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Abstract

In the first essay I estimate production functions of multiproduct firms when technologies
are product-specific but inputs are observable only at the firm-level. I provide an estimation
strategy that solves for the unobservable inputs while correcting for the well-known
simultaneity, collinearity and omitted price problems in production function estimation. The
key insights of the estimation strategy are, first, using output demand estimates in identifying
the product-level input allocations and production functions, and second, using an inverse of
the production function to control for endogeneity.

The second essay describes the biases that arise when production functions are estimated
under the standard assumption of a firm-level technology, while the true technologies are
product-specific. The assumption of a firm-level technology implies that the technology
parameters are identical across the various goods produced in the industry, and that a
multiproduct firm produces all of its output with a single technology. To examine the
implications of these simplifying assumptions, I estimate a firm-level production function on
a dataset generated of an industry where two types of goods are produced with product-specific
Cobb-Douglas production functions. I find that the biases in the estimated firm-level
parameters are substantial even when the true product-specific technologies are very similar.
The directions and the magnitudes of the biases are determined by intricate functions of the
true product-specific technologies and the product scopes of the firms in the industry. The
estimated productivity levels have a relatively low correlation with the true firm-level
productivity levels when the firms’ product scopes are heterogeneous, as they usually are.

The third essay estimates the range of productivity gains achieved by information technology
investments in the Finnish manufacturing sector. The contribution is to provide estimates of
IT's productivity effects while accounting for some of the key characteristics of IT, i.e., that
returns to IT depend on previous IT or complementary investments, come with lags, and, due
to the aforementioned factors, are heterogeneous across firms and over time. I find that the
productivity effects of IT range from negative to positive. For example, most firms obtain a
negative productivity effect in the first year after the investment, which may be due to
disruption in the production process caused by the implementation of the IT investment. Two
years after the IT investment was made, most firms attain a positive productivity effect. In the
third year after the investment, almost all firms gain a positive productivity effect. The
estimation results suggest that the common practice of estimating a single output elasticity for
an IT stock that is constructed as a linear function of the IT investments is unlikely to provide
a truthful description of the productivity effects of IT.
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1 Introduction

Production technologies, described by production functions, are a key determinant of
economic efficiency and growth in firms, industries, and economies. When resources are
limited, the quantity of output can be increased either by implementing more efficient
production technologies, or by allocating the limited resources more efficiently among the

producers.

A production function relates inputs, such as labor and capital, to the produced
output. The production function defines the rates at which the inputs augment the output,
i.e., the output elasticities of the inputs. Any output, or deficiency of output, that the
inputs and their output elasticities do not account for is captured by the producer’s total

factor productivity or, in short, productivity.

Production functions are an important tool to understand how output is determined
by various supply-side factors and production technologies. Production function estimates
characterize how various inputs, such as employees with different levels of education, or
new technologies, such as process innovations or novel management practices, affect firms’
output. The sum of the output elasticities determine whether the production technology
is subject to economies of scale. Total factor productivity is captured by the residual
of the estimated production function, which describes productivity differences between
producers. The production function estimates, together with information on input costs,

can be used to compute marginal costs of production.

Economists estimate firms’ production functions to evaluate how changes in the eco-
nomic environment, new policies, or various production related factors, such as process
innovations, affect firms’ and markets’ performance. An example of a policy that changes
the economic environment is liberalization of international trade, which has been found to
lead to increased competition between firms and, as a result, higher productivity (Bernard,
Redding and Schott, 2011, and Mayer, Melitz and Ottaviano, 2013). Competition en-
hances firms’ productivity and reduces productivity differences between firms also within
national markets (Berger and Hannan, 1998, Dunne, Klimek and Schmitz, 2010, Schmitz,

2005, and Syverson, 2004). Competition can have a causal effect on firms’ productivity



and, for example, shift the productivity distribution to the right. Alternatively, it can
drive the least productive firms out of the industry, which truncates the productivity

distribution from the left tail.

Firms make various investments and changes in their production processes to improve
productivity. New management practices and investments in organizational capital, re-
search and development in new production processes and products, and adoption of infor-
mation technology are typical examples of productivity-enhancing investments. They have
been found to be complementary to each other, which means that the investments’ pro-
ductivity effects are greater when implemented together (Bloom, Sadun and Van Reenen,
2012, Bresnahan, Brynjolfsson and Hitt, 2002). Productivity effects of various investments

are of interest to policy-makers who design innovation policies such as R&D subsidies.

An interesting finding made in many productivity studies is that even within narrowly
defined industries, productivity differentials between firms are substantial and persistent
(Doms and Bartelsman, 2000; Syverson, 2011). Syverson (2004) finds that in four-digit
SIC industries of the US manufacturing sector, on average, the plant at the 90th percentile
of the productivity distribution produces almost twich as much as the plant at the 10th
percentile with the same measured inputs. This finding suggests that resource allocation
within industries is not efficient. So far the productivity literature has not been able to

show how such productivity differences arise, and why they persist.

1.1 Estimation challenges

The current literature recognizes several identification issues that challenge the estima-
tion of production functions. Marschak and Andrews (1944) first pointed out that inputs
are not independent variables because firms set them with the aim of maximizing profit.
More precisely, inputs are endogeneous to the productivity level that is unobservable to
the econometrician. This endogeneity bias, often referred to as the simultaneity or trans-
mission bias, is the identification problem most carefully considered in the production
function literature. Traditional solutions are using instrumental variables or estimating

a fixed effects production function model (Mundlak, 1961). In practice, however, these



solutions have not performed well. Data sets usually fall short of appropriate instruments
for the endogenous variables. Furthermore, the fixed effects model relies on an unrealis-
tic assumption of firm productivity being constant over time. Failure to correct for the
simultaneity bias leads to overestimated production function parameters for the flexible

inputs such as materials and possibly also labor.

Another endogeneity problem is the selection bias. As first discussed by Wedervang
(1965), econometricians do not observe a random sample of firms. A firm’s decision to
be active in the market depends on its productivity level as well as its fixed input stocks.
Firms with a large capital stock may find it profitable to stay active in the market even
if they face a negative productivity shock, while the same holds for firms with a small
capital stock that face a positive productivity shock. Hence the fixed input stocks and the
unobservable productivity levels of the firms observed are negatively correlated. If firm
selection is not accounted for, the production function parameters for the fixed inputs,

such as capital, are overestimated.

Olley and Pakes (1996, henceforth OP) were the first to correct for the selection bias,
while also controlling for the simultaneity of inputs with a novel structural method. To
take account of selection OP estimate survival probabilities for the observed firms. The
insight that allows them to correct the simultaneity problem is that a firm chooses its in-
vestment level as a function of its productivity. Hence the firm’s demand for investment,
which OP write as a nonparametric function, can be used to back out the unobservable
productivity. The key assumptions that enable this identification strategy are (1) strict
monotonicity of investment in productivity, (2) productivity as the only unobservable in
investment demand, and (3) the timing of investment (labor) choices before (after) the
productivity shock. To relax the rather strict assumption of a monotonic investment func-
tion, Levinsohn and Petrin (2003, henceforth LP) propose using demand for intermediate
inputs, rather than investment, in inverting out productivity. Wooldridge (2009) shows
how the two-step estimators of OP and LP can be implemented in one step to improve

efficiency.

Another type of identification problem is the omitted price bias, which occurs when-



ever the production function is estimated using sales revenue and/or input expenditure
data, and output and/or input prices are not equal across firms. Harrison (1994) discusses
the bias with input prices, and Klette and Griliches (1996) with output prices. Despite the
considerable biases these inter-firm price differentials can induce, they have been ignored
to a large extent in the empirical literature. The explanation is again largely practical:

output and input are often measured in sales revenue and expenditures only.

The most recently discussed identification problem concerns firms’ endogeneous prod-
uct selection. Bernard, Redding and Schott (2009) note that most firms make production
decisions at a more disaggregated level than what is observed in the data and therefore
studied in the productivity literature. They consider single-product firms that choose one
out of two heterogeneous goods based on the productivity of the firm, as well as the pro-
duction technologies and demand for the goods. Bernard, Redding and Schott derive the
productivity bias that arises in revenue production function estimation when endogeneous
product selection is not accounted for. The so-called product bias is determined, not sur-
prisingly, by the same factors that influence product selection. The empirical implications

of ignoring product endogeneity have not been considered.

1.2 Overview of the essays

This thesis consists of three essays on production function estimation. Two of the essays
consider how the existence of product-specific production technologies and multiproduct
firms can be taken into account in production function estimation, and what the implica-
tions are if they are ignored. The third essay evaluates the range of returns to information

technology investments by means of production function estimation.

In the first essay I estimate production functions of multiproduct firms when tech-
nologies are product-specific but inputs are observable only at the firm-level. I provide
an estimation strategy that solves for the unobservable inputs while correcting for the
well-known simultaneity, collinearity and omitted price problems in production function
estimation. The key insights of the estimation strategy are, first, using output demand

estimates in identifying the product-level input allocations and production functions, and



second, using an inverse of the production function to control for endogeneity. Multiprod-
uct firms constitute a considerable share of firms, and even a greater share of production.
Estimates of production functions and the implied productivity distributions serve as input

for numerous economic studies.

The second essay describes the biases that arise when production functions are es-
timated under the standard assumption of a firm-level technology, while the true tech-
nologies are product-specific. The assumption of a firm-level technology implies that the
technology parameters are identical across the various goods produced in the industry, and
that a multiproduct firm produces all of its output with a single technology. To exam-
ine the implications of these simplifying assumptions, I estimate a firm-level production
function on a dataset generated of an industry where two types of goods are produced
with product-specific Cobb-Douglas production functions. I find that the biases in the
estimated firm-level parameters are substantial even when the true product-specific tech-
nologies are very similar. The directions and the magnitudes of the biases are determined
by intricate functions of the true product-specific technologies and the product scopes of
the firms in the industry. The estimated productivity levels have a relatively low cor-
relation with the true firm-level productivity levels when the firms’ product scopes are

heterogenous, as they usually are.

The third essay estimates the range of productivity gains achieved by information
technology investments in the Finnish manufacturing sector. The contribution is to provide
estimates of I'T’s productivity effects while accounting for some of the key characteristics
of IT, i.e., that returns to IT depend on previous IT or complementary investments,
come with lags, and, due to the aforementioned factors, are heterogenous across firms
and over time. I find that the productivity effects of IT range from negative to positive.
For example, most firms obtain a negative productivity effect in the first year after the
investment, which may be due to disruption in the production process caused by the
implementation of the IT investment. Two years after the IT investment was made, most
firms attain a positive productivity effect. In the third year after the investment, almost all
firms gain a positive productivity effect. The estimation results suggest that the common

practice of estimating a single output elasticity for an IT stock that is constructed as a



linear function of the IT investments is unlikely to provide a truthful description of the

productivity effects of IT.
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Abstract

Multiproduct firms constitute a considerable share of firms, and even a greater
share of production. Estimates of production functions and the implied productivity
distributions serve as input for numerous economic studies. I estimate production
functions of multiproduct firms when technologies are product-specific but inputs are
observable only at the firm-level. I provide an estimation strategy that solves for
the unobservable inputs while correcting for the well-known simultaneity, collinearity
and omitted price problems in production function estimation. The key insights of
the estimation strategy are, first, using output demand estimates in identifying the
product-level input allocations and production functions, and second, using an inverse
of the production function to control for endogeneity.

Keywords: Multiproduct firm, production function, productivity
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1 Introduction

A substantial share of firms is multiproduct firms,! and even a greater share of goods
is provided by these multiproduct producers. For example, in the US manufacturing
sector in 1987 to 1997, 39% of the firms manufactured more than one product title, while
these multiproduct firms accounted for 87% of the sector’s output (Bernard, Redding and
Schott, 2010). In a large sample of Finnish manufacturing plants on years 2004 to 2011,
more than 60% of the plants produce at least two product titles. The product scopes
range up to 82 titles, and the average product scope of multiproduct firms is 4.3 titles. In
international trade multiproduct firms are even more widely present: they accounted for
more than 99% of the US exports in 2000 (Bernard, Jensen, Redding and Schott, 2007).

3

Moreover, the product assortments and their output shares vary both across firms,” and

across time (Bernard, Redding and Scott, 2010).

Despite the empirical fact that multiproduct firms are prevalent, and hence many firms
are likely to use several production technologies,* the standard practice in production
function estimation is to assume that all firms are single-product firms with a single
production technology. Most often the output variable is the sum of sales revenue from
the various products, and hence the production functions are estimated at the firm-level.
The reason for this is pragmatic: to the best of my knowledge, there is no dataset that

reports input allocation at the product-firm level for a cross-section of firms.

Unfortunately, the standard practice of ignoring product-level production technolo-
gies, and assuming firm-level production functions instead, is likely to have severe implica-
tions on production function estimates. Using simulations, Valmari (2014) finds that the
biases in the estimated firm-level parameters are substantial even when the true product-
level technologies are very similar. The directions and the magnitudes of the biases are
determined by intricate functions of the true product-level technologies and the product
scopes of the firms in the industry. The estimated productivity levels have a relatively low

correlation with the true firm-level productivity levels when the firms’ product scopes are

'"Multiproduct firms exist due to economies of scope. See, for example, Panzar, 1989 for how production
technology affects firm and industry structure.

2For the description of this data used in this paper, see section 5.1

3This is an observation on the data used in this paper.

YHence I may also adopt the term multitechnology firm in this paper, but as multiproduct firm is already
an established term in the literature, and also refers to the fact that these firms sell their goods in various
product markets, I stick to the term multiproduct firm.



heterogeneous, as they usually are.

In this paper I estimate product-level production functions of firms that are mostly
multiproduct producers. I provide a simple structural estimation strategy for product-
level production functions when factors of production are observed only at the firm- or
establishment-level, which is typical of most micro-level datasets. The challenges consist
of solving for the unobservable product-level inputs and, as always in production function
estimation, controlling for endogeneity problems, i.e., the endogeneity of inputs to the
unobservable productivity. The first key insight underlying my estimation strategy is that
by inverting the production function, the very definition of productivity can be used to
control for the unobservable productivity level. The second insight that is that, once one
can control for the unobservable productivity level, the demand for the final goods can be

used to identify the unobservable input allocation as well as the production functions.

I demonstrate the method by using Finnish manufacturing data with output quantities
and prices observed at the product-plant-level, and input quantities and prices at the plant-
level. T estimate the product-level production functions used in two industries: "Sawmilling
and planing of wood" (PRODCOM 161) and "Manufacture of products of wood, cork,
straw and plaiting materials" (PRODCOM 162). The empirical findings suggest that
production functions should be estimated at the product- instead of the firm-level, and

that multiproduct firms use multiple production technologies.

Production function estimates and the implied productivity distributions serve as in-
put for various economic studies. Effects of a new technology or how a change in the level
competition affects firms’ productivity, market outcomes, and total welfare are typical
examples. Productivity distributions speak to the question of how efficiently resources
are allocated within industries. One stylized fact of the production function literature is
that even within narrowly defined industries, productivity differentials between firms are
substantial and persistent (Doms and Bartelsman, 2000; Syverson, 2011). Syverson (2004)
finds that in four-digit SIC industries of the US manufacturing sector, on average, the plant
at the 90th percentile of the productivity distribution produces almost twich as much as
the plant at the 10th percentile with the same measured inputs. Hsieh and Klenow (2009)
report even higher productivity differentials for China and India where, on average, the
plant at the 90th percentile is more than five times as productive as the plant at the 10th

percentile. Another stylized fact is that competition within the industry is correlated with



productivity, and that competition narrows the productivity distribution.® Competition
can have a causal effect on firms’ productivity, i.e., shift the productivity distribution to
the right. Alternatively, it can drive the least productive firms out of the industry, which
truncates the productivity distribution from the left tail. Nevertheless, lack of competi-
tion has not been identified as the cause of the wide productivity distributions reported.
This makes the first stylized fact of wide productivity distributions even more surprising.
My estimation strategy may be used to examine whether some of the surprisingly large
productivity differentials may be an outcome of incorrectly assuming industry- instead of

product-specific production function parameters.

Accounting for product-specificity in production enables economists to study also new
economic questions. For example, we don’t yet fully understand what economic factors de-
termine firms’ productivity evolution and the productivity differentials observed between
firms. As many key strategic decisions are made at the product-level, understanding pro-
duction and profit maximization at the product-level is essential. Due to the practice of
estimating productivity at the firm-level, the product-level factors are still largely unex-
plored. Furthermore, endogeneous product choices by firms, and how these endogeneities
can be taken into account in, for example, demand estimation, entry models and policy
simulations, have become a subject of interest in the recent industrial organization litera-
ture.® So far, however, the role of product-specific technology on product choice has not

been studied.

In the next section I review shortly the literature on identification of production
functions and production by multiproduct firms. The model and the estimation strategy
are presented in sections 3 and 4. In section 5, I introduce the dataset and provide further
details of the estimation procedure. Empirical results are presented in section 6. Section 7
provides a discussion on how the identifying assumptions of my estimation strategy relate
to the current production function literature, and particularly how they compare with
the identifying assumptions underlying the empirical model of multiproduct firms of De

Loecker, Goldberg, Khandelwal and Pavenik (2012). Section 8 concludes.

®See Berger and Hannan, 1998; Dunne, Klimek and Schmitz, 2010; Schmitz, 2005; and Syverson, 2004.
5See Ackerberg, Crawford and Hahn, 2011; Draganska, Mazzeo and Seim, 2009; and Seim, 2006.



2 Literature

This paper relates to two bodies of literature. The first is about identification and esti-

mation of production functions. The second is about production by multiproduct firms.

2.1 Identification of production functions

The current literature recognizes several identification issues that challenge the estima-
tion of production functions. Marschak and Andrews (1944) first pointed out that inputs
are not independent variables because firms set them with the aim of maximizing profit.
More precisely, inputs are endogeneous to the productivity level that is unobservable to
the econometrician. This endogeneity bias, often referred to as the simultaneity or trans-
mission bias, is the identification problem most carefully considered in the production
function literature. Traditional solutions are using instrumental variables or estimating
a fixed effects production function model (Mundlak, 1961). In practice, however, these
solutions have not performed well. Data sets usually fall short of appropriate instruments
for the endogenous variables. Furthermore, the fixed effects model relies on an unrealis-
tic assumption of firm productivity being constant over time. Failure to correct for the
simultaneity bias leads to overestimated production function parameters for the flexible
inputs such as materials and possibly also labor.

Another endogeneity problem is the selection bias. As first discussed by Wedervang
(1965), econometricians do not observe a random sample of firms. A firm’s decision to
be active in the market depends on its productivity level as well as its fixed input stocks.
Firms with a large capital stock may find it profitable to stay active in the market even
if they face a negative productivity shock, while the same holds for firms with a small
capital stock that face a positive productivity shock. Hence the fixed input stocks and the
unobservable productivity levels of the firms observed are negatively correlated. If firm
selection is not accounted for, the production function parameters for the fixed inputs,
such as capital, are overestimated.

Olley and Pakes (1996, henceforth OP) were the first to correct for the selection bias,
while also controlling for the simultaneity of inputs with a novel structural method. To
take account of selection OP estimate survival probabilities for the observed firms. The

insight that allows them to correct the simultaneity problem is that a firm chooses its in-



vestment level as a function of its productivity. Hence the firm’s demand for investment,
which OP write as a nonparametric function, can be used to back out the unobservable
productivity. The key assumptions that enable this identification strategy are (1) strict
monotonicity of investment in productivity, (2) productivity as the only unobservable in
investment demand, and (3) the timing of investment (labor) choices before (after) the
productivity shock. To relax the rather strict assumption of a monotonic investment func-
tion, Levinsohn and Petrin (2003, henceforth LP) propose using demand for intermediate
inputs, rather than investment, in inverting out productivity. Wooldridge (2009) shows
how the two-step estimators of OP and LP can be implemented in one step to improve

efficiency.

Ackerberg, Caves and Frazer (2006, henceforth ACF) observe that the identification
strategies of OP, and especially of LP, suffer from collinearity problems. ACF point out
that in both estimation strategies the static labor input is collinear with the nonparametric
input demand function that is inverted for the unobservable productivity. ACF provide
an alternative identification strategy that uses the insights of OP and LP but with slightly
modified timing assumptions avoids the aforementioned collinearity problem. However,
they also acknowledge that if a gross output production function with more than one
flexible input is estimated, there is one identification problem remaining. As shown by
Bond and Séderbom (2005), in the absence of inter-firm variation in the input prices,

flexible inputs are collinear with each other and with any fixed inputs.

Some studies attempt to control for the collinearity problem by estimating a value
added production function that has only one flexible input. However, Gandhi, Navarro and
Rivers (2013) show that the value added specification is not a resolution to the collinearity
problem, but induces a so-called value added bias instead. In excluding flexible inputs,
which are collinear with productivity and other inputs, the degree of productivity hetero-
geneity is overstated and the elasticity estimates for the fixed inputs are biased. Gandhi,
Navarro and Rivers show that if the value added bias is not corrected, the estimated inter-
firm productivity differences are orders of magnitude larger, and even of opposite sign,
than the productivity differences obtained when correcting for the bias. They provide a
strategy to correct for the collinearity and simultaneity problems for both gross output
and value added specifications. Gandhi, Navarro and Rivers make the same assumptions

regarding timing of input choices and evolution of productivity as ACF, but identification



is based on a transformation of the firm’s short-run first order conditions.

Also the so-called monotonicity assumption of the aforementioned proxy estimators
has been contested. Ornaghi and Van Beveren (2011) compare the performance of the
proxy method proposed by OP, and modifications to it by LP, ACF, and Wooldridge. The
methods differ in the proxy variables, assumptions on the timing of input decisions and
when investments translate into productive capital, and moment conditions. However all
the estimators are based on the so-called monotonicity assumption that the proxy variable
monotonically increases in the unobservable productivity term. As noted by Ornaghi and
Van Beveren, if the monotonicity assumption is violated, the estimators yield inconsistent
estimates. They propose a diagnostic tool for testing whether the monotonicity assumption
holds for the estimators. Ornaghi and Van Beveren find that the assumption fails to hold in
the majority of cases they consider. The assumption holds in all three industries examined
in at least 90% of the cases only for three estimators: OP/LP with non-linear least squares,
OP/LP with GMM, and Wooldridge’s one-step estimator with the assumptions of OP.
Furthermore, there is a large degree of heterogeneity in the results, which indicates that

the timing assumptions and the choice of the estimator affect the estimates.

Another type of identification problem is the omitted price bias, which occurs when-
ever the production function is estimated using sales revenue and/or input expenditure
data, and output and/or input prices are not equal across firms. Harrison (1994) discusses
the bias with input prices, and Klette and Griliches (1996) with output prices. Despite the
considerable biases these inter-firm price differentials can induce, they have been ignored
to a large extent in the empirical literature. The explanation is again largely practical:

output and input are often measured in sales revenue and expenditures only.

The most recently discussed identification problem concerns firms’ endogeneous prod-
uct selection. Bernard, Redding and Schott (2009) note that most firms make production
decisions at a more disaggregated level than what is observed in the data and therefore
studied in the productivity literature. They consider single-product firms that choose one
out of two heterogeneous goods based on the productivity of the firm, as well as the pro-
duction technologies and demand for the goods. Bernard, Redding and Schott derive the
productivity bias that arises in revenue production function estimation when endogeneous
product selection is not accounted for. The so-called product bias is determined, not sur-

prisingly, by the same factors that influence product selection. The empirical implications



of ignoring product endogeneity have not been considered.

Also the functional form assumptions have been challenged. When estimating the
Cobb-Douglas production function the vast majority of firm-level studies assume that
productivity is Hicks neutral, i.e., that a change in productivity does not change the input
shares used. Using data on U.S. manufacturing plants Raval (2012) shows that a CES
production function with labor augmenting productivity differences better accounts for
the characteristics of the firms observed, as compared to the Hicks neutral Cobb-Douglas

technology.

2.2 Multiproduct firms

A large share of the recent literature on multiproduct firms is written in the context of
international trade, perhaps because international trade flows are dominated by multi-
product firms. In 2000, firms that exported more than one product title, as defined at
the ten-digit level, accounted for more than 99% of the US export value (Bernard, Jensen,
Redding and Schott, 2007). A number of studies centers on how reductions in barriers to
international trade affect firms’ productivity and product scope. Nearly every study finds
that as reductions in trade barriers lead to increased competition, the firms that remain
active become more productive. Theoretical findings on the product scope, which is a
potential channel for productivity effects to take place, are mixed. As a consequence to

7 increase,® or both.?

reductions in trade barriers, product scopes are found to decrease,
Empirical evidence indicates that increased competition drives firms to concentrate on
the goods they are most competent in and drop the least productive products from the
selection of exported goods,'” unless industrial regulations hinders firms from doing so

(Goldberg, Khandelwal, Pavenik and Topalova, 2010). In other words, empirical evidence
suggests that firms’ productivity across goods vary.

Multiproduct firms are widely present also within national markets. As in the global
markets, firms’ production decisions are not restricted to entry and exit decisions at the ex-

tensive margin and production scale adjustments at the intensive margin. In fact, changes

"See Bernard, Redding and Schott, 2011; Eckel and Neary, 2010; Mayer, Melitz and Ottaviano, 2014;
and Nocke and Yeaple, 2013.

8See Feenstra and Ma, 2007; and Ma, 2009.

See Allanson and Montagna, 2005.

108ee Baldwin, Caves, Gu, 2005; Bernard, Redding and Schott, 2011; and Mayer, Melitz and Ottaviano,
2013.



in product scope, i.e., in the intra-firm extensive margin, are substantially more frequent
than changes in the extensive margin (Bernard, Redding and Schott, 2010; Broda and
Weinstein, 2010). Dropping old goods and starting production of new ones are central de-
cisions in firms’ production and competition strategy. Bernard, Redding and Schott (2010)
find that changes in product scope lead to productivity gains for US manufacturing firms.
Product choices are key variables also in strategic actions between firms, with implications

1

on market structure,'’ competition,'? and incentives to invest in product quality.'3

An assumption that frequently underlies theoretical studies as well as interpretations
of empirical findings is that multiproduct firms conduct flexible manufacturing. Flexible
manufacturing means that producers can add new goods to their product assortment
without making considerable investments in production technology, albeit the good-specific
marginal costs increase as the product scope grows (e.g. Eckel and Neary, 2010). Flexible
manufacturing is closely related to the concept of core competency, which means that a
multiproduct firm can produce one or a few of its goods more efficiently than the rest of
its goods (e.g. Bernard, Redding and Schott, 2011). Production function estimation does
not typically accommodate the concepts of flexible manufacturing or core competency,

however, apart from a few exceptions discussed below.

Virtually all estimates of production functions are implicitly based on the assumption
that all of the firm’s output is produced with a firm-level technology.'* The first set of
papers that make an exception evaluate cost minimization with a nonparametric method-
ology. Cherchye, De Rock and Vermeulen (2008) allow for product-specific technologies as
well as economies of scope that result from joint input use and input externalities. Their
methodology does not require observable input allocation. Cherchye, De Rock, Dierynck,
Roodhooft and Sabbe (2011) build on Cherchye, De Rock and Vermeulen (2008) using a
methodology based on data envelopment analysis. In contrast to Cherchye, De Rock and
Vermeulen (2008), they use information on output-specific inputs and joint inputs. As a
result the discriminatory power of the efficiency measurement is higher, and the efficiency

value of the decision making unit can be decomposed into output-specific efficiency values.

'1See Eaton and Schmitt, 1994.

12See Ju, 2003; Johnson and Myatt, 2003, 2006; and Roson, 2012.

13Qee Eckel, Iacovone, Javorcik and Neary, 2011.

" There is an early literature on estimating cost functions of multiproduct firms. See, for example, Brown,
Caves and Christensen, 1979 and Caves, Christensen and Tretheway, 1980. The early multiproduct cost
functions allow for the fact that production technologies across goods vary, but they do not correct the
typical endogeneity problems such as the simultaneity or selection bias.



However, the methodology is not suited for any typical firm- or plant-level dataset due
to the requirement on observable input allocation. Cherchye, Demuynck, De Rock and
De Witte (2011) distinguish between two assumptions: cooperative cost minimization at
the firm level, and uncooperative minimization at the level of output department. The
advantage of these nonparametric methodologies is that they do not require functional

form assumptions. On the other hand, the typical endogeneity biases are not treated.

De Loecker, Goldberg, Khandelwal and Pavenik (2012) estimate production func-
tions to examine how trade liberalization affects product-specific marginal costs and price
markups. They use data on single-product firms and the estimation strategy of Acker-
berg, Caves and Frazer (2006) to estimate good-specific production function parameters,
which are assumed to be the same for single- and multiproduct firms. In estimating the
product-level input allocations De Loecker et al. assume that the share of a firm’s materi-
als, labor, and capital allocated to a given product line is constant, i.e., independent of the
input type. They show that cost efficiency as well as profitability vary across the various
products firms produce. They also find a positive correlation between productivity and
the size of the product scope, and suggest that firms may use reductions in marginal costs
to finance the development of new products. The method adopted by De Loecker et al.
is perhaps closest to the empirical strategy presented in this paper, and the assumptions

underlying their estimation method are discussed in section 6.1.

Dhyne, Petrin and Warzynski (2013) study price, markup, productivity and quality
dynamics of Belgian manufacturing firms. They modify the proxy approach of Wooldridge
(2009) to estimate a product-level production function where the output of a given good is
related to the firm-level inputs, the output quantities of the other goods the firm produces,
and an unobservable firm-level productivity term. Estimating the production function does
not require solving for the unobservable input allocations. However, the output elasticities
of the inputs as well as the productivity levels are assumed constant across goods. Dhyne,
Petrin and Warzynski also estimate a variable cost function for multiple goods, which
takes into account the productivity shocks that are implied by the production function

estimates.
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3 Model

The model consists of good-specific production and demand functions, and assumptions on
the timing of production decisions. Production functions are typically estimated without
considering demand for the goods, but in this study output demand is they key for iden-
tifying good-specific input allocations and production functions. When firms have market
power in the output market, the production decisions are functions of the downward-
sloping output demand curves. Functional forms and also most of the other assumptions
are familiar from the empirical microeconomic literature. The only exception is that the
production function is specified at the product-level instead of the firm-level. The key

identifying assumptions are discussed in more detail in sections 4 and 7.

3.1 Production

Firm j produces nj; goods at time t. Production technology ¢ is a good-specific Cobb-
Douglas production function with three inputs, materials M;j;, labor L;j;, and capital

Kijt:

Quje = exp (Bo;) My LIE KL exp (wije) (1)

Parameters 3, 51, and B, denote the output elasticities of materials, labor, and capital
for good i, and B, is a constant. All the production function parameters are good-specific.
The productivity term w;j; varies across goods, firms, and time. It can be divided into

expected productivity, E [wijt|wije—1], and a mean zero productivity shock, £;;;:

wijt = Ewijtlwije-1] + &t (2)

Productivity w;j; comprises all factors other than M;j;, Li;¢, and K;j; that affect the firm’s
production volume in a given product line and time period. Examples of such factors are
management and organization of production and down-time due to, for example, mainte-
nance work and defect rates in the manufacturing process (Ackerberg, Caves and Frazer,
2006). Productivity exp (wsj¢) is assumed to follow a first-order Markov process. The
firm’s decision maker forms an expectation of period ¢’s productivity, E [wi;¢], as a func-

tion of the previous period’s productivity w;ji—1. The productivity shock &;;; represents a
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deviation from the expected productivity that takes place or becomes observable at the be-
ginning of period ¢. The shocks §;;; may or may not be correlated across the product lines
of the firm. For example, managerial changes may have a similar effect on all the product
lines, but they may also have different impacts. Similarly, productivity w;;; may or may
not be correlated across the product lines. The firm may have achieved heterogeneous
productivity levels due to, for example, different paths of learning and experience. Also

physical economies of scope are captured in the total factor productivity term exp (wijz).

Labor L and capital K are substitutable across the product lines of the firm. All
the factors of production are continuously divisible and exclusive across product lines.
This means that they can be flexibly allocated across the different product lines, and that
any given share of a firm-level input stock is used in only one product line at a time.
Furthermore, none of the production functions utilizes other inputs than M;j;, L;j;, and

K;j;. This rules out utilization of by-products as factors of production.

3.2 Demand

The firm faces a downward sloping and isoelastic demand curve for each of its goods:
Qije = exp (aij) P exp(eije)- (3)

Price elasticity of demand, 7;, is good-specific and assumed to be lower than —1. Price
elastic demand is required to rule out cases where firms produce marginally small output
quantities of various goods. The level of demand, denoted by ;;, depends on unobservable
factors such as the quality of the good. These factors vary across goods and firms, but
they are constant over time. Any shocks to the good- and firm-specific demand level are
captured by &;5;. The shocks can be caused by changes in buyers’ preferences or income,
prices of substitutes or complementary goods, or the number of buyers in the market, for

example.

3.3 Timing of production decisions

The three types of inputs, M;js, Lijt, and Kjj, differ in how they are determined. The
product-level materials M;;; is a flexible input, set or adjusted at the time of production. It

is also a static input, meaning that it doesn’t have dynamic implications such as adjustment
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costs. The firm-level human resources'® Lj; and capital stock Kj;, on the other hand, are
fixed at the time of production, and they are formed in a dynamic process. Lj; is chosen
in the previous period ¢ — 1, while the related costs are paid in the period of production.
Kj; is determined as a function of the previous period’s capital stock and investment,
K = f(Kji—1,1-1). However, the product-level inputs L;;; and K;j are allocated
across product lines in the period of production, subject to the the firm-level constraints
> i Lijt < Ly and Y-, Kije < Kjy.

The outline of the production decisions is as follows. At time t—1, the firm observes its
current level of human resources Lj;_1 and capital stock Kj;_1, the expected productivity
in product lines ¢ at time ¢, E [w;jt|wije—1], as well as any other observable factors that
affect its future profits. The firm then chooses whether to remain active in period ¢, and
if so, what product titles ¢ to produce. Then, the firm decides on the next period’s level
of human resources L;; and, by setting the level of capital investment Ij;_1, capital stock
Kji.

At time ¢ the productivity shocks §;;; and the demand shocks ¢;;; are realized and
become observable to the firm. The firm observes also the price of materials, Pysji. Parje is
an exogenous variable, which may reflect the level of bargaining power the firm possesses in
the input markets, for example. Pyzj; is not a function of the input quantities purchased,
however, which implies that there are no cost economies of scope or scale in the form of
lower input prices. The firm then chooses the quantities of product-level materials M;;.
At the same time the firm decides how to allocate its human resources Lj; and the capital

stock Kj; among the different product lines the firm is active in, i.e., it sets L;j; and Kjj;.

The timing assumptions of this model are similar to the assumptions previously made
in the production function literature. These assumptions are compared to those in the

previous literature in section 7.

3.4 Firm’s optimization problem

The firm maximizes the present discounted value of future profits by making three de-

cisions. First, it chooses which goods i to produce in the next period ¢ + 1, denoted by

15Lji is typically a flexible input in structural production function models. I assume Lj; to be fixed
because it is more realistic of the Finnish labor market, as discussed in section 7. However, the model can
be estimated under either assumption: flexible or fixed labor input.
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Dijiy1 = 1 if it produces good 7 at t 4 1, and D;j41 = 0 otherwise. Second, the firm
decides the human resources Lj;41 to be employed in the next period. Third, the firm
invests I;; to determine the next period’s capital stock Kj;11. These decisions are made
given the expected demand and productivity for the goods in the next period, as well the

expected future material price.

The Bellman equation for the firm’s firm-level dynamic optimization problem is:

V(Sip) = max > e (S) = C (L) + E[V (Sjt+1) ISjt; Dijes Ljr+1, i) (4)

1
ijt+1, Ljev1, It 7 m
where IT (Sj¢) is the static profit earned in period ¢, Sj; = (oe,»jt, Nijts €its Lijt, Kjit, wigt Pth)
is the vector of state variables, C' (1) is the cost of investment, and p is the discount rate.
The dynamic optimization problem gives rise to policy functions D (Sj), L(Sj) and
I(Sje).

Instead of solving for the dynamic optimization problem,' I follow the examples of
Olley and Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg, Caves and Frazer
(2006), and solve only the static profit maximization problem, which is sufficient for identi-
fying the production function parameters. The static profit maximization problem consists
of allocating the firm-level human resources Lj; and capital stock Kj; among the various
product lines 4, and setting the product-specific materials M;;; for each product line:

1. pax I = Zpithijt — ParjtMje s.t. ZLijt < Lj andZKijt < Kj. (5)
ijtsLijt, Kijt ; ; ;

1
Substituting in the inverse demand, P;j;; = (Qijt (exp(oije + Eijt))il) "t - as well as the

production functions, the static profit maximization problem becomes:

-L Buti 7BLi 1rBri n
max T = Y (exp(aij + &ije)) (exp (Boi) M Ly K exp (wz'jt))

Mije,Lije, Kijt

—P]\/[thijt s.t. ZLijt
%

%

th andZKijt S Kjt~
i

IA

The optimization problem yields a Lagrangian equation with two constraints. The con-

straints account for not exceeding the firm-level human resources Lj;; and capital stock

Y6Because the dynamic optimization problem is not solved, further specification of the determinants of
the dynamic variables is not needed.
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K; when the firm makes input allocations to the product lines. More precisely, given that
the firm maximizes profit, Lj; and Kj; are always fully utilized and the constraints are

binding as >, Lijt = Lj; and ), K;j; = Kj;. The Lagrangian is:

_1 ) . ) L
Lagr = 3 (explaii +eije)) 7 (exp (By) MO Lk KLE* exp (wisr) )™

i
—PurjtMije + Apje (th - ZLijt> + Akt (sz - Z Kijt) . (7)
i i

The first-order conditions for static profit maximization are (J7 is the number of firm-time

-observations):
dLagr 1 -1 rBari 7 BLi 178K 71 Bari
OM;j¢ = (7 + 1) (exp(ai; + €i5e)) ™ (exp (Boi) Mij?l Lith K’Uf xp (th)) ] Mz‘jlt
—Pyje = 0Vi=[lng )
O0Lagr 1 —a i [OLi ‘ Wt B
8L-g - (7. + 1) (exp(ovij +eijt)) ™ (CXP (Boi) Mgﬁhl’iﬂﬁlKﬁj?I exp (w”t)) ' L-L-
iyt 7 e
“Arje = 0Vi=[lng ©)
dLagr 1 -+ Bai 7 BLi prBri 7t Bri
oKy (7 + 1) (exp(au; + €ijt)) (eXp (Boi) Migi" Lyt K51 exp (w"’jt)) Kijt
—Arjt = 0Vi=[l,n] (10)
0Lagr ;
aALjf = Ljp—» Lijp=0Vjt=1[1,JT] "
dLagr :
8/\Kit = Kji— ZKvtjt =0V jt=[1,JT]. 12

Although the production functions are product-specific, production of the goods is
interdependent because the firm-level human resources and capital stock are fixed at the
time of production, and hence the firm has to allocate these inputs across the product
lines. The allocation is done as a function of the various demand conditions, production
technologies, and the price of materials. Interdependency in production may arise also due

to physical economies of scope, which take place when the firm produces several goods
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and therefore reaches higher productivity levels than when producing only one good.

3.5 Measurement error

The observed variables are product-level Q;;; and Pjj, and firm-level My, Lj;, Kj: and

Pyyjs. The firm-level materials, M, is measured with multiplicative measurement error:

M;
S M

The other observed variables are measured without measurement error.

EMjt = 1. (13)

4 Identification and Estimation Strategy

Firm-level Cobb-Douglas production functions have been estimated in numerous studies.
With respect to estimation, the product-specific functions of this paper differ from the
firm-level functions in one important aspect: the product-specific inputs are unobservable
to the econometrician. This implies that all the elements in the production function
are unobservable: input quantities, the output elasticities of the inputs, and total factor
productivity. In other words, not only are the the inputs endogenous to the unobservable
productivity, which is a standard problem in production function estimation, but they are

also unobservable. Clearly, these two problems are closely related.

My identification strategy is based on two insights: one for controlling the endogeneity
of inputs to the unobservable productivity level, and another for identifying the unobserv-
able input allocations. The first insight is that, by definition, output is a function of the
firm’s productivity: the more productive the firm is, the greater its output for any given
level of inputs. The unobservable productivity level can be written as a function of the
input allocations and the output elasticities of the three inputs, 8,;;, Br;, and Sg;. I use

this definition of productivity in solving the product-level inputs.

The second insight is that firms make their production decisions as a function of
supply-side factors, such as productivity, fixed inputs, and prices of the flexible inputs,
but also as a function of the demand for the goods. Intuitively, the higher the demand for
a given good, the more inputs the firm is willing to allocate to the product line. Shocks in

output demand provide a source of variation for identifying the optimal input allocations.
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Furthermore, as an overidentifying assumption I can use the notion that the product-level
inputs estimated sum up to the observable firm-level inputs.

The optimal input choices are solved analytically from the firm’s static profit max-
imization problem, as a function of the productivity term w;;; and up to the produc-
tion function parameters Bg;, By, Br; and Sg; (recall that the state variables Sy =

(ije mijes €ijes Lt Kje, wige, Pagje) ):

M = far (Sije, Bois Baris Brir Brci) (14)
Lijt = fr(Sijts Bois Baris Bris Bri) (15)
Kije = fx (Sijt; Bois Baris Bris Bri) - (16)

As explained above, the first key of the estimation strategy is using the definition of
the productivity term w;j; in controlling for the endogeneity of inputs. Inverting the

production function for w;j, I get:

Qijt
wiit = log - . . 17)
’ (exp(ﬁoi)M'BMz LR

ijt ijt ijt

By substituting this definition of w;;; in the analytical input functions M;js, Lij¢, Kije, 1

obtain:
M, = gar (Sie Qije Boi» Basis Bris Bici) (18)
L = 91 (Siji, Qijes Boi» Buir Bris Brei) (19)
Kl = gk (Sije, Qijts Bois Bari Bris Brei) » (20)
where S}, denotes the state variables without w;;. By imposing M];, = M, Li; =
Lijt, and Kzﬁ = Kjji, and substituting M, Lj;;, K;, and the definition of wjj; in the

production function, I take account of the unobservable productivity level. The production

function for good i can then be written as:

k3 L0 ﬁ [
Qije = exp (Boi) MUy LUK exp (wie) (21)

where B;, B, Br; and B, are the only unobservables. But when written in this form,

an infinite number of parameters B;, B, Br; and By, solve the empirical production
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function. This is because w;j;; is inverted from the production function itself. However,
the production function can be identified using the structure of the productivity process,
which is a function of the expectation of productivity E [wijt|w;ji—1], and the productivity
shock &, ;.

Using the productivity shock &, in identification is a standard practice in structural
production function models (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Acker-
berg, Caves and Frazer, 2006). Lagged static inputs, in this paper M;;;, are correlated
over time but uncorrelated with the productivity shock. Fixed inputs, in this case L;j;
and Kjjt, are chosen prior to observing & ;. Hence, they are not correlated with the pro-
ductivity shock. As the fixed inputs L;j; and K;j; are subject to different input costs, the

two variables are not collinear.

Given the standard assumptions I make regarding the timing of input choices, and
given that there are sufficiently many sources of identifying variation, the above moments
can be modified to suit the production function specified in this paper. The productivity

shocks only have to be specified at the product-level:

E[&|Mji—1] = 0Vi=[LN] (22)
E[&ulLy) = 0Vi=][1,N] (23)
E &4 K] = 0Vi=I[1,N]. (24)

The firm-level Mj;_1, Lj;, and Kj; are correlated with the product-level M;j;, Lyj;, and
K;j; because the firm-level variables are sums of the product-level inputs. An additional
instrument is the price of the flexible input, correlated with M;j; but uncorrelated with
fz‘jt5

B [€|Paje] =0V i = [1,N]. (25)

Pyyjs is a valid instrument even if measured with error because the measurement error is
not correlated with the productivity shock.

Demand for good 7 would also be a valid instrument. Demand for good ¢ correlates
positively with the input choices M;js, L;j; and Kjj;, while it is uncorrelated with the
productivity shock &;;. Unfortunately, the demand is unobservable. However, the output

prices are informative about the underlying demand. Price for good ¢ depends on the
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output quantity produced and the level of productivity at which it is produced, that is,
P;ji is correlated with the productivity shock and hence not a valid instrument. However,
lagged price P;j;_1 is correlated with the demand for good 7 also at time ¢, and hence with
the input choices M;j;;, Lij and Kjj, because demand for good ¢ is correlated over time

as denoted by a;;. At the same time, P;j_; is uncorrelated with the productivity shock:
E €] Piji—1] =0V i =[1,N]. (26)

I also use the fact that product-level inputs M;j;; add up to the firm-level input Mj;,
which is observable but measured with measurement error. Any firm-level measurement
error in Mj;, denoted by €azj¢, is expected to be zero. A valid instrument for identifying
B is the product of output price and quantity, P;;;Q;j¢, which is uncorrelated with the

measurement error in materials €jz¢, but correlated with the use of materials M;jq:

These moment conditions identify the production technologies.

Identification of the demand functions requires an instrument!? for the endogeneous
prices. The material price Py ¢, human resources Lj;, and capital stock Kj; correlate with
the product prices but they are uncorrelated with the product- and firm-specific demand

shocks €

Eleij|Puj] = 0Vi=[1,N] (28)
EleylLy] = 0Vi=[1,N] (20)
E[EZ]t|Kjt] = 0Vi= [1,N] (30)

The model is identified with these moments and estimated by GMM.

"For a discussion on instruments used in demand estimation, see, for example, Ackerberg, Benkard,
Berry and Pakes, 2007.
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4.1 Solving for @jt, ity and €eprjy

The productivity shock &, is:

Qijt

fijt = log <
Bai 7BLi 1-BKi
exp (Boi) My Ly Koy

) — E [wijt|wiji—1] (31)

where Mjjt, Lijt, Kije and E [wij|wiji—1) are unknown. M;j¢, Liji, and Kjj; are solved from
the first-order conditions for static profit maximization, the definition of productivity for
the estimation equation, w;j; = log (Qijt(exp (Boi) MZQ’“LZ?KZ?)*I), and the demand

_1 1
function inverted for price, P;j; = exp (cj +¢€i5¢) ™ Q7. By substitution:

1 _
My = <7 + 1) Pithijtgl Vi = [1,m] (32)
Mt

L4 1) P;jiQijeBri Lt

Liji = — Vi=[1,nj] (33)
> <ﬁt + 1) PijtQijtBri
(%ﬁ + 1) PijiQijtBrikje

Kijt - V 1= [1, ’I’th} . (34)

Y, (%ﬁ + 1) P Qijt B

Given M;js, Lijt, Kiji, and the implied w;j¢, the productivity process is estimated with

the following estimation equation:
wije = g (Wije—1) + i (35)

where g (wijt—1) is a second-order polynomial of the lagged productivity term wiji—1 (8r:, Bri» Brci)s

and ;;; is the productivity shock.!8

Given the solution for M;;; (32), the multiplicative input measurement error epyj¢ is

computed as:

_ M
n;

22y Mije

"$The parameters in the polynomial g (wiji—1), denoted by =, enter the moment conditions linearly.
Hence they can be concentrated out from the estimation routine for the nonlinear parameters. The lin-
ear parameters <y, are obtained by regressing the productivity level implied by a given set of parame-
ter values wij¢ (B4, Bris B;) on the second-order polynomial terms of the implied lagged productivity

wijt—1 (Baris Bri Bci)-

EMjt = 1. (36)
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The demand shock e;;; is:

Qijt
it =1 — 37
Eijt og (exp(O[U)PZ,;5 ( )

where the unobservable product-firm -specific demand level, a;; is (735 is the number of

time periods in which firm j has produced good %):

T
=11 J] % (38)
ag =T, E og o |

t=1

igt
5 Data and Empirical Implementation

5.1 Data

I use the Longitudinal Database on Plants in Finnish Manufacturing (LDPM) and the
Industrial output data of Statistics Finland on years 2004 - 2011. The two datasets include
plants that belong to manufacturing firms with at least 20 employees, and a subset of plants
of firms with less than 20 employees. The reporting units are mainly plants. The only
exceptions are in the Industrial output data, where a few plants belonging to the same
firm report jointly. For these reporting units I aggregate the observations in the LDPM
accordingly.

I estimate the production functions of firms in Division 16, "Manufacture of wood and
of products of wood and cork, except furniture; manufacture of articles of straw and plait-
ing materials". The products are classified according to Eurostat’s 8-digit PRODCOM
(Production communautaire) codes that are supplemented by national 10-digit subclasses.
Goods within the fairly narrowly defined titles are therefore comparable in physical quan-
tities. The titles are provided in Table 1. For each product title a plant produces in a given
year, I observe the output measured in a physical unit as well as the sales revenue. These
two yield the average price of the good in the given year. Similarly for the intermediate
products and materials I observe physical quantities and expenditures by the PRODCOM
titles. The "price" of materials is computed as the Elteto-Koves-Szule (EKS) multilateral

price index (see, for example, Hill, 2004, and Neary, 2004). For firm a it can be expressed
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as follows:

1
J i 1 T
Pr (¢,q%, 17, p")
Pg = | | _ 7

e 7=1 <PF (q]7qb7p]7pb) ’ (39)

where ¢/ and p/ are the quantity and price vectors of firm j, and Pr (qJ Q% p“) is
the bilateral Fisher price index between firm @ and firm j, j = 1,..., J (J is the number of

firms), which is given by

) 1
ot = (22 LY ”

where ¢/ % p/ = 227:1 @l (N is the number of product titles). Similarly for
Pr (qj, qb,pj,pb), where b stands for the base firm chosen. The EKS multilateral index
satisfies the circularity (transitivity) requirement, which implies that the same index is
obtained irrespective of whether firms are compared with each other directly, or through
their relationships with other firms (Hill, 2004; Neary, 2004). The EKS multilateral index
is thus well-suited for my purpose of comparing firms when no representative firm exists,

and bundles of goods differ between firms.

The labor input is measured in labor costs that comprise salary and social payments.
The monetary value of the capital stock is estimated using the perpetual inventory method,
Kjy = 6Kji—1+ Ijt—1, where § = 0.9 and I; is investment.

The estimation methodology poses certain requirements on the observations. First,
all product titles need to be observed in at least four pairs of observations, each pair being
from two consecutive years in a given firm. This is because for each product title there are
four non-linear parameters to be estimated, and because estimating the 1st order Markov
process of productivity evolution requires sequences of at least two observations. Second,
observations with missing variables cannot be used in estimation. Observations that do
not fulfill the aforementioned criteria are dropped from the sample.

Note that measurement error in output is assumed to be zero. Unfortunately, there is
no other output variable that could be used to verify the accuracy of the product-specific
sales revenue variables. The only other output variable available is the plant-level gross
output reported in the LDPM. Gross output is defined as the sum of sales revenue, deliv-
eries to other plants of the firm, changes in inventories, production for own use, and other

business revenue, deducting capital gains and acquisition of merchandise. Not suprisingly,

22



gross output is not equal to the sum of product-specific sales revenues from production in
all of the plants. As the definition of gross output goes, there are several potential expla-
nations for this. Plants may produce output that is not included in the sales revenue from
production (deliveries to other plants of the firm, positive changes in inventories, produc-
tion for own use), or the sales revenue data may include output produced in some previous
year (negative changes in inventories). Moreover, because capital gains and acquisition of
merchandise are deducted from gross output, it is not possible to make strong inferences
about potential measurement error in output. Unfortunately, the various components of
gross output are not reported in the LDPM, and hence I cannot identify why gross output
may differ from sales revenue. However, to reduce the likelihood of using observations
with major measurement error in output, I use only those observations for which the ratio

of sum of sales revenue to gross output is at least 0.6 but not more than 1.4.

In the final sample there are 2053 good-plant-year -level observations and 904 plant-
year -level observations, collected from 190 plants during 8 years. In total, 42 different
product titles are produced. Plants’ product assortments range from 1 up to 17 product

titles. A plant produces on average 3.25 product titles.

5.2 Product line specification

Every product title ¢ is related to four nonlinear parameters that need to be estimated:
price elasticity n;, and output elasticities (3,;;, 8r; and Bg;. If I defined the parameters
at the 8- or 10-digit level, I would need to estimate 42 x 4 = 168 nonlinear parameters. At
least in my setting this is a too large a number of nonlinear parameters to be estimated.
Instead, I define the parameters at the 3-digit level, which yields two product categories:
"Sawmilling and planing of wood" (PRODCOM code 161), and "Manufacture of products
of wood, cork, straw and plaiting materials" (162). This specification implies estimating
2 x 4 = 8 nonlinear parameters. The parameters governing the productivity process
g (wije—1) are also specified at the 3-digit level. The constants f3; are specific to the goods
as defined at the 8- or 10-digit level. Also the productivity levels w;;; and the productivity
shocks &, are specific to the 8- or 10-digit titles.

There are 15 product titles in category 161, and 27 titles in category 162. A plant
produces on average 2.17 titles in category 161, and 1.08 titles in category 162. 56% of

the plants in the sample produce at least one good in category 161, and 61% of the plants
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produce at least one good in category 162. 86% of the plants that produce any good in
category 161 produce at least two titles in that category. Similarly, 43% of the plants that

produce any good in category 162 produce more than one title in that category.

5.3 Optimal instruments

To improve the estimator’s efficiency, I replace some of the moment conditions discussed
above by moments with optimal instruments. Amemiya (1974) derives optimal instru-
ments for non-linear models, and Arellano (2003) provides an overview of optimal instru-
ments in linear and nonlinear models. Reynaert and Verboven (2012) show that adopting
Chamberlain’s (1987) optimal instruments in estimating the randon coefficients logit de-
mand model of Berry, Levinsohn, Pakes’ (1995) reduces the small sample bias and increases

the estimator’s efficiency and stability.

The optimal instrument is the expected value of the derivative of the structural error

term with respect to the parameter, computed at an initial estimate of the parameters:

zijp =FE {%;@ | Xijt} (41)

where 6 contains the parameters to be estimated, § = (1, 8,7), and X;;; comprises

the observables, X;;: = (Qijt, Pijt, Puje, Lje, Kjt). Because the optimal instruments are
non-linear functions of the parameters to be estimated, they cannot be computed directly
from the data. Instead the optimal instruments are updated after each stage of GMM. In
the first stage I use starting values that are an educated guess of the parameters. For the
subsequent rounds, the optimal instruments are recomputed using the parameter estimates

from the previous stage of GMM.

I replace all the supply-side moments with productivity shocks §;;, and standard
instruments by moments with optimal instruments. As compared to the empirical model
with standard instruments, the objective function appears smoother, and the estimates
less responsive to the starting values. This is because the functional forms imposed are

exploited to a fuller extent.

I do not adopt optimal instruments for the other moments, i.e., the moments that
contain the measurement error €,7;; or demand shock €;5;. The reason is that writing op-

timal instruments when the structural error term is a function of endogenous observations
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is complicated (Arellano 2003). In summary, the moment conditions I use are:

Moment Parameter to be identified
E [5ijt|ZMijt] =0Vi=[l,N] Bati
E [l z0ijt) =0V i =[1,N] BLi
E [&jl2xie) =0V i = [1,N] B (42)
E et PijiQije] =0V i = [1, N] B
Eleije|Pyjtl =0V i =[1,N] n;
Eleij|Ljt) =0V i=[1,N] n;
Eleijt| K] =0V i=[1,N] n;

As four moment conditions are sufficient for exact identification of the model, there are
three overidentifying restrictions in the above set of moments. Some of the 8- or 10-digit
product titles have at least four but less than seven observation pairs. In these cases
I cannot use all the seven moment conditions. Instead of dropping observations of the
product title entirely, I drop some of the overidentifying moments for these products.
For product ¢ with only four observations pairs, I adopt moments E [{ijt|zMijt] =0,
E [&lznijt] = 0, E [&4l2k45¢) = 0, and E [eg5¢| Paje] = 0. Moment E [enrje| Py Qije] =
0 (Eeije|Ljs) = 0) [Eeije|Kj] = 0] is used when there is at least five (six) [seven]
observation pairs.

Estimates of the production function parameters §,;,, Br; and Bk, and the price

elasticities 7, are obtained by iterated GMM.

6 Results

As there are multiple parameters to be estimated that enter the GMM objective function
non-linearly, finding the global minimum can be challenging. To make sure that the esti-
mation routine reaches the global minimum of the GMM objective function, I experiment
with various minimization algorithms, of which the Gauss-Newton algorithm turns out
to perform best in finding the global minimum among the local minima. I also run the

estimation routine with a large set of alternative starting values.'”

The starting values for B, 81; and B, range between 0.15 and 0.5, and the starting values for 7,
between —8 and —1.5.
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The estimation results are presented in Table 2. The two production functions and de-
mand functions estimated are for two groups: "Sawmilling and planing of wood" (PROD-
COM titles 161), and "Manufacture of products of wood, cork, straw and plaiting ma-
terials" (PRODCOM titles 162). All the non-linear parameter estimates are statistically
significant.2? Also, the estimates of the output elasticities are statistically different for the
technologies of the two product groups. The output elasticity of materials is considerably
higher in the technology for titles 162 than in the technology for 161 (8;; for 162 is 0.74
and 3, for 161 is 0.38). The output elasticity of labor, again, is considerably lower in the
technology for titles 162 (5, for 162 is 0.12 and §;, for 161 is 0.35). Both technologies have
output elasticity of capital of the same magnitude (8 for 161 is 0.19 and S for 162 is
0.18). Returns to scale are different for the two technologies: the technology for product
titles 161 is subject to decreasing returns to scale (8, + 87 + B = 0.93 < 1) , while
the technology for titles 162 has increasing returns to scale (8, + 8 + Bx = 1.04 > 1).
In short, the various goods in the product groups "Sawmilling and planing of wood"
and "Manufacture of products of wood, cork, straw and plaiting materials", which many
multiproduct firms simultaneously produce, are not manufactured with a single firm-level

production technology.

The demand for titles 161 is more price elastic than the demand for titles 162, as n for
titles 161 is —1.30 and 7 for titles 162 is —1.12. This is intuitive because products of wood,
cork, straw and plaiting materials are likely to be more differentiated than the output of
sawmilling and planing of wood. Hansen’s J-test does not reject the null hypothesis of

valid overidentification restrictions (Prob[Chi-sq.(264)>1J] is 0.4632).

7 Discussion on Identification

The structural production function literature focuses on correcting for endogeneity biases.
Several papers build on the insight of Olley and Pakes (1996) that because inputs are set as
a function of the firm’s productivity, input demand can be inverted for the unobservable
productivity term. Subsequently this idea, referred to as the proxy method, has been
used by Levinsohn and Petrin (2003), Ackerberg, Caves and Frazer (2006), Wooldridge
(2009), and Doraszelski and Jaumandreu (2013). Gandhi, Navarro and Rivers (2013) use

20The product-firm specific demand levels aij, the 42 constants 3(;, and the parameters governing the
productivity process g (wij¢t—1) are not reported.

26



firms’ short run first order conditions to control for the collinearity of inputs. Most of
the assumptions underlying my identification strategy are familiar from this literature. I

make also some novel assumptions, and relax some of the assumptions previously made.

All the moment conditions, in my and other structural production function estima-
tion strategies, are based on assumptions about the timing of input choices with respect
to productivity shocks. In addition, I specify the role of demand shocks in production
choices. Materials M;j; are chosen only after the demand and productivity shocks ;;; and
&ij+ have been observed, while the firm-level labor L;; and capital stock Kj are determined
before the shocks. These assumptions are standard in the literature, apart from taking
account of the demand shocks in production decisions, and assuming L;; to be a fixed vari-
able. The reason for treating Lj; as a fixed input is not technical, but this assumption is
made to account for the environment in which the data has been generated: employment
protection legislation plays a significant role in Finland. The OECD indicators of em-
ployment protection (OECD, 2013) measure the strictness of legislation on individual and
collective dismissals and the strictness of hiring employees on temporary contracts. The
measures are based on information about statutory and case laws, collective bargaining
agreements, and advice by officials from OECD member countries and country experts.
According to these indicators, the Finnish labor market was of the OECD average in the
strictness of employment protection during the period of 2004 to 2011. Based on this
measure, fixed labor input is a realistic assumption. In case the method of this paper is
to be used for estimating production functions in an economy where flexible labor input
is a more appropriate assumption, the empirical model can be adjusted accordingly. As
in other structural production function models, one flexible input is required for inverting
out the unobservable productivity w;j;. I also further specify that the product-level labor

and capital allocations Lj; and Kj;j; are set as endogeneous to €;;; and & This assump-

ijt
tion not only facilitates the estimation of Lj; and Kjj;, but also allows firms to reallocate

human resources and capital as response to demand and productivity shocks.

An important difference in the timing assumptions of this and other structural esti-
mation strategies is that I assume away any productivity shocks once the flexible inputs
have been set, and measurement error in output @;;;. I make these assumptions in order
to solve for the unobservable input allocations, while controlling for the unobservable pro-

ductivity w;j;. At the same time, and in contrast to the rest of the literature, I allow for
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measurement error in the flexible inputs Mj; observed at the firm-level. This provides me
an additional moment condition for identifying 3,;;, as compared to the other production
models: sales revenue from a given product correlates positively with the flexible input
M;j; allocated to the product line, but is uncorrelated with the firm-level measurement

error in Mj;, denoted by epgj.

In addition to the timing assumptions, the proxy methods require two more key
assumptions. First, input demand is assumed monotonic in productivity. In other words,
cases where input demand may decrease due to improved efficiency are assumed away.
However, this assumption may be unrealistic in settings where firms face downward sloping
demand curves. I relax the monotonicity assumption by using the definition of productivity

itself in controlling for endogeneity.

Second, the proxy methods require the assumption that productivity w;;; is the only
scalar unobservable that affects the input choices. Unobservable inter-firm variation in,
say, input prices or output demand, as well as optimization and measurement error in the
flexible inputs, are assumed away. I also need to make the scalar unobservability assump-
tion for estimating product-level inputs. However, I do allow for measurement error in the
flexible inputs. I also allow for inter-firm variation in input prices and output demand. In
fact, I need input prices and estimates of output demand for estimating the input allo-
cations. At the same time, variation in the input prices resolves the collinearity problem
between the flexible input M;j; and the other inputs. What the scalar unobservability
assumption in my application implies is that the price a firm pays for its flexible input,
Pyyj¢, does not depend on the quantity purchased M;j;. By modelling supply in the in-
put market this assumption could be relaxed, however. As in other empirical strategies,
I also assume that the input demand function is continuous. In other words, firms can
purchase precisely the input quantity that maximizes their profit. This seems justified

after eyeballing the firm-level input data.

The last set of supply-side assumptions that I make concerns the inputs. Units of
the firm-level input stocks L;; and Kj; are substitutable between product lines, and there
are no adjustment costs in (re)allocating labor or capital to other product lines. Also, a
firm does not use production of a given good as an input for another good. In fact, these
assumptions are not specific to this product-specific model, but they are made implicitly

in all firm-level estimations when firms produce more than one type of good.
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In contrast to the other structural methods, the one of this paper requires demand
estimates for identifying the unobservable input allocations. Identification of the demand
function is based on two assumptions. First, any unobservables that affect the demand for
a given good of a given firm, e.g. product quality, are constant over time. This assumption
may be realistic for some industries, and unrealistic for others. If unrealistic, the demand
model can be replaced with a more flexible one. Second, changes in input prices and
fixed input stocks shift the supply curve, while the demand curve, including the demand
shock ¢;j¢, is not affected. Using material prices and fixed input stocks as instruments
is a standard practice. Also note that the estimated product-level inputs M;j;, L;j;, and
K;j; enter the production function as generated regressors. In order for the production
function estimates to be consistent, all the instruments, generated and observed, need to
be uncorrelated with the residuals (Wooldridge, 2002). In other words, if the moment

conditions are valid, the parameter estimates are consistent.

To sum up, recall that the estimation biases acknowledged in the literature are: se-
lection, simultaneity, collinearity, omitted price, and product bias, as discussed in section

21 Never-

2. The estimation strategy of this paper does not consider the selection bias.
theless, it is possible to extend the strategy to control for market entry and selection to
various product lines by computing propensity scores for market entry, as in Olley and
Pakes (1996). Furthermore, the selection bias may be less of a problem when product-level
capital is a quasi-flexible variable, i.e., capital allocations to product lines are made in the
period of production given a fixed firm-level capital stock. Recall that the selection bias
arises due to a negative correlation between firms’ capital stock and productivity level in
the sample. But when capital allocations to product lines are set as a function of produc-
tivity and demand, as in the multiproduct case, it is not obvious whether the correlation
between capital and productivity is positive or negative. Hence identifying [, is now
potentially subject to two opposing biases: selection bias (towards zero), and simultaneity
bias (away from zero). The simultaneity bias of 8y, is corrected as the biases of 8, and
Bri- The selection bias is not corrected for, but the problem is alleviated due to allocation

of capital across product lines.

The other four of the five biases are accounted for. The simultaneity bias is corrected

2n fact, the method of Olley and Pakes (1996) is the only one that corrects for the selection problem,
while the other structural methods focus on accounting for the simultaneity problem.
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by writing input functions explicitly as a function of the unobservable productivity. Identi-
fying variation in material prices and fixed inputs stocks resolves the collinearity problem.
The omitted price bias doesn’t occur because input and output prices are observed, and
physical quantity measures are used instead of sales revenues and input expenditures. The
so-called product bias is corrected by allowing for good-specific production technology, and

by taking account of the role of output demand in production decisions.

The identification strategy accommodates also other functional forms than the Cobb-
Douglas production function and the isoelastic demand function used in this paper. The
requirement on the production model, as in most structural production models, is that
there has to be at least one input that is chosen as a function of the unobservable produc-
tivity. The data is required to include observations of at least two consecutive periods,
and report physical output and sales revenue by product title. Such data, fortunately, is

provided by many national statistical offices in Europe, for example.

7.1 Comparison with De Loecker et al.

There are a few recent papers that also accommocate for multiproduct firms and product-
specific production technologies, as mentioned in the literature review. The method of De
Loecker, Goldberg, Khandelwal and Pavenik (2012, henceforth DLGKP) is perhaps closest
to the method presented in this paper. DLGKP and I have rather similar datasets where
input allocations within firms are unobservable. We also make many similar identifying
assumptions that are standard in the structural production function literature, as DLGKP
use the empirical model and estimation strategy of Ackerberg, Caves and Frazer (2006).
Nevertheless, our key assumptions and empirical strategies that address the unobservable
input allocations are quite different.

Both DLGKP and I assume that single- and multiproduct firms use similar product-
specific technologies. DLGKP are able to utilize this assumption to a fuller extent because
they observe sufficiently many single-product firms to estimate the technology parameters
using data on those firms only. This enables DLGKP to estimate the parameters without
simultaneously solving for the unobservable input allocations. The input allocations are
computed using the parameter estimates and the observable variables. DLGKP assume
that the share of a firm’s materials, labor, and capital allocated to a given product line

is constant, i.e., independent of the input type. This implies that a firm produces all
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of its goods with the same materials-labor-capital -ratio. However, a profit maximizing
or cost minimizing firm would not allocate inputs to product lines with such constant
ratios. Even when the technology parameters are correctly estimated, estimates of the
unobservable productivity levels are affected by this assumption. On the other hand,
DLGKP avoid making the assumption of zero productivity shocks after the flexible inputs
have been set, which I need to make. Moreover, DLGKP do not require estimates of

output demand.

8 Conclusion

This paper contributes to a large empirical literature on production function estimation,
which underlies even a larger body of applied economic research. To take account of the
empirical fact that a remarkable share of firms is multiproduct firms, I provide a method
to estimate product-specific production functions when some or all firms produce multiple
goods. The method does not require data on input allocations to various product lines.
Instead, output demand is estimated to identify the input allocations to the product lines
and the production functions. Endogeneity of the input allocations to the unobservable
productivity levels is controlled for by using the inverses of the production functions in
solving for the input allocations. The method is demonstrated by estimating production
functions for goods in the industry "Manufacture of wood and of products of wood and
cork, except furniture; manufacture of articles of straw and plaiting materials". I find
that the technologies used in "Sawmilling and planing of wood" (PRODCOM 161) and
"Manufacture of products of wood, cork, straw and plaiting materials" (PRODCOM 162)
are statistically different from each other. The empirical findings suggest that production
functions should be estimated at the product- instead the firm-level, and that multiproduct

firms use multiple production technologies.
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Table 2: Parameter estimates
PRODCOM 161: Sawmilling and planing of wood
PRODCOM 162: Manufacture of products of wood, cork, straw and plaiting materials

Parameter estimate
(standard error)

PRODCOM 161

Materials 09'030;
Labor 09'03161
Capital 09-02008
Price elasticity of demand BB; [?
PRODCOM 162

Materials 0967032
Labor 0().61033
Capital 0961083
Price elasticity of demand Etéj
Prob[Chi-sq.(264)>J] 0.4632
Number of obs. 2053
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Abstract

This paper describes the biases that arise when production functions are estimated
under the standard assumption of a firm-level technology, while the true technologies
are product-specific. The assumption of a firm-level technology implies that the tech-
nology parameters are identical across the various goods produced in the industry,
and that a multiproduct firm produces all of its output with a single technology.
To examine the implications of these simplifying assumptions, I estimate a firm-level
production function on a dataset generated of an industry where two types of goods
are produced with product-specific Cobb-Douglas production functions. I find that
the biases in the estimated firm-level parameters are substantial even when the true
product-specific technologies are very similar. The directions and the magnitudes of
the biases are determined by intricate functions of the true product-specific technolo-
gies and the product scopes of the firms in the industry. The estimated productivity
levels have a relatively low correlation with the true firm-level productivity levels when

the firms’ product scopes are heterogeneous, as they usually are.
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1 Introduction

Most industries! comprise dozens if not hundreds of products titles. These products are
manufactured by firms with various product assortments. In the Finnish manufacturing
sector, for example, plants’ product scopes? vary from one to 82 titles, with more than 60%
of the plants producing at least two titles.®> Moreover, the plants’ output assortments vary
both in the product titles as well as the titles’ output shares, both in time within plants,
and across plants. Similar observations have been made also about the US manufactur-
ing sector (Bernard, Redding and Schott, 2010). The empirical literature suggests that
multiproduct firms have intra-firm productivity differences across product lines (Bernard,
Redding and Schott, 2009, 2011; Mayer, Melitz and Ottaviano, 2014), and that changes
in product assortments are important strategic choices (Eaton and Schmitt, 1994; Eckel,

Tacovone, Javorcik, Neary, 2011; Johnson and Myatt, 2003, 2006; Ju, 2003; Roson, 2012).

Despite the aforementioned empirical facts, almost all production function estimates
are based on the following two assumptions:® (1) technology parameters, i.e., output
elasiticites of various inputs, are constant for all goods in the industry, and (2) a firm
produces all of its titles with a single firm-level technology and productivity level. This
paper describes the estimation biases that arise if these two assumptions of a firm-level
technology are imposed when the true technologies are product-specific. The biases are

characterized by estimating a firm-level production function on various simulated datasets

!Industries are typically defined at the two-digit level. The European PRODCOM classification for the
manufacturing sector, for example, at the two-digit level is 10 Manufacture of Food Products, 11 Manu-
facture of Beverages, 12 Manufacture of Tobacco Products, 13 Manufacture of Textiles, 14 Manufacture of
Wearing Apparel, 15 Manufacture of Leather and Related Products, 16 Manufacture of Wood and Prod-
ucts of Wood and Cork, except Furniture, Manufacture of Articles of Straw and Plaiting Materials, 17
Manufacture of Paper and Paper Products, 18 Printing and Reproduction of Recorded Media, 19 Manu-
facture of Coke and Refined Petroleum Products, 20 Manufacture of Chemicals and Chemical Products,
21 Manufacture of Basic Pharmaceutical Products and Pharmaceutical Preparations, 22 Manufacture of
Rubber and Plastic Products, 23 Manufacture of Other Non-Metallic Mineral Products, 24 Manufacture
of Basic Metals, 25 Manufacture of Fabricated Metal Products, except Machinery and Equipment, 26
Manufacture of Computer, Electronic and Optical Products, 27 Manufacture of Electrical Equipment,
28 Manufacture of Machinery and Equipment n.e.c., 29 Manufacture of Motor Vehicles, 30 Manufacture
of Other Transport Equipment, 31 Manufacture of Furniture, 32 Other Manufacturing, 33 Repair and
Installation of Machinery and Equipment.

2Multiproduct firms exist due to economies of scope. See, for example, Panzar, 1989 for how production
technology affects firm and industry structure.

3 According to the Industrial output data of Statistics Finland on years 2004 - 2011.

1For an exception, see De Loecker, Goldberg, Khandelwal and Pavcnik, 2012. There is also an early
literature on estimating cost functions of multiproduct firms. See, for example, Brown, Caves and Chris-
tensen, 1979, and Caves, Christensen and Tretheway, 1980. The early multiproduct cost functions allow
for the fact that production technologies across goods vary, but they do not correct the typical endogeneity
problems such as the simultaneity or selection bias.



where the true production technologies are product-specific.

The following example illustrates the two assumptions. Consider an industry called
"Manufacture of Wood and of Products of Wood and Cork", which constitutes division
16 of the European PRODCOM classification. This industry comprises titles such as
Sawmilling and Planing of Wood (16.10) and Prefabricated Wooden Buildings (16.23.20).
Without any information about the production technologies used - like an econometrician
often is when estimating firms’ production functions - it is impossibe to tell whether
the goods have been produced with similar technologies or not. I can only make an
educated guess that sawmilling and planing of wood is likely to involve less processing
than production of wooden buildings, and as a result the production technologies for
the two titles may be different. More precisely, the output elasticities, for example, of
materials, labor, and capital, are likely to differ across the production technologies for the

two goods.

Moreover, a firm that manufactures both sawmilled or planed wood and wooden
buildings may not be equally productive in manufacturing both titles. This relates to the
concept of core competency that has been discussed in the context of multiproduct firms
(for exampe Bernard, Redding and Schott, 2011). In the production function literature
core competency refers to a circumstance where a firm is more productive in manufacturing
some goods than others. In addition, the firm may have increasing or decreasing returns
to scale in the production of, say, wooden buildings, but these returns to scale may not
spill over to the production of sawmilled or planed wood, for example. This would imply

that the production technologies are product-, not firm-level functions.

In this paper I consider the implications of misspecifying production functions as firm-
level instead of product-level functions. I simulate a dataset where two types of goods are
produced with product-level Cobb-Douglas technologies. I use the dataset to estimate a
firm-level production function, assuming away the existence of product-level production
technologies, like in the literature. Estimations on the simulated datasets show that the
biases in the estimated firm-level parameters are substantial even when the true product-
level technologies are very similar. The directions and the magnitudes of the parameter
biases are intricate functions of the true product-level technologies and the product scopes
of the firms in the industry. Also the residuals, which are often considered to be estimates

of the unobservable productivity levels, are affected: the more heterogeneous the product



scopes of the firms, the lower the correlation between the estimated and true firm-level

productivity levels.

In the next section I relate this study to the relevant literature. In section 3 I explain
how the simulations are carried out. The results are presented in section 4. Section 5

concludes.

2 Literature

Estimation of production functions is subject to various identification challenges. The
most well-known problems are simultaneity and selection biases, collinear variables, un-
observable variables such as price and quality of inputs and outputs, and functional form
misspecifications (see, for example, Ackerberg, Benkard, Berry and Pakes, 2007). They
are discussed in the literature review of Valmari (2014), where I propose an estimation
strategy for product-level production functions. In this paper I relate my study primarily
to the literature on aggregation of production functions, which has evolved within the
macro literature but has not gained attention among microeconomists who estimate firms’

production functions.

A key element in the neoclassical macroeconomics literature is the aggregate pro-
duction function. It is constantly estimated despite numerous critical remarks that the
aggregate production function does not have a sound theoretical foundation (Felipe and
Fisher, 2003). There are two types of issues related to the aggregation of production func-
tions: aggregation over various inputs and outputs, and aggregation over firms when not
all inputs are efficiently allocated. Felipe and Fisher discuss the theoretical literature on

the aggregation problem.

Klein (1946a, 1946b) initiated the literature on production function aggregation. His
objective was to write an aggregate production function as a purely technological relation-
ship, independent of behavioral assumptions such as profit maximization. However May
(1946) pointed out that even the micro production functions assume optimization. Pu
(1946) noted that if the macro variables are not derived from micro variables that satisfy

equilibrium conditions, neither will the macroeconomic equilibrium conditions hold.

The first major findings were made by Leontief and Nataf. Leontief (1947a, 1947b)

provides necessary and sufficient conditions for aggregation of variables into homogeneous



groups within a firm. Aggregation is possible if and only if the marginal rates of sub-
stitution among variables in the aggregate are independent of the variables outside of it.
This assumption may hold for some real-life producers but it is unlikely to hold for all of
them. Nataf (1948) considers aggregation over different production functions. He finds
that aggregation over different functions is possible if and only if the micro production

functions are additively separable in capital and labor.

Fisher (1969, 1993) notes that without imposing an efficiency condition, an aggregate
function almost never exists. He provides conditions for the existence of aggregates of
capital, labor and output under some presumptions. Fisher assumes that, first, labor is
allocated across firms efficiently, second, capital is firm-specific and hence capital markets
do not exist, and third, firm-level production functions have constant returns to scale. Even
under these strong assumptions the conditions for the existence of aggregate production
functions are stringent. The aggregates exist only if, first, firm-level production functions
are identical except for the capital efficiency coefficient, second, all firms employ different
types of labor in the same proportion, i.e., specialization in labor is ruled out, and third,
all firms produce all goods in the same proportions, i.e., specialization in output is ruled
out. Felipe and Fisher conclude that the conditions under which a well-behaved aggregate
production function can be derived are so stringent that actual economies are unlikely to

satisfy them.

The firm-level aggregation problem I look at has similarities with the macroeconomic
counterpart, albeit the problems are not identical. In the case of firm-level data, aggrega-
tion takes place over multiple inputs and outputs, and over various production functions,
but in contrast to the macroeconomic literature, decision-makers are not aggregated over.
I am not aware of a study that looks at the implications of aggregation to the firm-level.
The findings of this study are therefore relevant not only for economists estimating firms’
production functions, but also to the macro literature which is based on the assumption

that firm-level production functions are well-behaved (Felipe and Fisher, 2003).

Another aspect of aggregation has been recently raised in the micro-level produc-
tion function literature, however. Bernard, Redding and Schott (2009) note that most
firms make their production decisions at a more disaggregated level than observed in the
data, and therefore studied in the productivity literature. They argue that, in addition to

the functional form misspecification of assuming homogenous production functions across



goods, firms’ product choices and productivity levels are correlated, like in the traditional
selection problem. Bernard, Redding and Schott write a theoretical model of industry equi-
librium where firms choose one out of two heterogeneous goods. Production technologies
for the goods vary such that one of the goods involves a lower variable and a higher fixed
cost than the other. The outcome of the model is that high productivity firms, defined as
firms whose productivity exceed a certain threshold, produce the goods with a low variable
and a high fixed cost. Because the high productivity firms can produce their output even
at a lower variable cost than the low productivity firms, they can cover the high fixed cost
by selling a large output quantity at a low price. The low productivity firms manufacture
the goods with a high variable cost and a low fixed cost, respectively. Bernard, Redding
and Schott note that in production function estimation, variation in firm productivity
cannot be distinguished from variation in the production technologies, the two of which
are correlated due to the endogenous product choices, which leads to a product bias in
productivity measurement. They find that whether the inter-firm differences in measured
productivity are greater or smaller than the true productivity differences depends on the
divergence between the variable and fixed cost parameters. If the difference in the vari-
able cost parameters is large relative to the difference in the fixed cost parameters, the
measured productivity differences are larger than the true ones. Bernard, Redding and
Schott assume that productivity is a firm-level variable, and hence sorting according to

product-specific productivity is ruled out.

The paper of Bernard, Redding and Schott and this study are are both based on the
observation that production technologies may differ across products even within industries.
However the production function estimation biases considered in these studies are different
both in their causes and their implications. Bernard, Redding and Schott consider the bias
in measured productivity caused by by ignoring endogenous product selection. This study,
in contrast, looks at the functional form misspecification problem due to assuming away
product-level technologies, which has implications on the estimated technology parameters

as well as the measured productivity levels.



3 Simulations

If production technologies are assumed to be firm-level functions while they actually are
product-specific, the estimation equations are misspecified. First, the output elasticities
of the inputs may not be equal across product lines. Second, if multiproduct firms are
present, productivity levels are not necessarily constant across product lines within firms.
Third, even if all product-level production functions were identical, they would not add up
to a firm-level function without changing the functional form, unless the returns to scale

were constant for all the technologies.

To find how production function estimates are determined under the above functional
form misspecfication, I run simulations. I first generate a dataset where the product-level
technologies are known. I then estimate the production functions at the firm-level, as is
the practice in the empirical literature, and compare the firm-level estimates to the true

product-level technologies.

I consider functional form misspecification for the Cobb-Douglas technology. Back
in 1955, Houthakker characterized the Cobb-Douglas function as sufficiently consistent
with notions of economic theory to be an useful approximative device, even though the
function is not firmly established as an empirical regularity. Many microeconomists still
agree with Houthakker, as even today the Cobb-Douglas function dominates the literature
on firms’ production. For example, most structural estimation strategies assume the Cobb-
Douglas technology (e.g. Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg,
Caves and Frazer, 2006; and De Loecker, Goldberg, Khandelwal and Pavenik, 2012). The
only exception is the translog approximation used by Gandhi, Navarro and Rivers (2013).

Hence the findings of this study cater to interpreting a large number of empirical papers.

3.1 Data generation

The data generating process for the simulations is such that the implications of the func-
tional form misspecification for production function estimates are transparent. The data
generating process is also the simplest one that allows for substitution between inputs and
output types within firms. Any identification issues, such as simultaneity, selection, and
collinearity problems, unobservable price and quality differences, technological change,

and small sample size, are assumed away.



I generate datasets where firms produce one or two goods, each with the respective
production technology. Choices on what product types to produce are exogenous.® In
reality the number of goods produced and technologies used in an industry may of course
be more than two. However the qualitative effects of the misspecification are likely to be

the same when the number of true technologies is greater.

The data generated is an outcome of firms maximizing static profits. Firms are
typically assumed to have at least one dynamic factor of production, capital and perhaps
also knowledge investments. Decisions on dynamic factors affect production and profit also
after the current period. Whether an input is a static variable or has dynamic implications
does not change the effects of the functional form misspecification studied in this paper,
however. Therefore, to simplify the data generating process, the firms have two static

inputs, labor L;; and capital Kj;:
= Lo P ” 1
QZ] 1] i €xXp (wZJ) . ( )

The output elasticities of the two inputs, 8y, and Sg;, are product-specific. Total
factor productivity, which is product- and firm-specific, is denoted by exp (w;j;). I treat
L;; and K;; as exogenous to the unobservable productivity level w;; both in the data gen-
eration as well as in the estimation process. Allowing L;; and K;; to be endogenous to
w;; would require the consequent endogeneity bias to be treated by using an appropriate
estimator. However, I don’t know how the present estimators, such as Olley and Pakes
(1996), Levinsohn and Petrin (2004), Ackerberg, Caves and Frazer (2006), or Wooldridge
(2009), perform if the assumption of firm-level production functions does not hold. Allow-
ing for endogeneity would make the analysis less straightforward because the effects of the
functional form misspecification would have to be distinguished from the misperformance
of the estimator in the presence of the functional form misspecification. Hence I assume

L;; and K;; to be exogenous to w,»j.G

® As discussed in the literature review, Bernard, Redding and Schott (2009) discuss the implications of
ignoring endogenous product choices in production function estimation.

5Because both inputs, L;; and Kjj, are static decision variables and exogenous to the productivity
level wjj;, a cross-sectional dataset is sufficient in this study. In contrast, if at least one of the inputs were
dynamic, generation of these inputs would produce a longitudinal dataset. If at least one of the inputs were
endogenous to w;j, the estimation methods of Olley and Pakes (1996), Levinsohn and Petrin (2004), and
Ackerberg, Caves and Frazer (2006), for example, could be used for identifying the production function,
but that would require a longitudinal dataset of at least two consecutive time periods.



The firm chooses its input and hence also output levels as a function input and output
prices. Input prices, W; for L;;, and R; for Kj;, vary across firms. In the output market

firms face downward-sloping demand curves with a product-firm -specific demand level:
Qij = exp (i) P, (2)

where Pj; is price of good 7 produced by firm j, n; is price elasticity of demand for good
i, and o;; captures the good-firm -specific demand level. Variation in output demand in-
duces firms to substitute between goods, while variation in W; and R; induce substitution
between the two inputs.

The firm sets inputs L;; and K;; to maximize the static profits in all the product lines
¢ it is active in:

Lmz;g( Hij = Z PijQij - WjLij - RjKij (3)
i5:Kij 7

1
Substituting in the inverse demand functions, P;; = (Qij (exp(aij))fl) "i and the pro-

duction functions, the static profit maximization problem becomes:

1

O — B B *ﬁ I5Li P B w L Wilii — RiK:s 4
foax Lij = E :(exp(am +eij)) 7 Ly G exp (wij) —WjLij — RjKij  (4)
ijAvij P

The first-order conditions for static profit maximization for firm j producing product

i are:
dLagr 1 —l (B B ot B
i = (o) (el W (K e () - =0 )
aLa’gT _ 1 . *i. Bri 1-BKi . TliiJF1 ﬁKi L
aKi‘ B (771' * 1) (BXP(OQ])) " (LU Kij eXp (w”)> Kij RJ =0 (6)
Vi o= [Ln]
Vi = [1,J]

These first-order conditions give the profit-maximizing inputs L7; and K7;.

3.1.1 The number of goods produced

I generate datasets for four scenarios: (1) 1/2 of the firms produce good 1, and the other

1/2 of the firms produce good 2, (2) 1/3 of the firms produce good 1, another 1/3 of the



firms produce good 2, and the remaining 1/3 of the firms produce both goods, (3) 1/10 of
the firms produce good 1, another 1/10 of the firms produce good 2, and the remaining 8/10
of the firms produce both goods, and (4) all firms produce both goods. Demand for the
goods is not correlated within firms, nor are the product-specific productivity levels. The

only difference between the four datasets is the exogeneous variation in product selection.

In the first scenario all firms are single-product firms. According to datasets on firms
in the manufacturing sector, such a scenario is very unlikely (Bernard, Redding and Schott,
2010, Valmari, 2014), but because most studies implicitly assume single-product firms, re-
sults for the scenario may also be of interest. The other three cases are empirically more
relevant. In the US manufacturing sector 40% of the firms produce at least two goods
(Bernard, Redding and Schott, 2010), while more than 60% of Finnish manufacturing
plants produce multiple goods.” The two scenarios with 1/3 and 8/10 of the firms pro-
ducing two goods may therefore be considered as illustrations of a national manufacturing
industry, for example. The fourth case where all firms are multiproduct producers corre-
sponds to a dataset on exporting firms, where virtually all firms are multiproduct firms

(Bernard, Jensen, Redding and Schott, 2007).

3.1.2 Production function parameters

To cover different production technology combinations that may prevail within industries,
I consider altogether 18 different sets of product-level technologies, displayed in Table 1.
The 18 cases differ in the technology parameters: in the technologies’ output elasticities
and returns to scale. Apart from the technology parameters, the data generating process

for the 18 cases is identical.

In cases 1 to 9 (10 to 18), the technologies have equal (unequal) returns to scale. In
cases 1 to 3 (4 to 6) [7 to 9], both technologies have constant returns to scale, 8;;+8; = 1,
(increasing returns to scale, S;; + Bg; > 1) [decreasing returns to scale, 8; + Bg; < 1].
In cases 10 to 15, technology for good 1 has constant returns to scale, while technology
for good 2 has increasing (cases 10 to 12) or decreasing (cases 13 to 15) returns to scale.
In cases 16 to 18, technology for good 1 has increasing returns to scale, and technology

for good 2 has decreasing returns.

" According to the Industrial output data of Statistics Finland on years 2004 - 2011.
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In all cases, technology for good 1 has higher output elasticity for L than for K, 5;, >
B - Depending on the case, £, ranges between 0.71 and 0.69, while Sy is 0.3 across all
the cases. The output elasticities of the technology for good 2 can be divided into three
groups. In the first group, the elasticities are identical (cases 1, 4, 7 with equal returns to
scale), or very close to the parameters of the technology for good 1 (cases 10, 13, 16 with
unequal returns to scale). In the second group, the two elasticities of the technology for
good 2 are exactly or approximately 0.5 each (cases 2, 5, 8, 11, 14 and 17), and hence the
parameters differ from those of technology for good 1 by about 0.2 in absolute value. In
the third group, technology for good 2 has lower output elasticity for L than for K, such

that [, is close to B4, and B is close to Bp,.

3.1.3 Other exogeneous parameters and variables

There are four exogenous parameters or variables that induce firms to substitute between
the inputs and, in the case of two-good producers, between the output and the respective
technology types. These exogenous parameters and variables yield identifying variation in
the input choices for the two goods. Factor prices W; and R; induce substitution between
the inputs. They are normally distributed with mean 10 and standard deviation 1. To
avoid the problem of collinear inputs, the input prices are not correlated. Demand for
the goods, i.e., the price elasticity of demand 7; and the level of demand «;;, bring about
variation in the two output types. Demand for both types of goods is elastic with price
elasticity 1.05,% while aj; is normally distributed with mean 23 and standard deviation

0.1.

3.2 Estimation

Due to how the input and output data has been generated, the product-level production
functions may be estimated by OLS to obtain unbiased and efficient estimates. To examine
the estimates obtained when imposing the assumption of a firm-level technology, I estimate
the following equation:

Q; :LfLKjﬂK exp (wj) . (7)

81f demand was inelastic, the model would imply negative input choices.
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where the dependent variable is Q; = vazjl @i, and the explanatory variables are L; =
Zi-vzjl L;ij and K; = Zi\;ﬁ K;j. After taking logarithms the equation can be estimated by
OLS.

Before turning to the estimation results, I consider how the above estimation equation
compares with the true firm-level production function aggregates when all the producers
are one-product firms (scenario 1), and when at least one of the firms is a multiproduct
firm (scenarios 2 - 4).

3.2.1 One-product firms (scenario 1)

Consider product-level production functions for N goods, denoted by subscript i. All the
production technologies use H types of inputs. The output elasticities of the inputs are
captured in a product-specific parameter vector ;, which may vary across goods 7. Taking

logs, the produduction functions of the firms are written in matrix form as follows:
qi = Xif3; + w; (8)

where g; is the log of output, X; is the log of inputs, and residual w; is the log of produc-
tivity level for goods of type 1.

The standard estimation strategy of the literature, in this scenario where all firms are

one-product firms, implies assuming that all production functions ¢ are identical:
q=X0+w. (9)

Imposing the assumption of a single technology can be considered as an example

restricted least squares estimation with the following parameter restriction:
The restricted least squares estimator is (for example, Greene, 2002):

Br=p- (x%) "R R (%) 'R (x - RB) )
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where the parameter restriction is

RB=r. (12)

In the case of two-input technologies and two goods,® (10) translates into (12) such that:

10 -1 O

R — , (13)
01 0 -1

B = A , and (14)
| B2
[0
0

r = (15)
0
| 0

If the constraints hold in reality, the restricted estimator B R equals the unrestricted
B. If the constraints are not correct, the estimators are different. In that case the restriced
estimator ,(Ai p consists of the unrestricted estimator and a correction term that accounts
for the failure of the unrestricted estimator to satisfy the constraints. In short, whenever
the constraint is not true, the restricted estimator fa r is biased. The directions of such

biases, as well as the implications on the residuals, are considered by the simulations.

3.2.2 N-product firms (scenarios 2, 3, and 4)

Like the majority of production functions, Cobb-Douglas is non-linear in inputs. As a
consequence, even if the product-level production functions were identical, they would not
necessarily add up to a firm-level function without changing the functional form and the
parameters. Hence finding the correct level of specification is important whenever using a

production function that is non-linear in inputs.

Assume now that all firms j produce N; types of goods ¢ using IV; separate product-

level Cobb-Douglas production functions, again with H types of inputs for each good. The

In a general case of H inputs and N goods, R is a matrix of size (H(N — 1), HN) where each odd
(even) row has a 1 in the first (second) column, a —1 in each cell (f,f+ H) VY f = [1,H(N —1)], and
zeros elsewhere. (3 is a vector of length HN where the product-specific 3,’s are stacked, and r is a vector
of 0’s of length HN.
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product-level production function is (now writing in scalar form):

H

Qij = H Xg[; exp (wij) (16)
h=1

and hence the total output of the firm is given by:

Nj
50y = 3 [T ¥ espean a7
i=1 i=1 h=1
Instead of the true aggregate function above, the following equation is typically esti-
mated in the literature:

Bh

NJ‘ H Nj
SNQii=1] (D Xni| exp@;). (18)
i=1 h=1 \'i=1

To see how (17) and (18) differ, I rewrite the true aggregate using the following

auxiliary terms:

N,
_ SN X
Xy = =— (19)
J N]
XI/L XL
oy = 14+ 2 (20)
X,
ABni = Buni— By (21)

where Bh is the input elasticity of output estimated for input type h. The true firm-

level output aggregate can then be rewritten as:

14



N; N
Yo, - 3
I\ZIJ H _ Ny /H .

Sos - T1%0 3 (I (3> ) emie) <23>

*B +AB; Aw ABp;
(Xh? hmfifr ﬂh") exp (Mj)) (22)

i h=1 i h=1
- - B iy ABri Br+AB - B
~ g i + i —Bn
i = TL00% ™ 5 (I (%0l o) T 20
7 h=1 i h=1 h=1

h=1

. _ B,
N H N;j Nj H ~ ~
3 3 3 ABy; B -5 Ba
Qij = H Xh,-j <H <ij’6’ xﬂj) exp (wij)) Nj Ph=1 ho (25)

H

Note that in the true aggregate rewritten in (25), the first term, H (va’ X;”-j) ,
is equal to the deterministic part of the typical estimation equation in %Eé literature (18).
This implies that if the typical estimation equation (18) is adopted when the data gener-
ating process is product-specific (17), the estimated residual exp (&) is in fact the second
part of (25). Clearly, the second part of (25) is not a term of unobservable productivity
or output measurement error only. Instead, the firm-level productivity term estimated
in the literature is a function of the true product-specific technology parameters 3, and
the product-level input allocations Xp;;, as well as the true product-specific productivity
levels w;;. In other words, the residual @; of the typical estimation equation (18) captures
any output that remains unexplained by the deterministic part of the estimation equation
(18). As a consequence, the distribution of &; may provide an unrealistic description of
true productivity w;;.

As the logarithm of the estimation equation involves a logarithm of a sum, there is
no analytical solution to how the parameter estimate Bh is determined. The parameter

estimates are therefore considered using simulations.

4 Results

The firm-level estimation equation (7) is misspecified when the true techologies are product-
specific. Hence, a one-to-one comparison between the firm-level estimates and the true

parameters cannot be made. Instead, I contrast the estimates with the two product-level
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technologies. I also compare the estimated and true returns to scale, as well as the esti-
mated and the true firm-level productivity'® terms. The estimation results are displayed

in Tables 2, 3, 4 and 5 for the four different scenarios.

I start by characterizing the biases in the estimated firm-level parameters B 1, and B K-
Unbiased estimates are obtained only in exceptional cases. Only if the product-specific
technologies are identical, and all firms produce the same number of goods (i.e., cases 1, 4
and 7 in scenarios 1 and 4, Tables 2 and 5), or the true technologies are not only identical
but also subject to constant returns to scale (i.e., case 1 in scenarios 2 and 3, Tables 3 and

4), the firm-level estimates are unbiased. These circumstances are hardly realistic.

Consider first scenario 1 where all firms are single-product firms, one half of the
firms producing good 1 and the other half producing good 2. Of the cases where both
product-level technologies have constant returns to scale, cases 2 (8, = 0.7, Bg; = 0.3
and B9 = 0.5, Bge = 0.5), 5 (B = 0.71, B = 0.3 and Sy = 0.51, Bge = 0.5) and
8 (Br1 = 0.69, Bg1 = 0.3 and B9 = 0.49, Bge = 0.5) stand out. The product-level
technology parameters for a given input differ by 0.2 in absolute value, and the industry
output shares of the two goods are no more different than 52% and 48%. Yet the estimated
firm-level parameter estimates are identical (cases 2 and 5) or very close (case 8) to the
parameters of the technology for good 1, and hence clearly biased from the parameters of

the technology for good 2.

Estimates in cases 10 to 18 of scenario 1, where the returns to scale of the two product-
level technologies differ, are subject to considerably higher parameter biases. In case 10 the
true technologies are almost identical (8, = 0.7, Bx; = 0.3 and B9 = 0.71, Bgs = 0.3)
and the difference in the returns to scale is small (only 0.01), but the firm-level estimates
have a substantial upward bias for labor (B 1, = 1.07), and a downward bias for capital
(EK = 0.10). In case 11 the biases go in the opposite direction: ﬁL is biased downwards
(81 =0.7, 15 = 0.51 and EL =0.34), and BK is biased upwards (8y; = 0.3, B = 0.5
and E x = 0.68). The firm-level estimates are not even between the true parameters in

either of the cases. In cases 14 (8;; = 0.7, Bxy = 0.3 and By = 0.49, Bxy = 0.5), 16
(Br1 = 0.71, Bg; = 0.3 and B9 = 0.69, Bgy = 0.3) and 17 (8; = 0.71, By = 0.3 and

0The true firm-level productivity is computed by taking a weighted average of the product-specific
productivity levels, where the weights are the output shares generated with the product-level inputs and
K1

L1 g

15 15

— L exp (w1j) +
BL1pPK1 J

2 Loyt Ko

25 K

productivity level exp (w;;) = 1 for each good: exp (w;) = 3, 190 )PRT exp (w2;)
i Ly 1j
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Bra = 0.49, Bgo = 0.5), where the technology for product 2 is subject to decreasing returns
to scale, B K 1s actually negative. Perhaps the most surprising estimates are obtained for
case 16, where the two technologies are rather similar in the magnitudes of the output
elasticities, with a difference in returns to scale of 0.02: BL is 2.06, a multiple of either of

the true output elasticities of labor, and B i is —0.46, substantially below zero.

The estimates for the other three scenarios, where some or all firms produce multiple
goods, are displayed in Tables 3 to 5. The parameter biases are similar in direction as
in scenario 1 with single-product firms, but the magnitudes of the biases are somewhat
lower. The greater the share of two-product firms, the smaller the biases. However even in
scenario 3, where 80% of the firms produce two goods, the parameter biases are substantial.
In cases 10 to 18, where the true technologies have slightly different returns to scale, none
of the estimated firm-level technologies have parameters, E 1, and E K, that both fall in
between the true product-specific parameters, S5, and B9, and Bp; and Bgq. Again
even negative parameter estimates are obtained. The biases are lowest, albeit clearly
different from zero, in scenario 4 where all firms produce two goods. For example, in
case 17 the firm-level parameter estimates, BL = 0.80 and BK = 0.21, are clearly outside
the ranges of the product-specific parameters, 5;; = 0.71, S, = 0.3 and B4 = 0.49,
Bro =0.5.

Two characteristics of the two true production technologies determine the directions
of the parameter biases. First, when the true production technologies of the two goods
are asymmetric in the sense that |87; — Bxs| > |8, — Bknl, where @ stands for good 1
and h for good 2, or vice versa, then the parameter estimates are biased away from the
true parameters of the technology for good h, the directions of the biases being towards
the parameters of the technology for good ¢. Second, when the two true technologies have
different returns to scale, i.e., B1; + Bg; > Br, + Bxp, the parameter estimates are biased
away from the true parameters of the technology for good h, the directions of the biases
being towards the parameters of the technology for good i. When technology i is more
asymmetric, i.e., |8r; — Bril > |Brr — Brnl, and technology h has higher returns to scale,
Bri+Bri < Brn+Bin, the biases in the parameter estimates are a mix of the two opposite
effects. Depending on the parameters of the two true production technologies, and hence
on the magnitudes of the estimation biases, the estimates may or may not be in between

the parameters of the two true technologies. The sizes of the parameter bias grow in two
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characteristics. First, the greater the difference in the returns to scale between the two
true technologies, the greater the bias. Second, the more there are one-good producers,

the greater the bias.

When all firms are one-good firms (scenario 1) or all firms are two-good firms (scenario
4), and the true technologies have equal returns to scale, the estimated returns to scale are
correctly estimated. If the true technologies have unequal returns to scale, the estimated
returns are over- or underestimated in the case of one-good firms, and over-estimated in
the case of two-good firms. When both one- and two-good firms are present (scenarios
2 and 3), the returns to scale are over- or underestimated depending on how similar the
true technologies are. The more similar (different) the technologies, the more the returns

to scale are overestimated (underestimated).

Often the most interesting results in production function estimation are, paradoxi-
cally, the residuals that are considered as the producers’ unobservable productivity levels.
In most of the cases of scenarios 1 and 4 the standard deviation of the productivity dis-
tribution is correctly estimated. Also the correlation between the estimated and the true
firm-level productivity levels is very high, in some cases even equal to one. The exceptions
are in fact cases 10 (81, = 0.7, Bx1 = 0.3 and B = 0.71, Bge = 0.3), 13 (8, = 0.7,
Br1 = 0.3 and 815 = 0.69, Bre = 0.3) and 16 (8, = 0.71, B, = 0.3 and B, = 0.69,
Bxa = 0.3), where the product-level technologies are very similar but with small differ-
ences in the returns to scale. In these cases the correlations between the estimated and
true firm-level productivity terms, exp (@;) and exp (w;), are 0.53, 0.53 and 0.31, respec-
tively. The standard deviations of the productivity distributions are overestimated: they
are estimated to be 0.19, 0.19 and 0.31, respectively, while the standard deviation of the

true firm-level productivity aggregate is only 0.10.

Scenarios 2 and 3 differ from scenarios 1 and 4 in how the estimated and true firm-
level productivity terms compare. First, with the exception of case 16, the estimated
productivity distributions are narrower (exp (@;) is between 0.08 and 0.16) than the true
firm-level distributions (exp (w;) is between 0.21 and 0.29). Second, the correlation be-
tween exp (&;) and exp (w;) ranges not higher than 0.19 to 0.41 (scenario 2) and 0.26 to
0.32 (scenario 3).

To sum up, estimations on the simulated datasets show that the biases in the esti-

mated firm-level parameters are substantial even when the true product-level technologies
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are very similar. The directions and the magnitudes of the parameter biases are deter-
mined as intricate functions of the true product-level technologies and the product scopes
of the firms in the industry. Also the residuals, which are often considered as the unob-
servable productivity levels, are affected: the more heterogeneous the product scopes of
the firms, the lower the correlation between the estimated and true firm-level productivity

levels.

5 Conclusion

In this study I consider the implications of misspecifying production functions as firm-level
functions, when the true technologies are product-specific. This question is important be-
cause the standard practice in the empirical literature is to assume that firms’ produce all
of their output with a single technology, and that the technology parameters for all goods
in the industry are the same. However, the empirical literature suggests that production
technologies across goods are likely to vary, and firms’ product assortments are hetero-
geneous within industries. I consider the specification biases by simulations, where the
data generation process lacks the typical features that complicate empirical production

function estimation.

I find that the firm-level parameter estimates are biased in virtually all cases consid-
ered. The directions of the biases vary depending on the true product-specific parameters.
The magnitudes of the biases grow in the difference between the true technologies’ returns
to scale, and the share of single-product firms. When the firms’ product scopes are het-
erogeneous, as in the manufacturing sector, for example, the estimated productivity levels
have a relatively low correlation with the true productivity levels. The productivity differ-
ences may be overestimated when the firms’ product scopes are equal but the technologies’
returns to scale are different, and the productivity differences may be understimated when
the firms’ product scopes differ. These findings yield a clear recommendation for applied
economists: one should carefully consider the level at which production functions are

estimated.

The reason why production functions have been estimated at the firm- instead of
the product-level is due to data constraints: while a large share of firms is multiproduct

firms, and datasets report inputs only at the firm-level, product-level input allocation is
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largely unobservable. Hence either datasets that report input allocation by product titles,
and/or methodological contributions to estimating the input allocations would be enable
estimating product-level production functions. Whether production functions are in fact
product-specific, and to what extent the technologies differ across products, is an empirical

question yet to be answered.
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Abstract

This study estimates the range of productivity gains achieved by information tech-
nology investments in the Finnish manufacturing sector. The contribution is to provide
estimates of I'T’s productivity effects while accounting for some of the key characteris-
tics of IT, i.e., that returns to IT depend on previous I'T or complementary investments,
come with lags, and, due to the aforementioned factors, are heterogeneous across firms
and over time. I find that the productivity effects of IT range from negative to positive.
For example, most firms obtain a negative productivity effect in the first year after the
investment, which may be due to disruption in the production process caused by the
implementation of the IT investment. Two years after the IT investment was made,
most firms attain a positive productivity effect. In the third year after the investment,
almost all firms gain a positive productivity effect. The estimation results suggest that
the common practice of estimating a single output elasticity for an IT stock that is
constructed as a linear function of the IT investments is unlikely to provide a truthful

description of the productivity effects of IT.
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1 Introduction

This study estimates the range of productivity gains achieved by information technology
investments (henceforth IT) in the Finnish manfacturing sector. The contribution is to
provide estimates of IT’s productivity effects that account for some of the key character-
istics of IT, i.e., that returns to IT may depend on previous IT or other complementary
investments, come with lags, and, due to the aforementioned factors, be heterogeneous
across firms and over time. In other words, instead of estimating a single number to de-
scribe the output elasticity of IT, I estimate an entire distribution of productivity effects
of IT. I take an agnostic view on how productive IT capital is formed and, in contrast
to the rest of the literature where the IT capital stock is computed as a linear function
of the past IT investments and some assumed depreciation rate, I endogenize the plant’s
productivity term to the past IT investments in a flexible way. I do this by estimating the

model of endogenous productivity by Doraszelski and Jaumandreu (2013).

Implementation of more efficient technologies is one of the most important ways to
enhance productivity growth. Information technology has been predicted to be the most
important general purpose technology invented since electricity (Biagi, 2013). IT is ex-
pected to enhance firms’ productivity by allowing for more efficient production processes,
enable development of new goods and services, and thereby increase economic growth.
Because IT expenditures and investments constitute a significant share of firms’ spending,
IT may be expected to have an important impact on firms’ output. The estimated returns
to IT vary across industries and countries (Draca, Sadun and Van Reenen, 2006). At the
same time substantial productivity differences between firms even within narrowly defined
national industries persist (Doms and Bartelsman, 2000; Syverson, 2011). A plausible
explanation for the heterogeneous productivity effects of IT is that the productivity po-
tential of IT realizes only when accompanied by complementary investments, and if firms’
success in implementing them varies between industries, then also the returns to I'T are
likely to differ from one industry to another. If firms are heterogeneous with respect to
IT complementarities also within industries, then the (lacking) complementarities may

explain also some of the intra-industry productivity differences.

In this study I find that the productivity effects of IT are heterogeneous over firms

and across time, ranging from negative to positive impacts. They depend on the produc-



tivity level previously attained as well as the IT investments made in other years. The
productivity effects of an IT investment made in a given year also vary over the following
years. For example, most firms obtain a negative productivity effect in the first year after
the investment, which may be due to disruption in the production process caused by the
implementation of the IT investment. Two years after the IT investment was made, most
firms attain a positive productivity effect. In the third year after the investment, almost
all firms gain a positive productivity effect. Variation in the productivity effects of IT over
the years, and as a function of IT investments made in other years, suggest that at least
some of the IT investments are complementary. In other words, the common practice of
estimating a single output elasticity for an IT stock that is constructed as a linear func-
tion of the IT investments is unlikely to provide a truthful description of the productivity

effects of IT.

The next section reviews the micro-level literature on IT and productivity. Section
3 presents the data used in this study. The model and the estimation strategies, slightly
modified from Doraszelski and Jaumandreu (2013) for the application of this paper, are
presented in sections 4 and 5. The results are presented and discussed in section 6. Section

7 concludes.

2 Literature

Numerous studies provide estimates on the productivity effects of IT investments. The
earliest studies were carried out at the industry- or economy-level using the growth ac-
counting approach (for a review, see Biagi, 2013). Since the 1990’s the association between
IT and productivity has been considered also at the firm-level (for an example, see Bryn-
jolfsson and Hitt, 1996). Most of these micro-level studies examine the productivity effects
of IT by estimating a production function where IT is one of the inputs, together with
traditional non-IT capital and non-IT labor. Some of the earliest firm-level studies con-
sider only investment in or use of hardware, i.e., computers, but in the majority of the
studies the measure of IT includes also software investments and the labor expenses in-
volved. A few studies treat the adoption of IT as a discrete choice. However the standard
practice is to construct a firm-level IT capital stock as a linear function of the observable

IT investments and expenditures, and some assumed depreciation rate.



Virtually all firm-level studies report a positive estimate of return to IT, even if the
estimated productivity effects vary across industries and countries. A plausible explanation
for the different estimates is related to IT being a so-called general purpose technology:
IT becomes productive only when accompanied by complementary investments, and the
more there are complements, the higher the returns to I'T are likely to be. Firms’ success
in realizing the productivity potential of their IT investments therefore depends on the
complementary investments they make. Moreover, if the complementary investments are
carried out over a long time period, the productivity effects of IT may come with lags,
or even be initially negative. It is also worthwhile noting that to obtain unbiased and
consistent estimates of production functions, the relevant identification issues have to
be accounted for. Firms’ input choices are a function of the firms’ productivity levels
that are unobservable to the econometrician, and if these endogeneities are not controlled
for, the parameter estimates are biased and inconsistent. Unfortunately, not correcting
for these endogeneity biases is the rule rather than the exception in the literature on
IT and productivity (for exceptions, see Barua and Lee, 1997; Aral, Brynjolfsson and
Wu, 2006). Reviewing the whole micro-level literature is not feasible in this paper, but
literature reviews on establishment-level studies on IT and productivity are provided by
Brynjolfsson (1992), Brynjolfsson and Yang (1997), Stiroh (2005), Dedrick, Gurbaxani
and Kraemer (2003), Draca, Sadun and Van Reenen (2006), and Biagi (2013).

Returns to IT investments depend on whether IT is a substitute or complement
to other factors of production, and whether IT requires complementary investments to
become productive. Dewan and Min (1997) and Hitt and Snir (1999) find evidence for IT
being a substitute for labor. Their findings on the complementarity of IT and capital are
mixed, however. Hitt and Snir find that firms’ I'T capital stock, which comprises computer
capital and information system related labor expenses, is a substitute for ordinary capital.
Hitt and Snir examine how organizational factors affect the substitutability of I'T capital for
ordinary factors of production. In what they call "modern" organizations, i.e., firms with
decentralized organizational form, skilled staff, new non-IT capital, and small inventories,
IT turns out to be a complement for non-IT capital. In "traditional" firms, i.e., firms
without the aforementioned characteristics, IT and non-IT capital are substitutes. Ko
and Osei-Bryson (2006) show that the returns to IT depend on the size of the investment

as well as investments made in non-IT inputs such as ordinary capital and labor.



There are also other factors that are found to complement I'T and enhance its produc-
tivity effects, but these factors are seldom considered in production function estimation.
According to the current literature the most important complement to IT is organizational
capital and management practices. For example, decentralized organizational form and
decision making, team work, new human resource management practices, i.e., practices
related to promotions, rewards, hiring and firing, and changes in the boundaries of the firm
complement IT capital (Dewan and Min, 1997; Bresnahan, Brynjolfsson and Hitt, 2002;
Brynjolfsson and Hitt, 2003; Dedrick, Gurbaxani and Kraemer, 2003; Zand, Van Beers
and Van Leeuwen, 2011; Bloom, Sadun and Van Reenen, 2012). Another key complement
is human capital, i.e., skilled labor enhances the productivity of IT investments (Bartel,
Ichniowski and Shaw, 2005). One more complement is R&D, or innovation, in processes
and products. The empirical findings on the complementarity of IT and R&D are mixed,
however: Bresnahan, Brynjolfsson and Hitt (2002), van der Wiel, van Leeuwen, Hempell
(2004), and Bartel, Ichniowski and Shaw (2005) find IT and product and/or process in-
novations to complement each other, while Hall, Lotti and Mairesse (2012) do not find

complementarities between I'T and R&D activities.

Van Leeuwen and Polder (2013) consider the fact that complementarities may exist
also between different types of IT investments. They distinguish between three different
kinds of E-business systems: Enterprise Resource Planning (ERP), Customer Relationship
Management (CRM), and Supply Chain Management (SCM). They compare the produc-
tivity effects of adopting these systems separately and jointly. Van Leeuwen and Polder
find that ERP and SCM are strong complements, and ERP and CRM are substitutes,

while the results for the complementarity between CRM and SCM are contradictory.

Due to the importance of complementary investments, which may be carried out over
a long time period, the productivity effects of IT may realize only years after the IT
investment was made. Brynjolfsson and Hitt (2003) examine how the returns to IT vary
over time. They estimate the effects of computerization on firms’ output and productivity.
Brynjolfsson and Hitt find computer investments to have normal returns in one year’s time,
and returns up to five times greater over five to seven years. This finding can be interpreted
as evidence of large and time-consuming complementary investments taking place. Also
the riskiness of IT investments has been acknowledged in the literature. Dewan, Shi

and Gurbaxani (2007) evaluate the risks and returns of IT investments. They use two



estimation frameworks: firm’s production function and market value specifications. The
IT risks are estimated at the industry-level. Dewan, Shi and Gurbaxani find that IT
investments are riskier than non-capital investments. In addition, firms with higher IT

risk also have higher marginal product of IT.

Also the environment in which firms operate may have an impact on how IT affects
firms’ productivity. Chang and Gurbaxani (2013) and Melville, Gurbaxani and Kraemer
(2007) consider why firms in some sectors obtain higher returns to IT than firms in other
sectors. They find that firms in more competitive markets make more IT investments than
firms in non-competitive markets. However, the firms in more competitive environments
get lower returns to I'T because competition moderates them. In addition, Melville, Gur-
baxani and Kraemer (2007) find limited evidence also for the marginal product of IT being
higher in more dynamic industries, where the deviations of industry sales from a trend
line are higher. Chang and Gurbaxani (2012a) find evidence for one more explanation
for excessive returns to IT, along with complementarities and risk: spillovers. Chang and
Gurbaxani study how I'T-related spillovers through intraindustry transactions, in particu-
lar with the IT services industry, affect firms’ productivity over a long-term horizon. They
find that the spillovers have a significant impact, and that the magnitude and persistence

of the impact are positively dependent on the IT intensity of the firm.

Many firms purchase internal information systems from service providers outside of
the firm. Chang and Gurbaxani (2012b) evaluate the impact of IT outsourcing on firms’
productivity. They show that IT outsourcing entails productivity effects, and that sub-
sequently contracting out entails additional productivity gains. The productivity effects
of outsourcing increase in the magnitude of oursourcing, but decrease in the firm’s IT

intensity.

3 Data

The data used in this study is from the Longitudinal Database on Plants in Finnish
Manufacturing (LDPM), provided by Statistics Finland. The dataset comprises plant-level
information on inputs and outputs, and various background information on the plants. I
use the data from the years 1996 to 2008. During this time period, the sample includes

all plants that belong to manufacturing firms with at least 20 employees. Each plant



has a two-digit NACE (La nomenclature statistique des activités économiques dans la

Communauté européenne) code that identifies the main industry of the plant.

The output variable is gross output, defined as the sum of sales revenue, deliveries
to other plants of the firm, changes in inventories, production for own use, and other
business revenue, deducting capital gains and acquisition of merchandise. There are four
types of factors of production in the data that are used in estimating plants’ production
functions: materials, labor, physical capital, and information technology. Materials are
measured in monetary value. The measure of labor input used is an equivalent for the
number of full-time employees, and it is based on the number of hours worked. The labor
costs observed are wages paid and the social costs. The capital stock is estimated using
the perpetual inventory method' (PIM) as K; = K; 1 (1 —68) + I;_1 where K; 1 is the
capital stock in year t — 1, ¢ is the depreciation rate assumed to be 0.1, and [;_; are the
investments made in year ¢ — 1. For plants that have become active before 1974 since when
the data has been collected, the initial capital stock is assumed equal to the fire insurance
valuation for capital. The measure of IT includes IT services purchased from outside of the
firm. Examples of such IT services are consulting on hardware and software for automatic
information processing, design and production of software, database management, repair
and maintenance of computers, and information handling services. Gross output, materials
and capital are measured in real value, fixing the price level of 2000 as the base level, and

using the implicit price deflators of the national accounts.

I study plants? that manufacture electrical equipment (NACE code 27). Electrical
equipment comprise electric motors, generators, transformers and electricity distribution
and control apparatus (NACE 271), batteries and accumulators (272), wiring and wiring
devices (273), electric lighting equipment (274), domestic appliances (275), and other
electrical equipment (279). I observe 90 plants during years 1996 to 2008, with a total of

1185 plant observations.

IT investment intensity of the plants, measured as the ratio of IT investments to gross

output, is described in Table 1. Most plants make rather small IT investments, worth less

!The physical capital stock computed in the LDPM is K; = Ky—1 (1 —8) + I, i.e., investments are
assumed to turn into productive capital already during the year of investment. I assume that investments
become part of the physical capital stock not until in the following year, and modify the variable accordingly.

2Empirical studies on production functions differ in whether the estimations are done at the firm- or
the plant-level. Production functions are specified at the firm-level typically when plant-level data is not
available.



than 1% of gross output. However, the distribution of IT intensity is heavily skewed to
the right, with some plants making IT investments worth more than 40% of their gross
output. IT investments made in the previous five years are highly correlated with gross
output, as shown in Table 2. The high correlation may be due to the fact that big plants
can make bigger I'T investments than smaller plants, or the correlation may be caused by

productivity effects of IT.

4 Model

I follow Doraszelski and Jaumandreu’s (2013) example in estimating firms’ production
functions and, in particular, firms’ endogenous productivity. Doraszelski and Jaumandreu
distinguish between two types of investments: investment in physical capital, and invest-
ment in knowledge through R&D expenditures. Physical capital is an observable input in
the sense that it is computed given the past investments and a depreciation rate of capital,
as K1 = 0Kj;—1 + Ij;—1. Knowledge capital, on the other hand, is unobservable to the
econometrician. Instead of assuming how R&D expenditures are transformed into pro-
ductive knowledge capital, Doraszelski and Jaumandreu estimate how R&D expenditures

affect firms’ productivity and output.

I estimate the production function for plants instead of firms. The production function
for plant j at time t is a Cobb-Douglas function with three observable inputs, materials

My, labor Lj;, and physical capital Kj;:
Qji = exp (B,) MM LK exp (wjn) exp (e0) (1)

Annual trends in production that are common for all plants are captured by ;.
The plant’s productivity level, denoted by wj;, is correlated over time. In addition, the
plant’s output is affected by a mean zero random shock e;; that is uncorrelated over time
and across plants. In contrast to the rest of the literature, Doraszelski and Jaumandreu
endogenize the productivity process to R&D expenditures. They assume that the firm’s
productivity level wj; evolves as a controlled first-order Markov process, i.e., determined

by the productivity level attained and the R&D expenditures made in the previous year.

My goal is to explain how the monetary value of the IT investment, C};, affects the



plant’s productivity over a longer period. For this reason, I make as few assumptions
as possible on how IT investments affect the plant’s output. First, IT investments may
have lagged effects on productivity if, for example, the IT investments become productive
only when complementary investments are made in, say, reorganization of processes or
training of employees. Second, IT investments from different years may have interaction
effects on productivity if the IT investments made in various years are part of a greater
body of IT investments. Third, the effects of IT investments on the plant’s productivity
may depend on the productivity level attained. To allow for these nonlinearities, I assume
that the plant’s productivity is a function of the previous year’s productivity, and the IT

investments made in the previous five years (lower case letters denote logs):

wit = Ewjtlwji—1,Cjt—1, -+ Cjt—5] + &t (2)

The expected level of productivity E [wj|.] is approximated by a complete set of poly-
nomials of degree one, denoted by function g (wjt—1, ¢je—1, ..., ¢ji—s). A productivity shock
that is mean independent of wjt—1,¢jt—1,..., ¢jt—5 is captured by £;;. The productivity
shock includes all uncertainties that affect the plant’s productivity, including uncertain-

ties related to the IT investments, such as success in implementation.

The timing of production decisions, i.e., when E [wj|.], § jt» and ej¢ are observed and
when Mj;, Lj;, Kj, and Cj; are set, is crucial for the identification of the production
model, as discussed in section 5. At time ¢ — 1, the decision maker of the plant forms an
expectation of the productivity level that would be attained in the next period, E [wj].],
conditional on a given IT investment, Cj;—1. The decision maker sets Cj;—1 and Ij;_1,
and hence Kj;, to maximize the expected net present value of future cash flows. In the
beginning of period ¢, the plant’s decision maker observes the productivity shock §;;, and
sets Mj; and Lj; to maximize the profit of period ¢. After that the output shock e;; takes

place. In short, Cj;_1,...,Cj—5 and Kj;_1 are uncorrelated with &;,, while M;; and Lj;

gt

are correlated with £;;.



5 Identification and Estimation Strategy

The challenge in estimating the production function with endogenougs productivity is
the same as when estimating any production function: inputs are set as a function of
productivity wj; that is unobservable to the econometrician. As a consquence, if the
endogeneity between wj; and the inputs is not controlled for, the parameter estimates are
biased. Levinsohn and Petrin (2003) point out that because flexible input(s) such as Mj;
and Lj; are set as a function of wj;, they contain information about the unobservable
wjs. The demand function for Mj; or Lj; can be inverted to recover wj;, which can then
be controlled for in the estimation equation. Doraszelski and Jaumandreu build on the
insight of Levinsohn and Petrin. They note that for the estimated production function,
the functional form of the demand functions for Mj; and Lj; are known, and hence a

parametric expression for wj; can be derived.

The unobservable wj; is obtained from the solution to the plant’s static profit maxi-
mization problem. More specifically, the profit-maximizing measure of (one of) the flexible
input(s) is first solved, and then rewritten for wj;. I use Lj;; as the control variable for
wjt because the labor costs are observable, unlike material prices. The plant’s decision

maker’s static profit maximization problem is:

max F [ILy] = Qjs — PajiMj — Wiy Ly, 3)
Mje,Lje

substituting in the production function:

Jnax E[ILj;] = exp (B;) MﬁML?tLKﬁK exp (wji) E [exp (ej¢)] — PujeMjs — Wi L. (4)
sl

The first order condition for Lj; in static maximization is:

OF [I1,; _
D2 — 5y exp (30 M L1 I exp ) Blesp (g0l = Wi =0 (3
J

which can be rewritten to obtain an expression for wj;, called hj;, where the lower case

letters denote logs:

hjt = wje —log (Br,) — By — Byrmyje — (B, — 1) it — Brckje — log (E [exp (ejt)]) - (6)
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The estimation equation is obtained by lagging hj; to obtain hj; 1, and substituting

it together with cj;_1, ..., ¢jt—5 in the production function, written in logs:
qjt = By + Barmie + Brlit + Brckie + g (hjt—1,Cjt—1, o, Cjt—5) + & + €5t (7)
Finally, the residual of the estimation equation is:
Eir et = qjt — By — Baumije — Brlje — Brckjt — g (hjt—1, o Rjt—5, Cjt—1, -, Cjt—5) - (8)

The parameters to be estimated are 3, 8, Bk, time dummies 3;, and 22 coefficients
in the polynomial approximation g(.).*> The moment conditions that identify parameters
B, Br, and By are based on the timing assumptions of the model, and are also familiar
from previous production function estimation strategies, such as Olley and Pakes (1996),

Levinsohn and Petrin (2003), Ackerberg, Caves and Frazer (2006), and Wooldridge (2009).

The time effects 3, are identified with year dummies. The flexible inputs m;; and [;;
are endogenous to ;; + ejt, and hence mj: and [j; are not valid instruments. However
lagged material input mj;_1 is a valid instrument for m;; because the input choices are
correlated over time, due to, for example, the correlation between w;; and wj;—1, while
mji—1 is uncorrelated with § ji et Similarly, lagged labor input /;;—1 is a valid instrument
for lj;. In addition, labor cost wj; is a valid instrument for I;; because ;; is correlated with
wjt, but wj; is uncorrelated with &, + e;¢. The physical capital stock kj; is predetermined
in period ¢ — 1, and is therefore exogenous to §;; +ejt. The parameters in g(.) that govern

the evolution of productivity are also exogenous to £;; + €.

Note that hj;_; is solved as a function of wj;—1, mjs—1, ljz—1 and kj;—1. Recall also
that g(.) is a function of wj;—1,¢j¢—1, ..., cji—5, approximated by first order polynomials
of wji—1,¢ji—1,...,¢ji—5. This implies that wj—1, mji—1, ljt—1, kje—1 and cj—;, where
i=1,...,5, and their interactions, are all valid instruments.

The production function is estimated by two-step GMM. The GMM objective function
is ,

mein %ZA(ZJ')VJ(Q) W %ZA('ZJ‘)VJ(Q) 9)
J j

3The 22 coefficients are for hji_1, ¢je—1, ... ¢ji—s and their interactions, and a constant.
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where A (z;) is a matrix of instruments of size L x T}, and v; (6) is the vector of residuals
i + eji of size Tj x 1. N is the number of plants, L is the number of instruments,
and Tj is the number of observations of plant j. To reduce the complexity of the GMM
estimation routine I "concentrate out"* the parameters that enter the GMM objective
function linearly. These "linear" parameters are §; and all the coefficients in g(.). A (zj)
comprises the instruments for identifying 3,;, 3, 8. As discussed above, they are wj;_1,
Mjt—1, Ljt—1, kjt—1 and cj;_;, where ¢ = 1,...,5, and their interactions, and the second and
third powers of these variables and interactions, as well as wj; and kj;. In the first step I
use weight matrix .

W= | A A ] (10)

and in the second step I use

-1

Wy = %ZA(zj)yj(é)uj@'A(zj)’ . (11)

The production function estimates are obtained by minimizing the GMM objective
function by the Gauss-Newton algorithm. To find the global minimum of the objective

function, I use a large set of alternative starting values.

6 Results

The production function estimates are presented in Table 3. The parameter estimates
for the traditional inputs, materials, labor, and capital, sum up to 1.09, which implies
that the production technology has increasing returns to scale. However, the estimates
of By, B and [ are not statistically significant. Hansen’s J-test does not reject the
null hypothesis of valid overidentification restrictions for the non-linear parameters 3,,,
B1, and B estimated by GMM (Prob[Chi-sq.(23)>J] is 1.00).

The polynomial approximation of E [wjt|wj¢—1,Cji—1, ..., Cji—5] describes how produc-
tivity evolves as a function of the productivity level attained in the previous year, and

the IT investments made in the five previous years. Three of the parameter estimates,

1This means estimating the linear parameters by OLS for any given set of non-linear parameters BM, BL
and .
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for wg—1, IT;—1 and wy_1 * IT;_1, are significant at the 99% level, and six parameters, for
ITy o, ITy 5, wy—1 * [Ty_o, wy_1 x [Ty_5, IT;_1 * IT;_5 and a constant, are significant at
the 95% level. The estimated productivity distribution, including the productivity resid-
uals §;;, + ejt, is shown in Figure 4. The percentiles of the productivity distribution are
summarized in Table 5. For any given set of inputs, the median firm in the productivity
distribution produces 70% more than the firm at the 10th percentile, and 27% more than
the firm at the 25th percentile of the productivity distribution. On the other hand, the
firm at the 75th percentile is 31% more productive than the median firm, and the firm
at the 90th percentile is 52% more productive than the median firm. In other words, the
firm at the 90th percentile produces about 2.5 more than the 10th percentile firm with any
given set of inputs. These productivity differences are remarkably large but differences of

similar magnitude have been reported also for other industries and countries.’?

Persistence in productivity, that is, the proportion of productivity attained that is
transferred to the next year, depends on the productivity level and the IT investments

made in the previous five years. The levels of persistence therefore vary across firms and

0g(Wjt—1,Cjt—15--,Cjt—5)
Owjt—1

years. The level of persistence is computed as , and its quantiles are
reported in Table 6. The median firm in the persistence distribution retains 95% of the
productivity level gained in the previous year. Even the 10th percentile firm retains 88%
of its productivity level, and the 90th percentile firm preserves as much as 99% of its pro-
ductivity. The levels of persistence are very high throughout the persistence distribution.
The parameter estimates for g (wj¢—1, ¢ji—1, ..., Cji—s) imply that IT investments made in
years t — 1, t—3 and t — 4 have a negative impact on productivity persistence (i.e., the esti-
mated coefficients on w;—1 % IT;_1, wy—1 % IT;_3 and w1 x IT;_4 are negative), as reported
in Table 3, perhaps because their implementation disrupts the production process. The
IT investments made in years ¢t — 2 and ¢ — 5, on the other hand, have a positive effect on
productivity persistence (i.e., the estimated coefficients on wy_1 * ITy_o and w1 * [T;_5
are positive).

The productivity effects of I'T investments made in the previous years, t—1 to t—>5, are

also determined as a function of the productivity level gained and the IT investments made.

®Syverson (2004) reports that in four-digit SIC industries of the US manufacturing sector, the plant at
the 90th percentile of the productivity distribution is, on average, almost twice as productive as the plant
at the 10th percentile. Hsieh and Klenow (2009) report that in China and India, the plant at the 90th
percentile is more than five times as productive as the plant at the 10th percentile of the distribution.
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9(hjt—1, 5Pt —5,Ci8—1,5Cje—5)  Og(hje—1,. s hjt—5,Ci6—1,.5Cjt—5)  Og(hjt—1,-,hjt—5,Cjt—1,--,Cjt—5)
Cjt—1 ’ Ocji—2 ’ Ocji—3

Og(hje—1,-hjt—5,Cit—1,--,Cjt—5)
dcjt—s

They are computed as 2

)

8g(hji—1,sPjt—5,Cjt—1,-,Cjt—5)
Ocjt—a

, and . The quantiles of the produc-
tivity effects are reported in Table 6. The productivity effects of the previous year’s IT
investments, I7;_1, are negative for most of the firms, but a minority of firms obtain a
positive productivity effect already in the year after the investment. The productivity
effect is an outcome of the positive linear effect of ITj;_;, the negative complementarity
between wj; 1 and ITj; 1, and ITj; 1 and ITj; 5, and the positive complementarity be-
tween ITj; 1 and ITj o, ITj; 1 and ITj;_3, and ITj; 1 and ITj;_4, as reported in Table
3.

The productivity effects of IT; o are on average positive, most of the firms obtaining
a positive effect, but for some of the firms I7;_5 has a negative impact on productivity.
On the one hand, wj;—1, ITj;—1 and ITj;_5 are positive complements to IT};_2, and on
the other hand, ITj,_3 and ITj_4 are negative complements to ITj;_p. Also the linear
effect of ITj; 5 is negative. Only for IT}; 3 the productivity effects are positive for the
vast majority of the firms. The impacts of IT;_4 and IT;_5 are negative or positive, again

depending on the productivity level and the other IT investments made.

The production function estimates imply that IT investments made in other years
and also the productivity level previously attained affect the productivity effect of an IT
investment. In the estimations F [wjt|wjt—1, Cjt—1, ..., Cjt—5] is approximated by a first order
polynomial for simplicity, and hence the signs of the complementarities are determined
simply by the coeffiecients on I'Ty_q * ITy_o, IT;_1 * IT;_3, and so forth. However, if the
productivity process was approximated by a higher order polynomial, the signs of the
complementarities would also depend on the productivity level previously gained and the

IT investments made.’

To sum up, the estimation results imply that the productivity effects of IT are het-
erogeneous over firms and across time, ranging from negative to positive. They depend
on the productivity level previously attained as well as the IT investments made in other
years. The productivity effects of an IT investment made in a given year also vary over
the following years. For example, most firms obtain a negative productivity effect in the

first year after the investment, which may be due to disruption in the production process

2
9°g(Wjt—1,Cjt—1,--,Cjt—5)

SThe signs of the complementarities would be determined by o 5
jt—109C5t—2

)

2
9%g(Wjt—1:Cjt—15---»Cjt—5)
Ocjt—10cjt—3

, and so forth.
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caused by the implementation of the IT investment. Two years after the IT investment
was made, most firms attain a positive productivity effect. In the third year after the
investment, almost all firms gain a positive productivity effect. Variation in the produc-
tivity effects of IT over the years, and as a function of IT investments made in other years,
suggest that at least some of the IT investments are complementary. In other words, the
common practice of estimating a single output elasticity for an I'T stock that is constructed
as a linear function of the IT investments is unlikely to provide a truthful description of

the productivity effects of IT.

6.1 Discussion

The measure of output used in the estimations is sales revenue. Without data on output
quantities or prices it is not possible to distinguish between productive efficiency and
quality effects of IT. Hence the estimated returns to I'T include both efficiency and quality

effects of IT on plants’ sales revenue.

There is one data limitation that should be kept in mind when interpreting the esti-
mation results. The IT variable includes only those expenses that result from purchasing
IT services from outside of the firm. In other words, spending on hardware, such as com-
puters, and developing and operating IT systems in-house, by employees of the firm, are
not included in the IT measure used. If hardware investments and in-house IT work con-
sistitute a substantial share of plants’ IT expenditures, the production function estimates
are biased. The signs of these measurement error biases depend on how the measurement
error, i.e., hardware investments and in-house IT work, are correlated with the unobserv-
able, i.e., productivity. The correlation may be positive or negative. Also organizational
capital and management practices are unobservable, while they potentially are key deter-
minants of the productivity effects of IT. If IT and organizational capital are positively

correlated, the returns to I'T are overestimated.

7 Conclusion

The literature on information technology and productivity shows that IT improves firms’
productivity, and that complementary investments such as management practices, skilled

labor and innovation activities are key determinants of the productivity effects of IT. This
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study contributes to the literature by taking into account that the productivity effects of
IT may depend also on the IT investments made in other years, and that the productivity
effect of an IT investment made in a given year may come with a lag and also vary over
the following years. Allowing for the aforementioned factors I find that the productivity
effects of IT are heterogeneous over firms and years, ranging from negative to positive
impacts. These findings suggest that the common practice of estimating a single output
elasticity for an IT stock that is constructed as a linear function of the IT investments is

unlikely to provide a truthful description of the productivity effects of IT.

The relationship between IT investments and firms’ productivity has been widely
studied among economists and professionals of other fields. Yet the question of how IT af-
fects firms’ productivity is not fully answered, and several open questions remain. First, to
what extent I'T enhances productive efficiency, and how much IT contributes to improved
product quality and product innovation? Second, how does the environment in which the
firm operates affect the productivity effects the firm gains for its IT investments? Third,
is it only due to complementary investments that some firms succeed in implementing
IT while some don’t? New, more detailed datasets will hopefully aid answering these

questions.
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Table 1: IT investment intensity

Quintile 0.10 025 050 0.75 0.90 Mean Std dev

0.000 0.001 0.003 0.006 0.011 0.006 0.021

Number of obs. 1185

Table 2: Correlation of gross output at time ¢ and IT investments made in years t — 5
tot—1

ITy 1 ITy 5o ITy 3 ITy 4 ITi 5

Qs 0.86 080 069 0.63 0.66

Number of obs. 425
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Table 3: Parameter estimates (continues on the next page)

Parameter estimate
(standard error)

Parameter estimate
(standard error)

Materials

Labor

Capital

1Ty

IT; »

IT; 3

1T, 4

1T, 5

wi1*x 1Ty 4

wi1* 1Ty 5

ITy 1+ 1Ty 2

0.29
(2.18)

0.24
(0.94)

0.56
(1.14)

0.9543**
(0.0260)

0.0518**
(0.0183)

—0.0355*
(0.0182)

0.0039
(0.0188)

0.0082
(0.0200)

~0.0367*
(0.0197)

—0.0017
(0.0028)

0.0049*
(0.0028)

2.5356¢ — 05
(0.0002)

wi—1*x 1Ty

wi1* 1Ty 2

w1 * [Ty 3

ITy 1 % IT 3

ITt,1 * ITt,4

ITt,1 * ITt,5

ITy o+ ITy 3

ITy 2% 1Ty 4

ITy 9% IT; s

ITy 3% ITi4

ITy 3% 1Ty 5

ITy 4+ 1Ty 5

—0.0067**
(0.0025)

0.0044*
(0.0025)

—6.5431¢ — 04
(0.0026)

2.9313¢ — 04
(0.0002)

1.4461¢ — 04
(0.0002)

—4.9400e — 04*
(0.0002)

—2.7552¢ — 04
(0.0002)

—1.9539¢ — 04
(0.0002)

1.3688¢ — 04
(0.0002)

—9.2881¢ — 05
(0.0002)

3.2669¢ — 04
(0.0002)

—1.6190e — 04
(0.0002)

*

significant at 95% level; ** significant at 99% level




Table 3 continued

Parameter estimate
(standard error)

Parameter estimate
(standard error)

constant

year ‘02

year ‘03

year ‘04

0.3094*
(0.1808)

—0.0094
(0.0361)

—0.0349
(0.0363)

0.0067
(0.0359)

year ‘05

year 06

year ‘07

year '08

0.0546
(0.00364)

0.0279
(0.0361)

0.0167
(0.0353)

0.0490
(0.0350)

* significant at 95% level; *

Prob[Chi-sq.(23)>J]

Number of obs.

*

1.0000

425

significant at 99% level
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Figure 4: Estimated productivity distribution, controlling for year effects
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Table 5: Quintiles of estimated productivity

Quintile 0.10 0.25 0.50 0.75 0.90

0.78 1.03 1.32 1.63 2.00

Number of obs. 425
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Table 6: Quintiles of estimated persistence in productivity and productivity effects of
IT investments made in years t — 5 to ¢t — 1

Quintile 0.10 0.25 0.50 0.75 0.90

d9(wii—tcim1rnCit=s) () 8789 0.9453  0.9508  0.9556  0.9850

Owjt—1

99wit—1Cim1nncit=s) 90113  —0.0038 —0.0019 —0.0003 0.0006

dcji—1

d9lwjemrcit=1nmcit=s) 0040 —0.0003 0.0009  0.0019  0.0031

Ocji—2

d9(wit—vcit—1nCit=s) () 0000 0.0002  0.0008  0.0023  0.0172

Ocjt—3

d9(wii—1Citm1mncit=s)  _y 0061 —0.0002 0.0006  0.0013  0.0020

0cjt—a

99(wit—1Ciem1mnCit=s) 0047  —0.0007 0.0005  0.0016  0.0045

ocjt—5

Number of obs. 425
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