
Mika Sundvall

Opus Audio Codec in Mobile Networks

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of

Science in Technology.

Espoo 21.11.2014

Thesis supervisor:

Prof. Vesa Välimäki

Thesis advisor:

Lic.Sc. (Tech.) Jyri Suvanen

aalto university

school of electrical engineering

abstract of the

master's thesis

Author: Mika Sundvall

Title: Opus Audio Codec in Mobile Networks

Date: 21.11.2014 Language: English Number of pages: 8+74

Department of Signal Processing and Acoustics

Professorship: Acoustics and Audio Signal Processing Code: S-89

Supervisor: Prof. Vesa Välimäki

Advisor: Lic.Sc. (Tech.) Jyri Suvanen

The latest generations in mobile networks have enabled a possibility to include
high quality audio coding in data transmission. On the other hand, an on-going
e�ort to move the audio signal processing from dedicated hardware to data
centers with generalized hardware introduces a challenge of providing enough
computational power needed by the virtualized network elements.

This thesis evaluates the usage of a modern hybrid audio codec called Opus in
a virtualized network element. It is performed by integrating the codec, testing
it for functionality and performance on a general purpose processor, as well
as evaluating the performance in comparison to the digital signal processor's
performance. Functional testing showed that the codec was integrated successfully
and bit compliance with the Opus standard was met.

The performance results showed that although the digital signal processor com-
putes the encoder's algorithms with less clock cycles, related to the processor's
whole capacity the general purpose processor performs more e�ciently due to
higher clock frequency. For the decoder this was even clearer, when the generic
hardware spends on average less clock cycles for performing the algorithms.

Keywords: speech codecs, transcoding, digital signal processing, software
testing, digital signal processors, microprocessors

aalto-yliopisto

sähkötekniikan korkeakoulu

diplomityön

tiivistelmä

Tekijä: Mika Sundvall

Työn nimi: Opus audiokoodekki matkapuhelinverkoissa

Päivämäärä: 21.11.2014 Kieli: Englanti Sivumäärä: 8+74

Signaalinkäsittelyn ja akustiikan laitos

Professuuri: Akustiikka ja äänenkäsittely Koodi: S-89

Valvoja: Prof. Vesa Välimäki

Ohjaaja: TkL Jyri Suvanen

Uusimmat sukupolvet matkapuhelinverkoissa mahdollistavat korkealaatuisen
audiokoodauksen tiedonsiirrossa. Toisaalta audiosignaalinkäsittelyn siirtäminen
sovelluskohtaisesta laitteistosta keskitettyjen palvelinkeskusten yleiskäyttöiseen
laitteistoon on käynnissä, mikä aiheuttaa haasteita tarjota riittävästi laskennal-
lista tehoa virtualisoituja verkkoelementtejä varten.

Tämä diplomityö arvioi modernin hybridikoodekin, Opuksen, käyttöä virtual-
isoidussa verkkoelementissä. Se on toteutettu integroimalla koodekki, testaamalla
funktionaalisuutta ja suorituskykyä yleiskäyttöisellä prosessorilla sekä arvioimalla
suorituskykyä verrattuna digitaalisen signaaliprosessorin suorituskykyyn. Funk-
tionaalinen testaus osoitti että koodekki oli integroitu onnistuneesti ja että
bittitason yhdenmukaisuus Opuksen standardin kanssa saavutettiin.

Suorituskyvyn testitulokset osoittivat, että vaikka enkoodaus tuotti vähemmän
kellojaksoja digitaalisella signaaliprosessorilla, yleiskäyttöinen prosessori suori-
utuu tehokkaammin suhteutettuna prosessorin kokonaiskapasiteettiin korkeam-
man kellotaajuuden ansiosta. Dekooderilla tämä näkyi vielä selkeämmin, sillä
yleiskäyttöinen prosessori kulutti keskimäärin vähemmän kellojaksoja algoritmien
suorittamiseen.

Avainsanat: puhekoodekit, transkoodaus, digitaalinen signaalinkäsittely,
ohjelmistotestaus, digitaaliset signaaliprosessorit, mikroprosessorit

iv

Preface

I would like to thank my instructor Jyri Suvanen for sharing the expertise and guid-
ing me through the project. I would also like to thank my supervisor Vesa Välimäki
for giving valuable advice during my work and for inspirational education during
my studies.

In addition, I would like to thank Nokia Networks and Matti Lehtimäki for giving
me the opportunity to work on this project. Furthermore, I want to show my grat-
itude to the whole "SPS" crew for providing the right answers when needed.

I want to thank my family for supporting me through my studies. Furthermore, I
want to say a special thank you to my wife, El»bieta, for being always there.

Espoo, 21.11.2014

Mika Sundvall

v

Contents

Abstract ii

Abstract (in Finnish) iii

Preface iv

Contents v

Abbreviations vii

1 Introduction 1

2 Background 2
2.1 Mobile Networks . 2

2.1.1 Media Processing in Mobile Networks 4
2.1.2 Real-time Transport Protocol 5
2.1.3 Session Description Protocol 6

2.2 Audio Coding . 6
2.2.1 Linear Predictive Coding . 8
2.2.2 Transform Coding . 9
2.2.3 Entropy Coding . 10

2.3 Audio Coding in Mobile Networks . 11

3 Opus Audio Codec 13
3.1 SILK . 15
3.2 Constrained Energy Lapped Transform 17
3.3 Opus Codec . 20

3.3.1 Combination of the Two Coding Technologies 20
3.3.2 Modi�cations to the Two Coding Technologies 21

3.4 Computational Complexity . 22
3.5 Applications . 24

4 Signal Processing Platforms 26
4.1 Processor Architecture and Performance 26

4.1.1 Architecture . 26
4.1.2 Performance . 30

4.2 Digital Signal Processor . 31
4.3 General Purpose Processor . 32
4.4 Platform Comparison . 34
4.5 Source Code Compilation . 36
4.6 Virtual Machine . 37

vi

5 Realization of the Opus Codec on x86 Platform 39
5.1 Integration . 39

5.1.1 Internal Opus Framework . 39
5.1.2 Control I/O . 41
5.1.3 Opus Packing . 43
5.1.4 Memory Allocation Requirements 44
5.1.5 Opus RTP Packing . 46
5.1.6 Packet Loss Handling and Discontinuous Transmission 47

5.2 Compilation of the Codec . 48

6 Testing 49
6.1 Functional Testing . 49
6.2 Test Data Generation . 50
6.3 Performance Testing . 51

7 Test Results 54
7.1 Functional Test Results . 54
7.2 Performance Test Results . 54

7.2.1 Compilation Optimization Test Results 54
7.2.2 Encoder Performance with Varied Parameter Con�guration . . 56
7.2.3 Decoder Performance with Varied Parameter Con�guration . . 57
7.2.4 Complexity Parameter Performance Test Results 59
7.2.5 Performance Results of DSP 61
7.2.6 Performance Evaluation and Comparison 62

8 Discussion and Conclusions 65

References 67

Appendices 74

A Decoder Parameter Con�guration Performance Results 74

vii

Abbreviations

A/D Analog-to-Digital
ACR Absolute Category Rating
AGW Access Media Gateway
ALU Arithmetic Logic Unit
AMR Adaptive Multi Rate
ARM Advanced RISC Machine
ATCA Advanced Telecommunications Computing Architecture
ATCF Access Transfer Control Function
ATGW Access Transfer Gateway
AVX Advanced Vector Extensions
BDTi Berkeley Design Technology, Inc.
CBR Constant Bitrate
CELT Constrained Energy Linear Transform
D/A Digital-to-Analog
DSP Digital Signal Processor
DTX Discontinuous Transmission
EPC Evolved Packet Core
FB Fullband
FEC Forward Error Correlation
FIR Finite Impulse Response
FMA Fused Multiply-Add
GCC Gnu Compiler Collection
GMAC Giga Multiply-and-Accumulate Operations per Second
GPP General Purpose Processor
GSM Global System for Mobile Telecommunications
HF High Frequency
HP High-Pass
HR Half Rate
IIR In�nite Impulse Response
IMS IP Multimedia Subsystem
IP Internet Protocol
I/O Input/Output
iLBC Internet Low Bitrate Codec
IMDCT Inverse Modi�ed Discrete Cosine Transform
ITU International Telecommunication Union
LSF Line Spectral Frequency
LTE Long Term Evolution
MAC Multiply-And-Accumulate
MB Medium-band
MGC Media Gateway Controller
MGW Media Gateway
MDCT Modi�ed Discrete Cosine Transform
MIMD Multiple Instruction, Multiple Data

viii

MIPS Million Instructions Per Second
MMX Multimedia Extension
MOS Mean Opinion Square
MSC Multiple Adaptive Spectral Audio Coding
MTU Maximum Transmission Unit
NB Narrowband
NSQ Noise Shaping Quantization
LP Linear Prediction
LPC Linear Predictive Coding
LTP Long-Term Prediction
OS Operating System
PCM Pulse Code Modulation
POLQA Perceived Objective Listening Quality Assessment
QoS Quality of Service
RCF Request for Comments
RISC Reduced Instruction Set Computer
RTP Real-time Transport Protocol
SDP Session Description Protocol
SIMD Single Instruction, Multiple Data
SIP Session Initiation Protocol
SNR Signal-To-Noise Ratio
SWB Super-wideband
TCP Transmission Control Protocol
TI Texas Instruments
TOC Table-of-Contents
UDP User Datagram Protocol
VAD Voice Activity Detector
VBR Variable Bitrate
VM Virtual Machine
VMM Virtual Machine Monitor
VoIP Voice over Internet Protocol
WB Wideband
WebRTC Web Real-Time Communication
WOLA Weighted Overlap-and-Add

1 Introduction

Mobile networks have evolved rapidly from circuit switched networks of the �rst
generation to the latest deployments of all packet switched networks [1]. Although
the main use case of transmitting speech has remained through the di�erent gen-
erations, the new technologies and data processing techniques have resulted in in-
creasing amount of mobile applications.

Audio coding is an integral part of mobile networks. Traditionally, speech coding
has been developed in parallel to high quality audio coding, as the targeted usage of
the latter one has been generally more limited in terms of transmission and storing
capacity, as well as computational power [2]. However, as the mobile networks have
evolved, more sophisticated coding methods can be utilized to maximize the trans-
mitted information's quality. On the other hand, as the coding methods improve,
less capacity is needed for high quality. Consequently, there has been an e�ort to
include high quality audio coding in mobile networks.

Another increasing trend in the mobile networks include moving the data processing
to centralized data centers, so that the operators do not need dedicated hardware
for network element functions [3]. An essential part of this cloudi�cation is virtu-
alization of the network elements, which essentially moves the hardware assisted
processing to software built processing with generic hardware.

In this thesis, usage of a modern audio codec called Opus [4] is evaluated when it is
integrated on a virtualized mobile network real-time application. It is performed by
conducting a case study where the codec's integration requirements are �rst spec-
i�ed, after which it is integrated to the application. Subsequently, it is tested for
functionality, as well as performance. The study aims to evaluate, how a modern
high-quality audio codec performs in a virtualized network element, and how well
the performance supports the cloudi�cation when the results are re�ected to tradi-
tional hardware performance.

The thesis is divided into seven chapters. The �rst three provide the theoretical
background to the topic. First, mobile networks and general audio coding theories
are introduced in Chapter 2. Second, the Opus audio codec is reviewed in Chapter 3.
Third, the used hardware platforms are introduced in Chapter 4. The theory is
followed by three implementation related chapters. First, the realization of the codec
is introduced in Chapter 5. Second, testing of the integrated codec is discussed in
Chapter 6. Third, the results of these tests are presented and compared between the
virtual and traditional hardware implementations in Chapter 7. The implementation
is followed by discussion and conclusions (Chapter 8).

2

2 Background

Mobile networks are the part of communication networks that provide mobility to
communications, i.e., the users do not need to be located at any �xed location in
order to communicate [2]. As the communication typically includes speech signal
transmission, there is a need to provide as light and agile representation of speech as
possible. Consequently, di�erent audio compression methods (also known as audio
coding methods) have been developed to serve this purpose. When these methods
are combined to a framework, an entity called codec is formed.

In this chapter, a broad overview of the mobile networks is introduced with a dis-
cussion of media processing in these networks. Moreover, general aspects of audio
coding are presented with an emphasis on audio coding in mobile networks.

2.1 Mobile Networks

Communication networks include the services whose main purpose is to transmit
information between users at di�erent locations [2]. The part of communication
networks that provides the ability to access the networks while not connected to
the base or home network is called mobile networks. In the context of telephone
networks, mobile networks are implemented as cellular telephone services [2]. They
divide geographical areas into smaller cells with a radio transmission system which
allow the users to communicate with each other without being physically connected
via cables or wires [2]. The use of radio transmission systems introduces certain
design related compromises which may result in lower quality of the transmitted
signal, lower availability, and higher information security risks [2]. In the scope of
this thesis, the �rst one of these drawbacks is of high interest.

Communication networks can be divided into di�erent types depending on how
information is organized for transmission, multiplexed, routed, and switched in a
network [2]. This type of division yields three main types of networks. The �rst,
message switched network, provides services to address, route, and forward messages
[2]. The second one, circuit switched network, which is used e.g. in the traditional
telephone networks, uses a dedicated end-to-end connection that is set up between
the users [2]. Moreover, signaling network, which is built on top of circuit switched
network, can be used to carry messages between the two ends. The third, packet
switched network, divides the transmitted (digital) data into variable-length blocks,
called packets, so that the data that is bigger than the packet size is segmented and
transmitted in multiple packets [2].

By providing an end-to-end connection between the end-users, circuit switched net-
works allow an information �ow with a very low delay [2]. However, there are certain
characteristics that make them un�t for data transmission [2]. First, they perform
optimally only with a steady information �ow of voice signals, but do not support
the transfer of many types of data. This is mainly due to the heavy overhead caused

3

by setting up a connection [2]. This overhead introduces a delay that is too long
for data transmission. Second, circuit switched networks need to maintain state
information on all their connections and thus an extensive list of a potentially large
number of connection is needed [2]. Finally, a failure in switching a node or trans-
mission line requires a set up of a totally new connection and thus causes potentially
a long break in the transmission [2].

Packet switched networks are very robust against failures that may occur on the
data's path [2]. This is due to their �exibility to reroute the connection e�ciently.
In addition, packet switching does not involve the need of state information, because
it utilizes so called connectionless type of switching, i.e., no end-to-end connection is
needed because the packets are sent separately [2]. However, connectionless trans-
mission includes a requirement that every transmitted packet must contain infor-
mation about itself included in the packet's header [2]. This increases the overhead
which reduces the transmission capacity. Furthermore, because the packet transfer
is a unreliable transfer method, mechanisms for reliable packet ordering and han-
dling is needed (such as Transmission Control Protocol (TCP)) [2].

The development of mobile networks has been divided into generations each having
their own speci�cation [1]. Simply abbreviated as 1G, 2G, 3G, and 4G, each gen-
eration has provided a new approach to the mobile networks re�ecting the newest
innovations in technology at the time of the speci�cation's deployment. 1G was
the �rst generation of the mobile network speci�cations and was purely an analog
circuit switched network [1]. Therefore, there is no possibility to transmit data via
1G networks. 2G started to provide data transmission by allowing digital systems
as overlays or parallel to the analog ones [1]. With 2G the typical data rates vary
from 100 to 400 Kbit/s. 3G started to already include dedicated digital networks
in parallel to the diminishing analog ones, allowing data rates from 0.5 to 5 Mbit/s
[1].

4G is the latest generation that has been already deployed [5]. Unlike the previous
generations, which were explicit speci�cations for the technology, 4G is rather a
set of requirements [1]. Hence, any technology meeting these requirements can be
categorized as 4G. An example of a 4G technology is Long Term Evolution (LTE)
Advanced [1]. It is purely a digital and packet switched network and is based on
IP (Internet Protocol). Therefore, the technological requirements are only designed
for packet switching and data rates from 1 Mbit/s even up to 50 Mbit/s can be
obtained [1].

As the development of these di�erent generations shows, the mobile network evolu-
tion is heading from the circuit switched networks towards purely packet switched
ones. This allows more �exibility to the applications, since all sorts of data can be
transmitted via the packets and even internet applications can be developed as part
of the mobile network systems.

4

2.1.1 Media Processing in Mobile Networks

Mobile networks divide the geological areas into cells, each of which include a radio
access network (RAN) [1]. This is illustrated in Figure 1. When a connection is
established, the user's mobile device connects to the RAN of the cell where they are
currently located. This RAN is connected to a core network where data routing,
accounting, and policy management is performed [1]. Subsequently, a connection to
the destination network is established via an external carrier network, e.g., public
Internet, [1] if the receiver is not within the range of the same core network [2]. The
destination core network processes the connection and transmits it further to the
end user via the RAN of the end user's location [1].

Figure 1: Schema of a mobile network, adopted from [1].

The packet switched core network (e.g., Evolved Packet Core (EPC) in LTE) in-
cludes a speci�cation called IP multimedia subsystem (IMS), which provides certain
functions and services for processing and streaming multimedia, such as audio or
video signal [6]. It was speci�ed by the 3GPP (The 3rd Generation Partnership
Project), which is a union of di�erent telecommunications standard organizations
[7].

IMS includes all the core network elements that are related to multimedia services.
Its main purpose is to provide the operators a possibility to o�er multimedia services
that are based on and built upon Internet applications, services, and protocols [6].
Hence, IMS includes the functions needed in providing applications for Voice over
Internet Protocol (VoIP), Voice over LTE, and other IP based applications.

When there are more than one network involved, di�erent types of interworking are
needed, e.g., matching their media resources [8]. An essential instance where media
resource matching is needed, is the case of di�ering codecs, i.e., when the source

5

network has encoded the speech or audio stream with a codec that the destination
network does not support [8]. In this case, the speech or audio stream must be
�rst decoded using the original codec's decoder and then encoded with a codec that
is mutual to both networks so that the destination network is able to process and
decode the data. This, very essential part of media resource matching, is called
transcoding. E.g., when two networks' voice bearers are communicating, the media
matching is provided with a function called Media Gateway (MGW) [9]. Moreover,
Access Transfer Gateway (ATGW) and Access Transfer Control Function (ATCF)
functions, both implemented in an element called Access Media Gateway (AGW),
need to provide transcoding in certain situations [6].

In a packet switched network, data is transmitted in packets with information of
themselves [2]. There are di�erent ways and methods to pack data into packets,
which each have their use cases. However, it is essential that the sending and
receiving end have the same set of rules to pack and unpack these packets. Therefore,
di�erent protocols have been developed to ensure that both sides are using the same
methods to handle the packets. According to Leon-Garcia and Widjaja "a protocol
is a set of rules that governs how two communicating parties are to interact" [2].
Next, two common protocols in real-time speech transmission, Real-time Transport
Protocol (RTP), and Session Description Protocol (SDP) are introduced. They are
used for transmitting real-time audio in mobile networks, as well as setting up a
voice call.

2.1.2 Real-time Transport Protocol

Real-time transport protocol provides end-to-end transport functions for real-time
data transmission including, e.g., audio or video [10]. These functions include pay-
load type identi�cation, sequence numbering, timestamping, and delivery monitor-
ing. Furthermore, RTP is often run on top of Uni�ed Datagram Protocol (UDP) so
that both protocols contribute to the protocol functionality, the latter one providing
multiplexing and checksum services [10].

Generally, RTP data can be divided into two parts. First, "a pro�le de�nes a set of
payload type codes and their mapping to payload formats (e.g., media encodings)"
[10]. Furthermore, pro�le may also include additional information about possible
modi�cations to RTP that are speci�c to a certain application. Second, payload for-
mat de�nes how the actual data, e.g. audio or video encoding, is carried in RTP. [10]

A basic RTP packet consists of a 10-�eld header, and a payload [10]. These �elds
include information about the version used, payload type, sequence number, times-
tamp (which denotes the sampling instant of the �rst payload octect), synchroniza-
tion source identi�cation, and contributing source list.

6

2.1.3 Session Description Protocol

When a connection is established in a mobile network, certain initial information
is needed to set up the connection with the right parameters. For this purpose,
there are protocols to provide such information. Traditionally, Session Initiation
Protocol (SIP) has been used in application-layer as a control protocol for creat-
ing, modifying, and terminating sessions [11]. However, sessions like VoIP calls,
video streaming, and multimedia teleconferencing require media details, transport
addresses, and other description metadata to the participants, which are not in-
cluded in the SIP protocol [11]. A protocol called Session Description Protocol
(SDP) provides a standard representation for such information.

SDP session description includes information about session and name purpose,
time(s) the session is active, the media comprising the session, and information
needed to receive those media [11]. The last one of these may include information
about addresses, ports, formats, etc. Thus, information about the used codec's
details may be passed as part of SDP.

2.2 Audio Coding

When transmitting voice over a communication network, the voice must be �rst
transformed into an electrical form after which it can be processed and transmitted
further. This electrical signal, which can be either a digital or an analog audio signal,
represents the acoustic waves that we hear, only presented in a di�erent domain [12].

The transform procedure begins from transforming the acoustic wave �rst from the
acoustic domain to the electric one by using a transducer (e.g., a microphone), after
which the obtained electric signal denotes the acoustic pressure wave captured at
the point of the transducer [12]. The electric signal can be digitized so that it is
sampled with a certain sample rate (given in Hz), i.e., the signal's value is measured
every sample period [12]. Therefore, a higher sample rate produces more samples
under a certain period of time compared to a lower one. The sampled values can
be presented in the digital domain by quantizing to certain quantization levels that
can be presented in binary form [12, p. 482]. This, the most basic form of acoustic
wave's digital representation, is called pulse code modulation (PCM) [12].

For speech and audio signals the sampling frequency of the signal needs to be su�-
cient to contain enough information for the application's needs. Moreover, according
to Nyquist's sampling theorem, the sample rate must be at least twice the highest
frequency to be transmitted [13, p. 39]. As a result, the digital signal needs lots of
capacity for storage or transmission. Therefore, audio compression plays a signi�-
cant role when transmitting voice signals over mobile networks. This means that the
audio signal is encoded (compressed), transmitted, and reproduced at the receiving
end [13].

7

There are two types of audio coding, lossless and lossy coding (also known as per-
ceptual coding). The former one is de�ned as "an algorithm that can compress the
digital audio data without any loss in quality due to a perfect reconstruction of
the original signal" [14]. However, there are limitations to the compression ratio,
because all the information needed for perfect reconstruction must be transmitted.
Lossy coding introduces some information loss, and thus does not provide a perfect
reconstruction of the signal [15]. However, higher compression ratios can be ob-
tained and therefore, perceptual coding methods are more extensively used in the
mobile networks. The essential goal in coding audio in the mobile networks is to
�nd a good ratio between the compression ratio and the loss of quality.

Audio coding combines physical models of the audio and voice signals, e.g., source-
�lter-modeling in linear predictive coding [13, p. 59], to traditional information
coding methods. The physical representation of the signal, however, is only an ap-
proximation of the perceived voice. Furthermore, the transformation from acoustic
to �rst electric and then to digital domain introduces distortion to the system, which
cannot be necessarily modeled [12]. As a result, there is always an error between
the physically modeled signal and the actual incoming signal. This has resulted in
a method of transmitting the error signal, in its entirety or an approximation, along
with the calculated model [16]. Moreover, better compression ratios can be obtained
by lowering the resolution or the accuracy of the used physical formula, and thus
lowering the correspondence of the modeled and original signals [13].

Generally, when coding information, a sequence of symbols is coded to codewords
which can be presented with lower storage capacity than the original word [2, p.
753]. When the previously described physically modeled audio signal parameters
are coded, as well as the potential error signal, it is possible to obtain even better
compression ratios compared to purely coding the PCM signal with the same coding
algorithms, because some of the irrelevant information can be discarded from the
model [15].

A very common approach in audio coding is to form the modeled signal with time-
frequency mapping, in which the incoming (digital) data is segmented into smaller
blocks called frames after which the temporal and spectral components are analyzed
on each frame [15]. In Figure 2, a general overview of an audio codec is illustrated
with a block diagram.

Figure 2a presents an encoder of a generic codec that utilizes time/frequency map-
ping. The input PCM signal is �rst mapped in the Time/Frequency Mapping block,
after which it is fed to the Quantizer and Coding block. Moreover, the input PCM
signal and the output of the Time/Frequency mapping is fed to the Psychoacoustic
Model block, which performs e.g., the psychoacoustic masking threshold, depending
on the codec, are calculated [17]. Also this block's output is fed through the quan-
tizer and coding block so that all the information can be packed into one encoded
bitstream. The Frame Packing block performs this packing.

8

Time /

Frequency

Mapping

Quantizer

and

Coding

Frame

Packing

Psychoacoustic

Model

Encoded bitstream PCM signal

(a)

Frame

Unpacking
Reconstruction

Frequency /

Time

Mapping

Encoded bitstream
Decoded

audio signal

(b)

Figure 2: General block diagrams of a codec's encoder (a), and decoder (b), adapted
from [17].

When the receiving end has received the encoded bitstream, it can be decoded back
to an audio signal with a decoder illustrated in Figure 2b. First, the incoming
bitstream is unpacked in the Frame Unpacking block. Second, the signal is recon-
structed in the Reconstruction and Frequency/Time Mapping blocks using both,
the time/frequency mapped data as well as the data obtained from the encoder's
psychoacoustic model block [17]. The output of the decoder is an audio stream,
which in lossless case corresponds exactly to the input of the encoder. Next, a very
common audio coding method called Linear Predictive Coding is reviewed.

2.2.1 Linear Predictive Coding

A very classic speech coding method called Linear Predictive Coding (LPC) utilizes
Linear Prediction (LP), which is an autoregressive modeling method [13, p. 43]. It
is fundamentally based on an assumption that the signal under processing is formed
as a response of an IIR �lter (In�nite Impulse Response). One method of �nding
optimal coe�cients for this �lter is to use autocorrelation analysis as speci�ed below




r(0) r(1) r(2) · · · r(p− 1)

r(1) r(0) r(1) · · · r(p− 2)

r(2) r(1) r(0) · · · r(p− 3)

...
...

...
. . .

...

r(p− 1) r(p− 2) r(p− 3) · · · r(0)







a(1)

a(2)

a(3)

...

a(p)



=




r(1)

r(2)

r(3)

...

r(p)



, (1)

in which r(i) denotes the autocorrelation coe�cients calculated from the input sig-

9

nal, and a(i) denotes the �lter coe�cients [13, p. 43]. There are also other methods
to obtain the optimal �lter coe�cients such as covariance method [18]. By inverse
�ltering the input signal with these coe�cients, a residual signal can be obtained.

Speech production of a human can be presented as a simple source-�lter model. The
vocal tract can be approximated with a �lter, through which the glottis excitation
signal �ows [13, p. 59]. Consequently, when denoting the vocal tract as the �lter
calculated in LP, LPC can be utilized to reproduce the speech signal. The excitation
signal of the source-�lter -model is the residual signal obtained in the LP analysis
[13, p. 43].

In order to reproduce a speech signal intelligibly, all the �ne harmonic structure
of the vocal tract's spectrum does not need be reproduced [13, p. 44]. This can
improve the computational e�ciency signi�cantly, as well as the compression ratio.
The order needed for intelligible speech transmission with LPC can be reduced to
10-12 [13, p. 44].

LPC has played a very important role in audio coding from its invention. It is
the core technology of several lossless codecs such as MPEG4-ALS, FLAC, and
WavPack [14], and lossy codecs such as AMR (Adaptive Multi Rate) [19], GSM-
HR (Half Rate) [20], and GSM-FR (Full Rate) [21]. With lossless codecs LPC can
provide compression ratios up to 70 % [14], and with lossy codecs even greater.

2.2.2 Transform Coding

In transform coding, the time-frequency mapping is performed by using a time-
to-frequency-domain transform. Generally, this approach divides the signal into
spectral components [17]. Depending on the algorithm used, the resolution of this
division as well as the computational complexity varies. The most common trans-
forms in this coding method are the Fourier transform and the cosine transform, as
well as their derivatives [17]. When a signal is represented in the frequency domain,
it is convenient to evaluate if there are frequencies that are not needed in the par-
ticular application and thus can be omitted. Even though some information is lost,
the compression ratio is increased. When the transmission capacity is limited this
is a more desired result than maintaining all the information, also the irrelevant, at
the expense of compression ratio.

With transform coding, it is possible to obtain a very high-resolution frequency
domain estimate of the signal [15]. However, this is at the expense of the tempo-
ral characteristics. A more sophisticated method to obtain the frequency domain
characteristics of the signal is to divide the signal into frequency bands (also known
as subbands). This, so called subband coding or multiple adaptive spectral audio
coding (MSC), is often designed to match psychoacoustic characters of a human au-
ditory system and is also calculated in the psychoacoustic model block of the encoder
(Figure 2a) [15]. A common subband division divides the spectral information with

10

a resolution of critical bands which yields the Bark scale [13]. It is closely related to
human hearing mechanism, i.e., a constant change in a Bark scale corresponds to a
constant change in the basilar membrane's resonance position [13, p. 111].

2.2.3 Entropy Coding

When the physical models of a signal are calculated, the obtained coe�cients and
other parameters are coded using traditional information coding algorithms and
methods. Typically, in information coding, a block of data is seen as a sequence of
symbols [2, p. 753]. The main goal is to map these symbols into binary represen-
tation so that the average number of bits is as low as possible. Furthermore, in the
case of lossless coding, the original symbols must be able to be recovered from the
encoded bitstream [2, p. 753]. The best performance in coding, in terms of how
many bits were needed to represent the original symbol, can be obtained by using
an entropy function [2, p. 757]. A coding method called entropy coding utilizes
this function, which depends on the probabilities of the sequences of the symbols.
If a sequence of symbols is given as 1, 2, 3, ..., K and the respective probabilities to
their occurrence as P [1], P [2], P [3], ..., P [K], and these probabilities are statistically
independent, the entropy function is de�ned as follows

H = −
K∑

k=1

P [k] log2(P [k])

= −P [1] log2(P [1])− P [2] log2(P [2])− ...− P [K] log2(P [K]), (2)

in which H stands for the entropy [2, p. 757].

There are two approaches in entropy coding depending on how the coded informa-
tion is arranged into codewords. One of them utilizes Hu�man coding and the other
arithmetic coding [22]. The former one of these is a non-adaptive method, i.e., the
values can be read from a table and no other values need to be coded in order to
obtain a certain value at an arbitrary index of the table. However, Hu�man coding
is rather limited in the amount of compression it can provide [23]. In addition, it
can only provide an integer number of bits and thus in the case where the given bits
for coding is fractional, there is a redundancy of di�erence between the rounded up
number of bits and the fractional value of the bits [22].

Arithmetic coding is based on a presumption that the data is organized in vectors
[22]. As a result, in order to be able to decode one symbol from the vector, all the
previous symbols must be decoded �rst. This results in a highly serial operation and
increases computational complexity. However, with arithmetic coding, it is possible
to obtain fractional allocation of bits per sample and thus no redundancy due to
rounding is introduced [22].

11

2.3 Audio Coding in Mobile Networks

When the whole auditory bandwidth is included in the coding, such as in MP3 and
Vorbis codecs, high qualities can be obtained [24]. However, they typically intro-
duce a long algorithmic delay and thus cannot be used in real time applications. The
mobile networks have always been limited by the transmission capacity [25]. There-
fore, the audio coding technologies in mobile networks have traditionally limited the
transmitted information, e.g., in terms of bandwidth, to gain better compression
rations. As a result, these technologies introduce a low algorithmic delay with high
compression ratios. The bandwidth needed for intelligible speech transmission can
be limited to 4 kHz, which yields a commonly used sample rate in speech applica-
tions of 8 kHz [2, 26]. However, through the evolution higher bandwidths, such as
8 kHz (with 16 kHz sample rate) [27], have been also introduced in this context.

The speech coding technologies have been developed by di�erent groups and organi-
zations to provide codecs that utilize the constantly developing computation, stor-
ing, and transmission technologies. Organizations such as 3GPP, ITU (International
Telecommunication Union), and GSM (Global System for Mobile Communications)
have developed speech codecs solely for mobile networks. These codecs include for
instance AMR by 3GPP [19], GSM-HR and GSM-FR by GSM [20, 21], and G-series
codecs by ITU [28, 29].

In parallel, as the VoIP technology has become more common, internet speech
codecs have been developed by organizations such as Xiph.Org Foundation [30],
Skype Technologies [31], and Global IP Solutions (currently owned by Google Inc.)
[32]. The �rst one of these has developed internet codecs such as Speex [33], CELT
(Constrained Energy Lapped Transform) [34], and Opus [4]. The second one has
developed the SILK codec mainly targeted for the web call application Skype [35].
The last one of these is the developer of iLBC (Internet Low Bitrate Codec), which
is also a VoIP codec [36].

As was discussed earlier, the transmission capacity of the mobile networks has im-
proved signi�cantly through the evolution of the newer mobile network generations
[1]. Furthermore, the newest audio coding technologies, such as CELT [4, 24], have
enabled the use high-quality full auditory bandwidth coding in real-time commu-
nication applications by providing low enough algorithmic delay. As a result, the
distinction between the two di�erent coding approaches is diminishing. On the
other hand, as the mobile networks are increasingly becoming all packet switched
networks, the VoIP applications are also included in mobile communications in addi-
tion to the native audio transmission. Hence, also the codec development branches,
for internet and mobile applications separately, are gradually converging.

The distinction that remains between the VoIP and native voice communication
within the mobile networks is the way the data is transmitted, i.e., VoIP utilizes the
IP as is, whereas the native audio transmission in mobile networks is based on the

12

protocols speci�ed for mobile networks [37]. Furthermore, VoIP does not include
quality of service (QoS), e.g., packet loss handling, delay handling, and delay varia-
tions handling, which introduces a need of additional processing when transmitting
VoIP in mobile networks [38]. These distinctions do not a�ect on the audio coding
algorithms as the encoded bitstream is transmitted within the payload regardless of
the means of transmission.

The latest mobile audio coding development e�orts incorporate the full bandwidth
coding and low algorithmic delay needed in the mobile applications [24, 4]. The
state-of-art real-time codec is currently a hybrid VoIP codec called Opus, providing
versatility and a wide set of parameter settings. In the following chapter, Opus
codec is introduced with an in-depth review on the technology behind the codec.

13

3 Opus Audio Codec

In this chapter a modern hybrid codec called Opus is reviewed. First, an overview
of the codec is introduced with a high-level description of the features provided.
Second, the di�erent components, of which Opus consists of, are discussed more in
detail. Finally, at the end of this chapter computational complexity is evaluated,
and possible applications of the Opus are reviewed.

The Opus codec combines two existing coding technologies, SILK and CELT, and
was originally developed to ful�l a wide range of requirements from low bitrate tele-
phony to stereo full bandwidth real-time teleconferencing [39]. To be able to provide
such a wide range of features, the codec needs to be very versatile and con�gurable.
This yields a large set of parameters that can be con�gured depending on the ap-
plication used. The available parameters in the Opus codec are presented in Table 2.

Table 2: List of available con�guration parameters of Opus audio codec, adapted
from [4].

Parameter Options Description
Sample rate 8 kHz ... 48 kHz Sample rate selection
Bitrate 6 kbit/s ... 510 kbit/s Bitrate selection
Number Of Channels Mono/Stereo Mono or Stereo selections
Frame Duration 2.5 ms ... 60 ms Frame duration selection

Complexity 0 ... 10

Complexity selection (af-
fects mainly on computa-
tional complexity, e.g. or-
der of �lters)

Constant/Variable Bi-
trate

Constant/Variable
Selection of constant or
variable bitrate

Packet Loss Resilience On/O�

Inter-frame dependency
selection (for better ro-
bustness against packet
loss)

Forward Error Correction On/O�
Another method to pro-
vide better robustness
against packet loss

Discontinuous Transmis-
sion

On/O�
Reduces the bitrate dur-
ing silence or background
noise

The �rst parameter in the table is sample rate. Opus codec provides a selection
of sample rates from 8 kHz to 48 kHz, with several sample rates in between. In
Table 3 these sample rates are presented, and their corresponding audio bandwidths
are introduced, as they are used later in this thesis. Super-wideband used in the

14

Opus is de�ned as 24 kHz, even though the same name is used in other audio coding
standards for 32 kHz sample rate. This is mainly because it is more convenient for
Opus' internal processing [4].

Table 3: Supported samplerates in the Opus codec, adapted from [4].

Sample rate Name Abbreviation
8 kHz Narrowband NB
12 kHz Medium-band MB
16 kHz Wideband WB

24 kHz
Super-
wideband

SWB

48 kHz Fullband FB

The second parameter, bitrate, denotes how many bits are used to represent one
second of data in the coded domain [40]. Thus, the storage and transmission capac-
ity is directly proportional to it. The Opus codec supports any bitrate in the range
of 6 kbit/s to 510 kbit/s. Furthermore, there are recommendations of the optimal
bitrates depending on the used sample rate [4].

Frame duration selection in the Opus o�ers several alternatives for the frame length.
The available frame lengths are 2.5 ms, 5 ms, 10 ms, 20 ms, 40 ms, and 60 ms [4].
Complexity selection a�ects the computational complexity of certain parts of the
coding. E.g., order of certain �lters can be reduced with this parameter [4]. How-
ever, lower complexity results in lower quality because the complexity is reduced by
lowering the accuracy.

Constant/variable bitrate selection provides an option to choose between constant
bitrate (CBR), and variable bitrate (VBR). The former one of these uses the same
bitrate throughout the audio data, whereas the latter one varies the bitrate to �nd
the optimal value for the data processed at all times [4]. VBR also results in better
coding e�ciency [40].

Audio codecs are often designed to use the inter-frame correlations in order to re-
duce the bitrate [4]. Therefore, when a packet is lost, the decoder needs to receive
several packets before it is able to e�ectively reconstruct the signal. Forward Error
Correction (FEC) can be used to improve the robustness against packet loss caused
by this problem. In addition, Packet Loss Concealment (PLC), can be utilized us-
ing the algorithms provided within the codec for improved robustness against packet
loss. It attenuates the signal slowly based on the previous frames, and additionally
generates conform noise [41]. Consequently, a sudden gap in the audio stream is
avoided when packet is occasionally lost.

Discontinuous Transmisson (DTX) is part of the SILK's functionality and it reduces
the transmission bitrate when the signal is silent or there is only background noise

15

present [41]. In fact, when DTX is used and silence is detected, only one frame every
400 ms is transmitted. The packet loss concealment functionality is invoked when
no data is transmitted due to DTX, so that the indicated silence does not result in
total silence at the receiving side [41].

In addition to the previously introduced parameters, there are three di�erent appli-
cation selections that result in di�erent coding paths within the codec [42]. First,
VoIP application aims at best quality for speech signals by emphasizing formants
and harmonics. Second, Audio selection results in best quality for non-speech signals
such as music or combined speech and music signals. Third, Restricted Low-Delay
mode provides slightly reduced algorithmic delay, but also disables the speech en-
hancements.

Being a hybrid codec, Opus provides three di�erent modes of coding. Purely either
CELT or SILK codec, or a hybrid mode which combines these two [39]. The usage
of these layers is automatically toggled depending on the parameter set. Next, the
SILK codec is reviewed more in detailed level. It is followed by a detailed description
of the CELT codec, after which the way these two codecs are combined into the Opus
is discussed.

3.1 SILK

SILK codec is a speech codec developed by Skype [35] and is based on traditional
speech coding techniques like LPC and LTP (Long-Term Prediction, also derived
from LP) [43]. Similarly to Opus codec's development, SILK was developed to meet
the needs of VoIP applications. With a support for four di�erent samplerates 8
kHz, 12 kHz, 16 kHz, and 24 kHz [44], it is a highly scalable codec. Furthermore,
changeable bitrate and complexity parameters provide �exibility to meet the used
application the best [35]. Also features such as DTX and VBR are supported [44].

The two linear prediction based coding methods (LPC and LTP) used in SILK are
divided so that LPC is used every 20 ms to model the vocal tract transfer function,
and LTP every 5 ms to model the long-term correlation of pitch harmonics in the
voiced speech signal [43]. The block diagram of a SILK encoder is illustrated in
Figure 3.

As the block diagram shows, encoding begins with feeding the input signal through
a high-pass �lter (HP), as well as voice activity detector (VAD). The former is a
2nd order adaptive IIR �lter with a cuto� frequency between fc = 60 Hz ... 100
Hz, and its main function is to �lter the low-frequency background and breathing
noises [45]. VAD measures the speech activity level by combining the SNRs (signal-
to-noise ratios) of four separate frequency bands [45]. The HP �lter is dependent
on the detected voice activity level so that the SNR of the lowest frequency band of
the VAD, and the smoothed pitch frequencies found in the pitch analysis, a�ect on
its cuto� frequency. As a result, high pitched voices have a higher cuto� frequency.

16

Figure 3: Block diagram of a SILK encoder, adopted from [45].

After determining the voice activity level and �ltering the input signal, the pitch of
the voice is analyzed in the Pitch Analysis block. It is performed to a pre-whitened
signal (pre-whitening is performed within the block) which is decimated into two
di�erent signals with 8 kHz and 4 kHz sample rates [45]. The fundamental fre-
quency is found through autocorrelation analysis so that it is performed �rst to the
signal with 4 kHz sample rate for less accurate estimation, and then to the signal
with 8 kHz signal for more precise estimation [45]. The �nal pitch is determined by
analyzing the original, not decimated signal with an integer valued pitch lag search
around the previously obtained estimate. Subsequently, each lag is evaluated with
a pitch contour from a codebook [45]. The found pitch is fed directly to the range
encoder, and encoded as part of the bitstream.

In addition to pitch calculation, also the signal classi�cation for the frame under
analysis is determined in the pitch analysis block. The result of the autocorrelation
analysis is compared to a certain threshold, so that if the autocorrelation result
is lower than the threshold, the signal is classi�ed as unvoiced speech [45]. The
threshold is calculated from a weighted combination of the signal classi�cation of
the previous frame, speech activity level, and the slope of the SNR obtained in the
VAD with the corresponding frequency [45].

The actual linear prediction is performed in the Prediction Analysis Block with the
previously analyzed signal classi�cation taken into account. For voiced speech, LTP
is used with the pre-whitened input signal incoming from the pitch analysis block
[45]. The LTP-coe�cients are estimated with covariance method [18] from every 5
ms subframe. The residual signal is determined by �ltering the non-whitened input
signal with the LTP-�lter.

17

The short-term prediction coe�cients are calculated from the LTP-analysis' resid-
ual signal with the traditional LPC-analysis [45]. However, instead of determining
the LP-coe�cients with autocorrelation or covariance method, they are computed
by using the novel implementation of Burg's method [46]. Therefore, stable �lter
coe�cients are obtained e�ciently and the computational complexity is reduced
remarkably [45, 46]. Calculating the LPC-coe�cients from the LTP-signal results
in more prediction gain and consequently, lower bitrate can be used. For unvoiced
signal, LPC is performed directly to the non-whitened input signal.

All the LPC-coe�cients are transformed into Line Spectral Frequencies (LSFs),
which provide an alternate and more e�cient representation of these coe�cients
for speech coding and transmission [47]. Subsequently, these frequencies are quan-
tized, and used to re-calculate the LPC residual signal so that also the quantization
error of LSFs is taken into account when reproducing the signal [45].

SILK uses noise shaping to make the quantization noise less audible to human au-
ditory system by performing weighting �ltering when encoding [45]. Therefore, no
weighting �ltering is needed when decoding and thus, no side information about
the �lter needs to be sent along with the encoded bitstream. The noise shaping is
performed in the encoder's noise shaping analysis, gain quantization, and predictive
noise shaping quantization blocks (in Figure 3).

Predictive Noise Shaping Quantization (NSQ) block also generates the residual sig-
nal from the previously determined LTP- and LPC-coe�cients [45]. This excitation
signal is subsequently quantized into an integer-valued signal, which is entropy coded
in blocks of 16 samples in the range encoder. The remaining LSF Quantization block
quantizes the line spectral frequencies with vector quantization using codebook vec-
tors and scalar inter-LSF prediction [45]. The quantized signal is entropy coded
with the range coder which outputs data with variable bitrate [45].

The encoded bitstream can be decoded back to an audio signal with a decoder. The
decoder side LP functionality is illustrated in Figure 4. It performs the inverse op-
eration to the encoder's essential blocks and consists of excitation generator and the
predictive �ltering of the LTP and LPC synthesis �lters. The �rst one of these gen-
erates the excitation signal for the LTP synthesis �lter from the quantization indices
transmitted from the encoder. The LTP synthesis is performed as was described in
Section 2.2 for linear predictive coding. The LPC synthesis �lter is in series with
the LTP and thus the output of the LTP denotes the LPC excitation signal.

3.2 Constrained Energy Lapped Transform

Constrained Energy Lapped Transform is a transform coding technology developed
by Xiph.Org, and is based on the Modi�ed Discrete Cosine Transform (MDCT)
[48]. The fundamental idea behind the codec is to preserve the spectral envelope of

18

Figure 4: Block diagram of a SILK decoder's LP functionality, adopted from [45].

the input [24]. Moreover, CELT was designed to support also higher sample rate
applications up to 48 kHz, and bitrates from 32 kbit/s to 128 kbit/s [49]. One of
the key features in CELT is to use the transform with very short windows so that
the algorithmic delay is minimized [48]. The development with CELT started from
same principles as with Opus codec, to have a framework that is highly scalable and
versatile. Subsequently, the development of CELT was merged to Opus [49] and
hence the technology behind is being developed with the Opus instead of a separate
codec.

There are four principle elements behind the CELT algorithm [24]. First, the MDCT
output is divided into bands, referred as energy bands, that approximately corre-
spond to the Bark scale. This improves the perceived quality as the band division
corresponds to the resolution of the auditory system. The comparison between the
CELT energy band division and bark-scale is illustrated in Figure 5. As can be seen
in the �gure, at the higher frequencies the codec's energy bands correlate highly
with the Bark scale. However, at the spectrum's lower end this correspondence is
not as high due to MDCT's lower resolution at the low frequencies [24].

)

CELT

Bark

Figure 5: Comparison of CELT energy bands and Bark scale, adapted from [48].

Second, the encoder codes each band's energy separately with the decoder ensur-
ing that the output's energy corresponds these energies [24]. Third, the normalized
spectrum of each band is constrained so that they have unit norm through the whole
algorithm [24]. Fourth, a long-term predictor is used for coding pitches and is en-
coded as a time o�set, yet encoding the gain of the pitch in the frequency domain
[24].

19

Figure 6 represents the block diagram of the CELT codec, with both encoder and
decoder presented. The �rst block, Window, performs windowing to each frame [48]
using �at-top MDCT windows with 2.5 ms overlap between the frames. For the
overlapping parts, Vorbis power-complementary window (as is speci�ed in [50]) is
used, which is also used in the decoder side when performing the weighted overlap-
and-add (WOLA) synthesis. The MDCT block performs the modi�ed discrete cosine
transform so that the computed MDCT spectrum is divided into the energy bands as
was presented in Figure 5 [24]. Each band is normalized separately and transmitted
to the decoder through a quantization block, Q1.

Figure 6: Block diagram of a CELT codec, adopted from [24].

Pitch prediction is used to model high-frequency information such as closely-spaced
harmonics of speech or solo instruments [24]. The determined pitch's gain is com-
puted and normalized to unity. As a result, the pitch can be applied in the frequency
domain to avoid the weakening of the pitch harmonics at high frequencies. In ad-
dition, �xed and adaptive codebooks are combined in the encoder's quantization
blocks where entropy coding is applied [24]. However, the �xed codebook gains do
not need to be transmitted because the computation can be deduced to a rather
simple form and it can be calculated when decoding. The codebook contribution is
regarded as innovation in Figure 6.

There are altogether three di�erent quantizers in the CELT encoder (Q1, Q2, and
Q3 in Figure 6). The �rst, Q1, quantizes the band energies, the second, Q2, the
pitch gains, and the third, Q3, the innovation. For all quantizers, entropy coding is
used to allocate the fractional number of bits to integers. For bit allocation, two of
the transmitted parameters are encoded with a variable bitrate [24]: the entropy-
coded energy of each band and the pitch period. However, when constant bitrate is
needed the innovation quantization can be adapted to compensate the variability of
the previous two parameter sets [24]. Additionally, to minimize the amount of used
bits, it is assumed that certain parameters are known for both encoder and decoder,
and do not need to be transmitted [24]. E.g., the number of octets (8-bit bytes)
used to encode the frame is assumed to be shared information.

20

Occasionally, transform-based codecs introduce pre-echo to the signal due to the
quantization error that is spread through the window, including the transient events
[51]. Generally, this does not a�ect CELT because the frame sizes are small. How-
ever, in certain extreme cases it may occur, and therefore CELT uses a detector
to detect the transients [51]. In the case a of transient, the frame is split into two
shorter half-frames, to which the MDCTs are applied. The outputs are then inter-
leaved yielding a situation where the rest of the codec is not a�ected.

3.3 Opus Codec

The Opus codec combines the two previously presented coding technologies, SILK
and CELT, into a single codec. It can be used either in a hybrid mode where it uses
both of them, or only with either of the two codecs [4]. However, in addition to
simply combining these two codecs into one framework, certain changes have been
made in order to improve the quality, to �t them better together, and to reduce the
psychoacoustic artifacts of the two codecs [48].

3.3.1 Combination of the Two Coding Technologies

As the Opus combines the SILK and CELT technologies, they are separated to serve
di�erent purposes. When using either of the original codec modes alone, SILK can
be operated with up to 16 kHz samplerate, and CELT up to 48 kHz [4]. Thus,
according to the naming convention introduced in Table 3, SILK supports NB, MB,
and WB, whereas CELT supports all the sample rates from NB to FB. For the frame
lengths, SILK supports 10 ms ... 60 ms, and CELT supports 2.5 ms ... 20 ms. As
a result, SWB and FB data cannot be coded with higher frame lengths than 20
ms and therefore data containing longer frames is split into more appropriate frame
lengths for the CELT.

In the hybrid mode of the Opus codec, the operation is divided so that the crossover
sample rate is 16 kHz [4]. In other words, the input signal is divided into the two
coding paths, in which it is decimated to 16 kHz sample rate for SILK, and for CELT
the frequencies below WB are discarded. With this con�guration, Opus is able to
provide hybrid mode operation at SWB and FB. Due to the di�erent look-ahead
times between these two codecs (CELT having shorter) a delay of 4 ms is introduced
to the CELT coding path. However, when using only CELT the additional delay is
omitted. An overview block diagram of the Opus codec is illustrated in Figure 7.

As can be seen in Figure 7, the coding is divided into two branches. In the encoder,
the higher branch represents the input of the CELT-encoder, and is delayed in the D
block to match the di�erent look-ahead times. The lower one represents the input
of the SILK-signal, which is decimated so that only lower frequencies are encoded
with the SILK layer. After encoding them in their respective encoders, the two

21

ff

ff

ff

Figure 7: Block diagram of Opus codec, adopted from [48].

encoded signals are multiplexed, i.e., multiple signals combined into one signal or
bitstream in the digital domain [2], and transmitted. In the decoder, the bitstream
is demultiplexed and the two separate, CELT and SILK, signals are then decoded
in their respective decoders. A sample rate conversion is performed to the output of
the SILK-decoder to match the desired output sample rate. Finally, the two coding
branches are summed together so that the output of the Opus decoder is obtained.

Opus uses also additional internal framing to allow the packing of multiple frames
into a single packet [48]. Moreover, the mode, frame size, audio bandwidth, and
channel count are signaled in-band, and are encoded in a table-of-contents (TOC)
byte. These are not entropy coded, an therefore it is easy for the external ap-
plications to "access the con�guration, split packets into individual frames, and
recombine them" [48].

When changing the con�guration so that the CELT mode is used before and after
the change, the overlap of the transform window is used to avoid discontinuities [48].
However, when a change between CELT and SILK or the hybrid mode occurs, there
is a mismatch between the domains where the computation is performed, the former
one utilizing frequency- and the latter one time-domain algorithms. Therefore, in
this type of change in modes, an additional 5 ms redundant CELT frame is included
to the bitstream. Furthermore, in this case decoder uses overlap-add to bridge and
gap between the discontinuous data, which smooths the changes between the di�er-
ent modes [48].

3.3.2 Modi�cations to the Two Coding Technologies

The SILK codec has been an individual project and thus is used in the Opus codec
almost as is. The originally supported sample rate of 24 kHz was not included
when SILK was integrated into the Opus codec [4]. CELT, however, was merged to
the Opus project [49] and therefore modi�cations to the originally proposed version
[24, 51] have emerged through the development of Opus.

22

CELT introduces a drawback when using the low overlap window by increasing spec-
tral leakage which is especially problematic for highly tonal signals [48]. Therefore,
in the Opus a pre-emphasis �rst-order low-pass FIR �lter (Finite Impulse Response)
is introduced in the encoder side. Respectively, the corresponding inverse operation
with a de-emphasis �lter is applied when decoding. As a result, lower frequencies
are attenuated, and therefore do not cause leakage at the higher frequencies. In ad-
dition, a perceptual pitch enhancing pre�lter and post�lter pair is used to address
the same problem [48].

Depending on the signal, some frames may contain both transients and tonal infor-
mation. Consequently, these frames require good frequency resolution in addition
to good time resolution [48]. Therefore, the Opus utilizes a selective modi�cation of
the time-frequency resolution so that it includes a good resolution for low-frequency
tonality, but also a good time resolution for transients' high frequencies. The time-
frequency resolution is improved by computing multiple short MDCTs [48]. This,
however, decreases the frequency resolution, and therefore the Hadamard transform
is used to the transform coe�cients across the computed multiple short MDCTs [48].

With transform based codecs, such as CELT, tonal-noise may be introduced [48].
This is due to the quantization in which a large number of HF coe�cients get
rounded to zero, and thus the remaining non-zero coe�cients may sound tonal. To
address this problem Opus applies spreading rotations that spread the transform
coe�cients dynamically over multiple frequencies [48, 52]. When decoding, an in-
verse operation can be applied to obtain the original transform coe�cients [48].

When transients are encoded with low bitrates, it may happen that all the coe�-
cients of a short MDCT are quantized to zero [48]. This causes audible drop outs,
even when the energy of the entire band would be preserved. The Opus codec de-
tects such holes and �lls them with pseudo-random noise at the same level as the
minimum of the two previous bands' energy levels [48].

Entropy coding is used extensively in the SILK- and CELT-codec, and consequently
also in the Opus codec [45, 48]. In the context of Opus, all the entropy coding is
performed with a range coder which is an arithmetic coder and which outputs 8 bits
at a time [24]. The main reason for using arithmetic coding is its ability to accept
fractional bits and provide better compression ratios [22].

3.4 Computational Complexity

Both SILK and CELT were designed for real-time applications and thus need be
computationally simple enough to reduce the algorithmic delay to su�cient limits
[31, 34]. The former one of these uses the time-domain techniques for coding (LPC
and LTP) and its original target was speech coding. At the frequency spectrum's
low end, where most of the essential speech information is, these techniques are com-

23

putationally e�cient [4]. At the high end of the spectrum, however, the transform
based techniques are more e�cient and thus combining these two into one hybrid
codec is an e�ort to maintain the maximum e�ciency [4]. Furthermore, when com-
bining the most e�cient parts of the two codecs, the combination may operate even
more e�ciently than the original codecs individually.

Generally, transform and subband coding techniques, such as MDCT in CELT, are
limited by their coding e�ciency [53], because the transform itself is computationally
demanding operation [54]. MDCT transform is de�ned as follows

X[k] =
N−1∑

n=0

x[n] · cos
(2n+ 1 + N

2
)(2k + 1)π

2N
, (3)

where X[k] is the transformed signal, x[n] is the input signal, n = 0, ..., N − 1
and k = 0, ..., N/2 − 1, N is the window length [54]. As Equation 3 shows, there
is a sum of products between the input sample and a cosine term over the entire
window. Therefore, every time MDCT is computed the whole window needs to
be iterated through. As a result, MDCT introduces always an algorithmic delay
that corresponds to the number of iterations [55]. The inverse MDCT (IMDCT) is
applied to the half of the window length and thus the delay caused by IMDCT is
half of the corresponding MDCT [54]. IMDCT is de�ned as

x[n] =

N/2−1∑

k=0

X[k] · cos
(2n+ 1 + N

2
)(2k + 1)π

2N
, (4)

in which x[n] is the reconstructed signal, X[k] is the MDCT transformed signal,
k = 0...N/2 − 1, and n = 0, ..., N − 1 [54]. Similarly to the MDCT, also IMDCT
introduces an algorithmic delay, as it includes iteration through the coe�cients.

The algorithmic delay caused by the iterations, shown in Equations 3 and 4, can
be only reduced by minimizing the number of iterations. This number depends on
the frame size, as the processing is done for one frame at the time. To address this
issue, CELT uses a very short frame length to minimize the delay [51].

The range coder that performs the entropy coding is an arithmetic coder, which
minimizes the used bits for coding. This may introduce computational complexity
to the decoder side, as the coded vector needs to be decoded and iterated through
N − 1 times, if a speci�c value with an index N needs to be decoded. However,
as could be seen in the SILK and CELT codecs' block diagrams (Figures 4 and 6),
the arithmetic decoder is applied only in the beginning of the decoding procedure.
Therefore, when the actual audio decoding is performed, all the data is already ac-
cessible and no range decoding is needed to obtain single symbols from the bitstream.

Opus' computational complexity can be modi�ed with the complexity parameter, as
introduced in Table 2. It adjusts the order of certain �lters, the number of states in

24

the residual signal quantization, and the use of certain bitstream features including
variable time-frequency resolution and the pitch post-�lter [4]. The �rst one of these,
�ltering (all the IIR- and FIR-�lters), is performed by convolving the input signal
with the impulse response of the �lter [56]. Convolution integral in discrete domain
is de�ned as a sum of products of the �lter coe�cients, and current and old samples.
This is shown below in Equation 5

y[n] = x[n] ∗ h[n] =
n∑

k=0

x[n] · h[n− k], (5)

in which y[n] is the convolution result, x[n] is the input signal, and h[n] is the �lter's
impulse response [56]. As can be seen in the equation, also �ltering is an iterative
process. The number of these iterations is directly proportional to the �lter's order.
Therefore, adjusting the order of the �lter can result in lower complexity of the
algorithm.

When the complexity of the algorithm is reduced, the quality is also reduced [4].
Figure 8 illustrates how the complexity parameter a�ects the voice quality of the
codec with di�erent bitrates. In the �gure, objective voice quality results for WB
signal is presented. X-axis denotes the bitrate in kbit/s, and y-axis denotes the
MOS (Mean Opinion Square) score measured with POLQA (Perceptual Objective
Listening Quality Assessment) measurement methods speci�ed by ITU-T [57]. The
voice quality measured with this method compares the original input PCM and the
decoded output PCM together in a psychoacoustic model [57]. The comparison re-
sults are subsequently mapped to the MOS values that are common to the ACR
(Absolute Category Rating) speci�ed in the ITU-T recommendation P.800 [58].

As Figure 8 shows, the calculated MOS scores vary more with the lower bitrates
compared to higher. However, they do not di�er remarkably with the complexity
values above 5. In other words, the complexity does not a�ect the sound quality sig-
ni�cantly above this limit. Also other bandwidths show similar results, as presented
in the [59].

3.5 Applications

The Opus codec was originally developed for interactive Internet applications [48].
Applications such as Skype and WebRTC (Web Real-Time Communication) are
both based on VoIP, i.e., the encoded speech is digitized in voice packets and trans-
mitted via Internet Protocol (IP) [60]. The former one of these is a peer-to-peer
application, in which the connection is established between the two end users (peers)
directly, and thus the application is processed on the peer's own hardware [61]. The
latter one, provides an Application Programming Interface (API) so that developers
can write rich, real-time multimedia applications on the web, i.e., the application is
run within a browser and no external plug-ins or installable software is needed [62].
However, the actual processing is still performed on the user's hardware.

25

� �

/�
����

Figure 8: Speech quality with di�erent complexities and bitrates measured for WB
data with POLQA, adopted from [59].

The application to which the codec was integrated in this thesis was an IMS network
element. This provides functionality for matching di�erent codecs of two commu-
nicating networks. E.g., when a VoIP call is transcoded to use network's native
codecs, the network element's hardware is used for matching the di�ering codecs.

The basic VoIP applications presented in this section are based on performing the
processing on the end user's hardware. Therefore, they are not completely compa-
rable to the processing performed in the IMS functions such as MGW, in which one
piece of hardware is designed to perform the data processing for as many instances
as there is capacity. This sets certain requirements to the computational e�ciency
of the application, and also to the hardware used for the processing. The latter one
is discussed more in detail in Chapter 4.

26

4 Signal Processing Platforms

The network elements that provide signal processing functions, such as MGW, have
been traditionally implemented on dedicated hardware (e.g. on an ATCA platform
(Advanced Telecommunications Computing Architecture, [63])) to provide the re-
quired computational performance [64]. The piece of hardware that performs the
actual calculative signal processing algorithm processes is called a processor.

For digital signal processing, a customized processor called Digital Signal Processor
(DSP) has been generally used due to its ability to perform signal processing tasks
e�ectively [65]. However, as the general purpose processors (GPP) have developed,
their usage has become more reasonable also in digital signal processing. As a re-
sult, there has been an e�ort to move digital signal processing applications to more
generic hardware, such as servers, so that no dedicated hardware is needed [3, 66].
This way, the signal processing tasks can be performed natively on the hardware,
or within a virtual machine (VM) that is run on the server. The latter option en-
ables one server to provide multiple VM instances and thus provide an e�ective way
to share resources of one piece of hardware [67, p. 525]. Moreover, because the
hardware is generic, there is no need for designing dedicated hardware and thus the
product's development costs are decreased [3].

In this chapter, the signal processing platforms used in the network elements are
reviewed. First, a generic overview of a processor is introduced by observing the
common features that all the processors share. Second, both the DSP and GPP are
introduced more in detail, after which they are compared in terms of performance.
Third, the compilation of the source code to machine language is discussed, as it
a�ects the performance of an application. Finally, the concept of a virtual machine
is reviewed as it introduces certain di�erences compared to the native processing on
the same hardware.

4.1 Processor Architecture and Performance

When choosing a processor for an application several performance related aspects
need to be taken into consideration. On one hand, the computational speed may
a�ect the choice when the processing times need to be reduced. On the other hand,
if the application is part of mobile hardware with an external energy source (e.g.,
battery), the power related performance needs to be su�cient. In the scope of this
thesis, mainly the execution speed related performance is discussed. Architecture is
one key factor in processor's performance. There are many di�erent types of pro-
cessors that each serve di�erent purposes. In the following section, general aspects
of a processor architecture are discussed.

4.1.1 Architecture

When processing is performed on a processor, it �ows through a certain path. This
is called a data path, and along it the arithmetic operations of the processor are

27

performed [67]. Another main function of a processor is control, which is respon-
sible for commanding this data path, memory, and input/output (I/O). These two
components depend highly on the architectural design of the processor. Instruction
is a command that computer hardware understands and obeys, and the data path
together with the control, a�ect on the manner, how these instructions are handled
and computed [67]. As a result, the data path and the control, and thus the archi-
tecture of the processor, have a high impact on how e�ciently the instructions get
executed in a processor.

All the operations involving a processor are synchronized by an internal clock, which
is oscillating with a constant rate [68]. This, the most basic unit for machine in-
structions, is called a clock cycle and is de�ned as the inverse of the processor's
clock frequency. Furthermore, data path can be divided into di�erent stages with
a resolution of one clock cycle [67]. As a result, one instruction execution takes at
least as many clock cycles as there are stages.

During instruction execution, the processing �ows through the di�erent stages of
the data path such as instruction fetch, instruction decode and register �le read,
execution etc. [67]. In the most simpli�ed case of instruction execution, so called
single-cycle design, one instruction is executed at the time. This, however, is not
very e�cient because the previous instruction must be completed before the next
one can be started [67, pp. 328-330].

Pipelining is a technique used in processor design, which utilizes parallelism "among
the instructions in a sequential instruction stream" [67]. This means that after one
stage of the data path is executed for a certain instruction, the same stage can
be executed for the next instruction. For example, after the �rst instruction is
fetched (instruction fetch stage), the execution for that particular instruction moves
to the second stage of the data path. Simultaneously, the second instruction can
be fetched so that during the same clock cycle, two di�erent instructions are being
executed only in the di�erent stage of the data path. Consequently, pipelining can
theoretically process as many instructions in parallel, as there are stages in the data
path. In Figure 9 an example of a pipeline with a �ve-stage data path is illustrated.
The �ve stages of the example data path are listed below 1 [67].

1. IF: Instruction fetch
2. ID: Instruction decode and register �le read
3. EX: Execution or address calculation
4. MEM: Data memory access
5. WB: Write back

In the example presented in Figure 9, IM denotes the Instruction Memory and the
Program Counter executed in the IF stage, Reg denotes the Register File and Sign

1In this thesis, abbreviation WB is stands for Wideband.

28

Figure 9: Example of a pipeline, adopted from [67].

Extender executed in the ID stage, ALU denotes the Arithmetic Logic Unit exe-
cuted in the EX stage, and DM denotes the Data Memory Access executed in the
MEM stage [67]. In addition, there is an additional Reg in the end, where the data
is written back to the data register during the WB stage. Moreover, the scale on the
x-axis, Time (in clock cycles), denotes the elapsed clock cycles. The y-axis, Program
execution order (in instructions), represents the instruction to be executed. In this
example, one instruction execution lasts �ve clock cycles.

In an ideal situation, when all the stages take one clock cycle to execute, pipelining
allows one instruction to be completed every clock cycle [65, pp. 100-101]. This was
the case in Figure 9, as instruction 1 is �nished at CC5, instruction 2 at CC6, and
instruction 3 at CC7. However, the data path's execution depends on the instruction
to be executed and certain instructions may involve operations that require more
clock cycles in some of the data path's stages [69]. Therefore, this ideal situation,
cannot be always achieved. Naturally, some instructions need to be �nished before
others depending on the program's execution. E.g., when a result of a calculation
is needed in the following operations, the instructions of that particular calculation
need to be �nished before the following operation.

Pipelining increases the computational speed because it is executing instructions in
parallel. In fact, there has been an e�ort to increase the level of parallelism, rather
than purely the clock rate, in order to gain computational e�ciency [67, p. 632].
This is mainly because power consumption, which is proportional to the clock rate,
has reached its limit in terms of cooling commodity [67, p. 39]. Using multiple

29

processors to perform the computation increases the level of parallelism, because
di�erent processes can be run independently and simultaneously in these di�erent
processors [67, p. 632]. In practice, multiple processors are usually manufactured
within one microchip and thus, one processor is actually a core of a microchip that
consists of multiple cores. This design is called a multicore microprocessor [67, p.
632].

Another method for increasing parallelism is to use special SIMD (single instruction,
multiple data) instructions (sometimes referred as Vector instructions) [68]. They
allow the hardware to have many ALUs that operate simultaneously, or they divide
one wider ALU into smaller ALUs that can operate simultaneously [67, p. 649].
In addition, when observing Figure 9, it can be seen that one instruction causes
an overhead, e.g., when an instruction needs to be fetched, that is additional to
the actual execution of the instruction. Thus, when multiple data operations can be
executed with only one instruction, it decreases the execution time. There are several
advantages in using vector instructions. These are listed in the below (adopted from
[67, p. 652]).

• Vector instruction is equivalent to executing an entire loop

• Hardware does not have to check for data hazards within a vector instruction,
but only between two vector instructions once per operand

• Data-level parallelism in SIMD is regarded as easier to implement when com-
paring to MIMD (multiple instruction, multiple data) multiprocessors

• The cost of latency to main memory is smaller because the vector is fetched
entirely at once

• Control hazards caused by the loop branch are non-existent because vector
instructions are well predetermined

• The savings in instruction bandwidth and hazard checking as well as the e�-
cient memory handling reduce the power and energy costs

Even though parallelism can increase the performance, not all the operations can be
run in parallel. Therefore, parallelism is often implemented as job-level parallelism
or process-level parallelism in which complete bigger entities or processes are divided
into parallel execution, instead of single operations of one process [67, p. 632].

In addition to instruction execution, also memory handling a�ects on how e�ciently
the processor can function [67, p. 453]. When an instruction is executed through the
data path, the data needed for processing is fetched from the memory to a register,
which is an integral part of the data path and which stores the value during the
execution [65, p. 84]. Furthermore, the compiled and assembled program is stored
onto the memory from which the instructions are fetched [65, p. 50].

30

Memory is often structured with a hierarchy that denotes how distant it is from the
processor core in terms of e�ciency [67, p. 453]. The faster the memory is, the more
expensive it is to manufacture and thus, the fast memories are generally limited and
used only for the most intensive operations [67, p. 453]. Therefore, slower memory
technologies are also included so that more space can be obtained for the less de-
manding operations [67, p. 453]. To optimize the memory operations, processors
may utilize the use of limited fast memory by temporarily storing essential data to
it [67, p. 457]. This, so called caching, allows di�erent stages of the program to
use the fast memory when they are executed. Processors often include certain sized
caches on their design by default (e.g., 6 Mbytes on Intel i7 4700MQ [70]).

4.1.2 Performance

Even though the clock rate of a processor denotes how many clock cycles are �n-
ished per second, it does not explicitly inform how fast the processor can execute
in di�erent applications. As was discussed earlier, instructions that the processor
executes do not consume a constant number of clock cycles. Therefore, more de-
scriptive units to measure performance have been developed. In this section, these
units are discussed to choose a proper measure when evaluating the performance of
the implemented codec.

As the data path is highly dependent on the processor's architecture, it is infor-
mative to measure how many instructions can be executed per second. This, often
given as Million Instructions Per Second (MIPS), is a commonly used measure when
talking about processor performance without presumptions of the application [67].
However, di�erent architectures provide more suitable instruction execution than
others for di�erent purposes [65, p. 9]. Therefore, MIPS cannot be used alone when
evaluating the processor performance.

For digital signal processing, there are common calculative operations that many
algorithms share. These include an essential task, digital �ltering, which is computed
with an iterative operation called convolution, as was presented in Equation 5. In
addition, many transform functions, such as the Fourier transform [56] or the cosine
transform (Equations 3 and 4), are extensively used in signal processing, and are
based on an integral function yielding an iterative sum function in the discrete
domain. Thus, similarly to the �lter functions, they introduce algorithmic delay
to the program execution. In addition to involving a discrete sum function, each
summand consists of a product of two factors. In other words, each iteration of
the sum function includes a multiply-and-accumulate (MAC) operation, in which a
product is calculated and accumulated to an existing value. This yields a formula
as follows

d = a+ (b · c), (6)

where a is the input parameter which the product is accumulated with, and b and c

31

are the input factors of the product. Subsequently, the calculated result is stored to
the d variable. This operation has resulted in a very commonly used performance
measure in the context of digital signal processing, which is given as how many MAC
operations a processor can calculate per second [71].

As the digital signal processing algorithms are always part of a larger entity, the
previously introduced generic measures do not apply for accurate performance cal-
culations [72]. A more reliable method for measuring the performance is to measure
the execution time of real algorithms, such as computationally intensive digital sig-
nal processing algorithms in the context of DSP [72]. Di�erent organizations, such
as BDTi (Berkeley Design Technology, Inc.), conduct benchmarks on di�erent DSPs
and other microprocessors by measuring the performance for algorithms related to
the application to be benchmarked. For example, BDTi measures the DSP perfor-
mance scores by measuring the execution speed of common and demanding digital
signal processing algorithms, such as di�erent �ltering functions, vector operations,
transform functions etc. [72].

Benchmarking with generic DSP algorithms have also limitations. They do not nec-
essarily give reliable measures for application speci�c algorithms, and thus the actual
execution speed may di�er from the benchmark results [72]. In addition, processors
that have customized units to perform certain speci�c tasks may score better in the
benchmark because they perform the particular task more e�ciently [72]. Finally,
the DSP benchmarks often measure only the algorithm execution speed and the pro-
cessor's memory usage, whereas other performance related factors are not included
in the measurement [72].

The performance measures described in this chapter are descriptive, but cannot be
used as the only input for application performance evaluation. The only method to
provide reliable measures is to benchmark the performance with the actual applica-
tion instead of generic algorithms. Only the benchmark results obtained with this
type of measurement can give reliable suggestions of how good the performance is
with the given application, as well as how big part of the whole processing capacity
certain part of the application consumes.

4.2 Digital Signal Processor

A processor dedicated for signal processing purposes is called a digital signal pro-
cessor. Its hardware is shaped by the digital signal processing algorithms and thus
it is specialized to perform them e�ciently and inexpensively [73]. Although, there
are di�erent architectural designs among DSP vendors, certain characteristics are
shared with most DSP microprocessors. In this section, these common characteris-
tics are reviewed.

32

Most DSPs have specialized arithmetic units integrated in the hardware that per-
form di�erent digital signal processing tasks. These tasks can be characterized as
repetitive and numerically intensive [65, 73]. For example, a very common unit in
DSPs is the MAC-unit, which performs a MAC operation presented in Equation 6.
This makes the computation of convolution and transform functions e�cient, be-
cause the sum of products can be calculated by iterating only one MAC-instruction
instead of separate instructions for multiply and addition. Furthermore, for addi-
tional precision DSPs generally provide extra bits for calculation results so that the
result is rounded only after the operation is completed [65]. As a result, the round-
ing error is smaller compared to a situation where the result is rounded after each
multiplication and accumulation separately.

In addition to the hardware units that support the algorithmic and arithmetic com-
putation, DSPs include also other common features that support e�cient digital
signal processing tasks. Multiple-access memory architecture provides a support
for several memory accesses during one instruction cycle [65]. Consequently, the
processor may fetch an instruction while simultaneously fetching operands for the
instruction or storing results. Moreover, specialized addressing modes provide e�-
cient ways to perform digital signal processing algorithms. E.g., modulo addressing
is an essential feature when calculating �rst-in, �rst-out (FIFO) type of operations,
such as IIR or FIR �lter computation where the newest values are saved on top of
the oldest ones [65].

DSPs also provide commonly e�cient execution control. E.g., hardware assisted
loops allow the processor to repeat an instruction multiple times without an in-
struction fetch [65]. As a result, the overhead for the instruction fetch is decreased.
Moreover, DSPs incorporate often complete peripheral devices (such as Analog-to-
Digital (A/D) and Digital-to-Analog (D/A) converters) within the chip in order to
allow low-cost, high-performance I/O [65].

The latest developments in DSPs have increased the level of parallelism with ex-
tensive vector processing improvements [71]. Moreover, data and program cache
is currently a feature present in many DSP processors (e.g., TI TMS320C66x and
TI TMS320C64x families [71, 74]), which has also improved the memory handling
e�ciency. For instance, a state-of-art DSP, TI TMS320C6672, is a multicore proces-
sor with extended SIMD support and cache handling, and can perform 48 GMACS
(Giga Multiply-and-Accumulate Operations per Second) per core [71], whereas one
generation older TI TMS320C6457 can perform 9.6 GMACS [74].

4.3 General Purpose Processor

As the name implies, general purpose processor is a microprocessor that is designed
to meet various needs instead of speci�c type of processing as was the case with DSP.
Typically, GPP is the �rst choice when designing control, user interface, or com-

33

munication functions [65]. Moreover, the development kits for GPPs are typically
sophisticated and developed, thus reducing the costs by simplifying the development
process. However, for computationally intensive algorithms, such as the ones used
in digital signal processing, GPPs have traditionally been less e�cient [65]. As a
result, also GPP vendors have started to include di�erent functionalities to extend
their processors so that they can perform the intensive digital signal processing at
a decent e�ciency.

There are di�erent GPPs available for various purposes. In embedded systems, com-
monly used GPPs are ARM (Advanced RISC Machine) and MIPS (Microprocessor
without Interlocked Pipeline Stages)2, both of which are based on RISC (Reduced
Instruction Set Computer) instruction set [67, p. 161]. In personal computers,
the most widely used GPP is Intel's x86 architecture [67, p. 77]. Furthermore,
servers where the virtualized network elements are implemented, are also commonly
equipped with an x86 processor.

The most commonly used GPP, x86, was developed by Intel. Its register structure
varies depending on the particular processor [68, 75]. However, generally an x86
processor includes basic program execution registers which are used for basic arith-
metic and data movement as well as memory address handling [68]. These registers
include general-purpose registers, segment registers, �ag register, and instruction
pointer register.

Through the years, an e�ort to provide better performance has resulted in various
extensions in the processors, many of them based on the SIMD architecture and bet-
ter �oating point support [67, 68]. The �rst SIMD-extensions date back to the late
90's when MMX (Multimedia Extensions) were introduced. The latest x86 exten-
sions, e.g., AVX (Advanced Vector Extensions) and AVX2, provide SIMD registers
that are up to 256 bits wide [76].

Also other extensions in newer generation Intel x86 processors, e.g. FMA3 (Fused
Multiply-Add) in the Haswell processor, support digital signal processing [77]. FMA
provides a support for high-performance multiply and add operation, i.e. d =
±(a · b) ± c [78]. This corresponds to the MAC-formula presented earlier in Equa-
tion 6. FMA is also a SIMD based instruction set extension, i.e., the it can be
performed to multiple values simultaneously [78].

In addition to an extensive o�ering of SIMD extensions, x86 processors include high
level of parallelism with an advanced use of multicore design. E.g., Intel Core i7-
4690X processor incorporates physical 6 processor cores, which are extended to 12
logical cores through hyperthreading [79]. Thus, very high process-level parallelism
can be achieved with the particular processor.

2In this thesis, abbreviation MIPS stands for Million Instructions Per Second.

34

The clock rate of an x86 processor is typically higher than the one used in DSPs
or in other GPPs. E.g., a state-of-art DSP processor, Texas Instruments (TI)
TMS320C6672 has a clock rate of 1,5 GHz [71], whereas Intel's x86 clock rates
may be up to 4 GHz [79]. This can be understood by observing the purposes that
these processor are used for. Because the processor's power consumption is pro-
portional to clock rate, the processors need to have low enough clock rate when
low power consumption is needed. Therefore, processors such as MIPS, ARM, or
DSP are typically used in the embedded systems. The x86 processors, however, are
mostly used in the desktops and servers where the overall power consumption is less
important, and thus higher clock rates can be used.

4.4 Platform Comparison

As was discussed in this chapter, there are certain essential di�erences between the
DSP and GPP processors. DSP is more dedicated to digital signal processing tasks,
whereas GPP o�ers more general processing compatibility. Generally, GPP is used
in applications that involve rather general tasks such as basic user interface, con-
trol, and communications functions [65, p. 18]. In addition, when the application is
undemanding in terms of performance, GPP is often the preferred choice due to its
simplicity in development. This, however, applies only in the most simpli�ed uses
of GPPs, especially now, when there is a large variety of di�erent extensions to the
basic functionality. E.g., the SIMD extensions to x86 architecture have improved
the performance of complex algorithm calculation remarkably [67], but also compli-
cated the development with high amount of parallelism involved.

As the x86 extensions have introduced hardware improvements to the processors,
the distinction to the DSP has diminished. E.g., the specialized MAC unit of the
DSP has a counterpart in the x86 as the FMA performs essentially the same oper-
ation. On the other hand, the DSPs have also included more parallelism through
multicore design and SIMD instruction extensions. Thus, the means of how the data
is processed begins to resemble the x86.

For digital signal processing tasks, DSP has traditionally outperformed GPPs. In
Figure 10, BDTi �oating point single core processor benchmark results for the year
2013 are presented [80]. In the �gure, the higher the score is, the better the per-
formance is. The results are based on the measurements for typical digital signal
processing algorithms. As can be seen in the �gure, an older generation x86, Intel
Pentium III [81], performs decently in the DSP comparison. However, the DSP TI
TMS320C66x has �awlessly the highest score in the benchmark. When the proces-
sor's clock rate is taken into account, the actual e�ciency re�ected to the processor's
full capacity can be measured. This is illustrated in Figure 11, where the BDTImark
results are divided by the processor clock rates.

35

Figure 10: BDTI �oating point single core processor benchmark results for the year
2013 (higher is better), adopted from [80].

0

1

2

3

4

5

6

7

8

9

ADI ADSP-213xx ADI ADSP-TS202S/203S Intel Pentium III Texas Instruments
TMS320C66x

Texas Instruments
TMS320C67x

B
D

Ti
 s

co
re

 /
 c

lo
ck

 f
re

q
u

e
n

cy

Processor

BDTi Scores for Five Processors Divided by Clock Frequency

Figure 11: Selection of benchmark results proportioned to the clock rate, calculated
from the values of the BDTi benchmark 2013 (higher is better), adapted from [80].

As Figure 11 shows, the BDTImark results proportioned to the clock rate are higher
for dedicated DSPs compared to the GPP Intel Pentium III. In other words, signal
processing tasks can be computed with less computational costs using DSP as less
of the full processor capacity is needed during the signal processing.

36

There was no corresponding data where modern x86 processors are compared against
the DSP processors. However, the implementation conducted for this thesis aims
partly to measure the di�erence in the signal processing performance, when a mod-
ern codec is run on modern x86- and DSP-processors.

4.5 Source Code Compilation

The instructions that the processor executes depend on how the software is devel-
oped. When low-level programming language such as Assembly is used, the in-
structions are listed directly in the source code. However, for larger programming
entities Assembly is regarded as rather complex and therefore languages with higher
abstraction levels are used for this purpose [67, p. 13]. For instance, the ANSI
C-language is a high-level programming language, which is not tied to any speci�c
platform [67, p. 13]. In the compilation phase, it is then compiled into the assembly
language so that it can be assembled to the machine language [67]. Consequently, it
is the compiler that generates the instructions and therefore is highly related on the
instruction execution of a program. A general overview of compilation to lower level
instructions is illustrated in Figure 12. In the �gure, a short C-language function,
swap, is compiled �rst to an assembly language program, which is platform speci�c,
after which it is assembled into binary machine language program.

As the program execution depends highly on how the instructions are executed
within a processor, the compiler may be a signi�cant factor regarding the perfor-
mance of the application. Consequently, many processor manufacturers provide
their own compilers that are optimized to their processors (e.g. Intel C++ compiler
for Intel processors, and Texas Instruments C6000 compiler for Texas Instruments
TMS320C6x DSP processors) [82, 83]. In addition, there are also compilers that pro-
vide support for multiple di�erent target platforms [84]. For example, GCC (Gnu
Compiler Collection) is a widely used compiler and supports many di�erent tar-
gets and programming languages [84]. The compilers provided by processor vendors
o�er support for only their own architecture and instruction set. Therefore, if porta-
bility between di�erent platforms is desired, more generic compilers need to be used.

The compiler used for the implementation conducted for this thesis was GCC. As
default, GCC aims at reduced cost of compilation time and making the debugging
produce expected results [84]. However, there are di�erent optimization options that
are mainly toggled with compiler �ags, and which enable the compilation with the
goal of optimal performance. Three di�erent levels of optimization are provided in
GCC if the level of no optimization is excluded. With the basic level (�ag -O or -O1),
GCC performs optimization that does not increase the compilation time signi�cantly.
With the next optimization level, �ag -O2, more optimization is performed with
enabling all the other optimizations than those that involve a space-speed tradeo�
[84]. With the highest optimization level, -O3, the best performance can be achieved.
This attempts to, e.g., vectorize loops that can be vectorized.

37

 swap(int v[], int k)

{

 int temp;

 temp = v[k];

 v[k] = v[k + 1];

 v[k + 1] = temp;

}

Compiler

swap:

 muli $2, $5,4

 add $2, $4,$2

 lw $15, 0($2)

 lw $16, 4($2)

 sw $16, 0($2)

 sw $15, 4($2)

 jr $31

Assembler

High-level

language

program

(in C)

Assembly

language

program

(for MIPS)

Binary machine

language

program

(for MIPS)

00000000101000010000000000011000

00000000000110000001100000100001

10001100011000100000000000000000

10001100111100100000000000000100

10101100111100100000000000000000

10101100011000100000000000000100

00000011111000000000000000001000

Figure 12: Compilation and assembling of a high-level programming language,
adapted from [67, p. 12].

4.6 Virtual Machine

The increasing trend of moving the network element's processing to a virtualized
environment introduces a need of dividing the hardware's capacity e�ciently. This
can be done with an extensive use of so called virtual machines (VM). They are run
as guests on top of the host operating system (OS) of the hardware. Although the
hardware is used by the VM, there are certain di�erences comparing to the situation
where applications are run natively.

Virtual machine (VM), by broadest de�nition, includes "all emulation methods that
provide a standard software interface" [67, p. 525]. However, the VMs used in

38

the cloud applications need to provide a complete system-level environment, i.e.,
at the binary instruction set architecture level. In this type of VM, the hardware
resources are shared by all the virtual machines on the particular hardware [67, p.
525]. Virtual Machine Monitor (VMM), also called the hypervisor, is a software that
is responsible for mapping the virtual resources to the physical ones [67, p. 526].
This provides a possibility for abstraction so that a VM instance (guest) can run
the complete software stack independently, and consequently a complete OS can be
run on top of VM with VMM. Hypervisor also provides a possibility to run multiple
VM instances on one piece of hardware (host) [67]. This is a signi�cant bene�t as
the used hardware can be divided e�ciently.

The overhead caused by the virtualization is determined as the instructions that
need to be emulated by the VMM, i.e., the instruction is emulated by the software,
and the execution time of this emulation [67, p. 526]. It varies and depends on the
workload and application [67, p. 526]. Generally, the I/O intensive workloads in-
crease the overhead because they often execute many system calls and privileged in-
structions. However, certain types of operations, such as user-level processor-bound
programs, result in almost no overhead at all, because the OS is rarely invoked and
thus everything runs at native speed [67, p. 526].

VMM behaves on a VM highly like on a native hardware apart from the perfor-
mance related virtualization. In addition, it isolates and protects the VMM from
other guests running on the same host [67, p. 527]. Moreover, the "guest software
should not be able to change the allocation of real system resources directly" [67, p.
527]. VMM also has a responsibility to control di�erent system related operations,
e.g., access to privileged state, address translation, I/O, exceptions, and interrupts.
For example, when a timer interrupt occurs, VMM handles it by saving the guest
VM's state, handling the interrupt, determining which guest VM to run next, and
load its state [67, p. 527]. Due to these reasons, VMs provide a safe environment
to run multiple instances as the error situations in one VM can be handled so that
other instances are untouched.

The network element applications introduced in Section 2.1.1 include various pro-
cesses, one of which audio coding is. The virtualization overhead caused by the high
I/O nature of a process is not really relevant in the codec processing, as the codec
is a user-level and processor-bound program. As a result, the performance related
e�ects caused by the VM are not studied in this thesis.

39

5 Realization of the Opus Codec on x86 Platform

The implementation conducted for this thesis included integration of the Opus audio
codec into transcoding units of a MGW run on a virtual platform equipped with an
x86 processor. Furthermore, the performance of the implementation was evaluated
and compared to the performance of a DSP implementation. The DSP version was
a third-party implementation optimized for a TI TMS320TCI6486 DSP processor.

In this chapter, the detailed speci�cation of the implementation is reviewed. First,
the integration of the codec is introduced by reviewing an Opus Application Pro-
gramming Interface (API). Furthermore, an implemented framework, which is a
matching layer between the external application and the Opus API is introduced.
Finally, the compilation of the source code is reviewed including the used compila-
tion optimization details.

5.1 Integration

The integration of the Opus codec was performed with the API provided by the
developers of the codec (IETF). It provides all the functionality needed for coding
with Opus, as well as packing the coded packets [4]. The version of the integrated
codec was 1.0.2, because it was the version used in the third-party DSP optimized
implementation and the bit-compliance between the two architectures was needed
for testing.

The API is divided by the functionality so that the high-level interface (called Opus
encoder and Opus decoder) calls the lower level algorithm functions, which are di-
vided into separate source �les and grouped into separate SILK and CELT groups
[42]. In addition, separate initialization and release functions are provided for al-
locating, initializing, and releasing the encoders and decoders used for the coding.
Furthermore, the API also packs the processed frames into Opus packets, which
include the information about the parameter con�guration and the packet itself [4].

There is a support for both �xed-point and �oating-point implementations included
in the API. The format could be chosen with a compiler �ag, and for this project,
�xed point implementation was chosen as the DSP implementation used this arith-
metic format.

5.1.1 Internal Opus Framework

The codec's integration required a layer that performed the matching between the
external network element application and the Opus API. Therefore, a framework
responsible for this matching was developed. In Figure 13, an overview of the im-
plemented framework is illustrated. All the blocks inside the Opus framework entity
are introduced in this section.

40

Encoder

initialization

Opus API

Decoder

initialization

Encoder

processing

Decoder

processing

Encoder

release

Decoder

release

External

application

Opus framework

Figure 13: Overview of the implemented Opus codec framework.

The API provides by default an automatic memory allocation needed for the codec's
internal functionality. However, there is also a manual memory allocation support
where the developer can control explicitly how the memory is allocated. The latter
one was chosen to ensure a controlled memory allocation behavior. The initializa-
tion of the codec includes the allocation of the memory needed for the encoder or
decoder instance, and con�guring it with the right set of initial parameters. After
the initialization, this instance can be used for the data processing.

The implemented framework performs the needed memory allocations by calling the
API's initialization functions, and allocating the needed memory. Furthermore, it
initializes the instance with the initial parameters received from an external control
I/O. After initialization, the newly created encoder or decoder instance is passed to
the external application so that it can be used when the data is ready to be pro-
cessed. When the coding is �nished, the implemented framework destroys the used
codec instance by calling the API release functions. In addition, as the internal mem-
ory was allocated manually, the freeing was also implemented within the framework.

For the actual data processing, the dynamic coding parameters for each processing
instance are partly received from the external application and partly �xed (discussed
more in Section 5.1.2). The implemented framework modi�es the encoder or decoder

41

instance's state with these parameters, after which it performs the API function calls
for data processing. The data is received from the external application with a reso-
lution of one frame packed with internal packing containing information about the
input data in the header and the actual input data in the payload. At this stage,
the data containers for the input and output data have been already allocated by
the external application and thus the input data is simply passed to the API for the
processing.

In addition to the basic functionality of calling the codec API, the framework in-
cluded support for features like DTX and PLC, as well as error handling in order
provide a controlled behavior in unexpected situations. Error handling included
control and data I/O check to determine whether the input data is intact. In ad-
dition, the internal status of the encoder or decoder instance was checked, as the
Opus API reports errors by returning an error code in the error situations, and indi-
cation about the status being normal when no error is detected. The implemented
framework also included error reporting to the external application by an extensive
use of error codes.

5.1.2 Control I/O

As the encoder supports a large set of control parameters, the framework was im-
plemented to support calling the Opus API with changeable control information.
The dynamic control I/O is received from outside of the coding unit depending on
the parameter set that is settled when initiating a connection. Only a subset of
all the parameters supported in Opus by default was supported in the integrated
implementation. These are introduced in this chapter.

First, the application selection (VoIP, Audio, or Restricted Low-Delay mode [42])
was set to VoIP due to the likelihood of the information being speech is higher com-
pared to general audio. Second, the complexity parameter was set to a constant
value after its e�ect on the performance was evaluated in the performance test-
ing phase. This will be discussed more in Section 6.3. Third, the supported audio
bandwidths for the encoder were limited to NB and WB, because the incoming PCM
stream from the external application is currently limited to these two bandwidths.
Fourth, the frame length was set to a constant of 20 ms, as the standard, RFC6716
(Request for Comments) [4], recommends it as the optimal value for most cases. As
a result, also the used bitrates were set to the recommended values for this frame
length [4]. For NB, the recommended bitrate is 8 ... 12 kbit/s and for WB 16 ... 20
kbit/s [4]. The higher limits of these were chosen to maximize the quality. Fifth,
the variable bitrate mode was chosen to be used as the Opus codec operates more
e�ciently with this selection [4]. In Table 4, the supported parameter settings for
encoder are summarized.

42

Table 4: Opus parameter settings and constant values of the encoder supported in
the implementation.

Supported Encoder Parameters
Parameter De�ned value

Application selection VoIP

Complexity
Fixed after performance tests, initially
set to 5

Bandwidth NB and WB
Frame length 20 ms
Bitrate 12 kbit/s for NB, 20 kbit/s for WB
VBR or CBR selection VBR

The parameters that are controllable from the external application are transmitted
to the framework with a control I/O data structure. The framework sets the correct
runtime parameters to the encoder state via the API functions with the use of the
the parameters received. The control I/O data structure is an external structure
de�ned in the external application and did not include all the parameters needed
by the Opus codec. Therefore, the control I/O was appended with the parameters
needed.

For the decoder, most of the essential information is transmitted within the Opus
packet (described more in detail in Section 5.1.3). However, there are certain con-
trol parameters that the decoder needs for decoding. These are received from the
external application similarly to encoder's control I/O, and are dependent on the
external parameter requirements, such as the sample rate of the other codec in the
transcoding procedure.

First, the output sample rate can be chosen with a control parameter. The Opus
decoder supports all the sample rates presented in Table 3, and regardless of the
original sample rate of the encoded bitstream, the decoder performs a sample rate
conversion internally when needed [4]. Similarly to the encoder, the supported
sample rates for the output were chosen to correspond the network element's re-
quirements, thus 8 kHz and 16 kHz.

Second, the output channel format, i.e., mono/stereo selection, could be chosen with
a decoder control parameter. As the output of the decoder needs to match the input
of the other codecs of the transcoder unit, the channel mode selection was �xed to
mono. Third, FEC selection needs to be signaled to the decoder, so that it can
make use of the redundant data in the encoded bitstream [4]. Fourth, the support
for DTX was implemented along with the PLC functionality, as these are performed
with the same algorithm within the codec. When no data is received, a one-byte
Opus packet containing the previously decoded frame's header byte is passed to the
API. Table 5 summarizes the supported control I/O parameters for the decoder.

43

Table 5: Implementation's supported Opus parameter settings and constant values
for the decoder.

Supported Decoder Parameters
Parameter De�ned value

Output sample rate 8 kHz or 16 kHz
Channel mode selection Mono
FEC Controllable parameter

PLC/DTX
Invoked when no data is received and
no FEC is available

Previously, the external application did not transmit runtime control information
to the decoders of the other codecs. Therefore, as a part of the implementation a
decoder control I/O data structure was created with the runtime control parameters
introduced in this chapter.

As the VBR produces arbitrary sized packets, the size of the Opus packet needs to
be transmitted with the input control data. This is needed for the framework to be
able to pass the correct amount of data to the decoder from the bu�er. Opus packet
size is relevant information throughout the external network element and therefore
internal packing used in the data I/O of the external application was appended with
the size information of the Opus packet. The size information is originally derived
from the RTP/UDP packing received from the network.

5.1.3 Opus Packing

Internal packing is used for the Opus codec to be able to transmit the needed control
information of the encoded bitstream. The encoded frame or frames are packed into
a single packet according to the speci�cation presented in the RFC6716 [4]. The
packing is performed within the codec and thus no external functionality for Opus
packing is needed.

In the simplest form, Opus packet contains only a single frame or all the encoded
frames in the packet share the same set of con�guration parameters that are de�ned
in the packet's header [4]. The package itself does not contain the length infor-
mation, but instead it assumes that the lower level packing (such as UDP or RTP
packet) includes the information about the packet length [4]. This reduces the fram-
ing overhead because the length information can be omitted from the Opus packet.

The �rst byte of the packet, the TOC-byte (table-of-contents), contains the informa-
tion about the con�guration that was used when encoding the frame [4]. The �rst
�ve bits of it contain the actual con�guration information, which is one of the 32
possible combination of operating mode, audio bandwidth, and frame length. The
sixth bit of the TOC-byte contains the information about the number of encoded

44

audio channels, i.e., 0 corresponds mono and 1 stereo. The remaining two bits in-
clude the information of the number of frames within the packet. The number of
frames is informed so that 0 corresponds to 1 frame, 1 corresponds to 2 frames (with
equal compressed sizes), 2 corresponds to 2 frames (with di�erent compressed sizes),
and 3 corresponds to an arbitrary number of frames in the packet [4].

In addition to the TOC-byte, there may be a need for transmitting additional con-
�guration information within the packet. Information about the con�guration used
for encoding, presented also in Table 2, is included in the packet by expanding the
header with the needed parameters. The expanded header is not arbitrary length,
but prede�ned depending on the two last bits of the TOC-byte (the ones that con-
tain the frame number information) [4].

In the case of Code 2 packet, the header is extended with one or two bytes, which
contain the information about the �rst frame's length. In the case of Code 3 packet,
which is the most complex case, the header is expanded with the information on
number of frames, as well as optional padding information. Additionally, the frame
count byte in the expanded header contains the information whether variable bi-
trate and padding is used. In the case of VBR, an additional subheader is included
where the number of bytes for each frame except the last one is signaled [4]. The
last frame's length equals the remaining length of the packet excluding the known
padding length. In Figure 14 the most complex Opus packet type of Code 3 with
VBR enabled is illustrated.

In Figure 14, the two bits after TOC-byte denote the VBR option and padding
selection (on/o�). M denotes the packet count and indicates the number of frames
in the packet. It is followed by the padding length, which stands for the length of
the padding in the end of the packet if used. This is followed by the frame length
information when VBR is used.

The packing results only in certain types and sizes of packets and therefore, all the
packets not meeting these speci�cations need to be discarded. The Opus codec has a
built-in handling for malformed packets, which checks whether the packet ful�ls the
requirements as speci�ed in the Opus standard [4]. Therefore, no external check for
packet's integrity was needed. When a malformed packet is received, an error code
is returned, which the implemented framework passes to the external application for
further error reporting.

5.1.4 Memory Allocation Requirements

The memory allocation requirements that the codec needs for internal computation
were prede�ned as the internal bu�er lengths are �xed. However, the data bu�ers
used for passing the PCM data and encoded bitstream data to the codec's API need
to be allocated to contain enough space for the maximum possible data length. Al-
though these bu�ers are received from the external application, they must contain

45

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | config |s|1|1|1|p| M | Padding length (Optional) :
 +-+
 : N1 (1-2 bytes): N2 (1-2 bytes): ... : N[M-1] |
 +-+
 | |
 : Compressed frame 1 (N1 bytes)... :
 | |
 +-+
 | |
 : Compressed frame 2 (N2 bytes)... :
 | |
 +-+
 | |
 : ... :
 | |
 +-+
 | |
 : Compressed frame M... :
 | |
 +-+
 : Opus Padding (Optional)... |
 +-+

Figure 14: Opus packet con�guration with the Code 3 type of packing, adopted
from [4].

enough space for the data needed in the Opus codec. In this section, these space
requirements are presented. First, the maximum possible PCM audio length is com-
puted, after which the same measure for the Opus packet size is computed.

For PCM, i.e., encoder's input and decoder's output, the maximum number of sam-
ples can be calculated from the maximum frame length and maximum sample rate
supported in implementation (presented in Table 4). The bit depth in the case of
PCM used by Opus is 16 per sample, and thus the number of bytes (octets) is twice
the number of samples [42].

The Opus codec's standard [4] states, that the decoder must be able to receive Opus
packets that are encoded with arbitrary control parameter settings, i.e., any kind
of Opus packet. Therefore, the maximum bu�er size needed for the PCM data is
de�ned as the maximum size that the decoder will output. As the decoder's output
could be limited to 16 kHz mono, the dominating factor in the maximum bu�er size
allocation is the audio length that the Opus packet contains. With multiple frames
per packet, an Opus packet may contain up to 120 ms of audio data [4]. Therefore,
the maximum number PCM samples that the decoder may output is for 120 ms
audio length of 16 kHz sample rate mono audio. Thus, the maximum number of

46

samples is

nmax = N120ms =
T120ms

Tfs
= T120ms · fs = 0.120 s · 16000 1

s
= 1920, (7)

where nmax is the maximum number of samples, N120ms is the number of samples in
120 ms of mono audio with 16 kHz sample rate, Tfs is the sampling period, and fs
is the sample rate. Thus, byte being 8 bits, the maximum number of bytes is 3840.
Although this is a large bu�er, it does not introduce transmission capacity issues,
as it is only used for internal data handling.

Bu�er sizes for the encoded bitstream, i.e., the output of the encoder and input of
the decoder, require generally less space as the encoded bitstream represents the
compressed audio. However, they could not be calculated with a formula similar to
PCM sample calculation presented in Equation 7 due to the highly varying parame-
ter settings that a�ect the packet's payload size. Opus codec has internally limited
the maximum encoded frame size to 1275 bytes, which corresponds to the size of
encoded FB 20 ms frame with 510 kbit/s bitrate [4]. Furthermore, when multiple
frames can be packed into one packet up to 120 ms of audio data, one Opus packet
may contain six maximum sized encoded Opus frames. Hence, the maximum size
of one Opus packet, i.e., maximum bu�er size needed for containing the maximum
possible encoded bitstream, is

nmax,encoded = Nmaxframe ·
T120ms

T20ms

= 1275 · 120 ms

20 ms
= 1275 · 6 = 7650, (8)

where nmax,encoded is the maximum size of one encoded bitstream packet in bytes,
Nmaxframe is the maximum size of one encoded frame, T120ms is the length of 120 ms
of audio, and T20ms is the length of 20 ms of audio.

The maximum number of bytes of the encoded bitstream is large when it is compared
to the capacity of an ethernet link whose Maximum Transmission Unit (MTU) is
de�ned as 1500 bytes [85]. Thus, the maximum Opus packet does not �t into the
MTU without fragmenting it into separate packets. This is not currently supported
in the external application and thus the implementation was limited to support only
one maximum Opus frame at a time. Therefore, the maximum supported Opus size
was set to a limit of 1275. The bu�er limit calculated for the encoder's PCM (Equa-
tion 7) is su�cient to contain the maximum Opus packet and therefore, the bu�ers
needed for internal calculations are allocated with the PCM bu�er limit of 1920
16-bit samples, i.e., 3840 bytes.

5.1.5 Opus RTP Packing

When transmitting data between network elements, RTP is used on top of UDP.
IETF has standardized, how RTP packet should be packed when transmitting Opus

47

bitstream [41]. Opus' RTP packing follows the RTP standard speci�ed in the
RFC3550 [10]. However, certain RTP packing characteristics are also speci�ed in
the Opus RTP standard [41].

As there are multiple di�erent frame sizes and sample rates available, the timestamp
increment of the RTP packet has been set to the maximum possible, which is for
48000 Hz sample rate with 2 channels [41]. For the control information needed,
the IETF has standardized an SDP mapping speci�cation so that a session with
the Opus codec can use the right set of control parameters. However, the control
information does not include the payload size or length information, and thus it
must be included in the transport layer packet headers. Furthermore, the standard
states that only one Opus packet must be transmitted with one RTP packet [41].
As a result, the RTP payload size corresponds to the contained Opus packet's size.
This size can be obtained from UDP header, on top of which the RTP packet is
transmitted.

The protocol level handling was not implemented in the scope of this thesis. There-
fore, the control I/O of the implemented codec framework may experience changes
if the parameter settings need to be modi�ed for the protocol handling layer.

5.1.6 Packet Loss Handling and Discontinuous Transmission

When the encoded Opus bitstream is transmitted over an unreliable network pack-
ets may be lost. Therefore, Opus has included methods to improve the packet loss
robustness. In these situations, normal decoding procedure cannot be performed,
but special handling for lost packets is needed. These methods include FEC and
PLC.

FEC is controlled with a �ag through control I/O, which informs the decoder that
the previous packet was lost and that the decoder should use the redundant infor-
mation encoded to the bitstream from this lost packet. This information comes from
the external application and thus no additional check for lost packets was needed in
the implemented framework. The FEC �ag is transmitted via control I/O, which
the implemented framework passes directly to the Opus API.

PLC is another feature for improving additional packet loss robustness. Originally,
it was an optional feature that was not included in the Opus standard [4]. How-
ever, in the version used for this implementation the PLC functionality was already
built-in. It is invoked by passing a packet of one-byte to the decoder containing the
TOC-byte of the previously decoded frame [42]. When a packet is lost the external
application generates an empty packet with a header with size information of 0.
When this type of packet is transmitted to the implemented framework, it invokes
the PLC functionality.

48

Discontinuous transmission is supported in Opus for reducing the transmission load
even further. However, the standard [4] recommends to use only VBR as it already
includes the bitrate reduction when no voice activity is detected. Therefore, in the
encoder the DTX support was not implemented. However, as the decoder must
support all con�gurations, DTX handling was included on the implemented frame-
work's decoder functionality. The Opus codec's DTX uses the same algorithms as
are used in PLC. The API invokes the DTX similarly to the PLC and therefore
the framework was implemented to pass a one-byte packet to the decoder with the
TOC byte of the previous frame, whenever a packet was loss and no FEC data was
available [42].

5.2 Compilation of the Codec

As the implementation was integrated with with a C-language API, it needed to be
compiled. As was discussed in Section 4.5 the compilation plays a signi�cant role
in the program execution. Therefore, as part of the implementation conducted for
this thesis, also performance related to the compilation of the API was benchmarked.

In the implementation, the API functions were compiled into libraries in order to
reduce the compilation time of the whole application. Consequently, the functions
could be linked to the application from the libraries. Therefore, the prolonged com-
pilation time caused by the optimization �ag was not taken into consideration when
benchmarking the compilation.

The used compiler was GCC version 4.3.2 and a 32-bit compilation was used. The
Opus encoder and decoder libraries were compiled with and without optimization.
For the optimization, level -O3 was used for the maximal improvements in the ex-
ecution. After the performance of these two levels was evaluated, the compilation
optimization was �xed depending on the gained performance.

49

6 Testing

The implemented Opus codec was tested for two aspects: functionality and per-
formance. The former one was required to determine whether the implemented
codec was working as speci�ed and was compared to the reference Opus application
provided by the codec's developers. The reference application used the Opus API
for coding and had a user interface, through which raw PCM data �les could be
fed to the API functions. Performance was measured to evaluate how e�cient the
codec's algorithms are and consequently how much of the processor's full capacity
one coding instance consumes. Furthermore, the performance measurement results
were used for benchmarking di�erent parameter sets and to �x certain parameters
to a constant value, e.g., the complexity.

6.1 Functional Testing

The functionality was tested via module testing. Thus, the codec module was tested
individually with a given input and the output was compared to a reference. The
module tests were built on an existing codec test framework. The codec to be tested
had a separate con�guration source �le, as well as input, output, and reference data
binary �les which were used as the data I/O for the tests. In addition, the test cases
were listed in additional con�guration �les, independently to encoder and decoder,
providing a possibility to choose which test cases to be tested without recompiling
the source code.

The module test procedure is illustrated in Figure 15. As the �gure shows, the
actual tests were run in two phases. First, the input �les were opened and loaded to
the memory after which they were encoded, for the encoder test cases, or decoded,
for the decoder test cases. Subsequently, the encoded/decoded data was written to
output �les. Second, the output �les were compared to the reference �les so that if
the output was bit-exactly identical to the reference �le, the test passed, otherwise
failed.

Encoder input contained PCM data which had a format that the Opus codec can
handle, thus 16-bit PCM [42]. The only controllable parameter of the encoder, the
sample rate selection, was transmitted from the test environment and originally read
from the con�guration �le. As there were no test vectors for the encoder provided
along the codec, they were generated with the given reference application using the
same input �les as in the tests. This can be seen in Figure 15 where the lower
branch denotes the reference �le generation. The generation of the used test data is
explained more in detail later in this chapter.

Test data of the decoder contained Opus-packets. The packet's header included
all the con�guration data excluding the output sample rate, channel selection, and
FEC usage. Therefore, these were transmitted from the test framework to the im-
plemented codec framework with the same control I/O structure, as was speci�ed

50

Codec Test

Framework

Opus Demo

Application

Implemented

Codec

Codec Test

Framework

Bit

Compliance

Comparison

PASS/FAIL

Reference file

Input

file

Input

PCM/Opuspacket

Output

Opuspacket/PCM

Output file

Figure 15: Module testing block diagram.

in Section 5.1.2. For the decoder there were test vectors provided along the codec.
However, they were not bit exact vectors, but general conformance test vectors,
which only tested if the implementation matches the reference within certain mar-
gins. To ensure that the implemented codec is fully bit compliant with the reference
implementation, bit-exact test cases were generated with the use of the reference
application also for the decoder.

In addition to tests with valid test data, the module tests were run with invalid
input data. These included tests with invalid or corrupted Opus-packets, tests with
NULL pointers, as well as tests with invalid internal framework data. These tests
tested the error handling so that even in the error situation, the integrated codec
did not abort the system unexpectedly. With internal error handling and valid use
of error codes, the error situations could be handled to avoid uncontrolled behav-
ior. Consequently, also the error reporting was tested in the invalid input data tests.

6.2 Test Data Generation

Because there were no bit-exact test vectors provided with the codec, they needed
be generated. The essential aspect was to cover all the possible parameter con�gu-
rations thoroughly.

The audio data was chosen from an existing audio bank. It consisted of raw 16-bit
PCM �les with a sample rate of 48 kHz. Furthermore, it included mainly various
speech samples of di�erent lengths, both with male and female speakers. Moreover,
there were also music samples with the 48 kHz sample rate available. In addition
to the continuous tests, the decoder DTX tests required data with silence or back-
ground noise periods. As a result, some test �les were connected together with a
several second gap in between. Furthermore, white noise was added with low level
to the DTX �les, as the input data in the mobile networks is very likely to contain

51

background noises. From the FB PCM audio data, the lower sample rates could
be obtained through sampling rate conversion [56]. For this purpose, ITU's toolset
G.191 [86] was used.

After suitable raw PCM data was generated, it was driven through a reference appli-
cation provided with the Opus codec [87]. For the encoder, the test cases consisted
of the raw PCM data as an input, and the output of the decoder as the reference
�le for the actual test execution. The decoder test cases were generated so that the
audio to be tested was �rst encoded with the reference application, after which the
output of the encoder was saved as the input of the test case. Subsequently, it was
driven through the reference application's decoder which output the reference to the
test case. Moreover, the basic speech and music test cases with VoIP application
selection were run with both of the supported output sample rates, 8 and 16 kHz.

The bitrate selection was set to the higher limits of the bitrate ranges recommended
in the Opus standard [4] for all the audio bandwidths. However, an additional high-
bitrate test for the decoder was included, in which the bitrate was set to maximum,
510 kbit/s. Furthermore, part of the tests was repeated with audio, and restricted
low-delay application selections. As a result, with 20 speech, 2 music and 5 DTX
PCM samples, almost 800 di�erent test cases were generated.

6.3 Performance Testing

The performance of the implemented codec was tested by computing the execution
speed for the encoder and decoder separately. For this purpose, the number of clock
cycles elapsed for the coding was measured by reading the time stamp counter of the
processor. The tests were run in the module test environment with a PC equipped
with an Intel Haswell, Core i7-4700MQ, processor with a clock rate of 2.4 GHz [70].
Furthermore, the test application was run natively on Linux Mint with the appli-
cation's process priority set to the highest and the scheduling class set to real-time.
Furthermore, the test application's core a�nity was set to only one core, so that no
overhead of switching from a core to another during processing was introduced.

The actual execution speed integrated to the whole surrounding application could
not be obtained with this test method, but the approximate execution time for
purely codec processing could be evaluated. In addition, when the corresponding
tests were run on a traditional DSP implementation, the performance could be com-
pared between the two platforms.

For the DSP version, there was a third-party optimized implementation of the Opus
codec for TI's TMS320TCI6486 processor. In the DSP implementation, the most
computationally intensive parts of the code were implemented with Assembly lan-
guage, and many general C-language functions were substituted with built-in func-
tions, also known as intrinsics, which provide a possibility to call Assembly instruc-

52

tions from the C-code. The performance tests for the DSP were run with a TI's
cycle accurate simulator for the particular processor.

The number of clock cycles does not indicate the execution speed totally because
it is dependent on the clock rate of the processor. Furthermore, as the execution
time depends on the input data's frame length, the performance was measured by
computing how many clock cycles are consumed with a certain parameter set when
processing one second of data. Consequently, when the data is processed so that
it is segmented into frames, the measured clock cycle count needs to be multiplied
with a factor of 1 s

Tframe
, where Tframe is the frame length. Moreover, the number

of cycles that the codec consumes when processing one second of data is a large
number (when the used x86 processes 2.4 gigacycles per second). Therefore, the
measure is given in megacycles per second. The number of megacycles in second
can be computed with the following formula

Nmegacyclespersec =
Nframe · 1s
Tframe · 106

, (9)

where the Nmegacyclespersec is the number of megacycles consumed in processing one
second of data, and Nframe is the measured cycles when processing one frame.

The clock cycles were measured simply by reading the Time Stamp Counter (TSC)
register of the x86 and TMS320TCI6486 DSP processors, before and after the encode
and decode function calls. This register stores the value of how many clock cycles
have passed after the previous reset [88]. Thus, the di�erence in the value, read
from this register before and after the encoder or decoder function call, results in
the consumed clock cycles for encoding and decoding. However, this register is core
speci�c and thus all processes run with the particular core a�ect the value within
this register. For the x86 this yields a situation where system interrupts may occur
during the execution resulting potentially in a bias. The DSP is not a�ected by this
because the simulator calculates only the cycles spent for processing the algorithms.

Before executing the general performance tests, the compilation optimization levels
were tested with the method introduced in this chapter. The tested levels were
none, and the level -O3. After obtaining the results, the compilation optimization
was �xed to the level with the best performance, after which other performance tests
could be run on that level.

To determine the performance thoroughly, the number of clock cycles needs to be
measured for all the parameter con�gurations supported in the implementation.
Therefore, all the module test cases were run with the cycle measurements to collect
data from all the di�erent combinations. In addition, this type of performance anal-
ysis provides information about the most demanding parameter settings, as well as
the maximum capacity needed for running one encoding or decoding instance. With
this information, approximations of how many coding instances can be run on one
processor core simultaneously can be derived.

53

The only parameter with separate performance tests was the implementation spe-
ci�c complexity parameter. It was tested by altering the value from 0 to 10 with
an increment of 1, after which it could be �xed to the most suitable value. All the
other parameter con�guration performance tests used the prede�ned constant of 5
for the complexity.

54

7 Test Results

The implementation of the Opus codec was tested for functionality, as well as for
performance on an x86 processor. In this chapter, the results of these tests are
presented and evaluated with a comparison to the performance of a DSP. The pro-
cessors that were used in the tests were Intel Core i7-4700MQ for x86 and Texas
Instruments TMS320TCI6486 for DSP.

7.1 Functional Test Results

The functional tests compared the bit compliance between the output of the imple-
mented codec and the output of the reference codec application. After the data was
generated for all the tests, they were run through the implemented codec within
the module test environment. All the test cases matched bit-exactly and thus, the
requirement for bit compliance was met and the valid input data test cases passed
the functional tests.

The error handling was tested with invalid input test set. The tests included tests
with corrupt data including NULL tests, and con�icting parameter settings. The
implemented framework reported error using prede�ned error codes in the error
situations. The error reports of the tests were compared to previously generated
reference of the report. All the error reports matched the prede�ned error codes
and thus no unexpected behavior was detected during the tests. Thus, also the
invalid input data tests passed the tests.

7.2 Performance Test Results

The performance tests provided information about the execution speed of the imple-
mented codec as well as the capacity needed for one coding instance. In the following
sections the results of the performance tests are presented. First, the compilation
optimization test result is reviewed as its results were used in the subsequent perfor-
mance tests. Second, the performance measured for each parameter con�guration
is reviewed, after which the complexity parameter test results are introduced and
discussed. The results include also the DSP performance. Finally, at the end of this
chapter the performances of these two architectures are evaluated and compared.

7.2.1 Compilation Optimization Test Results

The performance was measured with di�erent optimization levels of the used com-
piler, GCC, with WB speech test cases for encoder and speech test cases with two
di�erent frame lengths for the decoder. The used optimization levels were none and
optimization level -O3, which provides the highest optimization in compilation.

In Figure 16a the performance measurement results with two di�erent optimization
levels are shown for the encoder. The y-axis denotes the megacycles / second and

55

the x-axis denotes the testcase under execution. The results denote the average per-
formances of all the frames for each test case. Figure 16b presents the compilation
performance comparison for the decoder with two di�erent frame lengths, 2.5 ms
and 20 ms. The x-axis denotes the test case under execution with four speech test
cases presented for all the sample rates supported in the Opus codec.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

m
e

ga
cy

cl
e

s
/

se
co

n
d

Test case

Encoder Performance for WB Speech Test Cases, with and without Optimization

No compilation optimization

Optimized with flag -O3

(a)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

m
e

ga
cy

cl
e

s
/

se
co

n
d

Decoder Performance Results for Speech Test Cases with Different Bandwidths,
with and without Optimization

No optimization, 2.5 ms

No optimization, 20 ms

Optimized with -O3, 2.5 ms

Optimized with -O3, 20 ms

NB
 1 2 3 4 1 2 3 4

MB WB SWB FB

 1 2 3 4 1 2 3 4 1 2 3 4

(b)

Figure 16: Compilation optimization performance results for the encoder (a) and
decoder (b).

56

As can be seen in Figure 16, the optimization in the compilation stage a�ects sig-
ni�cantly on the performance of the application. For the encoder, the optimized
compilation approximately halves the consumed megacycles / second compared to
non-optimized version.

For the decoder, the performance shows similar behavior, as the version with opti-
mized compilation of the codec seems to result in half of the megacycles / second
compared to the non-optimized one. There is a signi�cant increment in the results
for SWB and FB with the frame length 20 ms, for both optimized and non-optimized
compilations.

When the input Opus packets of these test cases were observed, it could be seen that
the coding mode was hybrid for SWB, and CELT for FB, whereas all the other band-
widths were coded in the SILK mode. Thus, including the CELT layer decreases
the execution speed. Furthermore, the magnitude of the 2.5 ms test cases' execution
time is higher with all the sample rates. The coding mode used for all of these test
cases was CELT as well, because the frame length is not supported in the SILK layer.

The optimized compilation results in signi�cant improvement in the execution speed
compared to the non-optimized compilation. Therefore, the compilation optimiza-
tion level -O3 was �xed for the implementation. Furthermore, the codec libraries
compiled with this optimization �ag were used in the further performance tests.

7.2.2 Encoder Performance with Varied Parameter Con�guration

The performance tests with the varying parameter con�gurations were performed
by measuring the execution speed for all the test cases generated for the functional
tests. For the encoder the parameters were mostly �xed to the external application's
needs and therefore the only varied parameter was the sample rate. Furthermore,
the used parameters resulted in a situation where all the test cases were encoded
with the SILK layer. Therefore, all the encoder performance results gathered for
this thesis denote the performance of the this layer of the encoder.

In Figure 17 the average performance measurement results for the 20 speech test
cases are illustrated for both, NB (blue) and WB (black) bandwidths. The measures
were obtained by computing arithmetic means from all the frames' individual per-
formance results of each test case. In the �gure, x-axis denotes the test case under
execution and y-axis the average number of megacycles / second of each test case.

As can be seen in Figure 17, the performance results for NB test cases are varying
between 21 ... 24 megacycles / second with an average of 22.3625 megacycles /
second. The performance results for WB test cases are varying between 38 ... 42
megacycles / second with an average of 40.0595 megacycles / second. Thus, a
higher audio bandwidth results in a longer execution time.

57

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

m
e

ga
cy

cl
e

s
/

se
co

n
d

Test case

Encoder Performance Averages for NB and WB Speech Test Cases

WB

NB

WB - Average
40.0595 Mcycles/s

NB - Average
22.3625 Mcycles/s

Figure 17: Encoder performance averages for the speech test cases.

The encoder performance was tested also with data containing music. The functional
tests included one NB and one WB test containing music data. For the former one,
average execution speed, calculated over all the frames tested, was 22.67 megacycles
/ second, and for the latter one 39.80 megacycles / second. Thus, the performance
is approximately of the same magnitude as was measured for speech data.

As the actual execution speed depends on the clock rate of the processor, the relative
performance is a more descriptive measure. It can be obtained by dividing the
measured absolute values of the performance by the processor's clock rate. For NB
it is approximately

22.3625 megacycles / second

2400 megacycles / second
· 100 % ≈ 0.93 % (10)

of the processor's full capacity. Respectively, for WB the relative performance is
approximately

40.0595 megacycles / second

2400 megacycles / second
· 100 % ≈ 1.67 % (11)

of the processor's full capacity.

7.2.3 Decoder Performance with Varied Parameter Con�guration

Decoder test cases included a larger set of test cases as all the possible parameter
combinations needed to be supported in the implementation. The performance re-
sults of the speech test cases with the VoIP application selection are presented in

58

Table 6. The results were obtained by calculating arithmetic means of all the test
cases' average performance results that share the same set of parameters. The input
Opus packet of each test case was reviewed to determine, whether it was encoded
with the SILK layer, CELT layer, or both. In the table, green color denotes the
SILK layer cases, blue the CELT layer cases, and orange the hybrid cases.

Table 6: Decoder performance for speech test cases. Green color denotes the SILK
layer, blue the CELT layer, and orange the Hybrid layer.

As Table 6 shows, the di�erences in the performance between the varying output
sample rates are quite minimal. Moreover, the test data containing CELT and hy-
brid layers results in longer execution times than the SILK layer cases. There is also
a slight increment in the measured megacycles / second when the audio bandwidth
is increased.

When the speech test cases were measured with the application selection of audio,
the performance was approximately at the same magnitude as was measured for
VoIP mode. However, the SWB cases with frame lengths of 20 ms and 40 ms were
decoded with the CELT layer, not the hybrid layer as was the case with VoIP ap-
plication selection. This reduced the execution time slightly. This is presented in
Table 7.

Table 7: Decoder performance for speech data, application selection Audio. Green
color denotes the SILK layer and blue the CELT layer.

59

To determine the worst case performance, the decoder was tested with an input
of encoded FB stereo music with a bitrate of 510 kbit/s. The output was forced
to mono 8 kHz, as the external application can operate only with a subset of the
parameters supported in the Opus codec by default. In Table 8, the measured
megacycles / second are presented for the high bitrate stereo music test case. Blue
color indicates that the cases were encoded with CELT layer.

Table 8: Decoder performance for FB stereo music, bitrate 510 kbit/s. Blue color
denotes the CELT layer.

The number of the consumed cycles for high bitrate FB stereo music is signi�cantly
higher compared to the FB mono speech with recommended bitrate as was presented
in Table 6. Furthermore, the shorter the frame length is, the more megacycles /
second are consumed for decoding. The maximum value of 29.83 megacycles /
second was measured for the shortest frame length, 2.5 ms. This yields a relative
performance of approximately

29.83 megacycles / second

2400 megacycles / second
· 100 % ≈ 1.24 % (12)

of the processor's full capacity.

Restricted Low-Delay application selection was also tested in terms of performance.
The speech data test case performance results are gathered in Table 9. Blue color
indicates that the test cases were decoded with CELT layer. As the results show,
the Restricted Low-Delay mode for short frame lengths seems to produce better per-
formance than VoIP application selection. However, the SILK layer cases produce
better performance as could be seen in the VoIP application selection performance
results with the speech data (Table 6).

The remaining parameter con�gurations resulted approximately in the same mag-
nitude of performance as was measured for speech test cases with the application
selection VoIP (Table 6). All the remaining performance measurement results for
the decoder are presented in Appendix A.

7.2.4 Complexity Parameter Performance Test Results

The complexity parameter of the encoder was tested in terms of performance. For
this purpose, the WB speech test case number 20 was run with all the di�erent

60

Table 9: Decoder performance for speech data, application selection Restricted Low
Delay. Blue color denotes the CELT layer.

complexity values, from 0 to 10, with an increment of 1. In Figure 18 the perfor-
mance results with varied complexity are illustrated for this test case. On the x-axis
the frame under processing is presented, whereas the y-axis denotes the average
megacycles / second over the whole test case.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

0 1 2 3 4 5 6 7 8 9 10

m
e

ga
cy

cl
e

s
/

se
co

n
d

Complexity

Encoder Performance with Varied Complexity Parameter

Figure 18: Encoder performance for speech test case 20 with varied complexity
parameter.

As can be seen in the �gure, the execution time increases nearly directly propor-
tionally to the complexity parameter. The initially set complexity level of 5 does
not seem to demand more execution time than the complexity level 4, whereas com-
plexity level 3 is signi�cantly more e�cient than the initially set value. However, as
could be seen in Figure 8, the complexity values that are less than 5 result in lower
audio quality. On the other hand, there is no signi�cant improvement in the quality
with the complexity levels higher than 5. Therefore, the initially set complexity
value of 5 was �xed for the implementation.

61

7.2.5 Performance Results of DSP

The same set of tests was run with an optimized DSP version of the codec with the
TI TMS320TCI6486 processor. In Figure 19 the encoder speech test performance
averages are presented and in Table 10 the decoder performance averages for speech
test cases are presented. Green color in the decoder results denotes the SILK layer
cases, blue color the CELT layer cases, and orange color the hybrid cases.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

m
e

ga
cy

cl
e

s
/

se
co

n
d

Test case

Encoder Performance Averages, Processor TI TMS320TCI6486 DSP

WB

NB

WB - Average
28.930 Mcycles/s

NB - Average
16.660 Mcycles/s

Figure 19: Encoder performance averages for speech test cases with TI
TMS320TCI6486 DSP.

Table 10: Decoder performance speech test cases, with TI TMS320TCI6486 DSP.
Green color denotes the SILK layer, blue the CELT layer, and orange the Hybrid
layer.

Frame length NB MB WB SWB FB

2.5 ms 13.15 15.53 15.52 17.82 21.00

5 ms 9.03 10.35 11.05 13.57 15.80

10 ms 2.26 3.28 4.73 10.22 12.41

20 ms 1.85 2.76 4.08 9.21 11.40

40 ms 1.82 2.74 4.06 N/A N/A

60 ms 1.79 2.72 4.02 N/A N/A

2.5 ms 13.16 15.53 15.52 17.82 21.00

5 ms 9.04 10.35 11.05 13.57 15.80

10 ms 2.36 3.28 4.07 9.54 12.40

20 ms 1.95 2.77 3.43 8.55 11.40

40 ms 1.93 2.74 3.41 N/A N/A

60 ms 1.90 2.72 3.37 N/A N/A

Decoder Speech Test Performance Result Averages (megacycles / second), TI TMS320TCI6486 DSP

8 kHz out

16 kHz out

62

As the results of the encoder performance show, the speech test cases result in an
average of 16.660 megacycles / second for NB and 28.930 megacycles / second for
WB. The decoder results show, similarly to x86 results, no di�erence in performance
when comparing the two di�erent output sample rates. Furthermore, the SILK test
cases result in a better performance than the CELT cases or hybrid cases.

In addition to speech tests, also the high bitrate FB stereo music test case was tested
with the DSP version of the implemented codec. In Table 11 results for this test
case are presented. Blue color denotes the CELT layer. The results are higher than
the decoder's speech test case results encoded with the recommended bitrates. The
average number of megacycles / second that the decoding procedure consumes with
the DSP for the high bitrate FB stereo data, is 37.85 megacycles / second.

Table 11: Decoder performance for high bitrate FB music data, with TI
TMS320TCI6486 DSP. Blue color denotes the CELT layer.

Frame length FB

2.5 ms 41.30

5 ms 39.13

10 ms 36.66

20 ms 34.32

High Bitrate FB Stereo Music Performance Test Results (megacycles / second), TI TMS320TCI6486 DSP

8 kHz out

The relative performance of the DSP can be calculated when the clock rate, 625
MHz, is known [89]. Encoding of NB speech could be performed with

16.660 megacycles / second

625 megacycles / second
· 100 % ≈ 2.67 % (13)

of the processor's full capacity. Respectively, WB speech could consumed the pro-
cessor with

28.930 megacycles / second

625 megacycles / second
· 100 % ≈ 4.63 % (14)

load. For the decoder, the most demanding test case of FB stereo music took

37.85 megacycles / second

625 megacycles / second
· 100 % = 6.06 % (15)

of the processor's full capacity.

7.2.6 Performance Evaluation and Comparison

The encoder resulted in a di�erent magnitude of performance depending on the in-
put sample rate of the audio. The reason for this is related to the higher number of
samples when higher sample rate is used. This yields longer algorithmic delays when
sample-based processing, e.g., iteration over a whole frame, is performed within the
codec. Similar phenomenon was present in the decoder, only with smaller relative

63

increment between the di�erent sample rates. On the other hand, the higher sam-
ple rates were also encoded with higher bitrate, which may partly also increase the
processing load.

The decoder's performance showed signi�cant di�erences between the SILK and
CELT layers with SILK performing faster in all the test cases. This is due to di�er-
ent sample rates. The SILK operates internally always with the sample rate of the
incoming signal, whereas the CELT layer is handled internally with the sample rate
of 48 kHz regardless of the input audio's bandwidth [4]. Furthermore, the decoder
tests that were coded with both of the layers, thus with the hybrid mode, were exe-
cuted slower than the corresponding test cases that were coded with the CELT only.
This mode includes both of the layers and thus the procedure is computationally
more demanding.

Varying frame length a�ects on the performance as could be seen in the decoder per-
formance tests. Shorter frame lengths are computationally more demanding than
the long ones. According to Opus standard [4] the coding is more e�cient on longer
frame lengths up to 20 ms. Thus, this behavior is an internal feature of the codec.

The most demanding test case of the decoder contained FB stereo music with max-
imum possible bitrate. The bitrate a�ects on the quality and thus demands more
computation. On the other hand, stereo data contains the double amount of sam-
ples compared to mono and thus, the two separate channels introduce the same
phenomenon as was present in the increasing sample rate.

When comparing the absolute values of the performances between the two tested
processors, it can be seen that the DSP consumes lessmegacycles / second when en-
coding. Furthermore, the x86 performance results include slightly more �uctuation
compared to the DSP ones. This is due to the timestamp counter, which is system
wide in the x86 test environment. As a result, an occasional system interrupt that
was run on the same core of the x86 as the test process, increased elapsed cycles
of the counter. However, these interrupts were rare and did not include signi�cant
bias to the measured results. The cycles needed for decoding were approximately at
the same magnitude with of the both processors apart from the short frame length
test cases. With the 2.5 ms and 5 ms frame lengths the x86 resulted in less cycles
than the DSP.

Comparison of the relative performances between the two processors provides a
better picture of the processor's capability. Theoretically, in the real application,
there might be one encoding and one decoding instance processed simultaneously.
This, so called full-duplex case consumes for the most demanding parameter set
1.67 % + 1.24 % = 2.91 % of the x86 processor's full capacity. Respectively, the
DSP uses 4.63 %+6.06 % = 10.69 % of its full capacity when processing full-duplex
coding with the Opus codec. Thus, when comparing the relative performance be-
tween the two tested processors, the x86 outperforms the DSP.

64

Although there is always an external application that consumes the processor capac-
ity, a rough estimation on how many simultaneous full-duplex coding instances can
be performed on a single processor core can be computed with the relative processor
load measurements. With x86 processor, approximately

100 %

2.91 %
≈ 34 (16)

simultaneous full-duplex coding instances can be performed per core. Respectively,
with one TI TMS320TCI6486 DSP core approximately

100 %

10.69 %
≈ 9 (17)

simultaneous full-duplex coding instances can be performed.

65

8 Discussion and Conclusions

The study performed for this thesis aimed to evaluate a modern hybrid codec called
Opus when implemented on a virtualized core network function with an evaluation
of the computational performance. The evaluation consisted of specifying the re-
quirements, integrating the codec, test the functionality and performance, as well
as comparing the latter one to an optimized DSP version of the codec.

The results of performance measurements showed that the standard C-implementation
of the Opus codec performed su�ciently for the purpose used. In addition, when
comparing to an optimized implementation of a DSP, the performance of the x86
showed very promising results. Although, the absolute number of megacycles /
second was slightly higher for the x86 version when encoding, the relative perfor-
mance was better on the used GPP. This was a remarkable result since when the
similar comparison was performed to another codec, AMR-WB, there was a di�er-
ence of a decade between the number of megacycles / second with x86 performing
slower. This can be understood by taking the history of the codec's development
into consideration, as the Opus has been from the beginning targeted to the GPPs
of the desktops. Comprehensive code pro�ling was not performed as a part of this
thesis. However, the preliminary pro�ling showed that the AMR-WB codec con-
sumed majority of the execution time performing the MAC operation on the x86,
whereas Opus' algorithms included this operation more e�ciently.

The performance results obtained in this thesis denote purely the execution speed,
whereas the power consumption or price of the processor are not taken into consider-
ation. E.g., compared to the power rating of TI TMS320C64x processor family, the
used x86 processor consumes power of almost a decade more [70, 90]. Furthermore,
the DSP of the same family can be purchased with 1/4 ... 1/2 the price of the used
x86 [70, 91]. To conclude the performance comparison in this thesis, for Opus codec
the tested x86 provides su�cient performance in terms of execution speed. Thus,
the execution time will not be the limiting factor when implementing the network
functions for generalized hardware.

There have been newer releases of the codec since the standardization, which have
included improvements in the performance as well as additional features. For in-
stance, as of version 1.1 a built-in application selection can be used so that the
codec detects the information automatically and determines whether to code in
VoIP, Audio or Restricted Low-Delay mode [87]. This would be especially useful in
the application to which the codec was implemented, as there is no way to detect
whether the input data is audio or speech. In addition, newer releases have also in-
cluded further optimization of the codec for di�erent GPPs, e.g., x86, and ARM [87].

In addition to the Opus codec, other e�orts to provide high-quality and versatile
codecs are on-going. 3GPP's EVS combines their previous Adaptive Multi Rate
(AMR) coding technologies, and a transform coding technology into one framework

66

to provide versatility as well as enhanced quality and coding e�ciency [92]. The
supported sample rates start from commonly used 8 kHz and span up to 48 kHz,
which allows better quality for information containing both speech and music. Also,
the codec utilizes di�erent methods to provide robustness to packet loss and delay
jitter and thus leads to optimized IP behavior. The di�erence compared to Opus
codec is that EVS is designed to be run natively on the mobile networks whereas
Opus was targeted to VoIP communication [4, 92].

For further study, a comparative test between this new codec and the implemented
Opus codec would provide valuable information on how another state-of-art high
quality codec �ts into the virtualized network. The performance study introduced
in this thesis could be also conducted to other GPPs, such as ARM, to provide
information on how the other generic processor architectures perform the signal
processing. Furthermore, comparison to a newer DSP, such as TI TMS320C66x
family, could be performed so that the DSP would also be state-of-art technology.
In addition, it would be interesting to measure how the newer releases of the Opus
codec perform in the general hardware, as there have been e�orts to optimize the
algorithms for GPPs. Furthermore, the use of processor vendors' own compilers, as
well as tuning the compilation to take advantage of the newest instruction sets of
the used processor, could improve the execution speed even further.

67

References

[1] I. Grigorik, High Performance Browser Networking. O'Reilly Media, Inc.,
2013.

[2] A. Leon-Garcia and I. Widjaja, Communication Networks. McGraw-Hill, Inc.,
2003.

[3] P. Bosch, A. Duminuco, F. Pianese, and T. Wood, �Telco Clouds and Vir-
tual Telco: Consolidation, Convergence, and Beyond,� in IEEE International
Workshop on Broadband Convergence Networks, May 2011, pp. 982�988.

[4] IETF, �De�nition of the Opus Audio Codec,� Internet Engineering Task Force,
RFC 6716, 2012.

[5] S. Akhtar, �2G-4G Networks: Evolution of Technologies, Standards, and
Deployment,� Encyclopedia of Multimedia Technology and Networking, 2009,
http://faculty.uaeu.ac.ae/s.akhtar/EncyPaper04.pdf, accessed: 29.10.2014.

[6] 3GPP, �Technical Speci�cation Group Core Network and Terminals; IP Multi-
media Subsystem (IMS) Application Level Gateway (IMS-ALG) - IMS Access
Gateway (IMS-AGW) Interface: Procedures Descriptions,� ETSI, TS 23.334
V12.4.0, 2014.

[7] 3GPP, �About 3GPP,� http://www.3gpp.org/about-3gpp/about-3gpp, ac-
cessed: 12.08.2014.

[8] IETF, �Media Gateway Control Protocol Architecture and Requirements,� Net-
work Working Group, RFC 2805, 2000.

[9] 3GPP, �Technical Speci�cation Group Core Network and Terminals; Media
Gateway Controller (MGC) - Media Gateway (MGW) Interface; Stage 3,�
ETSI, TS 29.232 V12.0.0, 06 2014.

[10] IETF, �RTP: A Transport Protocol for Real-Time Applications,� Internet En-
gineering Task Force, RFC 3550, 2003.

[11] IETF, �SDP: Session Description Protocol,� Internet Engineering Task Force,
RFC 4556, 2006.

[12] T. D. Rossing, F. R. Moore, and P. A. Wheeler, The Science of Sound.
Addison-Wesley, CA, 2002, vol. 3.

[13] M. Karjalainen, Kommunikaatioakustiikka, 2nd ed. Espoo: Helsinki University
of Technology, 2008.

[14] W. He and T. Qu, �Audio Lossless Coding/Decoding Method Using Basis Pur-
suit Algorithm,� in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), CA: Vancouver, May 2013, pp. 552�555.

http://faculty.uaeu.ac.ae/s.akhtar/EncyPaper04.pdf
http://www.3gpp.org/about-3gpp/about-3gpp

68

[15] T. Painter and A. Spanias, �Perceptual Coding of Digital Audio,� Proceedings
of the IEEE, vol. 88, no. 4, pp. 451�515, 2000.

[16] T. Liebchen, M. Purat, and P. Noll, �Improved Lossless Transform Coding of
Audio Signals,� Impulse und Antworten, pp. 159�170, 1999.

[17] K. Brandenburg and G. Stoll, �ISO/MPEG-1 Audio: A Generic Standard for
Coding of High-quality Digital Audio,� Journal of the Audio Engineering Soci-
ety, vol. 42, no. 10, pp. 780�792, 1994.

[18] M. Morf, B. Dickinson, T. Kailath, and A. Vieira, �E�cient Solution of Covari-
ance Equations for Linear Prediction,� IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. 25, no. 5, pp. 429�433, Oct 1977.

[19] N. Bhatt and Y. Kosta, �Overall Performance Evaluation of Adaptive Multi
Rate 06.90 Speech Codec Based on Code Excited Linear Prediction Algorithm
Using MATLAB,� International Journal of Speech Technology, vol. 15, no. 2,
pp. 119�129, 2012.

[20] 3GPP, �European Digital Cellular Telecommunications System; Half Rate
Speech Part 2: Half Rate Speech Transcoding (GSM 06.20),� ETSI, TS 300
581-2, 1995.

[21] 3GPP, �Digital Cellular Telecommunications System (Phase 2+); Full Rate
Speech; Transcoding (GSM 06.10 Version 5.1.1),� ETSI, TS 300 961 V5.1.1,
1998.

[22] C. Cellier, P. Chenes, and M. Rossi, �Lossless Audio Bit Rate Reduction,� in
Audio Engineering Society Conference: UK 9th Conference: Managing the Bit
Budget (MBB). Audio Engineering Society, UK, 1994.

[23] IETF, �Coding Tools for a Next Generation Video Codec,� Internet Engineering
Task Force, draft-terriberry-codingtools-01, 2014.

[24] J.-M. Valin, T. B. Terriberry, C. Montgomery, and G. Maxwell, �A High-quality
Speech and Audio Codec With Less Than 10 ms Delay,� IEEE Transactions
on Audio, Speech, and Language Processing, vol. 18, no. 1, pp. 58�67, 2010.

[25] J. Popp, M. Neuendorf, H. Fuchs, C. Forster, and A. Heuberger, �Recent
Advances In Broadcast Audio Coding,� in IEEE International Symposium on
Broadband Multimedia Systems and Broadcasting (BMSB), June 2013, pp. 1�5.

[26] 3GPP, �Digital Cellular Telecommunications System (Phase 2+); Universal
Mobile Telecommunications System (UMTS); LTE; Mandatory speech CODEC
speech processing functions; AMR speech Codec; General description (3GPP
TS 26.071 version 12.0.0 Release 12),� ETSI, TS 126 071 V12.0.0, 2014.

69

[27] 3GPP, �Digital Cellular Telecommunications System (Phase 2+); Universal
Mobile Telecommunications System (UMTS); LTE; Speech codec speech pro-
cessing functions; Adaptive Multi-Rate - Wideband (AMR-WB) speech codec;
General description (3GPP TS 26.171 version 12.0.0 Release 12),� ETSI, TS
126 171 V12.0.0, 2014.

[28] ITU-T, �Pulse Code Modulation of Voice Frequencies,� ITU, ITU-T Recom-
mendation G.711, 1993.

[29] ITU-T, �Low-complexity coding at 24 and 32 kbit/s for hands-free operation
in systems with low frame loss,� ITU, ITU-T Recommendation G.722.1, 2005.

[30] Xiph.org, �The Xiph Open Source Community,� http://www.xiph.org/, ac-
cessed: 27.10.2014.

[31] IETF, �SILK Speech Codec,� Internet Engineering Task Force, draft-vos-silk-
02, 2010.

[32] G. I. Solutions, �Global IP Solutions,� http://www.gipscorp.com/, accessed:
27.10.2014.

[33] IETF, �RTP Payload Format for the Speex Codec,� Internet Engineering Task
Force, RFC 5574, 2009.

[34] IETF, �Constrained-Energy Lapped Transform (CELT) Codec,� Internet En-
gineering Task Force, draft-valin-celt-codec-02, 2010.

[35] M. Goudarzi, L. Sun, and E. Ifeachor, �Modelling Speech Quality for NB and
WB SILK Codec for VoIP Applications,� in Proc. 5th International Confer-
ence on Next Generation Mobile Applications, Services and Technologies (NG-
MAST). IEEE, UK: Cardi�, 2011, pp. 42�47.

[36] IETF, �Internet Low Bit Rate Codec (iLBC),� The Internet Society, RFC 3951,
2004.

[37] H.-H. Rao, Y.-B. Lin, and S.-L. Cho, �iGSM: VoIP Service for Mobile Net-
works,� Communications Magazine, IEEE, vol. 38, no. 4, pp. 62�69, Apr 2000.

[38] R. Cuny and A. Lakaniemi, �VoIP in 3G Networks: an End-to-End Quality
of Service Analysis,� in Vehicular Technology Conference, 2003. VTC 2003-
Spring. The 57th IEEE Semiannual, vol. 2, April 2003, pp. 930�934 vol.2.

[39] A. Rämö and H. Toukomaa, �Voice Quality Characterization of IETF Opus
Codec,� in Proc. Interspeech, IT: Florence, 2011, pp. 2541�2544.

[40] V. Gupta, M. Onufry, H. Suyderhoud, and K. Virupaksha, �Variable Bit Rate
Speech Codec With Backward-type Prediction and Quantization,� Jun. 14 1988,
US Patent 4,751,736.

http://www.xiph.org/
http://www.gipscorp.com/

70

[41] IETF, �RTP Payload Format for Opus Speech and Audio Codec,� Internet
Engineering Task Force, draft-ietf-payload-rtp-opus-02, 2014.

[42] Xiph.Org, �Opus Audio Codec (RFC 6716): API and Operations Man-
ual,� http://www.opus-codec.org/docs/html_api-1.1.0/index.html, accessed:
29.10.2014.

[43] M.-K. Lee and H.-G. Kang, �Speech Quality Estimation of Voice over Inter-
net Protocol Codec Using a Packet Loss Impairment Model,� Journal of the
Acoustical Society of America, vol. 134, no. 5, pp. EL438�EL444, 2013.

[44] A. Rämö and H. Toukomaa, �Voice Quality Evaluation of Recent Open Source
Codecs,� in Proc. Interspeech, JP: Makuhari, 2010, pp. 2390�2393.

[45] K. Vos, K. V. Sørensen, S. S. Jensen, and J.-M. Valin, �Voice Coding with
Opus,� in Audio Engineering Society Convention 135. Audio Engineering
Society, US: New York, 2013.

[46] K. Vos, �A Fast Implementation of Burg's Method,� http://www.3gpp.org/
about-3gpp/about-3gpp, 2013, accessed: 15.11.2014.

[47] P. Kabal and R. Ramachandran, �The Computation of Line Spectral Frequen-
cies Using Chebyshev Polynomials,� IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. 34, no. 6, pp. 1419�1426, Dec 1986.

[48] J.-M. Valin, G. Maxwell, T. B. Terriberry, and K. Vos, �High-Quality, Low-
Delay Music Coding in the Opus Codec,� in Audio Engineering Society Con-
vention 135. Audio Engineering Society, US: New York, 2013.

[49] Xiph.Org, �The CELT Ultra-low Delay Audio Codec,� http://celt-codec.org/,
accessed: 12.08.2014.

[50] Xiph.Org Foundation, �Vorbis I Speci�cation,� http://www.xiph.org/vorbis/
doc/Vorbis_I_spec.html, accessed: 12.08.2014.

[51] J.-M. Valin, T. B. Terriberry, and G. Maxwell, �A Full-bandwidth Audio Codec
With Low Complexity and Very Low Delay,� in Proc. European Signal Process-
ing Conference (EUSIPCO), UK: Glasgow, 2009.

[52] T. B. Terriberry and J.-M. Valin, �Method and System for Two-step Spread-
ing for Tonal Artifact Avoidance in Audio Coding,� 2012, US Patent App.
13/414,418.

[53] H. Malvar, �Lapped Transforms for E�cient Transform/Subband Coding,�
IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 38, no. 6,
pp. 969�978, Jun 1990.

http://www.opus-codec.org/docs/html_api-1.1.0/index.html
http://www.3gpp.org/about-3gpp/about-3gpp
http://www.3gpp.org/about-3gpp/about-3gpp
http://celt-codec.org/
http://www.xiph.org/vorbis/doc/Vorbis_I_spec.html
http://www.xiph.org/vorbis/doc/Vorbis_I_spec.html

71

[54] C.-H. Chen, B.-D. Liu, and J.-F. Yang, �Recursive Architectures for Realizing
Modi�ed Discrete Cosine Transform and Its Inverse,� IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, no. 1,
pp. 38�45, Jan 2003.

[55] S. Lee and I. Lee, �A Low-Delay MDCT/IMDCT,� ETRI Journal, vol. 35, no. 5,
2013.

[56] S. K. Mitra and Y. Kuo, Digital Signal Processing: a Computer-based Approach.
McGraw-Hill New York, 2006, vol. 2.

[57] ITU-T, �Perceptual Objective Listening Quality Assessment,� ITU, ITU-T Rec-
ommendation P.863, 2014.

[58] ITU-T, �Subjective Video Quality Assessment Methods for Multimedia Appli-
cations,� ITU, ITU-T Recommendation P.910, 2008.

[59] R. Chen, T. Terriberry, J. Skoglund, G. Maxwell, and H. T. M. Nguyet, �Opus
Testing,� https://www.ietf.org/proceedings/80/slides/codec-4.pdf, 2011, ac-
cessed: 29.10.2014.

[60] B. Goode, �Voice over Internet Protocol (VoIP),� Proceedings of the IEEE,
vol. 90, no. 9, pp. 1495�1517, 2002.

[61] S. Guha and N. Daswani, �An Experimental Study of the Skype Peer-to-Peer
VoIP System,� Cornell University, Tech. Rep., 2005.

[62] Google Inc., �WebRTC,� http://www.webrtc.org/, accessed: 29.10.2014.

[63] PCI Industrial Computers Manufacturers Group, �AdvancedTCA Short Form
Speci�cation,� PICMG, PICMG 3.0, 2003.

[64] A. Karlsson and B. Martin, �ATCA: Its Performance and Application for Real
Time Systems,� IEEE Transactions on Nuclear Science, vol. 53, no. 3, pp.
688�693, June 2006.

[65] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor Fundamentals:
Architectures and Features. Berkeley Design Technology. Inc, Fremont, CA:
IEEE Press, 1997.

[66] T. Richardson, Q. Sta�ord-Fraser, K. Wood, and A. Hopper, �Virtual Network
Computing,� IEEE Internet Computing, vol. 2, no. 1, pp. 33�38, Jan 1998.

[67] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: the
Hardware/Software Interface, 4th ed. Newnes, 2009.

[68] K. R. Irvine, Assembly Language for x86 Processors. Prentice Hall, 2011.

[69] Texas Instruments, �TMS320C66x DSP CPU and Instruction Set Reference
Guide,� http://www.ti.com/lit/ug/sprugh7/sprugh7.pdf, accessed: 18.08.2014.

https://www.ietf.org/proceedings/80/slides/codec-4.pdf
http://www.webrtc.org/
http://www.ti.com/lit/ug/sprugh7/sprugh7.pdf

72

[70] Intel, �Intel R© CoreTM i7-4700MQ Processor (6M Cache,
up to 3.40 GHz),� http://ark.intel.com/products/75117/
Intel-Core-i7-4700MQ-Processor-6M-Cache-up-to-3_40-GHz, accessed:
08.11.2014.

[71] Texas Instruments, �TMS320C6672 Multicore Fixed and Floating-Point Digital
Signal Processor,� http://www.ti.com.cn/cn/lit/ds/symlink/tms320c6672.pdf,
accessed: 18.08.2014.

[72] Berkeley Design Technology, Inc., �The BDTImark2000: A Summary Measure
of Signal Processing Speed White Paper,� http://www.bdti.com/MyBDTI/
pubs/BDTImark2000.pdf, accessed: 18.08.2014.

[73] K. Williston, �Microprocessors vs. DSPs: Fundamentals and Distinctions,�
in Conference on Embedded Systems, 2005, accessed: 18.08.2014. [On-
line]. Available: http://www.bdti.com/MyBDTI/pubs/050307ESC_MPUs_
vs_DSPs.pdf

[74] Texas Instruments, �TMS320C6457 Communications Infrastructure Digital Sig-
nal Processor,� http://www.ti.com/lit/ds/symlink/tms320c6457.pdf, accessed:
29.10.2014.

[75] Intel, �Intel Xeon Phi Coprocessor Instruction Set Architecture Ref-
erence Manual,� https://software.intel.com/sites/default/�les/forum/278102/
327364001en.pdf, accessed: 18.08.2014.

[76] Intel, �AVX2 Migrating from SSE2 Vector Operations to AVX2 Vector Opera-
tions,� https://software.intel.com/en-us/tags/18026, accessed: 08.11.2014.

[77] J. Hofmann, J. Treibig, G. Hager, and G. Wellein, �Comparing the Performance
of Di�erent x86 SIMD Instruction Sets for a Medical Imaging Application On
Modern Multi-and Manycore Chips,� in Proc. Workshop on Programming Mod-
els for SIMD/Vector Processing. ACM, US: Orlando, 2014, pp. 57�64.

[78] B. Toll, E. Ould-Ahmed-Vall, and I. Albrekth, �Intel Advanced Vector Exten-
sions 2 and Software Optimization,� in Intel Developers Forum - IDF13. Intel
Corporation, 2013.

[79] Intel, �Intel R©CoreTMi7-4960X Processor Extreme Edition (15M
Cache, up to 4.00 GHz),� http://ark.intel.com/products/77779/
Intel-Core-i7-4960X-Processor-Extreme-Edition-15M-Cache-up-to-4_
00-GHz, accessed: 12.08.2014.

[80] �Speed Scores for Floating-Point Packaged Processors,� http://www.bdti.com/
MyBDTI/bdtimark/chip_�oat_scores.pdf, Berkeley Design Technology, Inc.,
accessed: 12.08.2014.

http://ark.intel.com/products/75117/Intel-Core-i7-4700MQ-Processor-6M-Cache-up-to-3_40-GHz
http://ark.intel.com/products/75117/Intel-Core-i7-4700MQ-Processor-6M-Cache-up-to-3_40-GHz
http://www.ti.com.cn/cn/lit/ds/symlink/tms320c6672.pdf
http://www.bdti.com/MyBDTI/pubs/BDTImark2000.pdf
http://www.bdti.com/MyBDTI/pubs/BDTImark2000.pdf
http://www.bdti.com/MyBDTI/pubs/050307ESC_MPUs_vs_DSPs.pdf
http://www.bdti.com/MyBDTI/pubs/050307ESC_MPUs_vs_DSPs.pdf
http://www.ti.com/lit/ds/symlink/tms320c6457.pdf
https://software.intel.com/sites/default/files/forum/278102/327364001en.pdf
https://software.intel.com/sites/default/files/forum/278102/327364001en.pdf
https://software.intel.com/en-us/tags/18026
http://ark.intel.com/products/77779/Intel-Core-i7-4960X-Processor-Extreme-Edition-15M-Cache-up-to-4_00-GHz
http://ark.intel.com/products/77779/Intel-Core-i7-4960X-Processor-Extreme-Edition-15M-Cache-up-to-4_00-GHz
http://ark.intel.com/products/77779/Intel-Core-i7-4960X-Processor-Extreme-Edition-15M-Cache-up-to-4_00-GHz
http://www.bdti.com/MyBDTI/bdtimark/chip_float_scores.pdf
http://www.bdti.com/MyBDTI/bdtimark/chip_float_scores.pdf

73

[81] Intel, �Intel R© Pentium R© III Processor 1.00 GHz, 256K Cache, 133 MHz
FSB,� http://ark.intel.com/products/27529/Intel-Pentium-III-Processor-1_
00-GHz-256K-Cache-133-MHz-FSB, accessed: 29.10.2014.

[82] Intel, �Intel R© C++ Compiler XE 13.1 User and Reference Guide,�
https://software.intel.com/sites/products/documentation/doclib/iss/2013/
compiler/cpp-lin/, accessed: 29.10.2014.

[83] Texas Instruments, �TMS320C6000 Optimizing Compiler v7.6,� http://www.
ti.com/lit/ug/spru187v/spru187v.pdf, accessed: 29.10.2014.

[84] Free Software Foundation, Inc., �Using the GNU Compiler Collection, For
GCC Version 4.9.1,� https://gcc.gnu.org/onlinedocs/gcc-4.9.1/gcc.pdf, ac-
cessed: 29.10.2014.

[85] IETF, �A Standard for the Transmission of IP Datagrams over Ethernet Net-
works,� Internet Engineering Task Force, RFC 894, 1984.

[86] ITU-T, �Software Tools for Speech and Audio Coding Standardization,� ITU,
ITU-T Recommendation G.191, 2010.

[87] Xiph.Org, �Opus Interactive Audio Codec,� http://www.opus-codec.org/, ac-
cessed: 30.10.2014.

[88] Intel, �How to Benchmark Code Execution Times on Intel R©
IA-32 and IA-64 Instruction Set Architectures,� http://www.
intel.com/content/dam/www/public/us/en/documents/white-papers/
ia-32-ia-64-benchmark-code-execution-paper.pdf, accessed: 29.10.2014.

[89] Texas Instruments, �TMS320TCI6486 Communications Infrastructure Digital
Signal Processor,� http://www.ti.com/lit/ds/symlink/tms320tci6486.pdf, ac-
cessed: 08.11.2014.

[90] Berkeley Design Technology, Inc., �Speed per Milliwatt Ratios for Fixed-Point
Packaged Processors,� http://www.bdti.com/MyBDTI/bdtimark/chip_�xed_
power_scores.pdf, accessed: 08.11.2014.

[91] Texas Instruments, �TMS320C6472 Fixed-Point Digital Signal Processor,� http:
//www.ti.com/product/TMS320C6472/samplebuy, accessed: 08.11.2014.

[92] 3GPP, �Codec for Enhanced Voice Services,� 3GPP, SP 140151, 2014.

http://ark.intel.com/products/27529/Intel-Pentium-III-Processor-1_00-GHz-256K-Cache-133-MHz-FSB
http://ark.intel.com/products/27529/Intel-Pentium-III-Processor-1_00-GHz-256K-Cache-133-MHz-FSB
https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/
https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/
http://www.ti.com/lit/ug/spru187v/spru187v.pdf
http://www.ti.com/lit/ug/spru187v/spru187v.pdf
https://gcc.gnu.org/onlinedocs/gcc-4.9.1/gcc.pdf
http://www.opus-codec.org/
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.ti.com/lit/ds/symlink/tms320tci6486.pdf
http://www.bdti.com/MyBDTI/bdtimark/chip_fixed_power_scores.pdf
http://www.bdti.com/MyBDTI/bdtimark/chip_fixed_power_scores.pdf
http://www.ti.com/product/TMS320C6472/samplebuy
http://www.ti.com/product/TMS320C6472/samplebuy

74

A Decoder Parameter Con�guration Performance

Results

In this section all the remaining performance measurement results that were not
presented in Section 7.2.3, are gathered. The SILK layer is denoted with green
color, the CELT layer with blue color, and hybrid (SILK and CELT) with orange
color.

Table A1: Decoder performance for music data, application selection VoIP.

Table A2: Decoder performance for speech data with DTX, application selection
VoIP.

Table A3: Decoder performance for music data, application selection Audio.

75

Table A4: Decoder performance for speech data with DTX, application selection
Audio.

Table A5: Decoder performance for speech data with CBR enabled, application
selection VoIP.

Table A6: Decoder performance for speech data with cVBR enabled, application
selection VoIP.

Table A7: Decoder performance for speech data with FEC enabled, application
selection VoIP.

76

Table A8: Decoder performance for music data, application selection Restricted Low
Delay.

Table A9: Decoder performance for speech data with six 20 ms frames in a packet,
mode VoIP.

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Abbreviations
	Introduction
	Background
	Mobile Networks
	Media Processing in Mobile Networks
	Real-time Transport Protocol
	Session Description Protocol

	Audio Coding
	Linear Predictive Coding
	Transform Coding
	Entropy Coding

	Audio Coding in Mobile Networks

	Opus Audio Codec
	SILK
	Constrained Energy Lapped Transform
	Opus Codec
	Combination of the Two Coding Technologies
	Modifications to the Two Coding Technologies

	Computational Complexity
	Applications

	Signal Processing Platforms
	Processor Architecture and Performance
	Architecture
	Performance

	Digital Signal Processor
	General Purpose Processor
	Platform Comparison
	Source Code Compilation
	Virtual Machine

	Realization of the Opus Codec on x86 Platform
	Integration
	Internal Opus Framework
	Control I/O
	Opus Packing
	Memory Allocation Requirements
	Opus RTP Packing
	Packet Loss Handling and Discontinuous Transmission

	Compilation of the Codec

	Testing
	Functional Testing
	Test Data Generation
	Performance Testing

	Test Results
	Functional Test Results
	Performance Test Results
	Compilation Optimization Test Results
	Encoder Performance with Varied Parameter Configuration
	Decoder Performance with Varied Parameter Configuration
	Complexity Parameter Performance Test Results
	Performance Results of DSP
	Performance Evaluation and Comparison

	Discussion and Conclusions
	References
	Appendices
	Decoder Parameter Configuration Performance Results

