

Mert Cihat Ocak

Implementation of an Internet of

Things Device Management Interface

School of Electrical Engineering

Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Technology.

Espoo, 20.11.2014

Thesis Supervisor: Prof. Jörg Ott

 Aalto University

Thesis Instructor: Jaime Jimenez

 Oy L M Ericsson Ab

ii

AALTO UNIVERSITY

SCHOOL OF ELECTRICAL ENGINEERING

ABSTRACT OF THE

MASTER’S THESIS

Author: Mert Cihat Ocak

Title: Implementation of an Internet of Things Device Management Interface

Date: 20.11.2014 Language: English Pages: 84+35

Department of Communications and Networking

Professorship: Radio Communications Code: S-72

Supervisor: Prof. Jörg Ott, Aalto University

Instructor: Jaime Jimenez, Oy L M Ericsson AB

The Internet is growing from connecting only computers and mobile devices to con-

necting also objects in the real life to the Internet, to create an Internet of Things

(IoT). Interconnected Internet of Things unveils the environmental data from these

objects to the use of complex applications and systems in the Internet and the cloud,

which is supposed to make the boundaries between the real world and the digital

world transparent. However, these devices will mainly be resource constrained, sim-

ple, sleepy devices such as sensors and the number of devices connected to the net-

work is expected to be very high. Hence, these two factors introduce the problem of

device management in IoT networks.

The thesis proposes the design and implementation of a fundamental device man-

agement interface for IoT networks and devices, combining IoT-specific features and

protocols such as CoAP, LWM2M and Publish/Subscribe with the existing Web

frameworks and protocols such HTTP and WebSocket. Real-time management and

monitoring of large-scale devices is one of the IoT-specific core features of the inter-

face along with other management features. The interface analyzes the integration of

additional features such as anomaly detection in IoT device data and error reporting

mechanisms. Moreover, the management interface is designed as a standalone appli-

cation over the existing Capillary Networks architecture, which targets at providing

connectivity for resource constrained devices and optimizing IoT devices with cloud

instances. Hence, the management interface extensively uses the features and entities

provided by the Capillary Networks via large set of REST APIs.

The design of the interface focuses on the IoT-specific problems of device manage-

ment, which structures the implementation accordingly. The implementation of the

interface is evaluated at the end of the thesis with stress tests and comparison with

initial requirements. The evaluation is then followed by possible future work to en-

hance the interface performance and extendibility to future IoT networks.

Keywords: Internet of Things, device management, web server, CoAP, LWM2M

iii

Acknowledgement

This thesis is the largest personal academic project I have done so far in my life,

which ended up taking several months for researching the topic, implementing the

system and writing the thesis itself. To achieve one of the most motivating and excit-

ing experiences of my academic life, I received a lot of valuable support from kind

people during this process.

Firstly, I would like to thank Professor Jörg Ott for accepting to be my supervisor for

the thesis. I really appreciate his comments and academic insight about the topic,

which guided me incredibly in the writing process of the thesis.

Secondly, I would like to thank Jaime Jimenez from NomadicLab for his incredible

support, guidance, very useful comments, feedback and valuable work experience, as

well as being my instructor. I sincerely appreciate working with him in all the related

and non-related topics during this time span since he was very helpful to clarify my

questions, to advise me and encourage me all the time. I feel very content at the mo-

ment for finishing this thesis and it would be much harder to achieve this without the

help from Jaime.

Moreover, I would like to thank all my colleagues from NomadicLab and Ericsson

for the very enjoyable working experience and environment, especially Nicklas Bei-

jar and Tero Kauppinen for helping me with many technical aspects, Jan Melen for

being an understanding project manager and Tony Jokikyyny for being a very kind

manager.

Last but not the least, I would like to thank my family and my friends for all their

support, some of which were remotely received with great gratitude. Thank you all

so much for everything.

Jorvas, November 20, 2014

Mert Cihat Ocak

iv

Table of Contents

Abbreviations and Acronyms .. vi

List of Figures ... vii

List of Tables ... viii

1 Introduction .. 1
1.1 Objective of the Thesis... 2
1.2 Scope of the Thesis .. 3
1.3 Structure of the Thesis ... 3

2 Background ... 4
2.1 Internet of Things ... 4

2.1.1 Internet of Things Overview .. 4
2.1.2 Project Overview .. 6

2.2 Communication Methods in IoT Device Management 7
2.2.1 HTTP .. 8
2.2.2 REST .. 10

2.2.3 The WebSocket Protocol.. 11
2.2.4 CoAP .. 12

2.2.5 LWM2M .. 16
2.3 Data Handling for IoT Device Management .. 20

2.3.1 NoSQL ... 20

2.3.2 JSON .. 21

2.4 Features of IoT Device Management ... 22
2.4.1 Publish/Subscribe ... 22
2.4.2 Aggregation .. 23
2.4.3 Prioritization ... 24

2.4.4 Anomaly Detection .. 24
2.4.5 Error Reporting .. 25

2.5 Capillary Networks .. 25
2.5.1 Features of Capillary Networks ... 27
2.5.2 Capillary Networks Components ... 28

2.6 Summary .. 31

3 Requirements .. 32
3.1 Frontend Requirements .. 32
3.2 Backend Requirements... 34

3.3 Summary .. 36

4 Design .. 37
4.1 Frontend Design ... 37
4.2 Backend Design ... 40
4.3 Summary .. 42

5 Implementation .. 43

v

5.1 Frontend Implementation ... 43
5.2 Backend Implementation ... 47

5.2.1 PHP Application .. 47
5.2.2 Pub/Sub Server ... 53
5.2.3 Redis Server ... 56
5.2.4 LWM2M Server Integration .. 58
5.2.5 REST APIs ... 60

5.2.6 Database ... 63
5.3 Demo Use Case .. 63
5.4 Summary .. 66

6 Measurements and Evaluation ... 67
 Requirements Evaluation ... 67 6.1

6.1.1 Frontend Requirements Evaluation .. 67

6.1.2 Backend Requirements Evaluation .. 69
 The Interface Performance Analysis .. 71 6.2

 Anomaly Detection Performance Analysis .. 76 6.3

7 Conclusions ... 78
Future Work ... 79

Bibliography ... 80

Appendix A ... 85

Appendix B ... 87

vi

Abbreviations and Acronyms

AJAX Asynchronous JavaScript and XML

BLE Bluetooth Low Energy

CGW Capillary Gateway

CN Capillary Network

CNF Capillary Network Function

CNM Capillary Network Manager

CoAP Constrained Application Protocol

COMMUNE Cognitive Network Management Under Uncertainty

CSS Cascading Style Sheets

GBA Generic Bootstrapping Architecture

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IoT Internet of Things

JS JavaScript

JSON JavaScript Object Notation

LWM2M Lightweight Machine-to-Machine Device Management

MD Machine Device

MP Mirror Proxy

MVC Model-View-Controller

NoSQL Not-Only Standard Query Language

Pub/Sub Publish/Subscribe

RAT Radio Access Technology

RD Resource Directory

REST Representational State Transfer

TCP Transmission Control Protocol

UDP User Datagram Protocol

URL Uniform Resource Locator

vGW Virtual Gateway

vii

List of Figures

Figure 2-1 M2M and IoT Comparison .. 5
Figure 2-2 Protocol Stacks of HTTP vs CoAP .. 13
Figure 2-3 CoAP Message format ... 14
Figure 2-4 CoAP request-response example .. 14
Figure 2-5 CoAP Resource Observe-Notify Scheme .. 16
Figure 2-6 LWM2M Protocol Stack ... 17
Figure 2-7 LWM2M Components and Interfaces .. 18
Figure 2-8 LWM2M Client, Object and Resource Overview ... 19
Figure 2-9 LWM2M Request-Response Example ... 19
Figure 2-10 Capillary Network Architecture Overview ... 26
Figure 2-11: IoT Framework User, Resource and Streams .. 30
Figure 4-1 User Interface Flowchart .. 39
Figure 4-2 Management Interface Backend Architecture ... 41
Figure 5-1 Home Page of User Interface ... 44
Figure 5-2 Representation of Machine Device Data .. 45
Figure 5-3 Frontend JavaScript Architecture ... 47
Figure 5-4 Workflow of PHP Application ... 49
Figure 5-5 Controllers and Capillary Network Components ... 50
Figure 5-6 Workflow of Anomaly Detection Program .. 52
Figure 5-7 Sequence Diagram of Pub/Sub Server .. 55
Figure 5-8 Sequence Diagram of Retrieving Device List from PHP Application 56
Figure 5-9 Workflow between Node Server, PHP application and Redis Server 57
Figure 5-10 LWM2M and PHP application integration .. 59
Figure 5-11 LWM2M example commands ... 59
Figure 5-12 Database table ... 63
Figure 5-13 Demo Environment .. 64
Figure 6-1 Browser Memory Use Rate .. 74

viii

List of Tables

Table 2.1 Most Common HTTP Methods ... 9
Table 2.2 HTTP Status Codes ... 10
Table 2.3 REST architecture implementation example in a Web service .. 11
Table 2.4 CoAP Message Types ... 13
Table 2.5 CoAP Response Code Examples ... 15
Table 2.6 LWM2M Interfaces and Operations ... 18
Table 3.1 Requirements for the Management Interface’s Frontend .. 32
Table 3.2 Requirements for the Managements Interface’s Backend ... 34
Table 5.1 REST APIs towards CNF .. 60
Table 5.2 REST APIs towards CNF used for demonstration .. 61
Table 5.3 REST APIs towards CNM ... 61
Table 5.4 REST APIs towards IoT Framework .. 62
Table 5.5 REST APIs towards vGW ... 62
Table 5.6 APIs towards Pub/Sub server in Capillary Networks cloud ... 63
Table 6.1 Frontend Requirements Evaluation ... 67
Table 6.2 Backend Requirements Evaluation .. 69
Table 6.3 Measurement Results of HTTP Requests for HTML, JS-Core and JS-Google Maps 72
Table 6.4 Measurement Results of HTTP Requests for CSS and Images .. 73
Table 6.5 Measurement Results from WebSockets and Browser Memory Use 73
Table 6.6 Measurement Results from WebSockets with latency and Browser Memory Use 75
Table 6.7 Measurements from Anomaly Detection Test ... 76

1

1 Introduction

The Internet has grown extensively and fast-paced in the last decades, from serving

hundreds of hosts to providing billions of interconnected, complex hosting solutions.

The evolution of the Internet is still ongoing swiftly with the addition of mobile de-

vices in great numbers connecting to the Internet. Interconnected computers and mo-

bile devices constitute the current Internet architecture in which the people are con-

nected to the Internet regularly.

The next leap in the Internet connectivity is to evolve from connected computers and

mobile devices to connected real world objects. Hence, the purpose is to extend the

Internet of computers to Internet of Things. Connected things will combine the real

world with the digital world, bringing the environmental information from the ob-

jects to the use of the complex systems in the Internet. Things in this scope are main-

ly constrained devices such as sensors or actuators placed around the daily environ-

ments and they can collect e.g. temperature readings from a room, heart rate readings

from a patient, humidity values and many other uncountable environmental infor-

mation. The information collected can be processed by different entities in the net-

work and different applications can be retrieved from the data. Moreover, things can

interchange data between each other to enable different interaction possibilities such

as the heating system at home can be turned on automatically when the sensor on the

door lock notifies the heaters about incoming home owner or the fridge can send up-

dates to its manufacturer for maintenance purposes.

The application possibilities, which the Internet of Things concept offers, are bound-

less in industry, home automation, health, logistics or any other area by connecting

the things to the network. However, the constrained nature of the things i.e. devices

introduces challenges to connect these low-energy, low-processing power and sleepy

devices to the network. The current Internet uses mainly HTTP over TCP/IP stack

for reliable data transmission in always-connected networks. But the Internet of

Things requires specialized methods and communication aspects to tackle the con-

nectivity challenges created by the constrained networks.

The research in making the Internet of Things (IoT) real focuses on how to tackle the

challenges of constrained networks in different ways and on how to integrate the de-

vice and the data to the cloud optimally. These topics are hot topics in many research

projects and the Capillary Networks project is one of the research projects which fo-

cuses on these research problems and their solutions. Enabling an easily deployable

connected devices architecture with using cloud resources extensively is the key ob-

jective of the Capillary Networks project.

The number of connected things is expected to be in billions, which is supposed to

transform the network to an enormous scale. However, this expected large number of

CHAPTER 1. INTRODUCTION 2

constrained devices raises another problem in the IoT network: the device manage-

ment. Each one of the connected devices needs to be managed and maintained by the

network manager either manually or automatically. But the challenges introduced by

the connectivity constraints of the devices pushes the research to find new ways of

device management for constrained devices, which are different than current Internet

entities using always-connected, non-constrained nodes. Hence, the device manage-

ment in IoT requires lightweight and innovative methods designed in particular for

constrained devices.

The management of an IoT network requires manual interaction with the end user for

monitoring the network, even though the entire network management is automated.

For this purpose, a device management interface in IoT can be implemented as a

Web service, which combines the whole IoT network management aspects such as

monitoring, manual device controls, error reporting or data presentation. Web service

provides easy integration of the device management to the current Internet, high

reachability of the interface and innovative graphical ways to manage the large num-

ber of devices.

This thesis presents the requirements, design and implementation of a Web based

IoT device management interface for the Capillary Networks architecture to research

the solutions for IoT device management problems. The interface combines several

IoT-specific aspects with the existing Web architecture to find solution to the re-

search statement.

1.1 Objective of the Thesis

The management interface design and implementation consist of three main objec-

tives:

1. The management interface is required to be designed so that it can optimally

handle large number of devices and large amount of data. Moreover, the fea-

tures of the device management should be supported for each single device.

2. The interface is needed to present the features of the Capillary Networks ar-

chitecture to the network manager. To satisfy this, the interface is supposed to

gather network management information from different network entities and

create the final look. Hence, the interface is required to be designed as a

standalone solution.

3. The features specific to IoT device management should be integrated to the

interface for constrained network optimization.

To satisfy the objectives, the thesis discusses the implementation of the IoT device

management interface done with the use of HTTP, WebSockets, CoAP, LWM2M

and specific IoT device management features.

CHAPTER 1. INTRODUCTION 3

1.2 Scope of the Thesis

The thesis focuses on the design and implementation of a device management inter-

face built on top Capillary Networks architecture and integration of Capillary Net-

works components. Hence, we omit the integration of other IoT network solutions or

protocols which are not used in the Capillary Networks.

The discussion for the implementation of Capillary Network entities is not included

as well. The management interface is built upon the existing Capillary Networks ar-

chitecture and hence, only the relevant features of the architecture is discussed.

The management interface introduces an online map to display the locations of de-

vices (gateways and sensors) on the map. The map is limited to the two-dimensional

locations i.e. three-dimensional presentations of device locations are out of the scope.

The map is mainly aimed at presenting geographically distributed devices. Moreover,

indoor positioning of the devices inside buildings is also not included in the thesis.

Furthermore, the management interface assumes the security of the network i.e. the

devices and the data is already established by other means or entities. Therefore, se-

curity concerns of the IoT network architecture is skipped from the thesis.

1.3 Structure of the Thesis

The thesis consists of 7 chapters. Chapter 2 presents the background information

gathered during the thesis research. Chapter 3 introduces the requirements of the

management interface implementation while we present the interface design in Chap-

ter 4. Chapter 5 discusses the implementation in detail both for the frontend and

backend of the interface. In Chapter 6, we evaluate the interface performance with

obtained measurements from the tests. Finally in Chapter 7, we review the thesis by

summarizing the outcomes obtained during the thesis and suggest ideas for future

work about the thesis topic.

4

2 Background

This chapter presents the related technology and literature relevant to the work de-

veloped during the thesis. First, the concept of Internet of Things (IoT) and of device

management in IoT is discussed thoroughly. Next, two IoT projects, which we got

involved during the thesis, are shortly introduced. Several communication protocols

and their roles in IoT device management are also presented, followed by the intro-

duction of some data handling solutions in IoT networks. Finally, different features

used in IoT device management are presented in detail by referring to related proto-

cols or concepts.

2.1 Internet of Things

The concept of Internet of Things is presented in this section with an aim to cover the

idea behind this evolving set of technologies. Requirements and challenges encoun-

tered in IoT device management are introduced as well, followed by two project

overviews.

2.1.1 Internet of Things Overview

The idea of connecting things to the Internet has been discussed and researched ex-

tensively by research institutions and industries for the last two decades as the new

technology breakthrough. Connecting these things, i.e. physical components, to cre-

ate an Internet of Things (IoT) is predicted to have great impact in daily life and will

eventually make many applications possible, such as health care tracking, smart

homes, smart industrial plants, logistics and many other examples both in the public

and private sectors within [1].

M2M (Machine-to-Machine) with a similar concept of connecting things has been in

use in different industries since early 1990s [2]. However, M2M and IoT are two dis-

tinct concepts: IoT is broader and is an evolution from M2M in terms of connectivi-

ty, application and storage. The main purpose of M2M is to maintain the connectivi-

ty between a specific machine and the remote host in a fixed, proprietary installation,

which is generally configured to monitor and control only those specific types of

machines i.e. vertical solutions [3]. Hence, M2M provides end-to-end connectivity to

send the machine data to the cloud and to manage only specific, closed and point-to-

point systems, such as elevator remote control or fleet management solutions [2].

However, IoT concept broadens the idea of M2M to create a new Internet of con-

nected things horizontally rather than vertical solutions. To establish the horizontal

interaction between IoT entities, things connected to the network send their data to

the cloud, from which humans, computer systems and other things read the data, in-

teract with each other and integrate with other standalone applications/solutions [4]

(see Figure 2-1). Thus, IoT aims at creating an open, scalable, standards-based, ser-

vice-oriented network in which very large amount of nodes can communicate and

CHAPTER 2. BACKGROUND 5

interact with each other, such as receiving updates from your refrigerator to your

mobile phone about the food which will go bad soon, heart beat readings of a patient

sent to a monitoring node for notifying the doctor in case of anomaly or the sensors

in an oven sending readings to the manufacturer for quality assurance.

Figure 2-1 M2M and IoT Comparison

To achieve the goals set by the IoT vision, new features and methods are to be intro-

duced to the already existing M2M solutions, some of which are [2]:

- Connectivity: The small, constrained devices needs to be connected to the

network. Since these devices are generally power-constrained non-cellular

devices, low-power connectivity solutions are needed.

- Communication Protocols: To decrease the network traffic of the con-

strained devices, special constrained protocols are needed both for data and

control paths since traditional Web protocols (HTTP/TCP) create heavy traf-

fic for constrained devices

- IP-Based: Enabling things communicating with each other requires each of

them to be accessible in the Internet. IPv6 provides large enough namespace

for billions of possible connected devices for this purpose.

- Smart Objects: To store the data and to enable different network elements to

interact with it, the data needs to be in a standardized format. This assures in-

teroperability between different elements of the network.

- Web APIs: APIs to retrieve the data and other information from the cloud

and the network provides ease of integration by other nodes or free applica-

tion development on the provided data without the knowledge of the source

of the data

- Post-Processing of the Data: The immense amount of data stored in the

cloud can be related to other entities or can be processed for developing busi-

ness logics. Moreover, the data can be analyzed for anomaly detection, track-

ing, data assessment etc.

CHAPTER 2. BACKGROUND 6

One of the main purposes of IoT is the construction of a horizontal, versatile, scala-

ble and accessible data architecture where large number of devices and humans in-

teract with each other. However, the vast amount and distribution of the devices over

the network creates technical challenges in device management of devices in IoT.

Device monitoring and control, network monitoring and management, device or re-

source identification and discovery are some of the challenges the infrastructure of

IoT is required to find solutions for.

To achieve the management of IoT devices in distributed and constrained networks,

specific constrained protocols with IoT specific features are needed. Moreover, the

network architecture requires to provide and store the device management infor-

mation retrieved from both the devices and the management nodes. The integration

of the management protocols and management data to the Internet can be achieved

by using Web services, which creates human-readable, interactive management inter-

faces.

The device management interfaces are often placed at the end of the IoT manage-

ment network and provides all the relevant information to the end user i.e. the device

manager. Handling the vast amount of devices and the data, along with several dif-

ferent communication protocols and cloud resources, device management interfaces

are required to be the wrapper applications in the network combining different proto-

cols, features and data handling methods.

2.1.2 Project Overview

During the duration of the thesis, we were involved in two IoT projects, which are

Capillary Networks and COMMUNE.

Capillary Networks

Predictions for future IoT architecture propose that billions of devices will be con-

nected to the Internet, as stated in the previous section. But the majority of these de-

vices are expected to be non-cellular, basic devices (e.g. sensors, actuators) using

only short-range radio technologies (Wi-Fi Low Energy, BLE, IEEE 802.15.4 etc). A

possible scenario for non-cellular devices to connect to the cellular network is the

use of capillary gateways. In this case, a capillary gateway is a device which is capa-

ble of communicating over short-range radio and providing network connectivity (ei-

ther cellular or fixed network connection) to non-cellular devices. Moreover, a capil-

lary network refers to the local short-range network created between non-cellular de-

vices and the capillary gateway. By making easily deployable capillary networks

possible and creating end-to-end connectivity between non-cellular devices and the

end user, capillary networks are supposed to be an important concept for making IoT

real [5].

CGWs can be connected to the Internet using either wired or wireless backhaul. For

this project, however, LTE was chosen to be the backhaul technology with the moti-

vations such as [6]:

- 3GPP CGW is easier and cheaper to deploy since there is no need for LAN or

CHAPTER 2. BACKGROUND 7

fiber cable.

- 3GPP is currently the best solution in case of mobile capillary networks.

- Connecting capillary networks to core cellular network enables cellular net-

work features to be used for capillary networks.

The Capillary Networks project aims at providing connectivity to devices connected

via CGW, which current 3GPP devices do not support. Following are some other

features offered by the project outcomes, which do not currently exist in 3GPP solu-

tions:

- Enabling end-to-end management and connectivity over cellular network for

very simple and cheap devices e.g. sensors or actuators.

- Smart CGW selection between capillary networks.

- Increased QoS for capillary networks.

- Possibility to have middleware with different functionalities in the core net-

work for capillary networks e.g. proxies.

- Providing cloud resource optimization for capillary networks management

and data.

Features and components of the Capillary Networks project are discussed in detail in

Section 2.5.

COMMUNE

COMMUNE is a joint Celtic-Plus project with partners from Finland, Spain, Poland,

Slovenia and Ireland. The project focuses on the problem of how to manage future

networks under uncertainty and proposes solutions based on cognitive networking

techniques to reduce uncertainty with critical management situations [7].

While knowledge based reasoning approaches in order to detect system faults are

widely used in current networks, the solutions still include human interaction to deal

with uncertainties in complex networks. To decrease the need for human interaction,

machine-learning techniques may be relevant to deal with network management un-

der uncertainty.

In the concept of COMMUNE, cross domain management should require less human

interaction in the future as the number of nodes connected to the network and the

amount of data produced will be immense such as the number of IoT devices. From

IoT device management perspective, COMMUNE offers automatic anomaly detec-

tion in the device data as a cognitive method (see Section 2.4.4).

2.2 Communication Methods in IoT Device Management

IoT device management requires extensive communication of the network manager

with the constrained devices and with the other entities in the network. Management

commands from the manager are transmitted to the device via different nodes using

different communication methods/protocols. Being generally in the cloud as a Web

server, the management node is expected to support HTTP [8] to integrate seamless-

ly with other cloud entities. Since HTTP does not support real-time communications

CHAPTER 2. BACKGROUND 8

directly, the WebSocket protocol can be used between several entities for real-time

device monitoring. Moreover, the manager may be limited to use specific protocols

to communicate directly with the constrained devices due to low power, connectivity

or other constraints. For this purpose, the manager can use CoAP (Constrained Ap-

plication Protocol) [9] as a protocol for constrained environments either for data in-

terchange from the devices or for management commands. For the management part

in particular, a lightweight device management protocol working over CoAP would

complete the functionality of the IoT device management. LWM2M (Lightweight

Machine-to-Machine Device Management) [10] satisfies the requirement of working

over CoAP and retains many features for IoT device management. As it has been

shown, there are several different protocols that are needed for IoT device manage-

ment to integrate with the rest of the network. This section discusses these communi-

cation methods and protocols, which are to be used for a complete and operable IoT

device management solution.

2.2.1 HTTP

HTTP (Hypertext Transfer Protocol) is one of the widely used application layer pro-

tocols for transferring data over the Internet [8]. HTTP architecture defines a server

(generally referred as web server), which serves the data and a client (generally a

web browser), which requests the data from the server. Hence, HTTP follows a re-

quest-response scheme i.e. request from the client is sent to the server and the server

replies with a respond to the client.

Since HTTP is an application layer protocol, it can be used on top of any reliable

transport level protocol such as TCP or RTP [8]. The current web servers in the In-

ternet mostly utilize HTTP on top of TCP/IP stacks.

Resources and Path Conversion

The web server stores the web content, which is sent to the client in HTTP response.

The web content can include static HTML files, images, messages, videos, on-

demand dynamic content and many other types. Each single piece of the web content

is defined as a resource on the web server i.e. any content that has an identity on the

web server is a resource [11].

Resources on the web server are accessible via uniform resource locator (URL).

URLs indicate a reference to the unique resource on the web server and follow the

format below [12]:

PROTOCOL://HOST_NAME:PORT /RESOURCE_PATH?RESOURCE_INPUT

PROTOCOL refers to the application layer protocol used (e.g. http) while

HOST_NAME is the webserver address (e.g. www.ericsson.com). PORT is the port

number accepting the requests in the server (80 for default http requests). RE-

SOURCE_PATH defines the resource location on the server whereas RE-

SOURCE_INPUT is the input given by the user agent for the requested resource.

In practice, webserver backend implementation is responsible of directing URLs into

CHAPTER 2. BACKGROUND 9

logical functions and of responding the user with the requested resource. Hence, the

requested URL may not refer to a simple static file but rather can also refer to a more

complex data acquisition in the server.

Methods

As defined in [8], there are six main HTTP request methods which indicate to the

server the action to be performed on the requested resource. Each request is accom-

panied with one type of method and the method type is written in the request header.

The list of HTTP methods is presented in Table 2.1.

The methods available, GET method is the most common one which basically asks

the requested resource from the server. GET request data is encoded in the URL it-

self. However, the request data is encoded in message bodies in case of POST and

PUT methods. The server processes the message data in POST and PUT requests

(e.g. written to the database) and returns the appropriate status code. Less common

methods HEAD, DELETE and TRACE are mentioned in Table 2.1.

HTTP methods can have two different features, safe or idempotent. A safe method

should not modify any data in the server other than just retrieving the information,

such as GET and HEAD. To perform changes in the server, “unsafe” methods should

be chosen [8]. Moreover, idempotent methods should have the same side-effects in

single or multiple requests to the server i.e. the user can send multiple requests to the

server while expecting the same server response.

Table 2.1 Most Common HTTP Methods

Method Description Safe Idempotent

GET Get the requested resource. Yes Yes

POST Post data to the server for processing No No

PUT Store the resource in the server No Yes

HEAD Get only the HTTP header, no body Yes Yes

DELETE Delete the resource in the server No Yes

TRACE Trace the request to the server Yes Yes

Status Codes

Each HTTP request receives a response code from the server indicating the result of

the operation performed in the backend. The response code is embedded in the HTTP

response. If the server responds with data, the data is attached to the response as

CHAPTER 2. BACKGROUND 10

well.

HTTP response code is a 3-digit result code in which the first digit defines the class

of the response [8]. The last two digits can be defined depending on the implementa-

tion; however, there are widely accepted and used HTTP codes available. The list of

status codes are presented in Table 2.2:

Table 2.2 HTTP Status Codes

Class Category Description Example

1xx Informational Request received, continuing the process 101 Switching Pro-

tocols

2xx Success The action successfully performed 200 OK

3xx Redirection Further action needed 302 Found

4xx Client Error The request cannot be handled 404 Not Found

5xx Server Error The server failed to fulfill a valid request 500 Internal server

error

2.2.2 REST

Representational state transfer (REST) is an client-server type architectural style for

network applications, which consists of several design principles and has defined the

current basis of the World Wide Web [13]. Although REST is not a protocol not has

been standardized within HTTP standards, the Web architecture has evolved on

REST architecture using the distributed system design defined with REST [14].

REST relies on three main design principles: addressability, uniform interface and

statelessness [15]. Addressability refers to data elements in the server being accessi-

ble via uniform interfaces to the clients. Data elements in REST are abstracted as re-

sources, which makes REST a Resource Oriented Architecture [13]. As stated in

2.2.1, resources can be any type of information stored on the server and accessible

via a uniform and standard interface (i.e. URI) [16]. Advantages of using a uniform

interface are familiarity of the web server operations to the clients and interoperabil-

ity of the request and responses [16]. Statelessness of REST architecture assures that

requests are performed with the information provided only in that request i.e. the

server never relies on the data from previous requests to perform the operation for a

new request. Statelessness provides several advantages for implementation such as

scalability and load balancing [16].

As mentioned above, REST is widely used in current the Internet applications along

with HTTP, though REST can be applied on other protocols as well. Support of ex-

tensive representation formats (e.g. HTML, JSON, XML etc.) and HTTP methods as

uniform interfaces (e.g. GET, POST, PUT etc.) can be referred as only two of the

CHAPTER 2. BACKGROUND 11

main reasons of the wide use of REST architecture over HTTP in web technologies.

Web services combine REST architecture to the implementation with the following

convention:

- Resources stored on the server are given unique IDs, which are URIs.

- Request from the client identifies the resource by providing the resource ID

in the request.

- The representation of the resource is prepared and sent in the response to the

client.

- The requests are not directly referred to previous requests (statelessness).

Table 2.3 presents examples of message flows in a web service, which deploys

REST architecture.

Table 2.3 REST architecture implementation example in a Web service

Resource Action HTTP Method Client -> Server Server -> Client

Sensors Get: List of

sensors

GET:

http://iotman.com/deviceList

None [{"devices":"111,

222"}]

Gateways Update: GW

information

POST:

http://iotman.com/gateways

cmd=set_log&node

=1

[{"status":"Success"}]

2.2.3 The WebSocket Protocol

The WebSocket protocol is a client-server based communication protocol, which en-

ables two-way (bidirectional) communication over a single TCP connection between

the client (generally a web page or a web browser) and the server [17]. The protocol

is developed as part of HTML5 initiative to decrease the complexity of bidirectional

communication in the Web and to provide a simpler form of full-duplex connection

to also enable server initiated communication.

Bidirectional communication in HTTP can be achieved by the client frequently poll-

ing the server for any updates (HTTP polling or HTTP long polling). However, this

approach is not efficient with the following reasons [17]:

- For each request, the server needs to use different TCP connections and

handshakes.

- Each request repeats HTTP headers and the same applies to the response.

- The client needs to map the outgoing HTTP connections to the incoming

connections.

The WebSocket protocol eliminates the need of HTTP polling by the client since the

open TCP connection can be used to send information either by the client or by the

server. Bidirectional nature of the WebSocket enables the build of scalable and real-

time Web applications, in which the server can initiate the communication as well

[18].

CHAPTER 2. BACKGROUND 12

The protocol is designed to be compliant with the current HTTP architecture of the

Web i.e. it runs over HTTP ports 80 and 443 as well as HTTP proxies or other inter-

mediate entities [17]. Protocol switch between HTTP and WebSocket is performed

during the “handshaking” process. However, WebSocket is not limited to HTTP or

any other application layer protocol since it is an independent TCP-based protocol.

The WebSocket protocol consists of two parts, from which “handshaking” is the first

part. To establish the WebSocket connection with the server and to switch protocol

from HTTP to WebSocket, the client sends a handshake request to the server via

HTTP, which can look like as follows:

GET /deviceList HTTP/1.1

Host: server.iotmanagement.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: TS4irnQyQTfEfeRKFyqN8g==

Origin: http://iotmanagement.com

The response to the handshake request from the server would be as follows:

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: J7/IIGO7dfhs8KWl+098tqUDSeE=

A successful handshake creates the TCP connection between the client and the server

and utilizes the WebSocket protocol over this connection by switching from HTTP

(note the HTTP status code 101 in the response). The second part, “data transfer”

follows the successful handshake. The client and the server uses the TCP connection

for transmitting data in a bidirectional manner, in which data messages are sent in

frames over this connection. One data frame can look like as follows:

{"name":"networkElements","args":["[{"id":"G002127","latitude":59.40442269

,"longitude":17.95359135,"service":"gateway","vgwip":"1.1.1.1"}]"]}

The standardized API [19] of the WebSocket protocol enabled many WebSocket im-

plementations being integrated into existing Web technologies (e.g. PHP, Perl, Py-

thon) or into evolving Web solutions (e.g. Node.js). Moreover, server-initiated data

transmission feature of WebSocket introduced the extensive use of Publish/Subscribe

schemes in the evolving technologies. It enabled servers subscribing to clients or

vice versa to inform the other party instantly by sending a notification. The feature of

publish/subscribe is a crucial requirement for real-time device management in IoT, as

to be discussed in Section 2.4.1.

2.2.4 CoAP

Constrained Application Protocol (CoAP) is a RESTful application layer protocol

specifically designed for constrained devices and constrained networks [9]. It de-

creases the effects of the difficulties created by the constrained nature of these net-

works (e.g. low-power, lossy). CoAP utilizes a request/response based architecture

between a CoAP client and a CoAP server while including key concepts of the Web

CHAPTER 2. BACKGROUND 13

(similar to HTTP) such as media types, URIs and method types [9]. Moreover, it in-

troduces new solutions for M2M specific problems such as resource discovery of the

constrained nodes, smaller message overhead compared to HTTP and asynchronous

transfer model.

Message Transaction Model

CoAP uses UDP or SMS (Short Message Service) bindings as transport protocol to

avoid the overhead created by connection oriented protocols such as TCP. As the

protocol stack of CoAP shown in Figure 2-2 presents, CoAP mainly works over IPv6

using 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks) [20] and

RPL for multi-hop cases (IPv6 Routing Protocol for Low-Power and Lossy Net-

works) [21] as opposed to HTTP over TCP/IP stack. Hence, including HTTP features

for constrained devices does not indicate CoAP being a compressed version of HTTP

but rather being a re-designed protocol specialized for constrained environments

[22].

Figure 2-2 Protocol Stacks of HTTP vs CoAP

Since UDP is a best-effort protocol, the optional reliability in CoAP is ensured with

different types of CoAP messages in the message layer: confirmable (CON), non-

confirmable (NON), acknowledgement (ACK) and reset (RST). Confirmable mes-

sages require the receiver to send an ACK to the sender to ensure the reliability.

However, non-confirmable CoAP messages do not require any ACK. If the response

for a CoAP confirmable message is immediately available, the response can be car-

ried in the payload of ACK message and this is called piggybacked response [9].

CoAP message types are presented in Table 2.4.

Table 2.4 CoAP Message Types

Type Definition Reliable Indicator

CON Confirmable YES 0

NON Non-confirmable NO 1

ACK Acknowledgement NO 2

RST Reset NO 3

CHAPTER 2. BACKGROUND 14

Each CoAP message consists of a four-byte binary header followed by a sequence of

options and payload (see Figure 2-3). The header contains 2-bit CoAP version, 2-bit

message type indicator, 4-bit token length indicator for the variable length token, 8-

bit message code (explained in Section “Message Codes and Methods” below) and

16-bit message ID. The header is followed by the token value, which is used to cor-

relate requests and responses. Token value is followed by options if there is any. Fol-

lowing the options comes the Payload Marker (0xFF) to indicate the end of options

and the start of optional payload. This compact header design decreases the overhead

significantly compared to HTTP, which leads to decreased energy consumption and

response time for constrained devices [22].

Figure 2-3 CoAP Message format

Figure 2-4 presents a communication example between a CoAP client and a CoAP

server using CON messages. Response for the CON message is piggybacked in the

ACK in both cases while the timeout in CoAP client triggers the request resent to the

server in the second case.

Figure 2-4 CoAP request-response example

URIs and Discovery of Resources

Since CoAP is a RESTful protocol, information in constrained devices are stored as

resources and accessible via URIs. Hence, CoAP defines a URI scheme for CoAP

resources (e.g. temperature value in a specific room) which is similar to HTTP URLs

(see Chapter 2.2.1):

coap://HOST_ADDRESS:PORT_NUMBER/PATH?QUERY

As an example, following URI refers to the temperature resource on the requested

host and the path.

coap://ericsson.com:5683/rd/jorvas/room/541/temperature/

CHAPTER 2. BACKGROUND 15

However, machines communicating with each other are required to discover each

other’s resources in M2M environments i.e. resources and corresponding URIs are

needed to be available for other machines. To solve this problem, CoAP introduces

the well-known resource path /.well-known/ in CoAP servers. Each COAP server is

suggested to provide the well-known path for resource discovery in the network [9].

The well-known URI is an important aspect for CoAP since it provides uniform and

interoperable resource discovery in CoAP networks [23]. For instance, following

URI refers to the list of resources in the given host address i.e. to well-known:

coap://[2001:db8::2:1]/.well-known/core

Message Codes and Methods

Message code attribute in CoAP message header is used to define different types of

request types or response codes. In case of a CoAP request, the attribute is used to

determine the message method of the request from one of the following methods:

GET, POST, PUT and DELETE. These methods perform similar way to the same

methods in HTTP (see Chapter 2.2.1).

When the CoAP message is a response to a request, 8-bit message code attribute is

used to indicate the response codes. Response codes are also similar to HTTP with

the difference of a dot between the class of the response code and the sub-class, as

some of them are presented in Table 2.5.

Table 2.5 CoAP Response Code Examples

2.xx Success 4.xx Client Error 5.xx Server Error

2.01 Created 4.00 Bad Request 5.00 Internal Server Error

2.02 Deleted 4.01 Unauthorized 5.01 Not Implemented

2.03 Valid 4.02 Bad Option 5.02 Bad Gateway

2.04 Changed 4.03 Forbidden 5.03 Service Unavailable

2.05 Content 4.04 Not Found 5.04 Gateway Timeout

Observe/Notify in CoAP

CoAP introduces an asynchronous publish/subscribe mechanism to enable server-

initiated communication, which is called “Observe/Notify” [24]. In HTTP, requests

are always client-initiated which means that the client needs to perform the same re-

quest frequently (polling) to determine the changes in the server. However, this ap-

proach is not optimal for power-constrained environments. To overcome this prob-

lem, CoAP enables a communication scheme in which the server can initiate the

communication to inform the registered client about the updates in the server data or

CHAPTER 2. BACKGROUND 16

management command.

To start the observer/notify mechanism, the client indicates in a CoAP request its in-

terest to “observe” the changes in the CoAP server by specifying the “Observe” op-

tion in the message options. This way, the client starts observing the resource on the

server and if the resource is updated, the server “notifies” the client with the new in-

formation. Notification message is a regular CoAP response (e.g. message code 2.05

Content) with the token ID of the first observe message and an additional observe

message ID (see Figure 2-5).

Figure 2-5 CoAP Resource Observe-Notify Scheme

2.2.5 LWM2M

OMA DM Lightweight (LWM2M) is a light and compact device management proto-

col that is used for managing IoT devices and their resources [10]. LWM2M runs on

top of CoAP as an application layer communication protocol, hence, LWM2M is

compatible with any constrained device, which runs CoAP as the transport protocol

(see Figure 2-6). The main approach for LWM2M is to provide a set of interfaces for

managing the constrained devices. Monitoring, managing and provisioning the mas-

sive amount of IoT devices require a standardized lightweight management protocol

to maintain the control of the IoT network.

LWM2M offers a simple object based resource model, which allows several opera-

tions on the resources, such as resource creation, retrieval (read), update, deletion,

configuration, execution, observation and notification [10]. As a device management

protocol, LWM2M supports all basic device management functionalities, which in-

clude but not limited to access control, firmware update, connectivity, location, de-

vice meta data etc. Next sub-sections discuss the architecture of LWM2M and the

resource model in IoT device management.

CHAPTER 2. BACKGROUND 17

Figure 2-6 LWM2M Protocol Stack

Architecture and Interfaces

LWM2M architecture defines three logical components:

- LWM2M Client: It contains several LWM2M objects with several re-

sources. LWM2M Server can execute commands on these resources to man-

age the client, commands such as to read, to delete or to update the re-

sources. LWM2M Clients are generally the constrained devices (sensors, ac-

tuators etc.).

- LWM2M Server: It manages LWM2M Clients by sending management

commands to them. The LWM2M Bootstrap Server configures the access

control for a specific LWM2M Server on the constrained device.

- LWM2M Bootstrap Server: It is used to manage the initial configuration

parameters of LWM2M Clients during the bootstrapping process. It is only

entitled to configure the device to give access to specific LWM2M Servers,

hence, management of the device does not involve the bootstrap server after

the bootstrap process.

To maintain the communication between mentioned components above, following

LWM2M interfaces are defined in the standard:

- Bootstrap: LWM2M Bootstrap Server sets the initial configuration on

LWM2M Client when the client device bootstraps. For this interface, the cli-

ent sends a “Request Bootstrap” message to the bootstrap server and the

server performs “Write” and “Delete” on the client’s access control objects

to register one or more LWM2M Servers.

- Client Registration: LWM2M Client registers to one or more LWM2M

Servers when the bootstrapping is completed.

- Device Management and Service Enablement: LWM2M Server can send

management commands to LWM2M Clients to perform several management

actions on LWM2M resources of the client. Access control object of the cli-

ent determines the set of actions the server can perform, which is already set

during the bootstrapping process.

- Information Reporting: As a feature of CoAP Observe-Notify mechanism

[24], LWM2M Clients can initiate the communication to LWM2M Server

and report information in the form of notifications.

Figure 2-7 presents the LWM2M architecture and the interfaces between the compo-

nents, while Table 2.6 shows all available operations on LWM2M objects in each

CHAPTER 2. BACKGROUND 18

interface.

Figure 2-7 LWM2M Components and Interfaces

Table 2.6 LWM2M Interfaces and Operations

Interface Direction Operation

Bootstrap Uplink Request Bootstrap

Bootstrap Downlink Write, Delete

Client Registration Uplink Register, Update, De-register

Device Management and Ser-

vice Enablement

Downlink Create, Read, Write, Delete, Execute,

Write Attributes, Discover

Information Reporting Uplink Notify

Information Reporting Downlink Observe, Cancel Observation

Object and Resource Model

The information in LWM2M Clients is stored as Resources and Resources are

grouped into different Objects on the client. Hence, a LWM2M Client may have any

number of Resources, each of which are grouped under an Object (see Figure 2-8).

CHAPTER 2. BACKGROUND 19

Figure 2-8 LWM2M Client, Object and Resource Overview

LWM2M Server performs the operations mentioned in Table 2.6 on the objects and

resources to manage the device and its resources. Hence, the server can perform any

allowed operation on the client. For example, LWM2M Server can read “Serial

Number” resource (ID 2) or “Battery Level” resource (ID 9) from Device Object (ID

3) of the client with the ID 1895 (see Figure 2-9). Moreover, it can also delete the

“Access Control Owner” resource (ID 3) from Access Control Object (ID 2) (see

Figure 2-9).

Figure 2-9 LWM2M Request-Response Example

CHAPTER 2. BACKGROUND 20

The format of LWM2M objects is standardized by IPSO (IP Smart Objects) Alliance

[25] to ensure the interoperability of the objects between different applications and

environments.

2.3 Data Handling for IoT Device Management

Section 2.2 discusses the communication methods to be used for management of

many IoT devices and the possible ways to move the data or management infor-

mation from the constrained device to the management nodes and vice versa. How-

ever, the format of transmitted data also retains critical importance since the re-

sources (power, connectivity, processing capability) are limited at the constrained

node. Hence, the data formats used to communicate with the constrained device for

the data exchange are required to be lightweight and versatile for optimum resource

consumption. Moreover, the large amount of data from the many constrained nodes

readings needs to be stored in the cloud for post-processing purposes (data analysis,

error/anomaly detection, pattern recognition etc.). The storage method of the data

determines the practicality and methodology of how the post-processing functions

are performed. For these purposes, a data-store model (NoSQL) and a data-

transmission/store model (JSON) are discussed in this section.

2.3.1 NoSQL

The large amount of data created by the emerging technologies (IoT, Mobile or

Cloud Computing) has created new expectations from database management sys-

tems, which traditional relational database designs (e.g. MySQL, PostgreSQL) do not

possess: high concurrent reading and writing rates, high scalability and availability,

dynamic schemas, efficient very large data storage, easiness to expand and distribut-

ed architecture [26]. To satisfy these expectations for Big Data management, new

type of database systems, which are very different than relational databases in de-

sign, have appeared and are referred with the term NoSQL (Not Only SQL) in gen-

eral.

The design of NoSQL databases can be different from each other but each one of

them shares similar advantages over relational databases:

- Schema-free: Relational databases require a fixed table (relation) defined be-

fore storing data (e.g. rows, columns, tables). If a new type is added to the

table, the entire database must be re-altered. However in NoSQL databases,

either new data values or new data types can be added dynamically without

altering the entire database leading to great flexibility [27].

- Horizontal Scalability: Relational databases are vertically scalable, which is

a single-server model for the host machine while NoSQL databases are hori-

zontally scalable, meaning the load can be distributed automatically between

different hosts without any complicated configuration procedure [28]. Hori-

zontal scalability provides diverse distributed NoSQL databases.

- Eventual Consistency: NoSQL databases can support very high rate of con-

current create, read, update and delete (CRUD) operations effectively [29].

CHAPTER 2. BACKGROUND 21

NoSQL databases are grouped into different groups according to their design archi-

tecture, some of which are:

- Key-Value Store: A key value corresponds to a value like a dictionary,

without any structure or relation. Any type of information can be stored in

either key or value attribute. Each key or value can store different data struc-

ture than other key-value pair, which provides high flexibility, scalability

and faster query than SQL databases. Some example implementations are

Redis, MemcacheDB, Oracle NoSQL etc.

- Document Based: The structure is similar to key-value store NoSQL but the

value of the key is stored as a document in either JSON or XML format. This

approach enables complex structured information trees to be stored in docu-

ments. Some examples are MongoDB, Elasticsearch, Couchbase Server etc.

- Column Oriented: The structure is similar to key-value store too. However

in column oriented NoSQL databases, each key can be associated with one

or more key-value pairs constructing a two-dimensional array i.e. value of a

key can be another key-value pair. This nested, unstructured data architec-

ture allows very large, aggregated data storage possibility. Examples include

Cassandra, Hadoop (HBase), Apache Flink etc.

- Graph Based: The architecture is based on tree-like structures (i.e. graphs)

where the objects (the data) are connected to other objects through static or

dynamic relations. The data pieces are connected to each other and the rela-

tions between the objects are used to retrieve the data. Social networks (e.g.

Facebook, LinkedIn) can be modeled as graph based databases. Some exam-

ples are OrientDB, Neo4J, Infinite Graph etc.

Different type of NoSQL introduces different type of advantages for IoT data storage

over relational databases. For this thesis, several type of NoSQL databases are used

for different purposes (see Section 2.5.2 IoT Framework and Section 5.2.3).

2.3.2 JSON

JSON (JavaScript Object Notation) is a widely used, lightweight, text-based, lan-

guage-independent data exchange format [30]. It provides a nested data structure

format for interchanging complex data structures but still is simple to parse even by

the constrained devices considering the low overhead in JSON messages and JSON

parsers requiring very little processor power.

JSON defines four primitive types: strings, numbers, booleans, null and two struc-

tured types: objects and arrays [30]. Objects can be other JSON messages inserted

into the outer JSON message so that nested JSON objects can be created. Moreover,

JSON supports arrays of any supported format (i.e. strings, numbers, booleans and

objects) to be created. Both arrays and objects assure a detailed, structured model for

aggregated data interchange. An example JSON message is presented below:

{

 "node": “2”,

 “devices”: “280:e103:1:2a9c”,

 "params": {

 "2": {

CHAPTER 2. BACKGROUND 22

 "lat": 41.35342516,

 "lng": 2.13135839,

 "280:e103:1:2a9c ": {

 "lat": 41.35361845,

 "lng": 2.13043571,

 }

 }

 }

}

Being lightweight makes JSON a good candidate for IoT device management mes-

sage interchange format because many constrained devices can parse JSON messag-

es without much power consumption. JSON messages can be attached to CoAP pay-

load and LWM2M resources can be retrieved as JSON as well. Web services utilize

JSON heavily since JSON integrates very well JavaScript. Hence, using the uniform

JSON as the data interchange format in all protocols (CoAP, LWM2M, HTTP) de-

creases the complexity of integration between constrained environments and the Web

significantly.

2.4 Features of IoT Device Management

The constrained environment in IoT devices and networks imposes IoT device man-

agement schemes to introduce the IoT-friendly (i.e. low power consumption, low

processing power, lossy networks) management features. For instance, frequent poll-

ing of data from low-power devices is not optimal for power consumption and the

IoT device management is expected to avoid such situations. In this section, we dis-

cuss several features of IoT device management which are addressed to optimize the

use of constrained environments and to maximize the IoT data readings.

2.4.1 Publish/Subscribe

Publish/subscribe is a paradigm discussed in the concept of Information Centric

Networking (ICN). ICN redefines the network purpose to provide information dis-

semination throughout the highly scalable distributed nodes rather than to provide

pair-wise communication between the end points [31]. In the data-oriented network

definition of ICN, data distribution between nodes can be achieved by nodes sub-

scribing to information updates on other nodes and information being published to

the subscribers by the information source [32].

The large number of IoT devices, the amount of data and management commands

transmitted and the constrained environment of the devices make Publish/Subscribe

mechanism a valuable solution for data distribution in IoT networks. Several reasons

can be enlisted as why the Publish/Subscribe approach in ICN should be applied in

IoT device management too:

- Data retrieval from power-constrained devices is a challenge since common

polling mechanisms towards the device create unnecessary connections if the

data on the device has not changed. Hence, the optimum way is the device

‘informing’ the network only if the data on the constrained device changes.

This can be achieved by the network nodes subscribing to the device (the

publisher) and it decreases the power consumption dramatically.

CHAPTER 2. BACKGROUND 23

- The data retrieved from the device can be applied to several processes in the

network, such as aggregation and abstraction, and the result of these proce-

dures is transmitted to other entities. The information can be delivered with

Publish/Subscribe scheme for event-driven, flexible data management to en-

sure scalable and dynamic network topology [33]. This approach proposes

IoT networks to be an important part of ICN i.e. the Future Internet.

- Publish/Subscribe schemes introduce loosely coupled, asynchronous rela-

tions between the publisher and the subscriber [34]. The loosely coupled re-

lation between the publisher and the subscriber permits the IoT device man-

agement to scale the management resources optimally in the cloud. Howev-

er, the device management is required to track the list of subscribers and

publishers in such case.

Considering the REST approach of client requesting the information from the server

is not the efficient way to distribute the data in the constrained networks, CoAP in-

troduces Publish/Subscribe paradigm as Observe/Notify for constrained devices [24].

Any client can observe any resource stored on the device and notifications are sent

for information updates from the CoAP server (see Section 2.2.4 Observe/Notify in

CoAP). Moreover, LWM2M supports Observe/Notify scheme as well since it runs

on CoAP (see Section 2.2.5).

Observe/Notify scheme in CoAP and LWM2M introduces the advantages of Pub-

lish/Subscribe discussed above to IoT device management. Moreover, event-driven

approach of Observe/Notify provides real-time network monitoring and controlling

in IoT networks. Network manager by observing the resources on the device is noti-

fied instantly for information updates such as errors, logs, network topology changes

and data updates, which is an important asset for real-time IoT device management.

2.4.2 Aggregation

Constrained characteristics of IoT devices require the management nodes of the IoT

networks to be smarter to decrease the power consumption and processing required

on the device [35]. Aggregation of data and management commands is one of the

ways to achieve that target by means of decreasing the communication with the de-

vice and implementing the aggregation logic in the network.

In data aggregation model, the data from the device can be aggregated in different

parts of the network before reaching to the cloud storage. A gateway or a proxy in

the network aggregates the data from different resources according to the characteris-

tics of the data such as the devices in the same neighborhood, same type of devices

or similar data reading values. This type of aggregated data simplifies the post-

processing data analysis by giving the insight about the entire set of data rather than

individual data points [36]. It as well decreases the total amount of messages for the

data points by grouping them into one message.

Aggregation of management commands implies a more important aspect for IoT de-

vice management. The network manager can send aggregated, different management

commands to e.g. gateways and gateways capable of interpreting them split the mes-

CHAPTER 2. BACKGROUND 24

sages to be sent to different machine devices. This decreases the traffic on the net-

work since the several management commands are transmitted in one aggregated

message. Moreover, grouping the devices and gateways to manager-defined clusters

also allows the manager to send one group message to the entire group. Different

from the aggregated message, group message is defined to be the same for the group

elements. The distribution of the group message to each group element is performed

in the network node where the group information is stored such as in a gateway or a

proxy. During the research for this thesis, several patent applications have been pre-

pared regarding the aggregation and group management for CoAP and LWM2M.

The main target of both aggregated and group messages is to decrease the communi-

cation required in the network by combining several messages, which leads to less

power consumption and a more compact communication model.

2.4.3 Prioritization

As stated in Section 2.4.2, IoT device management nodes are required to be smart to

increase the efficiency of the constrained networks. Prioritization of the messages in

the network is yet another way to achieve that target.

Prioritization in communication networks allows several possibilities for different

types of messages: High priority messages must reach the destination, medium prior-

ity messages are important but less sensitive to delay while low priority messages are

less important with additional data [37]. To take the message priorities into account,

new features can be added to routing protocols such as priority queues in each node

or identity based priority assignments [37] [38].

The concept of prioritization in IoT device management indicates that either the

management server or other entity in the network assigns different priority levels for

messages transmitted to/from the device (e.g. CoAP or LWM2M messages). Each

message with its own priority level allows the network entity (e.g. gateway, man-

agement node etc.) to classify the messages and act according to those levels. For

instance, critical error messages from the device can be assigned high priority and

can bypass the possible queues in the proxies, any aggregation node or re-routed in

case of congestion to the management node. Similarly, firmware updates from the

LWM2M server can be prioritized for critical security updates as well.

The critical asset the prioritization introduces to IoT device management is the sup-

port of classified messages. This implies additional benefits for real-time device

management, increased monitoring and controlling capability over the entire IoT

network.

2.4.4 Anomaly Detection

Constrained devices, typically sensors or actuators, transmit their data readings to the

network frequently and the amount of the entire data becomes massive considering

the large amount of devices. However, data readings of the devices can encounter

anomalies due to the device hardware problems or other external factors. The device

may not send any error messages regarding this; hence, the management node is re-

CHAPTER 2. BACKGROUND 25

quired to detect the anomalies only from the acquired data readings in that case.

There can be several reasons why the device data readings can encounter anomalies,

such as sudden, short time temperature increase in a temperature sensor due to exter-

nal heat or light sensor displaying light appearance in a dark room. Thus, anomalies

do not always refer to hardware or software errors on the device but can refer to unu-

sual, abnormal environmental factors.

Detecting the possible anomalies is an important asset for the IoT device manage-

ment to ensure the reliability of the data. The acquired data readings from devices are

used for post-processing, analysis and decision-making. Hence, the users of the data

should be assured about the data reliability, which can be achieved by anomaly de-

tection algorithms.

The challenge is, though, the amount of the data and the variety of the data sets.

Anomaly detection algorithms are generally sequence or pattern based, which use

statistics, classifiers or machine learning techniques to detect the anomalies [39]

[40]. With the immense variety of IoT device data types, it is still a big challenge to

perform anomaly detection in any type of data i.e. anomaly detection algorithms are

tailored for specific types of data sets, which creates integration complexity for other

sets of data. At the time of the research, anomaly detection in IoT is still an immature

topic. However, IoT device management can include anomaly detection support for a

specific type of data set for the proof of concept work.

2.4.5 Error Reporting

Machine devices are generally geographically wide-spread, which makes them un-

reachable in case of an error on the device. This introduces the need of remote error

monitoring for IoT network. However, machine devices are not connected to the

network all the time, which might lead to latencies in error reporting. Hence, IoT de-

vice management requires a solution for error reporting of the machine devices and

gateways.

For an efficient and versatile error reporting mechanism, use of already existing sys-

tems rather than introducing a new protocol decreases the integration complexity.

CoAP and LWM2M systems provide a great basis for building such an error report-

ing mechanism for IoT devices. Use of CoAP Observe/Notify scheme together with

relevant objects and resources of LWMWM clients (e.g. device battery level re-

source, connectivity error resource etc.) is a great way of real-time error reporting for

IoT devices in the already existing architecture i.e. device management interface can

observe relevant resources on LWM2M client for instant error monitoring.

As a combined solution of Publish/Subscribe scheme and LWM2M objects, real-

time error reporting is an important feature of an IoT device management interface.

2.5 Capillary Networks

In order to provide end-to-end IP connectivity for Capillary Networks (see Section

2.1.2) and constrained devices in the real world, a high-level network architecture

CHAPTER 2. BACKGROUND 26

has been designed combining the features discussed in Sections 2.2, 2.3 and 2.4. Ca-

pillary Networks is a proof of concept to connect billions of constrained devices to

the network and to the cloud by providing features such as dynamic cloud resource

allocation, smart network decisions, automatic configuration etc. It consists of three

different domains: the Capillary Network, the connectivity domain and the data do-

main. Figure 2-10 presents a detailed view of CN architecture with additional func-

tional views.

Figure 2-10 Capillary Network Architecture Overview

From the Figure 2-10, the Capillary Networks architecture consists of the following

components:

 Machine Device (MD): Constrained devices such as sensors and actuators.

 Capillary Gateway (CGW): The gateway connecting the machine device to

the backhaul network.

 Capillary Network Manager (CNM): Manual network management com-

ponent for Capillary Network monitoring and configuration.

 Capillary Network Function (CNF): Automatic network management

component for Capillary Network connectivity controlling and cloud re-

sources monitoring.

 IoT Portal: Middleware component for CNF to control and initiate cloud re-

sources.

 Virtual Gateway (vGW): Cloud resources created for each CGW by CNF

i.e. virtualized instance in the cloud for the CGW.

 IoT Framework: Data storage for storing MD data readings and meta data

about devices in the network.

 Management Interface: The management interface, which provides the

network manager all the required tools for Capillary Networks management.

CHAPTER 2. BACKGROUND 27

This part of the Capillary Networks architecture forms the topic of this thesis.

The management interface implementation was built on top of the existing

CN architecture. It uses many of the existing CN components, updates some

of them and defines new interfaces between CN entities.

Section 2.5.2 presents the more detailed explanations for each Capillary Networks

component. Irrelevant components for this thesis, such as connectivity domain com-

ponents or network security have been left out.

Before the CN components, we first discuss the features of the Capillary Networks in

the next section.

2.5.1 Features of Capillary Networks

Creating end-to-end connectivity for the Capillary Networks and constrained devices

is the main feature of the Capillary Networks but the technology presents more as-

pects to M2M communications. As the number of CNs and CGWs is expected to be

very large and the location of these devices can be difficult to reach, CN focuses on

automated management methods for CNs and MDs. This approach targets at simpli-

fying the management by using automation but also utilizing cloud technologies to-

gether with CNs. Hence, the CN technology introduces the following features:

 Automatic configuration: The motivation for automatic configuration is to

simplify network management and to make installing of new MDs and

CGWs much easier. New MDs are connected to CGWs without additional,

complex installation procedures. This includes configuration of IP addressing

and routing, obtaining CGW prefixes from the network and assigning prefix-

es to MDs.

 Dynamic middleware: This feature enables to create virtual gateways on

demand to provide middleware functions for connected CGWs and MDs.

Hence, each CGW is assigned a virtualized instance in the cloud for this pur-

pose. Cloud resources can dynamically be changed to adapt to the needs of

the network.

 Dynamic gateway selection: The MD is indicated to connect to the optimal

CGW based on various constraints and policies i.e. enabling constrained de-

vices to switch CGW automatically based on the policies. This is an im-

portant feature as it brings this automation to the CN domain.

 Data and storage: In addition to network aspects, data gathered in IoT

Framework from various MDs is processed and monitored in the CN tech-

nology. MD data readings are the main point of interest in data domain of the

CN. Hence, the presentation of the data to the end user is an important aspect

of the CN technology.

 Security: Authentication of CGWs and MDs is the main aspect of CN securi-

ty along with signing the data readings of MDs. The authentication of CGWs

is sim-card based using GBA (Generic Bootstrapping Architecture) procedure

[41]. GBA authentication is performed between CNF and CGW. Hence, the

generated session key after authentication is available both in CGW and in

CHAPTER 2. BACKGROUND 28

the backend cloud in CNF for future encryption purposes between CGW and

the cloud.

2.5.2 Capillary Networks Components

Machine Device (MD)

Machine devices (MD) are constrained devices in the capillary network that are con-

nected to a Capillary Gateway via some short-range radio technology (e.g. IEEE

802.15.4 or Bluetooth Low Energy). Sensors and actuators are possible examples of

MDs. For an MD to be part of a Capillary Network, it is assumed that MD has an IP

stack, providing typically IPv6 addresses. This assures the end-to-end IP connectivity

between the constrained device and other CN components.

MDs can act either as a client, in order to initiate communication or as a server in

order to respond to a request. They can also take both client and server roles depend-

ing on how the CoAP and LWM2M implementations indicate.

The testbed for CN includes various sensor and actuator types acting as MDs. Both

are implemented with Contiki on STMicroelectronics boards and are accessible via

CoAP.

Capillary Gateway (CGW)

The main role of the capillary gateway is to connect the capillary network of MDs to

the backhaul cellular network. Similar to MDs, CGWs also have an IP stack which

consists of IPv6 addresses towards MDs and IPv4 or IPv6 addresses towards the

backend haul. At the application layer, CGWs used CoAP towards the MDs and

HTTP towards the backend.

Different from MDs, CGWs are more advanced devices, which can handle complex

functions such as: performing CGW selection, storing a CoAP Resource Directory or

a CoAP Mirror Server. The core functions of CGW include transferring control mes-

sages between MDs and backhaul, transferring MD data to backhaul and informing

backhaul about the CN configuration.

The testbed for CN includes CGWs implemented using OpenWRT on Buffalo rout-

ers with 3G/4G connectivity. An additional Contiki based RPL (Routing Protocol for

Low Power and Lossy Networks) root device is connected to CGW to provide IEEE

802.15.4 connectivity between CGW and MDs.

Capillary Network Function (CNF)

The Capillary Network Function (CNF) is a control function mainly designed for au-

tomatic network management such as managing the connectivity for the capillary

network and controlling the instantiation of virtual gateway machines via the IoT

Portal. Moreover, CNF applies the user-defined policies to CN management.

The communication between CNF and the network elements, such as CGW, IoT Por-

tal and other middleware, are done via an HTTP REST interface. Similar HTTP

CHAPTER 2. BACKGROUND 29

REST interfaces have been implemented to communicate between CNF and the

management interface, which will be discussed in the upcoming sections.

For the testbed, CNF is implemented in the Internet rather than a closed network.

CNF also enables to update battery and load constraints of CGWs virtually to

demonstrate automatic gateway selection feature.

Capillary Network Manager (CNM)

The Capillary Network Manager (CNM) is yet another control function, which is

mainly aimed at manual network management, monitoring and network configura-

tion by providing required tools and services. The manager can set user-defined

management rules/policies via CNM for CNs as well as monitor and update CN de-

vices, parameters and counters.

Similar to CNF, the communication between CNM and other network nodes is done

via an HTTP REST interface. As CNM is an important node for manual CN man-

agement, monitoring and configuration, several HTTP REST interfaces have been

implemented to integrate CNM to the management interface.

IoT Portal

The IoT Portal is the network node between CNF and the cloud services. It provides

an interface for CNF to create and control the configuration of virtual machines (i.e.

vGWs) in the cloud. This node is not visible to the management interface and is un-

der control of CNF.

Virtual Gateways (vGWs)

Virtual gateways are cloud resources automatically created by CNF for each physical

CGW to provide middleware functions on demand in the cloud. vGWs can imple-

ment Mirror Proxies and Resource Directories, store meta data about CGWs or for-

ward MD data to IoT Framework. The main advantage of vGWs is to provide CGW

data on demand even when CGW is not reachable physically.

IoT Framework

IoT Framework is a data storage framework that stores data from MDs and provides

services to manipulate the data for several other uses, such as semantics search and

data analysis [42].

To provide a versatile and stable data storage for a large amount of MD data, IoT

Framework architecture consists of four hierarchical entities:

 Users: Actual human users create user accounts and they are assigned a

unique user id.

 Resources: Each resource represents one physical MD. A user can create

many resources and the ownership of resources belongs to that user. Re-

sources are given unique ids and can also store meta-data about MDs.

 Streams: Streams represent a separate data stream on each resource i.e. it can

CHAPTER 2. BACKGROUND 30

also be referred as data streams. One resource can own several streams, for

example a temperature sensor and a humidity sensor can belong to the same

resource. However, in that case there would be two different streams for

those sensor readings in IoT Framework. Each stream is assigned a unique ID

upon creating, stream data is accessible via this id.

 Datapoints: Each stream consists of datapoints received from a resource (i.e.

MD). Hence, each reading from an MD is stored in the IoT Framework as a

datapoint. Datapoints are not accessible alone, they need to be retrieved using

the Stream ID they are attached to. Figure 2-11 shows the overview of hierar-

chical IoT Framework entities.

Figure 2-11: IoT Framework User, Resource and Streams

As depicted in Figure 2-11, each stream can belong to one resource and each re-

source can belong to only one user. This hierarchical design can be related to real life

where one device (resource) belongs to only one user. But if the ID of the device is

known, data readings of the device can be retrieved easily from the IoT Framework.

Since the IoT Framework users indicate the owners of the devices (MDs), the net-

work manager is supposed to access the data of each user. Hence, network manager

can be defined as a super user of the IoT Framework.

The IoT Framework uses Elasticsearch as the datastore. Elasticsearch provides a

document like NoSQL datastore where the user can interact via REST API [43] (also

see Section 2.3.1). Creating new documents requires a POST request containing a

JSON object while a GET request also retrieves JSON object. All entities explained

above are separate documents in Elasticsearch and Elasticsearch does not handle the

relations between each of them. The entity simply holds the id of its owner in its

document, different from traditional SQL primary key schemes.

The IoT Framework provides a rich API to create, read, update, delete and search

users, resources and streams. Moreover, a publish/subscribe API for data points and

full text search using Elasticsearch datastore [43] is also provided. Full text search

support from Elasticsearch makes the IoT Framework streams and stream data easily

reachable by understanding queries like “Temperature in Helsinki”. Semantic search

queries enable the network manager to access and monitor the stream data clearly

from all users i.e. the network manager has access to the data from all IoT Frame-

CHAPTER 2. BACKGROUND 31

work users. Hence, the IoT Framework APIs are extensively used in the management

interface where MD data readings are presented to the end user (the network manag-

er).

From the data security point of view, the data readings (as well as meta data of users,

resources and streams) are not stored encrypted in the IoT Framework. The encryp-

tion can be performed only for transmission of the data from CGW to the cloud.

Since CGWs are authenticated using GBA mechanism through CNF, each CGW re-

tains a session key, which can be used for encrypting the data readings (as mentioned

in Section 2.5.1). However, if the data gets encrypted in CGW, it is decrypted in the

cloud so that search functionality is available in the IoT Framework.

2.6 Summary

In this chapter, the concept of Internet-of-Things (IoT) has been introduced. IoT is

the technology to connect many of tiny devices to the network to create a versatile,

horizontal and scalable infrastructure for creating diverse applications and uses from

the connected world i.e. moving the real world to the IP-based digital world. End de-

vices in IoT are generally constrained devices (e.g. low-power sensors), which result

in different needs for the constrained networks such as connectivity of constrained

devices, IoT-specific features of the network and the management or the use of con-

strained communication methods.

CoAP (Constrained Application Protocol) is an emerging application protocol specif-

ically designed to work in constrained environments over UDP or SMS. CoAP also

provides solutions for IoT-related challenges such as resource discovery or light-

weight message transaction. It also provides specifications for Observe/Notify

scheme to remove the need of data polling to decrease the network communication

of the device.

LWM2M, however, is a specific device management protocol for constrained envi-

ronments. Running over CoAP makes LWM2M easy to integrate with the con-

strained networks already implemented in CoAP. Moreover, object/resource design

in LWM2M assures the management information to be in compact and easily reach-

able format.

The vast amount of data produced by the devices and the constrained networks re-

quires two different approaches for data handling in IoT. For data communication

with the device, a lightweight data format such as JSON is needed to minimize the

size of the message. However, data storage in the cloud requires more features such

as flexibility and scalability, which can be found in NoSQL solutions.

An IoT device management interface (portal) is required to wrap the entire network

architecture, protocols, and communications; and to provide the end user with the

relevant management features and data. Capillary Networks concept combines the

mentioned specifications of an IoT network and hence, a management interface for

the Capillary Networks infrastructure can demonstrate the IoT device management

concept.

32

3 Requirements

In this chapter, we present the system requirements for the management interface.

The chapter consists of two sections, which are divided to comply with the two main

parts of the management interface:

- Frontend: The user interface visible to the end user.

- Backend: The server side that handles the logic and prepares the user inter-

face with data.

This separation between the frontend and the backend is followed throughout the

thesis since the requirements, design and implementation for each of them is quite

distinct.

3.1 Frontend Requirements

Requirements for the frontend aims to present the features of the CN prototype (see

2.5.1) to the user in a modern, interactive and user-friendly way. Moreover, the

frontend needs to provide more functionality to show the interface as an entire IoT

device management platform, rather than just demonstrating the CN prototype. The

requirements of the front end are presented in the following Table 3.1. While some

of the requirements mentioned in the table are essential, some of them are targeted as

additional features (not strictly essential) to the management interface. This differ-

ence between the requirements is depicted in “Importance” column of Table 3.1.

Table 3.1 Requirements for the Management Interface’s Frontend

Feature Requirement Explanation Importance

Automatic

configuration

The frontend needs to display automatic configuration of CN,

MDs and CGWs. Hence, any new device (MD or CGW) or

any change in the existing devices are required to be reflected

to the end user. The user should perform minimum amount of

extra steps to see these updates on the main page. Network

topology changes need to be updated on the interface without

affecting user interaction. Moreover, connection between MDs

and CGWs is needed to be clear to the user.

Essential

Dynamic

Middleware

The representation of dynamic middleware is required to be

linked to each corresponding CGW (i.e. vGWs of each CGW

should be indicated). The user should be able to get the infor-

mation about virtual machines created as middleware in the

cloud.

Essential

CHAPTER 3. REQUIREMENTS 33

Dynamic

Gateway

Selection

It needs to be presented to the user on the main page. MDs

changing CGWs should be easily detectable, should be updat-

ed instantly and should not affect user interaction with the in-

terface. The interface needed to trigger the gateway selection

process i.e. updating battery and load level constraints should

be provided as well.

Essential

Capillary

Networks

Policies

The user should be able to control the policies for dynamic

gateway selection. This is a core functionality of the manager

to control the policies in CNs.

Essential

Machine Device

Data

Representation

As each MD will store data in the IoT Framework, the data

from the IoT Framework is required to be assigned to the cor-

responding MD. Data needs to be shown in an easy and inter-

active way to the user, since its amount can be very large and

hard to present in traditional ways.

Essential

Machine Device

Data’s

Security

Representation

Demonstrating security of CN prototype in the management

interface is slightly less visible to the user as it is assumed that

the authentication of CN devices is already handled in the CN

architecture. However, the frontend should be able to provide

information if each data point is sent to the IoT Framework

encrypted or not.

Additional

Feature

Search

Functionality

The frontend should provide search functionality for searching

through the IoT Framework’s streams and resources. Stream

data should be presented in a similar way, showing MD data

readings.

Additional

Feature

Meta Data

Representation

The meta data of CGWs and MDs is required to be shown to

the user to provide more information about these CN devices.

In short, the user i.e. the capillary network manager should

have access to as much information as possible.

Essential

Error Reporting The frontend is required to present the errors or important

messages received from CGWs or CN entities to the user in-

stantly. One method to present these messages can be in form

of notifications on the navigation panel. Similarly, logs and

network counters from each CGW are to be shown on the in-

terface for full network monitoring functionality.

Essential

Congestion

Demonstration

The frontend is required to show a congestion demonstration

scenario where tens of CGWs are simulated in the same prox-

imity, using the same radio frequency and creating interference

in the area. The demonstration presents the elimination of the

interference created by the simulated CGWs. Frequencies of

the CGWs are re-assigned automatically (self-healing). The

frontend is required to reflect this type of self-healing of

CGWs to the user.

Additional

Feature

CHAPTER 3. REQUIREMENTS 34

Anomaly

Detection

Detected anomalies in MD data readings are needed be pre-

sented to the user. Management interface should give choice to

apply anomaly detection algorithm on MD data or not. In case

the anomaly detection is executed, anomalies should be visual-

ized.

Additional

Feature

LWM2M Server

Integration

A separate screen is needed to demonstrate the communication

with LWM2M server and the end user (e.g. reading resources

from LWM2M server).

Additional

Feature

Table 3.1 indicates that the frontend is required to contain several views to provide

numerous functionalities to the end user. Since some of the requirements are marked

“Essential”, design and implementation of these requirements are analyzed more in

detail. Requirements with “Additional Feature” level are designed and implemented

as well. However, the full functionality may not be available in the frontend for these

requirements. Evaluation of the requirements is done in Chapter 6.

3.2 Backend Requirements

Requirements for the management interface backend are determined so that all the

features of the CN prototype, explained in Section 2.5.1 are presented to the end user

with stability, versatility and reliability. Since the CN concept prototype consists of

several components, the management interface backend requires to communicate

with these components via several interfaces. It also needs to maintain the high-level

management logic between CN middleware components. Hence, our management

interface backend needs to be designed as a standalone application on top of CN

components. The requirements of the backend implementation are presented in Table

3.2 below in the same format used for the frontend requirements in 3.1. Similar to

frontend requirements in Table 3.1, some of the requirements in the table are marked

essential and some of them are targeted as additional features (not strictly essential)

to the management interface. This difference between the requirements is depicted in

“Importance” column of Table 3.2.

Table 3.2 Requirements for the Managements Interface’s Backend

Feature Requirement Explanation Importance

Automatic

Configuration

The management interface backend should accept status up-

dates from CNF at anytime to present automatic configuration

of the CN devices to the user. These updates need to be pro-

cessed and pushed to the frontend for the end user, in form of

either IoT network topology changes, notifications, logs or

network counters. Since real-time updates are important for

network topology changes, network topology i.e. the CN de-

vice list can be pushed to the frontend at all times.

Essential

CHAPTER 3. REQUIREMENTS 35

Dynamic

Middleware

Information about dynamic middleware created for each CGW

and MD needs to be retrieved from CNF and presented to the

user in the frontend as also explained in 3.1.

Essential

Dynamic

Gateway

Selection

The backend is required to provide the communication be-

tween the frontend and CNF to perform dynamic gateway se-

lection. For this purpose, battery and load constraints need to

be forwarded to CNF for further processing. The results of

dynamic gateway selection which is MDs changing CGWs i.e.

CN topology changes are to be pushed to the frontend imme-

diately as well.

Essential

Capillary

Networks

Policies

The backend should retrieve the CN policies from CNF and

forward the CN policy updates from the frontend to CNF in

case the policies are updated.

Essential

Machine Device

Data

Representation

The backend needs to support the IoT Framework APIs to be

able to read, update, create, delete and search resources and

streams. The large amount of MD data retrieved from IoT

Framework also needs to be forwarded to the frontend.

Backend implementation needs to format the data retrieved

from the IoT Framework to create the required data format by

the frontend design.

Essential

Machine Device

Data’s

Security

Representation

The backend assumes the network level security between CN

nodes is already provided by CN middleware components and

GBA [41]. Therefore, the backend is not required to imple-

ment CGW security. However, the backend is responsible of

retrieving the information from the IoT Framework if the data

points are transferred as encrypted or not (see Figure 5-2

item 3 and check Section 2.5.2).

Additional

Feature

Search

Functionality

The backend needs to have the feature to perform search que-

ries on the IoT Framework users, resources, streams and data

points. The query results needs to be provided to the frontend

as well. (It is assumed that data on the IoT Framework is not

encrypted to perform the search.)

Additional

Feature

Meta Data

Representation

Meta data information about CGWs and MDs needs to be

fetched from each vGW and combined with other meta data

information retrieved from the IoT Framework and CNF. The

retrieved meta data by the backend are shown in infobubbles

or in detailed information view of the CGW or MD.

Essential

Error Reporting To provide the relevant data from the CN architecture about

error reporting (e.g. list of notifications and logs from CGWs),

the backend needs to harvest the data from the CN entities and

forward it to the frontend.

Essential

CHAPTER 3. REQUIREMENTS 36

Congestion

Demo

To present the congestion demonstration, backend implemen-

tation should have access to congestion demo interface of CNF

in terms of using REST APIs. Congestion parameters from the

frontend are forwarded to CNF and the response from server,

which includes many CGWs locations, is forwarded back to

the frontend after iterating through it to format the response

data.

Additional

Feature

Anomaly

Detection

Anomaly detection implementation needs to be triggered with

the provided datapoint set when the end user prefers. However,

anomaly detection was implemented in Matlab as a temporary

solution. The interface between this Matlab program and the

backend is required to be defined. (Matlab implementation is

not meant for production.)

Additional

Feature

LWM2M Server

Integration

LWM2M server on the backend requires interaction with the

end user. Hence, the backend implementation needs to read the

input from LWM2M terminal window in the frontend and send

this input to LWM2M server as a request. Similarly, the re-

sponse should be forwarded to the frontend as well.

Additional

Feature

Table 3.2 indicates that the backend is required to provide several functionalities to

the frontend presentation. Similar to frontend requirements in 3.1, the requirements

marked “Essential” are given more importance in design and implementation. Re-

quirements with “Additional Feature” level are designed and implemented as well in

the backend. However, the full functionality may not be available for these require-

ments. Evaluation of the backend requirements is done in Chapter 6.

3.3 Summary

This chapter presents the requirements of the management interface to be imple-

mented on Capillary Networks architecture. The requirements for frontend and

backend of the interface are dependent on the Capillary Networks requirements and

hence, requirements are classified accordingly. In addition to present Capillary Net-

works features, the interface is required to follow the basic expectations from the de-

vice management such as device monitoring, controlling, data presentation and error

reporting. Chapter 4 discusses the system design to satisfy the requirements intro-

duced in this chapter.

37

4 Design

In this chapter, we present the system design for the management interface using the

requirements defined in Chapter 3. The chapter consists of two sections similar to

Chapter 3:

- Frontend: Design of the user interface and graphics.

- Backend: Design of the backend server, its components and the communica-

tion with the Capillary Networks components.

We start the chapter with frontend design focusing on user interaction and continue

with backend design introducing the backend server components of the management

interface.

4.1 Frontend Design

User interface design of the management interface is based on the requirements men-

tioned above. The main idea behind the design is to create a responsive, modern and

simple interface, which is easy to read and interact, concerning the large number of

possible IoT devices. Hence, simplicity is the main driver of the user interface. This

section discusses the graphical decisions made for the frontend design. The imple-

mentation of the frontend is discussed in Section 5.1 while the backend design to de-

velop the frontend is presented in Section 4.2.

As the starting point of the user interface, the navigation panel of the interface is

placed on top of the page. The navigation panel includes links to “Home”, “Network

Elements” and “Network Info” pages along with search box, notification panel and

user information panel (see Figure 4-1).

To start with “Home” page of the interface, the requirement was to show MDs and

CGWs to the user in a simple way. Instead of showing MDs and CGWs in some sort

of table presentation, using a map was chosen with MDs and CGWs displayed on the

map. The reasons why a map was chosen as the main page are:

- The current trend in IoT management systems is mainly aiming at showing

the locations of IoT devices. This provides the network manager an easy

overview of the devices on the map. Showing large number of devices in a

simple way can also be performed by clustering the nearby devices on the

map. The network manager can zoom in to see devices separately in the in-

terested areas.

- Connections between MDs and CGWs are easier to visualize on the map than

table representations.

- Some advanced devices are capable of using GPS nowadays. Hence, coordi-

nate information of the devices is generally available. In case of low power

IoT devices without GPS capabilities, the location of non-mobile devices can

CHAPTER 4. DESIGN 38

be configured manually during installation.

- Map APIs provide very large choices to represent different types of data on

the map i.e. visualization of data on the map is more user-friendly than tables.

- Web maps are interactive, that gives the network manager more options to

monitor the network.

- In the future, location based analysis of IoT devices will be possible with the

use of online maps and the gathering of information from these maps.

To show the connection between the CGW and MDs, a circle with the CGW in the

middle and CGW’s range as its diameter is drawn on the map. Connection between

the CGW and MDs falling inside this circle is depicted as a line between CGW and

MD icons. This way of presenting is aimed at making the connection visible on the

map at the first glance of the user.

 If an MD changes CGW as a result of automatic gateway selection, MD icon will be

connected to the new gateway with a new line replacing the old line. The visual tran-

sition of MD changing gateway should be smooth on the map and should not inter-

rupt the user behavior e.g. map freezing while updating CGW and MD connections

on the browser is unacceptable.

Having a responsive home page with an online map introduces several functionalities

on the map. Some of these functionalities include zooming into different locations

quickly or providing CN, COMMUNE and LWM2M demonstration options to the

user. For these two requirements, it is designed to have drop-down menus on the

right top of the home page (on the map) named as “Locations” and “Options” (see

Figure 4-1). The reason of selecting drop-down menus is to minimize the number of

options visible on the map and to keep the map simple.

As the main target user of the interface is the network manager, the interface should

provide a screen for the user to retrieve information about CGWs and MDs. For this

purpose, CGW and MD icons are clicked individually to pop-up a short information

bubble (summary information) on the icon. The user can access more detailed infor-

mation about CGW or MD by clicking “More Information” button on the info bubble

(see Figure 4-1). “More Information” button opens a floating window over the map

where detailed meta-data about devices or MD data readings can be displayed. As

the floating window space is large enough, “Logs” and “Counters” from CGW is

added to the available space. The reason of designing the access to the device data in

this way (digging in for details) is another goal to keep the main page simple.

MD data readings are shown on the floating window of the corresponding MD. The

large number of datapoints of an MD requires a more elegant way to show the data

than just datapoints i.e. not just table representation. Hence, datapoints are decided to

be presented in a fully interactive graph where the users can zoom-in, zoom-out,

reach each single datapoint’s details via hovering and navigate through the graph.

The graph also gives an insight of the whole datapoints in general to the user.

CHAPTER 4. DESIGN 39

Figure 4-1 User Interface Flowchart

CHAPTER 4. DESIGN 40

The second link in the navigation tab is “Network Elements”. In this page, the idea is

to list all the available CGWs and MDs in a table format with added search function.

Although presenting devices on an online map uncovers many advantages such as

interacting with the map or better visual representation, network manager should

have the chance to monitor the devices as a list too. Adding table representation fea-

ture gives more freedom and options to the user, which is reason of this tab.

The third link in the navigation tab is “Network Info”. This page aims at providing

the entire network monitoring information such as logs and notifications from CGWs

to the user. The option to filter logs and notifications are also provided in case the

network manager requires checking individual CGWs. The page is available to add

more content concerning any network monitoring data.

The search box in the navigation tab is meant for any type of search the network

manager wants to perform e.g. the users, data streams, device meta data etc. It is

placed on the navigation panel for easy access.

Notification panel is used to inform the user immediately when a notification is re-

ceived from a CGW, as part of error reporting feature. The number of unread notifi-

cations will be visible to the user and the user can expand the panel to access to noti-

fication details. The level of notification can be defined manually to control the

number of notifications received. Notification panel is an important asset to the man-

agement interface as it provides real-time IoT network monitoring for the network

manager.

4.2 Backend Design

In this section, we discuss the general overview of the backend design, which was

created to satisfy both the backend requirements mentioned above and the frontend

requirements. An overview of the backend design is shown in Figure 4-2.

The most important design aspect for the management interface backend architecture

was to create a standalone solution on top of CN entities with minimal change in the

CN architecture. The reasons behind a standalone solution are:

- There can be several different CN entities each dedicated to separate custom-

ers or different IoT projects. Hence, the management interface needs to be a

modular solution to work with different CN instances with minimal changes

i.e. different CN instances can import their own management interface easily.

- When the management interface is a standalone application, it can be located

in an internal network in which the only public IP is assigned to the manage-

ment interface. Securing the access to the interface and storing CN entities in

an internal network provide a more secure environment i.e. the management

interface is used as secured proxy between the public internet and CN enti-

ties.

CHAPTER 4. DESIGN 41

Figure 4-2 Management Interface Backend Architecture

As the communication between CN entities and the management interface is per-

formed using REST APIs, the management interface can be installed anywhere on

the network where it can access CN entities.

As depicted in Figure 4-2, the management interface backend is designed to consist

of four main components:

- PHP Application: The main logic of the web server is supplied by this appli-

cation. It receives the most of the user requests directly, retrieves required da-

ta from or update the required fields in the CN cloud entities and responds

with the formatted user interface data. PHP application mainly provides the

static pages in the user interface. Hence, it does not support real-time updates,

which are performed by the Pub/Sub server. PHP application is explained in

Section 5.2.1.

- Pub/Sub Server: To provide real-time updates on the user interface, a pub-

lish/subscribe server is needed in the backend since PHP is designed to pro-

vide only the static pages in the implementation. Pub/Sub server communi-

cates with both the Pub/Sub server in the CN cloud and the PHP application.

Pub/Sub server is discussed in Section 5.2.2.

- Redis Server: This component is needed to perform the data transfer be-

tween the PHP application and Pub/Sub server, even though they are installed

on the same local machine. Redis server is presented in Section 5.2.3.

- LWM2M Server: To use LWM2M remote device management protocol on

CN devices (see Section 2.2.5), the LWM2M server is to be installed on the

CHAPTER 4. DESIGN 42

backend. Integrating LWM2M protocol to the management interface enables

a new way to access constrained devices (e.g. MDs) directly from the inter-

face. It is integrated via socket communication with the PHP application.

LWM2M server integration is discussed in Section 5.2.4.

- REST APIs: Communication between management interface components

and the CN entities is designed to be done mainly using REST APIs. Those

REST APIs provide the integrity and the standardized communication be-

tween all the components, which creates an important part of the implementa-

tion. Moreover, this approach gives the chance of updating any entity source

code in the system freely, with the only requirement of keeping the compli-

ance to REST APIs. Hence, CN entities can be implemented as a black box

concept and only provide the interfaces the management interface requires.

In Chapter 5, we discuss the implementation details of each management interface

backend component in detailed in separate sections. Additionally, REST APIs be-

tween these components are also discussed in a separate section with several exam-

ples.

4.3 Summary

In this chapter, the frontend design flow of the interface is discussed first with the

focus of keeping the interface as simple as possible. Moreover, the backend design to

support the frontend functionalities and to communicate with the other Capillary

Networks entities is introduced as well. The backend is designed as a wrapper,

standalone application to present the Capillary Networks functionalities. The imple-

mentations of the frontend and backend, discussed in Chapter 5, are based on the de-

sign principles set in this chapter.

43

5 Implementation

In this chapter, we present the implementation steps of the management interface.

The chapter starts with the implementation of the frontend of the interface and is fol-

lowed by backend implementation details.

5.1 Frontend Implementation

As the backend implementation depends on the functionalities provided by the

frontend design, we start the implementation discussion with the frontend section.

Hence, in this section, details of the management interface frontend implementation

are discussed. The section also focuses on user interaction with the frontend from

IoT perspective.

Basic design aspects of the user interface were discussed in Section 4.1. To follow

the design principle of simplicity, several tools were used in implementing the user

interface such as HTML5 [44], CSS3 [45] and JavaScript [46].

To give the user interface a modern look, the website interface elements were built

on top of the open source Bootstrap framework [47]. Bootstrap is a complete

frontend framework with HTML, CSS and JS libraries providing HTML elements,

CSS components and jQuery [48] libraries. To create the navigation tab, general

page layouts, input elements such as textbox and buttons, tables, floating windows

and the general website look, Bootstrap provided the HTML elements and CSS com-

ponents that we used. Nevertheless, extensive changes were made on top of Boot-

strap entities to create a unique look to the user interface and several extra features

regarding dynamic and IoT-based user interaction.

Extensive use of AJAX to retrieve information from the backend is one of the main

results of aiming at an interactive user interface. Thus, great part of the data required

in the frontend is retrieved from the backend by AJAX requests such as loading in-

fobubbles, loading any floating window and its contents or updating congestion

demonstration parameters as more is depicted in Figure 4-1. We aimed at increasing

user experience by using AJAX requests.

In addition to AJAX, specific data sets, which are network topology (CN device list),

notifications, logs and network counters, are retrieved from the backend via web-

sockets [49]. To be more precise, the backend pushes these data sets to the frontend

when the value changes. Updating battery/load constraints from the interface also

uses websockets to send requests to the backend. More information about websocket

implementation is presented in 5.2.2 Pub/Sub Server section in the backend imple-

mentation.

The home page of the user interface was designed to consist of an online map (see

Section 4.1 and Figure 5-1 item 8). We decided to use Google Maps API [50] to

CHAPTER 5. IMPLEMENTATION 44

build the interface upon, with the following reasons:

- Google Maps API is relatively simple to use.

- There are many available, free libraries built upon Google Maps API. They

provide vast amount of functionalities.

- The service is responsive and fast in almost all browsers.

Google Maps API allows the developer to load custom icons on the map on desired

locations. This feature of the API was used to locate CGWs and MDs on the map.

Moreover, a circle around CGW showing its range and the line between MD and

CGW showing their connection were drawn using another feature of the API. As the

Figure 5-1 Home Page of User Interface

interface is meant for large number of IoT devices on the map, a jQuery library

called markerclusterer [51] was used to cluster the icons on the map as the user

zooms out. Clustering the icons enhances the user interaction by reducing the num-

ber of visible icons. To provide the short information bubble on the icons (see Figure

5-1 item 1 and 2) when the user clicks on one, a separate open source jQuery library,

infobubble [52] was used. The infobubble (see Figure 5-1 item 7) contained a sum-

mary of the device information with a “More Information” button in the bottom (see

CHAPTER 5. IMPLEMENTATION 45

Figure 5-1 item 4) and also for specific CGWs (determined by the backend), it con-

tained “Battery” and “Load” sliders (see Figure 5-1 item 3). Using these sliders, the

user is able to simulate the battery and load updates on CGW to trigger automatic

gateway selection feature. The sliders are only meant for demonstration purposes

changing battery and load levels of actual CGWs are not possible in the current

testbed. The home page of the interface is shown in Figure 5-1.

When the user clicks “More Information” button on the infobubble, a floating win-

dow with different tabs appears on the map while darkening the background to high-

light the new window (see Figure 5-2). The first tab in the window presents the de-

tailed information about the device in a list form while the second tab presents data

readings in case of an MD (see Figure 5-2 item 1). To present the datapoints, a

jQuery plot library “Flot” [53] was used. Flot provides interactive, lightweight plots

for large amount of data, which is required for IoT applications. An example plot

drawn for a datapoint set is shown in Figure 5-2 item 3. In case the resource entry of

MD in the IoT Framework has more streams attached to it, those streams are repre-

sented as in Figure 5-2 item 2. When the end user chooses to apply anomaly detec-

tion algorithm on the chosen datapoint set via ticking the choice (see Figure 5-2 item

4), detected anomalies are shown in red on Flot graph. The remaining area in Figure

5-2 item 1 can be used for logs from CGW, network counters from CGW and tech-

nical specifications of the device.

Figure 5-2 Representation of Machine Device Data

CHAPTER 5. IMPLEMENTATION 46

For congested network demonstration, an option was added under “Options” drop-

down menu (see Figure 5-1 item 6) to open a floating window when selected. This

floating window includes several parameters for the congestion demonstration such

as how many GWs to emulate, the location of GWs, which RAT the GWs use etc.

Another option was added under “Options” drop-down menu (see Figure 5-1 item 6),

which is “Capillary Networks” to open a new floating window showing the gateway

selection policies. This window presents the policies in JSON format. The policies

on this window are editable using vkbeautify [54] JavaScript library.

LWM2M server option is also added under “Options” menu (see Figure 5-1 item 6).

This option opens a new floating window, which is basically a terminal window to

connect to LWM2M server. The user is allowed to send LWM2M commands to the

server on this window to retrieve information about LWM2M resources.

In “Network Elements” tab on the navigation panel, CGWs and MDs are presented

as two separate lists in two different tabs following the general look of the home

page. The information showed on the table is identical to the information shown on

the infobubble of an icon on the map.

In “Network Info” tab, notifications and logs from CGWs are listed in two different

HTML tables following each other. This way, the difference between notifications

and logs is highlighted. Placing notifications at top part states the importance of noti-

fications on the interface.

As an important asset for real-time IoT network monitoring, the notification area on

the navigation panel was implemented to stand out when a new notification is re-

ceived i.e. the number of unread notifications is highlighted on the navigation panel

and a small window opens under the navigation panel when the user wants to access

the latest notifications (see Figure 5-1 item 9). This assures the important notifica-

tions to be visible to the user as soon as possible. To implement notification support,

websockets were used which is discussed in the next section.

To realize the features discussed above, several JavaScript libraries were implement-

ed such as device filtering and parsing, multiple selection of devices on the map, cus-

tom animations for markers, custom table presentation, floating window design and

implementation, custom graph implementation etc. in addition to using some external

JavaScript libraries. Figure 5-3 illustrates the implemented libraries for the frontend

and the external libraries used. Some external libraries such as bootstrap or jQuery

were used extensively throughout the entire interface. Therefore, such libraries are

grayed out in the figure.

CHAPTER 5. IMPLEMENTATION 47

Figure 5-3 Frontend JavaScript Architecture

5.2 Backend Implementation

In this section, we introduce the backend implementation details of the management

interface, which was built to present the data in the frontend as explained in previous

section 5.1.

This section discusses all the backend components presented in 4.2 separately, ex-

plaining the relations between each of them and at the end, providing REST APIs

used to integrate the backend components to the CN cloud entities.

5.2.1 PHP Application

The base of the backend implementation is built on a PHP [55] application. There are

several reasons for PHP preference in the backend:

- PHP is an easy and fast scripting language.

- It is a mature language with few bugs and many available extensions.

- The documentation about PHP is quite vast.

The PHP application is designed to provide the main logic of the backend in which it

coordinates the communication between CN entities (CNF, CNM, IoT Framework,

CHAPTER 5. IMPLEMENTATION 48

vGWs), pub/sub servers and LWM2M server as well as providing the user interface

with required data.

To implement the PHP application, a PHP framework was needed to build the appli-

cation upon. The Yii Framework [56] was chosen for this purpose since it is a more

versatile framework than the other alternatives (e.g. Zend, Fusebox, CakePHP etc.)

and provides useful features.

Yii Framework is designed on Model-View-Controller (MVC) scheme, a commonly

known architectural design pattern for creating web user interfaces [57]. MVC de-

sign patterns have the following features:

- Models are architectural components for representing the data structure.

- Views are the elements to create the user interface using the data from views,

generally written in HTML or simple PHP.

- Controllers provide the logic between models, views and end user actions.

MVC pattern’s main purpose is to separate logic from data structure and user inter-

face, giving options such as code reusability and ease of code maintenance. As an

example, the view can be updated freely without updating the controller or the mod-

el. In our case, the management interface is required to gather a vast amount of data

it needs from third party components i.e. from CN entities located somewhere else in

the network. Data is only available on external servers and needs to be fetched using

HTTP REST APIs each time it is needed e.g. each time an end user makes a request.

In our implementation, this data structure of the management interface resulted in

controllers fetching the data by HTTP requests from CN entities. The retrieved data

is forwarded to the views in each request. Because of this, the importance of the

models in the backend was not high i.e. the number of model classes implemented

was lower than expected. Although, there are still some models implemented for

specific data resources (see Appendix A). Hence, controllers in the management in-

terface are the most important elements in our PHP application to manage the com-

munication and data flow between end user and CN entities.

Workflow of PHP Application

Figure 5-4 presents the workflow of PHP application and Yii Framework in a general

view. The steps in this workflow are performed in the following order:

1. The user makes a request with a URL e.g. an AJAX GET request to retrieve

detailed information of a CGW, event triggered by clicking “More Infor-

mation” button on infobubble of CGW on the map. URL of such a request is

“http://www.iotmanagementinterface.com/site/detailedinfo? de-

viceId=5&deviceType=gateway&deviceVGWIP=111.111.111.111&resource

Id=12345”

2. Yii Framework component “Yii Application” validates that the URL is valid

by using another framework component urlManager. Then, Yii application

determines the controller and action for the given request i.e. each URL cor-

responds to a specific controller and an action (function) inside that control-

ler. For the given example above, Yii application forwards the request and

CHAPTER 5. IMPLEMENTATION 49

given parameters to DetailedInfo action in SiteController class.

Figure 5-4 Workflow of PHP Application

3. SiteController class determines that DetailedInfo refers to actionDetailedInfo

function in the class i.e. URL path /path/function always refers to action-

SomeURL in PathController in Yii Framework. The controller class first ap-

plies the filters e.g. access control filters if there is any. The function is per-

formed only if the filters allow the function to be executed.

4. The action retrieves and harvests the detailed information of the requested

CGW from relevant CN entities by making HTTP requests e.g. meta data

stored in vGW and IoT framework.

5. The action formats the data retrieved from CN entities and renders the corre-

sponding view e.g. DetailedInfo view for the given example.

6. The view can apply widgets on the data provided. Although, it is not a re-

quirement by the framework.

7. The rendered view is encapsulated in the main page layout i.e. the response to

the end user consists of an HTML page with the entire HTML headers. But in

case of an AJAX request (the one in the example), encapsulation in the main

page layout is not performed. Instead, the rendered view is returned directly

CHAPTER 5. IMPLEMENTATION 50

for AJAX requests such as some short HTML document without the headers.

8. The action returns the encapsulated view (not encapsulated in AJAX respons-

es) to the user and completes the workflow of the request.

Controllers

To divide the workflow into logical components, implementation of controllers i.e.

the separation of controller classes followed the frontend design depicted in Figure

4-1. Hence, five main controller classes were implemented:

- SiteController: It is responsible of every action performed on the home page

(map) such as loading CGWs and MDs on the map, updating slider values,

updating CN policies, showing detailed information of a device and many

more. As mentioned in the workflow above, each of these functionalities cor-

respond to a different action in SiteController.

- ElementsController: This controller is responsible of “Network Elements”

page of the interface. The class retrieves the list of network elements from

CNF and presents it to the user.

- NetworkController: This controller gathers the logs and notifications from

CNM and CNF and presents it to the user. The user is capable of setting log

levels or filtering notifications too.

Figure 5-5 Controllers and Capillary Network Components

CHAPTER 5. IMPLEMENTATION 51

- SearchController: This controller searches IoT Framework with the given

search query and returns the search results to the user on a separate page

- UserController: This controller basically controls the access to the user inter-

face based on username/password credentials.

A full list of actions and helper functions for each controller is presented as UML

diagrams in Appendix A. Moreover, almost each action in each controller communi-

cates with at least one CN entity while executing its function due to the design and

requirements of the backend. Hence, the actions need to use several HTTP REST

APIs to perform the corresponding function. Several interfaces were implemented

for the controllers to communicate with CN entities. These interfaces are discussed

in “REST APIs” section.

The controllers listed above are not responsible to assure the data consistency in dif-

ferent CN entities. As in Figure 5-5, several components can access the CNF at the

same time from different user accounts. However, it is the responsibility of the CNF

to assure the data consistency since the management interface acts like a proxy be-

tween the network manager and the Capillary Networks cloud entities. Moreover,

changes in the CNF are published to all the network managers’ frontends by Pub/Sub

Server, which is discussed in Section 5.2.2.

Device List Data Format

To provide the list of capillary network devices, the PHP application needs to con-

nect to CNF, retrieve the list of CGWs and MDs, parse the data, retrieve additional

data from CNF for battery/load constraints of specific CGWs and create the format-

ted list (see Figure 5-8). Since the PHP application parses the device list data, this list

is formatted so that it only contains the minimum required parameters for showing

the devices on the map, which are:

- Capillary gateway IDs

- Capillary gateway GPS coordinates

- Under each capillary gateway entry, IDs of machines devices connected to

that capillary gateway

- GPS coordinates of machine devices

Minimizing the data content of device list assures faster user experience in the

frontend since JavaScript libraries perform better with shorter lists. An example de-

vice list is presented below:

[{ "node":"1", "devices":"",

"vGW":"193.234.218.188,2a00:1d50:2:1001:f816:3eff:fe94:4a3d",

"online":"True", "level":"5", "params":{"1": {"lat": 59.40442269, "lng":

17.95359135}} },

{ "node":"2", "devices":"280:e103:1:2a9c",

"vGW":"193.234.217.173,2001:14b8:400:131:f816:3eff:fe4f:de50",

"online":"True", "level":"0", "params":{"2": {"lat": 41.35342516, "lng":

2.13135839}, "280:e103:1:2a9c": {"lat": 41.35361845, "lng": 2.13043571}}]

CHAPTER 5. IMPLEMENTATION 52

Anomaly Detection

The PHP application retrieves MD datapoints from the IoT Framework via SiteCon-

troller as depicted in Figure 5-5. Normally, the frontend presents datapoints as a data

graph. But if the user wants to perform anomaly detection (see Section 2.4.4) on a

given datapoint set, the set needs to be executed with the anomaly detection program.

Since the mentioned program is a Matlab executable, the following temporary solu-

tion was found:

- Write datapoint set to a temporary file (e.g. json.txt) on the server (step 1 in

Figure 5-6).

- Read from json.txt (step 2 in Figure 5-6) and run a python script to convert

datapoint set from JSON to Matlab format. Output is written to another tem-

porary file (e.g. matlab.txt) as step 3 in Figure 5-6.

- Run anomaly detection program with the formatted datapoint set (step 4 in

Figure 5-6), output is written to another temporary file (e.g. output.txt) as

step5 in Figure 5-6.

- The PHP application reads the new file, re-formats the data and creates a

combined datapoint set with anomalous and normal data points (step 6 in

Figure 5-6).

For this process, a new PHP component AnomalyDetection was implemented in PHP

server. The workflow of this component explained above is presented in Figure 5-6.

Figure 5-6 Workflow of Anomaly Detection Program

As stated above, this workflow is a temporary solution until the anomaly detection

algorithm is imported from Matlab since it is not efficient in terms of overhead, la-

tency and scalability.

CHAPTER 5. IMPLEMENTATION 53

5.2.2 Pub/Sub Server

As explained in the previous section, the scope of PHP application is to provide the

user interface with data retrieved from several CN entities. However, one of the re-

quirements for the backend implementation is to inform the user immediately of IoT

network topology changes or notification/log updates received from CNF (see also

Section 2.4.1). One possible option to achieve real-time updates on the user interface

is to perform polling to the PHP application with short intervals. However, the poll-

ing approach is not user-friendly since each polling request can take long time and

disrupt user’s actions. Another option for real-time updates is to use websockets [49]

and to initiate the communication to the end user from the server side. However,

PHP works on a request-response based client-server scheme i.e. the communication

needs to be initiated by the client. This fact indicates that PHP is not capable of per-

forming real time interface updates initiated by the server. In other words, PHP can-

not push any data to the end user. For this reason, another backend component was

needed to perform server-initiated communication to the end user for real-time up-

dates. This backend component is required to support clients subscribed to the

backend and updates published to them when available. Hence, an additional pub/sub

server was required in the backend implementation.

As our pub/sub server solution, we decided to use Node.js platform [58]. Node.js is

an asynchronous event driven framework written in JavaScript and capable of han-

dling very large number of connections in a scalable manner, which is an important

asset for an IoT device management interface. A vast amount of Node clients can

listen to a Node server for server-initiated communication i.e. for pushing data to the

clients, a feature we used in the implementation.

Architecture of Node server requires Node clients to be implemented for the frontend

so that the communication between Node server and clients can be initiated. Thus, an

additional Node client was implemented in addition to the Node server. As depicted

in Figure 5-7, a dedicated Node client registers to the Node server when each end

user opens the management interface on his browser. The client subscribes to the

server for the channels mentioned below, keeping the websocket open for any data

pushed from the server. In addition to the Node client subscribing to the Node server,

the Node server needs to subscribe to CN Pub/Sub server as well to receive data

about the channels mentioned below. Hence, Node server acts like a proxy between

CN Pub/Sub server and Node client, being both client and server in the same node

and forwarding the pushed data from CN Pub/Sub server to Node client after format-

ting.

Implemented pub/sub server is required to support the following channels to be

pushed to clients, which is received from CN Pub/Sub server:

- Network elements i.e. list of CGWs and MDs

- Notifications

- Logs

- Counters

CHAPTER 5. IMPLEMENTATION 54

As a design principle explained in backend requirements, the list of network ele-

ments will be loaded on the map only with the data received from pub/sub server i.e.

there is no traditional HTTP request from the end user for list of network elements.

The list is pushed to the frontend using only websockets. Pushing network elements

to the client indicates that pub/sub server needs to retrieve the list of capillary devic-

es. However, device list preparation was already implemented in PHP in earlier stag-

es. As depicted in Figure 5-7 and Figure 5-8, the solution was found by using the

Node server and the PHP server together. When the Node server receives getDevices

command from the Node client (step 1.3 in Figure 5-7) over websocket in the initial-

ization part (when the end user starts the management interface), the Node server

sends a local HTTP AJAX request to the PHP application (step 1.4 in Figure 5-7). In

our implementation, the Node server and the PHP application are installed on the

same local machine, which results in a local HTTP request from the Node server to

the PHP application. The PHP application retrieves network topology device list

from CNF upon the request from the Node server. Moreover, the PHP application

sends a separate request to CNF to retrieve battery/load constraint values to be

shown as CN demonstration sliders on the frontend. PHP application parses these

two responses from CNF, creates a combined list (see “Device List Data Format”

sub-section in 5.2.1) and sends the response to the Node server (see Figure 5-8). The

Node server publishes the data to the Node clients (step 2.1 in Figure 5-7). After-

wards, corresponding markers (device icons) are updated on the map by main.js Ja-

vaScript functions (steps 2.2 and 2.3 in Figure 5-7).

The initialization workflow of the interface is presented in Figure 5-7 as the green

circle. Similar workflow is continued when there is an update received from CN

Pub/Sub server by the Node server (steps 3.1, 4.1, 5.1, and 6.1 in Figure 5-7). This

update can be any change in the network configuration or discovery of a new MD i.e.

CN Pub/Sub server pushes any update from CN cloud to the Node server. In this

case, the Node server pushes the data retrieved from PHP application directly to the

Node client without waiting the Node client to send a request (steps 3.3, 4.2, 5.2, and

6.2 in Figure 5-7). In case of new notification, logs or counters from CN Pub/Sub

server, the received data is published by the Node server and directly shown on the

interface by the Node clients (steps 4.3, 5.3, and 6.3 in Figure 5-7).

Additionally, battery/load constraint updates are received from the frontend via web-

sockets to Pub/Sub server. In this mode, the Node client pushes the updated con-

straint level to the Node server (step 7.2 in Figure 5-7). The Node server sends the

received data to PHP application, to actionUpdateCapillaryConstraint function to

further forward to CNF (step 7.3 in Figure 5-7). The Node server does not expect any

response from actionUpdateCapillaryConstraint since CNF does not return any re-

sponse to PHP application. In case network topology changes upon the constraint

update, Pub/Sub server in CN cloud sends “network topology changed” notification

to the Node server (step 3.1 in Figure 5-7). Therefore, the frontend is informed ac-

cordingly.

CHAPTER 5. IMPLEMENTATION 55

Figure 5-7 Sequence Diagram of Pub/Sub Server

CHAPTER 5. IMPLEMENTATION 56

Figure 5-8 Sequence Diagram of Retrieving Device List from PHP Application

As presented in Figure 5-7 and explained earlier, Node server retrieves the list of IoT

devices (network topology) from PHP application. Figure 5-8 represents this work-

flow as a sequence diagram. In the diagram, there is an additional component be-

tween PHP application’s response and the Node server, which is called “Redis Serv-

er”. The role of this component is explained in the next section.

5.2.3 Redis Server

Figure 5-8 indicates that there is a new component between PHP application and

Node server, which intercepts the response from PHP application i.e. a Redis [59]

server. Redis is an open-source, NoSQL, in-memory, queue-based, key-value store

or data structure server (see Section 2.3.1). Being key value store does not make Re-

dis a simple data store as keys can be sets, lists, bit arrays or basic strings. In-

memory storage performs very fast compared to SQL databases to access the recent

data [60]. The features to scale very large amount of data, to provide a very fast data

store and to push/pop lists on the queue are the main reasons to choose Redis as our

NoSQL solution.

CHAPTER 5. IMPLEMENTATION 57

The reason of having a Redis server lies in the communication necessity between

PHP application and Node server. As discussed in earlier sections, the Node server

sends a local HTTP AJAX request to the PHP application so that the PHP application

can retrieve the data sets from CNF and sends back the formatted data to Node serv-

er. However, it was found out during implementation that the Node server could not

receive the response from PHP application for this HTTP request. The reason behind

this behavior is assumed to be the asynchronous nature of AJAX requests since the

response is not ready yet when the Node server expects it. As a solution, an asyn-

chronous data cache was needed to transfer the data prepared by PHP application to

the Node server. We found out that in-memory Redis server is an excellent choice as

a cache to transfer the data between two local servers.

Figure 5-9 Workflow between Node Server, PHP application and Redis Server

In our implementation, PHP application prepares the IoT device list with the data

sets retrieved from CNF. Then, PHP application pushes the prepared data to a Redis

list with the key name networkElements. In Node server implementation, a function

listens to this list on Redis and when a new data is available in the list queue with

key networkElements, the function publishes the data to Node clients. Upon finishing

the publishing, the function returns back to idle state to continue listening to the

queue for the same list. The workflow is illustrated in Figure 5-9.

CHAPTER 5. IMPLEMENTATION 58

5.2.4 LWM2M Server Integration

The thesis is a combined project with another thesis about LWM2M implementation

[61]. The implemented LWM2M server is combined with the management interface

as an important addition to enable direct communication with LWM2M clients from

the interface i.e. direct communication towards MDs.

Direct access to MDs e.g. sensors or actuators from the management interface is a

novel solution using LWM2M and CoAP. With LWM2M server integration, the

network manager can access LWM2M clients (i.e. actual MDs) directly from the

management interface. The manager can send LWM2M commands from the inter-

face to the LWM2M server, which each LWM2M client is connected to. The

LWM2M server then forwards the response of the LWM2M client to the manage-

ment interface. Some of the actions the manager can perform on MDs include read-

ing LWM2M resources, updating LWM2M resources and firmware, retrieving errors

directly from the MD or reading data values of the MD (see Section 2.2.5). This in-

tegration enables the manager to access each constrained device directly, which was

not possible for constrained devices earlier. Hence, LWM2M server integration is

meant to make the management interface following the latest technology in IoT de-

vice management.

The commands the network manager can send to the LWM2M server is retrieved

from an interactive shell from the frontend of the management interface. The manag-

er writes LWM2M commands on this shell (see Section 2.2.5 for LWM2M com-

mands), which is then forwarded to LWM2M server by the PHP application. As an

example, the following LWM2M command reads resource ID /1024/10/1 from client

ID 0. The response returns the status code, the URI and the content (see Section

2.2.5).

> read 0 /1024/10/1

{“status” : 205, “uri” : “/1024/10/1”, “content” : “20/10”}

As depicted in Figure 5-10, LWM2M server is installed on the same machine with

PHP application as an implementation decision since the current prototype can be

supported from a single LWM2M server. However, LWM2M server can be installed

anywhere on the network in other implementations. LWM2M server only responds

to CoAP messages i.e. it is not capable of understanding HTTP or any other protocol

messages. For this reason, the communication between PHP application and

LWM2M server is based on socket communication.

CHAPTER 5. IMPLEMENTATION 59

Figure 5-10 LWM2M and PHP application integration

When PHP application receives POST request from LWM2M terminal window with

LWM2M command in the request body, the application sends this command to

LWM2M server over a UDP socket. In the LWM2M server, the response to such re-

quests was implemented to be in JSON format to be compatible with management

interface. Hence, PHP application forwards the response format from LWM2M serv-

er directly to the end user in case there is no error from LWM2M server side. In

practice, the management interface is a proxy between the end user and LWM2M

server in charge of providing conversion from HTTP to UDP socket communication.

As an example, a screenshot from the interactive shell on the interface with several

LWM2M commands is presented in Figure 5-11.

Figure 5-11 LWM2M example commands

CHAPTER 5. IMPLEMENTATION 60

5.2.5 REST APIs

In the previous sections, we discussed the extensive communication between PHP

application and CN cloud entities. To establish this communication, we decided to

implement REST APIs for requests to CN entities and to regulate the client’s re-

sponse from CN entities in JSON format. This way, the management interface i.e.

the PHP application and CN entities can be located separately anywhere on the net-

work and the communication between these two entities is maintained accordingly

with REST APIs. Response format in JSON is an optimum solution for parsing the

data efficiently in the PHP application (see Section 2.3.2).

Deciding which REST APIs to implement was based on backend and frontend re-

quirements as well as constraints exposed by CN entities. Some APIs were already

provided by e.g. CNF and IoT Framework, though most of the APIs required chang-

es to comply with management interface requirements.

All updated/created APIs are presented below in separate tables for CNF, CNM, IoT

Framework and vGW. However, the tables include only short explanations about

each of them. The entire detailed REST API documentation is presented in Appendix

B.

Table 5.1 REST APIs towards CNF

Management Interface

Components using this

API

Feature

PHP: SiteController Get the full list of available CGWs and MDs

PHP: SiteController Get the list of all available CGWs

PHP: SiteController Get the list of all connected MDs for a CGW

PHP: SiteController Get the vGW IP address for a CGW

PHP: SiteController Get the online status for a CGW

PHP: SiteController

PHP: NetworkController
Get the latest logs of a CGW

PHP: NetworkController Get the most recent logs of all the CGWs

PHP: NetworkController Get the logging level for a CGW

PHP: NetworkController Set the logging level for a CGW

PHP: NetworkController Get the latest notifications of a CGW

CHAPTER 5. IMPLEMENTATION 61

PHP: NetworkController Get the most recent notifications for all the CGWs

PHP: SiteController Get the latest network counters of a CGW

PHP: SiteController Get the Capillary Networks policy

PHP: SiteController Set the Capillary Networks policy

PHP: SiteController Get the battery/load constraint value for a CGW

PHP: SiteController Set the battery/load constraint value for a CGW

Table 5.2 REST APIs towards CNF used for demonstration

Management Interface

Components using this

API

Feature

PHP: SiteController Get the list of gateways for congestion demonstration

PHP: SiteController Emulate gateways for congestion demonstration

PHP: SiteController Optimize the emulated gateways

PHP: SiteController Clear the emulated gateways

Table 5.3 REST APIs towards CNM

Management Interface Components

using this API
Feature

Demo use case: LocationCollector Set GPS coordinates for a CGW or MD

Demo use case: LocationCollector Set a configuration parameter

Demo use case: LocationCollector Get the list of CNM status values

CHAPTER 5. IMPLEMENTATION 62

Table 5.4 REST APIs towards IoT Framework

Management Interface

Components using this API
Feature

PHP: SiteController

PHP: SearchController
Get the list of resources for a user

PHP: SiteController

PHP: SearchController
Get a single resource entry with the given ID

PHP: SiteController Get the list of streams for a user and a resource

PHP: SiteController Get a single stream entry with the given ID

PHP: SiteController

PHP: SearchController
Get the list of datapoints for a stream

PHP: SiteController

PHP: SearchController
Get the filtered list of datapoints for a stream

PHP: SearchController Search the IoT Framework with a query

Table 5.5 REST APIs towards vGW

Management Interface Components

using this API
Feature

PHP: SiteController

PHP: ElementsController
Get a list of CGWs under the vGW

PHP: SiteController

PHP: ElementsController
Get a list of MDs under the vGW

CHAPTER 5. IMPLEMENTATION 63

Table 5.6 APIs towards Pub/Sub server in Capillary Networks cloud

Management Interface

Components using this API
Feature

Node server Subscribe for network topology update

Node server Subscribe for notifications

Node server Subscribe for logs

Node server Subscribe for network counters

5.2.6 Database

Stated several times earlier, the management interface retrieves all the data from ex-

ternal CN cloud entities via REST interfaces. Hence, the database in the management

interface backend does not store any network or device related data. It is used to

store only the username database of the management interface. Therefore, the data-

base required is very simple, consists of only one table user as depicted in Figure

5-12 and was created in MySQL [62]. Yii Framework also automatically generates a

separate database to store framework related variables. However, this database is out

of discussion for this thesis.

Figure 5-12 Database table

The table consists of only four columns with id (primary key), username, password

and email, all of the values are stored in plain text. A new row in the table is created

manually by the management interface admin when a new user requests username.

To control user access to the management interface, UserController class in PHP

application uses the rows username and password in this table to grant access to a

user in the login page.

5.3 Demo Use Case

In this section, we present an industry use case for demonstration, which targets at

presenting CN concept, architecture and working principles along with the manage-

ment interface in reality. Although the implemented use case demonstration is a

permanent setup in Ericsson premises in Jorvas at the time of the thesis writing, the

setup has been demonstrated in several internal Ericsson meetings and external

events too.

CHAPTER 5. IMPLEMENTATION 64

The use case aims at demonstrating several features of CN prototype in the demo

setup:

- Automatic configuration and discovery of MDs

- Self-load balancing of CGWs

- Gateway selection for MDs

- Middleware & service creation

- Storage, representation and filtering of data

To create a realistic environment, the focus of the use case is based on an industrial

harbor with several cranes. Use case defines a train track stretching to harbor to load

the cargo ships with the containers carried by the train. The harbor area is covered

by CGWs to allow sensors on the containers to connect to the network i.e. MDs are

located in the containers and connected to CN backend via CGWs in the harbor area.

The network manager monitors the devices on the harbor area on the management

interface, is notified of any possible errors via notifications on the interface and can

perform load/battery constraint changes on CGWs in the area.

Putting the use case into practice, we decided to build up the environment using re-

mote-controlled Lego® trains and other miniature decoration elements. The envi-

ronment we set up is presented in Figure 5-13. In this setup, two virtual CGWs are

assumed to be available on two cranes in the harbor, items 1 and 2 in Figure 5-13. In

fact, actual CGWs are located behind the setup. However, actual MDs are placed in-

side the train containers (items 3 and 4 Figure 5-13), measuring the temperature in

the setup room. While the train (item 3 in Figure 5-13) is moved along the track, con-

tainers are placed on the carriages moving with the train or containers can be left in

the harbor area as well. Blue line from A to B indicates the range of both CGWs.

Figure 5-13 Demo Environment

The table on which the setup is set has only a diameter of around 1.5 meters. There-

CHAPTER 5. IMPLEMENTATION 65

fore, the movement of MDs with the train is not possible to be detected by CGWs,

since the radio link quality does not differ much in that range. To solve this problem

i.e. detecting the location of MDs on the setup, we decided to track the containers

with a camera and to apply an image recognition program on a computer available in

the demo setup. Image recognition program tracks a given color in the camera video

while filtering out all the other colors. Hence, we placed two distinct colors on the

containers, red and blue which none of our decoration elements have. Placing the

camera over the setup to cover the entire train track allowed us to track red and blue

containers (item 3 and 4 in Figure 5-13). In other words, camera and image recogni-

tion program combination works as a satellite for the demonstration.

ColourTracker image recognition program was found online as an open source Java

project in [63]. The program interface allows to change saturation, hue and intensity

levels of the image so that a distinct color tone is determined and tracked. It detects

the largest area with the given color values on the image. However, the program re-

turns the detected color’s coordinates in the image frame e.g. coordinates in a frame

of 320x240 pixels image. These coordinates have to be translated into GPS coordi-

nates so that GPS coordinate updates of MDs are sent to CNM periodically via

cmd=set_coordinates command. Therefore, a new Java program LocationCollector

was implemented using ColourTracker as the main reference. Within LocationCol-

lector, GPS coordinates of MDs are calculated using the output of image recognition

program, calculated bearing of the tracked color pattern and distance of the tracked

color pattern to the center of the image, by using the Haversine formula [64] as de-

picted below. Bearing of the tracked color pattern refers to the angular coordinate of

the pattern on the image.

𝑏𝑒𝑎𝑟𝑖𝑛𝑔 = (2 ∗ 𝑝𝑖) − arctan (
𝑦 − 𝐶𝐴𝑀𝐸𝑅𝐴_𝐶𝐸𝑁𝑇𝐸𝑅_𝑌_𝐼𝑁_𝑃𝐼𝑋𝐸𝐿𝑆

𝑥 − 𝐶𝐴𝑀𝐸𝑅𝐴_𝐶𝐸𝑁𝑇𝐸𝑅_𝑋_𝐼𝑁_𝑃𝐼𝑋𝐸𝐿𝑆
)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝐶𝑎𝑚𝑒𝑟𝑎𝐶𝑒𝑛𝑡𝑒𝑟
= 𝑠𝑞𝑟𝑡((𝑥 − 𝐶𝐴𝑀𝐸𝑅𝐴_𝐶𝐸𝑁𝑇𝐸𝑅_𝑋_𝐼𝑁_𝑃𝐼𝑋𝐸𝐿𝑆)2

+ (𝑦 − 𝐶𝐴𝑀𝐸𝑅𝐴_𝐶𝐸𝑁𝑇𝐸𝑅_𝑌_𝐼𝑁_𝑃𝐼𝑋𝐸𝐿𝑆)2) ∗ 𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸_𝐶𝑂𝑁𝑆𝑇𝐴𝑁𝑇

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = arcsin (𝑠𝑖𝑛(𝐶𝐴𝑀𝐸𝑅𝐴_𝐶𝐸𝑁𝑇𝐸𝑅_𝐿𝐴𝑇_𝑅𝐴𝐷𝐼𝐴𝑁𝑆) ∗ 𝑐𝑜𝑠 (
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝐶𝑎𝑚𝑒𝑟𝑎𝐶𝑒𝑛𝑡𝑒𝑟

𝐸𝐴𝑅𝑇𝐻_𝑅𝐴𝐷𝐼𝑈𝑆
)

+ 𝑐𝑜𝑠(𝐶𝐴𝑀𝐸𝑅𝐴_𝐶𝐸𝑁𝑇𝐸𝑅_𝐿𝐴𝑇_𝑅𝐴𝐷𝐼𝐴𝑁𝑆)

∗ 𝑠𝑖𝑛 (
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝐶𝑎𝑚𝑒𝑟𝑎𝐶𝑒𝑛𝑡𝑒𝑟

𝐸𝐴𝑅𝑇𝐻_𝑅𝐴𝐷𝐼𝑈𝑆
) ∗ cos (𝑏𝑒𝑎𝑟𝑖𝑛𝑔))

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒
= 𝐶𝐴𝑀𝐸𝑅𝐴_𝐶𝐸𝑁𝑇𝐸𝑅_𝐿𝑂𝑁_𝑅𝐴𝐷𝐼𝐴𝑁𝑆

+ arctan (

(𝑏𝑒𝑎𝑟𝑖𝑛𝑔 ∗ sin (
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝐶𝑎𝑚𝑒𝑟𝑎𝐶𝑒𝑛𝑡𝑒𝑟

𝐸𝐴𝑅𝑇𝐻_𝑅𝐴𝐷𝐼𝑈𝑆
) ∗ 𝑐𝑜𝑠(𝐶𝐴𝑀𝐸𝑅𝐴_𝐶𝐸𝑁𝑇𝐸𝑅_𝐿𝐴𝑇_𝑅𝐴𝐷𝐼𝐴𝑁𝑆))

cos (
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝐶𝑎𝑚𝑒𝑟𝑎𝐶𝑒𝑛𝑡𝑒𝑟

𝐸𝐴𝑅𝑇𝐻_𝑅𝐴𝐷𝐼𝑈𝑆
) − sin(𝐶𝐴𝑀𝐸𝑅𝐴_𝐶𝐸𝑁𝑇𝐸𝑅_𝐿𝐴𝑇_𝑅𝐴𝐷𝐼𝐴𝑁𝑆) ∗ sin (𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒)

)

CHAPTER 5. IMPLEMENTATION 66

CNM receives GPS coordinate updates of MDs from LocationCollector and deter-

mines the connectivity of each MD to the appropriate CGW. Therefore, network to-

pology is centrally controlled from CNM. MDs moving with remote controlled train

are depicted on the management interface with the same movement i.e. location

changes of MDs are illustrated on the management interface map. The demo setup

allows to demonstrate CN features in the following ways:

- When the container on the train gets out of range of both CGWs i.e. outside

the blue line from A to B in Figure 5-13, that specific MD is not shown on

the management interface. Similarly, containers (MDs) reaching the range of

a CGW are connected to that CGW and become visible on the interface i.e.

while the containers are somewhere on the line between A and B.

- Turned-off MDs can be placed in the range of a CGW and once the MD is

turned, CGW automatically discovers and configures that MD. Hence, MD

becomes visible on the map somewhere on the blue line.

- When an MD resides in the intersection of both CGWs, the end user can up-

date load constraints of one CGW. CNM re-connects the MD to the CGW

with lower load level automatically and this transition is shown on the inter-

face. This case is applicable for item 4 in Figure 5-13 as it resides in the in-

tersection of both CGWs.

- Similar to above, CNM connects the MD residing in the intersection of both

CGWs to the most suitable CGW depending on CN policies in use.

- The demonstrator can present the middleware entities (vGWs) created for

each CGW from the management interface.

- Data readings of MDs can be shown as a plot or raw data from the detailed

information window of MD, which can be reached via clicking MD icon on

the map. Since the sensors actually measure the room temperature, real-time

room temperature is shown on the interface.

This demonstration shows the entire Capillary Networks idea from the constrained

device (MD) up to the management interface and cloud entities in an active and in-

teresting way. Hence, all the components of the Capillary Networks are presented

concurrently. Moreover, the interactive nature of the demonstration setup presents

the concept in action and allows even the non-technical people to follow the demon-

stration with ease.

5.4 Summary

The frontend implementation composes of use of Bootstrap framework with focus on

the map view on the home page. Apart from HTML and CSS, JavaScript is used ex-

tensively to create a dynamic frontend.

The backend implementation is based on a PHP application which communicates

with Capillary Networks entities via REST APIs to retrieve required management

information. Moreover, a Node.js publish/subscribe application and a Redis server

support the PHP application in terms of dynamic, real-time management commands

in addition to a LWM2M shell integration for LWM2M commands.

67

6 Measurements and Evaluation

After explaining the implementation details of the management interface in the pre-

vious chapter, we evaluate the interface itself and discuss the performed experiments

in this section. The purpose of the measurements performed on the experiments is to

find the limits of the interface, considering that it was designed to handle a very large

amount of IoT devices. Hence, obtained measurements present a rough view over the

system performance.

The chapter begins with the evaluation of the requirements discussed in Chapter 3

and how the implemented solution complies with the requirements. Section 6.2 pre-

sents the test results and the analysis of the website (the interface itself) performance

measurements in several use cases. Finally, performance of anomaly detection on

constrained device data readings is discussed in Section 6.3.

 Requirements Evaluation 6.1

In this chapter, we evaluate how the final interface satisfies the requirements dis-

cussed in Chapter 3. Requirements were classified into different importance levels

and hence, the evaluation is based on the importance level of each requirement. This

evaluation only focuses on whether the requirement is implemented and if so, with

what kind of features i.e. performance analysis of the implementation is not included

in this section. Following sections discuss different requirements for both frontend

and backend.

6.1.1 Frontend Requirements Evaluation

Each requirement presented in Table 3.1 in Section 3.1 is evaluated separately in Ta-

ble 6.1 below.

Table 6.1 Frontend Requirements Evaluation

Feature Requirement Evaluation Importance Satisfied?

Automatic

configuration

The network topology changes (including new

device appearing) are automatically pushed to

the frontend via Websocket and updated on the

map real-time without any distraction to the user

i.e. no freezing of the interface at any time and

no extra steps needed from the user for new

network configuration retrieval.

Essential Yes

CHAPTER 6. MEASUREMENTS AND EVALUATION 68

Dynamic

Middleware

This is achieved by showing the dynamic mid-

dleware addresses (vGW IP addresses) on the

meta-data information of each gateway and de-

vice.

Essential Yes

Dynamic

Gateway

Selection

Similar to automatic configuration, dynamic

gateway selection changes are pushed using

Websockets to the frontend and updated on the

map automatically. The use can trigger the GW

selection by the provided battery and load slid-

ers.

Essential Yes

Capillary

Networks

Policies

With an interactive floating window, the user

can retrieve the capillary network policies in raw

JSON format and update on the same page.

Essential Yes

Machine Device

Data

Representation

The MD data is represented in either graph or

raw format in the floating window of an MD

icon on the map. The graph is interactive and

supports several features (zoom in/out, individu-

al data point retrieval etc.) for a better user expe-

rience. Raw data is available as an extra feature.

Essential Yes

Machine Device

Data’s

Security

Representation

The interface shows in the MD data graph shows

individually if each datapoint was sent encrypted

to the IoT Framework from the MD. However,

the capillary networks architecture does not use

any encryption of datapoints at the time of re-

search. Hence, all data points show “Not

signed/encrypted” and this requirement is par-

tially satisfied.

Additional

Feature

Partially

Search

Functionality

The frontend has search functionality imple-

mented but the search can only be performed in

IoT Framework streams, not for resources.

Found stream data is presented similar to show-

ing MD data readings.

Additional

Feature

Partially

Meta Data

Representation

Meta data of CGWs and MDs are presented in

two different ways: First, a summary in the in-

fobubble for quick overview and then, a detailed

view in a floating window.

Essential Yes

Error Reporting The frontend shows the important errors and

critical updates from GWs as notification on the

main page. Logs and network counters are avail-

able as well in detailed information window of a

GW. Notifications, logs and network counters

are sent to the frontend via Websockets, ena-

bling real-time monitoring.

Essential Yes

CHAPTER 6. MEASUREMENTS AND EVALUATION 69

Congestion

Demonstration

The user can initiate the congestion demonstra-

tion via a separate window and can input the

desired attribute values.

Additional

Feature

Yes

Anomaly

Detection

Anomaly detection can be optionally applied on

the MD data in the MD data graph window i.e.

the default data graph does not trigger anomaly

detection. If executed, anomalies are visualized

as red on the graph. However, the functionality

of anomaly detection is limited to only pre-

defined data sets, making this requirement not

fully satisfied.

Additional

Feature

Partially

LWM2M Server

Integration

A separate screen is implemented as a LWM2M

terminal (shell) window on the interface, in

which the user can communicate with the

LWM2M server. However, the functionality of

the server is limited and the frontend requires a

better representation of LWM2M server integra-

tion than a simple shell window.

Additional

Feature

Partially

Table 6.1 indicates that the all of the “Essential” requirements are implemented and

fully functional on the management interface frontend. Though, some of the “Addi-

tional Features” are partially implemented since neither the current architecture sup-

ports the full functionality nor the external sources supported the features. All things

considered, the frontend implementation can be considered to satisfy the require-

ments in general.

6.1.2 Backend Requirements Evaluation

Backend requirements presented in Table 3.2 in Section 3.2 are evaluated individual-

ly below in Table 6.2.

Table 6.2 Backend Requirements Evaluation

Feature Requirement Evaluation Importance Satisfied?

Automatic

Configuration

The use of a Pub/Sub node.js server in the

backend enables the automatic information push

to the user in case of any updates such as network

topology change, logs, notification or network

counters. This Pub/Sub server is subscribed to

CNF and hence, CNF updates (e.g. new MD) are

immediately pushed to the end user.

Essential Yes

Dynamic

Middleware

The backend retrieves the middleware (vGW IP)

created for each GW from CNF and attaches it to

the meta-data of the CGW. Hence, the middle-

ware info is shown along with the meta-data.

Essential Yes

CHAPTER 6. MEASUREMENTS AND EVALUATION 70

Dynamic

Gateway

Selection

The backend forwards the battery and load con-

straint updates to CNF. Gateway selection logic in

CNF might change the network topology if the

requirements are met. If updated, the new net-

work topology is pushed to the user via Pub/Sub

server.

Essential Yes

Capillary

Networks

Policies

The policies are retrieved from CNF and any up-

dates made by the user are also forwarded to

CNF.

Essential Yes

Machine Device

Data

Representation

PHP application coordinates the communication

with the IoT Framework, retrieves the MD data

and formats it if needed. However, the backend

only supports read and search functionalities of

IoT Framework since update/create/delete are

performed by either CNM or CNF only. MD reg-

istration/de-registration is done in CNM or CNF

as well and that’s why this requirement is partial-

ly satisfied.

Essential Partially

Machine Device

Data’s

Security

Representation

Since the Capillary Networks architecture at the

moment of research does not encrypt the MD data

from CGW to the cloud but only authenticates the

CGW using GBA, the backend does not receive

any information about MD data security. Hence,

it only shows “Not Signed/Encrypted” for each

data point in MD data readings.

Additional

Feature

Partially

Search

Functionality

The backend supports the search functionality in

IoT Framework only for streams. Hence, search-

ing for resources or users has not been imple-

mented.

Additional

Feature

Partially

Meta Data

Representation

Detailed meta data information about CGW and

MDs is collected from 3 different sources: CNF,

vGW and IoT Framework. The backend parses

these data and creates the combined meta data to

be sent to the user.

Essential Yes

Error Reporting Pub/Sub server in CNF informs the Pub/Sub serv-

er in the management interface backend about any

errors and the backend forwards the data in real-

time to the user in terms of notification. This as-

sures real-time network monitoring.

Essential Yes

Congestion

Demo

The backend uses the REST API towards CNF to

simulate a congested network in a given area with

the given amount of CGWs. The results are then

forwarded to the user.

Additional

Feature

Yes

CHAPTER 6. MEASUREMENTS AND EVALUATION 71

Anomaly

Detection

The backend uses the application written in

Matlab to perform anomaly detection for a given

set of MD data readings. The interface between

PHP application and this Matlab program is a

temporary local file. However, writing to and

reading from the file is slow and the anomaly

detection algorithm supports only few datasets as

the valid input, which makes this feature not fully

functional for every MD dataset.

Additional

Feature

Partially

LWM2M Server

Integration

LWM2M commands are read from the LWM2M

shell on the frontend. PHP application forwards

these commands to the LWM2M server and re-

trieves the response back. However, LWM2M

server at the time of research is not fully func-

tional and the integration of LWM2M server and

the management interface needs to be updated

from just a shell window.

Additional

Feature

Partially

Table 6.2 indicates that most of the “Essential” requirements are implemented in the

backend. Partially satisfied “Essential” features lack the functionality from the relat-

ed entities and to be included in the future. Moreover, some “Additional Features”

are also partially implemented since neither the current architecture supports the full

functionality nor the external sources supported the features. The evaluation denotes

that the backend implementation satisfies the requirements in a general perspective.

 The Interface Performance Analysis 6.2

The management interface is designed to manage very large number of IoT devices

which are spread over different, wide geographical areas. The interface also supports

real-time updates from the network topology for viable device management. Howev-

er, the actual number of devices the interface can handle and the limits of the under-

lying architecture remain unclear. In this section, several tests are performed to clari-

fy the ambiguities about the management interface performance.

Testing Methodology

The testing was aimed at creating different amount of simulated CGWs and MDs in

the Capillary Networks architecture and showing them on the management interface.

The method for this purpose included using the set_devices API towards CNM in a

separate script to inform CNM periodically about the CGWs and devices. CNM in-

forms the CNF about the new network elements and the Pub/Sub server in CNF noti-

fies the Pub/Sub server in the management interface. Then, the devices are loaded on

the browser. Thus, the logic of the script simulates the same steps as if an actual

CGW and sensors were actually deployed. The logic of the script can be summarized

as follows:

1. Register a CGW in CNF.

2. Set coordinates for the CGW in CNM (cmd=set_coord).

CHAPTER 6. MEASUREMENTS AND EVALUATION 72

3. Generate random IDs for random number (between 1 and 5) of sensors. We

assume that the maximum five sensors connects to the GW.

4. Set coordinates for these sensors in CNM (cmd=set_coord).

5. Set connectivity of the sensors to the CGW in CNM (cmd=set_devices).

6. Keep connectivity alive by periodically informing CNM by a separate HTTP

request for each GW.

7. Delete the CGWs from CNF after connectivity in CNM times out i.e. the

script is terminated.

This method tests the performance of both the backend and the frontend. Hence, the

measurements during the test were obtained both from the backend using Apache

access logs and from the frontend using Google Chrome Version 38.0.2125.101 and

integrated website inspection tool [65].

The testing was performed by increasing the number of simulated CGWs from 10 to

10000, each time by 10 times. Each CGW is assigned 4 sensors connected to it so the

total number of CGWs and MDs on the system is 5*CGWs i.e. reaching maximum

of 50000 at the final step of the test.

Results

Table 6.3, Table 6.4 and Table 6.5 below present the HTTP and WebSocket traffic

received by the browser after the page is reloaded and the script is being executed.

Files refer to total number of files received, KB refers to total length of the files and

the time is the loading time of the entire files in milliseconds.

Table 6.3 Measurement Results of HTTP Requests for HTML, JS-Core and JS-Google Maps

 HTTP

GWs

HTML JS – Core JS – Google Maps

Files KB
Time

(ms)
Files KB

Time

(ms)
Files KB

Time

(ms)

10 1 2.7 211 34 425 621 14 158 466

100 1 2.7 177 34 424 623 14 158 470

1000 1 2.7 180 34 424 621 14 158 472

10000 1 2.7 203 34 424 642 14 158 478

CHAPTER 6. MEASUREMENTS AND EVALUATION 73

Table 6.4 Measurement Results of HTTP Requests for CSS and Images

 HTTP

GWs

CSS Images

Files KB
Time

(ms)
Files KB

Time

(ms)

10 17 60.1 476 93 630 1060

100 17 60.3 481 93 635 1070

1000 17 60.1 477 93 635 1068

10000 17 60.1 486 93 635 1084

Table 6.5 Measurement Results from WebSockets and Browser Memory Use

GWs

WebSocket Browser Memory Use

Number of

Frames

First

Frame

(KB)

Last Frame

(KB)

Frame

Update In-

terval (sec)

Memory Use

Rate

In Total

(MB)

10 11 2.18 5.96 2.2 1% 40

100 152 2.18 16.19 3.9 10% 380

1000 1870 2.18 88.32 6.8 26% 1000

10000 - 2.18 - 11 45% 1700

Table 6.3 and Table 6.4 show that the size and the loading time of the page elements

(HTML, JS, CSS and images) do not change with the increasing number of GWs,

which is an expected, obvious result since the same page is loaded each time. How-

ever, increasing the number of GWs and associated sensors (4 sensors for each GW)

dramatically effect the management interface performance as seen in Table 6.5.

Table 6.5 presents that the frame content received by the browser increases together

with the number of GWs and sensors. Though, frame update interval i.e. the interval

between the device list updates observed on the frontend increases as well. It is also

observed that the memory use of the browser grows significantly, which makes the

browser unresponsive for the case with 10000 GWs and 40000 sensors.

CHAPTER 6. MEASUREMENTS AND EVALUATION 74

One of the reasons behind this worse performance with the increased number of sim-

ulated GWs is the design of the communication between CNF and the management

interface. Each time the CNF receives any update on the network, it notifies the

management interface to retrieve the entire device list again. In the test script, con-

nectivity requests for each GW are sent separately to CNM for each GW. Hence, the

network is updated every time when CNM receives a connectivity update for a GW.

This results in the management interface performing immense amount of consecutive

HTTP requests to CNF to retrieve the entire device list, parsing each response and

pushing the data via the WebSocket to the browser.

From the frontend side, the WebSocket receives frequent device list updates in dif-

ferent frames, which triggers several JavaScript functions. However, the functions

are incapable of handling this amount of frequent updates, which is caused by a pos-

sible memory leak as shown in Figure 6-1.

Figure 6-1 Browser Memory Use Rate

The experiment reveals that increasing the time interval to send updates to CNM in

the test script to 5 seconds clearly improves the performance of the management in-

terface, shown in Table 6.6.

1%

10%

26%

45%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

10 100 1000 10000

Number of Simulated GWs

Browser Memory Use Rate

CHAPTER 6. MEASUREMENTS AND EVALUATION 75

Table 6.6 Measurement Results from WebSockets with latency and Browser Memory Use

GWs

WebSocket Browser Memory Use

Number of

Frames

First

Frame

(KB)

Last Frame

(KB)

Frame

Update In-

terval (sec)

Memory Use

Rate

In Total

(MB)

10 11 2.18 5.96 5 1% 40

100 144 2.18 16.19 5 5% 140

1000 1830 2.18 44.32 5 16% 500

10000 19256 2.18 128.64 5 27% 1050

Table 6.6 clarifies that the management interface is capable of handling large amount

of devices if the device list update rate is increased to 5 seconds or above. However,

to decrease the 5 seconds latency and have a real-time update capability with large

number of devices, several changes both in Capillary Networks architecture and the

management interface backend/frontend are needed, for instance:

- The device list retrieval from CNF to the management interface should be re-

designed i.e. the device list is pushed to the management interface directly

within the notification message without the interface making a separate POST

request to CNF for retrieving the list.

- CNF should return the same format of device list that the management inter-

face uses. This eliminates the need of data parsing in the interface backend

and decreases latency.

- Instead of the entire device list, which might consist of 1000s of GWs and

sensors unchanged, data fragments for only the GWs and sensors which have

been updated should be transmitted. This significantly decreases the message

size on the WebSocket frames.

- Similar to fragmented data, CNF should send notifications only for the updat-

ed GWs and sensors, instead of the entire network.

Conclusions

The measurements show that the management interface is capable of handling large

amount of devices provided that the device list updates have a minimum of 5 seconds

latency. Trying to have real-time updates with many devices, i.e. 10000 CGWs and

40000 sensors, result in the interface being unresponsive. This provides that the de-

vice retrieval design from CNF to the management interface is not optimal for fre-

quent updates and to achieve real-time updates, the architecture between CNM, CNF

and the management interface should be re-designed.

CHAPTER 6. MEASUREMENTS AND EVALUATION 76

 Anomaly Detection Performance Analysis 6.3

Section 5.2.1 Anomaly Detection discusses the integration of anomaly detection to

the management interface as a proof of concept. However, the anomaly detection

program performs rather slowly with the current implementation and the integration.

In this section, we perform tests to measure the performance of the anomaly detec-

tion program with the management interface.

Testing Methodology

For these measurements, the management interface device data graph window is

used. Anomaly detection algorithm is executed on different amount of data points

starting from 100 and increasing up to 5000. The response time is measured for each

try from Apache access logs in the management interface backend.

Results

Table 6.7 below shows the results of applying the anomaly detection program to a

given number of data points. The time spent for executing the program increases

with the number of given data points, as expected. However, the backend takes more

than 11 seconds (11275 ms) to respond to the anomaly detection of 5000 data points,

which is a significantly large latency.

The latency value proves that the anomaly detection program written in Matlab is not

fast enough for processing large amount of data sets. Moreover, using a temporary

file for communicating between the PHP application and the Matlab program in-

creases the latency even more.

Table 6.7 Measurements from Anomaly Detection Test

 HTTP Browser Memory Use

Number of data

points

Size of received

data set (KB)
Time spent (ms) Memory Use Rate

In Total

(MB)

100 1.12 4024 1% 40

1000 4.5 4800 2% 75

1500 6.5 5180 2% 75

2500 9.4 6092 2% 75

5000 18.95 11275 3% 100

Decreasing the latency can be achieved by both providing the anomaly detection

program in a faster programming language (e.g. python) and integrating it to PHP

application natively, rather than using a temporary folder.

CHAPTER 6. MEASUREMENTS AND EVALUATION 77

Regarding the browser memory use, increased number of data points has insignifi-

cant effect on the memory use at the user end as seen in Table 6.7.

Conclusions

The measurements prove that the current anomaly detection program integration ex-

periences significant latency when the number of data points increases. Implement-

ing the program in faster language and integrating it natively with the PHP applica-

tion can decrease the response time notably.

78

7 Conclusions

In this thesis, we have presented a Web-based, standalone device management inter-

face for IoT networks and devices running over the Capillary Networks architecture.

We first introduced the IoT concept, which consists of connecting real life devices to

the network to enable horizontal application development using the data collected by

the devices. However, the expected large number and resource constraints of the de-

vices have exposed the device management problem in IoT networks, which we dis-

cussed during the thesis.

Communication protocols specifically designed for constrained networks, which are

CoAP and LWM2M have been introduced along with the protocols used to integrate

the management interface to the existing Internet, which are HTTP and WebSocket.

The advantage of CoAP over HTTP has been pointed out to be more suitable for

constrained devices with reduced overhead, use of UDP, short message size and sup-

port of Observe/Notify mechanism. LWM2M, which runs on CoAP, completed the

IoT device management stack by being a lightweight, object-based management pro-

tocol suitable for constrained devices. Combining HTTP and WebSocket over CoAP

and LWM2M has enabled the management interface to be a Web-based service.

The constrained nature of the IoT networks required the analysis of IoT-specific fea-

tures such as Publish/Subscribe, aggregation, anomaly detection, prioritization and

error detection. It was discussed that Publish/Subscribe scheme can be extensively

used in IoT network management for real-time management and monitoring and

hence, it was included in the implementation as a core feature.

The requirements of the management interface were based on the Capillary Net-

works architecture, common network management features and additionally IoT-

specific features. The design of both the frontend and the backend of the interface

were prepared to satisfy the requirements and to tackle the legacy problems intro-

duced by the Capillary Networks architecture. Moreover, the implementation of the

interface was done using the proposed design by combining several Web technolo-

gies and frameworks. Moreover, the implemented interface required to be in com-

munication with many Capillary Networks entities through the use of extended

REST APIs.

The measurements retrieved from the management interface tests indicated the limits

of the system. The tests showed that the interface did not perform satisfactorily with

frequently updated, high number of devices, leading the interface to get considerably

slow for the end user. The reason for this was found to be the architecture of Capil-

lary Networks and the integration of the management interface on top of it. Solution

for this problem obviously requires the architectural update of Capillary Networks

and redefining the features of the entities in Capillary Networks cloud for better inte-

gration with the management interface.

CHAPTER 6. MEASUREMENTS AND EVALUATION 79

The research topic and the implementation presented in the thesis offer yet another

way of device management in IoT networks and can be extended to include new fea-

tures, protocols, different types of devices and gateways along with the integration of

cloud resource management. Hence, the objective was to present the initial, funda-

mental concept for IoT device management for future networks.

Future Work

The management interface implemented for this thesis can be developed further for a

better system performance. The ideas are presented below.

- Redesigning the Capillary Networks Architecture: The tests discussed in

Chapter 6 shows that the communication between Capillary Networks entities

and the management interface are not optimized for large-scale networks. The

architecture can be redesigned to tackle the problems such as real-time net-

work update and to remove the legacy network entities or communication

paths.

- Additional Use of Node.js: The increased use of Node.js, possibly replacing

the PHP application, can introduce better performance on the interface and on

the real-time management. Node.js is capable of handling more concurrent

processes and can be integrated to the cloud instances as a simpler process

than PHP.

- Device List Fragmentation: The current architecture forwards the entire list

of devices to the end user when a single update is observed in the network.

Instead, fragmented device list including only the updated part of the network

should be sent to decrease the message list format and to optimize the server

processing.

- Integration of Additional LWM2M Features: Although a preliminary ver-

sion of a LWM2M Server is integrated to the management interface, integra-

tion of actual LWM2M Clients with the interface and adding support for

LWM2M features, such as subscribing to LWM2M clients, would ensure bet-

ter representation of the end-to-end communication with the client and the

server.

- Support of Multi-Tenancy: Current Capillary Networks and management

interface architecture do not support multi-tenancy of CGWs and sensors in

different levels of ownership. Adding this support can introduce use cases

which are closer to the industry level examples. However, the architecture

needs to be updated heavily to achieve multi-tenancy.

80

Bibliography

[1] L. Atzori, A. Iera, and G. Morabito, "The Internet of Things: A Survey,"

Computer Networks, no. 54, pp. 2787-2805, June 2010.

[2] Jan Höller et al., From Machine-to-Machine to the Internet of Things:

Introduction to a New Age of Intelligence, 1st ed. Oxford, The UK: Academic

Press, 2014.

[3] M. Alam, R.H. Nielsen, and N.R. Prasad, "The evolution of M2M into IoT," in

Communications and Networking (BlackSeaCom), 2013 First International

Black Sea Conference on, Batumi, 2013, pp. 112-115.

[4] Lu Tan, East China Normal Univ., Shanghai, China Comput. Sci. & Technol.

Dept., and Neng Wang, "Future internet: The Internet of Things," in Advanced

Computer Theory and Engineering (ICACTE), 2010 3rd International

Conference on, vol. 5, Chengdu, 2010, pp. 376-380.

[5] Ericsson, More Than 50 Billion Connected Devices , February 2011.

[6] Ericsson, "Low Energy IoT Capillary Networks," Internal Report 2013.

[7] COMMUNE Web site. [Online]. http://projects.celtic-

initiative.org/commune/commune.html

[8] R. Fielding et al., Hypertext transfer protocol–HTTP/1.1., June 1999,

https://www.ietf.org/rfc/rfc2616.txt.

[9] Z. Shelby, ARM, K. Hartke, C. Bormann, and Universitat Bremen TZI, The

Constrained Application Protocol (CoAP), June 2014,

http://tools.ietf.org/html/rfc7252.

[10] Open Mobile Alliance, OMA Lightweight Machine to Machine Device

Management (OMA-DM), December 2013, OMA Lightweight M2M v1.0.

[11] Brian Lavoie and Henrik Frystyk Nielsen. (1999, May) Web Characterization

Terminology & Definitions Sheet. [Online]. http://www.w3.org/1999/05/WCA-

terms/

[12] T. Berners-Lee, CERN, L. Masinter, Xerox Corporation, and M. McCahill,

Uniform Resource Locators (URL), December 1994,

https://www.ietf.org/rfc/rfc1738.txt.

[13] Roy Thomas Fielding, Architectural Styles and the Design of Network-based

Software Architectures, 2000.

[14] Hongjun Li, "RESTful Web Service Frameworks in Java," in Signal Processing,

Communications and Computing (ICSPCC), IEEE International Conference,

 81

Xi'an, 2011, pp. 1-4.

[15] L. Richardson and S. Ruby, RESTful Web Services.: O'Reilly & Associates, May

2007.

[16] F. Belqasmi, R. Glitho, and Chunyan Fu, "RESTful web services for service

provisioning in next-generation networks: a survey ," Communications

Magazine, IEEE , vol. 49, no. 12, pp. 66-73, December 2011.

[17] I. Fette, Google Inc., A. Melkinov, and Isode Ltd., The WebSocket Protocol,

December 2011, http://tools.ietf.org/html/rfc6455.

[18] V. Pimentel and B.G. Nickerson, "Communicating and Displaying Real-Time

Data with WebSocket," Internet Computing, IEEE, vol. 16, no. 4, May 2012.

[19] Ian Hickson and Google Inc. (2014, June) The WebSocket API. [Online].

http://dev.w3.org/html5/websockets/

[20] G. Montenegro et al., Transmission of IPv6 Packets over IEEE 802.15.4

Networks, September 2007, http://tools.ietf.org/html/rfc4944.

[21] T. Winter et al., RPL: IPv6 Routing Protocol for Low-Power and Lossy

Networks, March 2012, https://tools.ietf.org/html/rfc6550.

[22] Walter Colitti, Kris Steenhaut, Niccolo De Caro, Bogdan Buta, and Virgil

Dobrota, "Evaluation of Constrained Application Protocol for Wireless Sensor

Networks," in Local & Metropolitan Area Networks (LANMAN), Chapel Hill,

2011, pp. 1-6.

[23] Carsten Bormann, Angelo Castellani, and Zach Shelby, "CoAP: An Application

Protocol for Billions of Tiny Internet Nodes," IEEE Internet Computing, vol.

16, no. 2, pp. 62-67, March 2012.

[24] K. Hartke and Universitaet Bremen TZI, Observing Resources in CoAP, June

2014, http://tools.ietf.org/html/draft-ietf-core-observe-14.

[25] (2014, September) IPSO Alliance. [Online]. http://www.ipso-alliance.org/

[26] V.N. Gudivada, Marshall Univ., Huntington, WV, USA Weisburg Div. of

Comput. Sci., D. Rao, and V.V. Raghavan, "NoSQL Systems for Big Data

Management ," in Services (SERVICES), 2014 IEEE World Congress on ,

Anchorage , 2014, pp. 190-197.

[27] W. Naheman, Xinjiang Univ., Urumqi, China Coll. of Resources & Environ.

Sci., and Jianxin Wei, "Review of NoSQL databases and performance testing on

HBase ," in Mechatronic Sciences, Electric Engineering and Computer (MEC),

Proceedings 2013 International Conference on , 2013, pp. 2304-2309.

[28] S. Sakr, Sydney, NSW, Australia Univ. of New South Wales & Nat. ICT

Australia (NICTA), A. Liu, D.M. Batista, and M. Alomari, "A Survey of Large

Scale Data Management Approaches in Cloud Environments ,"

Communications Surveys & Tutorials, IEEE , vol. 13, no. 3, pp. 311-336, April

2011.

 82

[29] Guoxi Wang, Tongji Univ., Shanghai, China Sch. of Software Eng., and

Jianfeng Tang, "The NoSQL Principles and Basic Application of Cassandra

Model ," in Computer Science & Service System (CSSS), 2012 International

Conference on , Nanjing , 2012, pp. 1332-1335.

[30] T. Bray and Google Inc., The JavaScript Object Notation (JSON) Data

Interchange Format, March 2014, http://tools.ietf.org/html/rfc7159.

[31] G. Xylomenos et al., "A Survey of Information-Centric Networking Research,"

Communications Surveys & Tutorials, IEEE , vol. 16, no. 2, pp. 1024-1049, July

2013.

[32] B. Dannewitz, C. Ahlgren, C. Imbrenda, D. Kutscher, and B. Ohlman, "A

survey of information-centric networking," Communications Magazine, IEEE ,

vol. 50, no. 7, pp. 26-36, July 2012.

[33] I.P. Zarko, K. Pripuzic, M. Serrano, and M. Hauswirth, "IoT data management

methods and optimisation algorithms for mobile publish/subscribe services in

cloud environments," in Networks and Communications (EuCNC), 2014

European Conference on, Bologna, 2014, pp. 1-5.

[34] D. Clement, C. Michel, and B. Cyrille, "Wireless Sensor Network Cloud

services: Towards a partial delegation," in Smart Communications in Network

Technologies (SaCoNeT), 2014 International Conference on, Vilanova i la

Geltru, 2014, pp. 1-6.

[35] S. Ben Fredj, M. Boussard, D. Kofman, and L. Noirie, "A Scalable IoT Service

Search Based on Clustering and Aggregation," in Green Computing and

Communications (GreenCom), 2013 IEEE and Internet of Things

(iThings/CPSCom), IEEE International Conference on and IEEE Cyber,

Physical and Social Computing, Beijing, 2013, pp. 403-410.

[36] S.D.T. Kelly, N.K. Suryadevara, and S.C. Mukhopadhyay, "Towards the

Implementation of IoT for Environmental Condition Monitoring in Homes,"

Sensors Journal, IEEE, vol. 13, no. 10, pp. 3846-3853, May 2013.

[37] F. McAtee, S. Narayanan, and G.G. Xie, "Performance analysis of message

prioritization in delay tolerant networks," in Military Communications

Conference, IEEE, Orlando, 2012, pp. 1-6.

[38] G.D. Troxel and L. Poplawski Ma, "Secure Network Attribution and

Prioritization: A Coordinated Architecture for Critical Infrastructure," in

Military Communications Conference, IEEE, San Diego, 2013, pp. 226-230.

[39] Weiyu Zhang, Qingbo Yang, and Yushui Geng, "A Survey of Anomaly

Detection Methods in Networks," in Computer Network and Multimedia

Technology, 2009. CNMT 2009. International Symposium on, Wuhan, 2009, pp.

1-3.

[40] V. Chandola, A. Banerjee, and V. Kumar, "Anomaly Detection for Discrete

Sequences: A Survey," Knowledge and Data Engineering, IEEE Transactions

 83

on, vol. 24, no. 5, pp. 823-839, November 2010.

[41] 3GPP TS 33.220 - Generic Authentication Architecture (GAA), Generic

Bootstrapping Architecture (GBA).

[42] Project CS 2013 by Uppsala University and Ericsson Research. (2014, March)

IoT-Framework Engine. [Online]. https://github.com/projectcs13/sensor-cloud

[43] Elasticsearch BV. (2014, March) Elasticsearch. [Online].

http://www.elasticsearch.org/

[44] W3C. (2014, March) HTML5. [Online]. http://www.w3.org/TR/html5/

[45] W3C. (2014, March) CSS. [Online]. http://www.w3.org/Style/CSS/

[46] Mozilla. (2014, March) Javascript. [Online].

https://developer.mozilla.org/en/docs/Web/JavaScript

[47] Bootstrap. Bootstrap Framework. [Online]. http://getbootstrap.com/

[48] The jQuery Foundation. jQuery. [Online]. http://jquery.com/

[49] WebSocket. [Online]. https://www.websocket.org/

[50] Google Inc. (2014, March) Google Maps. [Online].

https://developers.google.com/maps

[51] Markerclusterer. [Online]. http://google-maps-utility-library-

v3.googlecode.com/svn/trunk/markerclusterer/

[52] Infobubble. [Online]. http://google-maps-utility-library-

v3.googlecode.com/svn/trunk/infobubble/

[53] Flot. [Online]. http://www.flotcharts.org/

[54] Vkbeautify. [Online]. https://code.google.com/p/vkbeautify/

[55] PHP: Hypertext Processor. [Online]. http://php.net/

[56] Yii PHP Framework. [Online]. http://www.yiiframework.com/

[57] Avraham Leff and James T Rayleigh, "Web-application development using the

Model/View/Controller design pattern," in Enterprise Distributed Object

Computing Conference, 2001. EDOC '01. Proceedings. Fifth IEEE

International, Seattle, 2001, pp. 118-127.

[58] Node.js Project. [Online]. http://nodejs.org/

[59] Redis. [Online]. http://redis.io/

[60] How fast is Redis? [Online]. http://redis.io/topics/benchmarks

[61] Domenico D'ambrosio, A Group Communication Service for Lightweight M2M

(LWM2M), 2014, Università degli Studi di Napoli 'Federico II'.

[62] MySQL. [Online]. http://www.mysql.com/

 84

[63] Java Colour Tracker. [Online]. http://www.uk-dave.com/projects/misc/java-

colour-tracker/

[64] C. C. Robusto, "The Cosine-Haversine Formula," The American Mathematical

Monthly, vol. 64, no. 1, pp. 38-40, January 1957.

[65] Google Chrome Browser, , http://www.google.com/chrome/.

85

Appendix A

UML Diagrams of Backend Implementation

 86

87

Appendix B

REST APIs

In this Appendix, we present the full list of REST APIs used in the implementation

of the management interface. The APIs are grouped to five as REST APIs towards

CNF, Demonstration, CNM, IoT Framework and vGW. Each API entry is explained

in detail and supported request/response examples.

REST APIs Towards CNF

The APIs presented in this section are used by the management interface components

(see Chapter 5) for communication with the Capillary Network Function (CNF).

Get the full list of available CGWs and MDs

Verb URI Description

POST /process.php Get the full list of available CGWs and MDs

Normal Response Code(s): 200

Error Response Code(s): unauthorized (401), badRequest (400)

Response Format: JSON

This interface gets the full list of available CGWs and MDs with additional info such as connected

MDs to CGW, vGW IP, log level, GPS coordinates and online status. If the operation fails, an HTML

error code is returned with an error message in output.

POST Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd Body String get_info Yes Yes

Example request body

cmd=get_info

APPENDIX B: REST APIs 88

Example response body

[{"node":"2","devices":"","vGW":

"193.234.217.173,2001:14b8:400:131:f816:3eff: fe4f:de50", "online":"True",

"level":"0", "params":{"2": {"lat": 41.35342516, "lng": 2.13135839},

"280:e103:1:2a9c": {"lat": 41.35361845, "lng": 2.13043571}} }]

Get the list of all available CGWs

Verb URI Description

POST /process.php Get the list of all available CGWs

Normal Response Code(s): 200

Error Response Code(s): unauthorized (401), badRequest (400)

Response Format: JSON

This interface gets the list of all available CGWs. If the operation fails, an HTML error code is re-

turned with an error message in output.

POST Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd Body String nodes Yes Yes

Example request body

cmd=get_nodes

Example response body

["1", "2", "2911", "3", "4", "5"]

APPENDIX B: REST APIs 89

Get the list of all connected MDs for a CGW

Verb URI Description

POST /process.php Get the list of all connected MDs for a CGW

Normal Response Code(s): 200

Error Response Code(s): unauthorized (401), badRequest (400)

Response Format: JSON

This interface gets the list of all connected devices (MDs) to the given CGWs. The output includes

GPS coordinates of the listed MDs as well. If the operation fails, an HTML error code is returned with

an error message in output.

POST Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd Body String get_devices Yes Yes

node Body String Node identifier Yes Yes

Example request body

cmd=get_devices&node=2

Example response body

{ "node":"2", "devices":"", "params":{"2": {"lat": 41.35342516, "lng":

2.13135839}, "280:e103:1:2a9c": {"lat": 41.35361845, "lng": 2.13043571}} }

Get the vGW IP address for a CGW

Verb URI Description

POST /process.php Get the vGW IP address for a CGW

Normal Response Code(s): 200

Error Response Code(s): unauthorized (401), badRequest (400)

Response Format: JSON

APPENDIX B: REST APIs 90

This interface gets the vGW IP address for the given CGW. The output includes both IPv4 and IPv6

addresses for the given CGW’s vGW instance. If the operation fails, an HTML error code is returned

with an error message in output.

POST Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd Body String get_vgw_ip Yes Yes

node Body String Node identifier Yes Yes

Example request body

cmd=get_vgw_ip&node=1

Example response body

{"node":"1","ip4":"193.234.218.188", "ip6":"2a00:1d50:2:1001:

f816:3eff:fe94:4a3d" }

Get the online status for a CGW

Verb URI Description

POST /process.php Get the online status for a CGW

Normal Response Code(s): 200

Error Response Code(s): unauthorized (401), badRequest (400)

Response Format: JSON

This interface gets the online status for the given CGW. The output includes the CGW ID and the

online status of the CGW, which can be “Online” or “Offline”. If the operation fails, an HTML error

code is returned with an error message in output.

POST Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd Body String get_node_status Yes Yes

APPENDIX B: REST APIs 91

Name Style Type Description/Value Required Case-Sensitive

node Body String Node identifier Yes Yes

Example request body

cmd=get_node_status&node=1

Example response body

{"node":"1", "status":"Online" }

Get the latest logs of a CGW

Verb URI Description

POST /process.php Get the latest logs of a CGW

Normal Response Code(s): 200

Error Response Code(s): unauthorized (401), badRequest (400)

Response Format: JSON

This interface gets the latest N number of logs stored on CNF for the given CGW. N is a number de-

termined by CNF and is not defined in this API. The output includes the list of log entries. Each log

entry consists of log entry ID, log level and the log text. If the operation fails, an HTML error code is

returned with an error message in output.

POST Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd Body String get_log Yes Yes

node Body String Node identifier Yes Yes

Example request body

cmd=get_log&node=1

APPENDIX B: REST APIs 92

Example response body

[{ "id":"1694774", "level":"4", "entry":"2014-04-23 07:36:40 WARNING: GW 1

disconnected from the network (failed 3 times)" }, { "id":"1694775", "lev-

el":"5", "entry":"2014-04-23 07:37:17 GW 1 connected to the network" }, {

"id":"1694776", "level":"5", "entry":"2014-04-23 07:37:26 Device

280:e103:1:3829 (type temperature) connected to GW 1" }]

Get the most recent logs of all the CGWs

Verb URI Description

POST /process.php Get the most recent logs of all the CGWs

Normal Response Code(s): 200

Error Response Code(s): unauthorized (401), badRequest (400)

Response Format: JSON

This interface gets the most recent K logs stored on CNF for all the CGWs. K is a number determined

by CNF and is not defined in this API. The output includes the list of log entries. Each log entry con-

sists of log entry ID, CGW ID, log level and the log text. If the operation fails, an HTML error code is

returned with an error message in output.

POST Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd Body String get_log Yes Yes

node Body String common Yes Yes

Example request body

cmd=get_log&node=common

Example response body

[{ "id":"3395092", "node":"1", "level":"4", "entry":"2014-04-23 07:36:40

WARNING: GW 1 disconnected from the network (failed 3 times)" }, {

"id":"3395093", "node":"1", "level":"5", "entry":"2014-04-23 07:37:17 GW 1

connected to the network" }, { "id":"3395094", "node":"1", "level":"5", "en-

try":"2014-04-23 07:37:26 Device 280:e103:1:3829 (type temperature) connected

to GW 1" }]

APPENDIX B: REST APIs 93

Get the logging level for a CGW

Verb URI Description

POST /process.php Get the logging level for a CGW

Normal Response Code(s): 200

Error Response Code(s): unauthorized (401), badRequest (400)

Response Format: JSON

This interface gets the logging level for the given CGW. The output returns the CGW ID and the log-

ging level. If the operation fails, an HTML error code is returned with an error message in output.

POST Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd Body String get_logging_level Yes Yes

node Body String Node identifier Yes Yes

Example request body

cmd=get_logging_level&node=1

Example response body

{ "node":"1", "level":"5" }

Set the logging level for a CGW

Verb URI Description

POST /process.php Set the logging level for a CGW

Normal Response Code(s): 200

Error Response Code(s): unauthorized (401), badRequest (400)

Response Format: Plain Text

This interface sets the logging level of the given CGW to the given logging level value. The output

returns a plain text if the operation succeeds with response code 200. If the operation fails, an HTML

APPENDIX B: REST APIs 94

error code is returned with an error message in output. Hence, the operation success is determined

using the response code.

POST Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd Body String set_logging_level Yes Yes

node Body String Node identifier Yes Yes

level Body Integer New log level value Yes No

Example request body

cmd=set_logging_level&node=1&level=4

Example response body

Success.

Get the latest notifications of a CGW

Verb URI Description

POST /process.php Get the latest notifications of a CGW

Normal Response Code(s): 200

Error Response Code(s): unauthorized (401), badRequest (400)

Response Format: JSON

This interface gets the latest N number of notifications stored on CNF for the given CGW. N is a

number determined by CNF and is not defined in this API. The output includes the list of notification

entries. Each notification entry consists of notification entry ID and the notification text. If the opera-

tion fails, an HTML error code is returned with an error message in output.

POST Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd Body String get_notification Yes Yes

APPENDIX B: REST APIs 95

Name Style Type Description/Value Required Case-Sensitive

node Body String Node identifier Yes Yes

Example request body

cmd=get_notification&node=2

Example response body

[{ "id":"1", "entry":"2014-04-10 11:34:05 GW 2 started" }, { "id":"2", "en-

try":"2014-04-10 11:34:05 GW 2 connected to the network" }, { "id":"3", "en-

try":"2014-04-10 12:40:53 GW 2 started" }, { "id":"4", "entry":"2014-04-10

12:43:18 GW 2 started" }, { "id":"5", "entry":"2014-04-10 12:43:19 GW 2 con-

nected to the network" }, { "id":"6", "entry":"2014-04-10 12:50:30 GW 2

started" }, { "id":"7", "entry":"2014-04-10 12:50:32 Root device of GW 2 is

connected" }]

Get the most recent notifications for all the CGWs

Verb URI Description

POST /process.php Get the most recent notifications for all the CGWs

Normal Response Code(s): 200

Error Response Code(s): unauthorized (401), badRequest (400)

Response Format: JSON

This interface gets the most recent K notifications stored on CNF for all the CGWs. K is a number

determined by CNF and is not defined in this API. The output includes the list of notification entries.

Each notification entry consists of notification entry ID, CGW ID and the notification text. If the op-

eration fails, an HTML error code is returned with an error message in output.

POST Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd Body String get_notification Yes Yes

node Body String common Yes Yes

APPENDIX B: REST APIs 96

Example request body

cmd=get_notification&node=common

Example response body

[{ "id":"63098", "node":"1", "entry":"2014-04-23 07:44:19 GW 1 connected to

the network" }, { "id":"63099", "node":"1", "entry":"2014-04-23 07:49:40 GW 1

connected to the network" }, { "id":"63100", "node":"1", "entry":"2014-04-23

07:50:19 WARNING: GW 1 disconnected from the network (failed 3 times)" }, {

"id":"63101", "node":"1", "entry":"2014-04-23 07:50:59 WARNING: GW 1 discon-

nected from the network (failed 3 times)" }]

Get the latest network counters of a CGW

Verb URI Description

POST /process.php Get the latest network counters of a CGW

Normal Response Code(s): 200

Error Response Code(s): unauthorized (401), badRequest (400)

Response Format: JSON

This interface gets the latest network counter values for the given CGW. The output includes a list of

available network counters in key-value format, the key as the counter name and the value as the

counter value. The availability of which counters to return depends on the CNF implementation and is

out of the scope of this API. If the operation fails, an HTML error code is returned with an error mes-

sage in output.

POST Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd Body String get_counters Yes Yes

node Body String Node identifier Yes Yes

Example request body

cmd=get_counters&node=1

Example response body

{"constraints from":"configuration file","constraints in

APPENDIX B: REST APIs 97

use":"{\"1\":{\"battery\":5,\"load\":2},\"3\":{\"battery\":3,\"load\":1},

,\"2\":{\"battery\":4,\"load\":2}}","devices":"0","devices de-

nied":"0","devices offline":"0","devices right gw":"0" ,"devices wrong

gw":"0", "master":"True", "network access failed":"94 times","network access

failure rate":"55.294117647059 % (mean)"}

Get the Capillary Networks policy

Verb URI Description

GET /access.controller/m-nf?cmd=getPolicy Get the Capillary Networks policy

Normal Response Code(s): 200

Error Response Code(s): internalServerError (405)

Response Format: JSON

This interface gets the current Capillary Networks policy content stored on CNF. The output includes

the policy in JSON. If the operation fails, an HTML error code is returned with an error message in

output.

GET Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd URI String getPolicy Yes Yes

Example request body

http://0.0.0.0:8080/access.controller/m-nf?cmd=getPolicy

Example response body

{ "xxalarm": { "load": -1 }, "default": { "battery": 2, "load": -2, "connec-

tions": -1 }, "xxxdefault": { "battery": 1, "load": -1 }, "xxdefault": {

"connections": -1 } }

APPENDIX B: REST APIs 98

Set the Capillary Networks policy

Verb URI Description

GET
/access.controller/m-

nf?cmd=setPolicy&policy=X
Set the Capillary Networks policy

Normal Response Code(s): 200

Error Response Code(s): internalServerError (405)

Response Format: JSON

This interface sets the current Capillary Networks policy with the given policy value. The given poli-

cy value is required to be in valid JSON format. The output includes a JSON object. If the “status”

attribute in the returned JSON object is set to “ok”, it means that the policy is applied successfully. If

the operation fails, an HTML error code is returned with an error message in output.

GET Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd URI String getPolicy Yes Yes

policy URI JSON New policy value Yes Yes

Example request body

http://0.0.0.0:8080/access.controller/m-nf?cmd=setPolicy

&policy={"xxalarm":{"load": -5 }}

Example response body

{ "status": "ok” }

Get the battery/load constraint value for a CGW

Verb URI Description

GET

/access.controller/m-nf

or

/access.controller/m-nf?cmd=getConstraints

or

/access.controller/m-nf?cmd=getConstraints

&id=X

Get current battery/load constraint values

APPENDIX B: REST APIs 99

Normal Response Code(s): 200

Error Response Code(s): internalServerError (405)

Response Format: JSON

This interface gets the current battery/load constraint values. These constraint values may not be

available for all available CGWs. If the operation is performed without “id” parameter, the output

returns the entire list of CGWs with the values of battery and load constraints. To perform the opera-

tion with “id” parameter, the parameter must be defined in this way:

id=NODE_ID+””+CONSTRAINT_ID

NODE_ID refers to the ID of CGW (e.g. 1 or 4) while CONSTRAINT_ID refers to the identifier for

battery as 1 and load as 2. E.g. “id=11” refers to battery constraint of CGW with ID 1. The output to

the request with “id” parameter returns the value of the constraint in JSON.

If the operation fails, an HTML error code is returned with an error message in output.

GET Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd URI String getConstraints No Yes

id URI Integer Constraint Identifier No No

Example request body

http://0.0.0.0:8080/access.controller/m-nf?cmd=getConstraints

Example response body

{"3":{"battery":1,"load":1},"2":{"battery":1,"load":1},"1":{"battery":1,

"load":1},"5":{"battery":1,"load":1},"4":{"battery":1,"load":1}}

Example request body

http://0.0.0.0:8080/access.controller/m-nf?cmd=getConstraints&id=11

Example response body

{"11":3}

APPENDIX B: REST APIs 100

Set the battery/load constraint value for a CGW

Verb URI Description

GET
/access.controller/m-nf?cmd=setConstraint

&id=X&value=Y
Set current battery/load constraint values

Normal Response Code(s): 200

Error Response Code(s): internalServerError (405)

Response Format: JSON

This interface sets the given battery/load constraint id to the given value. To perform the operation

with “id” parameter, the parameter must be defined in this way:

id=NODE_ID+””+CONSTRAINT_ID

NODE_ID refers to the ID of CGW (e.g. 1 or 4) while CONSTRAINT_ID refers to the identifier for

battery as 1 and load as 2. E.g. “id=11” refers to battery constraint of CGW with ID 1. The operation

sets the given value to this defined ID. The output includes a JSON object. If the “status” attribute in

the returned JSON object is set to “0”, it means that the constraint value is updated successfully. If the

attribute is set to “-1”, there is an error while updating the constraint. If the operation fails, an HTML

error code is returned with an error message in output.

GET Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd URI String setConstraint Yes Yes

id URI Integer Constraint Identifier Yes No

value URI Integer
New value: Currently accepted val-

ues are from 1 to 5.
Yes No

Example request body

http://0.0.0.0:8080/access.controller/m-nf?cmd=setConstraint&id=11&value=5

Example response body

{"status":0}

APPENDIX B: REST APIs 101

REST APIs towards CNF used for Demonstration

Get the list of gateways for congestion demonstration

Verb URI Description

GET
/access.controller/emulation?

cmd=gws&lat=X&lon=Y&h=H&w=W
Set current battery/load constraint values

Normal Response Code(s): 200

Error Response Code(s): badRequest (400), internalServerError (405)

Response Format: JSON

This interface gets the list of gateways, which are already simulated before and stored on CNF. The

output is a list of gateway entries available in the rectangle centered at (lat, lon) with the height of h

and the width of w, the parameters defined in the request. A gateway entry in the response list consists

of gateway’s following properties: RAT type (wifi, xbee or IEEE 802.15.4), latitude, longitude, impi

(the owner of the gateway) and channel. If the operation fails, an HTML error code is returned with an

error message in output.

GET Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd URI String gws Yes Yes

lat URI Float Center latitude, in decimal format Yes No

lon URI Float Center longitude, in decimal format Yes No

h URI Float Height, in km Yes No

w URI Float Width, in km Yes No

Example request body

http://0.0.0.0:8080/access.controller/emulation?cmd=gws&lat=60.171888&lon=

24.950799&h=1&w=1

Example response body

{"Gateways":[{"ratType":"IEEE

802.15.4","longitude":24.948774,"impi":"generated","latitude":60.170097,"cha

APPENDIX B: REST APIs 102

nnel":"25"},{"ratType":"IEEE

802.15.4","longitude":24.956118,"impi":"generated","latitude":60.168793,"cha

nnel":"25"}]}

Emulate gateways for congestion demonstration

Verb URI Description

POST /access.controller/emulation
Emulate gateways for congestion demon-

stration

Normal Response Code(s): 200

Error Response Code(s): badRequest (400), internalServerError (405)

Response Format: Plain Text

This interface emulates the given number of gateways in the given rectangle area. The rectangle area

is centered at the given (lat, lon) point with the height of given h and the width of given w. The gener-

ated gateways use the given RAT (Radio Access Type) on the same channel. The output returns plain

text with response code 200 if the operation succeeds. If the operation fails, an HTML error code is

returned with an error message in output.

POST Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd Body String generate Yes Yes

lat Body Float Center latitude, in decimal format Yes No

lon Body Float Center longitude, in decimal format Yes No

h Body Float Height, in km Yes No

w Body Float Width, in km Yes No

gws Body Integer Number of GWs to emulate Yes No

rats Body String

The RAT types the emulated GWs

will use, currently accepted: xbee,

wifi, zwave.

Yes Yes

APPENDIX B: REST APIs 103

Example request body

cmd=generate&lat=60.171888&lon=24.950799&h=1&w=1&gws=100&rats=xbee

Example response body

Done!

Optimize the emulated gateways

Verb URI Description

GET /access.controller/emulation?cmd=optimize Optimize the emulated gateways

Normal Response Code(s): 200

Error Response Code(s): badRequest (400), internalServerError (405)

Response Format: Plain text

This interface sends a command to optimize the frequency channels of the generated gateways i.e.

triggers the self-healing process. The output returns plain text with response code 200 if the operation

succeeds. If the operation fails, an HTML error code is returned with an error message in output.

GET Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd URI String optimize Yes Yes

Example request body

http://0.0.0.0:8080/access.controller/emulate?cmd=optimize

Example response body

Done!

APPENDIX B: REST APIs 104

Clear the emulated gateways

Verb URI Description

GET /access.controller/emulation?cmd=clear Clear the emulated gateways

Normal Response Code(s): 200

Error Response Code(s): badRequest (400), internalServerError (405)

Response Format: Plain text

This interface clears the generated gateways from CNF. The output returns plain text with response

code 200 if the operation succeeds. If the operation fails, an HTML error code is returned with an er-

ror message in output.

GET Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd URI String clear Yes Yes

Example request body

http://0.0.0.0:8080/access.controller/emulate?cmd=clear

Example response body

Done!

REST APIs Towards CNM

The APIs presented in this section are used by the management interface components

(see Chapter 5) and the demo use case (see Chapter 5.3) for communication with the

Capillary Network Manager (CNM).

Set GPS coordinates for a CGW or MD

Verb URI Description

GET

?cmd=set_coordinates&node=X&lat=Y&lng=Z

or

?cmd=set_coordinates&device=X&lat=Y&lng=

Z

Set GPS coordinates for a CGW or MD

APPENDIX B: REST APIs 105

Normal Response Code(s): 200

Error Response Code(s): badRequest (400), internalServerError (405)

Response Format: JSON

This interface sets the GPS coordinates of the given CGW or MD. For the CGW GPS update, parame-

ter node is used while parameter device is used for MD GPS update. If the operation is successful, the

output returns a JSON object with the new latitude and longitude values. If the operation fails, an

HTML error code is returned with an error message in output.

GET Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd URI String set_coordinates Yes Yes

node URI String CGW ID, if CGW is updated No Yes

device URI String MD ID, if MD is updated No Yes

lat URI Float Latitude, in decimal format Yes No

lng URI Float Longitude, in decimal format Yes No

Example request body

http://0.0.0.0:8080?cmd=set_coordinates&node=5&lat=60.1662157&lng=24.932549

OR

http://0.0.0.0:8080?cmd=set_coordinates&device=280:e103:1:3829&lat=60.166215

7&lng=24.932549

Example response body

{"lat": "60.1662157", "lng": "24.932549"}

APPENDIX B: REST APIs 106

Set a configuration parameter

Verb URI Description

GET ?cmd=set_config Set configuration parameter

Normal Response Code(s): 200

Error Response Code(s): badRequest (400), internalServerError (405)

Response Format: JSON

This interface sets one or more configuration parameters for the CN. Any parameter (singular or mul-

tiple) can be updated separately or together from the list below. If the operation is successful, the out-

put returns a JSON object with all of the configuration parameters in a list i.e. if the request only has

cmd=set_config parameter, it just returns all the configuration parameters and their values. If the op-

eration fails, an HTML error code is returned with an error message in output.

GET Parameters

Name Style Type Description/Value Required
Case-

Sensitive

cmd URI String set_config Yes Yes

timer_query_policy URI Float
Interval to query policy from

CNF (default 10), in seconds
No Yes

timer_query_constraints URI Float

Interval to query constraints

from CNF (default 2), in sec-

onds

No Yes

timer_post_devices URI Float
Interval to post device list to

CNF (default 0.1), in seconds
No Yes

timer_force_post_devices URI Float

Interval to force an extra post

of device list to CNF (default

60), in seconds

No Yes

timer_expire_gw_granuality URI Float

Interval to check for expired

gateway registrations (default

2), in seconds

No Yes

timer_expire_gw URI Float Expiration time for gateway

registrations (default 30), in
No Yes

APPENDIX B: REST APIs 107

Name Style Type Description/Value Required
Case-

Sensitive

seconds

timer_expire_dev_granuality URI Float

Interval to check for expired

gateway registrations (default

2), in seconds

No Yes

timer_expire_dev URI Float

Expiration time for device

registrations (default 30), in

seconds

No Yes

urlpolicy URI String
URL to obtain policy from

CNF
No Yes

urlconstraints URI String
URL to obtain constraints

from CNF
No Yes

urldevicelist URI String
URL to post device lists to

CNF
No Yes

address_order URI Boolean
Use address order instead of

join order (default false)
No Yes

port URI Integer
Port number of REST server

(default 80)
No Yes

connectivity_radius URI Float

Radio coverage radius for de-

termining device connectivity

based on location from gate-

way (0=disable, default 0.2),

in km

No Yes

coordinate_treshold URI Float

Minimum distance of change

before updating coordinates

(0=disable, default 0.005), in

km

No Yes

postcleaning URI Integer Method to clean the device

lists before posting to CNF
No Yes

APPENDIX B: REST APIs 108

Name Style Type Description/Value Required
Case-

Sensitive

(default 2)

debug URI String
Comma-separated list of topics

to print debug information on
No Yes

Example request body

http://0.0.0.0:8080? cmd=set_config&timer_post_devices=0.1&timer_force_post_

devices=60

Example response body

{"urldevicelist":

"http://[2a00:1d50:2:1001:f816:3eff:fea8:fc81]/leiot/process.php", "post-

cleaning": 2, "timer_expire_dev_granuality": 1, "timer_query_constraints":

2, "timer_expire_gw": 5, "timer_force_post_devices": 60, "tim-

er_expire_gw_granuality": 2, "urlpolicy":

"http://[2a00:1d50:2:1001:f816:3eff:fea8:fc81]: 8080/access.controller/m-

nf?cmd=getPolicy", "debug": "cnm,cgw,cnf", "urlconstraints":

"http://[2a00:1d50:2:1001:f816:3eff:fea8: fc81]:8080/access.controller/m-

nf", "port": 80, "timer_post_devices": 2.0, "forceipv4": false, "ad-

dress_order": false, "connectivity_radius": 999999999999.0, "coordi-

nate_treshold": 0.005, "timer_query_policy": 10, "timer_expire_dev": 5}

Get the list of CNM status values

Verb URI Description

GET ?cmd=get_status Get the list of all status counters

Normal Response Code(s): 200

Error Response Code(s): badRequest (400), internalServerError (405)

Response Format: JSON

This interface gets the full list of status values of CNM. If the operation is successful, the output re-

turns a JSON object in key-value format, where the key refers to status name (description) and the

value refers to counter value. However, the status list returned depends on CNM implementation and

available status values in CNM. If the operation fails, an HTML error code is returned with an error

message in output.

APPENDIX B: REST APIs 109

GET Parameters

Name Style Type Description/Value Required Case-Sensitive

cmd URI String get_status Yes Yes

Example request body

http://0.0.0.0:8080?cmd=get_status

Example response body

{ "connectivity": "1->280:e103:1:3829 3->280:e103:1:3829 ", "constraints":

"{"1": {"battery": 3, "load": 3}", "constraints changed": "Tue Jun 10

06:56:27 2014", "dev280:e103:1:3829 coord":

"21.001008804052326:52.17633998406954", "dev280:e103:1:384e coord":

"21.001008804052326:52.17633998406954", "gw1 activations": 1, "gw1 coord":

"21.001001:52.176614", "gw1 devs connectivity": "280:e103:1:3829", "gw1 devs

from gw": "280:e103:1:3829", "gw1 devs selection": "280:e103:1:3829", "gw1

devs to cnf": "280:e103:1:3829", "gw1 last update": "Wed Jun 11 14:26:33

2014", "gw1 status": "active", "policy": "{"default": {"battery": 2,

"load": -2, "connections": -1}, }", "policy changed": "Tue Jun 10 06:56:27

2014", "received get_status": 23, "received set_config": 1, "received

set_coordinates": 255, "received set_devices": 1680, "received total": 1965,

"received unknown": 6, "selection": "280:e103:1:3829->GW1", "selection

changes": 1, "sent get constraints": 56455, "sent get policy": 11291, "sent

set_devices": 66, "sent total": 67812 }

REST APIs Towards IoT Framework

The APIs presented in this section are used by the management interface components

(see Chapter 5) for communication with the IoT Framework. None of the APIs in

this section includes any GET parameter since the data is retrieved using a path mod-

el.

Get the list of resources for a user

Verb URI Description

GET /users/USER_ID/resources Get the list of resources for a user

Normal Response Code(s): 200

Error Response Code(s): badRequest (400), internalServerError (405)

Response Format: JSON

This interface gets the list of resources, which belong to the given user ID in the path. If the operation

is successful, the output is the list of resource entries. Each resource entry in the response consists of

APPENDIX B: REST APIs 110

the values presented in Resource Parameters below. If the operation fails, an HTML error code is re-

turned with an error message in output.

GET Parameters

Name Style Type Description/Value Required Case-Sensitive

- - - - - -

Resource Parameters

Name Type Description

active Boolean Online status of the resource

creation_date String The date when the resource was created

description String Text description for the resource

id String Unique identifier for the resource

location String Latitude and longitude of the resource, in decimal format

manufacturer String Manufacturer information of the resource

model String Model information of the resource

name String Name of the resource

polling_freq Integer
Polling frequency of the sensor from IoT Framework, in

seconds

serial Integer Serial number of the resource

tags String Text tags for the resource, used in search

type String Type of the resource

APPENDIX B: REST APIs 111

Name Type Description

uri String URI of the resource if available

user_id String
Unique user identifier of the resource, to which the resource

belongs.

Example request body

http://0.0.0.0/users/PbN2Zf5UR2a7KFHK_WSMww/resources

Example response body

{"hits":[{"active":"true","creation_date":"2013-12-23","description":"CPU

load at home lap-

top","id":"BGEKy_27RHya6b2jCCnLKw","location":"60.165943,24.942425","manufac

turer":"Ericsson","model":"JAIME03","name":"Resource2","polling_freq":"30","

serial":"2300002","tags":"cpu, Helsinki, Simulation","type":"CPU","uri":"No

Uri","user_id":"PbN2Zf5UR2a7KFHK_WSMww"}]}

Get a single resource entry with the given ID

Verb URI Description

GET /resources/RESOURCE_ID
Get a single resource entry with the

given ID

Normal Response Code(s): 200

Error Response Code(s): badRequest (400), internalServerError (405)

Response Format: JSON

This interface gets a single resource entry, which corresponds to the given resource ID in the path. If

the operation is successful, the output is one resource entry. If the operation fails, an HTML error

code is returned with an error message in output.

GET Parameters

Name Style Type Description/Value Required Case-Sensitive

- - - - - -

APPENDIX B: REST APIs 112

Example request body

http://0.0.0.0/resources/BGEKy_27RHya6b2jCCnLKw

Example response body

{"active":"true","creation_date":"2013-12-23","description":"CPU load at

home aptop","id":"BGEKy_27RHya6b2jCCnLKw","location":"60.165943,

24.942425","make":"23","manufacturer":"Ericsson","model":"MERT03","name":"Re

source2","polling_freq":"30","serial":"2300002","tags":"cpu, Helsinki, Simu-

lation","type":"CPU","uri":"No Uri","user_id":"PbN2Zf5UR2a7KFHK_WSMww"}

Get the list of streams for a user and a resource

Verb URI Description

GET
/users/USER_ID/resources/RESOURCE_ID/stre

ams

Get the list of streams for a user and a

resource

Normal Response Code(s): 200

Error Response Code(s): badRequest (400), internalServerError (405)

Response Format: JSON

This interface gets the list of streams, which belong to the given user ID and to the resource ID in the

path. If the operation is successful, the output is the list of stream entries. Each stream entry in the

response consists of the values presented in Stream Parameters below. If the operation fails, an HTML

error code is returned with an error message in output.

GET Parameters

Name Style Type Description/Value Required Case-Sensitive

- - - - - -

Stream Parameters

Name Type Description

creation_date String The date when the stream was created

id String Unique identifier for the stream

APPENDIX B: REST APIs 113

Name Type Description

location String Latitude and longitude of the stream, in decimal format

name String Name of the stream

type String Type of the stream

resource_id String
Unique resource identifier of the stream, to which the

stream belongs.

user_ranking Float User ranking value of the stream

Example request body

http://0.0.0.0/users/PbN2Zf5UR2a7KFHK_WSMww/resources/msWhHwijRrCQOVz0K6hi9w

/streams

Example response body

{"hits":[{"creation_date":"20140124T15","id":"7TZLf92hQ4GTe8ZENcCMag","locat

ion":"60.145843,24.942435","name":"ANMLY1","resource_id":"msWhHwijRrCQOVz0K6

hi9w","type":"Anomally1","user_ranking":5}]}

Get a single stream entry with the given ID

Verb URI Description

GET /streams/STREAM_ID
Get a single stream entry with the given

ID

Normal Response Code(s): 200

Error Response Code(s): badRequest (400), internalServerError (405)

Response Format: JSON

This interface gets a single stream entry, which corresponds to the given stream ID in the path. If the

operation is successful, the output is one stream entry. If the operation fails, an HTML error code is

returned with an error message in output.

APPENDIX B: REST APIs 114

GET Parameters

Name Style Type Description/Value Required Case-Sensitive

- - - - - -

Example request body

http://0.0.0.0/streams/7TZLf92hQ4GTe8ZENcCMag

Example response body

{"crea-

tion_date":"20140124T15","id":"7TZLf92hQ4GTe8ZENcCMag","location":"60.145843

,24.942435","name":"ANMLY1","resource_id":"msWhHwijRrCQOVz0K6hi9w","type":"A

nomally1","user_ranking":5}

Get the list of datapoints for a stream

Verb URI Description

GET /streams/STREAM_ID/data
Get the full list of datapoints for a

stream

Normal Response Code(s): 200

Error Response Code(s): badRequest (400), internalServerError (405)

Response Format: JSON

This interface gets the full list of datapoints, which belong to the given stream ID. If the operation is

successful, the output is the full list of datapoint entries (this list can be very large). Each datapoint

entry in the response consists of the values presented in Datapoint Parameters below. If the operation

fails, an HTML error code is returned with an error message in output.

GET Parameters

Name Style Type Description/Value Required Case-Sensitive

- - - - - -

APPENDIX B: REST APIs 115

Datapoint Parameters

Name Type Description

id String Unique identifier for the datapoint

signature String
Text to identify if the datapoint was transferred encrypted to

the IoT Framework or not

streamid String
Unique stream identifier of the datapoint, to which the data-

point belongs.

timestamp String Timestamp of the datapoint

value String Value of the datapoint

Example request body

http://0.0.0.0/streams/griJCeK-QpWAzp7eNjt9Kg/data

Example response body

{"hits":[{"id":"zY6ES_yTT9GKRU6rP2ZNyw","signature":"(Signed - Veri-

fied)","streamid":"griJCeK-

QpWAzp7eNjt9Kg","timestamp":"20131210T090635.0000","value":"27.83203125"},{"

id":"k035UU_0QtqE4zE-gdbETw","signature":"(Signed - Veri-

fied)","streamid":"griJCeK-

QpWAzp7eNjt9Kg","timestamp":"20131210T091441.0000","value":"30.76171875"}]}

Get the filtered list of datapoints for a stream

Verb URI Description

GET
/streams/STREAM_ID/data/_search?timeStamp

From=X&timeStampTo=Y

Get the filtered list of datapoints for a

stream

Normal Response Code(s): 200

Error Response Code(s): badRequest (400), internalServerError (405)

Response Format: JSON

This interface gets the filtered list of datapoints, which belong to the given stream ID. Datapoints are

APPENDIX B: REST APIs 116

filtered according to the given dates and times i.e. from timeStampFrom to timeStampTo. If the opera-

tion is successful, the output is the filtered list of datapoint entries (this list can be very large). If the

operation fails, an HTML error code is returned with an error message in output.

GET Parameters

Name Style Type Description/Value Required
Case-

Sensitive

timeStampFrom URI String

Starting timestamp value, in the

format of

YYYYMMDDTHHMMSS.0000

Yes Yes

timeStampTo URI String

Ending timestamp value, in the

format of

YYYYMMDDTHHMMSS.0000

Yes Yes

Example request body

http://0.0.0.0/streams/griJCeK-

QpWAzp7eNjt9Kg/data/_search?timeStampFrom=20131217T160120.0000&timeStampTo=2

0131217T160321.0000

Example response body

{"hits":[{"id":"jTCwpVDMQBqM2BF-AiayrA","signature":"(Signed - Veri-

fied)","streamid":"griJCeK-

QpWAzp7eNjt9Kg","timestamp":"20131217T160120.0000","value":"25.390625"},{"id

":"22F5960gTT-KSR3I7frl-g","signature":"(Signed - Veri-

fied)","streamid":"griJCeK-

QpWAzp7eNjt9Kg","timestamp":"20131217T160321.0000","value":"25.390625"}]}

Search the IoT Framework with a query

Verb URI Description

POST /_search Search the IoT Framework with a query

Normal Response Code(s): 200

Error Response Code(s): badRequest (400), internalServerError (405)

Response Format: JSON

This interface executes a search in the IoT Framework with the given search query. If the operation is

successful, the output is a list of search results. If the operation fails, an HTML error code is returned

with an error message in output.

APPENDIX B: REST APIs 117

POST Parameters

Name Style Type Description/Value Required
Case-

Sensitive

query Body String The string to search for Yes Yes

Example request body

{ "query" : {"query_string" : {"query" : "Jorvas"}}}

Example response body

{"streams":{"took":4,"timed_out":false,"_shards":{"total":5,"successful":5,"

failed":0},"hits":{"total":0,"max_score":null,"hits":[]}}, "us-

ers":{"took":2,"timed_out":false,"_shards":{"total":5,"successful":5,"failed

":0},"hits":{"total":0,"max_score":null,"hits":[]}}}

REST APIs towards vGW

The APIs presented in this section are used by the management interface components

(see Chapter 5) for communication with vGW instances.

Get a list of CGWs under the vGW

Verb URI Description

GET /dh/getGateways.php Get a list of CGWs under the vGW

Normal Response Code(s): 200

Error Response Code(s): badRequest (400), internalServerError (405)

Response Format: JSON

This interface gets a list of available CGWs under the vGW. If the operation is successful, the output

is a list of CGW entries. If the operation fails, an HTML error code is returned with an error message

in output.

APPENDIX B: REST APIs 118

GET Parameters

Name Style Type Description/Value Required
Case-

Sensitive

- - - - - -

Example request body

http://0.0.0.0/dh/getGateways.php

Example response body

{"Gateways":[{"id":"1","address":"2001:14b8:100:354::2","lastseen":"Mon Aug

18 15:39:03 EEST 2014","latitude":"59.40442269","longitude":"17.95359135",

"imsi":"116101114111641","dev_type":"cg","meta":"hardware: Buffalo WZR-HP-

AG300H; operating system: OpenWRT AA; software: Ericsson Research Capillary

Gateway; short range radio: 802.15.4; wide range radio: 4G; description:

Capillary Gateway 1","userId":"4WlKN3g-TJGA5bzP-OQc6g"}]}

Get a list of MDs under the vGW

Verb URI Description

GET /dh/ getDevices.php?dev=X Get a list of MDs under the vGW

Normal Response Code(s): 200

Error Response Code(s): badRequest (400), internalServerError (405)

Response Format: JSON

This interface gets a list of available MDs under the vGW. If the operation is successful, the output is

a list of MD entries. If the operation fails, an HTML error code is returned with an error message in

output.

GET Parameters

Name Style Type Description/Value Required
Case-

Sensitive

dev URI String MD ID No Yes

APPENDIX B: REST APIs 119

Example request body

http://0.0.0.0/dh/getDevices.php?dev=280:e103:1:3829

Example response body

{"Devic-

es":[{"gw":"1","id":"280:e103:1:3829","service":"sensor","interface":"Temper

ature0","latitude":"59.40420426","longitude":"17.95348406","meta":"brand:

STMicroelectronics; model: MBxxx (STM32W108CC); mac: 00-80-e1-03-00-01-38-

29; short range radio: 802.15.4; signing: false; description: Contiki Sensor

TEMP; color: Blue; unit: C","resourceId":"gD5QM-

EHRlm0U4DJgKyfdg","streamId":"KoMuC6etQjupvOpuWPMHOg"}]}

REST APIs towards Pub/Sub Server in Capillary Networks Cloud

The APIs presented in this section are used by the management interface components

(see Chapter 5) for communication with the Pub/Sub server in the Capillary Net-

works cloud. As the communication with the Pub/Sub server is not done over HTTP

but rather in websockets, the information is presented different in this section.

Subscribe for network topology update

Protocol Subscription Channel Description

Websockets /messages Update on the network topology

This interface is the subscription channel to the Pub/Sub server in the CN cloud for network topology

update. When there is any update on the network topology (new MD, MD changes CGW etc), the CN

Pub/Sub server publishes on this channel. The published message is not the new list of devices but

rather just a warning from the CN cloud.

Example publish content

“update”

Subscribe for notifications

Protocol Subscription Channel Description

Websockets /notifications New notification

This interface is the subscription channel to the Pub/Sub server in the CN cloud for new notification.

APPENDIX B: REST APIs 120

When there is any new notification from CGWs, the CN Pub/Sub server publishes the new content on

this channel.

Example publish content

“{ "id":"63098", "node":"1", "entry":"2014-04-23 07:44:19 GW 1 connected to

the network" }”

Subscribe for logs

Protocol Subscription Channel Description

Websockets /logs New log

This interface is the subscription channel to the Pub/Sub server in the CN cloud for new logs. When

there is any new log from CGWs, the CN Pub/Sub server publishes the new content on this channel.

Example publish content

“{ "id":"1694774", "level":"4", "entry":"2014-04-23 07:36:40 WARNING: GW 1

disconnected from the network (failed 3 times)" }”

Subscribe for network counters

Protocol Subscription Channel Description

Websockets /counters New network counters

This interface is the subscription channel to the Pub/Sub server in the CN cloud for new network

counters. When there is any new counter value from CGWs, the CN Pub/Sub server publishes the new

content (the entire counter list) on this channel.

Example publish content

“{"constraints from":"configuration file","constraints in

use":"{\"1\":{\"battery\":5,\"load\":2},\"3\":{\"battery\":3,\"load\":1},

,\"2\":{\"battery\":4,\"load\":2}}","devices":"0","devices de-

nied":"0","devices offline":"0","devices right gw":"0" ,"devices wrong

gw":"0", "master":"True", "network access failed":"94 times","network access

failure rate":"55.294117647059 % (mean)"}”

	Eri111
	She14
	Lav99
	Ber94
	Fie00
	Pim12
	Mon07
	Win12
	Col11
	Har14
	IPS14
	Gud14
	Nah
	Sak11
	Guo12
	Bra14
	Cle14
	Ben13
	Kel13
	Pro14
	W3C14
	W3C141
	Moz14
	Boo14
	Web
	Goo14
	Inf
	Yii
	Lef01
	Nod
	Dam14
	Jav
	CCR57
	Goo

