDPC codes that can be encoded in linear

time with parity-check matrices that are almost lower triangular. In that case

we can perform back-substitution for most of the parity-check bits, but some

additional work still has to be done. Richardson and Urbanke (2001b) expanded

on this idea and generalized the results on when random irregular LDPC codes

can be encoded in linear time. They showed that if the degree distribution of an

ensemble of irregular codes is chosen appropriately encoding of a code in that

ensemble can in expectation be done in linear time. They also showed that if an

ensemble has a degree distribution for which linear time encoding is possible,

that ensemble of codes will also behave well under message-passing decoding.
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This is a particularly interesting result. While the problem of linear time encoding

for general LDPC codes was not solved, the codes that one often wants to use in

practice can be encoded in linear time.

However, with the rising popularity of bit-�ipping decoders, the above result

still calls for an answer to the question whether or not all LDPC codes can be

encoded in linear time. Optimal degree distributions for message-passing algo-

rithms do not necessarily lead to optimal performance for bit-�ipping algorithms.

It is also good to note here that the linear time complexity really only applies to

the encoding process, and ignores a preprocessing step which needs to be done

only once for a code.

The encoding method of Richardson and Urbanke has three steps: (i) a pre-

processing step, in which the parity-check matrix is brought into an appropriate

form by only column and row permutations, (ii) a second preprocessing step,

in which a matrix inverse is calculated; and (iii) the actual encoding step, in

which the parity-check matrix from the previous step can be used to encode the

information bits u in linear time. We will begin by looking at the second and

third steps, but it is useful to keep in mind that in the �rst step we only use row

and column permutations, meaning that the modi�ed parity-check matrix still

has a linear number of nonzero elements.

In the encoding step, we assume that the parity-check matrix has been brought

into the following form:

H =

(
A B T
C D E

)
.

The matrix A is of sizem − д × k , B is of sizem − д × д,T is of sizem − д ×m − д,

C is of size д × k , D is of size д × д and E is of size д ×m − д. The matrix T is a

lower triangular matrix. We say that the parity-check matrix is in an approximate
lower-triangular form. The parameterд is called the gap of the parity-check matrix.

If the gap is zero, encoding can be done simply by back-substitution: �rst set the

information bits in the �rst positions of the codeword after which the parity bits

can be solved by back-substitution. If the gap is of size O (
√
n), it turns out that

encoding can still be done in linear time. To proceed with the encoding, we �rst

premultiply H by (
Im−д 0

−ET −1 Iд

)
resulting in (

A B T
−ET −1A +C −ET −1B + D 0

)
.
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As we are premultiplying by an invertible matrix the code remains equivalent to

the original code. After this step, encoding corresponds to solving two sets of

linear equations:

AxTs + Bx
T
p1

+TxTp2

= 0T ,

(−ET −1A +C )xTs + (−ET −1B + D)xTp1

= 0T .

Similarly to the case of systematic encoding, the codeword is x = (xs xp1
xp2

).
The parity bits are now split up into two parts, xp1

and xp2
, where xp1

is of length

д and xp1
of lengthm − д.

We then de�ne ϕ = −ET −1B + D and assume that it is invertible. Then, given

ϕ−1
we can solve the �rst set of parity bits by

xTp1

= −ϕ−1(−ET −1A +C )xts .

Once we have solved for xp1
, we can determine xp2

by back-substitution from

TxTp2

= −AxTs − Bx
T
p1

as T is lower triangular.

In practice, one performs the premultiplication step by Gaussian elimination.

The matrix ϕ, however, might not be invertible after performing Gaussian elimi-

nation. In that case we permute columns from the left part of the parity-check

matrix into ϕ so that it is invertible. If this is in fact not possible, the parity-check

matrix is not of full rank, but as we mentioned earlier the probability of this

happening decreases with the block length and in practice we need not worry

about this.

On the whole, we now have that if the parity-check matrix is in an approxi-

mate lower-triangular form, and the matrix inverseϕ−1
has been precalculated we

can perform encoding in O (n +д2) time. Let us see why this is so. First, inverting

T need not be done explicitly and can be done by backsubstitution. Additionally,

since T is sparse this requires O (n) operations. Second, all matrix-vector mul-

tiplications involve sparse matrices with O (n) elements, again requiring O (n)
operations. Finally, we can avoid performing matrix-matrix multiplications and

instead always perform matrix-vector multiplications. The exception to sparse

matrix-vector multiplication is the multiplication by ϕ−1
which is a dense matrix-

vector multiplication. This contributes the д2
term in the running time.

What remains is to show that the original parity-check matrix can be brought

into the needed approximate lower-triangular form. Richardson and Urbanke

do not show a way to �nd the minimum gap, but propose a greedy algorithm

which they show is good enough for achieving linear-time encoding complexity

for some codes. The algorithm proceeds in rounds, incrementally building up
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the right-hand side lower-triangular matrix T . Following the terminology of

Richardson and Urbanke (2008) we let two parameters, д and t run during the

algorithm. The current gap is given by д and the iteration number is given by t .
The residual parity-check matrix H is at each step the submatrix of H consisting

of rows 1 to m − д − t − 1 and columns 1 to n − t − 1. The residual degree of a

column or row in the residual parity-check matrix is equivalent to the weight of

that column or row in the residual matrix.

The algorithm consists of two main steps, extend and choose. In the extend

step we assume that there exists a column of residual degree one. We choose

one column with residual degree one uniformly at random. Let c be the chosen

column and r the row containing the only nonzero entry of that residual column.

We then swap column c with column n − t − 1 and row r with row m − д − t − 1.

This places the nonzero entry in the lower-right corner of the residual matrix

and extends the diagonal on the right-hand side by one. Finally, t is incremented

by one.

The choose step is performed when there are no columns with residual degree

one. We choose a column uniformly at random from the column or columns with

the minimum residual degree d , and call this column c . Then, choose an arbitrary

row with a nonzero entry in the residual part of column c and call it r . Swap

column c and row r into the lower-right corner of the residual matrix as in the

extend step. Move the remaining d − 1 rows with nonzero entries in column c to

the bottom of the full parity-check matrix. Finally, increment t by one and д by

d − 1.

The algorithm begins by considering the full parity-check matrix H and

setting t = д = 0. The algorithm stops when t + д = m. If there is at least one

column with residual degree one, perform the extend step, and otherwise perform

the choose step. At the end of the algorithm, the resulting parity-check matrix is

in approximate lower-triangular form with gap д.

Finally, for linear time encoding, we would need to show that the gap д will

on average be of size O (
√
n) if we choose the degree distribution appropriately.

We will not show how to achieve this here because of the lengthy details, but

the general idea is to model the residual degree distributions of the parity-check

matrix and the gap using a set of di�erential equations along the course of the

greedy upper triangulation algorithm. This way one can arrive at an asymptotic

value for the gap such that elements from the ensemble will have a gap that is

close to the asymptotic value with high probability. Although Richardson and

Urbanke (2001b) give more detailed conditions on when the average gap will be

small enough for linear-time encoding, the intuition is that there needs to exist a

large enough number of variable nodes of degree two. When this holds, there

will more often exist a column of residual degree one in the extend step meaning
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that the gap is not increased. If no column of residual degree one exists, the gap

will still often be increased by only one in the choose step because of the large

number of variable nodes with degree two.

3.2.1 Irregular codes with a fixed gap

Although Richardson and Urbanke (2001b) show that codes with certain irregular

degree distributions can be brought to a form where the parity-check matrix

has a gap which is proportional to

√
n, and the codes corresponding to those

distributions can therefore be encoded in linear time, Freundlich et al. (2007)

present an alternative approach to achieve this. Instead of letting all con�gurations

be possible with a given degree distribution pair, they propose to constrain the

construction of the code so that it will have a predetermined gap д. They achieve

this by essentially �xing the diagonal elements of T in the approximate lower-

triangular decomposition to be ones, such that T is of sizem − д. After that one

proceeds to again randomly assign edges between variable and check nodes, but

disallowing edges that go above the diagonal in T , enforcing the approximate

lower-triangular form. They show through examples that forcing the gap to be

proportional to

√
n does not noticeably impact the performance of the code,

while it of course guarantees linear-time encoding. On the other hand, setting

the gap to be 0 or close to 0 does decrease the error-correcting performance of

the codes.

3.2.2 �asi-cyclic LDPC codes with approximate lower-triangular parity-

check matrices

The encoding method of Richardson and Urbanke was applied to quasi-cyclic

codes to achieve linear-time encoding when the cyclic shifts of the submatrices

are chosen appropriately (Myung et al., 2005). The construction leads to the

matrix ϕ being an identity matrix, meaning that the encoding method becomes

a linear-time operation even when one includes preprocessing. For this to hold,

the model matrix specifying the parity-check matrix must be of the form

HM =

*..............
,

b1 0 − · · · − −

− b2 0 · · · − −
... − b3 · · · − −

HI y
...
... · · ·

...
...

...
...
... · · · 0 −

− − − · · · bm−1 0

x − − · · · − bm

+//////////////
-

,
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where the part of the model matrix corresponding to the information bits HI can

be freely chosen. The shift values x , y and bi for i = 1, . . . ,m must, however,

ful�ll one of the following two criteria:

x ≡
m∑
i=1

bi mod L and y ≡ −
m∑

i=l+1

bi mod L (3.1)

or

m∑
i=1

bi ≡ 0 mod L and x ≡ y +
m∑

i=l+1

bi mod L . (3.2)

We will without proof state that if the shift values ful�ll one of the two criteria

(3.1) or (3.2), then ϕ becomes the identity matrix in which case it is trivially

invertible. We also do not need to perform the matrix-vector multiplication which

causes the O (д2) term in the general encoding algorithm.

The authors performed limited tests with these kinds of codes but showed

that a QC-LDPC code of this kind performed equally well as a non-quasi-cyclic

code with the same degree distribution. The degree distribution of the random

code was an optimized distribution obtained by Richardson and Urbanke (2001b).

The degree distribution for the quasi-cyclic code was chosen to be the same as

for the non-quasi-cyclic code but the coe�cients were rounded to �t the block

structure of the code. The LDPC codes in the WiMAX standard are quasi-cyclic

LDPC codes with the structure presented here allowing them to be encoded in

linear time. In the code presented in (2.2), the set of equations in (3.1) is satis�ed

by setting b1 = x = 48 and y = b2 = b3 = . . . = b6 = 0.

3.3 Summary

While the state of encoding of LDPC codes is in some aspects a solved problem

in practice, the lack of a linear-time encoding algorithm for all types of LDPC

codes still leaves something to be desired. The QC-LDPC construction is a conve-

nient construction that has proven itself to work well enough for inclusion in

communications standards. In addition, it allows for a compact implicit descrip-

tion of the parity-check matrix. The irregular ensembles of LDPC codes which

can be encoded in linear time have the additional bene�t of working well with

message-passing decoders. However, being able to use arbitrary LDPC codes that

can still be encoded in linear time may allow the use of codes which have better

error-correcting capabilities.
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Chapter 4

Decoding of LDPC codes

Decoding of LDPC codes has, unlike encoding, essentially been a linear-time

operation since Gallager’s introduction of LDPC codes. More precisely, there

are linear-time algorithms for approximate decoding. Optimal decoding, on the

other hand, is di�cult. Berlekamp et al. (1978) showed that a certain decision

problem related to binary linear codes is NP-complete. The approximate schemes

are often, however, good enough in practice and can in some cases approach the

capacity of the channel asymptotically in the block length n. In addition, any

decoding algorithm that is superlinear is bound to be impractical for arbitrarily

large block lengthsn as in most situations the decoding throughput needs to equal

the channel throughput. The reason for wanting to use longer block lengths is the

improvement in error-correcting performance as the block length is increased.

One of the reasons for this is that a longer code is more robust to noise in the

sense that variations in the level of noise are less signi�cant for larger block

lengths. For example on the BSC, we can consider the number of bits that are

�ipped by the channel constant for large enough block lengths. Another aspect

is that correlated noise is more likely to corrupt whole blocks if the block length

is short. A code with longer block length is robust to longer bursts of errors.

One should keep in mind that when we talk about decoding we mostly talk

about the process of recovering a codeword given word received from the channel.

However, the full process of decoding of course includes recovering the original

information bits but, as we saw in Chapter 3, doing this is easy as the information

bits will generally explicitly be part of the codeword.

Gallager (1962) introduced two types of decoders: (i) a simple, so called

bit-�ipping decoder, which was then deemed insu�cient in its ability to decode;

and (ii) a message-passing decoder which performed much better but was more

complex. The bit-�ipping decoders and the message-passing decoders are the two

major classes of decoders being actively researched at this point. A third class of

decoders into which research is being done is that based on linear programming as

�rst presented by Feldman (2003); Feldman et al. (2005). To the best of the author’s

knowledge, these decoders are to date neither e�cient enough nor good enough
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at correcting errors compared to the two other classes of decoders. However,

their bene�ts lie in easy analysis with established tools from linear programming

theory, and work is also being made to reduce the complexity of the decoders

(Burshtein, 2009; Burshtein and Goldenberg, 2011; Goldin and Burshtein, 2013;

Vontobel and Kötter, 2007). In this thesis, however, we will restrict ourselves to

only consider message-passing decoders and bit-�ipping decoders.

The message-passing decoders are in general better at correcting errors and

were the main type of decoders considered as LDPC codes were rediscovered

in the 1990’s. However, more recently bit-�ipping decoders have received much

more attention because of their low complexity which is bene�cial for e�cient

hardware implementations. To clarify, when we talk about complexity in the con-

text of decoders we refer to arithmetic complexity of the decoders, not asymptotic

complexity. In addition, the decoders used are in essence linear-time algorithms

by choice, and the error-correcting performance and arithmetic complexity is

then improved given the constraint that the decoding must be linear-time. The

main focus for message-passing decoders has been to decrease complexity with-

out loosing too much in terms of error-correction performance. The focus for

bit-�ipping decoders has been the opposite: improve the error-correction per-

formance while keeping the complexity low. Currently there is essentially a

continuum of decoders all making a trade-o� between complexity and error-

correction performance.

To be precise, we are assuming an MBRAM machine model for the computa-

tions: a random access machine (RAM) with addition, subtraction, multiplication,

division and bitwise Boolean instructions, where we assume that all operations

take O (logn)-time where n is the size of the largest input operand or output

involved in the instructions. In practice, however, we assume that instructions

take O (1)-time with �xed-width inputs and outputs (van Leeuwen, 1990).

We will look at the decoders roughly in order of complexity. We begin by

considering bit-�ipping decoders in the next section because of their relative

simplicity and to get a �rst idea of how decoding can be done. We will then move

on to message-passing decoders which require some background in graphical

models. We will review the most important aspects of factor graphs to present

the sum-product algorithm, which is also known as belief propagation. However,

the message-passing decoders can be intuitively understood even without the

factor graph framework.
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4.1 Naïve decoding

Before looking at the practical algorithms, we will note that we can perform

exact maximum-likelihood decoding of LDPC codes with the caveat that it has

exponential time complexity. For completeness we state here the simple algorithm.

If we assume the BSC, maximum-likelihood decoding for a codeC simply consists

of �nding the codeword x′ which is nearest to the received word y. We then hope

that the decoded codeword x′ is the same as the sent codeword x. The decoded

codeword is chosen to be

x′ = arg min

z∈C
w (z − y).

Here we clearly have an exponential number of candidates. Trying to be more

clever and beginning the search with the words closest to the received word

is also of no help, as we want that the code has a minimum distance which

increases linearly with the block length. This way we will still end up looking at

an exponential number of candidates.

4.2 Bit-flipping decoding

Bit-�ipping decoders take a straightforward approach to decoding. Given the

received word y one can start �ipping bits in y according to some appropriate

order and criterion in the hope that one will eventually arrive at the original code-

word x. In a sense we wish perform a local greedy search in promising directions

around the received word. This approach leads at its simplest to low-complexity

decoders, which however lack in error-correcting performance compared for

example to the sum-product decoder. Adding more information or noise to the

decisions of a bit-�ipping decoder can already lead to much better performance

while keeping the complexity of the decoder fairly low.

4.2.1 Gallager’s bit-flipping decoder

Gallager’s bit-�ipping decoder (Gallager, 1962) is the �rst and perhaps the simplest

bit-�ipping decoder for LDPC codes. It proceeds as follows: for each variable node

count the number of adjacent check nodes that are unsatis�ed or, equivalently,

how many parity-check equations in which the variable is involved are unsatis�ed;

if the number of unsatis�ed checks is greater than or equal to some chosen

constant K , �ip the value of the bit. The algorithm proceeds for a �xed number

of rounds through all variables, or until all parity-check equations are satis�ed.

31



Decoding of LDPC codes

There are two main considerations to bit-�ipping decoders. The �rst is how

to decide whether a bit should be �ipped or not. The second is in which order bits

are considered, and if multiple bits are considered at the same time. The second

aspect will be referred to as a schedule in the following.

4.2.2 Weighted bit-flipping decoders

According to Kou et al. (2001), the essence of the weighted bit-�ipping decoder

was already introduced by Kolesnik (1971), not long after Gallager’s initial work

on LDPC codes. Kou et al. (2001) then reintroduced the decoder, and it has been

modi�ed and improved in the subsequent years. The weighted bit-�ipping decoder

refers to the most basic version. However, we will collect all modi�cations under

the same term, and present the decoder below in a general form which includes

most modi�cations. The main di�erence from Gallager’s bit-�ipping decoder

is that we take soft channel values into account. In other words, we assume

transmission for example over the BAWGNC such that the channel outputs are

real-valued. This allows us to take into account which variable values we can

be fairly certain about—those that have large |yi |—and those which could likely

have been either −1 or 1—those that have small |yi |. This is in contrast to the

BSC, where we only know that any bit could have been �ipped with the same

probability ϵ .

The quantity used for deciding if a bit should be �ipped is in its most general

form the following:

Ei =
∑

a∈N (i )

(2sa − 1)wa − αvi

where wa and vi for all i = 1,2, . . . ,n and for all a = 1,2, . . . ,m depend on the

algorithm. The syndromes sa are calculated after hard thresholding of the channel

values. The parameter α ≥ 0 is a free parameter chosen separately for best error

correcting performance. The sum essentially calculates the number of checksums

adjacent to a variable node i that are unsatis�ed, weighted by the quantity wa

which is a measure of the reliability of the check node. The term αvi adjusts for

the reliability of the received message at the variable node. In general, a bit is

�ipped if the quantity Ei is high enough.

We begin by noting that Gallager’s bit-�ipping decoder �ts into this frame-

work, only it does not make use of the weighting. If we setwa ≡ 1 and αvi ≡ 0 and

we �ip a bit if Ei is larger than some predetermined threshold we essentially get

Gallager’s bit-�ipping decoder. This demonstrates that Gallager’s algorithm in-

deed is perhaps the simplest bit-�ipping decoder and sets the stage for the changes

and improvements that have been proposed in newer bit-�ipping decoders.
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Modi�ed weighted bit-�ipping decoder

In the modi�ed weighted bit-�ipping decoder (Zhang and Fossorier, 2004) the

terms are as follows:

wa = min

i∈N (a)
|yi |, (4.1)

vi = |yi |. (4.2)

Each termwa now weights the parity of a check node by the least reliable adjacent

variable node of the check node a. This means that if at least one of the variable

nodes incident to a check node has a channel value that is close to zero, we will

trust the parity of the check node less in making a decision on whether to �ip a

bit or not. If, however, all variable nodes adjacent to a check node have highly

reliable channel values we can trust the value of the check node more and it

in�uences Ei more. The parameter α is left as a free parameter.

Gradient-descent bit-�ipping decoder

The bit-�ipping decoder can also be presented as a gradient-descent optimizer

(Wadayama et al., 2007). In that case

wa = 1,

vi = xiyi .

As xi ∈ {−1,1}, the termvi is similar to the form proposed by Zhang and Fossorier

(2004). When the value of xi has not yet been �ipped, the signs of xi and yi are the

same so xiyi = |yi |. The di�erence between the two formulations is when xi does

not have the same sign as the channel value yi . In that case the Ei is penalized

as −αxiyi > 0. The gradient-descent formulation has a slightly more meaningful

interpretation. It maximizes the correlation between the received values y and

the decoded bits x′, penalized by unsatis�ed checksums (see appendix A.1 for a

derivation of the terms). The free parameter α was not included in the original

formulation of the gradient-descent bit-�ipping decoder, so α = 1 in this case.

Bootstrapped weighted bit-�ipping decoder

Bootstrapped weighted bit-�ipping (Nouh and Banihashemi, 2002) is a modi�ca-

tion of the normal weighted bit-�ipping decoder by Kou et al. (2001). The actual

decoding steps are identical to the WBF but the initialization of the variable

values are modi�ed. A free parameter γ > 0 is chosen as a threshold. All variable

nodes which have a channel valueyj < γ are deemed unreliable. All other variable

nodes are reliable. A check node is reliable if all its adjacent variable nodes are

33



Decoding of LDPC codes

reliable and unreliable otherwise. Let Nr (j ) be the reliable check node neighbors

of a variable node j . The unreliable variable nodes are then re-initialized with the

following values

yi B yi +
∑

a∈Nr (i )

min

j∈N (a)\i
|yj |

∏
j∈N (a)\i

sgn(yj ),

where sgn(x ) is the sign function which takes the value
x
|x | if |x | > 0, and 0

otherwise. We can see that the term

∏
j∈N (a)\i sgn(yj ) is essentially a term saying

what value the variable node i should have according to the check node a. This

is again weighted by the smallest reliability of a variable node adjacent to the

check node. The unreliable check nodes can be thought of as having 0 as the

smallest channel value of an adjacent variable node and are thus excluded from

the sum. The channel value of the variable node i is then adjusted according to

the reliable check nodes. We will see later that this corresponds to one iteration of

min-sum decoding, a more powerful message-passing decoder. The authors found

that performing this bootstrapping step improved the performance compared to

only using bit-�ipping, while requiring little additional complexity as the step is

only performed on the �rst iteration. Kou et al. (2001) proposed a similar scheme

which they termed hybrid decoding, where one begins with the more powerful

sum-product decoder, which we will see in Section 4.3, for a small �xed number

of iterations and then continues with a simpler bit-�ipping decoder.

4.2.3 Schedules for bit-flipping decoders

The most common schedule for actually �ipping a bit is the following (as presented

by Kou et al. (2001)):

1. If all checksums are satis�ed, stop.

2. For all variable nodes, calculate Ei .

3. Flip the value of the variable node for which Ei is highest. That is, �ip the

value of the node i = arg maxi∈{1,2,...,n} Ei .

4. Return to 1.

An alternative schedule is to instead of �ipping only the node with the highest

Ei �ip all variable nodes which have Ei greater than some threshold θ (Wu et al.,

2007). The two schedules presented here are convenient to perform in parallel,

as one can compute Ei independently for each variable node and then �ip each

variable node above the threshold independently. We can note here that if θ = 0

and if wa and vi are set as in (4.1) and (4.2) the decoder is called a majority-logic

decoder (Kou et al., 2001).
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A sequential schedule is such that only one variable is considered at a time,

and �ipped immediately if it is to be �ipped. One then continues to the next

variable node. This can be done by cycling through all variable nodes for some

number of iterations. A more e�cient way of doing this is to only ever consider

those variables which have at least one unsatis�ed checksum with the help of

appropriate data structures. This speeds up decoding in a sequential implementa-

tion assuming that variables with zero unsatis�ed checks should never �ipped

(Vanek and Farkas, 2009).

The sequential schedule is bene�cial in speeding up the convergence of the

decoding process. The reason for the improved convergence is that the variable

bits are essentially using new information much more often. In a sequential

schedule, the variable bits can use the updated values immediately after a single

new variable bit has been processed. Compare this with the common approach

of comparing all variable bits at a time, where new information is received only

after all variable bits have been processed once.

Sequential scheduling for a bit-�ipping decoder is called shu�ed bit-�ipping

by Zhang et al. (2007). Shu�ing refers to a schedule initially proposed for message-

passing decoders (Zhang and Fossorier, 2002). Although the sequential schedule

is bene�cial from the point of view of the absolute number of iterations, it is

not possible to properly parallelize a decoder with a sequential schedule. For

this reason the parallel schedule, where all bits are considered at a time and

some bits are then �ipped, is preferred for high-throughput implementations.

However, one can also take an intermediate schedule between the two extremes.

One can process the variable bits in groups of bits, such that the bits are processed

independently in parallel within the groups but sequentially between the groups.

This approach was described by Ismail et al. (2013) for bit-�ipping decoders. Once

again, the approach was �rst presented for message-passing decoders where it

is referred to as parallel shu�ed decoding (Zhang and Fossorier, 2002), or more

recently and commonly as layered decoding (Hocevar, 2004). Layered decoding

was also independently presented by Mansour and Shanbhag (2002), who called

it Turbo Decoding Message Passing, due to the relation to the schedule used in

the original Turbo decoder (Berrou et al., 1993).

4.2.4 Stochastic bit-flipping decoders

While the deterministic bit-�ipping decoders presented above can perform reason-

ably well, they can often get stuck in local optima where there are still unsatis�ed

checks and no way to escape from the local optimum. To this end, stochastic

bit-�ipping decoders add some amount of noise to the decisions to escape local

optima and to improve the error-correcting performance of the decoder.
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Miladinovic and Fossorier (2005) presented a modi�ed version of Gallager’s

original bit-�ipping decoder. Instead of �ipping a bit with certainty when the

number of bad checks exceeds some threshold, the decoder only �ips these

variable nodes with some probability p < 1. This does not lead to a signi�cant

increase in error-correcting performance, but can lead to faster convergence

times and can take the decoding process away from local optima and cycles.

In the same vein, Zhou et al. (2007) presented another bit-�ipping decoder

only slightly modi�ed from Gallager’s original algorithm, but already with more

promising results. While strictly deterministic, the algorithm is close to the idea

of a stochastic bit-�ipping decoder. The algorithm is modi�ed as follows: instead

of setting a �xed threshold K such that a variable bit is �ipped only if the number

of bad checks adjacent to it is at least K , we de�ne a sequence of thresholds

(K0,K1, . . . ,KT−1). A variable bit is then �ipped on iteration t if the number of bad

checks is at least at the threshold Kt mod T . As an example, the work suggested a

sequence (3,2) meaning every second iteration the threshold is 3 and every second

it is 2. In relation to stochastic decoding, this is on average the same as �ipping

bits with at least 3 bad checks with certainty, and bits with 2 bad checks with

probability 0.5. The authors noted a clear improvement compared to Gallager’s

bit-�ipping decoder, but with performance still far from the sum-product and

min-sum decoders.

A more recent, and successful, attempt at a stochastic bit-�ipping decoder was

presented by Sundararajan et al. (2014). They proposed a stochastic version of

the gradient-descent bit-�ipping decoder where a random, normally distributed

term qi is added to the decision quantity as follows

Ei =
∑

a∈N (i )

(2sa − 1)wa − αvi + qi ,

where

qi ∼ N (0,η2)

for some variance η2
.

The decoder was presented in both a single-bit and a multi-bit version, mean-

ing that either the bit i with the lowest Ei is �ipped, or all bits below a certain

threshold are �ipped. The authors call the decoder a noisy gradient-descent bit-
�ipping decoder.

As originally presented by Wadayama et al. (2007), one can also �ip a �xed

number of bits at a time. This was also called a multi-bit version. This type of

multi-bit bit-�ipping decoder, just like the threshold based multi-bit decoder,

tends to converge faster toward the optimum. However, it is prone to oscillations

as it approaches the local maximum. The threshold based multi-bit decoder can
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also be prone to this but to a much smaller degree (Sundararajan et al., 2014).

Sundararajan et al. also reported that it can be bene�cial to employ a so-called

mode-switching strategy, where the decoder begins decoding with the multi-bit

decoder, but changes to the single-bit version after some steps to ensure proper

convergence. The noisy gradient-descent bit-�ipping decoder performed in some

cases even comparably to the more complex min-sum decoder which we will

present later.

4.2.5 Stochastic bit-flipping decoder with hard channel values

In this thesis we propose a variation of a stochastic bit-�ipping decoder which

only operates on hard values. That is, it operates on channel values from the BSC

or channel values from the BAWGNC quantized to one bit. The idea behind the

decoder is similar to the stochastic gradient-descent bit-�ipping decoder. The

main di�erences are that this decoder does not use soft channel values and that

the probability for �ipping a bit is parameterized di�erently.

In the current variation, which we will from now on call the stochastic bit-

�ipping decoder, as opposed to the stochastic gradient-descent bit-�ipping decoder,

the decision to �ip a bit is based on three factors: (i) the degree of the variable

node, if the code is not regular; (ii) the number of unsatis�ed checks; and (iii)

the channel value of the bit we are considering. Let us denote the degree of

the variable node by d , the number of adjacent unsatis�ed checks by b and the

XOR of the channel value and the current value of the bit by e . The value of e
is then 1 if the channel value and the current value di�er, and 0 otherwise. Let

us denote the degree of a variable node by d . We then decide to �ip the current

bit with probability some pe,b,d . We will assume that we never �ip a bit if it has 0

adjacent unsatis�ed checks as it will rarely be bene�cial. Thus we de�ne pe,b,d
for all e = 0,1 and b = 1,2, . . . ,d and for each variable node degree d occurring

in the code. In general, the probabilities pe,b,d should be optimized individually

for best error-correcting performance. In practice, performing this optimization

can be di�cult to perform if the number of probabilities to consider is high.

In addition, while for example degree distributions of irregular codes can be

optimized fairly e�ciently using density evolution for message-passing decoders,

no such convenient tools for analyzing the performance of bit-�ipping decoders

exists yet. For this reason, evaluating the performance of a set of parameters

simply requires running the decoder which can be time-consuming. To avoid this
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we parameterize the �ip probabilities. The probability of �ipping a bit is

pe,b,d = min

{
exp

(
−2

d − 2b + θ (2e − 1)

T

)
,1

}
,

θ =
T

2

log

(
1 − p

p

)
,

where T > 0 and p > 0 are free parameters. The above parameterization leads to

�ipping a bit with higher probability if the variable node has several unsatis�ed

checks as opposed to fewer. In addition, if the current value of the bit di�ers

from the channel value, the bit is �ipped with higher probability, resulting in

general to the decoder trusting the channel value more than the current value

of the bit. Table 4.1 shows an example of the �ip probabilities using the above

parameterization with the values T = 0.8 and p = 0.12.

Table 4.1: Flip probabilities for the stochastic bit-�ipping decoder when T = 0.8 and

p = 0.12. The values are shown for a variable node of degree 3 with b unsatis�ed adjacent

checks and e . The value of e is 1 if the current value of the variable is not equal to the

channel value. When b = 0 a bit is never �ipped.

e = 1 e = 0

b = 1 0.602 0.011

2 1.000 1.000

3 1.000 1.000

While similar to the stochastic gradient-descent bit-�ipping decoder, the

inspiration for the decoder comes from an algorithm for the satis�ability (SAT)

problem presented by Alava et al. (2008). The proposed decoding algorithm can

be run with various schedules. In its simplest form it can be run by sequentially

considering each bit in the word and �ipping the bit if necessary. A main insight

in the work by Alava et al. (2008) was that of focusing the search in promising

directions. They call this algorithm focused metropolis search or FMS for SAT. In

the current stochastic decoding algorithm this can be implemented by only ever

considering such variable nodes which have at least one adjacent check which

is unsatis�ed. If the variable node has zero unsatis�ed checks, the bit is never

�ipped and so such variable nodes need not be considered. This can speed up

the convergence of the decoder, but only applies straightforwardly to a serial

implementation. The idea is essentially the same as that presented by Vanek and

Farkas (2009). The same downsides apply, namely that of no known convenient

way of parallelizing the implementation while using focusing. In Chapter 5 we

only consider a sequential schedule using an implementation for the GPU. In a

38



Message-passing decoding

situation where one is constrained to serial execution, the idea of focusing can

be bene�cial but for most practical decoding purposes, the implementation must

be parallel in some way to achieve high enough throughputs.

4.3 Message-passing decoding

Message-passing decoding is, despite the improvements in bit-�ipping decoders,

still the preferred choice of decoder in hardware implementations as is evident

from the comparatively larger amount of hardware implementations published us-

ing message-passing decoders. A message-passing decoder is also recommended

in the DVB-T standard (ETSI, 2013a). The sum-product decoder, which is a type

of message-passing decoder, is still the decoder that in linear time comes closest

to an optimal decoder in terms of error-correcting performance.

The class of message-passing decoders operate on the simple principle that

messages are sent between the nodes of the Tanner graph, where the messages

represent some kind of belief in what the values of the variable bits are. The

messages are passed from nodes to their neighboring nodes, where new values

are calculated, and new messages are again passed on. Operating in this way, it

is possible to construct good decoders for LDPC codes.

Once again, Gallager presented already in 1962 a version of a message-passing

decoder for the BSC which is in essence the same as those in use today. We will,

however, begin by looking at the sum-product algorithm, which is more generally

an algorithm for performing inference on graphical models. The graphical model

in the case of decoding of linear codes is roughly the Tanner graph of a code,

with some minor additions.

A message-passing decoder most similar to its current form was initially

presented for decoding of Turbo codes (Berrou et al., 1993). It was called iterative
decoding, as it performs several rounds of decoding. The decoding algorithm was

then found to be largely identical (McEliece et al., 1998) to what is called belief-

propagation in AI, as presented by Pearl (1982). Belief-propagation is the same

algorithm as the sum-product algorithm. Hagenauer and Papke (1994) presented

the so-called Viterbi algorithm (Viterbi, 1967) for turbo codes and later presented

the sum-product algorithm again in a more familiar form (Hagenauer et al., 1996)

for general block codes. Wiberg (1996); Wiberg et al. (1995) give a good summary

of the connections between the di�erent proposed decoding algorithms at the

time when LDPC codes were being rediscovered. Kschischang et al. (2001) present

another thorough overview of the various forms of the same algorithm.

Bahl et al. (1974) proposed an optimal decoding algorithm for general linear

block codes but noted that it is impractical because of the exponential time

and space complexity of the algorithm. Later work has found the same: optimal
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decoding is NP-hard when the so-called factor graph describing a linear block

code has cycles (Lauritzen and Spiegelhalter, 1988). Pearl (1982) also assumed an

acyclic graph for belief propagation, the case when belief propagation is optimal.

However, it is good to remember here that all the following message-passing

algorithms are essentially suboptimal, but still perform well despite the existence

of cycles in the graph.

4.3.1 Exact inference on factor graphs and the sum-product algorithm

We will now give a short introduction to factor graphs, where we derive the

general sum-product algorithm for factor graphs that are trees, after which we

consider the special case of decoding of linear block codes with factor graphs.

This will largely follow Kschischang et al. (2001) and Richardson and Urbanke

(2008). Another comprehensive work on probabilistic methods in relation to

coding is by MacKay (2003).

First we introduce some notation. A function

д(x1,x2, . . . ,xn )

is written equivalently as

д(x),

where x is the vector of variables (x1,x2, . . . ,xn ). We will write the sum over the

variables in x as ∑
x
д(x) =

∑
x1,x2,...,xn∈S

д(x1,x2, . . . ,xn ),

where S is the domain of each xi . The domain is assumed to be the same for all xi .
That is, x ∈ Sn where n is the length of x. For example, for binary codes S = {0,1}
or {−1,1}. We write the marginal of д(x) with respect to some variable xi which

appears in x as ∑
x\xi

д(x) =
∑

x1,x2,...,xi−1,xi+1,...,xn∈S

д(x1,x2, . . . ,xn ),

where with slight abuse of notation we mean by x\xi the vector xwith xi removed.

We will sometimes write ∑
x\xi

д(x) =
∑
x\xi

д(xi ,x \ xi )

to make it explicit that the variable with respect to which we are marginalizing

appears in x.
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Suppose then that we have a function д on the variables x = (x1,x2, . . . ,xn )
which we assume has the factorization

д(x) =
m∏
a=1

дa (xa ). (4.3)

The xa are sub-vectors of x. We can represent the factorization (4.3) of д with the

help of a factor graph. The factor graph is a bipartite graph consisting of factor
nodes and variable nodes. The factor graph has one factor node for each factor

in (4.3), and one variable node for each variable in x. We draw the factor nodes

as squares and the variable nodes as circles. A factor node a corresponding to a

factor дa (xa ) is connected to a variable node i corresponding to a variable xi by

an edge if and only if xi appears in xa . In other words, the neighboring variable

nodes of a factor node a in the factor graph correspond exactly to the variables

which appear in xa .

Example 5 (Factorization of a function)

The factor graph of the function

д(x) = д(x1,x2,x3,x4,x5) = д1(x1)д2(x2)д3(x1,x2,x3)д4(x3,x4)д5(x3,x5) (4.4)

is shown in Figure 4.1. Note that we have drawn the factor graph laid out as a tree
with x1 chosen as the root.

x1

x2 x3

x4 x5

д1

д2

д3

д4 д5

Figure 4.1: The factor graph of the function д in (4.4) drawn as a rooted tree with x1 as

the root.
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The general problem we wish to solve in order to perform decoding is to

compute the marginal of д with respect to some variable xi . More precisely, we

wish to compute ∑
x\xi

д(x). (4.5)

We will eventually show that so-called maximum a posteriori decoding can be

formulated as computing a marginal as above. In the case of maximum a posteriori

decoding of binary linear block codes each variable takes one of two values and

naïvely performing the summation would require summing over 2
n−1

terms. We

will for the case of decoding assume that the variables take the values in {−1,1}.
In the case that the factor graph corresponding to д is a tree—a connected

acyclic graph—we can do the marginalization more e�ciently. To see the relation

between the marginalization of д with respect to xi and the factor graph we can

draw the factor graph as a rooted tree with the variable node i as the root as we

have done in Figure 4.1. Figure 4.2 shows the factor graph of a generic function

д as a rooted tree. We will use the same notation in the derivation beginning

in (4.6) as in Figure 4.2. For a rooted tree with root i , we say that the factor or

variable node j is a child of the factor or variable node k if k is adjacent to j on

the unique path from the root i to j. The node k is then called the parent of j.
The children of the root node i are then exactly the neighbors of i . The children

of a node which is not the root node are the neighbors of the node excluding

its parent node. A node j is a descendant of a node k if k lies on the unique path

from the root i to j. A leaf node is a node which has degree one. We will denote

the vector containing all variable nodes which are descendants of the node i by

zi . If i is a variable node we include xi in zi as well. We will occasionally refer to

variable nodes i and factor nodes a by the corresponding variables xi or factors

дa , respectively, to ease the reading.

Example 6 (Root, parents, children, descendants and leafs of a tree)

In the factor graph shown in Figure 4.1 the variable node x1 is the root of the
tree. The children of the root are the factor nodes д1 and д2. The variable node x5

is a descendant, but not a child, of the variable node x3. The factor node д3 is the
parent of the variable node x3. Finally, the variable node x5 is a leaf node.

To begin with, we consider each child a of the root i as corresponding to

a single factor Ga . A factor Ga is a function of the parent variable xi and all

descendant variables za . The function д may then also be written as

д(x) =
∏

a∈N (i )

Ga (xi ,za ). (4.6)
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The factorization (4.6) is in general not the same factorization as that in (4.3), but

each factor Ga will consist of several factors appearing in (4.3). Only in the case

that all factors in (4.3) are functions of the variable xi with respect to which we

are marginalizing are the two factorizations (4.6) and (4.3) equal. Since the factor

graph is a tree, the variables in za for all a ∈ N (i ) form a partition of the variables

in x \xi , meaning they are pairwise disjoint and contain together all the variables

in x \ xi . We can thus rewrite the marginalization using the distributive law as∑
x\xi

д(xi ,x \ xi )

=
∑
x\xi

∏
a∈N (i )

Ga (xi ,za )

=
∏

a∈N (i )

∑
za

Ga (xi ,za ). (4.7)

The result is that the marginal of д with respect to xi is the product of marginals

of each of the factors Ga .

xi

xj

дa

Hj

za

xa

zj

Figure 4.2: The factor graph of a generic function д that factorizes into multiple factors.

The variable node neighbors of a are denoted by xa , the descendant variable nodes of

the check node a are denoted by za , and the descendants of the variable node j including

j itself is denoted by zj .

Next, let us consider the marginal

∑
za Ga (xi ,za ) corresponding to one of

the children a of the root i . Without loss of generality, Ga can be factorized

further. The factor Ga then has a factor which is called the kernel. The kernel

H (xa ) = H (xi ,xa \ xi ) of Ga is the only function in the factorization of Ga which

depends on the parent xi . In addition, it depends on the child variables of a,
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but not on the descendant variables of a. The kernel is also exactly the factor

corresponding to the child a of the root i in the factorization (4.3), so we can

write it as дa (xa ). In addition, Ga may consist of another set of factors, one for

each child variable node j of a. The factor corresponding to the child j is denoted

by Hj . Each Hj is a function of the variable xj—which corresponds to the child j
of a—and all descendant variable nodes zj of j. The factorization of Ga can then

be written as

Ga (xi ,za ) = H (xi ,xa \ xi )
∏

j∈N (a)\i

Hj (xj ,zj )

= дa (xa )
∏

j∈N (a)\i

Hj (xj ,zj ).

The marginal ∑
za

Ga (xi ,za )

which we are now considering can then be rewritten as∑
za

дa (xa )
∏

j∈N (a)\i

Hj (xj ,zj ).

We can then use the distributive law again to rewrite the marginal. Doing so we

get ∑
za

Ga (xi ,za \ xi ) =
∑
za

дa (xa )
∏

j∈N (a)\i

Hj (xj ,zj )

=
∑
xa\xi

дa (xi ,xa \ xi )
∏

j∈N (a)\i

∑
zj

Hj (xj ,zj ). (4.8)

Now we see that the terms

∑
zj Hj (xj ,zj ) are of the same form as the form we

started with for marginalizing д in (4.5), so we can apply the above recursively to

each smaller marginal. Applying this until we reach the leaf nodes we reduce the

sums so that each sum is always at most over a number of variables equal to the

maximum degree of the graph.

Example 7 (Rearranging the marginal of a function)

We may wish to compute the marginal of д(x) in (4.4) in Example 5 with respect to
the variable x1. In that case we can rearrange the sumwith the help of the distributive
law to get:∑

x\x1

д(x) = д1(x1)
∑
x2,x3

д3(x1,x2,x3)д2(x2)
∑
x4

д4(x3,x4)
∑
x5

д5(x3,x5) (4.9)

The factor graph in Figure 4.1 is drawn with x1 as the root.
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The decomposition we have just shown in (4.7) and (4.8) gives rise to a

convenient way to compute the marginals by sending messages between nodes,

namely the sum-product algorithm. We �rst consider the single marginal of д
with respect to xi that we have been considering thus far. The intuition behind

the sum-product algorithm is that since we assumed that the factor graph is a

(rooted) tree we can begin at the leaf nodes by sending suitable messages from

the leaf nodes to their parents. Once a non-leaf node has received all messages

from its children it will compute a new message and pass it to its parent node.

Finally, at the root node we simply take the product of the incoming messages.

In the general sum-product algorithm, we send functions fa→i (x ) from a factor

node a to a variable node i , and functions vi→a (x ) from variable nodes i to factor

nodes a. In practice the functions are tables of the functions evaluated at the

values in the domain of xi . Let us look at how we can compute a marginal by

only passing messages in the following example.

Example 8 (Computing the marginal)

The decomposition of (4.4) is shown in (4.9). We now compute the marginal of
(4.4) with respect to x1 by instead passing messages towards the root in the corre-
sponding rooted tree in Figure 4.1. We begin at the leaf variable nodes x4 and x5. At
these nodes we will simply send the constant function with value 1 to their respective
parent nodes. At the factor nodes д4 and д5 we have now received all messages from
their respective child nodes. Then, at the factor nodes д4 and д5 we will compute
the marginals

∑
x4
д4(x3,x4) and

∑
x5
д5(x3,x5), respectively. That is, we have now

at the factor node д4 computed the marginal of the product of the kernel at д4 and
the incoming messages from the children of д4 with respect to x3. In this case the
message from the single child node was the constant function with value 1. At the
factor node corresponding to д5 we have done the corresponding operations.

The newly computed marginals at д3 and д4 are then sent to the common parent
node x3. The variable node x3 has now received messages from all its children. At x3

we then compute the pointwise product of the messages from its children, that is∑
x4

д4(x3,x4)
∑
x5

д5(x3,x5).

We can see that we have now computed the rightmost two sums in the decomposition
in (4.9).

We continue with the leaf node д2. In this case the node is a factor node, so we
simply send the function itself to its parent. The variable node x2 then receives д2 and
computes the pointwise product of the messages coming from its child nodes. Since it
only has one child, it simply passes д2 on to its parent д3. Now д3 has received all its
incoming messages. At д3 we then again take the product of the incoming messages
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from its child nodes and the kernel and marginalize the product with respect to the
parent node x1. At д1 we again simply send the function itself since it is a factor
node and leaf node. Finally, at x1 we only need to take the pointwise product of the
two incoming messages from д1 and д3 and we will have computed the marginal
(4.4).

Following the intuition shown in Example 8, we see that the correct way to

send a message from a leaf node that is a variable node to its parent node is to

send the constant function with value 1. At a leaf node that is a factor node we

instead send the factor corresponding to the leaf node. At a non-leaf, non-root

variable node j we perform a pointwise multiplication of the incoming functions

from the child factors and send the function to the parent factor a. More precisely,

we send

vj→a (xj ) =
∏

b∈N (j )\a

fb→j (xj ) (4.10)

from j to a. At a non-leaf factor node a we take the pointwise product of the

kernel дa and the incoming messages vk→a , all of which are functions of xj , the

parent variable of a. We then marginalize the product with respect to xj . More

precisely, we send

fa→j (xj ) =
∑
xa\x j

дa (xa \ xj )
∏

k∈N (a)\j

vk→a (xj ).

from a to j . To �nish the marginalization we take at the root node i the pointwise

product of all incoming messages. We get∑
x\xi

д(x) =
∏

b∈N (i )

fb→i (xi ). (4.11)

We can thus using the rules in (4.10) and (4.11) compute the marginal of a generic

function д(x) with respect to a variable xi .
In general we often want to compute the marginal of д with respect to all

variables in x in turn. In such a case we could naïvely perform the above message-

passing rules separately for each variable. A better way to do it is to reuse messages,

since many of them will be identical for marginals of д with respect to di�erent

variables. To do this, we will again follow the rules in (4.10) and (4.11) but we

will not have a designated root node. We will begin by passing messages from

each leaf node to its only neighbor. At a non-leaf node we send messages to all
its neighbors. More speci�cally, at a variable node i we will send a message to

a neighboring factor node a only when all incoming messages from the factor
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nodes b ∈ N (i ) \ a have arrived at i . The same holds for messages sent from

non-leaf factor nodes to variable nodes. Note, however, that we do not need to

send messages to leaf nodes that are factor nodes since we only perform �nal

marginalization at variable nodes. Proceeding this way we can send at most

one message in each direction of an edge after which we can perform the �nal

marginalization step (4.11) at each variable node separately.

4.3.2 The sum-product algorithm for decoding

Let us return to the actual problem at hand, namely that of decoding of LDPC

codes. What we wish to compute, for each bit in a received word, is the maximum
a posteriori (MAP) estimate. That is, we want to choose

x̂i = arg max

xi

p (xi |y)

= arg max

xi

∑
x\xi

p (x|y)

= arg max

xi

∑
x\xi

p (x)p (y|x) (4.12)

as the value for the ith bit. The vector y contains the channel values (y1,y2, . . . ,yn ).
The posterior probability p (x|y) follows from rewriting the joint probability

p (x,y) in two ways in terms of conditional probabilities as

p (x,y) = p (x|y)p (y) = p (y|x)p (y).

Rearranging the second equality we get the posterior probability:

p (x|y) =
p (y|x)p (x)

p (y)
.

This is also known as Bayes’ theorem. The important parts of the posterior

are (i) the prior p (x), and (ii) the likelihood p (y|x). The denominator p (y) is a

constant with the given channel values y and serves as a normalization term.

When maximizing (or minimizing) we can ignore constant scaling factors, so

p (y) is left out in the MAP estimate in (4.12). Thus we only need to compute the

prior and the likelihood.

For the prior of a sent word we assume that each codeword is equally likely to

have been sent and a non-codeword is never sent. In that case the prior is equal

to the characteristic function of a code C , again ignoring a constant scaling factor.

We will use Iverson’s bracket notation in the following. An expression [P] is 1 if
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the proposition P is true and 0 otherwise. The characteristic function of a code C
is de�ned for all x ∈ {0,1}n by

χC (x) =
m∏
a=1

[

∏
i∈N (a) xi = 1]

∝ p (x),

The function χ (x) is then 1 if and only if the modulo-2 sum of each parity-check

is 0. We see that the Tanner graph of a code is exactly the factor graph of the

characteristic function of a code, with the convention of square nodes for factors

and circular nodes for variables. The likelihood is

p (y|x) =
n∏
i=1

p (yi |xi )

since we assume that the noise of each received channel value yi is independent.

Note that the likelihood is a function of x only since the channel values y are

given. Finally, the posterior probabilities are given by

p (x|y) ∝ p (x)p (y|x)

=

m∏
a=1

[

∏
i∈N (a) xi = 1] ·

∏n
i=1

p (yi |xi ).

The decision for a single variable i is then

x̂i = arg max

xi

∑
x\xi

m∏
a=1

[

∏
j∈N (a) xj = 1] ·

∏n
j=1

p (yj |xj ).

This way we choose for each bit the value that is most likely given the chan-

nel values and we minimize the bit error rate. Notice that we now have two

sets of factors: one set corresponding to the characteristic function and one set

corresponding to the likelihoods of the channel values. Thus the factor graph

needs to be slightly modi�ed from the plain Tanner graph. We add a factor node

representing the factor p (yi |xi ) for all i = 1,2, . . . ,n. We will call the factors

p (yi |xi ) the channel factors and the factors [

∏
i∈N (a) xi = 1] the check factors. The

factor graph used in decoding of the code in (2.1) is shown in Figure 4.3.

We now know that if the factor graph of the code is a tree we can perform

MAP decoding using the message-passing rules presented in (4.10) and (4.11).

Following the message-passing rules, the variable-to-check messages for decoding

are the same as the generic variable-to-factor messages as stated in (4.10), namely

vi→a (xi ) =
∏

b∈N (i )\a

fb→i (xi ). (4.13)
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Figure 4.3: The factor graph used in decoding of the code in (2.1).

Note that since the channel factors are leaf nodes, the messages in (4.13) are only

sent from variable nodes to check factors. For the factor-to-variable messages

we make a distinction between the channel factors and check factors, and state

separate message-passing rules for them. The check-to-variable messages are

fa→i (xi ) =
∑
xa\xi

[

∏
j∈N (a) xj = 1]

∏
j∈N (a)\i vj→a (xj ). (4.14)

We will denote a message going from a channel factor to a variable node i simply

by fi (xi ) as each channel factor is connected to only one variable node. We send

the message

fi (xi ) = p (yi |xi )

to a variable node i from the channel factor adjacent to i .
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Unfortunately in the case of LDPC codes, the factor graphs are in general not

trees. The cycles in a factor graph which is not a tree prevent us from directly

applying the sum-product update rules meant for trees in (4.10)–(4.11). To do

exact inference on factor graphs with cycles one can for example use the junction

tree algorithm, which produces a new acyclic graph on which we can again use

the sum-product algorithm. This, however, is not practical in general for graphs

with cycles (Lauritzen and Spiegelhalter, 1988). Another option is to ignore the

fact that the sum-product algorithm should be applied only when the graph is

acyclic, and apply the sum-product rules to a cyclic factor graph nonetheless.

This is, in fact, the approach taken in decoding and has been shown to lead to

good results in practice, assuming that the graph does not contain many short

cycles. We have just concluded that the sum-product update rules cannot be

applied directly to a cyclic graph. What we can do, however, is to �rst initialize
all messages to some value, after which all incoming messages at each node

are de�ned and we can apply the usual sum-product update rules. This way of

applying the sum-product to a factor graph with cycles is sometimes called loopy
belief propagation. If the Tanner graph has many short cycles, a message sent

along an edge on a short cycle will more often use information that has been

sent along the same edge earlier, meaning that the message uses less extrinsic

information compared to messages that are sent along edges that do not belong

to short cycles.

To use the sum-product algorithm in decoding of a code whose factor graph

has cycles we initialize the messages as follows. First, we set the outgoing mes-

sages at each check factor to zero. Second, we set the outgoing message at each

channel factor to p (yi |xi ). We do not need to initialize the outgoing messages

at the variable nodes. At this point we have de�ned all incoming messages at

each variable node. We can then proceed with the normal sum-product update

rules. At each variable node we use the update rule (4.13) to send messages to the

check factors. Following that we update the check-to-variable messages using

(4.14). We then alternate between sending all check-to-variable messages and

all variable-to-check messages for a �xed number of rounds, where each round

consists of updating all check-to-variable and all variable-to-check messages once.

Once we have updated the messages for a �xed number of rounds we perform

the �nal marginalization step as in (4.11). Finally, as an estimate x′ of the sent

codeword we set

x′i = arg max

xi∈{1,−1}

∏
b∈N (i )

fb→i (xi ), ∀i = 1,2, . . . ,n. (4.15)
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Note that we denote the estimate of the sent codeword by x′ to di�erentiate it

from the true MAP estimate x̂ as the two will generally not be the same when the

factor graph has cycles. Alternatively, we can calculate (4.15) in each round when

we update the variable-to-check messages. If the estimate x′ forms a codeword

we can stop the decoding process early and return x′ as the �nal estimate.

In the case of decoding of binary linear codes we can further simplify the

sum-product algorithm. Instead of sending functions as messages, it is enough to

send a single scalar as a message and this will be equivalent to sending functions.

To arrive at this we will use the log-ratios of the function values that we are

sending as messages. More precisely, we will at each channel factor initialize

the outgoing message to the logarithm of the ratio of the two function values as

follows

fi = ln

(
p (xi = 1|yi )

p (xi = −1|yi )

)
such that fi is now a single scalar. Using log-ratios also for the variable-to-check

and check-to-variable messages we get what is called the tanh-rule for the sum-

product algorithm. The tanh-rule modi�es the check-to-variable messages so that

a message sent from a check factor a to a variable node i is given by

fa→i = 2 tanh
−1 *.

,

∏
j∈N (a)\i

tanh

(vj→a

2

)+/
-
. (4.16)

A message sent from a variable node i to a check factor a is given by

−5 0 5

−1

−0.5

0

0.5

1

Figure 4.4: The

tanh function.

vi→a = fi +
∑

b∈N (i )\a

fb→i . (4.17)

The derivation of the tanh-rule is shown in Appendix A.2. We can also factor out

the signs in the check-to-variable (4.16) updates to get

fa→i = 2

∏
j∈N (a)\i

sgn(vj→a ) · tanh
−1 *.

,

∏
j∈N (a)\i

tanh

(
|vj→a |

2

)
+/
-
. (4.18)

The form of the tanh-rule with the signs factored out makes it especially conve-

nient to interpret the update rules. In the check-to-variable messages (4.18), the

product of signs carries the message of which sign the receiving variable node

should have according to the check factor sending the message as we are leaving

out the sign of the message from the receiving variable node. The second part of

the check-to-variable rule in (4.18) can be thought of as carrying the reliability of

the adjacent variable nodes, again excluding the one we are sending to. Excluding
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the values of the nodes we are sending messages to can be thought of as avoiding

using the values between two nodes too often, and instead relying on extrinsic
information coming from the other adjacent nodes. The variable-to-check updates

(4.17) can be seen as the check nodes voting on what value the variable node

should have, weighted by the message magnitudes or reliabilities.

When using log-ratios as messages the estimate x′ of the transmitted code-

word is set to

x′i =



1, if vi→a = fi +
∑

b∈N (i ) fb→i > 0

−1, otherwise,

(4.19)

for all i = 1,2, . . . ,n. In (4.19) we use all the incoming messages at the variable

node to estimate the transmitted word. Here it is good to remember that even the

exact MAP solution does not necessarily give a codeword as the estimate. This is

because we are minimizing the bit error rate for each bit individually.

Using log-ratios is better in practice as it avoids under�ow of �oating point

values when many small values are multiplied. There are other variations of

calculating the messages which also simplify the original sum-product update

rules. Chen et al. (2005) present a few formulations of the sum-product decoder

for linear codes.

A similar formulation was derived by Gallager (1963) completely indepen-

dently of the factor graph framework, but also using log-ratios as messages. Only

the check-to-variable messages are di�erent from the tanh-rule in (4.16). The

update rule is

fa→i =
∏

j∈N (a)\i

sgn(vj→a ) · д
*.
,

∏
j∈N (a)\i

д

(
|vj→a |

2

)
+/
-
,

where д(x ) = ln

(
ex+1

ex−1

)
and is de�ned for x > 0. This function is an involution,

2 4

2

4

Figure 4.5: The

function

д(x ) = ln

(
ex+1

ex−1

)
. meaning that it satis�es д(д(x )) = x . Although the evaluation of д(x ) requires

more work than the tanh and tanh
−1

functions, it is convenient if evaluated with

the help of a look-up table, as one only needs one look-up table. This form of the

check node update rule also follows easily from the derivation for the tanh-rule.

4.3.3 Implementing the sum-product decoder

While research on bit-�ipping decoders has focused on improving the error-

correcting performance of the decoders, the focus has been on reducing com-

plexity for message-passing decoders. For example, the full sum-product decoder

requires multiplication of �oating-point values and the evaluation of the tanh

and tanh
−1

functions, which are all costly operations in hardware compared to
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for example simple XOR operations. For this reason approximations have to be

made when implementing these decoders. An additional source of complexity is

that messages are generally stored for each edge of the Tanner graph, as opposed

to storing values only for each variable node with bit-�ipping decoders.

Quantized symbol alphabet

The �rst approximation one is forced to make is the use of �nite-precision values

for the messages. While an exact implementation would require in�nite precision,

in practice the precision is limited to only 32 or 64 bits at most as a consequence

of the binary32 and binary64 �oating point speci�cations (IEEE, 2008). However,

it turns out that one does not necessarily need more than 4–8 bits of precision

for the messages, as veri�ed by a large number of works on message-passing

decoders, for example by He et al. (2003); Xiao et al. (2008); Zhang et al. (2001);

Zhao et al. (2005). Hardware implementations also generally use far fewer than

32 or 64 bits for the message values. Using fewer message bits already reduces

the complexity of the decoders signi�cantly.

The min-sum decoder

The min-sum decoder is essentially a lower-complexity version of the sum-

product decoder. In some sense it can be seen as the sum-product decoder with

a di�erent set of operators (Richardson and Urbanke, 2008). Alternatively, it

can be seen as an approximation to the sum-product decoder (Fossorier et al.,

1999). The min-sum decoder performs (approximate) blockwise MAP decoding, as

opposed to (approximate) bitwise MAP decoding in the case of the sum-product

decoder. Since the min-sum algorithm can be seen as an approximation to the sum-

product algorithm, which is the same as belief propagation, it is also sometimes

called BP-based decoding. It was presented in the context of decoding by Chung

(2000); Fossorier et al. (1999); Wiberg (1996), but special cases such as the Viterbi

algorithm had been presented earlier. The update rules are:

vi→a = fi +
∑

b∈N (i )\a

fb→i ,

fa→i = 2

∏
j∈N (a)\i

sgn(vj→a ) · min

j∈N (a)\i
|vj→a |.

The only di�erence to the sum-product decoder is that the magnitudes of the

check-to-variable message are determined only by the magnitude of the smallest

incoming message. The variable-to-check messages are identical to the sum-

product updates in (4.17). The �nal estimate for the received word is as given in

(4.19).
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The o�set and normalized min-sum decoders

The min-sum decoder is less complex than the sum-product decoder, but it

comes with a cost in error-correcting performance. Some work has been put in

to improve the performance of the min-sum decoder. Chen et al. (2005); Chen

and Fossorier (2002a,b) presented two improvements to the min-sum decoder,

both of which work to minimize the e�ect of overestimating the message values.

Yazdani et al. (2004) presented essentially the same modi�cations but for the

sum-product decoder. Both modi�cations apply to the check-to-variable updates.

The two modi�cations are termed o�set and normalized BP-based decoding. The

normalization modi�cation is

fa→i = α
∏

j∈N (a)\i

sgn(vj→a ) · min

j∈N (a)\i
|vj→a |. (4.20)

The messages are simply scaled by a factor α , which is set to a value which results

in the best decoding performance. The o�set modi�cation is equally simple:

fa→i =
∏

j∈N (a)\i

sgn(vj→a ) ·max

{
min

j∈N (a)\i
|vj→a | − β ,0

}
.

In e�ect, values smaller than β are set to zero, while all larger values are shifted

down by β .

λ-min decoder

Boutillon et al. (2003) presented an alternative modi�cation to the min-sum

decoder: the λ-min decoder. Once again, the modi�cation is simple but can

have a signi�cant impact on the performance. This of course comes at a cost in

arithmetic complexity. The modi�cation consists of using the λ smallest messages

for calculating the magnitude of the message instead of only the smallest, as in

the min-sum algorithm, or all messages, as in the sum-product decoder. Let λ > 1

and let Nλ (j ) be the set of indices of the λ smallest incoming messages to node j.
The check-to-variable updates are then

fa→i =
∏

j∈Nλ (a)\i

sgn(vj→a ) ·
∏

j∈Nλ (a)\i

|vj→a |. (4.21)

Successive relaxation

The idea of successive relaxation in message-passing decoders was �rst considered

for LDPC codes in the context of analog decoders by Hemati and Banihashemi

(2006) and later more thoroughly investigated in terms of decoding performance
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by Xiao et al. (2008). The idea behind successive relaxation comes from the fact

that while on cycle free graphs the sum-product decoder is exact, on graphs with

cycles it is not guaranteed to be optimal. The values of the messages—the beliefs—

are overestimated due to dependencies between messages caused by cycles,

leading to suboptimal performance. The o�set and normalization modi�cations

to the min-sum decoder in (4.20) and (4.21) essentially attempt to solve the same

problem. The idea behind successive relaxation is to only gradually change the

message values. The update rules for the sum-product decoder with log-ratio

messages are

fa→i B fa→i + β
*.
,
2

∏
j∈N (a)\i

sgn(vj→a ) · tanh
−1 *.

,

∏
j∈N (a)\i

tanh

(
|vj→a |

2

)
+/
-
− fa→i

+/
-
,

vi→a B vi→a + β
*.
,
fi +

∑
b∈N (i )\a

fb→i −vi→a
+/
-
.

Here β is a free parameter chosen to be between 0 and 1. It is easy to see that

when β = 1 this corresponds to the usual sum-product tanh update rules, which

is also called successive substitution. When β < 1 the messages are only adjusted

by a fraction β towards the usual new values. This works to alleviate the over-

estimation of the messages. The result is that for some of the codes tested even

the min-sum decoder with successive relaxation outperforms the standard sum-

product decoder. The sum-product decoder with successive relaxation performs

at least as well as the min-sum decoder with successive relaxation and better

than all decoders with successive substitution.

4.3.4 Binary message-passing decoder

A di�erential decoding with binary message-passing, or DD-BMP, decoder was

presented by Mobini et al. (2009), based on the ideas of successive relaxation

applied to a binary message-passing decoder. This approach takes the message-

passing algorithms to the lower end of the complexity spectrum, with one version

of the decoder being similar in complexity to some of the bit-�ipping decoders.

The DD-BMP operates by only sending binary messages along the edges, while

the variable nodes have a memory with one or more bits.

The DD-BMP introduces a memory ci→a for each edge going from a variable

node i to a check node a. The memory has multiple bits to represent its value,

while the messages sent consist of only a single bit. The messages take values
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from {1,−1}. The check-to-variable update is

fa→i =
∏

j∈N (a)\i

vj→a .

At the variable nodes, a memory is updated as

ci→a = ci→a +w ·
∑

b∈N (i )\a

fb→i ,

where w is now a free weight parameter. Having computed the memory, the

variable-to-check update is then

vi→a = sgn (ci→a ) .

The memory c is initially set to the quantized value of the channel output. The

memory serves as the state in which the variable is at each iteration of the decoder.

The �nal decision for a variable node i is

x′i =



1, if

∑
a∈N (i ) sgn ( fa→i ) + sgn

(
yj

)
> 0,

0, otherwise,

for all i = 1,2, . . . ,n. That is, the decision is the sign of the sum of the signs of the

memories and the sign of the channel value. The DD-BMP decoder signi�cantly

reduces the complexity of a hardware implementation as messages require only a

single bit, and updates consist of only incrementing or decrementing the memory

by one.

A further reduced complexity decoder was also proposed, the MDD-BMP,

where the m stands for modi�ed. In the MDD-BMP decoder a single memory ci is

kept for each variable node, instead of one for each edge of the Tanner graph. This

simpli�cation resulted in a larger or smaller loss in performance depending on

the code. In general, it did not perform much worse than the standard DD-BMP

and can be a viable alternative for some applications. The MDD-BMP variable

memories are updated as

ci = ci +w ·
∑

a∈N (i )

fa→i .

Cushon et al. (2014) presented a hardware simulation of both the DD-BMP

decoder and the MDD-BMP decoder. They also presented a further modi�cation

to the decoder by Mobini et al. (2009). They call this modi�cation the improved
di�erential binary decoding algorithm. Cushon et al. note that the standard DD-

BMP decoders are sensitive to trapping sets, a concept similar to stopping sets. To
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reduce the e�ects of trapping sets two modi�cations were proposed: degeneration
and relaunching. Degeneration consists of performing the following update for

to the variable node memories:

ci = ci +w ·
∑

a∈N (i )

fa→i − d · sgn (ci ) .

Here the free parameter isd added to improve performance. The arbitrary constant

д determines the amount of degeneration that occurs. If the sum of the incoming

messages is less than
д
d the memories move towards zero. The purpose of the

degeneration is to avoid message values staying constant in trapping sets.

The second modi�cation the authors proposed was relaunching. It simply

consists of starting the decoder again. However, as the decoder is deterministic,

the decoder is started with slightly changed initial memories. A full run of the

decoding algorithm is called a phase, and a phase is indexed by p. The decoder is

relaunched on phase p such that the memories are initialized to

ci = sgn (yi ) ·max

(
1 − sgn (yi )

2

, |yi | − F (p,i )

)
,

where F (p,i ) is a non-negative function which depends on the phase p and the

variable node j. In the work by Cushon et al. the decoder was run for 6 phases,

with 45 iterations in each phase. They found that the largest improvement came

from adding degeneration to the decoder, while relaunching still slightly improved

the performance.

4.3.5 Message-passing schedules

Some of the schedules already presented for bit-�ipping decoders apply equally

well to message-passing decoders, and were in some cases initially devised for

message-passing decoders. The standard decoding schedule consists of �rst updat-

ing the variable to check messages, after which all the check-to-variable messages

are updated. This is repeated until decoding is successful or a maximum num-

ber of iterations is reached. One iteration with a message-passing algorithm

refers to updating all the variable-to-check and check-to-variable messages once.

Processing the messages in turn like this is called a �ooding schedule.
Layered, or group shu�ed, decoding was already introduced in one form

in the context of bit-�ipping decoders in the previous sections. The initial idea

was, however, presented in the context of message-passing decoders. Updating

the messages on both sides of the Tanner graph in smaller groups is at least as

bene�cial for message-passing decoders as it is for bit-�ipping decoders for the

same reason: variable and check nodes can utilize updated values much earlier

instead of relying on old messages.
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Informed dynamic scheduling

Elidan (2006) presented a scheme for improving the convergence of general belief

propagation algorithms and Vila Casado et al. (2007) presented and analyzed

the improvements in the context of LDPC code decoding. They call the general

method of using a more sophisticated schedule for a message-passing algorithm

informed dynamic scheduling. The idea is to process and propagate messages

which matter the most �rst. To arrive at a good schedule, they use residual belief
propagation, which essentially involves calculating the absolute value of the

change in the message values from one iteration to the next. The edges are then

held in a priority queue according to their residuals and the message with the

highest residual is �rst calculated, propagated, and reinserted into the priority

queue in the appropriate position.

The authors �nd that informed dynamic scheduling improves on the perfor-

mance of the sum-product algorithm while requiring fewer iterations (an iteration

in this case is de�ned as processing a number of messages equal to the number of

edges in the Tanner graph). The downside of this approach is again limited par-

allelizability. The straightforward implementation is inherently sequential. The

authors also mention a parallel implementation of informed dynamic scheduling,

similar to multi-bit bit-�ipping decoders or bit-�ipping decoders with a threshold.

Instead of only processing the message with the highest residual, one processes

the p messages with the highest residuals. They result is a negligible loss in

performance, but the authors do not mention how large p was chosen to be.

While the method showed promising results in sequential decoding, it is unclear

whether such a schedule can e�ciently be implemented in hardware. The need

for a priority queue also increases complexity.

4.4 Turbo codes

We will for completeness give a brief overview of Turbo codes. The reason for

presenting them at this point is that they rely on the same message-passing tools

which we have just presented for LDPC codes. Turbo codes are convolutional
codes. This means that, unlike LDPC codes, they operate on continuous streams
of data instead of blocks of data, but in practice one uses �nite streams of data

also for Turbo codes. Turbo codes are de�ned by a linear feedback system.

The decoding of Turbo codes can be done with what is also essentially the

sum-product decoder. In the simplest case the factor graph one gets for the

maximum a posteriori estimation of the coded bits is a tree. In this case the sum

product is also exact. In general, however, Turbo codes consist of a concatenation

of individual Turbo codes either in parallel or serially. In this case the factor

graph will not be a tree but it will, similarly to the factor graph of LDPC codes,
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consist of several sets of nodes such that one can do message-passing where

one updates the messages from one set of nodes at a time. This resembles the

conventional schedule for LDPC message-passing decoders where all variable-to-

check messages are updated at once, and then all the check-to-variable messages.

A thorough description of Turbo codes is given by Richardson and Urbanke (2008),

and Berrou et al. (2005) gives a more general overview of the �eld of Turbo codes.

4.5 Summary

There has been a wealth of work on decoding of LDPC codes in the last 10–15

years. The main types of decoders are the message-passing and the bit-�ipping

decoders. Despite the recent increased interest in bit-�ipping decoders, message-

passing decoders often still come out ahead, at least in terms of error-correcting

performance. This is perhaps a natural consequence of the message-passing

decoders in general using more information than the bit-�ipping decoders. Still,

they can be made low-complexity as is for example the case with the MDD-BMP.

Bit-�ipping decoders, on the other hand, have seen improvements in the error-

correcting performance without too large costs in arithmetic complexity. However,

they still have not been able to achieve low enough bit-error rates compared to

message-passing decoders. On the other hand, there may be situations where

one can be more relaxed in terms of error-correction and get a corresponding

increase in throughput.

We have not covered here another notable class of message-passing decoders:

stochastic message-passing decoders (Gaudet and Rapley, 2003; Gross et al., 2005;

Huang et al., 2013; Naderi et al., 2011; Noorshams and Iyengar, 2014; Tehrani

et al., 2006, 2008, 2010, 2011). In the standard sum-product decoder messages

are soft values, represented generally by more than one bit. Stochastic message-

passing decoders operate using probabilities (as opposed to log-ratios as with

the tanh-rule) and send instead streams of bits which are Bernoulli distributed

according to the probabilities concerning a particular edge over which the stream

is sent. We have not covered stochastic message-passing decoders here as there

exists an extensive amount of work about them and the general principles are

the same as in the sum-product decoder. However, they are potentially important

as they present yet another way to reduce the complexity of decoding algorithms

without too much loss in error-correcting performance.

Another aspect that will become more clear in the following chapter is that

some degree or form of parallelism is often necessary to achieve high enough

decoding throughputs. Both message-passing decoders and bit-�ipping decoders

bene�t from sequential schedules as information is propagated faster to other

nodes. In the case of for example informed dynamic scheduling the absolute
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number of operations per bit needed for decoding is clearly reduced. The increased

number of operations per bit in a parallel implementation is often, however, o�set

by being able to process many or all bits in parallel.

60



Chapter 5

Decoder implementations

In the two previous chapters we have reviewed algorithms for encoding and

decoding of LDPC codes. In practice, the algorithms must be implemented either

in software for simulating the behavior of codes or algorithms, or in hardware for

use in devices. Conveniently, simulating the behavior can be done exactly. That

is, software encoders and decoders work for encoding and decoding real pieces of

data, but at much lower throughputs than what can be achieved with hardware

implementations. When implementing encoders and decoders in hardware it is

important to consider not only the asymptotic complexity of the algorithms, but

also the complexity of the implementation for example in terms of how much

wiring is required on the chip, or what power consumption it has. Simply put,

constants matter. This is especially true for decoders as essentially all decoders

for LDPC codes are linear-time by design.

LDPC codes have in the recent years been incorporated as part of various

wired and wireless standards, some of which are the DVB (ETSI, 2012, 2013a,b),

WiMAX (IEEE, 2009), WiFi (IEEE, 2012b) and Ethernet (IEEE, 2012a) standards.

The various standards have speci�ed LDPC codes, but also put requirements on

the throughput and error-correcting performance of the decoders. This clearly

limits the actual decoders one can implement. For example, the DVB standards

set the requirements that for each type of code given in the standard and a given

signal-to-noise ratio, the decoder must achieve a bit-error rate of at most 10
−7

.

To examine the error-correcting performance of decoders simulations on a

conventional CPU is often su�cient. For examining the throughput of a decoder,

the ideal situation would be to have an actual hardware implementation of the

decoder. In practice, however, this is not feasible for testing various designs

quickly, so one can instead simulate the hardware and this way get approximate

results not only of how the decoding algorithm behaves but also of how the

hardware design would behave when implemented in terms of throughput and

power consumption. In this chapter, we will review some existing simulations

of specialized hardware decoders. These are presented in Section 5.1. Recent

advances in the programmability of graphics processing units (GPUs) have meant
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that they can be used to implement decoders with much higher throughputs

than what is possible with ordinary CPUs. A fair number of works have been

published on implementing message-passing decoders on GPUs and we review

them in Section 5.2. We will then present an implementation of a decoder for

GPUs by the author in Section 5.3.

5.1 Hardware simulations

Essentially all practical implementations of decoders employ some type of par-

allelism to achieve a high enough throughput. There are two main ways of

parallelizing a decoding algorithm. The �rst is to process the bits of a word

in parallel, which can be done for example with the �ooding schedule of the

message-passing decoders. We will call such a parallel implementation bit-parallel.
Alternatively, one can consider several received words simultaneously and per-

form the same operations on each word. This can easily be done since each word

is independent of each other. We will call such an implementation block-parallel.
An implementation can of course be both bit- and block-parallel.

A recent and promising work on decoder implementations is by Cushon et al.

(2014). They present a simulated hardware implementation of a binary message-

passing decoder, the MDD-BMP as presented in Section 4.3.4. They also implement

their proposed improvement to the MDD-BMP decoder, the improved di�erential

binary decoding algorithm. The implementation presented is bit-parallel and is

applied to �nite geometry LDPC codes, as speci�ed by the Ethernet standard. The

IDB achieves at best a throughput of 170 Gb/s in their implementation which is

higher than the throughput of 10 Gb/s required by the targeted Ethernet standard.

The decoder, as implemented, is often close to the error-correcting performance

of the o�set min-sum decoder, but does not surpass it. The improved di�erential

binary decoder surpasses in some situations the performance of the regular min-

sum decoder. However, especially the MDD-BMP decoder exhibits high error

�oors with certain codes. Codes with low variable node degrees are particularly

troublesome for both binary message-passing decoders implemented, con�rming

the observations of Mobini et al. (2009) which show the same problem.

In the work by Mohsenin et al. (2010) an improved split-row min-sum decoder

is implemented as a hardware simulation. The split-row min-sum further sim-

pli�es the check-to-variable updates of the min-sum decoder by using messages

from only a subset of the variable nodes adjacent to a check node sending a

message. This reduces complexity in a hardware implementation by requiring

less wiring, and increases throughput. The decoder achieves a peak throughput

of 90 Gb/s. Results for the implementation are only presented for a bit-error rate

down to 10
−7

so the presence of error �oors is not known unlike in the work
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of Cushon et al. (2014). Schläfer et al. (2012) present another high-throughput

decoder design. Their design implements a min-sum decoder with 9 iterations,

where their contribution consists of a fully unrolled decoder. Unrolling means that

each of the 9 iterations are executed on physically di�erent parts of the decoder

allowing multiple words to be decoded simultaneously in di�erent iterations

resulting in a reported increase in area and energy e�ciency compared with

earlier works. The fully unrolled decoder, however, comes with the downside of

being less �exible. For example, the number of iterations can not be adjusted for

di�erent levels of noise and a �xed number of iterations will always be performed.

They achieve a peak throughput of 160 Gb/s.

Naderi et al. (2011) present a hardware design of a stochastic message-passing

decoder. They provide designs for a short code from the Ethernet standard—the

same code used in the work by Cushon et al. (2014) and Mohsenin et al. (2010).

They also show a design for a longer code with block length 32768. The design for

the short Ethernet code achieves a peak throughput of 170 Gb/s and the design

for the longer code achieves a peak throughput of 480 Gb/s. The work shows that

stochastic message-passing decoders can be competitive in terms of throughput.

The three hardware decoder designs mentioned above all reach similar maxi-

mum throughputs. However, choosing the best decoder can be di�cult. There

are many factors to take into account, some of which are error-correcting perfor-

mance, latency, throughput, power consumption and chip size. As an example,

the fully unrolled decoder cannot be stopped early because of the �xed number

of iterations which may lead to higher power consumption compared to decoders

which can stop earlier when noise levels are low. On the other hand, a fully un-

rolled decoder can achieve higher throughput and, ignoring early stopping, can

in itself be more energy e�cient in normal operation compared to non-unrolled

decoders.

5.2 GPU implementations

Using graphics processing units (GPUs) for other uses than their original purpose

is becoming more common. Scienti�c computation can often bene�t from being

implemented on GPUs, and especially highly parallel work is well suited for

GPUs. Compared to common CPUs, GPUs often contain more processors, each

of which contains several cores. As a downside the cores typically run at lower

frequencies than CPUs. However, the higher number of cores generally makes

up for the lower frequency, assuming that the problem one wishes to compute is

su�ciently parallelizable. We will now give a brief overview of existing decoder

implementations using GPUs. Compared to specialized hardware implementa-

tions as presented in the previous section, GPUs generally achieve decoding
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throughputs on the order of 100–1000 Mb/s. While slower than the specialized

implementations, this is still 1–2 orders of magnitude faster than implementations

on CPUs, which can achieve throughputs on the order of 10 Mb/s (Grönroos et al.,

2012).

Wang et al. (2013) presented an implementation of a normalized min-sum

decoder on a GPU. They use rate-
1

2
codes from the WiMAX and WiFi standards

with block lengths 2304 and 1944, respectively. They use one or four NVIDIA GTX

TITAN GPUs for decoding. They report a peak throughput of approximately 315

Mb/s using one GPU and 10 iterations of the min-sum decoder. Using four GPUs

and 10 iterations they report a throughput of 1.25 Gb/s. Their implementation is

both bit- and block-parallel. This is the highest throughput reported for a GPU

implementation although the hardware used is also the most powerful. Some

earlier work using GPUs for decoding has been presented by the same authors

(Wang et al., 2011a,b).

Abburi (2011) reports a throughput of 160 Mb/s using 5 iterations of the

layered min-sum decoder on a single NVIDIA GeForce 9800 GTX+. Kang and

Moon (2012) implemented a sum-product decoder on a NVIDIA GTX 480, reaching

similar maximum throughputs using 10 iterations. Other works are by Chang

et al. (2011); Grönroos et al. (2012); Martínez-Zaldívar et al. (2011). Some of the

earliest work on using GPUs for decoding of LDPC codes was done by Falcão

et al. (2008).

5.3 A GPU implementation of a stochastic-bit flipping decoder

Programming for a GPU is slightly di�erent from programming for a CPU. Before

we present the implementation of a bit-�ipping decoder for GPUs, we will give

a brief overview of the architecture of a GPU and the important aspects of

programming for a GPU. We will in the following only consider NVIDIA’s so-

called Compute Uni�ed Device Architecture, or simply CUDA, platform as the

decoder was implemented for CUDA-devices. The decoder was �nally run on

two types of CUDA-devices, of which the �rst is the NVIDIA Tesla M2090, which

is based on the Fermi microarchitecture, and the second is the NVIDIA Tesla

K40, which is based on the Kepler microarchitecture. The two devices have

di�erent compute capabilities. The compute capability version speci�es what kind

of features and hardware is available on the device. Essentially, it speci�es the

microarchitecture of the device. The NVIDIA Tesla M2090 has compute capability

2.0 and the NVIDIA Tesla K40 has compute capability 3.5. Details of the two

devices are shown in Table 5.1. Programming for CUDA devices is done using the

CUDA software platform which provides a programming interface based on the C

language. Code written using CUDA C is then compiled to an intermediate form
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Table 5.1: Speci�cations of the two CUDA-devices used in this work. (NVIDIA, 2011,

2013)

Model NVIDIA Tesla M2090 NVIDIA Tesla K40

Compute capability 2.0 3.5

Multiprocessors 16 15

Cores 512 2880

Processor core clock [GHz] 1.3 0.745

Global memory [GB] 6 12

Memory clock [GHz] 1.85 3.0

Memory bandwidth [GB/s] 176 288

of assembly language which is generic for all CUDA devices and uses the Parallel

Thread Execution (PTX) Instruction Set Architecture (ISA). PTX assembly is then

compiled to an architecture-speci�c binary based on the compute capability of a

device.

5.3.1 Architecture and programming of CUDA devices

A GPU generally contains multiple processors. Each processor is called a streaming
multiprocessor. Each streaming multiprocessor, or just multiprocessor, contains

multiple cores and is capable of executing a number of threads simultaneously. In

simple terms, each thread executes the same instruction, resulting in a multipro-

cessor essentially acting like a vector machine. This is called single-instruction,
multiple-data (SIMD) parallelism. Execution on a GPU is divided into threads

which all run the same kernel. A kernel is simply a function which can run on

di�erent threads and is aware of in which thread it is running. This allows one to

perform work in parallel on for example di�erent pieces of data. A warp is a unit

of 32 threads which are executed simultaneously on a single multiprocessor. If

some threads in a warp take a di�erent execution path than other threads in the

warp, each group of threads with the same execution path will be executed in

parallel while threads with di�erent execution paths are executed serially. This is

called thread divergence. Because of this behavior, it is important to try to have

minimal thread divergence within warps to achieve high performance. Ideally,

all threads within a warp should execute the same sequence of instructions.

An important aspect resulting from the microarchitecture of CUDA devices

is that of arithmetic latency. An arithmetic instruction generally takes between

10–20 clock cycles to complete (NVIDIA, 2014). Arithmetic instructions are,

however, pipelined. This means that multiple instructions of the same type can

be executed simultaneously by being in di�erent stages of the pipeline, assuming

that the instructions operate on independent data. Put simply, the latency of

65



Decoder implementations

arithmetic instructions on a GPU is high, but the throughput can be higher

than only one instruction per 10–20 clock cycles. If not enough independent

instructions are available to be executed simultaneously, the pipeline stalls until

new instructions can be executed. The pipelining is done automatically, but

requires that a su�cient number of independent instructions are available to

be executed. Ignoring memory accesses, to fully utilize a multiprocessor one

then needs to ensure that the multiprocessor can execute a su�cient number of

independent instructions. One way of achieving this is by running a number of

threads equal to 10–20 times the number of cores available on the multiprocessor.

Alternatively, one can increase the number of independent instructions within a

thread. The typical latency of instructions performed on devices with compute

capability 2.0 is 22 while with 3.5 it is 11. Although hiding arithmetic latency can

be important for achieving maximal performance, hiding memory latencies can

be more important as we will see below.

The memory hierarchy of a GPU is as follows: all multiprocessors share access

to the global memory, which acts similarly to RAM for CPUs and is relatively slow

to access. Each multiprocessor has a sharedmemory common for all threads within

that multiprocessor, and all multiprocessors typically share one or two levels

of cache for global memory accesses. Additionally, each thread has access to a

maximum number of registers. For example, GPUs with CUDA compute capability

2.0, such as the NVIDIA Tesla M2090, the maximum number of registers per thread

is 63. In addition, there is a maximum number of registers a multiprocessor has

in total, which is 32 K for compute capability 2.0. For the NVIDIA Tesla K40

with compute capability 3.5 the maximum number of registers per thread is 255

and the total number of registers in a multiprocessor is 64 K. Each thread can

also access a portion of the global memory which is local to each thread. This

is called local memory. Access to local memory is, however, as slow as accesses

to global memory. The memories are, in decreasing order of size and latency:

global and local memory, shared memory and registers. Global memory latencies

are the most noticeable. For compute capability 2.0 the global memory latency

is 400–800 cycles and for compute capability 3.5 the latency is 200–400 cycles

(NVIDIA, 2014).

Because of the high latency in accessing global memory, the most important

aspect of achieving high performance is generally to avoid or hide the global

memory latency. In the case of the current decoder implementation avoiding the

latency is not possible as the received words need to be stored in global memory

because of their size. Hiding the latency can be done by ensuring that enough

memory requests are made to global memory so that the memory bandwidth is

saturated. This is done in practice by ensuring that enough threads are running

or by increasing the number of memory requests within a thread.
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When designing a kernel, data that is accessed frequently and is small enough

should be stored in shared memory. While slower than registers, the shared mem-

ory is still signi�cantly faster than global memory to access. For both compute

capability 2.0 and 3.5 the amount of shared memory per multiprocessor is 48 KB.

Finally, registers are used for the remaining variables. If a thread requires more

registers than are available, variables need to be stored in local memory causing

what is called register spilling. When register spilling occurs, accessing spilled

variables from local memory is signi�cantly slower than accessing registers. The

local memory makes use of a cache which can help reduce access times, but

generally register spilling will have a detrimental e�ect on the performance of a

kernel. While the CUDA compiler automatically optimizes the use of registers

and local memory for performance, manually reducing the number of variables

used in a kernel may also help in reducing register spilling.

5.3.2 Decoder implementation

For this thesis, a stochastic bit-�ipping decoder as described in Section 4.2.5 was

implemented and tested on two CUDA devices. The decoder works on hard values,

meaning that we assume either that transmission has occurred over the BSC or

that soft channel values from the BAWGNC are quantized to 1 bit. We assume here

that the channel values are in {0,1}. The decoder employs a sequential schedule,

where the decision to �ip is done randomly based on probabilities pe,b,d which

depend on if the current value of the bit is the same as the channel value, the

number of adjacent unsatis�ed checks and the degree of the variable node. The

decoder implementation in the current work is block-parallel. That is, the decoder

decodes multiple words in parallel as all received words are independent from a

decoding perspective, while the decoding of each individual word is done with a

sequential schedule. The decoder is made block-parallel on two levels. First, we

will formulate the decoder mostly as a Boolean circuit. This is important as it

allows the decoder to operate using bitwise Boolean operations on multiple words

at a time. At the same time, formulating the decoder as a Boolean circuit avoids

thread divergence and allows a high throughput. Second, multiple threads on

multiple multiprocessors each decode their own set of words, further increasing

the level of parallelism.

To clarify, the term word will only be used in the sense of coding theory,

meaning the sequence of bits that we wish to decode to a codeword, of coding

theory. This should not be confused with the commonly used word which refers

to a group of bits on which a processor generally performs computations. As

the GPUs we are considering have a 32-bit architecture, the latter use of word
refers to a group of 32 bits on which the GPU operates using an instruction.

To avoid confusion with the former use we will avoid using word in the latter
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sense. Additionally, we will often simply use the term bit interchangeably with

variable node or column of the parity-check matrix since the value of the variable

is quantized to a single bit.

Computation

We will, to begin with, only consider the decision to �ip a single bit i in a single

word. Having done that, realizing the decoder as a block-parallel decoder is

straightforward. The decoding takes place in four steps:

1. Draw a value r uniformly at random between 0 and 1 using a random

number generator.

2. Count the number of checks adjacent to the current bit i that are unsatis�ed.

3. Compare the pseudo-random value r drawn in the �rst step to the prob-

ability of �ipping a bit pe,b,d given the degree d of the bit; the number of

unsatis�ed checks b in the second step; and e , the XOR of the current value

and channel value of the bit.

4. Flip the bit if the pseudo-random value is less than the probability of

�ipping.

In the �rst step, the value of r is represented by a 32-bit integer taking values

between 0 and 2
32−1. The probabilitiespe,b,d are also represented as 32-bit integers.

The 32-bit integers representing the probabilities are calculated as pe,b,d · (2
32 − 1).

The value of r is drawn using a linear-feedback shift register (LFSR). While

consecutive numbers drawn with a LFSR are highly correlated, the simplicity of

a LFSR makes it ideal for a high-performance implementation.

The second and third steps are as follows. As we are working with binary

codes, calculating the value of a checksum a adjacent to the bit i is done simply

by XORing the values of the bits adjacent to a. A check is satis�ed if the sum is

0 and unsatis�ed if it is 1. To count the number of unsatis�ed checks a simple

incrementer circuit is su�cient. We only considered parity-check matrices with

maximum variable node degree 6 for the implementation, so an incrementer with

3 bits su�ces. The circuit used for counting the number of unsatis�ed checks is

shown in Figure 5.1. We denote the number of unsatis�ed checks by the bits b0, b1

and b2 such that b2b1b0 is the binary representation of the number of unsatis�ed

checks. That is, b2 is the most signi�cant bit and b0 is the least signi�cant bit.

The decoder initially sets all three incrementer bits to 0. It then processes each

adjacent check in turn and adds the result to the counter bits. When the value of

the checksum of each adjacent check have been added to the incrementer, b2b1b0

holds the binary representation of the number of unsatis�ed adjacent checks.
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Figure 5.1: A 3-bit incrementer circuit with modular behavior. The circuit adds the bit a
to the 3-bit number with a binary representation b2b1b0. Each XOR essentially calculates

the new value of the corresponding bit, and each AND calculates the carry bit for the

next position.

The third step is also implemented as a Boolean circuit. Let us denote by f the

decision to �ip a bit i , such that f takes the value 1 if the bit i should be �ipped

and 0 otherwise. As in Section 4.2.5, let e be 1 if the current value of the bit is

di�erent from the channel value, and 0 otherwise. That is, e is the XOR of the

current value of the bit and the channel value. The probability of �ipping a bit

with degree d , b unsatis�ed checks and e is denoted by pe,b,d . Then, let re,b,d be

1 if the drawn pseudo-random value r is less than the probability pe,b,d , and 0

otherwise. The decision to �ip a bit with degree d is then given by

f = (r1,1,d ∧ (¬b2 ∧ ¬b1 ∧ b0 ∧ e ))∨

(r0,1,d ∧ (¬b2 ∧ ¬b1 ∧ b0 ∧ ¬e ))∨

(r1,2,d ∧ (¬b2 ∧ b1 ∧ ¬b0 ∧ e ))∨

(r0,2,d ∧ (¬b2 ∧ b1 ∧ ¬b0 ∧ ¬e ))∨ (5.1)

· · ·

(r1,d ,d ∧ (¬b2 ∧ b1 ∧ ¬b0 ∧ e ))∨

(r0,d ,d ∧ (¬b2 ∧ b1 ∧ ¬b0 ∧ ¬e )).

Let us look at the �rst row of (5.1) in more detail. The value of r1,1,d is true if the

bit should be �ipped given that it has one unsatis�ed check and the value of the

bit we are considering is di�erent from the channel value. The expression on the

right, (¬b2 ∧ ¬b1 ∧ b0 ∧ e ), checks that the current variable node actually has

exactly 1 unsatis�ed check and that its value is equal to the channel value. Each

row then checks this for di�erent values of the number of unsatis�ed checks and

e . The number of unsatis�ed checks and the value of e will match on exactly one

row. Taking the disjunction between each row ensures that if for the matching
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row the value of re,b,d is also true, the whole expression will be true. Thus f is

true exactly with the probability pe,b,d given b bad checks and e . By computing

the XOR of f and the current value of the bit we get the new value of the bit. We

should note here that a reason for restricting ourselves to codes with low variable

node degree is that the number of rows in (5.1) grows exponentially with the

maximum variable node degree.

The above steps apply for a single bit in a single word. The full decoder for

a single word then consists of doing the above for each bit sequentially for a

�xed number of rounds. The reason for formulating the decoder with the help

of Boolean circuits was to allow running the decoder easily as a block-parallel

decoder. This can be realized since we can perform each type of Boolean operation,

or logic gate, using a single bitwise Boolean instruction on 32-bit integers on

the GPU. As a result, the decoder can evaluate a logic gate for 32 independent

Boolean circuits simultaneously, each corresponding to an independent received

word.

For generality, we will assume that we can perform bitwise Boolean operations

on w-bit types. This is because CUDA provides the vector types uint1, uint2
and uint4, which consist of 1, 2 and 4 unsigned integers each. That is, the types

contain 32, 64 and 128 bits, respectively. We can then de�ne bitwise Boolean

operations to work on the vector types as well. In practice, the bitwise Boolean

operations on for example a variable of type uint4 must be performed as 4

separate 32-bit bitwise Boolean operations as there is only support for 32-bit

bitwise Boolean operations in CUDA hardware (NVIDIA, 2014). The bene�t of

using vector types is that there is support in CUDA for memory loads from

global memory using vector types. This is bene�cial for maximizing the use of

global memory bandwidth. The instruction-level parallelism is also increased by

using larger vector types as each of the 32-bit bitwise Boolean operations are

independent. The parallelization of the decoder then comes partly from using

w-bit types in each thread to process w independent words, and partly from

running multiple threads on each multiprocessor.

When decodingw words in each thread, the value of re,b,d needs to be speci�ed

for each of the w words being decoded by the thread. This was done simply by

using a single LFSR as the pseudo-random number generator in each thread. The

pseudo-random value r was then compared to the probabilities to �ip pe,b,d and

setting a full uint1, uint2 or uint4 to only ones or zeros depending on the result

of the comparison. That is, the same random number generator was used for

decoding of all words within a thread.
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Memory layout

The two most important memory-related aspects of the decoder implementation

are the layout and access of both received and current bits, and the layout and

access of the parity-check matrix. We �rst consider the layout of the words.

Generally, the words will be received sequentially at the decoder. Storing bits

in the order that they are received means that the bits of a single word will be

close to each other in memory, while bits in the same position but in di�erent

words will in general be far from each other. We want the opposite to hold for the

decoder to be e�ciently block-parallel. That is, we want bits in the same position

in di�erent words to be close to each other in memory so that each thread in

the decoder can access bits in the same position of di�erent words e�ciently to

perform bitwise Boolean operations.
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Figure 5.2: The transposed received words. Each column contains one received word and

each row contains the bits in the ith position of each received word. A thread accesses

w consecutive bits from row i to get the values of the ith bits of w words processed by

that thread. In addition, the thread accesses w bits from each row corresponding to the

second neighbors of i . The work is split up so that consecutive threads within the same

multiprocessor process consecutive sets of w words.

We can think of the received bits as a binary matrix where each row contains

one word, and each row is stored sequentially in memory. With this analogy, we

wish to take the matrix transpose of the received bits, such that the bits in a given
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position of each word form a row of the binary matrix. A binary matrix transpose

can be done quickly on modern CPUs with vector registers and operations. To be

more precise, the matrix transpose was implemented using instructions which are

part of the Advanced Vector Extensions (AVX) for the Intel 64 architecture (Intel,

2012). The transpose was realized using the instruction to left-shift 128-bit vectors

and the instruction to select most signi�cant bits of each byte in a 128-bit vector.

Once the received bits have been transposed, the transposed bits are transferred

to the GPU where they are now laid out so that they can be accessed e�ciently.

Once decoding is �nished, the transposed bits are transferred back from the GPU

and transposed again so that the bits are in the order in which they were initially

received. Figure 5.2 shows the transposed memory layout more clearly. When

decoding, a thread is responsible for decoding a �xed set of w sequential words,

or columns, in the transposed matrix. A thread can then e�ciently access the ith
bits of a set ofw words for which the thread is responsible by reading consecutive

bits in the ith row of the transposed bits. Another bene�t of this layout is that for

performance reasons a warp of 32 threads should generally access consecutive

memory locations in global memory. The transposed memory layout allows this,

since we can assign each warp that will be executed a set of 32 consecutive sets

of w words.

The storage and access of the parity-check matrix is the second aspect that is

important for performance. For this decoder we use a QC-LDPC code because the

parity-check matrix can be stored implicitly, reducing memory use and accesses.

In addition, the positions of the ones in the parity-check matrix can be calculated

quickly from the implicit representation.

i
i1,1
i1,2
i1,3
i2,1
i2,2
i2,3
i3,1
i3,2
i3,3

N2(i )

Figure 5.3: The second neighbors of the variable node i , denoted by N2 (i ) on a Tanner

graph where the variable node has degree 3 and the check nodes degree 4. Note that the

node i itself is not included in the set.
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When considering a bit in position i of a word we need to know which check

nodes are adjacent to i , and which variable nodes are adjacent to each neighbor

a of i to calculate the checksums of the neighboring check nodes, and how many

of them are unsatis�ed. We will call these neighbors of neighbors of i the second
neighbors of i , and denote the set of second neighbors by N2(i ). We do not include

i itself as the second neighbor of i . Figure 5.3 shows the set of second neighbors

graphically. Because of the cyclic structure of the sub-matrices of a QC-LDPC

code it is enough to store the information of the second neighbors of a single

column or variable node within each major column of the parity-check matrix. As

before, we let the size of each sub-matrix in the parity-check matrix of a QC-LDPC

code be z×z and by a major column we mean a column in the model matrix of the

QC-LDPC code. Thus, a major column speci�es the ones in z columns of the full

parity-check matrix. Given the second neighbors of a variable node, or column,

within the major column, we can calculate the positions of the second neighbors

of the other columns within the major column. For simplicity, we choose to store

the second neighbors of the leftmost column in each major column. Figure 5.4

shows the parity-check matrix of a QC-LDPC code with the neighbors of one

check node highlighted. For generality, we will assume that the code is irregular,

in which case we also need to store the degree of the variable node i as well as the

degrees of the adjacent check nodes. Since we do not include i itself as a second

neighbor, we only need to store the indices of d − 1 neighbors of a check node,

assuming that it has degree d . Figure 5.5 shows a portion of the memory layout of

the parity-check matrix containing the second neighbors of one column within

a major column. Note that each portion corresponding to one major column is

padded to a maximum length so that calculating the address of the �rst element

in each portion can be calculated by multiplying the index of the major column

with the maximum block length, assuming that the major column indices are

zero-based.

Let us look more closely at how the memory layout of the parity-check matrix

is used by the decoder, and let us for the moment again only consider decoding

a single word. Calculating the positions of the second neighbors of the other

columns within a major column is especially convenient to do if we consider

the columns in order, beginning from the leftmost column. That is, we store in

the implicit representation the positions of the second neighbors of the leftmost

column within each major column. The implicit representation of the parity

check matrix we have presented above is too large to �t into registers, but is

small enough to �t in the shared memory of a multiprocessor, so it is stored in

the shared memory. Let the �rst column within a major column have index i .
Thus, we �rst load the indices of the second neighbors of column i from shared

memory. Once the indices have been loaded, we load from global memory the
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iia,1 ia,2 ia,3

a

Figure 5.4: The parity-check matrix of a QC-LDPC code where the positions of the

nonzero entries are shown on one major row. The diagonal lines show the positions of

the ones in the sub-matrices. In addition, the columns whose indices are stored in the

implicit representation for the GPU implementation of the stochastic bit-�ipping decoder

are shown in orange. The column marked with i is the �rst column in the major column

whose second neighbors we wish to store. The blue row marked with a is one of the

check node neighbors of i . The three other orange columns marked with ia,1,ia,2 and

ia,3 are the neighbors of the check node a. The indices of the three orange columns are

then stored in the implicit representation of the parity-check matrix. This is repeated for

other check node neighbors that i may have, and for each major column.

bits corresponding to the column i and its second neighbors. We also load the

channel value corresponding to the column i . We then calculate the checksums

of the of the neighbors of i , count the number of unsatis�ed checks, decide if the

ith bit should be �ipped, and �ip it if needed. We then continue to column i + 1.

For column i + 1 it is enough to increment the index of each second neighbor of

column i by one. Because of the cyclic nature of the sub-matrices, we also need to

check for each index if it is divisible by the sub-matrix size z. If it is, we subtract

z from the index value, e�ectively ensuring that we follow the cyclic structure of

the sub-matrix. For this we again assume that the column indices are zero-based.

We can then �ip the bit corresponding to the second column of the major column

if needed. We can continue in this way, incrementing the indices and subtracting

z when needed, for all columns i,i + 1, . . . ,i + z − 1 in the major column to get

the correct indices of the second neighbors of each column. For each column, we

use the calculated indices to load the corresponding bits from global memory,

calculate the checksums, count the number of unsatis�ed checks and �ip the bit

if necessary.
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. . . d d1
i1,1 i1,2 . . . i1,d1−1 d2

i2,1 . . . id ,dd−2 id ,dd−1
. . .

Figure 5.5: A portion of the memory layout of the implicit representation of a QC-LDPC

code corresponding to a single major column. The second neighbors of the �rst column i
in the major column is stored. The degree of the variable node or column is given by d .

The degrees of the neighboring check nodes are given by d1,d2, . . . ,dd , and the position

of the jth variable neighbor of the ath check neighbor of i is given by iaj . Note that we

do not store the column i itself as a neighbor of its neighbors.

First, the indices loaded and calculated in the above procedure can easily

be used within a thread to consider w independent words. Instead of loading a

single bit for each column i and its second neighbors, the thread loads w bits,

corresponding to w di�erent words, for each column i and its second neighbors.

Second, each thread then performs the above calculations independently on their

own set ofw words. An important practical detail is that the indices of the second

neighbors can be loaded without con�icts from shared memory. Since each thread

in a warp accesses the same position in shared memory, the result is broadcast

to each thread in the warp with a single memory read request (NVIDIA, 2014).

Another consideration is checking for divisibility e�ciently. If the sub-matrix size

z is a power of 2, checking for divisibility by z can be done e�ciently using for

example a simple bit-masking operation. In the general case, however, checking

for divisibility requires slightly more work (Warren, 2012).

To further optimize the decoder kernel, the �ip probabilities were generated

before compiling the kernel and the values hard-coded. In addition, code was

generated to specialize on the degrees of the variable and check nodes to be able

to unroll the majority of the loops and so improve performance. This could be

done on the level of a major column of the parity-check matrix as the degrees

are �xed within a major column.

Altogether the GPU implementation of the stochastic bit-�ipping decoder

does the following steps:

1. Transpose the received words on the CPU.

2. Copy the transposed words to the GPU. Make an additional copy of the

received words on the GPU for determining e .

3. Each thread decodes w words for a �xed number of iterations.

4. Copy the words back from the GPU.

5. Transpose the decoded words back.

In the next chapter we will look at how fast the decoder is in practice.
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Chapter 6

Experimental results

In this chapter, we will present an experimental comparison of the error-correcting

performance of �ve decoders implemented in software and run with typical con-

�gurations. In addition, we will look at the encoding complexity of codes from a

regular and an irregular ensemble of LDPC codes using the method proposed by

Richardson and Urbanke (2001b). Finally, we will present experimental results on

the decoding throughput of the GPU implementation of the stochastic bit-�ipping

decoder. To thoroughly examine the performance of decoders one would need

to take into account details of hardware implementations of the decoders, and

implementing or simulating multiple hardware designs of decoders is beyond the

scope of this thesis. For this reason, we will focus only on the error-correcting

performance, or bit-error rate, of the decoders and ignore the throughput, latency

and other hardware-related details in the decoder comparison. On the other hand,

the performance evaluation of the GPU implementation will only focus on the

throughput and latency of the decoder, and on how well it utilizes the hardware.

6.1 Comparison of decoders

For this thesis, �ve di�erent decoders were implemented in software to run on

the CPU and were tested with three di�erent codes or ensembles of codes on

two di�erent channels. The �ve decoders implemented were the sum-product

decoder, the min-sum decoder, the gradient-descent bit-�ipping decoder, Gal-

lager’s bit-�ipping decoder and the stochastic bit-�ipping decoder presented in

Section 4.2.5. The implementations of the sum-product and min-sum decoders

use 64-bit message values with the assumption that this approximates in�nite

precision messages well. Most importantly, as we reviewed brie�y in Section 4.3.3,

even using less than 10 bits for the message values is generally enough to ap-

proximate the in�nite precision sum-product decoder su�ciently well. Because

of this, we consider 64-bit message values to be su�cient for the performance of

the sum-product decoder to be a good baseline to which other decoders can be
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compared. In addition, the channel noise parameter was assumed known to the

sum-product and min-sum decoders for initializing the messages from channel

factors to variable nodes.

The sum-product and min-sum decoders were both run for 20 iterations. The

three bit-�ipping decoders were each run for 100 iterations with a sequential

schedule. The number of iterations for the decoders were chosen to be typical

values found in the literature. In Section 5.1 on simulations of hardware decoders

we saw implementations which use approximately 10 iterations with min-sum

decoders, and so 20 iterations was chosen to ensure that the error-correcting per-

formance is generally not worse than it would be in a hardware implementation.

The higher number of 100 iterations for the bit-�ipping decoders was chosen as

the bit-�ipping decoders are generally less complex and require more iterations

for good performance. The number of iterations for the bit-�ipping decoders is

also typical for the literature. For example, in the work by Sundararajan et al.

(2014) where the noisy gradient-descent bit-�ipping decoder is presented, the dif-

ferent variations are run with 100–300 iterations. The random number generator

used for CPU implementation the stochastic bit-�ipping decoder is identical to

the LFSR used in the GPU implementation.

The decoders were tested with three types of codes. First, codes from the (3,6)-

regular ensemble were used. Second, codes from an irregular ensemble of codes

presented by Richardson et al. (2001) were used. The ensemble has maximum

variable node degree 4 and has been optimized to have a high threshold in the

asymptotic case of in�nite block length and an in�nite number of iterations with

the sum-product decoder. The degree distribution of the ensemble is given by

the following polynomials

L(x ) = 0.54883x2 + 0.04042x3 + 0.41075x4,

R (x ) = 0.276153x5 + 0.723847x6.

Here, the coe�cient of a monomial xi of the polynomial L(x ) gives the fraction of

variable nodes with degree i . The polynomial R (x ) gives the equivalent fractions

for the check nodes. Codes from the two ensembles were drawn by rejecting codes

which have duplicate edges in their Tanner graph. Finally, the rate-
1

2
QC-LDPC

code de�ned in the WiMAX standard (IEEE, 2009) was used. All three codes or

code ensembles have rate
1

2
.

A more thorough set of tests was run with the sum-product decoder and

the stochastic bit-�ipping decoders. The two decoders were tested with block

lengths 2
i

for i = 10,11, . . . ,20 with the (3,6)-regular ensemble and the irregular

ensemble. The decoders were only tested with the block length 2304 with the

rate-
1

2
WiMAX code, which is the longest block length de�ned in the WiMAX

standard. The transmission of a total of 2
30

bits was simulated for each code,
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block length, channel and decoder. More precisely, for the two ensembles of

codes, the following was repeated

⌊
2

30

n

⌋
times for each block length n: draw a new

code, simulate transmission over a channel, and decode the received word. The

same was repeated

⌊
2

30

2304

⌋
times for the rate-

1

2
WiMAX code, with the di�erence

that the same code was used in each repetition. Notice that encoding is not

simulated because it is time consuming for codes from the (3,6)-regular ensemble

with long block lengths. Instead, it is assumed that the sent codeword is the

all-zeros codeword when transmitting over the BSC as it is a codeword of any

LDPC code. It can be assumed that the all-zero codeword is sent as, by symmetry,

the performance of a code and decoder does not depend on the sent codeword,

but only on the noise in the channel (Richardson and Urbanke, 2008). On the

BAWGNC, the equivalent assumption is that the all-ones codeword is sent. We

will consider encoding complexity separately in Section 6.2.

The three remaining decoders—the min-sum decoder, the gradient-descent bit-

�ipping decoder, and Gallager’s bit-�ipping decoder—were tested with a smaller

set of tests. They were all run with the block length 2
14

for the two ensembles of

codes, and with the block length 2304 for the rate-
1

2
WiMAX code. The tests were

repeated identically to the tests with the sum-product decoder and the stochastic

bit-�ipping decoder by simulating the transmission of a total of 2
30

bits.

Finally, all decoders were tested on both the BSC and the BAWGNC, with

the exception of Gallager’s bit-�ipping decoder and the stochastic bit-�ipping

decoder as they only work on hard channel values. However, the results of the two

bit-�ipping decoders on the BSC were translated to the BAWGNC by assuming

hard-thresholding of the soft-channel values. The decoders were run with a range

of noise levels to see the behavior as a function of the noise as well.

6.1.1 Choosing the decoder parameters

The stochastic bit-�ipping decoder has two free parameters for the parameter-

ization of the �ip probabilities as presented in Section 4.2.5, and the gradient-

descent bit-�ipping decoder with a sequential schedule has one free parameter,

the threshold θ for �ipping a bit. The free parameters were chosen by running

a constant-spaced grid search over a set of parameter values, after which the

overall best parameter values were chosen. The results of the grid search are

shown in Appendix B. It is good to note from the results of the grid searches

that the optimal values generally depend on the level of noise. The parameter

values were chosen here to give good results at moderate levels of noise, possibly

leaving larger error �oors for low levels of noise. The chosen parameter values are

shown in Tables 6.1 and 6.2. For the comparison here, we only considered �xed

parameter values, but further optimization of the error-correcting performance
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could involve dynamically adjusting the parameter values based on the level of

noise or the iteration number. This has already been suggested by for example

Ismail et al. (2013) in the context of bit-�ipping decoders.

Gallager’s bit-�ipping decoder has a free parameter which adjusts how many

adjacent check nodes must be unsatis�ed for a bit to be �ipped. For Gallager’s

bit-�ipping decoder this value was simply chosen for the two ensembles of codes

and the rate-
1

2
WiMAX code. For the (3,6)-regular ensemble, the threshold was

set to 2, meaning that 2 or more check nodes adjacent to a variable node must be

unsatis�ed for the bit to be �ipped. The threshold was set to 2 for the irregular

ensemble and to 3 for the rate-
1

2
WiMAX code.

Table 6.1: Parameter values chosen for the stochastic bit-�ipping decoder.

(3,6)-regular Irregular WiMAX

T 0.8 0.8 0.9

p 0.12 0.08 0.08

Table 6.2: Parameter values chosen for the gradient-descent bit-�ipping decoder.

(3,6)-regular Irregular WiMAX

θ (BAWGNC) −0.8 −0.4 −0.6
θ (BSC) −0.5 −0.5 −0.5

6.1.2 Results

Figure 6.1 shows the bit-error rate Pb of the sum-product decoder on the BSC

as a function of the crossover probability ϵ and the block length n. With the

(3,6)-regular ensemble the bit-error rate clearly shows a typical waterfall region

around ϵ = 0.075 and an error �oor at lower levels of noise. On the other hand,

the bit-error rate of the irregular code is far worse than that of the (3,6)-regular

ensemble. Additionally, the irregular ensemble doesn’t show a clear waterfall

region and has a relatively high bit-error rate even with long block lengths and

low levels of noise. The bit-error rate of the rate-
1

2
WiMAX code is again better

than the irregular ensemble with block length 2048 and slightly better than the

(3,6)-regular ensemble with the block length 2048. However, with the block length

4096 the (3,6)-regular ensemble performs roughly equally to the rate-
1

2
WiMAX

code. Figure 6.2 shows the bit-error rate of the sum-product decoder on the

BAWGNC as a function of the signal-to-noise ratio and the block length n. The

behavior is largely similar to on the BSC, with the rate-
1

2
WiMAX code having

the lowest bit-error rate compared to short block lengths with the (3,6)-regular
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ensemble and the irregular ensemble. With longer block lengths, the (3,6)-regular

ensemble shows again typical behavior and the irregular ensemble performs

worse than the (3,6)-regular ensemble. Finally, the bit-error rate of the stochastic

bit-�ipping decoder on the BSC is shown in Figure 6.3. The behavior is similar

to the sum-product decoder on the BSC but with slightly worse performance in

general. It is good to note that the error �oors are at similar levels using both

decoders, and that the main di�erence in error-correcting performance with the

current implementations is between the thresholds of the decoders, with that of

the stochastic bit-�ipping decoder being lower.

The comparison of the �ve decoders on the BSC is shown in Figure 6.4. The

results show a clearer picture of how the stochastic bit-�ipping decoder compares

to the generally better message-passing decoders and to simpler bit-�ipping

decoders. The sum-product decoder is consistently the best decoder with the

(3,6)-regular ensemble, irregular ensemble and the rate-
1

2
WiMAX code. The

stochastic bit-�ipping decoder behaves similarly to the sum-product with the

di�erence that the results are shifted to lower levels of noise. With the (3,6)-regular

ensemble the gap in error-correcting performance between the two decoders is

the smallest. In terms of the crossover probability, the results of the stochastic

bit-�ipping decoder are shifted to the left from the sum-product decoder by

approximately 0.01. The corresponding gaps are 0.02 with the irregular ensemble

and the rate-
1

2
WiMAX code. The two other bit-�ipping decoders, Gallager’s bit-

�ipping decoder and the gradient-descent bit-�ipping decoder, generally perform

the worst. Gallager’s bit-�ipping decoder only barely improves on transmission

without any encoding at low levels of noise, and the gradient-descent bit-�ipping

decoder performs only slightly better. However, with the (3,6)-regular ensemble

the gradient-descent bit-�ipping decoder performs clearly better than Gallager’s

bit-�ipping decoder. Interestingly, the min-sum decoder performs badly compared

to the sum-product decoder because of the hard channel values on the BSC.

Figure 6.5 shows the same comparison as above but on the BAWGNC. Com-

pared to the BSC, the min-sum decoder now performs nearly as well as the sum-

product decoder. The gradient-descent bit-�ipping decoder also performs better

relative to the stochastic bit-�ipping decoder as it can make use of soft channel

values. As explained earlier, the results of Gallager’s bit-�ipping decoder and the

stochastic bit-�ipping decoder have been translated from the results on the BSC

by assuming hard-thresholding of the channel values on the BAWGNC. Thus, the

two bit-�ipping decoders clearly don’t bene�t from moving to the BAWGNC and

so their performance is comparatively worse. However, the stochastic bit-�ipping

decoder still performs relatively well. Most importantly, it performs better than
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Figure 6.1: Bit-error rate Pb of the sum-product decoder on the BSC as a function of

the crossover probability ϵ . The sum-product decoder was run for 20 iterations, using

the (3,6)-regular ensemble with block lengths 2
i

for i = 10,11, . . . ,20 (top), the irregular

ensemble with block lengths 2
i

for i = 10,11, . . . ,20 (middle), and the rate-
1

2
WiMAX

code with block length 2304 (bottom). The transmission of a total of 2
30

bits was simulated

for each code, block length and crossover probability. For the (3,6)-regular ensemble and

the irregular ensemble, the bit-error rate decreases as the block length increases. Note

that the vertical axis is logarithmic, and that if no errors occurred for a particular block

length and crossover probability that particular result is not plotted.
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Figure 6.2: Bit-error rate Pb of the sum-product decoder on the BAWGNC as a function of

the signal-to-noise ratio (SNR) in dB. The sum-product decoder was run for 20 iterations,

using the (3,6)-regular ensemble with block lengths 2
i

for i = 10,11, . . . ,20 (top), the

irregular ensemble with block lengths 2
i

for i = 10,11, . . . ,20 (middle), and the rate-
1

2

WiMAX code with block length 2304 (bottom). The transmission of a total of 2
30

bits

was simulated for each code, block length and crossover probability. For the (3,6)-regular

ensemble and the irregular ensemble, the bit-error rate decreases as the block length

increases. Note that the vertical axis is logarithmic, and that if no errors occurred for a

particular block length and crossover probability that particular result is not plotted.
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Figure 6.3: Bit-error rate Pb of the stochastic bit-�ipping decoder on the BSC as a

function of the crossover probability ϵ . The stochastic bit-�ipping decoder was run for

100 iterations, using the (3,6)-regular ensemble with block lengths 2
i

for i = 10,11, . . . ,20

(top), the irregular ensemble with block lengths 2
i

for i = 10,11, . . . ,20 (middle), and

the rate-
1

2
WiMAX code with block length 2304 (bottom). The parameter values of the

stochastic bit-�ipping decoder are shown in Table 6.1. The transmission of a total of

2
30

bits was simulated for each code, block length and signal-to-noise ratio. For the

(3,6)-regular ensemble and the irregular ensemble, the bit-error rate decreases as the

block length increases. Note that the vertical axis is logarithmic, and that if no errors

occurred for a particular block length and crossover probability that particular result is

not plotted.
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the gradient-descent bit-�ipping decoder showing that despite using only hard

values, adding noise to the decoding process can improve the error-correcting

performance.

It is interesting to note the performance of the irregular ensemble. As can be

seen from the �gures, the performance of the irregular ensemble is signi�cantly

worse than the (3,6)-regular ensemble on both the BSC and the BAWGNC. At this

point it is important to remember that the degree distribution of the irregular en-

semble we have used here was optimized in the asymptotic setting. The threshold

is indeed better than for the (3,6)-regular ensemble but the threshold alone does

not guarantee good performance. On the other hand, this also does not mean

that irregular cannot perform well. The rate-
1

2
WiMAX code is an irregular code

and performs better than the (3,6)-regular ensemble at the short block length

of approximately 2000 bits. However, at longer block lengths the (3,6)-regular

ensemble performs better than the short rate-
1

2
WiMAX code.

To put the performance of the decoders into perspective, the Shannon limit

for codes with rate-
1

2
on the BSC is approximately ϵ = 0.11. The Shannon limit

for rate-
1

2
codes on the BAWGNC is 0.19 dB or, expressed in terms of the standard

deviation of the noise, σ = 0.98 (Richardson et al., 2001).

6.2 Complexity of approximate lower triangular encoding

The performance of the encoding method by Richardson and Urbanke (2001b)

using an approximate lower triangular form of the parity-check matrix was tested

using codes from the same (3,6)-regular ensemble and irregular ensemble already

used for comparing decoders. The encoding time was recorded for block lengths

2
i

for i = 10,11, . . . ,20 with 2
24

total encoded bits for each block length. The

repetitions for each block length n were made similarly to how the decoders were

tested. The following was repeated

⌊
2

24

n

⌋
times for each block length: draw a new

code and encode a word using the drawn code.

The encoding tests were run on the following hardware: HP ProLiant BL465c

G6 with two 2.6 GHz AMD Opteron 2435 CPUs with six cores each, and 32 GiB

of DDR2-800 main memory. The encoder implementation is single-threaded.

6.2.1 Results

Figure 6.6 shows the encoding time in seconds as a function of the block length

of the regular and irregular code side by side. In addition to showing the total

encoding time, the time taken to perform the greedy approximate lower trian-

gulation, the time taken to perform Gaussian elimination and invert ϕ, and the

actual encoding time ignoring the preprocessing steps are shown. It is clear that
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Figure 6.4: Comparison of decoders on the BSC. The bit-error rate Pb as a function of

the crossover probability ϵ using the (3,6)-regular ensemble with block length 2
14

(top),

the irregular ensemble with block length 2
14

(middle), and the rate-
1

2
WiMAX code with

block length 2304 (bottom). Five decoders were compared: the sum-product decoder,

the min-sum decoder, the gradient-descent bit-�ipping decoder (GDBF), Gallager’s bit-

�ipping decoder (Gallager’s BF), and the stochastic bit-�ipping decoders. Also shown is

uncoded transmission in gray. The sum-product decoder and the min-sum decoder were

run with 20 iterations; the rest were run with 100 iterations. The parameter values of the

stochastic bit-�ipping decoder and the gradient-descent bit-�ipping decoder are shown

in Table 6.1 and Table 6.2. The transmission of a total of 2
30

bits was simulated for each

code, block length and crossover probability. Note that the vertical axis is logarithmic,

and that if no errors occurred for a particular block length and crossover probability that

particular result is not plotted.
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Figure 6.5: Comparison of decoders on the BAWGNC. The bit-error rate Pb as a function

of the signal-to-noise ratio (SNR) in dB using the (3,6)-regular ensemble with block

length 2
14

(top), the irregular ensemble with block length 2
14

(middle), and the rate-

1

2
WiMAX code with block length 2304 (bottom). Five decoders were compared: the

sum-product decoder, the min-sum decoder, the gradient-descent bit-�ipping decoder

(GDBF), Gallager’s bit-�ipping decoder (Gallager’s BF), and the stochastic bit-�ipping

decoders. Also shown is uncoded transmission in gray. The sum-product decoder and

the min-sum decoder were run with 20 iterations; the rest were run with 100 iterations.

The parameter values of the stochastic bit-�ipping decoder and the gradient-descent

bit-�ipping decoder are shown in Table 6.1 and Table 6.2. The transmission of a total of

2
30

bits was simulated for each code, block length and signal-to-noise ratio. Note that the

vertical axis is logarithmic, and that if no errors occurred for a particular block length

and crossover probability that particular result is not plotted.
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Figure 6.6: Encoding time t as a function of the gap д for the (3,6)-regular ensemble

(top) and the irregular ensemble (bottom) using the method by Richardson and Urbanke

(2001b). The block length n was 2
i

for i = 10,11, . . . ,20. The graphs show the total

encoding time including preprocessing steps, the time to perform greedy approximate

upper triangulation of the parity-check matrix, the time to perform Gaussian elimination

and invert ϕ, and the time to perform only the actual encoding without preprocessing.

The encoding was repeated so that a total of 2
20

bits were encoded for each block length

and ensemble. Both axes are logarithmic.

the main computational cost in the encoding method by Richardson and Urbanke

(2001b) comes from performing the Gaussian elimination and inverting ϕ. For

the regular code this can clearly be attributed to the linear growth of the gap

д as can be seen in Figure 6.7. However, the average gap of codes from the ir-

regular ensemble is consistently small up to the block length 2
20

. This leads to

consistently low total encoding times including preprocessing. In practice, the

preprocessing is done beforehand and does not need to be repeated each time

a new block is encoded. In the current software implementation, the encoding

times excluding preprocessing are similar for both the (3,6)-regular ensemble and

the irregular ensemble. It is interesting to note that the degree distribution for

the irregular ensemble is not signi�cantly di�erent from the (3,6)-regular case.

The two ensembles have similar average variable and check node degrees, but

the reason for the small average gap for the irregular ensemble is essentially the

larger number variable nodes of degree two.

88



The stochastic bit-flipping decoder on the GPU

Blocklength n

10
3

10
4

10
5

10
6

Regular

Irregular

Code type

10
0

10
1

10
2

10
3

10
4

10
5

A
e
r
a
g

e
g

a
p
д

Figure 6.7: Average gap д of the parity-check matrix after greedy approximate lower

triangulation as a function of the block length n for the (3,6)-regular ensemble and the

irregular ensemble. The block length n was 2
i

for i = 10,11, . . . ,20. Note that the average

gap of the irregular code is consistently less than 10 even for the block length 2
20

. Both

axes are logarithmic.

6.3 The stochastic bit-flipping decoder on the GPU

As noted in Section 5.3.1, to fully utilize the GPU a su�cient number of threads

needs to be started simultaneously or there needs to be a su�cient number

of independent instructions executed in each thread. In practice, this means

that a su�cient number of received words need to be decoded simultaneously.

The number of threads to use depends in general on the type of GPU used for

computations. The implementation for the current work was tested on two CUDA

devices: (i) the NVIDIA Tesla M2090 and (ii) the NVIDIA Tesla K40.

The decoder was tested on both devices using two types of codes. The �rst

is the rate-
1

2
code of block length 1536 de�ned in the WiMAX standard and

the second is a (3,4)-regular QC-LDPC code, also with block length 1536. The

(3,4)-regular code was generated by �rst generating a (3,4)-regular code of block

length 24 using the con�guration model. Then, for each nonzero entry of the

smaller parity-check matrix a random shift value was drawn uniformly at random

between 0 and 63. By setting the nonzero entries in the smaller parity-check

matrix to the randomly drawn shift values we form the model matrix of the (3,4)-

regular QC-LDPC code. By using the block length 1536 with a model matrix with

24 columns the sub-matrix size is 2
6 = 64 meaning that checking for divisibility

by the sub-matrix size can be done quickly.
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To reach a high throughput, the decoder was tested using di�erent con�g-

urations. The free parameters were the number of threads per multiprocessor

core and the vector type used for bitwise Boolean operations. Let w be the num-

ber of bits in a vector type, nA the number of threads used per core and nC the

total number of cores available on the GPU. The total number of words being

decoded simultaneously on the GPU is then nCnAw . The decoder was tested on

both GPUs with nA = 2
i

for all 0,1, . . . ,5. Additionally, the decoder was tested

using the vector types uint1, uint2 and uint4 for all bitwise Boolean operations,

meaning that each thread was responsible for decoding w = 32,64 or 128 words,

respectively, with each vector type. The decoder was run for 100 iterations on

both GPUs with all con�gurations. For each set of parameters, the decoder was

run once to decode nCnAw words and the execution time of the decoding process

was recorded.

6.3.1 Results

The decoding throughput of the decoder on the NVIDIA Tesla M2090 is shown in

Figure 6.8 as a function of the code, the number of threads per core and the number

of words w decoded on each thread. The decoding throughput clearly increases

as the number of threads per core is increased, eventually plateauing at 8 threads

per core. In addition, there is a considerable increase in decoding throughput

when decoding 64 words per thread instead of 32 words per thread, but decoding

128 words per thread no longer increases the throughput considerably. The peak

decoding throughput on the NVIDIA Tesla M2090 was 350 Mb/s with the rate-
1

2

WiMAX code tested and 700 Mb/s with the (3,4)-regular code. The global memory

bandwidth used on the NVIDIA Tesla M2090, shown in Figure 6.9, follows a

similar pattern in terms of the number of threads per core and the number of

words per thread. With both codes use of the global memory bandwidth reaches a

maximum of approximately 100 GB/s, which is 60 % of the maximum theoretical

bandwidth of 176 GB/s.

The decoding throughput and use of global memory bandwidth for decoder

on the NVIDIA Tesla K40 are shown in Figure 6.10 and Figure 6.11. The main

di�erence to the NVIDIA Tesla M2090 is that the maximum decoding throughput

and use of global memory bandwidth are approximately a factor of 2 higher on

the NVIDIA Tesla K40. The peak decoding throughput with the NVIDIA Tesla

K40 is approximately 700 Mb/s with the rate-
1

2
WiMAX code and approximately

1200 Mb/s with the (3,4)-regular code. The GPU used in the work by Wang et al.

(2013), the NVIDIA GTX TITAN, has similar speci�cations to the NVIDIA Tesla

K40 and is based on the same microarchitecture. Compared to the work by Wang

et al., the decoder implemented for this thesis achieves approximately twice

the throughput with the rate-
1

2
WiMAX code using 100 iterations, while the
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min-sum decoder in the work by Wang et al. uses 10 iterations. However, one

has to keep in mind that the message-passing decoders generally perform better

than bit-�ipping decoders with a smaller number of iterations. The peak use of

global memory bandwidth is nearly 200 GB/s with the rate-
1

2
WiMAX code and

approximately 170 GB/s with the (3,4)-regular code. The maximum theoretical

bandwidth of the global memory on the NVIDIA Tesla K40 is 288 GB/s, meaning

that nearly 70 % of the maximum bandwidth is used with the rate-
1

2
WiMAX code.

Compared to the decoder on the NVIDIA Tesla M2090, using only one thread per

core on the NVIDIA Tesla K40 already comes close to the maximum performance.

Using the rate-
1

2
WiMAX code, one thread per core, and decoding 128 words per

thread achieves a decoding throughput of nearly 600 MB/s, while the maximum is

approximately 700 MB/s. The corresponding values on the NVIDIA Tesla M2090

are 100 MB/s and 400 MB/s. The di�erence is likely a result of the NVIDIA Tesla

K40 having nearly 6 times as many cores as the NVIDIA Tesla M2090, while the

global memory bandwidth is only approximately 2 times higher. This means that

the global memory bandwidth can be saturated on the NVIDIA Tesla K40 with a

smaller number of threads per core compared to the NVIDIA Tesla M2090.

It is important to remember the trade-o�s one needs to consider when imple-

menting decoders. Particularly important are the trade-o�s between throughput,

latency and error-correcting performance. We have seen in the decoder compari-

son that the current decoder has relatively good error-correcting performance. In

addition, it can achieve high throughputs. However, because of the large number

of words that need to be decoded simultaneously to achieve high throughputs,

the latencies are relatively high. The con�guration achieving minimum latency

with maximum throughput on the NVIDIA M2090 is to run 8 threads for each

core and to decode 64 words in each thread. Using this con�guration a total of 400

Mb are decoded simultaneously in one pass of the decoder, and the time taken to

decode this amount is approximately 1 s with the rate-
1

2
WiMAX code and 0.6 s

with the (3,4)-regular QC-LDPC code. On the NVIDIA Tesla K40, using the rate-
1

2

WiMAX code one can run only 2 threads for each core, decode 128 words in each

thread, and reach the maximum decoding throughput. Using this con�guration

approximately 1.1 Gb are decoded simultaneously, which takes 1.5 s to complete.

Using the (3,4)-regular QC-LDPC code, one needs to run 4 threads for each core

and decode 128 words per thread to reach the maximum decoding throughput.

Doing so results in 2.3 Gb being decoded simultaneously with a latency of 1.8 s.

In comparison to the current implementation, the decoder presented by Wang

et al. has decoding latencies on the order of 1 ms, which is signi�cantly lower

than the latencies of the implementation presented here.
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Figure 6.8: Decoding throughput of the stochastic bit-�ipping decoder on the NVIDIA

M2090 with the rate-
1

2
WiMAX code of block length 1536 (left) and a (3,4)-regular QC-

LDPC code of block length 1536 (right). The number of threads was nA multiplied by the

number of cores available on the GPU. The number of words decoded simultaneously by

each thread is given by w . The horizontal axis is logarithmic.
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Figure 6.9: Global memory bandwidth used by the stochastic bit-�ipping decoder on the

NVIDIA M2090 with the rate-
1

2
WiMAX code of block length 1536 (left) and a (3,4)-regular

QC-LDPC code of block length 1536 (right). The number of threads per core on the GPU

is denoted by nA. The number of words decoded simultaneously by each thread is given

by w . The horizontal axis is logarithmic.
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Figure 6.10: Decoding throughput of the stochastic bit-�ipping decoder on the NVIDIA

K40 with the rate-
1

2
WiMAX code of block length 1536 (left) and a (3,4)-regular QC-LDPC

code of block length 1536 (right). The number of threads was nA multiplied by the number

of cores available on the GPU. The number of words decoded simultaneously by each

thread is given by w . The horizontal axis is logarithmic.
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Figure 6.11: Global memory bandwidth used by the stochastic bit-�ipping decoder on

the NVIDIA K40 with the rate-
1

2
WiMAX code of block length 1536 (left) and a (3,4)-

regular QC-LDPC code of block length 1536 (right). The number of threads per core on

the GPU is denoted by nA. The number of words decoded simultaneously by each thread

is given by w . The horizontal axis is logarithmic.
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Chapter 7

Conclusion

After their rediscovery in the 1990’s, LDPC codes have shown themselves to

be viable codes in theory, with constructions and decoders that approach the

Shannon limit; and in practice, having been included in various communication

standards. The �eld has matured in the last years, but there is still room for

improvements both in encoding and decoding of LDPC codes. To the best of the

author’s knowledge, encoding can still not be done in linear time for general

LDPC codes. Resolving whether or not it can be done would be an important

result. Current decoders can still be improved by reducing their complexity to

increase throughput, reduce latency, and allow longer block lengths to be used for

better error-correction. The GPU implementation of the stochastic bit-�ipping

decoder presented in this thesis is a high-throughput decoder with relatively

good error-correcting performance.

The comparison of decoders in the previous chapter mainly introduces the

stochastic bit-�ipping decoder as a new decoder. The focus of the stochastic

bit-�ipping decoder is on low complexity as it uses only hard channel values,

and on examining to what extent adding noise to the decoding process helps for

the error-correcting performance. The decoder performs well compared to the

sum-product decoder considering its simplicity, and the gap in error-correcting

performance is especially small on the BSC. An interesting comparison is that

between the stochastic bit-�ipping decoder and the gradient-descent bit-�ipping

decoder on the BAWGNC. While the gradient-descent bit-�ipping decoder makes

use of the soft channel values and the stochastic-bit �ipping decoder does not,

the stochastic bit-�ipping decoder still has better error-correcting performance

with the codes tested in this thesis.

The important trade-o�s when considering decoders are those between error-

correcting performance, throughput and latency. With the GPU implementation

of the stochastic bit-�ipping decoder it is clear that its simplicity allows for

high-throughput implementations, while the decoder comparison shows that the

decoder is capable of relatively good error-correcting performance considering its

simplicity. The downside of the current GPU implementation is the high decoding
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latency which is a consequence of the decoder being block-parallel. The current

high latency could be reduced by considering bit-parallel implementations of the

decoder, meaning that multiple bits in the same codeword are processed in parallel.

When using QC-LDPC codes this could be done by processing all columns within

a major column of the parity-check matrix in parallel as the second neighbors

of the columns in a major column are independent. For example, with the codes

used here which have a sub-matrix size of 64 × 64, the potential gain in latency

would be a factor of 64, bringing the latencies to the order of 10–100 ms.

In this work we optimized the free parameters of the stochastic bit-�ipping

decoder with a simple grid search and chose the parameters depending on the code.

To ensure that the stochastic bit-�ipping decoder performs as well as possible,

the parameters should be further optimized by using a �ner grid. Additionally,

the grid search shows that the optimal parameters are di�erent at di�erent levels

of noise. Adjusting the parameters based on the level of noise in the channel and

the current iteration may help further improve the error-correcting performance.

The number of iterations used for the decoder is another free parameter which is

important for the error-correcting performance. However, changing the number

of iterations directly a�ects throughput. Increasing the number of iterations

reduces the bit-error rate, but it needs to be examined more thoroughly what

exactly is a suitable number of iterations such that error-correcting performance

and throughput are well balanced. Having said that, it should be remembered

that an optimal set of parameter is unlikely to exist for every situation. Most

importantly though, a thorough comparison of the bit-error rate, throughput and

latency should be made with dedicated hardware designs of various decoders. In

general, the stochastic bit-�ipping decoder should also be compared in complexity

and error-correcting performance to more advanced bit-�ipping decoders such as

the noisy gradient-descent decoder. Additionally, the gradient-descent bit-�ipping

decoder was optimized with only one free parameter in this work. Future work

might involve including more free parameters to the gradient-descent bit-�ipping

decoder to improve its performance.

In addition to the free parameters of the decoder, code constructions and the

block length need to be considered when talking about error-correcting perfor-

mance. First, the block length is an important factor in the error-correcting per-

formance as increasing it can signi�cantly improve error-correcting performance.

Most importantly, increasing the block length lowers the error �oor. We saw in

Chapter 6 that for example the (3,6)-regular ensemble can produce error �oors

lower than 10
−8

already at the block length 2
14

. Using a low-complexity decoder

and long block lengths should be considered as an option for high-throughput

decoding with low bit-error rates. However, by increasing the block length one

is again giving up on the decoding latency. Second, code constructions should
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be looked at more closely. The results in this thesis show that the stochastic

bit-�ipping decoder performs well with the (3,6)-regular ensemble, but performs

worse with for example the rate-
1

2
WiMAX code. Generally, message-passing

decoders are considered �rst when designing good codes which may lead to

worse results with bit-�ipping decoders. Thus it may be bene�cial to examine

what types of codes work especially well with bit-�ipping decoders in more detail.

As the literature review in this thesis shows, there exists a plethora of decoders

for LDPC codes. Future work on the stochastic bit-�ipping decoder must show that

it can compete also on error-correcting performance, and not only on throughput,

for it to be a viable decoder alternative. To date, message-passing decoders are

still preferred because of their good error-correcting performance, but bit-�ipping

decoders have been improving in error-correcting performance. On the other

hand, message-passing decoders have been reducing in complexity with the

binary message-passing decoder being an extreme example. However, the line

between message-passing decoders and bit-�ipping decoders is currently being

blurred with ideas from message-passing decoders being incorporated into bit-

�ipping decoders, and vice versa. Future work on decoders will have to weigh the

trade-o�s between error-correcting performance and complexity thoroughly, and

ideally attempt to �nd decoder designs that are clearly better in both respects.

The current state-of-the-art in encoding is the method by Richardson and

Urbanke (2001b) which is based on permuting the rows and columns of the parity-

check matrix so that the resulting parity-check matrix is in approximate lower

triangular form. While the method has linear time complexity for a useful subset

of codes, it does not have linear time complexity for general LDPC codes. Codes

which can be encoded in linear time are good enough for inclusion in standards,

such as the QC-LDPC codes in the WiMAX standard. However, a method for

linear-time encoding of general LDPC codes could allow more freedom in design-

ing codes that work well with di�erent decoders, as well as allowing scaling of

the block length to larger values. One reason for the di�culty of encoding LDPC

codes is that good codes should in some sense protect all information bits equally

well. How well the code does this is likely captured to some extent by the size of

the gap when doing greedy upper triangulation. It remains an open question to

determine whether alternative encoding methods exist that can circumvent the

problem of large gaps for arbitrary LDPC codes.

In conclusion, this work has presented a stochastic bit-�ipping decoder which

has been shown to be easily parallelizable by decoding multiple words at a

time, allowing the decoder to reach high throughputs. In addition, a review of

the current state-of-the-art of encoding and decoding of LDPC codes has been

given. Experimental results show that the stochastic bit-�ipping decoder has

relatively good error-correcting performance at low complexity. The prospect
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of low-complexity encoders and decoders that would allow scaling of the block

length signi�cantly is especially exciting as this would allow further reductions

in bit-error rates, albeit with a cost in latency. As an extreme example, entire

hard-drives or even multiple hard-drives could be encoded with a single block

making them more robust to errors. While the current work does not directly

allow this, it shows that there is room for improvement in making low-complexity

decoders that still have good error-correcting performance. Resolving whether

or not general LDPC codes can be encoded in linear time is another important

step in the �eld, and especially for increasing the block lengths signi�cantly.
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Appendix A

Derivations

A.1 Derivation of the gradient-descent bit-flipping decoder

The following is the formulation of the bit-�ipping decoder as a gradient-descent

decoder, as presented by Wadayama et al. (2007). We assume here that the symbol

alphabet is {1,−1} and that transmission occurs over the BAWGNC. Maximum-

likelihood (or maximum a posteriori) decoding is equivalent to �nding the code-

word which maximizes the correlation to the received values, where the correla-

tion is

n∑
i=1

xiyi .

For the gradient-descent bit-�ipping decoder, we then de�ne an objective function

f (x) =
n∑
i=1

xiyi +
m∑
a=1

∏
i∈N (a)

xi .

The �rst part of the objective function is simply the correlation of the current

decoded codeword x and the channel values y. The second part is a term which

accounts for satis�ed parity-checks. When all parity-checks are satis�ed it takes

the valuem and when none are satis�ed it takes the value −m. Our goal is then

to maximize f or, equivalently, minimize −f . To do so we can use the gradient-

descent decoder. We �rst calculate the partial derivative with of f with respect

to a variable xi :

∂

∂xi
f (x ) = yi +

∑
a∈N (i )

∏
j∈N (a)\i

xj . (A.1)

Note here the strong resemblance to for example the sum-product tanh-rule. The

product on the right hand side in (A.1) is similar to the check-to-variable messages,

but with the log-ratio messages replaced by xj . The sum of products and addition

of yi on the right hand side of (A.1) again resembles the �nal marginalization

step (4.19) in the sum-product decoder.
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Derivations

The �rst-order approximation of f in the xi-coordinate is

f (x1, . . . ,xi + s, . . . ,xn ) = f (x) + s
∂

∂xi
f (x),

where s is the step length in the ith coordinate. Since we would like to maximize

f we would like to choose s so that s ∂∂xi f (x) > 0. This happens if we choose s > 0

when
∂
∂xi

f (x) > 0 and s < 0 when
∂
∂xi

f (x) < 0. Since xi ∈ {1,−1} we can multiply

the gradient by xi and get that the objective function value is increased, according

to the �rst-order approximation, if we �ip the value of xi when xi
∂
∂xi

f (x) < 0.

One possible way to choose which bit to �ip is to, at each iteration, �ip the bit i
that has the smallest

Ei = xi
∂

∂xi
f (x) = xiyi +

∑
a∈N (i )

∏
j∈N (a)

xj .

Alternatively, to keep with the convention that bits are �ipped when Ei is large

enough, we can de�ne

Ei = −xi
∂

∂xi
f (x)

and �ip the bit i that has the largest Ei or all bits i that have Ei greater than some

threshold θ .

A.2 Derivation of the tahn-rule for the sum-product decoder

Recall that in the �rst formulation of the sum-product decoder for decoding of

linear block codes presented in Chapter 4 the variable-to-check update rule is

vi→a (xi ) =
∏

b∈N (i )
b,a

fb→i (xi ).

Also, since we are considering binary codes we send in practice the vector

(vi→a (1),vi→a (−1)) from a variable node i to a check node a. The check-to-

variable update rule is

fa→i (xi ) =
∑
xa\xi

[

∏
j∈N (a) xj = 1]

∏
j∈N (a)\i vj→a (xj )

and we send the vector ( fa→i (1), fa→i (−1)) from a check node a to a variable

node i .
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Derivation of the tahn-rule for the sum-product decoder

The intuition for being able to use single scalars as messages in the case of

binary codes is that a probability distribution over two states can be described by

a single scalar due to the constraint that probabilities over all states must sum to

1. To simplify the conventional sum-product rules we introduce the ratios

f ra→i =
fa→i (1)

fa→i (−1)
, (A.2)

f ri =
fi (1)

fi (−1)

and

vri→a =
vi→a (1)

vi→a (−1)
(A.3)

as the message values. We will use the superscript r on the messages to di�eren-

tiate them from the conventional sum-product update rules where each message

consist of two values. We can then write the ratio vri→a as a product of ratios of

incoming messages f r
b→i

from the neighbors b of i , excluding a. More precisely,

we can write

vri→a =
vi→a (1)

vi→a (−1)
=

∏
b∈N (i )\a fb→i (1)∏
b∈N (i )\a fb→i (−1)

=
∏

b∈N (i )\a

f rb→i . (A.4)

We can likewise write the ratio f ra→i at a check node a using the ratios vri→a of

the neighbors j of a, excluding i . Doing so, we get

f ra→i =
fa→i (1)

fa→i (−1)

=

∑
xa\xi [

∏
j∈N (a) xj = 1]

∏
j∈N (a)\i vj→a (xj )∑

xa\xi [

∏
j∈N (a) xj = −1]

∏
j∈N (a)\i vj→a (xj )

=

∑
xa\xi [

∏
j∈N (a) xj = 1]

∏
j∈N (a)\i

vj→a (x j )
vj→a (−1)∑

xa\xi [

∏
j∈N (a) xj = −1]

∏
j∈N (a)\i

vj→a (x j )
vj→a (−1)

=

∑
xa\xi [

∏
j∈N (a) xj = 1]

∏
j∈N (a)\i

(
vrj→a

) 1+xj
2

∑
xa\xi [

∏
j∈N (a) xj = −1]

∏
j∈N (a)\i

(
vrj→a

) 1+xj
2

(A.5)

=

∏
j∈N (a)\i (v

r
j→a + 1) +

∏
j∈N (a)\i (v

r
j→a − 1)∏

j∈N (a)\i (v
r
j→a + 1) −

∏
j∈N (a)\i (v

r
j→a − 1)

(A.6)

=

1 +

∏
j ∈N (a)\i (v

r
j→a−1)∏

j ∈N (a)\i (v
r
j→a+1)

1 −

∏
j ∈N (a)\i (v

r
j→a−1)∏

j ∈N (a)\i (v
r
j→a+1)

(A.7)
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In (A.5) we have simply used the fact that the ratio
vj→a (x j )
vj→a (−1) is 1 when xk = −1

and vrj→a otherwise. In (A.6) we have done slightly more work. The product∏
j∈N (a)\i (v

r
j→a + 1) expands to the sum of the products∏

j∈M

vrj→a, ∀M ⊆ N (a) \ i,

where M can be the empty set in which case we de�ne the product to be 1. The

product

∏
j∈N (a)\i (v

r
j→a − 1) expands to the same but with a negative sign for

some terms. Each term with |M | terms such that |N (a) \i | − |M | is odd, is negative.

Now consider the indicator function [

∏
j∈N (a)\i xj = −1] in the numerator of (A.5).

It selects in the sum all such terms where there are an even number of xj which

take the value −1. On the other hand, all terms with an odd number of xj which

take the value −1 are ignored. The numerator in (A.6) now selects exactly the

same terms as the indicator function does. That is, we have∏
j∈N (a)\i

(vrj→a + 1) +
∏

j∈N (a)\i

(vrj→a − 1) = 2

∑
xa\xi

[

∏
j∈N (a) xj = 1]

∏
j∈N (a)\i

(
vrj→a

) 1+xj
2

Doing the same analysis for the denominator of (A.5) and (A.6) we get the result

in (A.6) as the 2’s cancel out. Further rearranging (A.7) we get

f ra→i − 1

f ra→i + 1

=
∏

j∈N (a)\i

vrj→a − 1

vrj→a + 1

. (A.8)

Instead of using the ratios in (A.2)–(A.3), we can use the log-ratios

f la→i = ln

(
f ra→i

)
,

f li = ln

(
f ri

)
,

and

vli→a = ln

(
vri→a

)
.

We can then rearrange the results using log-ratios. We �rst write the left-hand

side of (A.8) as

f ra→i − 1

f ra→i + 1

=
e f

l
a→i − 1

e f
l
a→i + 1

= tanh
*
,

f la→i

2

+
-
, (A.9)
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Derivation of the tahn-rule for the sum-product decoder

where we have simply used the de�nition of the tanh function. Likewise, we can

write the right-hand side of (A.8) as

∏
j∈N (a)\i

f rj→a − 1

f rj→a + 1

=
∏

j∈N (a)\i

tanh
*
,

f lj→a

2

+
-
. (A.10)

Rearranging (A.8) with the help of (A.9) and (A.10), we �nally get the tanh-rule

for the check-to-variable updates. The rule is

f la→i = 2 tanh
−1 *.

,

∏
j∈N (a)\i

tanh
*
,

f lj→a

2

+
-
+/
-
. (A.11)

If we now initialize the outgoing messages at the channel factors as

f ri = ln

(
fi (1)

fi (−1)

)
we can send (A.11) as the check-to-variable message at each check node. In

addition, rewriting (A.4) with the help of log-ratios we can send

vli =
∑

b∈N (i )\a

f lb→i .

as the variable-to-check message at each variable node. Thus, in the case of binary

linear codes we can send a single scalar over each edge as the message, instead a

vector containing two scalars if we directly apply the sum-product decoder.
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Appendix B

Parameter searches

The following two sections show plots of the bit-error rate as a function of the

two free parameters used in the stochastic bit-�ipping decoder and the WBF

decoder. In the stochastic bit-�ipping decoder, the probability to �ip a bit was

parameterized using two parameters p and T . The gradient-descent bit-�ipping

decoder was chosen to have one free parameter, the threshold θ for �ipping. The

parameter α in the general formulation of the weighted bit-�ipping decoder was

set to 1 as originally presented by Wadayama et al. (2007). The stochastic bit-

�ipping decoder was run after transmission over the BSC and the gradient-descent

bit-�ipping decoder after transmission over the BSC and BAWGNC.
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B.1 Parameter searches for the stochastic bit-flipping decoder
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Figure B.1: Parameter search for the stochastic bit-�ipping decoder with the (3,6)-regular

ensemble and block length 2
14

. The parameterization uses the parameters T and p. The

bit-error rate Pb was evaluated at the grid intersections. The performance was evaluated

on the BSC with crossover probability 0.03 (top), 0.05 (middle) and 0.07 (bottom) Note

that the color scale is logarithmic.
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Figure B.2: Parameter search for the stochastic bit-�ipping decoder with the irregular

ensemble and block length 2
14

. The parameterization uses the parameters T and p. The

bit-error rate Pb was evaluated at the grid intersections. The performance was evaluated

on the BSC with crossover probability 0.03 (top), 0.05 (middle) and 0.07 (bottom) Note

that the color scale is logarithmic.
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Figure B.3: Parameter search for the stochastic bit-�ipping decoder with the rate-
1

2

WiMAX code and block length 2304. The parameterization uses the parameters T and

p. The bit-error rate Pb was evaluated at the grid intersections. The performance was

evaluated on the BSC with crossover probability 0.03 (top), 0.05 (middle) and 0.07 (bottom)

Note that the color scale is logarithmic.
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B.2 Parameter searches for the gradient-descent bit-flipping

decoder
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Figure B.4: Parameter search for the gradient-descent bit-�ipping decoder with the

(3,6)-regular ensemble with block length 2
14

(top), the irregular ensemble with block

length 2
14

, and the rate-
1

2
WiMAX code with block length 2304. The threshold θ is the

free parameter in the gradient-descent bit-�ipping decoder. The bit-error rate Pb was

evaluated on the BSC as a function of the crossover probability ϵ . The vertical axis is

logarithmic.
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Figure B.5: Parameter search for the gradient-descent bit-�ipping decoder with the

(3,6)-regular ensemble with block length 2
14

(top), the irregular ensemble with block

length 2
14

, and the rate-
1

2
WiMAX code with block length 2304. The threshold θ is the

free parameter in the gradient-descent bit-�ipping decoder. Pb was evaluated on the

BAWGNC as a function of the signal-to-noise ratio (SNR) in dB. The vertical axis is

logarithmic.
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