
Jussi Hanhirova

Performance analysis of hardware
accelerated scheduling

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 12.11.2014

Thesis supervisor:

Prof. Heikki Saikkonen

Thesis advisor:

D.Sc. (Tech.) Vesa Hirvisalo

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80713458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aalto university
school of science

abstract of the
master’s thesis

Author: Jussi Hanhirova

Title: Performance analysis of hardware accelerated scheduling

Date: 12.11.2014 Language: English Number of pages:7+71

Department of Computer Science and Engineering

Professorship: Software systems / Embedded systems Code: T-106

Supervisor: Prof. Heikki Saikkonen

Advisor: D.Sc. (Tech.) Vesa Hirvisalo

Performance analysis of heterogeneous MPSoCs (Multiprocessor System-on-Chip)
is difficult. The non-determinism of parallel computation, communication delays
and memory accesses force the system components into complex interaction. Hard-
ware acceleration is used both to speedup the computations and the scheduling on
MPSoCs. Finding a accompanying software structuring and efficient scheduling
algorithms is not a straightforward task.
In this thesis we investigate the use of simulation, measurement and modeling
methods for analyzing the performance of heterogeneous MPSoCs. The viewpoint
of this thesis is in simulation and modeling: How a high abstraction level sim-
ulation methodology can be used in modeling and analyzing of parallel systems
based on MPSoCs. In particular we are interested in efficient use of hardware
accelerated scheduling mechanisms and how they can be analyzed.
Both parallel simulation and simulation of parallel systems contains many different
methods, tools and approaches that attempt to balance between competing goals
and cope with a specific subset of the problem space. Challenge is that in all
approaches most of the simulation and modeling related problems remain and
new challenges emerge.
This thesis shows that the resource network methodology and dynamic scheduling
models are a viable approach in modeling heterogeneous MPSoCs with accel-
erators. Concrete contributions are based on upgrading an existing simulation
framework to support parallelism. Main contribution is on one hand that mod-
eling concepts have been widened, and on the other hand that the supporting
mechanisms have been implemented. The thesis work in progress was published
in a peer reviewed international scientific workshop and the final results in a peer
reviewed international scientific conference. The toolset has also been used in
multi-university organized teaching and by the industry.

Keywords: performance analysis, modeling, simulation, parallelism, hardware
accelerated scheduling, MPSoC

aalto-yliopisto
perustieteiden korkeakoulu

diplomityön
tiivistelmä

Tekijä: Jussi Hanhirova

Työn nimi: Laitteistokiihdytetyn vuoronnuksen suorituskykyanalyysi

Päivämäärä: 12.11.2014 Kieli: Englanti Sivumäärä:7+71

Tietotekniikan laitos

Professuuri: Ohjelmistotekniikka / Sulautetut järjestelmät Koodi: T-106

Valvoja: Prof. Heikki Saikkonen

Ohjaaja: TkT Vesa Hirvisalo

Heterogeenisten moniydinjärjestelmien suorituskykyanalyysi on haasteellista.
Laskennan epä-deterministisyys, kommunikaatioviiveet ja lukuisat muisti-
operaatiot saattavat järjestelmän komponentit monimutkaisiin vuorovaikutus-
suhteisiin. Laitteistokiihdytettyjä ajoitusmenetelmiä käytetään nopeuttamaan
ajoituspäätöksiä. Sopivan ohjelmarakenteen ja tehokkaiden ajoitusalgoritmien
löytäminen ei ole helppoa.
Tässä työssä tutkitaan miten simulointi-, mittaus- ja mallinnusmenetelmiä
voi käyttää laitteistokiihdytettyjen moniydinjärjestelmien suorituskykyanalyysiin.
Työn näkökulma on simuloinnissa ja mallinnuksessa: Miten korkean abstraktio-
tason simulointimenetelmät soveltuvat moniydinjärjestelmiin pohjautuvien rin-
nakkaisten järjestelmien mallinnukseen ja suorituskykyanalyysiin. Erityisen kiin-
nostuksen kohteena on laitteistokiihdytteisten ajoitusmenetelmien tehokas käyttö
sekä analysointi.
Rinnakkaissimulointi pitää sisällään erilaisia menetelmiä, työkaluja ja läh-
estymistapoja jotka pyrkivät tasapainottelemaan ristiriitaisten tavoitteiden välillä.
Haasteena on se että kaikissa lähestymistavoissa simulaation ja mallinnuksen
useimmat ongelmat säilyvät ja uusia ongelmia ilmaantuu.
Työn tulokset viittaavat siihen että resurssiverkkopohjainen menetelmä dy-
naamisen ajoituksen kanssa on toimiva lähestymistapa rinnakkaisten järjestelmien
suorituskykyanalyysiin. Työn konkreettiset tulokset pitävät sisällään olemassaol-
evan simulointiympäristön päivittämisen rinnakkaisuutta tukevaksi. Keskeinen
tulos on toisaalta se että mallinnusmenetelmiä on laajennettu ja toisaalta se että
näitä tukevat mekanismit on toteutettu. Keskeneräisen työn tulokset on julka-
istu vertaisarvioidussa tieteellisessä seminaarissa ja valmiin työn tulokset vertais-
arvioidussa tieteellisessä konferenssissa. Simulointiympäristöä on käytetty usean
yliopiston järjestämässä yhteisopetuksessa sekä teollisuudessa.

Avainsanat: suorituskykyanalyysi, mallinnus, simulointi, rinnakaisuus, laitteis-
tokiihdytetty vuoronnus, moniydinjärjestelmä

iv

Preface
I would like to thank Prof. Heikki Saikkonen for supervising the thesis and giving
me the opportunity to work full-time with the topic.

I am grateful to D.Sc.(Eng.) Vesa Hirvisalo for support, guidance and all the
enlightening discussions during the thesis process.

Finally, I want to thank my wife Piia and my daughter Hilla. I am thankful to
Piia for her love and never-ending support and encouragement with my studies and
the thesis. Hilla I thank for the happy moments of play at home that always make
me realise what really matters in life.

Otaniemi, 12.11.2014

Jussi Hanhirova

v

Contents
Abstract ii

Abstract (in Finnish) iii

Preface iv

Contents v

Abbreviations vii

1 Introduction 1
1.1 Research problem . 1
1.2 Contributions . 1
1.3 Structure . 2

2 Heterogeneous computing systems 4
2.1 Internet of Things . 4
2.2 Multi and manycores . 5
2.3 High performance embedded computing 6
2.4 Embedded System design . 8

3 Performance analysis of computing systems 11
3.1 Performance analysis . 11
3.2 Simulation . 12
3.3 Parallel simulation . 13
3.4 Simulators . 15
3.5 Resource networks . 17

4 PSE – Performance Simulation Environment 18
4.1 Queuing network simulation . 18
4.2 Toolset overview . 18
4.3 Modeling workflow . 20

4.3.1 Editor tools . 20
4.3.2 Compiler tools . 23

4.4 Basic building blocks . 24
4.5 Monitoring . 28
4.6 RNS runtime . 28

5 Mechanism for resource network simulation 31
5.1 Modeling hardware accelerated scheduling 31

5.1.1 Pull mode scheduler . 31
5.1.2 Push mode scheduler . 33
5.1.3 Dynamic scheduling . 35
5.1.4 Modeling memory . 36
5.1.5 Fork and join . 39

vi

5.2 Mapping PSE to hardware . 41
5.3 Parallelizing discrete event simulators 42

5.3.1 PSE replicated trials . 43
5.3.2 Parallel PSE . 45

6 Demonstrative experiment 47
6.1 Experiment setup . 47
6.2 Simulation results . 50
6.3 Conclusions on experiment results . 52

7 Discussion 54
7.1 Challenge . 54
7.2 Related work . 54
7.3 Discoveries . 56
7.4 Future work . 56

8 Conclusions 59

Bibliography 61

vii

Abbreviations
API Application Programming Interface
CPU Central processing unit
DATE Design, Automation and Test in Europe
DES Discrete event simulation
DSP Digital Signal Processing
ESM European Simulation and Modeling
FIFO First In First Out
GB Gigabyte
Gbps Gigabytes per second
GNU GNU’s Not Unix
GNU Pth GNU Portable threads
GUI Graphical User Interface
HW Hardware
IP Intellectual property
ISA Instruction Set Architecture
MB Megabyte
MPSoC Multiprocessor System-on-Chip
NoC Network on Chip
NPU Network Processing Unit
NSN Nokia Solutions and Networks
OpenEM Open Event Machine
PSE Performance Simulation Environment
QoS Quality of Service
RNS Resource Network Simulator
RTL Register Transfer Level
SMP Symmetric Multi Processing
SoC System-on-Chip
SW Software
TLB Translation Lookaside Buffer
WCET Worst Case Execution Time

1 Introduction
This thesis investigates the use of modeling, simulation and measurement for analyz-
ing performance of parallel systems implemented on MPSoCs with accelerators. The
contribution of this thesis is to present a way to model and simulate these systems.
Concrete contributions are based on updating an existing simulation framework and
describing mechanisms necessary for modeling hardware accelerated scheduling.

While simulation is a widely studied field and there are many methods that are
used for it, both simulation of parallel systems and parallel simulation are hard. PSE
(Performance Simulation Environment) is a toolset aimed at performance analysis
of hardware and software co-scheduled manycore systems. PSE fits into the active
research field of parallel simulators. PSE applies discrete event simulation of models
represented using the resource networks methodology. This thesis shows that the
resource network methodology and dynamic scheduling models are a viable approach
for modeling heterogeneous MPSoCs with accelerators.

1.1 Research problem

Modern MPSoCs (Multiprocessor System-on-Chip) are tightly connected parallel
systems with complex interactions. Performance analysis of these systems is hard
because the non-determinism of parallel computation, communication delays and
memory accesses force the system components into complex interaction. On top
of this, the internal data streams on the MPSoC interact with computation and
communication resources affecting their behavior. The resource interaction is further
mixed with scheduling, which is usually performed at multiple points in the system.
Finally, MPSoCs are usually used to process data streams of dynamic behavior.
Generally the worst case inputs for MPSoCs are unknown.

Parallelism is hard to analyze directly using traditional computer system meth-
ods, but using different abstraction levels systems based on MPSoCs can be modeled
and simulated. Detailed monitoring of the simulation is required to be able to re-
trieve metrics and traces for performance analysis.

The viewpoint of this thesis is in simulation and modeling: How a high abstrac-
tion level simulation methodology can be used in modeling and analysis of parallel
systems based on MPSoCs. The research question is following: how to efficiently use
hardware accelerated scheduling mechanisms and how hardware accelerated schedul-
ing can be analyzed?

1.2 Contributions

This thesis presents a way how MPSoCs can be modeled using a resource reservation
based mechanism. Focus of this thesis is in scheduling, how to model and analyze
hardware, software and hybrid scheduled systems. Performance analysis is done by
constructing executable models of systems with adjustable monitoring mechanisms.
Modeling is based on the use of graphical editor tools which allow model descrip-
tion using basic building blocks. Models are simulated using discrete event based

2

approach.
Concrete contributions of this thesis are based on upgrading an existing simu-

lation framework to support parallelism. Main contribution is on one hand that
modeling concepts have been widened and on the other hand that the supporting
mechanisms have been implemented. Work done in the thesis has been presented
to international scientific community and it has also been used in the university
teaching and by the industry.

Contributions can be summarized as follows:

• Upgrading of an existing simulation framework (PSE) to support modeling
and simulation of parallel systems.

• Implementation of fundamental models required for performance modeling of
hardware scheduled systems.

• The thesis work in progress was published in a peer reviewed scientific work-
shop 3PMCES at the DATE2014 conference (on 28th March 2014 in Dresden,
Germany).[1]

• The results of the thesis were published in a peer reviewed scientific conference
ESM’2014 (on 22-24th October 2014 in Porto, Portugal).[37]

• The PSE toolset has been used in multi-university organized teaching [86]
during the ParallaX project1.

• PSE has been used by the industry partners of the ParallaX project.

The result of the first contribution is an upgrade to an Open Source toolset PSE
(Performance Simulation Environment). The upgrading consisted of the implemen-
tation and testing of the fork-join mechanism required for modeling simultaneous re-
source requests. The second contribution includes concrete models and documented
description on how they can be used to model the key structures of heterogeneous
MPSoCs. The thesis work in progress was presented in form of an abstract paper
and a poster at the 3PMCES workshop at the DATE2014 conference. The results
of the thesis were presented in form of a regular paper in the ESM’2014 conference.
Contribution for the multi-university organized teaching, the ParallaX education
day, was to create performance analysis learning material package and teach the
basics of PSE modeling workflow for the participants.

1.3 Structure

The structure of this thesis is as follows. First an overview to the context of this
thesis is given in Chapter 2 which is titled as Heterogeneous computing systems.
Chapter 2 begins by introducing the concept of Internet of Things. Next the multi-
and manycores are presented, after which the term high performance embedded

1ParallaX project is an industry-driven research consortium lead by finnish universities. It is
focused in research of parallel systems.[66]

3

computing is explained. Chapter 2 is concluded by a view to embedded system
design.

Chapter 3 takes a wider look to the performance analysis of computing systems.
The Chapter 3 begins with an introduction to performance analysis, after which
the simulation methodology is presented. Chapter 3 also presents main approaches
for parallel simulation and review some recent simulators. Chapter 3 concludes in
opening up the resource networks concept.

Chapter 4 presents the PSE (Performance Simulation Environment) toolset.
First an overview to PSE is made and the basic modeling workflow is described.
Next the basic building blocks of PSE are introduced, after which the monitoring
functionality and the RNS runtime are presented.

In Chapter 5 the mechanisms for resource network simulation are introduced and
problems related to parallelizing the simulator are discussed. In particular concrete
examples are given how hardware accelerated scheduling and memory systems can
be modeled.

In Chapter 6 a demonstrative experiment using PSE is presented. The demon-
strative experiment shows how PSE can be used in early design space exploration
of networked computing systems.

Chapter 7 sets PSE into a wider context, underlines the main problems facing
the field of parallel simulation and discusses possible solutions for the problems.

The conclusions are presented in Chapter 8 which forms the last Chapter of this
thesis.

4

2 Heterogeneous computing systems
In this chapter the context of this thesis is presented. This chapter begins with a
view to the Internet of Things (IoT) and the main technologies behind its evolution.
Next, implications of IoT to the requirements in computational performance are
presented. To conclude this chapter the challenges in embedded system design are
presented.

The interested reader can refer to [89] for a hardware point of view to parallelism
and to [69] for a software point of view on programming heterogeneous parallel
systems, [53] can be used as a reference for performance analysis and [40] for parallel
simulation. Additional materials have been refered to with the introduction of the
topics.

2.1 Internet of Things

Internet of Things (IoT) refers to connecting objects as independently identifiable
entities to the Internet. In year 2008 the number of devices connected to the Internet
outnumbered the human population, and in 2013 the number had reached 13 billion.
According to Cisco there will be about 50 billion Internet-connected devices in 2020.
[38]

These IoT objects have a large variance in size, in the type of data they produce or
process, and in the real-time performance requirements. The objects can be anything
from vehicles like boats or cars to agricultural field sensors, or from medical implants
to everyday things such as food packages, furniture and clothes. What these objects
share in common is that they are embedded systems equipped with sensors and
Internet connection.[38]

The massive boom in the number of new Internet-connected devices has been
enabled by the development in chip and sensor manufacturing technologies [52] and
in the wireless communication technologies [39], such as software defined radio [69].
Chips and sensors are not just unprecedentedly cheap to make, but they also con-
sume negligible amounts of energy. Multiple small devices can be interconnected to
form wireless sensor networks and using energy harvesting technologies they can be
made self-sustaining.[106, 113]

An important branch of IoT is the ITS (Intelligent Traffic System) applications.
The concept of ITS is based on collecting data with sensors installed in vehicles
and the surrounding infrastructure, processing and extraction information out of
that data, and then sharing that through different communication means. Many
of the ITS applications are hard-real time systems, where missing a deadline in
computation could lead into fatal consequences.[99]

Another branch of IoT is the industrial Internet, where physical machines and
networked sensors are integrated to form complex control systems. An overview of
IoT and related technologies can be found from [8]. Current trends and future visions
of IoT can be read from [24]. A survey to (energy efficient) wireless communication
technologies is in [39], wireless sensor networks are described in [113], energy har-
vesting technologies are surveyed in [113, 106] and the concept of Intelligent Traffic

5

Systems is presented in [99].
In general IoT applications can be seen as systems that process sensor data

streams. The amount of data being transmitted in the Internet is constantly grow-
ing. The data stream behavior, which can be static or dynamic, is central to the
computational requirements of the system. In case of dynamic data streams system
scheduling is a key issue. Hardware scheduling is used in systems that process dy-
namic data streams because hardware by nature is parallel and can see the system
as whole. This contrasts to software which needs to browse through data structures
step-by-step.[89]

In contrast to general IoT applications, many applications in the High Perfor-
mance Computing (HPC) domain are considered tightly connected. They generate
vast amounts of data that needs to be aggregated on-the-fly near the sensors. Soft-
ware does not seem to scale for this kind of work, instead hardware schedulers and
supporting hardware structures need to be used.[20]

2.2 Multi and manycores

Moore’s law still holds today – more and more transistors can be packed to a smaller
area.[74] Dennard scaling, introduced in 1974, has been the driving force behind
Moore’s law. Dennard scaling argumented that the performance per watt of pro-
cessors is growing exponentially at roughly the same rate as transistor density in
Moore’s law.[32] But Dennard scaling no longer holds – at small sizes current leak-
age power becomes significant and leads to the so-called power wall [89]. The power
wall and other challenges related to chip manufacturing techniques has lead chips to
the age of dark silicon [97]. Dark silicon refers to current chip architectures which
utilize dynamic voltage and frequency management to power up only certain regions
of a chip at a time. As power has become the main limiting factor in computation,
more power efficient implementations of hardware functionalities translate directly
to better computational performance.[89]

Multicores are systems in which from two to slightly over ten processors are
connected to resources via a shared bus. Manycores refer to systems with much
more processors or simple cores and accelerators, that are connected using some
other interconnect than traditional bus. A SoC, System-on-Chip, integrates all
computer components on one chip and a MPSoC, multiprocessor System-on-Chip,
is a SoC that uses multiple processors. All MPSoC components are connected with
on-chip interconnects.[110]

The ability to pack more and more transistors on a chip makes it possible to
implement special hardware units for different chip functionalities to minimize en-
ergy consumption. This has lead to the development of heterogeneous manycores,
which contain different types of cores and special purpose accelerators. Examples
of such systems are MPSoCs with a traditional multicore processor connected to a
GPU such as the AMD APU (Accelerated Processing Unit) [4] or a NPU (Network
Processing Unit) MPSoC with a pipeline of special purpose hardware accelerators
and an array of MIPS cores such as the Cavium Octeon family.[22] The miniatur-
ization of the digital functions on a chip is also referred to as More Moore and the

6

diversification of chip functionalities is referred as More-than-Moore.[52]

2.3 High performance embedded computing

High-performance computing (HPC) is traditionally associated to the field of scien-
tific applications requiring large amounts of computations. Embedded computing
on the other hand has been associated with embedded systems requiring real-time
performance. High-performance embedded computing (HPEC) refers to real-time
embedded systems with high-performance requirements and strict power and cost
budget requirements.[110]

After the processor manufacturers have hit the power wall, heterogeneous many-
core SoCs have become their main product in attempts to increase computational
performance.[110] The most efficient systems at the moment use pipelined proces-
sors of five-to-eight stages, which is th most efficient design in terms of performance
per joule and silicon area.[7]

The large set of HPEC applications and the strict power and cost budgets has
lead to a huge selection of many different MPSoC designs.[110] They all have their
own peculiarities and need tailored software to fully benefit from the available hard-
ware. Problem is how to program these platforms efficiently, and will such methods
scale and offer code and performance portability.[55]

Traditionally the computer system stack has consisted of applications described
using a programming language on top of a runtime, which is being managed by an
operating system providing hardware resources through an ISA interface.[55]

Figure 1: The traditional view to the computer system stack on the left and on the
right one alternative for the evolvement needed.

With the new manycore SoCs and parallel programming models this traditional
stack structure is breaking. The traditional thread based programming methods and
the software based thread scheduling is ineffective in modern MPSoCs. Threads
induce too much overhead to these systems in the form of context-switches and

7

surplus context information. Also the concurrent programming model associated
with software threads is not scaling with increasing core count.[46, 64]

Instead of redesigning the whole computer system stack from scratch, evolution
of existing components is needed, as the existing computer and embedded systems
are full of legacy code that is too laborious and in practise impossible to be rewritten
from scratch.[7]

Figure 1 illustrates the evolvement needed in the traditional way of abstracting
the computer system stack. In the traditional programming stack (left), the ap-
plication is a single process and the operating system abstracts other concurrent
processes away by creating a virtual machine for the process. Adding multithread-
ing has happened by making all the layers of the picture thread safe (i.e., cache
coherency in hardware, memory consistency models at ISA, safe-grained locking at
OS level, threading support in runtimes, and concurrency in languages). But the
traditional methods do not scale with increasing core counts. Instead hardware ac-
celerated functionalities must be used (right side of the picture) and the software
and runtime must be configured according to the underlying hardware.

Different approaches for describing applications have emerged to allow software
to scale with increasing core counts. The new approaches access resources using
concepts such as worker threads, run-to-completion loops and describe applications
using work units such as microthreads, events, jobs, tasks or tags.[78, 85, 7] But
the main problem remains: how to allocate the computing resources to get maximal
utilization with given dependencies and timing constraints?

Traditional software based scheduling is not efficient with the new work units.
Evolution is needed close to the hardware at OS and ISA levels. In order to open
the ISA bottleneck2, hardware functionality needs to be expanded and exploited in
new manners.[89]

Hardware-based or hardware-accelerated scheduling and runtime operation must
be used to accelerate access to the resources. Hardware accelerated scheduling is
based on the use of special hardware to access simultaneously and in parallel differ-
ent structures in a MPSoC. Scheduling is restricted by computational dependencies
and hardware latencies.[89] Power efficient scheduling and related power manage-
ment issues can be found in [109, 100, 114]. Regarding schedulers there exists
pure software implementations, pure hardware implementations and mixtures of
both worlds. Choice between software and hardware implementations is always a
trade-off between numerous factors, for example between performance and general
applicability. Examples of hardware schedulers include: Carbon [60], Isonet [65],
task-superscalar [36], ADM [93], TMU [96] and the tag based approach [23].

Real-time scheduling on a manycore platform requires executing tasks so that
their time constraints are always met. While the increased number of cores generally

2ISA bottleneck, or scalability bottleneck at ISA level, relates to architectures performing com-
putation using the fetch-decode-execute cycle and a limited number of processor registers. Limited
number of registers and the complex logic involved e.g. in out-of-order execution and branch pre-
diction form a performance hindrance between the SW and the HW. HW behind the ISA is forced
to make guesses about the SW. More communication between SW and HW is needed and more
and smaller cores with simpler datapath would help to solve these issues.[89]

8

means better average case execution time, the worst-case execution time (WCET)
might get worse because of the more complex interactions. Measuring the average
performance of heterogeneous systems is hard and their cycle-accurate simulation is
too slow. Traditional methods such as WCET analysis are not automatically working
on manycores.[2] Although some research has been done for example with GPUs
[49], embedded streaming applications with data-dependent tasks [10], and multi-
core processors with shared caches and bus [27], accurate performance prediction
of multi- and manycores is still considered unfeasible to make.[2] A survey on hard
real-time scheduling for multiprocessor systems in done in [31].

Using memory over interconnects is the normal method of communications needed
in parallel computation.[47, 33] Transaction memories are an attempt to hide the
difficulties from application programmers, but the field has still many problems
to solve.[63, 62] Current approaches are towards memory consistency.[44] How the
memory models have influenced programming languages is studied in [3].

Main methods of parallel programming can be divided into implicit and ex-
plicit approaches. In the explicit approach the programmer is in control to expose
parallelism in the code (e.g. OpenMP [81], MPI [75], OpenCL [80], CUDA [79]).
The implicit way relies to for example parallelizing compilers [57] or speculative
multithreading for speeding up sequential code [51]. Parallelizing compilers have
been studied extensively, but currently effective parallelism extraction still requires
domain-specific knowledge.[57] Hardware aware approach to the programming of
manycores is presented in [17]. A through-out view to the programming of heteoge-
neous MPSoCs is given in [69].

2.4 Embedded System design

MPSoC platform usefulness is determined by a large set of different aspects, e.g.
supported programming languages and compiler technologies, portability of code
and performance and available runtime support. Usually most of the final product
customization comes from software needs. That is why the software development
environment plays such a crucial role in defining the usefulness of a MPSoC plat-
form.[55]

Embedded System design allows implementation of system functionalities either
in software, in hardware or as a mixture of both. HW/SW co-design techniques can
be used to explore the design space of systems based on MPSoCs. The HW/SW
partitioning is in key role when performance goals have to be met with chip area,
power dissipation and total system cost constraints. Methods for iterative HW/SW
co-design have been described e.g. in [56, 45, 43].

The HW/SW co-design space is huge, with many interactions between and within
hardware and software. Design Space Exploration (DSE) techniques are used to
determine the minimum number of resources needed to schedule the applications.
Depending on the application and target platform complexity, DSE may take much
effort. This is especially true in designing a system running multiple applications
with hard-real time constraints. Higher abstraction levels are used to narrow the
search. Some methods that employ simulators at early design space exploration are

9

for example in [11, 107, 73].
Modern embedded MPSoCs have tight constraints: They have real-time guar-

antees to fulfill, they have limited resources and they have a limited power budget.
Model-driven development restricts an application to a certain model of computa-
tion, which facilitates quantitative analysis with respect to e.g. schedulability and
worst-case execution time.[35]

Figure 2: The HW-SW design gap is caused by the fact that the productivities and
demands of HW and SW are growing at different pace with regard to Moore’s law.
Although the HW design productivity has been improved in recent years with the
IP component reuse, the HW design productivity still lags behind the technological
capabilities dictated by Moore’s law. New HW designs demand new SW in increas-
ingly growing numbers, but the productivity especially for HW-dependent SW is far
behind. The red arrow shows the SW-HW design gap. Adapted from ITRS [52].

In Figure 2 the advancements in SW and in HW design productivity is portrayed
with technological capabilities dictated by Moore’s Law. Figure 2 shows a gap be-
tween the requirements and current productivity of MPSoC related technologies.
New methods and tools are needed to help the system designers in making criti-
cal design decisions. To simplify the specification, verification and implementation
of MPSoCs, and to enable more efficient design space exploration, a new level of
abstraction is needed above the familiar register-transfer level.[52]

Designing large scale systems for the Internet of Things widens the already ex-
tensive design space of MPSoCs. Central questions when designing IoT application
focus on partitioning the required computation between different system elements.
In a hypothetical IoT application computation could be partitioned for example
between a sensor’s microcontroller, a mobile device, a node of the communication

10

infrastructure and a cloud server. Optimization problem includes minimizing energy
consumption and cost of all components, using only a limited set technologies at the
consumer devices and a limited budget for developing new software or hardware.
Early design space exploration of above described systems calls for higher levels of
abstraction. High-level simulation models and automated design space exploration
can be seen as an essential element in designing these new systems.[52]

11

3 Performance analysis of computing systems
This thesis studies how the performance of hardware accelerated scheduling and
parallel systems in general can be analyzed. The chosen approach is modeling and
simulation using resource networks as the modeling basis.

First in this chapter performance analysis is defined. Next a general view to
modeling and simulation is done. Finally the resource network methodology is
presented.

3.1 Performance analysis

In computation performance has always been a key issue. In general the goal is to
find the best cost-performance trade-off and acquire the highest performance at the
lowest cost.[53]

Depending on the system under study there are different performance goals that
need to be minimized/maximized. E.g. Maximizing throughput and minimizing
latency of a packet processing system [23] or minimizing power consumption while
providing a satisfying level of functionality for a mobile device.[100] On some fields,
such as the vehicle industry, the main performance metrics can be for example
maximizing reliability and fault tolerance with minimal manufacturing costs.[99]

Performance evaluation can be done in many different ways. The three main ap-
proaches are analytical modeling, simulation and measurement. Analytical modeling
uses mathematical models to abstract main characteristics of a system and analyzes
or predicts it’s behavior. Analytical models require assumptions and generalizations
in order that the analysis methods can be used. Simulation is based on modeling the
system and then measuring its behavior when it is executed. Direct measurements
can be used when an executable system exists. In general the three main methods
of performance analysis: measurement, analytical modeling and simulation, should
complement each other and be used to validate results of other methods, but in
practice this is not always possible.[53]

Selecting an evaluation technique and suitable metrics for it are the main first
steps in performance evaluation. Availability, or the life cycle stage, of the system
under study poses constraints for the methods that can be applied to it. Measuring
a yet not existing system is not possible, whereas it can usually be modeled for
simulation or for analytical modeling. Another constraint is set by the time available
for evaluation. Analytical modeling is in general considered to require least time of
the three, while for simulation and measurement the time varies greatly. Simulation
and measurement require special tools that have their strengths and weaknesses and
a learning and application curve to take. Both simulation and measurement can be
made more accurate using more time and resources, but in general a suitable balance
between time and accuracy is sought. There exists no recipe to mechanically conduct
a successful performance evaluation. One could argue that performance analysis is a
form of art, that requires considerable amount of insight and experience for successful
completion.[53]

12

3.2 Simulation

Simulation is about mimicking the behavior of a defined system. Simulations are
based on models, which describe the system at an appropriate level of detail. Simu-
lation of computation includes simulating hardware, software and their co-operation
with regard to inputs for the system. Simulation of complex systems usually requires
the use of several abstraction layers.[83]

Simulation models are interpreted by executing them, alas by computing changes
in the model with respect to possible input and time change. The model can be
continuous or discrete and its interpretation can also be either of these. A dynamic
model reacts to time while a static model represents a steady-state model that is
time-invariant. Models can have an uncountable number of instances or states, or
they can be enumerable. Similarly the model can be deterministic or stochastic.
A deterministic model’s states can be uniquely determined by parameters in the
model and by its previous states, while in a stochastic model the transitions between
different model states are also affected by probabilities. Input for a simulation model
can be based on random number generation or on using fixed traces.[83]

Figure 3: Simulation is an iterative process involving multiple steps. Here an
overview to the different phases is presented. After problem description and data
analysis follows the modeling of the system. An executable simulator program is
created from the model. The model and the simulator are refined until they can be
validated. Experiments are designed and then executed using the simulator. Moni-
toring the execution of simulation experiments produces traces for analysis.[83].

Simulation is an iterative process involving multiple steps, Figure 3 summarizes
the process. After initial problem definition and analysis of system data, the system

13

is modeled. After the model is ready a simulation program is prepared using auto-
mated tools or manually. Successful validation usually requires iteration by going
back to previous phases of the process. After the simulation program is successfully
validated the simulation experiments can be designed. Experiments are executed on
the simulator and the execution is measured to obtain results for analysis.[83]

There are different designs for building simulation models. In [83] three types
of sequential simulation model designs are identified: Event-advance, unit-time ad-
vance and activity based design. Event-advance and unit-time advance designs
model the system using events that occur and change its state. They differ on how
the global simulation time is advanced. In event-advance design the time is advanced
(and the state of the system is changed) each time an event occurs. In unit-time
advance design the global simulation time is advanced in fixed increments of time
and events occur when their trigger time is met. Activity-based designs model the
system as a collection of activities or processes and with conditions determining
when the processes start and end.[83]

3.3 Parallel simulation

Simulation of parallel systems is possible using the sequential simulation approaches
described in the previous chapter and by updating the global simulation time only
after all parallel events have been processed. Parallel simulation on the other hand
refers to executing a single simulation program in parallel. Aim is to improve the
execution speed of the simulation. Parallel discrete event simulation (PDES) has a
long research tradition dating back to late 1970’s.[25, 16]

Basic approaches for PDES can be categorized into functional decomposition,
replicated trials, time-stepped / synchronous approach and the asynchronous ap-
proach.[40]

In the functional decomposition approach the tasks that the simulation program
does are split into parallelizable entities, e.g. random number generation, event list
processing and monitoring are performed in separate threads. This approach suffers
from scaling issues as the functions to be parallelised are limited.[40]

In the replicated trials approach the simulator is executed as independent in-
stances using multiple threads. This approach can be used for example to reduce
variability of results or to explore a wider set of parameters. This approach has the
potential to scale well with increasing core count as the instances are independent
of each other. But on the other hand replicating the simulator instances easily leads
to excessive use of memory which can form a bottleneck for the scalability.[40]

In the synchronous designs the entire design is controlled by a global simulation
time and the simulation is proceeded and updated in lock-stepped intervals. Global
time can only be advanced when all parallel processes have finished, which requires
frequent and and centralized communication. This approach suffers also from the
fact that events generally occur at irregular intervals. Maximization of the number
of events for each interval requires assumptions in the timing model, which can easily
lead to poor performance.[40]

In the asynchronous approach the simulation design is partitioned into disjoint

14

processes (logical processes) that may advance asynchronously. Each logical process
maintains a local pending event queue and carries out simulation.[40]

Specification and partitioning of the simulation models in a way to exploit par-
allelism and properly executing them on parallel hardware is not a straight forward
task. The fundamental problem of parallel execution is to decide whether event
A can be executed in parallel with event B, when we cannot know for certain if
A will affect B without executing it first. (A can affect B through a complex se-
quence of events.) On a larger scale this means that each component of a simulator
will produce state updates that are possibly relevant for other components. These
updates need to be distributed and their ordering in time must be preserved.The
asynchronous PDES approach requires that the local causality constraint has to
hold. This means that the parallel execution must yield the same results as sequen-
tial execution of the simulation program.[40]

Processing of PDES events is generally of low computational complexity, as each
event only updates state variables and possibly schedules new events. PDES is
difficult to parallelize because of the fine grained nature of the application and
the frequent communication and the complex dynamic dependencies involved. On
shared memory multi-core systems PDES simulators easily generate pressure on the
memory subsystem.[111]

Discrete event simulation parallelization strategies can be categorized into con-
servative and optimistic approaches. In conservative approaches the causality errors
are not tolerated. This is achieved by using different strategies to determine when
it is safe to process an event. The optimistic approaches use detection and rollback
mechanisms. An optimistic simulation is proceeded in parallel and upon a causal-
ity error the state is recovered by re-execution. Conservative methods can easily
end in a deadlock situation and require to use different lookahead mechanisms to
avoid them. Their performance depends on the degree to which lookahead can be
used an on the messaging overhead involved in the deadlock avoidance and recovery.
Optimistic methods risk on spending a lot of time in recovering and re-executing
events sequentially. They also require to save a history of the model states to en-
able rollback, which on large models can greatly increase the underlying resource
usage.[40]

The type of the modeled system greatly influences how much events interact
and change each others states, which affects whether the conservative or optimistic
approach is better suited. Similarly application specific knowledge can be used in
building a simulation program so that parallelism would be maximized.[40]

Parallel simulation is generally considered to be a very hard problem. The obsta-
cles that are faced are common to all parallel programming and execution. Research
done within the field of parallel simulation can have impact and direct applications
on general parallel computation. For example, the time stamped events have an
analogy in the indexes of an iteration of a loop.[40]

15

3.4 Simulators

Simulator is a program that executes a simulation model. Typically a simulator uses
three data structures: state variables, an event list and a global simulation clock.
State variables are used to describe the state of the system. The event list is used
to store all pending events that have not yet occurred. The global simulation clock
stores how far the simulation has proceeded.[83]

A discrete event simulators can be summarized using the following pseudocode,
which abstracts the main loop of the program.

while simulation is in progress
remove smallest time stamped event from event list
process the event:

(a) update state variables
(b) schedule new events

General purpose simulators do not exist, instead a simulator is always built with
some goals in mind. Some metrics to evaluate different simulators include perfor-
mance, flexibility, and detail. Performance determines the amount of workload the
model can process given the computing resources available for simulation. Flexibil-
ity indicates how the models are constructed and how easy it is to modify and vary
different designs. Detail defines the level of abstraction used in the models. The
choice of modeling detail and abstraction level mostly dictates both the execution
time of the simulation and also the time it takes to model a system.[9]

There exists a wide variety of different simulator tools and frameworks. Broadly
simulators can be classified into cycle accurate, functional and high level simulators.
The most accurate level is used when microarchitectural design decisions are sought
and when hardware designs are evaluated and verified. At that level the models are
generally described using hardware description languages, such as VHDL or Verilog,
and the simulations are executed cycle accurately.[55] Cycle-accurate simulators give
precise numbers of the hardware performance, but they are too slow to execute any
larger application. Typically a cycle-accurate simulator runs 1000-100000 times
slower than what the native execution would be.[72] Besides being slow, they are
tedious to update and do not necessarily produce significantly more accurate results
than e.g. functional simulators. Problems related to cycle-accurate simulators have
been investigated in [105].

Functional simulators model the hardware on a more abstract level than cycle-
accurate simulators. They implement what programmers see of the system architec-
ture and generally allow execution of real program binaries. Functional simulators
are generally used to investigate how different application behave on a certain hard-
ware. Examples of functional simulators include GPGPU-Sim and Barra, which are
simulators of NVIDIA GPUs, both capable of executing CUDA code.[67] Authors in
[103] use GPGPU-Sim with gem5 [41] to simulate a CPU-GPU SoC. Several other
functional simulators aimed for simulating heterogeneous systems are surveyed in
[67].

Cycle-accurate simulators are vital for microarchitecture exploration and for
making detailed design decisions, similarly functional simulators are a fundamental

16

tool for software architects. But for early high-level exploration both are too slow
and can actually produce misleading results. For high-level simulation the abstrac-
tion level of the simulated hardware can be raised. Also the simulated application
does not need to be represented as an instruction stream, instead some higher level
of abstraction can be adapted.[90]

High-level abstraction is generally used in early design space exploration of future
systems. In the early design space exploration it is not cost effective to model a
system on a too detailed level, instead it is desirable to be able to get coarse results
from several different designs to then further direct the exploration. High-level
simulators can be used to examine how a model behaves using different parameter
sets for the hardware and software configurations.[72]

Heterogeneous MPSoCs can be modeled and simulated at different levels of de-
tails. SystemC [82] and SpecC [34] are design languages and methodologies which
are intended for specification and design of SOCs or embedded systems including
software and hardware. They can use fixed platforms, integrate systems from differ-
ent IPs, or synthesize the system blocks from programming or hardware description
languages. SystemC and SpecC support system modeling and simulation at dif-
ferent levels of abstraction, from pure functional un-timed models to cycle-accurate
register transfer level models. SystemC is a C++ class library based language, while
SpecC is a super-set extending ANSI-C.[19] While SystemC and SpecC allow high-
level modeling of computer systems, their main use is the iterative development and
model refinement into register transfer level models, ready to be deployed on silicon.

Simulator toolsets suitable for modeling and simulating parallel target architec-
tures are numerous. Some examples include: Proteus [15], RSIM [50], SimOS [91]
and SimpleScalar [9]. The previous simulators are sequential discrete event simu-
lators, whereas the following simulator examples employ parallelism: BigSim [112],
COTSon [6], GEMS [68], Graphite Multicore Simulator [72], ISE [42], SlackSim
[28], SimFlex [108], SimNow [5], Sniper [21], TaskSim [90], Wisconsin Wind Tunnel
(WWT) [88] and Wisconsin Wind Tunnel II (WWT II) [76].

With simulators there is always a tradeoff between accuracy and speed. Some
of the simulators support execution on multiple levels of abstraction. For example
TaskSim uses four levels of abstraction. Applications can be modeled on the highest
level of abstraction as computation and MPI calls, on the second highest abstraction
level as computation and required synchronizations, on the second lowest level of ab-
straction using memory access list and on the lowest abstraction level as instruction
list.[90]

Two recent and still actively developed simulators are the Graphite Multicore
Simulator by Carbon research group, MIT and Sniper simulator from Ghent Uni-
versity. Graphite Multicore Simulator is a distributed, parallel simulator for design-
space exploration of large-scale multicores and application research.[72] It has been
recently updated with a support for runtime power modeling.[61] Sniper is a multi-
core simulator based on the Graphite simulation infrastructure and the interval core
model that allows exploring different homogeneous and heterogeneous multi-core
architectures. Sniper also supports power modeling of multi-core architectures.[21]

17

3.5 Resource networks

Modeling of computer systems makes extensively use of different networks. Networks
are useful because with them it is easy to bring structures into the model. Networks
used in modeling computer systems include e.g. Petri nets [84], Queuing networks
[30] and Markov Chains [14].

Aim of this thesis is to prototype a way to model parallel systems and allow
monitoring the simulated execution at different levels of detail. For example Queuing
Networks do not directly support detailed monitoring. On the other hand they
can be solvel analytically to obtain some key metrics of the behavior.[14] Detailed
monitoring of simulation execution can reveal model behavior that would not be
deducible from some general metrics of the execution. For example monitoring the
queue length of tasks waiting a hardware resource can have a average mean of N, but
when the queue lengths are plotted with regard to time a periodic behavior might
be observed. This observed periodicity can be more crucial for understanding the
model behavior than a set of metric values.

Resource network [30] is a modeling concept suitable for high-level modeling
and simulation of parallel computer systems which supports monitoring at different
levels of detail. Resource networks concept is based on describing the resources and
the resource usage of a computer system using a resource provision network and
a resource utilization network. Resource networks use the modeling abstraction of
active and passive resources.[30]

The resource provision networks are directed graphs where nodes represent dif-
ferent resources of the system and edges represent their interconnections. Resource
usage network is also a directed graph where edges represent possible paths for events
and nodes represent resource requests. Both the resource description network and
the resource usage network can contain loops. Workload model is a directed acyclic
graph which generates events that enter and use the resource usage network.

Resource networks support fork-join queue [58] methodology which allows mod-
eling of simultaneous resource requests. With dynamic scheduling the resource net-
work models can employ load balancing schemes. The resource network methodology
can be modeled and simulated using discrete event simulation.

18

4 PSE – Performance Simulation Environment
This chapter presents PSE – Performance Simulation Environment. PSE is based
on an in-house toolset QNS (Queuing Network Simulation). First the motivation
to use QNS as base and update it to support modeling and simulation of parallel
systems instead of a large variety of other possible simulation tools is done. Next an
overview of the PSE toolset and the modeling workflow is done, after which the basic
building blocks of PSE models are described. After that a look at the monitoring
system of PSE is done. Finally the PSE runtime system RNS – Resource Network
Simulator is presented.

4.1 Queuing network simulation

The PSE simulator toolset is based on an older simulation toolset QNS (Queuing
network simulator) [48]. The QNS toolset was upgraded during this thesis into
PSE. PSE adds new functionality to QNS that is needed to support the simulation
of parallel systems.

There exists many alternative modeling and simulation tools that could have
been used to model and analyze the performance of parallel systems. These have
been briefly surveyed in the previous chapter. QNS was chosen because it is a
moderately sized simulator software (QNS consists of about 30k lines of code, while
e.g. Graphite consists of 140k lines of code [95]). Besides of the moderate size of
QNS, it being an in-house tool supported the choice.

4.2 Toolset overview

Figure 4: PSE contains a set of model editor and compiler tools that are used to
create individual simulation model components. With simulator engine libraries and
optional plug-in scheduling and timing code these files are turned into an executable
discrete event simulation program.

19

PSE (Performance Simulation Environment) is a heterogeneous modeling and
simulation environment. It is an extendable environment where various components
can be changed or added. The PSE toolset is integrated by using a resource reser-
vation based mechanism as the modeling basis. PSE runs on commodity Linux
hardware.

Evaluation of PSE models is based on simulation. The default simulator in PSE
is a discrete event simulator that has been tuned for simulating parallel processing
systems. The simulation monitor is a central part of the simulator as it produces
the simulation output for post-processing tools.

Figure 5 presents a high-level view of the PSE tools. The basic set-up of PSE
consists of several integrated tools. Model editors wle, tge, sce and rne are graphical
user interface tools which are used to describe different components of the simulation
model. Compiler tools wlc, tgc, scc and rnc turn the model files into C code.
Optional plug-in C code can be used to provide additional scheduling and timing
details. The model files with PSE libraries are compiled into an executable discrete
event simulator program.

The main components of a system model are a resource network for providing
the resources and a usage network for utilizing the resources. In addition to these,
PSE uses a workload model and optional scheduling and timing models.

An essential part of PSE models are the monitoring probes. Probes can be
attached to all model components on all model layers. The probes produce traces of
the simulation execution, which can then be further analyzed using different post-
processing tools.

In general, resource provision models are used to describe the underlying hard-
ware and resource usage models are used to describe the software. But in practice
the modeling of HW/SW co-scheduled systems requires using both the resource
provision and the resource usage models to capture the functionality of the mixed
HW/SW components.

Figure 5: System model measurement loop.

20

4.3 Modeling workflow

In a larger context PSE fits the iterative modeling-measurement-configuration loop
described in Figure 5. System and model measurements are needed to model the
system. The knowledge gained from experiments with the model are used to config-
ure system parameters in order to attain better system performance. The modeling
and system configuration can be done on different levels and at different system
design phases.

The example presented in Figure 5 refers to the configuration of a packet process-
ing system based on the OpenEM programming framework. The application and
runtime configuration is an iterative process where PSE can be used to explore the
large design space of different runtime configurations and application partitionings.

4.3.1 Editor tools

PSE models are created using model editor tools. The PSE editor tools are created
using Tcl/Tk[98]. Figure 6 represents the graphical user interface of the workload
model editor, Figure 8 represents the graphical user interface of the task graph editor
and Figure 9 represents the graphical user interface of the resource network editor.
All editor tools have drop down menus from which model files can be loaded and
saved or new design can be started. The dropdown menu is also used to enable a grid
onto the drawing canvas and to export model files in postscript format. The editor
tools have a toolbar (on the left) that contains the supported drawing commands
and manipulation tools. Models are constructed on the drawing canvas using these
tools.

Figure 6: The graphical user interface of the workload model editor. The various
tools and symbols are used to create and modify PSE workload model files.

The workload model is a directed graph, where each node represents an action to
be taken and arcs represent invocations for new actions. The arcs can be equipped

21

with a probability that determines whether the child node is activated upon activa-
tion of the parent or not. With the text tool the contents of nodes and arcs can be
edited.

Figure 7: Example contents of a node in a workload model.

Figure 7 shows the contents of an example node. The key parameters are the
job, lifetime and interval. Parameter job defines the application model that the
generated event will enter. Parameter lifetime determines the duration that the
node will be kept alive after invocation. Lifetime parameter can also be omitted
which means that the node is invoked just once. Parameter interval determines
how often the node is activated (during its lifetime). Other parameter codelines,
LIreadhit and LIwritehit are user specified variables that can be referenced from
the resource provision and resource usage models. The parameters portnumber and
portname determine the entry point in the application model determined by the

Task graphs are used to model the resource usage of a system. Figure 8 represents
the graphical user interface of the task graph editor. Task graphs are directed graphs
consisting of arcs connecting different types of nodes. Arcs define the paths an event
can take while in the model. With the text tool the contents of nodes can be edited.

The resource provision network consists of different types of nodes connected
with arcs. Figure 9 represents the graphical user interface of the resource network
editor. The nodes of the resource network can be edited using the text tool.

22

Figure 8: The graphical user interface of the task graph model editor.The various
tools and symbols are used to create and modify PSE task graph model files.

Figure 9: The graphical user interface of the resource network model editor. The
various tools and symbols are used to create and modify PSE resource network
model files.

23

4.3.2 Compiler tools

The editor tools of PSE use a textual representation for the models. The model files
are compiled into C code using the corresponding compiler tools. In Figure 10 the
workflow of creating a complete PSE model is presented. A hardware model created
using the rne (resource network editor) tool is compiled using the rnc (resource
network compiler). The application model is created using the tge (task graph editor)
tool. The tgc (task graph compiler) is used to compile the application model. The wle
(workload editor) tool is used to model the system workload and the wlc (workload
compiler) generates code from the model file. Finally with a reference to RNS
libraries gcc is used to compile all model files into an executable simulation.

Figure 10: The workflow for creating an executable simulator program begins by
describing the model components using the graphical editor tools. The model files
are compiled into C code using the PSE compilers. All model files are compiled
together with RNS libraries into an executable simulator.

24

4.4 Basic building blocks

PSE modeling philosophy is based on combining elementary building blocks to model
more complex system structures and functionalities. Models formed using the sim-
ple building blocks can be grouped into into submodels for semantical clarity and
functional reuse.

Figure 11: PSE building blocks. Routing nodes define the flow of tasks in the
application models. Resource description nodes are used to describe the resources
(usually the HW) of a system. Resource usage nodes define the resource requests
from the application layer to the hardware layer of the model. Workload generating
nodes are used to generate input for the PSE models.

The PSE building blocks can be categorized into routing nodes, resource de-
scription nodes and resource usage nodes. The PSE building blocks are presented
in the Figure 11. Routing nodes include the begin and end (input and output in
the RNE) nodes that define the entry and exit points for models. The Route and
branch nodes are used to direct events to target devices or paths using rules defined
in the models. The fork node allows splitting the flow into two simultaneously taken

25

paths and the join gathers both of the flows before it is allowed to proceed. There
are two kinds of resource types in PSE, active and passive. Active resources have
a speed parameter that defines how quickly they are able to fulfill requests. Active
resources are requested for service for a certain amount and they return a service
delay depending on the amount requested. Block is the node that is used to define
the type and amount of a resource request. Passive resources can be used to provide
exclusive access to regions in models. They can be acquired by requesting service
from them and they must be released afterwards. Both the active and the passive
resources can have count and capacity parameters defined. These are used to specify
the amount of parallel tasks that can be served simultaneously. Submodel nodes are
used to group different models together to form hierarchical models.

In Figure 11 alternative symbols are shown for the nodes representing active and
passive resources, use resource and submodel. These function similarly as the main
symbol, but can be used to underline the semantical meaning.

The parameters of the building blocks can be edited with the text tool. Clicking
on a node opens a dialog window where parameters are written. Example contents
of a branch node are presented in Listing 1.

Listing 1: Example contents of a branch node.

cache h i t ?
name : LIcacheh i t
expr : L I r eadh i t

In this example the LIreadhit variable defined in the workload model (see e.g.
Figure refsmalltask) evaluates to zero or one. The two nodes following the brach
node must contain identifiers tag:0 and tag:1 to direct the flow based on the value
of LIreadhit.

Resources are defined using the attributes presented in in Listing 2.

Listing 2: Resource description attributes.
name value type op t i ona l app l i e s to nodes
−−−− −−−−−−−−−− −−−−−−−− −−−−−−−−−−−−−−−−
name alphanum no ac t i v e and pa s s i v e resource ,

r e l e a s e , submodel
count i n t e g e r yes a c t i v e and pa s s i v e re source ,

r e l e a s e , submodel
d i s c i p l i n e alphanum yes a c t i v e and pa s s i v e resource ,
capac i ty i n t e g e r yes a c t i v e and pa s s i v e resource ,
group alphanum yes a c t i v e and pa s s i v e resource ,
speed f l o a t yes a c t i v e r e s ou r c e

Count creates an array of the resources. Discipline is used to specify the queueing
policy of a resource (default is FCFS, First Come First Served). Capacity defines
how many tasks can be served concurrently. Group is used to form monitoring
groups. Speed defines the service per time of the resource.

Resource usage requests are defined using the attributes presented in Listing 3.

Listing 3: Resource usage attributes.

26

name value type op t i ona l a pp l i e s to nodes
−−−− −−−−−−−−−− −−−−−−−− −−−−−−−−−−−−−−−−
type alphanum no (see below)
name alphanum no a l l
port i n t e g e r no ente r
time/amount f l o a t no a c t i v e r e s ou r c e
pc i n t e g e r yes a c t i v e and pa s s i v e r e s ou r c e
group alphanum yes a c t i v e and pa s s i v e r e s ou r c e
e x i t s alphanum yes submodel
en t e r s alphanum yes submodel
tag aplhanum no f o l l ow i ng a branch

The type of resource usage is defined using the type attribute. Valid values are:
device for active resource, resource for passive resource, release for releasing a passive
resource and submodel, exits or enters to control movement in and out of submodels.
name attribute is used to identify the requested resource. Port attribute can be
used to classify entering events of a model. The time and amount attributes are
used to determine the amount or time requested from an active resource. Attribute
pc defines the priority of a request. Group is used to form monitoring groups.
Attributes exits and enters define the movement inside the submodel hierarchy. Tag
is used after a branch node to identify the target for an evaluated branch expression.

The basic building blocks are used to model larger entities. Figure 12 represents
an example PSE model. The model shows how OpenEM based applications can be
modeled.

In the example events are generated by the workload model. The generated
events enter the application model where they make resource requests at the nodes
of the model. The resource requests are served from the hardware model. Depending
on the amount of service requested and the internal state of the hardware model the
events are delayed for a specified amount of time.

27

Figure 12: An example of a layered PSE model, which represents how OpenEM[78]
based and other similar systems can be modeled using the PSE tools. The workload
layer model generates events that enter the application layer model. The events
flow in the application model and are placed into queues until access to resources
is granted. A resource request is made for example in the classify node in the
application model, this resource request is for the resource named input processor
in the hardware model. Similar resource requests are made in the EO submodels.
Depending on the state of the hardware layer model, each resource request induces
a timing delay to the flow of the events in the application model.

28

4.5 Monitoring

When simulations are used for performance estimation time is in a key role. Perfor-
mance simulations use time stamping to keep things ordered with regard to time.
Simulators use monitoring techniques to obtain metrics of the simulation behavior.
Basic approaches for this are trace-based and on-the-fly approaches. Trace-based
simulator produces a trace that is saved for post-processing. An on-the-fly moni-
tored simulator produces metrics of the simulation execution. If only certain metrics
of the simulation are under study then collecting a trace file is not necessary.

PSE offers a comprehensive set of simulation monitoring tools. Monitoring is
based on probes, which can be attached to the graphically presented models. Probes
are used to generate traces or to measure statistics from the simulation execution.
In PSE trace probes produce trace files that track certain events, whereas metric
probes compute statistics from the measured target.

In resource description models probes can be attached to resources for measuring
utilization or to queues to measure queue length. Trace probes produce a trace
file where either every change in the queue length or in the resource utilization is
recorded. Metric probes produce statistics of the queue length or the utilization. The
statistics produced by metric probes are the mean, standard deviation, mininimum,
maximum, sum, and total number of events.

In resource usage models time probes can be attached to the edges of the graph.
Time probes can be used to produce a trace with a timestamp whenever an event
passes the measurement point. The timestamps can be a list of absolute times or
times relative to process start. Time probe can also measure the average time of all
events relative to process start. In workload models probes can be used to group
together measurements from other probes.

Trace probes write tracefiles, whereas metric traces write a single line containing
average values. Each probe produces one trace file. If traces are not needed then
metric probing should be used as the trace files can easily become very large and
the required file operations could saturate the system.

Probes are represented graphically in the PSE models. This is illustrated In
Figure 12 where four probes (A,B,C and D) are attached to different parts of the
system models. Probe A is attached to the workload model, probe B to an edge of
the application model, probe C is attached to the queue of the input processor node
and probe D measures the utilization of the same node.

4.6 RNS runtime

RNS (Resource Network Simulator) is a discrete event simulator engine designed
to execute the PSE models. RNS keeps track of the global time of the simulation,
schedules simulation events and manages the monitoring of simulation execution.
RNS provides the abstractions and interface used by the model file compilers. Main
components of RNS are the event scheduler, the process abstraction with accompa-
nying service routines and the monitoring system.

The RNS scheduler runs in a loop picking the event with the smallest trigger

29

time to execution. Events are generated by the workload model. They can be either
system events controlling the whole simulator or workload events which are used
to model the workload of the system. System events control for example the total
execution time of the simulation and possible resetting of the monitoring metrics.
Workload events contain a set of defined parameters and a reference to a resource
usage model they will enter. The resource usage model is a process which executes
code that uses the RNS interface to make requests for the runtime system. The
code executed by the processes is generated by compiling the application models
with references to the workload model, hardware models and the runtime libraries.

The main interface of RNS is the service routines. These are used to implement
the active and passive resources of the resource networks. The main interface is
presented in Listings 4, 5, 6, 7 and 8.

Listing 4: RNS_demand_device

void RNS_demand_device (RNS_Device ∗d , double service_amount ,
char ∗group , uint64_t pc) {

. . .
RNS_use_device (d , service_amount/d−>speed , group , pc) ;
. . .

}

RNS_demand_device, summarized in Listings 4, translates the demanded ser-
vice amount from active resource into service time based on the speed of the modeled
device. The service time is used as parameter for the RNS_use_device function.

Listing 5: RNS_use_device
void RNS_use_device (RNS_Device ∗d , double service_time ,

char ∗group , uint64_t pc) {
. . .
RNS_reserve_resource (d−>resource , group , pc) ;
RNS_delay_process (d−>resource−>name , serv ice_t ime) ;
RNS_release_resource (d−>resource , group) ;
. . .

}

RNS_use_device presented in Listings 5 wraps the reserve, delay and release
functions of RNS together.

Listing 6: RNS_reserve_resource
void RNS_reserve_resource (RNS_Resource ∗ r , char ∗group , uint64_t pc) {

. . .
s e t_c l i e n t (r−>queue , r−>queue_size ,

RNS_current_process , usage_group , pc) ;
r−>queue_size++;
. . .

RNS_reserve_resource presented in Listings 6 adds the currently running pro-
cess to the resource queue.It also updates the queue length and utilization of the
resource.

30

Listing 7: RNS_delay_process
void RNS_delay_process (char ∗name , double seconds) {

. . .
event . t r igger_t ime = RNS_simulated_time + seconds ;
event . p roce s s = RNS_current_process ;
RNS_Heap_insert (event) ;
RNS_yield () ;
. . .

}

Listings 7 presents a fragment of the RNS_delay_process function, which is used
to delay the given process for a defined amount of time and to generate an event
that will be triggered when the requested service has ended.

Listing 8: RNS_release_resource
void RNS_release_resource (RNS_Resource ∗ r , char ∗group) {

. . .
event . t r igger_t ime = RNS_simulated_time ;
event . p roce s s = r−>queue [new_index] . p roce s s ;
RNS_Heap_insert (event) ;
. . .

}

RNS_release_resource in Listings 8 selects a process from the resource queue for
execution. The process selection is done on basis of the resource queuing discipline.
The new process is put to the event list for immediate scheduling.

31

5 Mechanism for resource network simulation
In this chapter the mechanisms for resource network simulation are presented at dif-
ferent levels of abstraction. First the mechanisms are presented at the modeling level
using as examples two basic models of hardware schedulers and a model for memory
systems. After that the implementation of the fork-join mechanism is described at
the runtime level of the simulator. Finally the mapping of the simulation model to
execution hardware is overviewed and problems arising from different parallelization
strategies are studied.

5.1 Modeling hardware accelerated scheduling

Scheduling is about assigning tasks to system resources. The scheduler should at
the same time maximize the throughput – the total number of tasks completing
execution in a given time, and minimize latency – the time between task submission
and completion. Usually these goals collide and a compromise must be sought.

Latency increases as the granularity of tasks get smaller. In MPSoCs a central
software scheduler is too slow in traversing the data structures containing the tasks
and scheduling information. Hardware schedulers can see the system state as whole
and thus are well suited to speed up the scheduling. The type of the system dictates
which scheduling algorithm and semantics (push or pull scheduling) work best for
system load balancing.

PSE can be used to model different types of schedulers and scheduling algorithms.
In the following subchapters two hardware schedulers, a push mode and a pull mode
scheduler, are modeled using the PSE primitives. A small scale experiment using
the push mode scheduler is also presented. After that the internal implementation
of a scheduler is presented using a load balancing scheduler as an example. Finally
an example of how memory systems can be modeled with PSE is presented.

5.1.1 Pull mode scheduler

In Figure 13 model of a simple HW pull mode scheduler is presented. The scheduler
uses two hardware queues and a core lock to provide access to the resources. Once
a core lock is acquired the task is able to use the core and the resources of the
memory and bus submodels. After the task releases the core and queue locks a new
task can be selected for execution (the release part of the HW model is omitted from
Figure 13).

In Figure 14 a small part of a low-level task graph model representing the re-
source usage is shown. The graph uses the resources described in Figure 13. Tasks
entering the graph make requests for the atomic queue token which is used to pro-
vide sequential access to the cores. In turn some other tasks with no inter-task
dependencies could use the parallel queue for better scalability (simultaneous access
to all cores).

After having acquired the queue token, the task proceeds to request for a core
lock. The core lock queue uses a highest priority served first policy, that can give

32

Figure 13: An example of a system providing its resources using pull mode scheduling
and two hardware queues for atomic and parallel access to the cores.

Figure 14: An example of a low-level task graph describing resource usage of the
HW model in figure 13.

priority for e.g. tasks in the atomic queue to prevent their starvation. After acquiring
the core lock a task can use the core the bus and memory submodels. The HW layer
induces delay to the task proportional to the amount of service requested. For
example, in the Figure 14 the use core request utilizes the core for the amount
specified by the value of the expression: $instr_size + $data_size. These variables
are defined for each individual task by the workload model.

33

5.1.2 Push mode scheduler

Figure 15 represents a model for a push mode scheduler. Push mode scheduler
distributes tasks upon their arrival into local queues close to cores. The scheduling
is done in the select core node, where custom code can be inserted to model the
scheduling algorithm. In a push mode scheduler the scheduling algorithm is in
central role for balancing load across the cores.

Figure 15: An example of a system providing access to its cores using push mode
scheduling. Queues are local to each core and the scheduling decision is done at the
select core node, after which the task is pushed to the designated local queue. An
additional delay unit node is used to provide a means to model the HW delays of
scheduling decisions, queue accesses, etc.

PSE can be used to estimate the performance of different scheduling algorithms.
In Figure 5.1.2 results of a small scale experiment are presented. In the experiment
a push mode scheduler is used to balance load using three different scheduling algo-
rithms. These algorithms are a random scheduler, a single stepping scheduler and
a task size aware scheduler. The random scheduler assigns tasks to cores randomly,
the load balancing scheduler assigns tasks evenly among cores according to their size
and the single stepping scheduler assigns tasks sequentially always to the next core
in turn.

Overhead related to the actual implementation of the scheduler was not modeled.
The timing overhead could be modeled by including an additional service delay of
desired amount in the resource request model.

34

(a) Sum of core queue lengths using random scheduling. Average queue length over the simulated
period is 238.

(b) Sum of core queue lengths using task size aware scheduling. Average queue length over the
simulated period is 11.4.

(c) Sum of core queue lengths using stepping scheduling. Average queue length over the simulated
period is 15.3.

Figure 16: Example results from a push scheduler system using different scheduling
algorithms. The system has one push mode scheduler assigning tasks for an eight
core system. The computation time of one task depends directly on the size of the
task. The first scheduler (a) assigns tasks to cores randomly, the second (b) balances
tasks evenly amoung cores according to their size and (c) assigns tasks incrementally
to the next core in turn.

35

5.1.3 Dynamic scheduling

Dynamic scheduling in PSE means routing events according to the internal state of
the models. In practice this requires inserting custom code into the code generated
by the PSE compilers.

In the models the basic routing of events is static as the flow of events is defined
at event creation by the workload parameters. Dynamic routing, or scheduling, can
be implemented by plugging custom code into the routing nodes of the resource
provision model, or into the branch nodes of the resource usage models.

The workflow requires compilation of model files first into C code, then manual
editing of desired parts in the files, and finally compilation into a final simulation
program.

Manual editing of the generated files could target for example the code of the
route node. The RN_index_selection_HARDWARE function in the hardware
model code assigns tasks entering the route node to a target node specified with
a node index. Listing 9 shows a fragment of code of a scheduler that keeps track of
assigned task sizes per CPU. The scheduler balances load by assigning work always
to the CPU that has received least work so far (determined by the size of the task).

Listing 9: Example code for the load balancing scheduler presented in Figure 15. The
scheduler maintains a table with assigned task sizes and always pushed a new task to
the core with least received load so far. The plugin code has been emphasized using
red text color.

int cpu_loads[8] = {0}; // t a b l e used to keep t rack o f CPU loads
int min_ind = 0; // index the CPU with min load
int min_load = INT_MAX; // minimum load va lue

void RN_index_selection_HARDWARE1(RN_Process ∗p ,
char ∗port_name ,
int port_number) {

int i ; /∗ s e l e c t i o n to CPU ∗/

// find the CPU with minimum load
for (i = 0; i <= 7; i++) {

if (cpu_loads[i] <= min_load) {
min_ind = i;

}
}
min_load = cpu_loads[min_ind];

// as s i gn work to the CPU with min load and update CPU loads t a b l e
p−>next . s t a t e . node_index = min_ind ;
p−>next . port_name = 0 ;
p−>next . port_number = 0 ;
cpu_loads[min_ind] = cpu_loads[min_ind] + (int)RN_value(p, "size");

}

After manual editing of the model code the model files need to be recompiled to
an executable simulator program.

36

5.1.4 Modeling memory

Maximizing the utilization of a MPSoC is in general about hiding the latencies
related to the usage of the memory systems by doing something else while waiting
the memory.[55] As the memory system is crucial to the performance of a MPSoC
it is in a key position when modeling the systems.

In PSE one possible approach to model memory systems is to divide the memory
into reservable blocks and induce a memory access delay proportional to the internal
state of the memory model. Figure 17 represents the general idea of modeling
memories using reservable blocks. In the example of Figure 17 core 4 makes a
memory load request and core 3 and core 2 are being served at the same time. The
returned delay for core 4 can be modeled to take longer than it would have taken
were there less simultaneous accesses.

Figure 17: In PSE the memory system can be modeled by dividing the memory
components into reservable blocks. Depending on the amount of total reserved
blocks at a certain point in time, the service time of the memory access can be
varied.

An example implementation for the memory model of Figure 17 is presented in
Figure 18, Figure 19, Listing 10 and Listing 11.

Figure 18 presents the hardware model for one type of reservable memory blocks
(here cache blocks). The size of the memory is defined using the capacity parameter
of passive resources. A delay unit node is used in the model to induce a delay to a
cache access.

Figure 19 presents the application model for memory access. An event loops to
the reserve blocks node until it has acquired all required blocks, then it enters the
delay access node and makes a resource request to the delay unit of the hardware

37

Figure 18: An example of a hardware model for cache memory. Memory is reserved
and released in blocks and a delay unit is used to induce a delay for the memory
access.

Figure 19: An example of a application layer model for memory accesses. Amount
of cache blocks to be reserved is defined in the workload parameters. After the task
has acquired all cache blocks it needs it accesses the delay access node and makes a
resource request. Depending on the internal state of the memory model a delay is
applied to the task.

model.
Listing 10 shows an example of how the required workload parameters can be

defined in the workload model. The parameter reserved_cacheblocks is used to
dynamically store the amount of cache blocks an event holds during the execution
of the simulation.

Listing 10: Example of required workload parameters that are used to determine the
number of required cache blocks and the amount of acquired cache blocks.
. . .
r equ i red_cacheb locks : 10 + RNS_random_int (0 , 8)
reserved_cacheb locks : 0

Listing 11 presents a fragment of the code generated from the hardware model
presented in Figure 19.

38

Listing 11: Example implementation for reserving a defined amount of memory
blocks. The original code is generated from the model presented in Figure 19 and the
implementation of dynamic memory block reservation and requested delay is achieved
by using plugin code. The plugin code is highlighted using red text color. This code
fragment presents the implementation of the three first nodes of model in Figure 19
labeled as: reserve blocks, all reserved? and delay access.

#define N_CACHEBLOCKS 128
. . .
int free_cacheblocks = N_CACHEBLOCKS;
void SC1_SOFTWARE() {
. . .
// ’ r e s e r v e b l o c k s ’ node
SCL32 :
RN_resource_request_HARDWARE(p , " cacheblock ") ;
RNS_reserve_resource (((RN_model_HARDWARE∗)p−>fp−>node)−>

cacheblock [p−>s ta t e . node_index] , 0 , 0) ;
free_cacheblocks–;
RN_add_binding(p, "reserved_cacheblocks", RN_value(p, "reserved_cacheblocks") + 1);
goto SCL34 ;

// ’ a l l r e s e rved ? ’ node
SCL34 :
if (RN_value(p,"reserved_cacheblocks") < RN_value(p, "required_cacheblocks")) {

goto SCL32;
else {

goto SCL31;
}
f p r i n t f (s tde r r , "No␣branch␣matched\n") ;
e x i t (1) ;

// ’ de lay acces s node ’
SCL31 :
RN_resource_request_HARDWARE(p , " delay_unit ") ;
RNS_demand_device (((RN_model_HARDWARE∗)p−>fp−>node)−>

delay_unit [p−>s ta t e . node_index] ,
RN_value (p , " s i z e ")*(calc_delay(free_cacheblocks)) , 0 , 0) ;

goto SCL33 ;
. . .

}
float calc_delay(int free_cacheblocks) {

return ((N_CACHEBLOCKS - free_cacheblocks)/N_CACHEBLOCKS) + 1.0;
}

The statement #define N_CACHEBLOCKS 128 in Listing 11 defines the size
of the memory model, and the variable free_cacheblocks is used to store the number
of currently free blocks. The resource network function RN_value is used to return
the value of a defined workload parameter and RN_add_binding is used to write
a new value to a workload parameter. With these two functions events can carry
information of how many cache blocks they need and how many they have acquired.
In the delay access node the internal state of the memory affects the amount of
service requested from the delay unit. In this example the implementation of how

39

much the internal state of the memory affects the delay is specified by multiplying
the requested service amount size by the value returned by the user defined function
calc_delay. calc_delay can be used to estimate the memory behavior at a desired
level of accuracy. In this example calc_delay is kept simple for demonstration
purposes and it just multiplies the requested amount with a scaling factor that
varies between 1.0 and 2.0 depending on the state of the memory.

5.1.5 Fork and join

Fork and join allows dynamic creation of processes, which can be used for example
to make simultaneous request for different resources. This can be used e.g. to model
situations where a core is kept busy until a memory access has been fulfilled.

Figure 20: An example usage of the fork-join method. Both the core lock and the
memory blocks are held as long as both the memory access and use core requests
have been fulfilled.

The fork-join queue is considered a typical model for parallel processing systems.
The fork and join of RNS follow the semantics of fork-join queue presented in [58].
In PSE fork and join is defined so that on fork an event is split into two execution
paths by creating a new process and the related new event. Both the original and
the forked process take their own execution paths in the resource usage network.
Later the paths are joined so that the neither of the events is allowed to proceed
before both the events have reached the join node.

The RNS implementation of fork and join uses a waiting list where waiting
processes are placed. A process is put to the waiting list if it arrives to the join node
before the other forked process. As the later arriving process reaches the join node
it uses signaling to retrieve the first process from the waiting list.

40

Listing 12 is a fragment from code generated by the tgc compiler from an appli-
cation model made by tge. The example shows the code and runtime calls that a
fork node translates into.

Listing 12: The RNS runtime requests of a fork node.

cp = RN_copy_process (p) ;
RN_push_id(p , RNS_next_process_id ()) ;
RN_push_id(cp , RNS_current_process_id ()) ;
RNS_push_int ((int) (intptr_t) cp) ;
RNS_process ("SC2_SOFTWARE" , SC2_SOFTWARE, NULL) ;

First fork allocates memory for the forked process using RN_copy_process.
Then it pushes identifiers of the two processes (the parent and the fork) into each
others id lists. Using RNS_push_int arguments are passed to the forked process.
Call to RNS_process launches execution of the forked process. Both the forked and
the parent process can make an arbitrary number of resource request during the
execution, but their execution has to meet at a join node.

Listing 13: The RNS runtime requests of a join node.

i f (RNS_is_waiting (RN_peek_id(p))) {
RNS_signal (RN_peek_id(p)) ;

} else {
RNS_wait () ;

}

Join (presented in Listing 13) checks RNS_is_waiting list if the other process is
already waiting. If yes, it signals the process, otherwise it calls RNS_wait.

Listing 14: Runtime requests of RNS_wait call.

void RNS_wait () {
RNS_waiting [RNS_waiting_count++] = RNS_current_process ;
RNS_yield () ;

}

Upon a call to RNS_wait (presented in Listing 14) the caller is put to the waiting
list (RNS_waiting) and it’s execution is yielded. RNS_yield calls RNS_suspend
which returns control to the RNS scheduler allowing other events to be scheduled.

Once the later arriving process reaches the join node it uses RNS_signal to
retrieve the waiting process from the waiting list.

41

Listing 15: The RNS runtime requests of signaling.

void RNS_signal (uint64_t process_id) {
. . .
for (i = 0 ; i < RNS_waiting_count ; i++) {

i f (RNS_waiting [i]−>id == process_id) {
event . p roce s s = RNS_waiting [i] ;
break ;

}
}
. . .
event . t r igger_t ime = RNS_simulated_time ;
RNS_Heap_insert (event) ;
RNS_waiting [i] = RNS_waiting [RNS_waiting_count − 1] ;
RNS_waiting_count−−;

Signaling (presented in Listing 15) searches the RNS_waiting table for the pro-
cess defined by process_id. If the process is found it is removed from the waiting
list and put on top of the event list.

PSE does not pose any limits or make sanity checks on how fork and join are
used. It is easy to generate models that lead into deadlocks by making cyclic resource
requests in the forked branches. It is on modeler responsibility to keep the models
simple to avoid the deadlocks.

5.2 Mapping PSE to hardware

PSE models are abstract representations of systems, which are used to generate
a simulator program. The simulator program is executed on a computer where
it’s behavior can be observed. In this chapter the mapping of PSE models to an
execution hardware is overviewed.

At the highest level PSE models are represented graphically using the basic
building blocks described in chapter 4.4. On the PSE modeling level scheduling
algorithms and timing details can be specified using plug-in code.The graphical
models are transformed into C code using the PSE compiler tools. The compiled
model code uses the interface of RNS runtime.

At the RNS runtime level the simulation models are represented using the re-
source reservation based mechanisms. The RNS runtime handles event scheduling
and timing of the simulation execution. RNS runtime also implements the monitor-
ing routines. RNS is implemented using the C language with standard libraries and
the GNU Pth [87] threading library.

The simulation model files and the RNS libraries are compiled into a simulator
program. At this level all models are represented using state variables and events
translate into processes that manipulate the state variables. The simulator uses user
level thread scheduling to maintain ordering of the event execution.

The simulation program is executed on top of an operating system. The oper-
ating system sees the simulator program as a stream of instructions accessing the
system resources.

42

Figure 21: A conceptual view to PSE simulator mapping from abstract models to
execution hardware.

The state variables and the simulator program code are stored in physical mem-
ory. The physical memory addresses are translated to virtual address using TLBs.
During the execution of the simulator state variables can reside on several different
levels of the cache subsystem. As the simulation is monitored traces are written to
the filesystem.

The conceptual view of the simulation mapping in Figure 21 shows how simu-
lation execution involves scheduling at multiple levels. At the PSE modeling level
schedulers are represented using plugin code. This translates to dynamic routing
rules at the RNS runtime level. At the RNS runtime level the RNS scheduler per-
forms event scheduling. The operating system schedules the thread executing the
simulator. The scheduler might for example suspend the thread if the simulator
hangs waiting for memory or filesystem operations.

5.3 Parallelizing discrete event simulators

There is a rich research tradition on parallelizing discrete event simulators [40], but
traditionally the approach has been in modeling distributed systems characterized
by relatively small communication overhead when compared to computation. The
heterogeneous manycore systems, such as MPSoCs, have a much more dominating
communication overhead when compared to distributed systems. The very nature
of MPSoCs (shared resources, tight interconnection, fine granularity of tasks) force

43

the events that model their behavior into constant interaction. In addition, the use
of scheduling methods that dynamically affect the model state make the lookahead
possibilities very narrow.

Despite the challenges PDES research is facing progress is constantly made. Some
recent PDES and manycore related research papers include e.g. How PDES scales
on manycore platforms [111, 104], implementation of SystemC simulation kernel
using GPUs [77] parallel simulation of tightly-coupled SystemC models of MPSoCs
using an asynchronous approach [92] and an conservative synchronous approach [94].
Although the previous papers deal with PDES and manycores, their abstraction level
is low and intended to accelerate cycle accurate simulations.

Because of the complex interactions between the elements of MPSoCs the ab-
straction level of their models must be raised if full system simulations are to be
performed. The general approach for modeling these systems is to use different ap-
proximation and estimation methods to suppress excess communication in order to
make simulation execution feasible. Simulators such as Graphite [72] and TaskSim
[90] use several different levels of abstraction to model and simulate both the hard-
ware and software of MPSoC based systems.

5.3.1 PSE replicated trials

The RNS simulator engine executes in a single thread and schedules the events
sequentially always maintaining the global time. A straight forward way to utilize
parallel hardware with PSE is to execute separate instances of the simulator in
different threads. This replicated trials approach can be used to reduce variability
in the results or it can be used to explore a larger set of different parameter settings
simultaneously. A drawback of this approach is that each thread must hold the
entire simulation in memory.[40]

In order to measure how PSE scales to the replicated trials approach a simple
experiment was conducted. The execution of a simulation model was repeated mul-
tiple times using different random number generator seed values for each instance.
The set of different simulator instances were executed first sequentially using only
one thread and then by distributing the instances for multiple threads. The same
scalability experiment was performed by executing three versions of the same sim-
ulation model: using no probing, using metric probing and using trace probing.
The no probing version of the simulation produced no output and was used only
as a reference for the other versions. Execution of the metric probing version of
the simulation produced 1kB of data, while the tracing version produced 1,2GB of
data.The total execution time of the simulation instances was measured by varying
the thread count from one to eight on a Intel Core i7 920 computer with 18GB
RAM. The execution times using different number of threads are presented using
the scaling efficiency defined in equation 1.

EN =
t1

N ∗ tN
(1)

EN is the scaling efficiency using N threads

44

t1 is the execution time using one thread
N is the number of threads
tN is the execution time using N threads

Figure 22 represents the scaling efficiency of the three simulation versions.

Figure 22: Scaling efficiency of independent simulation instances was studied by
executing a simulation with no probing at all, with metric probing and trace probing.
Simulation was repeated by varying the number of threads from 1 to 8. Results show
that models using metric probing benefit from running multiple instances in parallel,
whereas trace probing easily saturates the system and prevents scalability.

Figure 22 shows that the no probing andmetric probing versions of the simulation
scaled well up to four threads. E.g. using one thread the metric probing version of
the simulation took 10 minutes and 20 seconds and with four threads the execution
time was 2 minutes and 45 seconds. Increasing the number of threads beyond four
gave only marginal execution time improvements. The trace probing version of the
simulation was able to benefit from simultaneous instances, but then the system
saturated. Linux monitoring tools revealed that the system was running out of
memory and was forced to constantly swap simulation instances in and out from
memory.

Probing has a obvious effect on the scalability of the replicated trials approach,
but also the size and complexity of the model and the total execution time of the
simulation affects the scalability. Currently there is no other way than trial and error
in determining an optimal amount of threads for the simultaneous execution of a
particular set of simulation instances. An automated way for determining optimal
thread count would be needed. To achieve this the program should be aware of
execution hardware resources, of the complexity of the simulated model and of the
resource requirements of the simulator program.

45

5.3.2 Parallel PSE

Overall four main problems related to parallelizing PSE simulator engine RNS can
be pointed out:

• Simulator functions are limited

• Locking is not easy

• Parallel I/O is not easy

• Automatic parallelization is not easy

PSE could be parallelized by decomposing the simulator engine into multiple
worker threads. But as pointed out in Chapter 3.3, this approach will not scale as
the functions of the engine are limited. In order to make use of the future manycore
platforms the simulator should be able to scale to hundreds or thousands of cores.
A possible path for parallelizing a simulator using the functional decomposition
approach could be through implementation efficient parallel data structures that
could benefit from multiple worker threads. But it is hard to say anything concluding
on this approach without actual implementations and performance evaluations.

The decomposition of the simulator could be done also by decomposing the sim-
ulation models into disjoint logical processes. This approach means in practice that
the simulators state variables are partitioned into disjoint sets. Similarly as the func-
tional decomposition approach requires synchronization, the logical processes need
synchronized communication. Basic approaches are to use message passing or shared
variables.[40] Problems related to message passing were discussed in Chapter 3.3, the
approach causes severe overhead when simulating tightly connected systems such as
MPSoCs. The shared variables approach seems to be a slightly better approach for
the purpose of simulating MPSoCs. Shared variables need locking which is hard, as
discussed in[47, 33]. Transactional memories attempt to hide the complex details
from programmers, but there are still many problems to solve.[63, 62]

Collecting metrics from simulation execution is not a straightforward task. Sys-
tem input and output (I/O) usually the bottleneck in write intensive applications.
In parallel write intensive applications I/O becomes the bottleneck much easier.
The problems related to parallel I/O are as old as high-performance computing
(HPC).[71] And the problems still persist with the new high-performance plat-
forms.[18] I/O is considered one of the major challenges for current and upcoming
high-end systems. There is huge potential for performance improvements and better
algorithms are needed.[70]

The extraction of parallelism should be automated to fit the tool chain of PSE.
Automatic parallelization has been studied but found hard. Parallel hardware is
heterogeneous and requires fine tuned applications to benefit from the peculiarities.
Parallelizing compilers must have knowledge of the platform.[57]

There is no single recipe that could be followed when parallelizing PSE. The
amount of parallelism that can be extracted depends not only on the simulation
model, which can vary from small and simple models to highly interacting large

46

and complex models, but also on the execution platform. Most likely some form
of a hybrid method should be applied for parallelizing the simulator. Choosing
the right way to combine the different ways of parallelization could speed up the
computations, increase scalability, and allow efficient utilization of the underlying
hardware.

.

47

6 Demonstrative experiment
In this chapter a small scale demonstrative experiment with PSE is presented. The
presented experiment is adapted from the paper presented at the ESM’2014 confer-
ence.[37]

The goal of the presented experiment is to evaluate the viability of the PSE
modeling approach for early design space exploration.

6.1 Experiment setup

In the experiment PSE is used to evaluate different configurations on how a NPU
(Network Processing Unit) and a GPU (Graphical Processing Unit) can be used to
accelerate processing of network packet video streams. In the simulation model, the
NPU and the GPU are both connected to a host CPU via a PCIe bus. Overview of
the setup is illustrated in the Figure 23.

Figure 23: Simulated HW setup consists of a host computer where a NPU and a
GPU are attached to the host CPU via a PCIe bus.

The NPU is used to identify network packets containing slices of video keyframes
and to write into memory those keyframes that belong to a video stream we are
interested on. When a complete video keyframe has been encountered, the network
packets that hold it are forwarded to the host computer via the PCIe link. The host
computer extracts frames from the network packet payloads and prepares a kernel for
GPU execution.[79] The host is configured to buffer a selectable amount of keyframes
into one batch before sending the batch to the GPU for further processing. In the
GPU, an image recognition algorithm is applied to the provided keyframes. Once
the GPU returns the results the host CPU is used to post-processes them and to
send them onwards using the NPU.

In this demonstration, simulation is used to investigate the general applicability
of the above defined system design. In practise the simulation model is used to
evaluate alternative HW/SW architectures and the effect of different scheduling
decisions to model performance.

The goal is to evaluate in general the sanity of such a system, and to more
precisely estimate the amount of video streams that can be processed using the

48

Figure 24: The PSE model of the simulated HW. The NPU, the host and the GPU
each contain a set of cores that are used to process requests made by the software
model. The PCIe bus is modeled as DMA devices (PCIe link) on the NPU and
on the GPU, and as a bus device on the host. Packet input and output processors
define the maximum amount of ingress and egress traffic for the system.

planned system. This information can be used to decide the overall direction of the
further development of such a system.

Simulation workload characteristics are based on an estimate of a typical HD
video stream. We have estimated the required processing time on the NPU by using
evaluation board measurements. CPU and GPU processing times have been esti-
mated by measuring the compilation and execution times of a Cuda-based image
recognition algorithm. PCIe bus transfer capacity and speeds have been deduced
from measurements in [13].

To estimate the viability of the system under study we use the simulation model
of the HW as a base and measure the system performance using different workloads
and application configurations. The application models are based on average ex-
ecution time estimates of the SW operations performed in the system. These are
measured separately from the different system components.

49

To minimize the effect of speculated parameter values we induce stochastic vari-
ability to HW, SW and workload parameters and repeat the simulation multiple
times to acquire a mean estimate with standard deviation bounds.

Figure 25: Overview of the simulated SW. Each arriving packet is first examined
and classified in the NPU. If a packet contains slices of a keyframe that is being
collected, it is further processed. Otherwise the NPU resources are released and the
packet is dropped. After processing the packet in the NPU it is sent to the host
CPU, where it is decided whether to sent the collected frames to the GPU or not.
Work coming back from the GPU is post-processed in the CPU and sent to the NPU
which forwards it into the network.

The video being modeled in the simulation is a high definition 1080p stream,
which has a frame resolution of 1920x1080 pixels, a color depth of 24 bits per pixel
and a frame rate of 30 frames per second. The uncompressed size of a keyframe in
such a video stream is about 6.2 MBytes.

We estimate that a HEVC [102] encoding for the video produces a stream that
has a bitrate of about 0.9 MBytes/s. On a network with a MTU (maximum trans-
mission unit) of 1500 bytes the payload size is about 1400 bytes. This translates
to approximately 640 network packets/s. We estimate that a single stream has in
general 6 keyframes and 24 interframes. We further estimate that half of the data
is encoded into keyframes and the other half in interframes, thus the keyframe size
is about 75000 bytes. On average a keyframe packs into 50 network packets.

In Figure 26 the contents of the inspect in NPU submodel are represented. An
arriving event enters the require core lock node which is a request for a passive
resource, namely for a NPU core in the HW model presented in Figure 24. If a core
is free then the event is able to proceed forward, otherwise it is queued waiting to
be scheduled. In the fork node the event is split into two active resource requests,
load L2 and bus core-L2. The parameter value $stream_id defines the amount that
the active resources are requested for.

Figure 25 represents an overview of the simulated software. The inspect in NPU
submodel contains the computation required to determine the type of the incoming
packet. Details of this submodel are represented in the Figure 26. Whether the
packet does not contain keyframe contents it is dropped. Branching to further

50

Figure 26: SW model for the initial inspection of an arriving packet in the NPU.
(This model is the detailed view of the inspect in NPU submodel in the Figure 25.)

processing or releasing the NPU is done on the drop packet? node. The actual
packet dropping is performed in the release NPU submodel. If the network packet
contains a slice of a keyframe from a stream being tracked, the network packet is
further processed in the processing in NPU submodel. In the processing in NPU
submodel the packet contents are saved into memory and the keyframe slice status
is updated. If all the slices of a keyframe have been encountered the keyframe
data is forwarded to the host. processing in CPU submodel includes the details
of the processing that is done upon receiving a keyframe from the NPU. The node
to NPU/GPU? is used to route the keyframe batch to the GPU and results from
the host CPU to the NPU. The submodel processing in GPU contains the resource
requests related to GPU processing. The submodel forward in NPU contains the
steps taken to forward the results from the host onto the network.

The system model uses several scheduling mechanisms at the different steps
during the video stream processing. A tag based HW scheduler is used on the NPU
for fast distribution of work among the NPU cores. On the host a SW scheduler is
used to divide work among the host threads. A GPU scheduler divides work to the
GPU cores from a warp queue.

6.2 Simulation results

In the experiment, one goal was to find out if the system is able to track 100 video
streams and pick 2 keyframes from each stream per second for further processing.
Another goal was to determine whether there exists a batch size of keyframes to be
sent for the GPU that minimizes the overall latency of getting the results.

In the following the results of a 10 second simulation of 100 video streams are
presented.

In the experiment we measured the latency in processing the video keyframes and
the load on the NPU, the host and the GPU cores, as well as on the PCIe bus. We
parameterized the amount of complete frames to be collected on the host computer
before sending a batch to the GPU. The load on the PCIe bus was monitored on
the NPU and the GPU links and on the host PCIe bus.

51

We measured the effect on the system performance by simulating with varying
the video keyframe batch size from 1 to 100 keyframes. Each simulation was repeated
30 times.

Figure 27: Latency between sending and receiving work from NPU to the CPU-GPU
system.

In Figure 27 the latency of getting back the result to the NPU from the host-
CPU-GPU subsystem is presented. From Figure 27 it can be seen that the latency
reaches its minimum value of approximately 12 seconds with a batch size of about
25 keyframes.
Figure 28 shows the average pending transfers on the PCIe bus. The NPU PCIe

link is able to handle all transfers. The host and GPU PCIe links on the other hand
have transfers waiting in the buffers. Most saturated is the host PCIe bus. This can
be understood by looking at the Figure 23 and by considering the complete path
that a work takes during the processing. Once a packet is received in the NPU it
is forwarded to the host CPU via the PCIe bus, then from the host the gathered
data is written to GPU memory via the PCIe bus. Once the GPU completes the
kernel the results are copied back to host memory again via the PCIe bus. Finally
the post-processed data is returned back to the NPU, again over the bus. Thus each
data item is being transferred four times in some form over the bus. This apparently
forms a bottleneck for the system performance.

In Figure 29 the overall queued requests to the cores on the NPU, the host CPU
and the GPU are presented. With a very small batch size for the keyframes (about
1 to 5 keyframes) the GPU access forms a bottleneck. The larger the bathes are less
there is queuing work for the GPU. On the other hand the latency of receiving work
back from the GPU increases at the same time. The smallest latency of getting work

52

Figure 28: The average number of transfers queued on the PCIe.

back from GPU is achieved with a batch size of about 25 frames. From Figure 29 it
can be seen that with a batch size of 25 frames there is on average 200 queued tasks
waiting for access to the GPU.

The simulation results show that a optimal keyframe batch size that minimizes
the latency of GPU processing can be found. The results further indicate that the
PCIe link is most likely to saturate and form a bottleneck on the overall system
performance. Further investigation should be done whether it is possible to do
direct data transfer between the NPU and the GPU over the PCIe bus so that all
the transfers would not need to go through the host memory - and generate surplus
traffic on the PCIe bus.

Time to execute the one simulation instance takes about 5 seconds. Execution
time of the whole experiment, that is repeating the simulation 30 x 100 = 3000
times, by varying the batch size parameter from 1 to 100 and executing each run 30
times with different seeds, took 4 hours on an Intel Core i5-3320M CPU running at
2.60GHz with 8Gb of memory.

6.3 Conclusions on experiment results

The demonstrative experiment shows how accelerated processing can be modeled.
In the experiment model, we connected a GPU into a NPU for video stream process-
ing. Simulating the model, were able to point bottleneck formation and attainable
performance with throughput and latency information based on the simulation. Ac-
cording to the results obtained from the presented experiment, abstract simulation
seems to be a viable approach in early phase design space exploration. Results

53

Figure 29: The average queued events waiting processing on the NPU, the host and
the GPU.

suggest that even when there is no physical prototype available, it is possible to
estimate individual system parameters from existing individual system components.
A simulation model can be constructed, and the model can then be used to estimate
the performance of different system configurations.

54

7 Discussion
In this chapter the results of this thesis are discussed. First, the challenges encoun-
tered within the topic of the thesis are presented. Next, related work on the field
of study is summarized. Then, the findings made during the process are discussed.
Finally, some directions for possible future work are proposed.

7.1 Challenge

Performance analysis of heterogeneous MPSoCs is difficult for several reasons. MP-
SoCs are tightly-connected systems with lots of shared resources. Their operation
is based on efficient distribution of the workload among the computing resources.
Besides the cost of computation, it is also the cost of communication that play a
significant role in MPSoCs. MPSoCs are generally used to process dynamic data
streams. Dynamic system input, parallel memory accesses and the shared nature
of MPSoC interconnects and other resources lead to non-deterministic delays in the
system. The resource interaction is further mixed with scheduling, which is usually
performed at multiple points in the system. As pointed out in Chapter 2.3, hard-
ware accelerated scheduling is usually the only viable approach for managing the
MPSoC resources. The non-deterministic behavior of MPSoCs, and the scheduling
that is performed at multiple points in the system, makes the performance analysis
a hard problem.

When analysis of MPSoCs at an abstract level is enough, there exists different
analytical modeling methods that can be used (see Chapter 3.5). But what these
methods lack, is a way for understanding how the systems behave during execution.
In order to understand the behavior of MPSoCs, simulation methods and tracing of
the simulation execution is required.

To enable tracing, the simulation needs to be executed and the execution needs to
be monitored. While this can be done with many simulation tools, such as SystemC
or SpecC, integration of monitoring in a way that the simulation scales on parallel
execution platforms is very hard, especially when simulating close to the ISA level.

The performance of simulation execution on parallel platforms is a question of
special importance. The future manycore platforms are constantly evolving into a
direction where they soon contain thousands, if not millions of cores. With regard
to parallel simulation, two main problems arise. First, how to model and simulate
such manycore systems? And second, how to parallelize the execution of simulations
to benefit from the future manycore platforms?

7.2 Related work

Despite the challenges, parallel simulation is a widely used method in performance
analysis of MPSoCs. However, there exists no single method that could be used
in an universal manner to model and simulate all parallel systems, nor MPSoCs.
Instead, the field of parallel simulation contains many different methods, tools and

55

approaches that attempt to balance between competing goals, and cope with a
specific subset of the problem space.

The traditional problem of balancing between the accuracy and speed of the
simulation, is increasingly challenging with growing parallelism. The problem has
been addressed using different techniques to suppress the amount of required syn-
chronization, and by dynamically adapting to different levels of abstraction to speed
up parts of the simulation. For example, the Graphite simulator [72] uses analytical
estimation techniques to limit the amount of required synchronization, and also re-
laxes the event timing so that the events are not necessarily executed in timestamped
order. Another approach is implemented in TaskSim [90], which uses four levels of
abstraction, and allows dynamic switching between the abstraction levels. Sniper
simulator [21] uses a hybrid simulation approch which is based on the usage of an
analytical interval core model with a micro-architecture structure simulation. The
level of abstraction used in PSE corresponds closely to the second highest abstrac-
tion level of TaskSim [90]. There applications are presented as required computation
and synchronizations.

In general, more the simulator makes use of estimation techniques to limit the
amount of required communication, the more inaccurate the output monitored from
the simulation execution will be. PSE monitoring produces exact traces of the state
changes in the models. This allows reasoning about the cause and effect relationships
of the execution.

Design of PSE has been affected by simulators like RESQME [26]. But where
RESQME does queuing network simulation that can be solved using any basic DES,
the layered resource network concept of PSE requires custom simulator kernel to
operate because of the detailed probing mechanisms. The modeling concepts of
RESQME and PSE have similarities, but through the workload modeling PSE cor-
responds more to other simulators such as the JMT package [12]. Both PSE and
JMT are extendable simulation tool sets with different tools to support different
modeling methods. More tools and techniques have been discussed in Chapter 3.4.

Parallelization of simulations faces most of the same problems that parallelization
of computation in general does. A survey of parallel programming models and tools
is done in [54]. Chapter 5.3 contains more detailed references to work done with
parallelizing simulators.

Parallelization of simulators is hard because simulation execution is monitored.
Simulations could be executed fast, but because probe measurements need to be
collected, the simulator needs to write output. This easily becomes a problem as
the system I/O (input and output) is a typical bottleneck.[18] An example of system
I/O saturation is presented using PSE in Chapter 5.3.1.

A possible approach is to supress the amount of output by computing average
metrics and key values during the simulation execution. But as with the analytical
modeling methods, this approach does not enable the observation of the behavior
of the simulation model during the execution. Detailed monitoring requires writing
of usually very large traces. With parallel simulations, and simulations of parallel
systems, this quickly becomes a problem.

The answer to the probe I/O problem is parallel I/O. An overview to parallel

56

I/O is presented in [54]. Another view to parallel I/O is in the real-time hardware
monitoring approaches used in MPSoCs.[59] Examples of parallel I/O include the
Haskell multicore I/O manager Mio [101] and the MPI-IO Parallel I/O Interface
[29]. The problems the HPC community are facing with I/O are fundamentally
to those encountered with detailed monitoring of parallel simulators. Examples of
HPC applications employing parallel I/O include e.g. the Blue Gene supercomputer
[18], and the data acquisition system of the CERN Large Hadron Collider [20].

7.3 Discoveries

The abstraction level of MPSoC simulation must be raised in order to make the
simulations executable but general statements on the right levels of abstractions
are hard to make. As pointed out by authors of TaskSim, the different levels of
abstraction should complement each other, and be used for different purposes.[90]

Different abstraction levels and the modeling mechanisms have limitations in
their expressive power. In addition, models are meaningful only when the users
understand these models. The problem of suitable abstraction level is not just
about finding a balance between accuracy and speed but also a balance between
model detail and model clarity.

PSE modeling concepts were taught to participants of the ParallaX education
day [86]. According to the feedback received, the toolset has potential to be used
for teaching performance analysis of parallel systems, and in their understanding in
general. But in order to deduce any comparable metrics on the clarity, or expres-
siveness of different modeling mechanisms, one quickly finds himself in the middle
of interdisciplinary, mainly cognitive science related, challenges.

Research in high-level simulation techniques is motivated by the fact that com-
plex systems, such as IoT, are growing in complexity, and require new application
development tools. Efficient modeling and simulation tools are needed to support
the design process.

Efficient simulators need to take advantage of the available parallel execution
platforms. This is especially important, as core counts are constantly growing. Ef-
ficient usage of parallel platforms is not only required for the purposes of reaching
faster simulation execution speeds but for the sake of the parallelization problem
itself. For example, the compiler toolchain and the runtime system of PSE, or any
other simulation toolset, can be seen as abstractions of a general purpose computer
system. Parallel execution of a simulator program faces the same problems, as all
software on parallel hardware. The PDES problem links PSE to a wider research
problem context. PSE can be seen as a research platform for parallelism in general.

7.4 Future work

This thesis is part of ongoing research. Several directions for future research di-
rections exist. As shown in this thesis, the resource network methodology, and the
dynamic scheduling models can be used for modeling parallel systems. But in order

57

for the PSE toolset to meet future challenges of growing core counts of both the
modeled systems, and the simulation execution platforms, the PSE tools need to
evolve.

Future challenges include the need for ultra-large-scale simulations, such as IoT
applications, or MPSoCs with millions of cores. Simulation of such models require
lots of memory and computing resources. This calls for new modeling methods
and simulation parallelization techniques. E.g. simulator runtime should be able to
reuse the model description by decoupling model state from description. Advanced
memory management schemes, such as shared events, application memory regula-
tion, and collective file I/O should be used. And finally, the simulator should make
use of parallel hardware, and be able to scale with increased core counts.

Future directions for research which continue the theme of parallel simulation,
and performance analysis presented in this thesis, can be categorized into three
branches:

• new modeling and simulation features

• parallelization of simulations

• research in related topics

Additional features for modeling and simulation include better support for mod-
eling accelerator devices. PSE needs for example a multifork-join method that could
be used to model GPU-style threading, and related scheduling and divergence issues.
This would need a new lightweight way to present threads in the simulation kernel,
and group them for execution.

As energy efficiency is a key metric in modern MPSoCs, a way to model the power
consumption should be included into PSE. The power model should also be acces-
sible from the RNS runtime to include support for energy aware scheduling. Power
modeling has been recently incorporated to e.g. the Graphite[61] and Sniper[21]
simulators.

Parallelization of PSE could be done essentially in two ways, either porting the
old sequential code to support parallelism, or rewriting the simulator engine from
scratch.

The first way would be easier by using the conservative simulation approach, as
there is no need to save model state history which simplifies the porting of sequential
code, and related data structures. The conservative approach would mainly require
proper synchronization in order to make use of parallel hardware.

The second way would require rewriting not only the simulation kernel but most
of the other code too. Rewriting most of the code from scratch would offer better
possibilities to incorporate more complex parallelization strategies. Likely, the most
effective way would be to use a form of adaptive approach that uses variations of
optimistic and conservative methods. Parallelism extraction should be incorporated
also into the compiler tools, where the most effective parallel execution strategy
could be estimated. The compiler tools should use graph decomposition methods
to extract parallelism in models, and automate the partitioning process. Problems

58

relate to the adaptiveness. It would be easier to parallelize a simulator tuned to
execute only certain types of models but PSE can be used in many different ways
e.g. producing models of varying complexity and interactions. Parallelizing a more
general purpose simulator is always harder. Parallelization of PSE faces also the
problem of execution monitoring the related parallel I/O. This problem certainly
requires synchronization but also different coordination mechanisms (such as collec-
tive I/O), to minize the negative impact to performance.

Future possible topics related to PDES are numerous. They include e.g. research
in parallel data structures, algorithms for parallel I/O, and monitoring of parallel
execution. Parallel simulation research is tightly connected to research in paralleliz-
ing compilers, parallel languages and runtime systems. Therefore simulation and
modeling requires understanding of the systems under study. Building a simulator
program requires understanding of the software development methods and tools, as
well as of the underlying execution hardware, and execution mechanisms. Parallel
simulation of MPSoCs integrates most computer system related research fields into
an entity, through which these can be explored.

Parallelism is currently the greatest challenge the field of computer science faces.
The problems parallel simulation tackles with, are the very problems the entire field
is facing. Therefore, more research efforts are strongly needed.

59

8 Conclusions
The goal of this thesis was to investigate the use of simulation, measurement and
modeling methods for analyzing the performance of parallel accelerator rich plat-
forms. The motivation behind this work was that as the new heterogeneous parallel
hardware is complex and traditional programming methods are not working as such,
a higher level of abstraction is needed in order to analyze the performance of different
scheduling, application partitioning and runtime configuration decisions.

This thesis presented a way how to model, simulate and analyze the performance
of MPSoCs with accelerators using the resource reservation based mechanism. Focus
of this thesis is in scheduling, how to model and analyze hardware, software and hy-
brid scheduled systems. Performance analysis was done by constructing executable
models of systems with adjustable monitoring mechanisms. Modeling in PSE is
based on the use of graphical editor tools which allow model description using basic
building blocks. PSE models are simulated using discrete event based approach.

Concrete contributions of this thesis include updating an existing simulation
framework to support parallelism. Main contribution is on one hand that modeling
concepts of PSE have been widened and on the other hand that the supporting
mechanisms have been implemented. The implemented fork-join mechanism allows
modeling of parallel resource requests.

This thesis has shown that the resource network methodology augmented with
dynamic scheduling is a viable approach in modeling heterogeneous MPSoCs with
accelerators. With the use of concrete example models this thesis showed how
dynamic scheduling can be modeled and simulated using the reseource reservation
based methodology. Similarly a way to model memory systems was presented. A
small scale demontrative experiment was also done. The demonstrative experiment
showed that PSE suits well for early design space exploration.

The PSE runtime can be used to collect a comprehensive set of simulation metrics
and traces. The detailed monitoring capabilities of PSE allow exact tracing of events
which makes causal reasoning of event sequences possible.

The heterogeneous multi- and manycore systems-on-chip are increasingly com-
plex devices with lots of interacting components. The future platforms will have
even greater number of cores and accelerators. MPSoCs are used in embedded sys-
tems with high-performance real time requirements, and systems of systems are built
using these components. Research in high-level simulation techniques is motivated
by the fact that complex systems, such as IoT, are growing in complexity and re-
quire new application development tools. Efficient modeling and simulation tools
are needed to support the design process.

Similarly new higher level modeling methods and novel parallelization strategies
are needed in order to model, simulate and analyze the performance of such systems
using as execution platform the available manycore platforms.

Parallelization of PSE and simulators in general is a research question that needs
addressing more and more as the core counts on the execution platforms are con-
stantly growing. This is not only for the sake of speeding simulation execution, but
also because of PDES research itself. Research made within the field of parallel sim-

60

ulation can lead to novel discoveries that have applications in the general domain of
parallel computing.

61

References
[1] 3PMCES. DATE 2014. http://www.ecsi.org/workshop2014/date/3pmces-

proceedings [Accessed: 2014-11-1].

[2] Andreas Abel, Florian Benz, Johannes Doerfert, Barbara Dörr, Sebastian
Hahn, Florian Haupenthal, Michael Jacobs, Amir H. Moin, Jan Reineke, Bern-
hard Schommer, and Reinhard Wilhelm. Impact of Resource Sharing on Per-
formance and Performance Prediction: A Survey. In Proceedings of the 24th
International Conference on Concurrency Theory, CONCUR’13, pages 25–43,
Berlin, Heidelberg, 2013. Springer-Verlag. DOI: 10.1007/978-3-642-40184-8_3.

[3] Sarita V. Adve and Hans-J. Boehm. Memory Models: A Case for Rethinking
Parallel Languages and Hardware. Commun. ACM, 53(8):90–101, August
2010. DOI: 10.1145/1787234.1787255.

[4] AMD. http://www.amd.com/.

[5] AMD. SimNow. http://developer.amd.com/tools-and-sdks/cpu-
development/simnow-simulator/ [Accessed: 2014-09-09].

[6] Eduardo Argollo, Ayose Falcón, Paolo Faraboschi, Matteo Monchiero, and
Daniel Ortega. COTSon: Infrastructure for Full System Simulation. SIGOPS
Oper. Syst. Rev., 43(1):52–61, January 2009. DOI: 10.1145/1496909.1496921.

[7] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt
Keutzer, John Kubiatowicz, Nelson Morgan, David Patterson, Koushik Sen,
John Wawrzynek, David Wessel, and Katherine Yelick. A View of the Parallel
Computing Landscape. Commun. ACM, 52(10):56–67, October 2009. DOI:
10.1145/1562764.1562783.

[8] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of
Things: A Survey. Comput. Netw., 54(15):2787–2805, October 2010. DOI:
10.1016/j.comnet.2010.05.010.

[9] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An Infrastructure
for Computer System Modeling. Computer, 35(2):59–67, February 2002. DOI:
10.1109/2.982917.

[10] M. Bamakhrama and T. Stefanov. Hard-real-time scheduling of data-
dependent tasks in embedded streaming applications. In Embedded Software
(EMSOFT), 2011 Proceedings of the International Conference on, pages 195–
204, Oct 2011.

[11] Twan Basten, Emiel Van Benthum, Marc Geilen, Martijn Hendriks, Fred
Houben, Georgeta Igna, Frans Reckers, Sebastian De Smet, Lou Somers, Eg-
bert Teeselink, Nikola Trčka, Frits Vaandrager, Jacques Verriet, Marc Voorho-
eve, and Yang Yang. Model-driven Design-space Exploration for Embedded

http://www.amd.com/

62

Systems: The Octopus Toolset. In Proceedings of the 4th International Con-
ference on Leveraging Applications of Formal Methods, Verification, and Val-
idation - Volume Part I, ISoLA’10, pages 90–105, Berlin, Heidelberg, 2010.
Springer-Verlag. http://dl.acm.org/citation.cfm?id=1939281.1939293.

[12] M Bertoli, G Casale, and G Serazzi. The JMT simulator for performance
evaluation of non-product-form queueing networks. IEEE Computer Society,
pages 3–10, 2007. DOI: 10.1109/ANSS.2007.41.

[13] Ray Bittner, Erik Ruf, and Alessandro Forin. Direct GPU/FPGA Communi-
cation Via PCI Express. Cluster Computing, 17(2):339–348, June 2014. DOI:
10.1007/s10586-013-0280-9.

[14] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Trivedi S. Kishor. Queu-
ing Networks and Markov Chains. John Wiley & Sons, 1998.

[15] Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Colbrook, and William E.
Weihl. PROTEUS: A High-performance Parallel-architecture Simulator. In
Proceedings of the 1992 ACM SIGMETRICS Joint International Confer-
ence on Measurement and Modeling of Computer Systems, SIGMETRICS
’92/PERFORMANCE ’92, pages 247–248, New York, NY, USA, 1992. ACM.
DOI: 10.1145/133057.133146.

[16] R. E. Bryant. SIMULATION OF PACKET COMMUNICATION ARCHI-
TECTURE COMPUTER SYSTEMS. Technical report, Cambridge, MA,
USA, 1977.

[17] Rainer Buchty, Vincent Heuveline, Wolfgang Karl, and Jan-Philipp Weiss. A
survey on hardware-aware and heterogeneous computing on multicore proces-
sors and accelerators. Concurrency and Computation: Practice and Experi-
ence, 24(7):663–675, 2012. DOI: 10.1002/cpe.1904.

[18] Huy Bui, H. Finkel, V. Vishwanath, S. Habib, K. Heitmann, J. Leigh,
M. Papka, and K. Harms. Scalable Parallel I/O on a Blue Gene/Q Super-
computer Using Compression, Topology-Aware Data Aggregation, and Sub-
filing. In Parallel, Distributed and Network-Based Processing (PDP), 2014
22nd Euromicro International Conference on, pages 107–111, Feb 2014. DOI:
10.1109/PDP.2014.60.

[19] Lukai Cai, Shireesh Verma, and Daniel D. Gajski. Comparison of
SpecC and SystemC Languages for System Design, 2003. Technical Re-
port CECS-03-11. Available at: http://users.ece.utexas.edu/~gerstl/ee382v-
ics_f09/soc/tutorials/Comparison of SpecC and SystemC Languages for Sys-
tem Design.pdf [Accessed: 2014-08-08].

[20] F. Carena, W. Carena, S. Chapeland, V. Chibante Barroso, F. Costa,
E. Dénes, R. Divià, U. Fuchs, A. Grigore, T. Kiss, G. Simonetti, C. Soós,
A. Telesca, P. Vande Vyvre, and B. von Haller. The ALICE data acquisition

63

system. Nuclear Instruments and Methods in Physics Research A, 741:130–
162, March 2014. DOI: 10.1016/j.nima.2013.12.015.

[21] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sampled Simulation
of Multi-Threaded Applications. In International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 2–12, 2013.

[22] Cavium. http://www.cavium.com.

[23] Cavium. OCTEON Programmers Guide - The Fundamentals. http://
university.caviumnetworks.com/textbooks.html [Accessed: 2014-03-26].

[24] Pew Research Center. The Internet of Things Will Thrive by 2025.
Pew Research Center, 2014. http://www.pewinternet.org/2014/05/14/
internet-of-things/ [Accessed: 2014-08-12].

[25] K.M. Chandy and J. Misra. Distributed Simulation: A Case Study in Design
and Verification of Distributed Programs. Software Engineering, IEEE Trans-
actions on, SE-5(5):440–452, Sept 1979. DOI: 10.1109/TSE.1979.230182.

[26] Kow C. Chang, Robert F. Gordon, Paul G. Loewner, and Edward A. Mac-
Nair. The Research Queuing Package Modeling Environment (RESQME). In
Proceedings of the 25th Conference on Winter Simulation, WSC ’93, pages
294–302, New York, NY, USA, 1993. ACM. DOI: 10.1145/256563.256654.

[27] S. Chattopadhyay, C.L. Kee, A Roychoudhury, T. Kelter, P. Marwedel, and
H. Falk. A Unified WCET Analysis Framework for Multi-core Platforms. In
Real-Time and Embedded Technology and Applications Symposium (RTAS),
2012 IEEE 18th, pages 99–108, April 2012. DOI: 10.1109/RTAS.2012.26.

[28] Jianwei Chen, Murali Annavaram, and Michel Dubois. SlackSim: A Platform
for Parallel Simulations of CMPs on CMPs. SIGARCH Comput. Archit. News,
37(2):20–29, July 2009. DOI: 10.1145/1577129.1577134.

[29] Peter Corbett, Dror Feitelson, Sam Fineberg, Yarsun Hsu, Bill Nitzberg, Jean-
Pierre Prost, Marc Snirt, Bernard Traversat, and Parkson Wong. Overview of
the MPI-IO Parallel I/O Interface. In Ravi Jain, John Werth, and JamesC.
Browne, editors, Input/Output in Parallel and Distributed Computer Systems,
volume 362 of The Kluwer International Series in Engineering and Computer
Science, pages 127–146. Springer US, 1996. DOI: 10.1007/978-1-4613-1401-
1_5.

[30] Menascé Daniel, Almeida Virgilio, and Dowdy Larry. Capacity planning and
performance modeling. Prentice Hall, 1994.

[31] Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for
multiprocessor systems. ACM Comput. Surv., 43(4):35:1–35:44, October 2011.
DOI: 10.1145/1978802.1978814.

http://www.cavium.com
http://university.caviumnetworks.com/textbooks.html
http://university.caviumnetworks.com/textbooks.html
http://www.pewinternet.org/2014/05/14/internet-of-things/
http://www.pewinternet.org/2014/05/14/internet-of-things/

64

[32] R.H. Dennard, F.H. Gaensslen, Hwa-Nien Yu, V. Leo Rideovt, Ernest Bassous,
and Andre R. Leblanc. Design of ion-implanted MOSFET’s with very small
physical dimensions. Solid-State Circuits Society Newsletter, IEEE, 12(1):38–
50, Winter 2007. DOI: 10.1109/N-SSC.2007.4785543.

[33] Michel Dubois, Murali Annavaram, and Per Stenström. Parallel Computer
Organization and Design. Cambridge Univ. Press, 2012.

[34] R. Dömer. SpecC. http://www.cecs.uci.edu/~specc/ [Accessed: 2014-08-
08].

[35] Stephen Edwards, Luciano Lavagno, Edward A. Lee, and Alberto Sangiovanni-
Vincentelli. Design of embedded systems: Formal models, validation, and
synthesis. In Giovanni De Micheli, Rolf Ernst, and Wayne Wolf, editors,
Readings in Hardware/Software Co-design, pages 86–107. Kluwer Academic
Publishers, Norwell, MA, USA, 2002.

[36] Yoav Etsion, Felipe Cabarcas, Alejandro Rico, Alex Ramirez, Rosa M. Ba-
dia, Eduard Ayguade, Jesus Labarta, and Mateo Valero. Task Super-
scalar: An Out-of-Order Task Pipeline. In Proceedings of the 2010 43rd An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO ’43,
pages 89–100, Washington, DC, USA, 2010. IEEE Computer Society. DOI:
10.1109/MICRO.2010.13.

[37] Eurosis. ESM’2014. http://eurosis.org/cms/?q=node/2852 [Accessed:
2014-11-1].

[38] D. Evans. The Internet of Things - How the Next Evolution of the Internet Is
Changing Everything. Cisco IBSG, 2011. White Paper.

[39] Daquan Feng, Chenzi Jiang, Gubong Lim, Jr. Cimini, L.J., Gang Feng,
and G.Y. Li. A survey of energy-efficient wireless communications. Com-
munications Surveys Tutorials, IEEE, 15(1):167–178, First 2013. DOI:
10.1109/SURV.2012.020212.00049.

[40] Richard M. Fujimoto. Parallel and Distributed Simulation Systems. Wiley
Interscience, 2000.

[41] gem5. The gem5 simulator system. http://www.m5sim.org.

[42] Alan D. George, Ryan B. Fogarty, Jeff S. Markwell, and Michael D. Miars.
An Integrated Simulation Environment for parallel and distributed system
prototyping. Simulation, 72:283–294, 1999.

[43] Soonhoi Ha, Sungchan Kim, Choonseung Lee, Youngmin Yi, Seongnam Kwon,
and Young-Pyo Joo. PeaCE: A Hardware-software Codesign Environment for
Multimedia Embedded Systems. ACM Trans. Des. Autom. Electron. Syst.,
12(3):24:1–24:25, May 2008. DOI: 10.1145/1255456.1255461.

http://www.cecs.uci.edu/~specc/
http://eurosis.org/cms/?q=node/2852
http://www.m5sim.org

65

[44] Blake A. Hechtman and Daniel J. Sorin. Exploring memory consistency for
massively-threaded throughput-oriented processors. SIGARCH Comput. Ar-
chit. News, 41(3):201–212, June 2013. DOI: 10.1145/2508148.2485940.

[45] Jörg Henkel and Rolf Ernst. An approach to automated hardware/software
partitioning using a flexible granularity that is driven by high-level estimation
techniques. IEEE Trans. Very Large Scale Integr. Syst., 9(2):273–290, April
2001. DOI: 10.1109/92.924041.

[46] Sutter Herb. The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software. Dr. Dobb’s Journal, 30(3), March 2005, 2005.
Available online: http://www.gotw.ca/publications/concurrency-ddj.
htm[Referenced:2014-8-13].

[47] Mark D. Hill, James R. Larus, Steven K. Reinhardt, and David A.
Wood. Cooperative Shared Memory: Software and Hardware for Scalable
Multiprocessor. SIGPLAN Not., 27(9):262–273, September 1992. DOI:
10.1145/143371.143537.

[48] Vesa Hirvisalo. QNS - A Queueing Network Simulator. Technical Report
PEAK-TKK22-General, Helsinki University of Technology, 1998.

[49] Vesa Hirvisalo. On Static Timing Analysis of GPU Kernels. In Heiko Falk,
editor, 14th International Workshop on Worst-Case Execution Time Anal-
ysis, volume 39 of OpenAccess Series in Informatics (OASIcs), pages 43–52,
Dagstuhl, Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
http://dx.doi.org/10.4230/OASIcs.WCET.2014.43.

[50] J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve. Rsim: Simulat-
ing shared-memory multiprocessors with ilp processors. In Computer vol.
35, no. 2, pages 40–49, 2002. http://rsim.cs.illinois.edu/~sadve/
Publications/computer02.pdf [Accessed: 2014-04-14].

[51] Wen-mei Hwu, Shane Ryoo, Sain-Zee Ueng, John H. Kelm, Isaac Gelado,
Sam S. Stone, Robert E. Kidd, Sara S. Baghsorkhi, Aqeel A. Mahesri,
Stephanie C. Tsao, Nacho Navarro, Steve S. Lumetta, Matthew I. Frank, and
Sanjay J. Patel. Implicitly Parallel Programming Models for Thousand-core
Microprocessors. In Proceedings of the 44th Annual Design Automation Con-
ference, DAC ’07, pages 754–759, New York, NY, USA, 2007. ACM. DOI:
10.1145/1278480.1278669.

[52] ITRS. International Technology Roadmap for Semiconductors, 2011. http:
//www.itrs.net/Links/2011ITRS/Home2011.htm [Accessed: 2014-06-17].

[53] R. Jain. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley Inter-
science, New York, NY, 1991. ISBN:0471503361.

http://www.gotw.ca/publications/concurrency-ddj.htm [Referenced: 2014-8-13]
http://www.gotw.ca/publications/concurrency-ddj.htm [Referenced: 2014-8-13]
http://rsim.cs.illinois.edu/~sadve/Publications/computer02.pdf
http://rsim.cs.illinois.edu/~sadve/Publications/computer02.pdf
http://www.itrs.net/Links/2011ITRS/Home2011.htm
http://www.itrs.net/Links/2011ITRS/Home2011.htm

66

[54] Alfonso Nino Javier Diaz, Camelia Munoz-Caro. A Survey of Parallel Program-
ming Models and Tools in the Multi and Many-Core Era. IEEE Transactions
on Parallel & Distributed Systems, 23(8):1369–1386, 2012. DOI: 10.1109/T-
PDS.2011.308.

[55] L. Hennessy John and David A. Patterson. Computer organization and design:
the hardware/software interface. Morgan Kaufmann., 2013. 5th edition.

[56] A Kalavade and E.A Lee. The extended partitioning problem: hardware/soft-
ware mapping and implementation-bin selection. In Rapid System Prototyping,
1995. Proceedings., Sixth IEEE International Workshop on, pages 12–18, Jun
1995. DOI: 10.1109/IWRSP.1995.518565.

[57] Ken Kennedy and John R. Allen. Optimizing Compilers for Modern Archi-
tectures: A Dependence-based Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2002.

[58] C. Kim and AK. Agrawala. Analysis of the fork-join queue. Computers, IEEE
Transactions on, 38(2):250–255, Feb 1989. DOI: 10.1109/12.16501.

[59] Georgios Kornaros and Dionisios Pnevmatikatos. A Survey and Taxonomy of
On-chip Monitoring of Multicore Systems-on-chip. ACM Trans. Des. Autom.
Electron. Syst., 18(2):17:1–17:38, April 2013. DOI: 10.1145/2442087.2442088.

[60] Sanjeev Kumar, Christopher J. Hughes, and Anthony Nguyen. Carbon:
Architectural Support for Fine-grained Parallelism on Chip Multiproces-
sors. SIGARCH Comput. Archit. News, 35(2):162–173, June 2007. DOI:
10.1145/1273440.1250683.

[61] G. Kurian, S.M. Neuman, G. Bezerra, A Giovinazzo, S. Devadas, and J.E.
Miller. Power modeling and other new features in the Graphite simulator.
In Performance Analysis of Systems and Software (ISPASS), 2014 IEEE In-
ternational Symposium on, pages 132–134, March 2014. DOI: 10.1109/IS-
PASS.2014.6844471.

[62] J. Larus and R. Rajwar. Transactional Memory. Morgan-Claypool, 2007.

[63] James R. Larus and Christos Kozyrakis. Transactional memory. CACM 51(7):
80-88 (2008), 2008.

[64] Edward A. Lee. The Problem with Threads. Computer, vol. 39, no. 5, pp.
33-42, May 2006, 2006. doi:10.1109/MC.2006.180.

[65] Junghee Lee, C. Nicopoulos, Hyung Gyu Lee, S. Panth, Sung Kyu
Lim, and Jongman Kim. IsoNet: Hardware-Based Job Queue Manage-
ment for Many-Core Architectures. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 21(6):1080–1093, June 2013. DOI:
10.1109/TVLSI.2012.2202699.

67

[66] J. Lilius, J. Takala, and V. Hirvisalo. Strategic research agenda for ParallaX
– parallel acceleration, 2012. Technical report, TiViT.

[67] Unai Lopez-Novoa, Alexander Mendiburu, and José Miguel-Alonso. A Survey
of Performance Modeling and Simulation Techniques for Accelerator-based
Computing. IEEE Transactions on Parallel and Distributed Systems, 2014.
DOI: 10.1109/TPDS.2014.2308216.

[68] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty,
Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A.
Wood. Multifacet’s general execution-driven multiprocessor simulator (gems)
toolset. SIGARCH Comput. Archit. News, 33:2005, 2005.

[69] Jeronimo Castrillon Mazo and Rainer Leupers. Programming Heterogenous
MPSoCs. Springer, 2014. DOI: 10.1007/978-3-319-00675-8.

[70] Kshitij Mehta, Edgar Gabriel, and Barbara Chapman. Specification and per-
formance evaluation of parallel i/o interfaces for openmp. In Proceedings
of the 8th International Conference on OpenMP in a Heterogeneous World,
IWOMP’12, pages 1–14, Berlin, Heidelberg, 2012. Springer-Verlag. DOI:
10.1007/978-3-642-30961-8_1.

[71] Paul Messina. Parallel I/O: a set of intertwined systems and applications
issues. In Parallel Processing, 1996. Proceedings of the 1996 ICPP Workshop
on Challenges for, pages 85–90, Aug 1996. DOI: 10.1109/ICPPW.1996.538593.

[72] J.E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,
J. Eastep, and A Agarwal. Graphite: A distributed parallel simulator for
multicores. In High Performance Computer Architecture (HPCA), 2010 IEEE
16th International Symposium on, pages 1–12, Jan 2010. DOI: 10.1109/H-
PCA.2010.5416635.

[73] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis. Rapid design space
exploration of heterogeneous embedded systems using symbolic search and
multi-granular simulation. SIGPLAN Not., 37(7):18–27, June 2002. DOI:
10.1145/566225.513835.

[74] Gordon E. Moore. Cramming more components onto integrated circuits,
Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.
Solid-State Circuits Society Newsletter, IEEE, 11(5):33–35, Sept 2006. DOI:
10.1109/N-SSC.2006.4785860.

[75] Open MPI. http://www.open-mpi.org/.

[76] Shubhendu S. Mukherjee, Steven K. Reinhardt, Babak Falsafi, Mike Litzkow,
Mark D. Hill, David A. Wood, Steven Huss-Lederman, and James R. Larus.
Wisconsin Wind Tunnel II: A Fast, Portable Parallel Architecture Simulator.
IEEE Concurrency, 8(4):12–20, October 2000. DOI: 10.1109/4434.895100.

http://www.open-mpi.org/

68

[77] Mahesh Nanjundappa, Anirudh Kaushik, Hiren D. Patel, and Sandeep K.
Shukla. Accelerating SystemC simulations using GPUs. 2012 IEEE Interna-
tional High Level Design Validation and Test Workshop (HLDVT), 0:132–139,
2012. http://doi.ieeecomputersociety.org/10.1109/HLDVT.2012.6418255.

[78] NSN. Open Event Machine, 2013. http://sourceforge.net/projects/
eventmachine/.

[79] NVIDIA. Cuda c programming guide, 2014. http://docs.nvidia.com/cuda/
cuda-c-programming-guide [Accessed: 2014-06-12].

[80] OpenCL. https://www.khronos.org/opencl/.

[81] OpenMP. http://www.openmp.org/.

[82] Open SystemC Initiative (OSCI). SystemC. http://sourceforge.net/
projects/systemc/ [Accessed: 2014-08-08].

[83] Harry Perros. Computer Simulation Techniques: The definitive introduc-
tion! Computer Science Departement, NC State University, Raleigh, NC,
2009. http://www.csc.ncsu.edu/faculty/perros//simulation.pdf [Ac-
cessed: 2014-08-08].

[84] James Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall,
1981.

[85] Artur Podobas, Mats Brorsson, and Karl-Filip Faxén. A comparison of
some recent task-based parallel programming models, 2010. http://soda.
swedish-ict.se/3869/ [Accessed: 2014-08-08].

[86] Parallax project. Parallax Education Day, 2014. http://http://www.
parallax-project.fi/events/educationday/.

[87] GNU Pth. The GNU Portable Threads. http://www.gnu.org/software/
pth/.

[88] Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R. Lebeck, James C.
Lewis, and David A. Wood. The Wisconsin Wind Tunnel: Virtual Prototyping
of Parallel Computers. In In Proceedings of the 1993 ACM Sigmetrics Con-
ference on Measurement and Modeling of Computer Systems, pages 48–60,
1993.

[89] J. Ributzka. Concurrency and synchronization in the modern many-core: chal-
lenges and opportunities. PhD thesis, Deleware Univ., 2013.

[90] Alejandro Rico, Felipe Cabarcas, Carlos Villavieja, Milan Pavlovic, Au-
gusto Vega, Yoav Etsion, Alex Ramirez, and Mateo Valero. On the simu-
lation of large-scale architectures using multiple application abstraction lev-
els. ACM Trans. Archit. Code Optim., 8(4):36:1–36:20, January 2012. DOI:
10.1145/2086696.2086715.

http://sourceforge.net/projects/eventmachine/
http://sourceforge.net/projects/eventmachine/
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide
https://www.khronos.org/opencl/
http://www.openmp.org/
http://sourceforge.net/projects/systemc/
http://sourceforge.net/projects/systemc/
http://www.csc.ncsu.edu/faculty/perros//simulation.pdf
http://soda.swedish-ict.se/3869/
http://soda.swedish-ict.se/3869/
http://http://www.parallax-project.fi/events/educationday/
http://http://www.parallax-project.fi/events/educationday/
http://www.gnu.org/software/pth/
http://www.gnu.org/software/pth/

69

[91] Mendel Rosenblum, Stephen A. Herrod, Emmett Witchel, and Anoop Gupta.
Complete Computer System Simulation: The SimOS Approach. IEEE Parallel
Distrib. Technol., 3(4):34–43, December 1995. DOI: 10.1109/88.473612.

[92] C. Roth, S. Reder, G. Erdogan, O. Sander, G.M. Almeida, H. Bucher, and
J. Becker. Asynchronous parallel MPSoC simulation on the Single-Chip Cloud
Computer. In System on Chip (SoC), 2012 International Symposium on, pages
1–8, Oct 2012. DOI: 10.1109/ISSoC.2012.6376364.

[93] Daniel Sanchez, Richard M. Yoo, and Christos Kozyrakis. Flexible architec-
tural support for fine-grain scheduling. In Proceedings of the Fifteenth Edition
of ASPLOS on Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS XV, pages 311–322, New York, NY, USA, 2010. ACM.
DOI: 10.1145/1736020.1736055.

[94] C. Schumacher, R. Leupers, D. Petras, and A Hoffmann. parSC: Syn-
chronous parallel SystemC simulation on multi-core host architectures. In
Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2010
IEEE/ACM/IFIP International Conference on, pages 241–246, Oct 2010.

[95] Graphite simulator source code. https://github.com/mit-carbon/
Graphite.

[96] M. Sjalander, A Terechko, and M. Duranton. A Look-Ahead Task Manage-
ment Unit for Embedded Multi-Core Architectures. In Digital System Design
Architectures, Methods and Tools, 2008. DSD ’08. 11th EUROMICRO Con-
ference on, pages 149–157, Sept 2008. DOI: 10.1109/DSD.2008.45.

[97] M.B. Taylor. Is dark silicon useful? Harnessing the four horsemen of the
coming dark silicon apocalypse. In Design Automation Conference (DAC),
2012 49th ACM/EDAC/IEEE, pages 1131–1136, June 2012.

[98] Tcl/Tk. Tcl Developer Xchange. http://www.tcl.tk/ [Accessed: 2014-08-10].

[99] ETSI TR 102 638 v1.1.1. Intelligent Transportation Systems (ITS); Vehicular
Communications; Basic Set of Applications (BSA); Definitions, 2009. ETSI
Technical Report.

[100] C.H. van Berkel. Multi-core for mobile phones. DATE’09, 2009. http://dl.
acm.org/citation.cfm?id=1874620.1874924.

[101] Andreas Richard Voellmy, Junchang Wang, Paul Hudak, and Kazuhiko Ya-
mamoto. Mio: A High-performance Multicore Io Manager for GHC. SIGPLAN
Not., 48(12):129–140, September 2013. DOI: 10.1145/2578854.2503790.

[102] Sullivan G.; Ohm J.R.; Han W.; and Wiegand T. Overview of the High
Efficiency Video Coding (HEVC) Standard. IEEE Trans. Circuits Syst. Video
Techn. 1649–1668, 2012. DOI: 10.1109/TCSVT.2012.2221191.

https://github.com/mit-carbon/Graphite
https://github.com/mit-carbon/Graphite
http://dl.acm.org/citation.cfm?id=1874620.1874924
http://dl.acm.org/citation.cfm?id=1874620.1874924

70

[103] Hao Wang, Vijay Sathish, Ripudaman Singh, Michael J. Schulte, and
Nam Sung Kim. Workload and Power Budget Partitioning for Single-chip
Heterogeneous Processors. In Proceedings of the 21st International Confer-
ence on Parallel Architectures and Compilation Techniques, PACT ’12, pages
401–410, New York, NY, USA, 2012. ACM. DOI: 10.1145/2370816.2370873.

[104] Jingjing Wang, Ketan Bahulkar, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
Can PDES Scale in Environments with Heterogeneous Delays? In Proceedings
of the 2013 ACM SIGSIM Conference on Principles of Advanced Discrete Sim-
ulation, SIGSIM-PADS ’13, pages 35–46, New York, NY, USA, 2013. ACM.
DOI: 10.1145/2486092.2486098.

[105] Vincent M. Weaver and Sally A. Mckee. Are cycle accurate simulations a
waste of time. In In Proc. 7th Workshop on Duplicating, Deconstructing, and
Debunking, 2008.

[106] A. Weddell. A survey of multi-source energy harvesting systems. IEEE, DATE,
2013. DOI: 10.7873/DATE.2013.190.

[107] A Wellig and J. Zory. Framed complexity analysis in SystemC for multi-
level design space exploration. In Digital System Design, 2003. Pro-
ceedings. Euromicro Symposium on, pages 416–423, Sept 2003. DOI:
10.1109/DSD.2003.1231975.

[108] T.F. Wenisch, R.E. Wunderlich, M. Ferdman, A Ailamaki, B. Falsafi, and J.C.
Hoe. SimFlex: Statistical Sampling of Computer System Simulation. Micro,
IEEE, 26(4):18–31, July 2006. DOI: 10.1109/MM.2006.79.

[109] Jonathan A. Winter, David H. Albonesi, and Christine A. Shoemaker. Scalable
Thread Scheduling and Global Power Management for Heterogeneous Many-
core Architectures. In Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques, PACT ’10, pages 29–40,
New York, NY, USA, 2010. ACM. DOI: 10.1145/1854273.1854283.

[110] A. Wolf, W. Jerraya and G. Martin. Multiprocessor System-on-Chip (MPSoC)
Technology. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 27, no. 10, October 2008., 2008.

[111] Yi Zhang, Jingjing Wang, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Ex-
ploring Many-core Architecture Design Space for Parallel Discrete Event Simu-
lation. In Proceedings of the 2Nd ACM SIGSIM/PADS Conference on Princi-
ples of Advanced Discrete Simulation, SIGSIM-PADS ’14, pages 95–104, New
York, NY, USA, 2014. ACM. DOI: 10.1145/2601381.2601392.

[112] Gengbin Zheng, Gunavardhan Kakulapati, and L.V. Kale. BigSim: a paral-
lel simulator for performance prediction of extremely large parallel machines.
In Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th
International, pages 78–, April 2004. DOI: 10.1109/IPDPS.2004.1303013.

71

[113] Gongbo Zhou, Linghua Huang, Wei Li, and Zhencai Zhu. Harvesting Ambient
Environmental Energy for Wireless Sensor Networks: A Survey. Journal of
Sensors, 2014:20, 2014. DOI: 10.1155/2014/815467.

[114] S. Zhuravlev, J.C. Saez, S. Blagodurov, A Fedorova, and M. Prieto. Survey
of Energy-Cognizant Scheduling Techniques. Parallel and Distributed Sys-
tems, IEEE Transactions on, 24(7):1447–1464, July 2013. DOI: 10.1109/T-
PDS.2012.20.

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Abbreviations
	Introduction
	Research problem
	Contributions
	Structure

	Heterogeneous computing systems
	Internet of Things
	Multi and manycores
	High performance embedded computing
	Embedded System design

	Performance analysis of computing systems
	Performance analysis
	Simulation
	Parallel simulation
	Simulators
	Resource networks

	PSE – Performance Simulation Environment
	Queuing network simulation
	Toolset overview
	Modeling workflow
	Editor tools
	Compiler tools

	Basic building blocks
	Monitoring
	RNS runtime

	Mechanism for resource network simulation
	Modeling hardware accelerated scheduling
	Pull mode scheduler
	Push mode scheduler
	Dynamic scheduling
	Modeling memory
	Fork and join

	Mapping PSE to hardware
	Parallelizing discrete event simulators
	PSE replicated trials
	Parallel PSE

	Demonstrative experiment
	Experiment setup
	Simulation results
	Conclusions on experiment results

	Discussion
	Challenge
	Related work
	Discoveries
	Future work

	Conclusions
	Bibliography

