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With an ever increasing life expectancy, we 
see a concomitant increase in diseases capa- 
ble of disrupting normal cognitive process- 
es. Their diagnoses are difficult, and occur 
usually after daily living activities have 
already been compromised. This leads to 
serious costs in palliative care, and a signi- 
ficant decrease in quality of life. 
   This dissertation proposes a set of machine 
learning methods, useful for the study of the 
neurological implications of brain lesions. It 
focuses on the analysis and exploration of 
magnetic resonance images. Two main re- 
search directions are proposed. The first, a 
brain tissue segmentation approach, identi- 
fies brain tissues, and provides early lesion 
detection. The second, a document mining 
framework, is applied to neuroscientific 
publications. This framework allows for an 
intelligent harvesting and summarization of 
research results dealing with neural activity. 
   The aforementioned research directions 
are based on the retrieval of consistent in- 
formation from neuroimaging data. 
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With an ever increasing life expectancy, we see a concomitant increase in diseases
capable of disrupting normal cognitive processes. Their diagnoses are difficult, and
occur usually after daily living activities have already been compromised. This
dissertation proposes machine learning methods for the study of the neurological
implications of brain lesions. It addresses the analysis and exploration of medical
imaging data, with particular emphasis to (f)MRI. Two main research directions
are proposed. In the first, a brain tissue segmentation approach is detailed. In the
second, a document mining framework, applied to reports of neuroscientific studies,
is described. Both directions are based on retrieving consistent information from
multi-modal data.

A contribution in this dissertation is the application of a semi-supervised method,
discriminative clustering, to identify different brain tissues and their partial volume
information. The proposed method relies on variations of tissue distributions in
multi-spectral MRI, and reduces the need for a priori information. This methodology
was successfully applied to the study of multiple sclerosis and age related white
matter diseases. It was also showed that early-stage changes of normal-appearing
brain tissue can already predict decline in certain cognitive processes.

Another contribution in this dissertation is in neuroscience meta-research. One
limitation in neuroimage processing relates to data availability. Through document
mining of neuroscientific reports, using images as source of information, one can
harvest research results dealing with brain lesions. The context of such results can
be extracted from textual information, allowing for an intelligent categorisation of
images. This dissertation proposes new principles, and a combination of several
techniques to the study of published fMRI reports. These principles are based on a
number of distance measures, to compare various brain activity sites. Application
to studies of the default mode network validated the proposed approach.

The aforementioned methodologies rely on clustering approaches. When dealing
with such strategies, most results depend on the choice of initialisation and param-
eter settings. By defining distance measures that search for clusters of consistent
elements, one can estimate a degree of reliability for each data grouping. In this dis-
sertation, it is shown that such principles can be applied to multiple runs of various
clustering algorithms, allowing for a more robust estimation of data agglomeration.
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1. Introduction

“Begin at the beginning," the King said gravely,

“and go on till you come to the end: then stop."
— Lewis Carroll, Alice in Wonderland

The past decades have seen a tremendous amount of technological break-

throughs, from the world wide web to the human genome mapping. In

particular, recent advances in medical sciences and technology have lead

to an ever increasing life expectancy. This leads to a concomitant increase

in diseases capable of disrupting normal cognitive processes. The socio-

economic impact of these issues is so crucial for the modern world that

the European Union has openly supported research in this area, through

their two last Framework Programmes.

Examples of diseases with a tremendous impact in the society include

Alzheimer’s, Parkinson’s, Autism and multiple sclerosis (MS). Their di-

agnosis is often difficult, and occurs usually after cognitive impairments

have already compromised daily living activities. This results in serious

costs in palliative care, and a significant decrease in the quality of life,

due to the progressive nature of those diseases. Therefore, the develop-

ment of technical solutions capable of helping health-care specialists in

their tasks is continuously required.

Such problems are within the scope of neuroinformatics and computa-

tional neuroscience. Among other tasks, these two research fields focus

on the development of methods suitable for the organisation and analysis

of neuroscience data.

1



Introduction

1.1 Scope of the dissertation

The topics discussed in this dissertation are related to Neuroinformatics.

Two main research directions are discussed, focusing on the use of ma-

chine learning approaches to study problems with great neuroscientific

relevance. They address the analysis and exploration of medical imaging

data, with a clear focus on MRI processing.

The first research direction deals with the development of a brain tis-

sue segmentation method. Such a method should be able to detect early

progressive brain lesions, enabling a pro-active intervention, reducing

therapy costs, and allowing for a concomitant improvement in the well-

being for the elderly. The field of brain image segmentation has evolved

rapidly in recent years, but a reliable identification of brain tissues and

lesions still poses significant challenges. Manual segmentation methods,

still considered the best ground-truth source, are subjective and expen-

sive (Commowick and Warfield, 2010). While several methods that avoid

the use of manual segmentation have been developed (Klauschen et al.,

2009; Mortazavi et al., 2012; Valverde et al., 2014), the problem is far from

solved. In particular, the detection of new foci of lesions (Elliott et al.,

2013) and the study of lesion evolutions (de Groot et al., 2013) are still

under heavy research. In this dissertation, a new brain tissue segmen-

tation procedure is proposed, capable of identifying specific brain tissues

and of early lesion detection.

While the segmentation and detection of brain lesions are essential when

studying the effects of a new medication and/or surgical intervention, it is

only half of the coin. Research on the neurological implications of different

lesions is crucial to understand the human brain. This is closely related to

the second research direction discussed in this dissertation: neuroscience

meta-research. With the vast amount of data being produced by several

researchers, the task of how to integrate and analyse such data is highly

demanding. When a seasoned neuroscientist searches for the explanation

of an unexpected brain activation, or a researcher attempts to validate a

newly proposed analysis method, it is rather common to spend a consider-

able amount of time scanning through a vast list of publications, in search

for comparable experimental outcomes. A proper compilation of such re-

ported information is therefore crucial. Several technologies have been

developed to handle such task, such as brain atlases (Laird et al., 2005;

Sunkin et al., 2013; Van Essen and Dierker, 2007) and standard formats
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for neuroscientific data (Kruggel and von Cramon, 1999; Talairach and

Tournoux, 1988). Nonetheless, they are all limited by the lack of publicly

available information. By conducting an exploratory meta-research on the

widely available reports of neuroscientific studies, it is possible to harvest

brain imaging research findings, as well as the neuroscience relevant out-

comes therein. Such an approach, based on visual information extraction

of functional magnetic resonance imaging reports, using text to help cat-

egorize such information, is another contribution of this dissertation.

Despite the apparent difference in focus of the two main research direc-

tions explored in this dissertation, both rely on machine learning cluster-

ing approaches. Albeit being thoroughly studied and with many proven

applications, the field of data clustering still faces many research chal-

lenges. While supervised methods typically require an extensive and ac-

curate set of training data, completely unsupervised methods are often

dependent on initialisation and parameter settings. On the other hand,

semi-supervised approaches, where only a limited amount of training data

is available, have been shown to improve clustering accuracy (Chapelle

et al., 2006). The third contribution presented in this dissertation is a

method to obtain training labels, by estimating data consistency across

several runs of unsupervised clustering methods.

1.2 Scientific contributions of the thesis

The core contributions of this thesis, illustrated in the eight publications

appended and summarised in this section, are three-fold. First, the re-

trieval of consistent information from data clustering is proposed. Relying

on such an approach, the other contributions are a brain tissue segmen-

tation method and a document mining framework.

1.2.1 Data clustering consistency estimation

One of the main problems in clustering approaches is parameter selec-

tion, e.g. the selection of the number of clusters to find, or the geometry

of the clustering space. While there are several techniques to alleviate

such limitation, this problem is still under heavy research. The first con-

tribution of this dissertation, proposed in Publication I, is a different

approach to solve the aforementioned problem. It relies on searching for

consistency among different runs of clustering algorithms. In that pub-
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lication, a procedure to exploit the intrinsic variability of stochastic clus-

tering algorithms is discussed. Using such an approach it is possible to

identify a subset of the data that reliably represents different clusters.

1.2.2 Self-supervised brain tissue segmentation

The second contribution of this dissertation is a semi-supervised method

to identify different brain tissues, including brain lesions, and their par-

tial volume information. Such method was first proposed in Publication

II, and it relies on the differences between intensity value distributions of

each tissue, with minimal to no added a priori information. This approach

is improved and extended in Publication III, where it is compared to

other tissue segmentation methods, in both simulated and real data. This

methodology was also applied to the study of age related white matter dis-

eases in Publication IV, where it was shown that barely visible changes

of normal-appearing brain tissue can already predict the decline in cog-

nitive processes. Furthermore, Publication V demonstrated, in a longi-

tudinal study, that it is possible to predict and detect early foci of lesion

using the proposed methodology.

1.2.3 Multi-modal mining of neuroscientific documents

In the field of neuroscience meta-research, most methods rely solely in

textual information, discarding the information visually reported. The

third contribution of this thesis is a framework that extracts and charac-

terises visually reported brain activity from neuroscientific publications,

specifically dedicated to the meta-analysis of functional magnetic reso-

nance imaging (fMRI) reports. While Publication VI proposed a clus-

tering method solely based on the creation of feature vectors from fMRI

images, this was later extended to an analysis of three-dimensional repre-

sentations of reported brain activity in Publication VII. The framework

was further improved in Publication VIII, by using multi-modal infor-

mation to characterise summarising maps of brain activity.
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1.3 Structure of the thesis

After the introduction in the first chapter, Chapter 2 provides the reader

with essential concepts in brain anatomy, neuroimaging, functional con-

nectivity and brain lesions. Such concepts are required for a proper un-

derstanding of the topics discussed throughout the dissertation. Further-

more, several core methodologies of image processing are used in this

dissertation, and Chapter 3 provides an overview of such techniques. It

focuses mainly on biomedical signal analysis approaches, in particular

methods applied to the pre-processing of magnetic resonance images.

The two main research directions proposed in this dissertation rely on

clustering approaches, where data is grouped into different clusters, ac-

cording to a distance measure. Chapter 4 discusses several such tech-

niques and some of the methods used to measure similarity between data

elements. The last section of that chapter presents a consistency based

analysis of clustering results, which is the first contribution of this thesis.

Chapter 5 is dedicated to the field of brain tissue segmentation. This

field deals with the reliable identification of brain tissues and lesions.

Several segmentation methods are briefly reviewed, as well as some of the

concepts behind them. After presenting the problem of tissue segmenta-

tion, the last sections of Chapter 5 describes the second contributions of

this thesis, a self-supervised brain tissue segmentation method, and con-

tains some exemplary results.

Chapter 6 deals with the topic of data mining and information retrieval.

In particular, it addresses the problem of filtering and obtaining rele-

vant content from various multi-modal sources, with both text and im-

ages. Several methods of information retrieval are detailed, with the

core concepts of the field also explained. Particular relevance is given to

approaches dealing with document mining of neuroimaging publications,

which is the topic of the third contribution of this thesis. The framework

of that contribution, as well as some of the results obtained, are presented

in the last section of Chapter 6.

Finally, Chapter 7 summarises the proposed methods and discusses their

advantages and limitations.
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A summarising schematic of the different chapters of this dissertation

can be seen in Fig. 1.1, where the relations between the several topics

discussed are also illustrated.

2. Neuroimaging 3. Image analysis

4. Clustering
and consistency

1. Introduction

7. Discussion

5. Segmentation 6. Data mining

Publication I

Publications II, III, IV and V Publications VI, VII and VIII

Figure 1.1. Flowchart depicting a summarising view of the different chapters of this dis-
sertation, and the relation between the topics discussed therein.

The main aims of this thesis can thus be summarized as the following:

• methodology to analyse clustering consistency.

• self-supervised approach for tissue segmentation

– theoretical and practical implementation

– clinical applications

• neuroscientific data mining

– extraction of brain activity from fMRI images

– creation of a multi-modal brain ontology.
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2. Brain and neuroimaging

Starting with the Edwin Smith Papyrus, ca. 1500 BC, and perhaps ear-

lier, the brain has been a major topic of study. In biomedicine, psychology

and information theory it plays a major role in research. With the recent

advances in imaging and analysis techniques, our knowledge of the hu-

man brain has increased tremendously. In this chapter, the anatomy of

the brain is briefly reviewed, as well as an overview of current neuroimag-

ing techniques, with particular focus on magnetic resonance. This intro-

duction is mostly based in Kalat (2012) and Kandel et al. (2000), which

provide a comprehensive analysis of the human brain. The last two sec-

tions of this chapter detail several brain lesions and describe the default

mode network.

2.1 Brain

In vertebrates, the nervous system can be divided in the central nervous

system (CNS) and the peripheral nervous system (PNS). The PNS is re-

sponsible for connecting the CNS to the rest of the body. It controls in-

voluntary and vital activities, such as respiration and the functioning of

the cardio-vascular system. The human brain is the core of the CNS in

humans, and the primary control centre for the PNS (Kandel et al., 2000).

Thought and reasoning, the so called conscious activities, are some of re-

sponsibilities of the brain (Simon, 1999).

The brain is typically represented from three perspectives, as shown in

Fig. 2.1: axial, along the horizontal plane that travels from the anterior

to the posterior parts of the brain; sagittal, travelling along the lateral

plane, from left to right; and coronal, along the frontal plane, that travels

from dorsal to ventral.

On a typical adult human, the brain weighs around 1.5 kg and has an
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Figure 2.1. Anatomical directions used to depict the brain. Adapted from Kalat (2012).

average volume of 1,600 cm3 (Crossman and Neary, 2006). It can be di-

vided in three main parts: the hindbrain, the midbrain, and the fore-

brain. The cerebellum, together with the pons and the medulla, compose

the hindbrain. The midbrain (tectum, tegmentum and substantia nigra),

together with the medulla and pons are often referred collectively as the

brain stem. These structures are almost completely surrounded by the

forebrain, with only the medulla visible as it merges with the spinal cord.

The forebrain can be divided in two hemispheres, left and right, with the

cerebral cortex corresponding to its outer portions. Fig. 2.2 shows the

basic anatomical structure of the brain. A typical division of the cerebral

cortex corresponds to four “lobes”: the frontal, parietal, occipital, and tem-

poral lobes. These lobes are separated by sulci and fissures, and the cells

in each lobe have a specific structure and function:

frontal lobe: typically associated with reasoning, higher level cog-

nition, and expressive language. It also includes the motor cortex,

which is responsible for body movements and motor skills.

parietal lobe: includes the somatosensory cortex, responsible for pro-
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cessing sensory information such as pressure, touch, and pain.

temporal lobe: contains the primary auditory cortex, that deals with

sound and language, and the hippocampus, which is heavily associ-

ated with the formation of memories.

occipital lobe: is associated with visual stimuli and information through

the visual cortex.

Other brain structures worthy of note include the precuneous, usually

associated with self-consciousness, and the cingulate gyrus, which is in-

volved in emotion processing, learning, and memory.

Frontal Parietal Temporal OccipitalLobes:

(a) (b) (c)

Longitudinal
fissure

Central
sulcus

Sylvian fissure

Parieto-
occipital
sulcus

Figure 2.2. Some of the main anatomical and functional structures of the brain, includ-
ing the four lobes and many relevant foci and sulci. (a) is shown from a top
perspective, while (b) and (c) are taken from sagittal and coronal planes, re-
spectively.

2.1.1 Brain tissues

From the various different types of tissues in the brain, this section will

focus on those that are of interest for this dissertation, which are high-

lighted in Fig. 2.3. In that figure, one can also see an area of lesion.

White matter

CSF

Grey matter

Lesion

Figure 2.3. Brain tissues of interest
to this dissertation, in-
cluding lesioned areas.

In the early stages, the nervous system

is a tube surrounding a fluid canal (Kalat,

2012). This canal develops into a cen-

tral canal, a fluid-filled channel in the

centre of the spinal cord, and into the

ventricles, four fluid-filled cavities within

the brain. The choroid plexus cells, in-

side the four ventricles, produce cere-

brospinal fluid (CSF), filling the ventricu-

lar space (Nolte, 2008), and can be clearly

seen as the darkest tissue in Fig. 2.3. The subarachnoid space, which

separates the soft tissues of the brain and spinal cord from the hard sur-
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rounding bones (skull and vertebræ), is also filled with CSF. This fluid

absorbs shocks to the brain and also provides buoyancy. It is very similar

to blood plasma and is the main supplier of nutrients to the brain.

The cerebrum is an area of the brain composed by the cerebral cortex,

the basal ganglia and the limbic system (Kalat, 2012). As a whole, it is re-

sponsible for functions such as conscious decisions and movement (Kalat,

2012; Kandel et al., 2000). It is composed of an outer layer of grey matter

(GM), corresponding to areas densely packed with cell bodies and den-

drites. On the other hand, the cerebrum is internally supported by deep

brain white matter (WM), consisting mostly of myelinated axons. The

task of the myelin is to insulate nerve endings and enable brain signals

to move smoothly (Kalat, 2012).

2.2 Neuroimaging

Neuroimaging is the field dedicated to techniques that allow to either di-

rectly or indirectly image the brain (Mazziotta et al., 2000; Zimmerman

et al., 2000). This type of medical imaging may be divided in two cate-

gories: structural and functional neuroimaging. The former deals with

imaging brain structures, and a precise diagnosis of intra-cranial struc-

tural pathologies. The latter attempts to obtain images of the functional

organisation of the brain, mapping mental processes to regions in the

brain (Huettel et al., 2008).

Examples of structural imaging techniques are computed tomography

(CT) and anatomical MRI, while electroencephalography (EEG), magne-

toencephalography (MEG), positron emission tomography (PET), single-

photon emission computed tomography (SPECT) and fMRI deal with func-

tional imaging. CT makes use of x-rays, taken from many directions,

where the transversed rays are detected on the other side of the brain.

Using a computerised algorithm, three dimensional images of the brain

can be reconstructed (Webb et al., 2005), with very high spatial resolu-

tion. Both EEG (Schomer and da Silva, 2011) and MEG (Hämäläinen

et al., 1993; Hansen et al., 2010) have millisecond resolution, and are

used to see responses to sensory stimuli, and mostly to observe typical

rhythmic activity in the brain. EEG was the first truly non-invasive neu-

roimaging technique discovered, and uses an electroencephalograph to

measure electrical fields in the cerebral cortex, via electrodes attached

to the scalp (Nunez and Srinivasan, 2005). MEG, on the other hand,
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measures magnetic fields, indirectly associated with the electrical activity.

Many healthy recordings are already well known (Head, 2002), and any

abnormalities may suggest epilepsy, tumours or other medical patholo-

gies. PET is a neuroimaging technique able to target very specific func-

tional processes of the brain (Wahl, 2002). It works by detecting photons

resulting from the annihilation of electrons and positrons (Valk et al.,

2004). The positrons are released by the decay of radio labelled com-

pounds (radio tracers) that are usually injected into the subject’s blood-

stream. It presents spatial and functional resolutions between the afore-

mentioned methods, making it also an interesting approach when dealing

with the localisation of particular neural functions. A similar approach

is used in SPECT (Rosenthal et al., 1995) but, unlike in PET, the trac-

ers emit gamma radiation that is measured directly. This method is often

combined with CT (Mariani et al., 2010), increasing its specificity and

spatial resolution.

The next subsections will focus on the MRI techniques mentioned pre-

viously, which stand at the core of this thesis.

2.2.1 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a non-invasive imaging technique

that uses strong magnetic fields and radio waves to produce high quality

three-dimensional images of biological tissues (Meacham, 1995). While

this technique can be used in a wide variety of settings, such as cardio-

vascular imaging (La Gerche et al., 2013; van der Geest and Reiber, 1999)

and musculoskeletal analysis (Junno et al., 2013; Khoo et al., 2011), this

dissertation will focus on its application in neuroimaging.

In order to create MRI images, an oscillating magnetic field is used.

When this field is turned off, the atomic nuclei that had absorbed electro-

magnetic energy in a specific frequency release that energy (Webb, 1988).

Sensors read these emissions and the target’s images are created. In com-

parison with other techniques, MRI has the advantage of being almost

completely harmless to the subject’s health and allow for the distinction

between soft tissues (Huettel et al., 2008). In addition, MRI produces

images with high resolution, comparable to the ones obtained through

CT scans. One disadvantage of this technique is its inability to be used

in subjects with some kind of electronic implants, due to their magnetic

sensitivity, like pacemakers (Kanal et al., 2002), and the slowness of the

process. MRI is used to create images of both surface and subsurface
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stationary structures, with a high degree of anatomical detail. Since it is

beyond the scope of this chapter to provide a full description of the physics

behind MRI, only a small overview of the main concepts will be detailed

in this section.

MRI is based on the principles of nuclear magnetic resonance. It mea-

sures spatial variations in the phase and frequency of the radio frequency

energy being absorbed and re-emitted by the imaged object (Westbrook

and Kaut, 1998).

There is a huge amount of atoms in the human body. The ones with nu-

clei with an odd number of both protons and neutrons possess a property

called spin (Griffiths, 2004), which is its intrinsic magnetic angular mo-

mentum and can attain any value multiple of ±1/2. Due to the charge in

the atomic nuclei, the spinning motion causes a magnetic dipole moment

in the direction of the spinning axis. The strength of the magnetic mo-

ment is a property of the type of nucleus. The hydrogen atom is an ideal

atom for MRI, because it possesses a strong magnetic moment in its nu-

cleus and there is a large quantity of them in biological tissues (Huettel

et al., 2008). When atomic nuclei are placed in a uniform magnetic field,

their magnetic moments have a tendency to align with that field. The

predominant direction of non-zero spins of the atomic nuclei in the tissue

is one of two, in respect to the magnetic field: parallel and anti-parallel.

The majority of the spins will be in parallel state, which is a lower energy

state than the anti-parallel one. The spin axes are not exactly aligned

with the magnetic field, but precess around it with a frequency character-

istic of the nucleus type. This frequency is called the Larmor frequency

or resonant frequency, and corresponds to the precession frequency of the

dipole moments.

Two important properties of any magnetic field are its field homogeneity

and its field strength. To generate images that do not depend on the MRI

scanner or body positioning, the fields employed need to be uniform, in

space and time. Also, and to generate such strong and stable fields, mod-

ern MRI scanners use superconducting electromagnets, at temperatures

near zero.

After exposing the nuclei to a magnetic field, a transient radio frequency

(RF) pulse at a specific frequency is briefly applied, in a plane perpendic-

ular to the main magnetic field. The RF pulse excites some of the spins in

the lower-energy state at their resonant frequency, disturbing the aligned

hydrogen nuclei, thus causing a disruption of the equilibrium. The phe-
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nomenon caused by this excitation is called magnetic resonance (West-

brook and Kaut, 1998).

The return of the nuclei to their equilibrium state is known as relax-

ation (Bloembergen et al., 1948). The resulting release of energy can be

detected by radio-frequency coils, in a process known as reception. This

detected electromagnetic pulse defines the raw MR signal.

The relaxation time is mainly governed by two physical processes (McRob-

bie et al., 2002): T1 and T2 relaxation, characterised by two magnetic re-

covery times. T1 relaxation is the realignment of spins with the external

magnetic field, while T2 corresponds to the transverse relaxation of the

component of the nuclear magnetisation. Both relaxation times are char-

acteristic of the type of tissue considered (see Table. 2.1).

Table 2.1. Examples of T1, T2 and proton density1 values of dif-
ferent tissues in the brain at field strength 1.5T. From
Huettel et al. (2008) and Bradley and Stark (1999).

Tissue WM GM CSF

T1 (ms) 600 900 4000

T1 (ms) 80 100 2000

PD (H) 0.61 0.69 1

1 Assumes CSF has the proton density of water (H=0.11

moles of hydrogen/cm3).

The obtained MR-signal does not contain any spatial information. To en-

code all needed information, additional gradient coils are used to impose

three linear orthogonal field gradients on the magnet generating the ex-

ternal magnetic field. One common problem in MR scanners is that both

the external and the field gradients are rarely completely linear, which

is clearly a source of image distortion. Therefore, modern scanners use

shimming coils to compensate for inhomogeneities. Unlike other coils,

these shimming coils are also adjusted for each subject, since the anatomy

of each person affects the fields differently.

In MRI, a slice through the studied object is typically selected. Each

slice is divided into volume elements (voxels), usually with 1 or 2 mm3 (Huet-

tel et al., 2008). Each one of them relating to a picture element (pixel) in

the MR image. The pixel value (usually between 0 and 255) is determined

according to the signal originating from the corresponding voxel. Let us
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assume that we have a main gradient field along the z axis. Then, for

a given frequency of the RF pulse, only the orthogonal x-y plane will be

excited. Everywhere else, the sample receives the wrong resonance fre-

quency of excitation. This technique allows for a given slice to be selected

from the whole sample, with thickness determined by the magnetic field

gradient strength.

Once the slice is selected, the MR signal data has to be combined with

each individual voxel, in order to get the values for each pixel. To achieve

this, phase and frequency encoding gradients are needed. With a slice se-

lected and excited as described previously, the current is switched to one

of the two remaining gradient coils, creating the phase encoding gradient.

This gradient is applied along one side of the image, perpendicularly to

the external magnetic field and to the slice selection gradient. The gradi-

ent is, however, switched off after a short period, letting the nuclei gain

their original frequency. A significant difference arises: the nuclei are out

of phase, each row possessing a phase of its own, leading to phase en-

coding. The remaining coil then produces a frequency encoding gradient,

perpendicular to the other two gradients. This gradient will increase the

precessing frequencies of the nuclei in the same way as the phase encod-

ing gradient. This has the effect of spatially encoding the excited slice

along one axis, so that columns of spins perpendicular to the axis precess

at slightly different Larmor frequencies.

Thus, using three orthogonal magnetic field gradients, the signal emit-

ted from a specific voxel will have a specific frequency and phase. Us-

ing inverse Fourier transform, the individual signals from each voxel,

together with their locations can be extracted from the MR signal and

thereby construct the MR image. By combining different slices, three-

dimensional MRI images can then be obtained.

Multi-spectral MRI

One great advantage of MRI over other brain imaging techniques, is the

ability to design different imaging sequences (spectra), which allow for

discrimination of different tissues. By changing two user-selectable de-

lay times for the RF pulse, different effects can be highlighted. The echo

delay time or time of echo (TE) corresponds to the interval between ex-

citation and acquisition of the signal. On the other hand, the sequence

time of repetition (TR) corresponds to the amount of time between suc-

cessive excitation pulse sequences. A third factor that contributes to the
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MR signal is the proton density. It is independent of TE and TR, but

proportional to the effective number of hydrogen nuclei per unit volume,

i.e. it depends directly on the tissue type. Since each tissue type has a dif-

ferent set of relaxation times, as shown in Table. 2.1, variations in TR and

TE result in changes in the relative contrast between tissues, depicted in

Fig. 2.4 (Edelman et al., 2005).

Figure 2.4. Example of three different MRI sequences. From left to right, PD, T1 and T2.

With a long TR, all tissues recover their longitudinal magnetisation,

thus the differences in T1, across tissues, will not influence the signal.

Conversely, a short TE implies that the differences due to T2 do not have

enough time to become observable. Thus the images formed have different

appearances, depending on the time constants. Short TR and TE lead to

T1 weighted images, and long TR and TE to T2 weighted ones.

Another form of differentiation between tissue types, is to use proton

density (PD) imaging. Using a very long TR and very short TE, the re-

sulting images are mostly influenced by the differences in proton den-

sity (Edelman et al., 2005; Huettel et al., 2008).

When dealing with damaged tissues, other contrast sequences can be

used. Damaged tissues tend to develop edemas, which makes a T2 se-

quence sensitive to the distinction of pathological tissue from normal tis-

sue (Tofts, 2003). With some additions to the RF pulse and specific manip-

ulations of the magnetic gradients, a T2 sequence can be converted into

fluid attenuated inversion recovery (FLAIR), in which free water is now

dark, but edematous tissues remain bright. This sequence is particularly

suited to the evaluate demyelinating diseases in the brain (Hori et al.,

2003; Khademi et al., 2012), such as multiple sclerosis.

Several other sequences have also been used in clinical settings, such

as T1 sequence with gadolinium contrast (T1c) (Caravan et al., 1999; Ger-

aldes and Laurent, 2009), magnetization transfer (MT) (Symms et al.,

2004) or magnetization prepared rapid-acquisition gradient-echo (MPRAGE)

(Brant-Zawadzki et al., 1992).

The acquisition of different sequences from the same brain, as shown

in Fig. 2.4, is typically called multi-modal or multi-spectral data. The
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different sequences acquired provide complementary information regard-

ing the brain tissues, allowing for a better evaluation and distinction be-

tween tissue types. Nonetheless, this data has some drawbacks. Namely,

it is rather expensive in time and use of scanning devices, and requires

careful registration between the collected images. This registration usu-

ally results in taking the lowest spatial resolution dataset as the overall

target (Sotiras et al., 2013).

2.2.2 Functional Magnetic Resonance Imaging

The knowledge of brain structures provides much information. Nonethe-

less, the active functioning of the brain cannot be studied with anatomical

MRI, due to the rather long times used for image collection. Therefore,

researchers turn to functional neuroimaging to study which parts of the

brain are associated with particular mental processes, and how these in-

teract with each other. A typical functional report displays images associ-

ating brain activity with a given mental task.

One of the most common modern methods of functional neuroimaging

is functional magnetic resonance imaging (fMRI) (Huettel et al., 2008).

Most fMRI scanners allow for the measurement of brain activity while

subjects react to stimuli (Buxton, 2001). Consequently, fMRI can be used

to reveal brain regions and processes associated with perception, thought

and action.

Since neural information processing activity requires higher metabo-

lism, the vascular system supplies this energy locally. Most of this energy

comes from oxygen, which is bound to hæmoglobin molecules. Therefore,

changes in the oxygen consumption are directly related to the concen-

tration of de-oxygenated hæmoglobin. These changes can be easily seen

in blood oxigenation level dependent (BOLD) (Ogawa et al., 1992) con-

trast MR images.The contrast in those images is based on paramagnetic

property changes of water molecules, reflecting the concentration of de-

oxygenated hæmoglobin. Therefore, fMRI images do not give a direct

measure of brain activity, but only a correlated measure of such activity,

obtained with different stimuli conditions.

BOLD contrast differences between images are quite small, and changes

directly related to neuronal activity are even smaller, when compared to

other spatio-temporal variations. Therefore, a careful analysis of the re-

sulting functional images is required. Modern scanners are capable of

capturing full head volumes within a few seconds interval, but the resolu-

16



Brain and neuroimaging

Figure 2.5. Example of fMRI images. On the leftmost image (taken from Johnson et al.
(2007)), activity is present in the occipital, left temporal and frontal areas
of the brain, and the activity is reported using the hot colour scale. The ac-
tivity on the second image (adapted from Esposito et al. (2010)) is shown
in three different uniform colours, while the third image (adapted from Yli-
paavalniemi and Vigário (2008)) shows a combination of hot and cold colour
scales, corresponding to increase and decrease of activity, when compared to
a baseline reference.

tion is about two or three millimetres at present. The resolution of fMRI

images limits the ability to distinguish between different functional brain

regions in close proximity of each other, and is restricted by the spatial

spread of the hæmodynamic response to neural activity (Jezzard et al.,

2003). Furthermore, due to the slowness and variability of the vascu-

lar system response to neuronal activity, the estimation of brain activity

timings is also somewhat limited. Other problems, such as head move-

ments and physiological changes during measurement, will also distort

the images. Therefore, fMRI acquisition is a compromise between fast

scanning and high resolution images or, in other words, it has a good spa-

tial and temporal imaging resolution. Nonetheless, and also in spite of

its inability to identify specific brain receptors associated with particular

neurotransmitters (Wahl, 2002), fMRI has surpassed PET in the study of

brain functional activation patterns.

Typical fMRI images display changes in brain activity using colour over-

lays onto anatomical MRI, as shown in Fig. 2.5. These can reflect either

the degree of change, as depicted one the left frame, or simply the region

where functional change occurred, as seen in the middle frame. Often, to

show also the sign of neuronal activity changes, many researchers use hot

and cold colourmaps to show an increase or decrease of activity, respec-

tively. This is shown in the rightmost frame of Fig. 2.5.

2.3 Brain disorders

With an increasing elderly population in the modern world, disorders of

the human nervous system have become one the most debilitating and

devastating human illnesses. These not only physically affect the suffer-
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ing patient, but also comprise their ability to function in society. As such,

brain disorders increase the burden, not only of patients, but also their

families and the society at large, due to the economic and social adjust-

ments they require. Hence, brain disorders have become a main focus in

health-care research. Accordingly, the use and development of neuroin-

formatics techniques has become such an invaluable tool in diagnosing,

monitoring and studying brain diseases (Mazziotta et al., 2000).

Although there are many types of brain diseases, a detailed explanation

of them is beyond the scope of this chapter. Therefore, only four types of

brain disorders will be briefly described in this section, since they play

an important role in this dissertation. In addition, due to their progres-

sive nature and relevance for this thesis, tumours or neoplasms are also

described here. All disorders mentioned in this section are deemed pro-

gressive diseases, due to the progressive changes they cause in the brain

structures and cells. Based on those changes, and the very high spatial

resolution of the imaging technique, MRI is often used to study the afore-

mentioned diseases. It should be noted, as well, that an early diagnosis of

these diseases may lead to a significant improvement in the quality of life

of a patient, as well as an increase in the impact of its treatment.

2.3.1 Neurodegenerative diseases

Neurodegenerative diseases are the result of progressive structural or

functional neuron deterioration (Jolles and Stutzmann, 1994). Alzheimer’s,

Parkinson’s and Huntington’s are typical examples of such diseases. As

we age, the brain starts to fail and the incidence of neurodegenerative

diseases increases greatly (Jolles and Stutzmann, 1994). In particular,

Alzheimer is already one of the most common causes of death in the de-

veloped world, and is likely to keep rising, due to the continuous increase

in life expectancy.

2.3.2 Vascular diseases

Any disease that affects the circulatory system, is a vascular disease.

They can affect any blood vessel in the body, and occur due to endothe-

lial cell dysfunction. Examples of vascular diseases include aneurysms,

Buerger’s disease and Peripheral Artery disease. When dealing with the

brain, cerebral small vessel disease (cSVD) is the most common cause of

vascular cognitive impairment and dementia(Ferro and Madureira, 2002;
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Jokinen et al., 2011). One of the main signs of cSVD are white matter

lesions (WMLs), together with lacunar infarcts, micro-bleeds, and brain

atrophy. These can all influence clinical and cognitive outcome (de Groot

et al., 2001; Jokinen et al., 2012; Muller et al., 2011; Poels et al., 2012).

Age-related WML can be observed through changes in white matter, which

result in deviations of the grey levels in MRI (Mäntylä et al., 1997). Even

the smallest age-related WML can cause executive dysfunction and pro-

gressive cognitive decline, as show in Publication IV.

2.3.3 Demyelinating diseases

As mentioned in subsection 2.1.1, WM is one of the tissues in the human

brain, in which myelin is an important constituent. This molecule plays

an essential role in the propagation of action potentials across axons. De-

myelinating diseases are disorders that affect the myelin sheath covering

the axons, and hence impair the normal functioning of the brain. MS be-

longs to this group of diseases(Compston and Coles, 2008; Keegan and

Noseworthy, 2002). MS is an autoimmune chronic disease, with a wide

range of symptoms (Grossman and McGowan, 1998), including fatigue,

visual problems, balance problems and altered sensations. While not di-

rectly lethal, many of its side effects lead to a noticeable deterioration in

quality of life. The main cause of this disease is not known, but genetic

changes are suspected to be a partial cause (Hill, 2003). Furthermore, MS

is hard to diagnose, because the symptoms vary heavily from one patient

to another.

2.3.4 Chronic psychiatric disorders

The most common example of chronic psychiatric disorders is Schizophre-

nia. Schizophrenia is a chronic, severe, and disabling neural disorder (van

Os and Kapur, 2009), that leads to abnormal social behaviour and a misin-

terpretation of reality. Several factors seem to be responsible for Schizophre-

nia, such as genetic predisposition and the environment. The onset of

symptoms occurs usually during the first stages of adulthood.

2.3.5 Neoplams/Tumours

Neoplasia, from the dictionary definition, is the formation of tumours.

These are collections of tissues, resulting from an abnormal growth or di-

vision of cells. Their causes are diverse, but usually derive from genetic
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Figure 2.6. Average brain activity for the DMN from axial, sagittal and coronal perspec-
tives, respectively. Most of the activity is located in the occipital, temporal
and frontal areas of the brain.

mutations (Weinberg, 2007). Tumours can be benign or malignant (can-

cer). Since tumorous cells have a slightly different composition than other

cells (Weinberg, 2007), and hence react differently to contrast agents, MRI

and PET have been widely used for its diagnosis and monitoring.

2.4 Default Mode Network

The default mode network (DMN) was first described in 2001 by Raichle

et al.. Using fMRI, certain areas of the brain exhibited a decrease in ac-

tivity when “the control state was passive visual fixation or eyes closed

resting”. After that first publication, the topic of resting state and de-

fault mode network (DMN) became one of the most researched fields in

the field of neuroscience. The DMN comprises areas such as the occip-

ital, temporal and frontal areas of the brain, as seen in Fig. 2.6. They

are active when the individual is not performing any goal-oriented task,

and suppressed during activity (Buckner et al., 2008; Deco et al., 2011;

Raichle et al., 2001). In spite of the great attention given to the study of

those networks, scientific research of the brain’s “default state” still poses

various conceptual and methodological difficulties (Morcom and Fletcher,

2007; Snyder and Raichle, 2012; van Oort et al., 2014).

The DMN has been hypothesised to be heavily involved in some brain

disorders, such as Alzheimer (Damoiseaux et al., 2012; Johnson et al.,

2007; Koch et al., 2012; Wen et al., 2013), Schizophrenia (Dodell-Feder

et al., 2014; van Os and Kapur, 2009; Whitfield-Gabrieli et al., 2009; Yu

et al., 2012) or autism (Paakki et al., 2010; Starck et al., 2013). Many

of those studies focus on comparing the areas composing the DMN in

healthy and pathological brains, and how these differences influence cog-

nitive and functional performances. Furthermore, decline in connectivity

of the DMN in ageing brains has been a recurrent finding (Damoiseaux

et al., 2008).
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When dealing with imaging data, there are several factors of image qual-

ity to take into account. Before any further analysis, images need to be

preprocessed to remove artifacts. To do this, the detection of regions/objects

of interest is often of great importance. Furthermore, to allow for a proper

statistical analysis and comparison between images, their overall charac-

teristics need to be determined. The first section of this chapter briefly de-

scribes several preprocessing techniques, typically used in imaging data.

It is based on Rangayyan (2004), which provides a comprehensive account

of biomedical signal analysis techniques.

Several factors may jeopardise the signal-to-noise ratio (SNR) in MRI

images. An increase in the magnetic field strength typically improves the

SNR, but it also increases the probability of contamination from other

sources, such as artifacts or external noise. Besides the intrinsic noise of

both the subject and the scanners, also the scanner drift, produced by un-

compensated changes in the magnetic field, increases the system noise.

Nonetheless, the major causes for artifacts are related to motion arti-

facts. Head movement or the cardiac activity can cause misalignments

and changes in the acquired images. Although this chapter deals with

analysis techniques applicable to images in general, the last section is

dedicated to typical MRI processing techniques, which aim at compensat-

ing for the aforementioned problems.

3.1 Image preprocessing

Data preprocessing is one of the most important steps in data analysis.

As often mentioned and exemplified in the sentence “garbage in, garbage

out”, without proper handling of raw data, misleading results can and will

be produced. Real-world data is usually incomplete, inconsistent, and/or
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lacks certain behaviours or trends, and is likely to contain errors such as

out of bounds data. Data pre-processing focus on different tasks, such as

normalisation, filtering, feature extraction and selection. The aim of pre-

processing is to remove uninteresting variability and prepare data for fur-

ther processing. In imaging data this often equates to detecting the main

regions of interest, remove artifacts that compromise a proper analysis,

filtering and feature detection. This section will give a brief overview of

typical techniques used in the aforementioned tasks, focusing on medical

imaging preprocessing used in the studies reported in this dissertation.

3.1.1 Histogram analysis

In gray level images, the dynamic range of intensities provides informa-

tion on the spread of intensities, but does not describe how the gray level

is distributed in that range. The histogram, on the other hand, fully de-

scribes the distribution of the gray levels of an image.

In order to enhance the appearance of an image, several histogram-

based methods for image enhancement have been proposed Rangayyan

(2004). The most common and widely used being histogram equalisation,

where the principle is to give equal probability to each gray level. This

method increases the contrast of images, and is frequently used when all

gray levels of image are closely grouped. By transforming the cumulative

distribution of the image into a linear function, the intensity values are

spread across all possible gray level values.

An advantage, as well as a major limitation in histogram equalisation,

is that there is no control over the procedure or the result, since the trans-

formation aims always at a uniformly distributed probability distribution

function. Often, one requires a histogram close to that of another image,

a procedure known as histogram specification. This method does have

some limitations, such as possible non-invertibility of the transformation,

and need for the specification of the desired histogram. Furthermore, the

histogram of the resulting image is only an approximation of the desired

one, albeit one as close as possible within the potential transformations.

These types of histogram-based methods are often restricted to par-

ticular biomedical applications, e.g. mammography (Langarizadeh et al.,

2011), since their underlying assumptions are not practical in many other

situations. For instance, they may increase the contrast of background

noise, while decreasing the interesting signal. Nonetheless, they can

sometimes provide reasonable improvements in some imaging conditions.
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An example of a positive use of such a transformation appears when

dealing with MRI sequences acquired at different times, such as the ones

in Publication V. In that situation, there are several factors that need

to be taken into account. One of the most important deals with inten-

sity distribution differences, observed in the same MRI sequences. As

an example, two FLAIR sequences, collected at different times, can have

different overall mean intensities, as shown in Fig. 3.1A. Such differ-

ence has no physical grounds, but technical ones, hence the need for cor-

rection. To compensate for these disparities, a histogram adjustment

procedure is used. While the first step corresponds to a simple mean

adjustment (Fig. 3.1B), the second one performs a histogram specifica-

tion, which minimises the differences between the histograms of both se-

quences (Fig. 3.1C). By avoiding local transformations, a histogram spec-

ification procedure allows for a good compromise between reducing image

differences and changes to the original histograms.

0 50 100 150 200 250

A B

C

Figure 3.1. Histogram adjustment. Frame (A) shows the original histograms, while
frame (B) depicts the mean-adjusted histograms. Frame (C) shows the nor-
malised histograms. The histograms from the first and second acquisitions
are shown in black and red, respectively. Adapted from Publication V.

3.1.2 Detection of regions of interest

In computer vision, feature detection, extraction and matching are impor-

tant parts of data processing. Feature detection corresponds to finding

interesting landmarks of an image. It allows for an abstract representa-
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tion of visual information elements.

Since the classification of an interesting feature can be quite subjective,

many methods have been proposed for feature detection. Visual image

landmarks can often be grouped in three main types:

Edges: Points defining a boundary between regions, which are de-

fined by large changes in intensity levels;

Interest points: Also called corners, these points usually have a lo-

cal two dimensional structure;

Regions of interest (ROIs): Regions of an image in which some prop-

erties are similar throughout.

The type of feature detection and analysis conducted depends heavily on

the particular problem at hand.

In a diagnostic situation, medical experts typically focus on small local

regions, which are examined in search of abnormalities. These regions

are called ROIs, and correspond to a portion of an image that is identified

for a specific purpose. Once these regions are detected, the subsequent

tasks deal with the characterisation and processing of the data. Typical

examples of two-dimensional ROIs in medical imaging include:

• Tumours and masses,

• Calcifications in mammograms,

• Brain activity areas in fMRI, often known as ’blobs’.

In order to detect ROIs, two major concepts are used: discontinuity and

similarity. Discontinuity based approaches detect abrupt changes in in-

tensity levels, such as edges, while similarity approaches resort to finding

homogeneous parts of the image. This homogeneity can be found through

grey-level thresholding or region growing.

The nature of the images, and the ROIs themselves usually determine if

edge detection is performed, or if the ROIs are approximated by growing

regions. ROIs can also be described using particular points of interest,

such as corners or other heavily structured areas.

While the techniques mentioned in this section are described for images,

they are easily expanded to three-dimensional data.

Thresholding

Thresholding methods assume that all pixels lying within a specific range

of values correspond to the same class. When the gray levels of a par-

ticular ROI are known a priori, or can be determined from image his-
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tograms, then thresholding can be used. Threshold values can be based

upon the “valleys” in the histograms. However, even with optimal thresh-

olding techniques, their identification is not easy (Gonzalez and Woods,

2008; Sahoo et al., 1988). Other limitations of these algorithms stem from

relying solely on pixel values, with disregard for any spatial information.

This often causes problems when dealing with noisy or blurred images.

Edge detection

Another approach to identify ROIs is based on edge detection. Edges are

defined as image discontinuities, where there is a large change in inten-

sity levels. This discontinuity can be found in any direction, depending

on the edge orientation. The most simple and intuitive methods to detect

edges are based on gradients, since they measure rates of change.

In image processing, it is typical to express an operator in terms of odd-

sized masks, centred on the pixel to process. One of the most commonly

used method for this type of edge detectors is the Prewitt operator. An-

other commonly used edge detection is the Sobel operator. It is similar to

the Prewitt operator, but gives a larger weight to the pixels in the same

row or column as the pixel being processed. Using rotated versions of both

Prewitt and Sobel operators allows for the detection of diagonal edges.

Yet another method for edge detection is the laplacian of Gaussian (LoG)

operator (Gonzalez and Woods, 2008; Rangayyan, 2004). To increase com-

putational efficiency, the LoG can be approximated by a difference of Gaus-

sian (DoG) operator (Lowe, 1999).

In 1986, John Canny proposed a multi-stage approach for edge detec-

tion (Canny, 1986). This method, known as Canny filter or optimal detec-

tor, satisfies three main criteria:

• low error rate, corresponding to low probabilities of false edge detec-

tion and missing real edges;

• good localisation, meaning low distance of the detected edge from

the true edges;

• minimal response, with only one detection per edge.

The optimisation function in Canny’s detector corresponds to the sum of

four terms, but can be approximated by the first derivative of a Gaussian.

One advantage of Canny’s method, when compared to the LoG, is that

it avoids derivatives in uninteresting angles, making it less sensitive to

noise effects.
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Region growing

Region growing is a pixel-based procedure (Gonzalez and Woods, 2008;

Rangayyan, 2004), where groups of pixels are grouped into regions ac-

cording to their similarity. This approach starts with a seed pixel, and

determines if the neighbouring pixels of the seed should be added to the

region. This selection is based on a specified homogeneity criterion, which

leads to different types of regions. Unlike thresholding, this procedure is

heavily based on spatial intensity continuity.

A simplified region growing procedure is as follows:

1. Select a seed pixel;

2. Append neighbouring pixels of the region that have a specified

property (gray level, color, etc.) that is similar to that of the seed;

3. Stop when there are no more neighbouring pixels that fulfil the

criterion.

The selection of the seed, the measure of similarity and the method used

to find the neighbouring pixels all influence the final result of the method.

When dealing with intensity-based segmentation, the simplest similar-

ity measure is based on additive gray level tolerance. If the difference

between the seed and a neighbouring pixel I(m,n) is within a tolerance

level τ :

|I(m,n)− seed| ≤ τ , (3.1)

then that pixel can be appended to the region.

One problem with the simple scheme described above is that all pixels

are compared with the seed, even when they are not spatially close to

it. This causes problems, especially when the seed corresponds to a noisy

pixel. To solve this issue, candidate pixels can be compared to the mean

gray level of the region already formed. This value is called the running

mean μR. Another issue with this method is that the tolerance level may

not be adequate to a particular seed value. In these cases, a multiplicative

tolerance level τ ′ can be applied:

|I(m,n)− μR|
μR

≤ τ ′. (3.2)

The main factor for an accurate region growing segmentation is the se-

lection of the homogeneity criterion, which depends mostly on the problem

at hand. Several criterions have been proposed, besides the simple gray-

level tolerance, such as regional feature analysis (Chang and Li, 1994),
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Bayesian probability modelling of images (LaValle and Hutchinson, 1995),

Markov random fields (Won and Derin, 1992), and seed-controlled homo-

geneity competition (Adams and Bischof, 1994).

Image features

Image corners and other structured areas of an image can provide impor-

tant descriptors for an image. These can be used to identify particular

types of objects in an image, and help performing image comparison, even

under changes in image scale, noise and illumination.

One of the most widely used methods for object recognition is the scale-

invariant feature transform (SIFT) (Lowe, 2004; Szeliski, 2010). SIFT can

robustly identify objects, even among clutter and under partial occlusion.

It is invariant to translations, rotations and scaling transformations, and

robust to affine transformations.

There are four main stages to generate the feature descriptors:

Scale-space extrema detection: Use a DoG function, over all scales,

to find potential points of interest. This stage is invariable to scale

and orientation.

Key-point localisation: Detect “stable” points, based on a model fit

to determine exact location and scale. Noise sensitive points are

removed at this stage.

Orientation assignment: Assign an orientation to each key-point,

based on local image gradient directions. All further operations are

conducted in a transformed space, providing invariance to orienta-

tion, scale, and location.

Key-point descriptor: Compute a position-dependent histogram of

local gradient directions around the interest point. The vectorised

version of this histogram corresponds to the key-point descriptor.

SIFT has also been extended to work with colour images (Van De Sande

et al., 2010) and video data (Laptev and Lindeberg, 2006). In Publication

III, SIFT was used to detect fMRI image landmarks, in order to facilitate

image comparison.

Recently, other methods have been proposed for object recognition. Speeded

Up Robust Features (SURF) was proposed in 2008 by Bay et al.. It is in-

spired in the concepts behind the SIFT descriptors, but is based on sums

of 2D Haar wavelets, and uses integral images (Crow, 1984). SURF tends

to have similar performance to the SIFT operator, but is computationally
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faster. Dalal and Triggs (2005) proposed Histogram of Oriented Objects

(HOG) as feature descriptors. This method counts occurrences of gradient

orientation in localised portions of an image and uses overlapping local

contrast normalisation to increase accuracy. Unlike SIFT, this method

produces regional image descriptors, but is not rotationally invariant.

3.1.3 Artifact removal

Any kind of signal acquisition, in particular medical imaging, is subject

to various types of noise and artifacts. They have different origins, such

as physiological, e.g. cardiac activity, or technical, e.g. power-line inter-

ference. Since they cause a variety of problems for any algorithm, their

removal is essential. There are typically two approaches for artifact re-

moval. The first consists in rejecting any portion of data where they are

present. This is rather crude, and is often hard to conduct since one de-

sires to retain as much data as possible. The alternative is to reduce or

cancel artifacts from the data, but this poses a significant challenge if one

wants no distortion or loss of the desired information.

The most common artifact is noise, either random or structured (Ran-

gayyan, 2004). Random noise usually refers to interferences arising from

random processes, such as thermal noise in the equipment. It is char-

acterised by a probability distribution function (pdf ) of a random vari-

able, often assumed to be Gaussian (Barrett and Swindell, 1996). Struc-

tured noise, on the other hand, is defined as non-random signal contri-

butions (Bellon et al., 1986), such as power-line interference, and field

inhomogeneities. Due to their non-random structure, and since their ef-

fects are typically known in advance, it is usually possible to minimise or

eliminate their contribution to the signal.

Processing published images

In published fMRI results, researchers typically annotate the reported

figures with useful information for the readers, e.g. patient identification

and positioning markers or highlighting relevant activity points/regions.

These can interfere in the analysis of such images. Since this type of ar-

tifacts are human made, they are heavily structured. Ideally, this allows

for a systematic removal of such annotations, but, occasionally, they may

be connected or even overlapping the brain image. When the artifacts

are not connected with the fMRI image, i.e. there are no connecting pixels

between the image and the artifact, a simple method of region detection,
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based on size, and particular image geometry can be applied. To facilitate

this type of detection, a conversion from color-scale to gray levels can be

conducted. This conversion is typically used when the data is of high color

depth, since lower depth results in smaller computational requirements.

There are many methods to convert from color space to gray levels. The

most widely used method is conversion through luminance. Luminance,

in RGB color models, can be calculated by the weighted sum:

Y = 0.2989R+ 0.5870G+ 0.1140B. (3.3)

This conversion method is applied in standard color TV and video systems

such as PAL, SECAM and NTSC.

Other typical artifacts present in fMRI published reports are grids or

frames used to position the subject. Furthermore, authors tend to use

identifying lines to emphasise particular points or regions of brain activity

change. Since the shape of these analytically formed objects does not vary

enormously, their detection is facilitated.

The best method to perform line detection is the classical Hough trans-

form (Hart, 2009; Hough, 1959). Straight lines in image space (m,n) can

be represented by the slope equation:

n = am+ b, (3.4)

where a is the incline and b the position where line intercepts the n axis.

This results in a space, the Hough space, where lines are characterised by

the parameter space (a,b). In order to improve computation and avoid the

unbounded parameter problem, Duda and Hart (Duda and Hart, 1972)

proposed the use of angle-radius parameters as:

ρ = m cos θ + n sin θ, (3.5)

where θ is limited to [0, 2π] and, ρ relates to the image size. The reference

origin can be centred anywhere in the image. In 1981, Ballard (1981)

proposed a generalised Hough Transform, where shapes that cannot be

represented analytically in a two dimensional space can also be detected.

The main limitation of the Hough transform is that it is heavily depen-

dent on data quality. In noisy images, where edges are hard to identify,

the detection of lines is troublesome. Furthermore, the selection of the

number of accumulator cells is of great importance, since the detection of

lines is jeopardised if votes are spread throughout many bins.
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3.2 MRI processing

In this section, several methods dedicated to prepare anatomical MRI

data for analysis are detailed.

When dealing with raw fMRI, there are many types of preprocessing re-

quirements, other than the ones detailed in this section, including slice

time correction or temporal filtering. Since those are out of the scope of

this thesis, due to the use of already processed images, the author sug-

gests the book Huettel et al. (2008) as a good overview of such methods.

3.2.1 Image registration

In brain imaging, data is typically collected from different subjects, at

different times, from different orientations of the brain. In order to con-

duct meaningful overall research on brain images, one should be able to

somehow relate all those images. The main requirement for this is that

each voxel corresponds to a fixed and unique location, regardless of the

variations in acquision conditions. This is the goal of image registration.

Image registration is the process of aligning images so that correspond-

ing voxels can be easily related (Hajnal et al., 2001). Registration algo-

rithms are designed to establish spatial correspondence between points or

regions within the images. This correspondence involves spatial transfor-

mations that relate information in one image to another, using an image

similarity metric, and an optimisation algorithm. The most widely used

packages for brain image registration are the Statistical Parametric Map-

ping (SPM, FIL Methods Group) toolbox and FSL’s FLIRT (Greve and

Fischl, 2009; Smith et al., 2004).

Usually, the registration process uses one image as reference, and places

the coordinates of the target images in relation to that particular refer-

ence. The realignment of images involves first the estimation of a spatial,

usually a ’rigid-body’ affine, transformation. There are many methods to

calculate the parameters of this transformation, but the most commonly

used is based on maximising the mutual information between the trans-

formed and the targeted images. After the spatial transformation is esti-

mated, the images need to be re-sampled, to match the grid of the refer-

ence image. This involves an image interpolation step, which matches the

reference and transformed image to the same coordinate space. This step

is typically executed using tri-linear, sinc or spline interpolation (Friston,

2003; Hajnal et al., 2001).
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3.2.2 Bias correction and noise reduction

One important preprocessing step in MRI images is to deal with noise and

non-uniformities. Even when using strong magnetic fields, noise is always

present in MR images, usually following a Rician distribution (Gudbjarts-

son and Patz, 1995), and can jeopardise image analysis. One simple way

to deal with such noise would be to acquire several samples of the same

images and perform a simple average over all images. But this would

lead to a huge increase in acquisition time and cost. A more effective ap-

proach for noise reduction are image denoising techniques, including the

use of wavelet-domain filtering methods (Nowak, 1999), as well as non-

local means filters (Buades et al., 2005; Liu et al., 2010).

Another source of noise is related to poor coil uniformity, and to changes

in the field due to the anatomy of patients. These lead to intensity non-

uniformities, which can cause as much as 20% of variation in the grey

level values of one tissue (Sled et al., 1998). This leads to significant prob-

lems when applying automatic segmentation techniques that assume tis-

sue intensity homogeneity. The most widely used technique to solve MRI

non-uniformities is Non-parametric Non-uniform intensity Normalisation

(N3, Sled et al. (1998)). This method has the advantage of being indepen-

dent of the type of MRI sequence acquired, and is insensitive to patho-

logical data. It is based on an iterative approach that estimates both the

multiplicative bias field and the distribution of the true tissue intensities.

3.2.3 Skull stripping

A specific type of preprocessing that is used when dealing with MRI im-

ages is skull-stripping. Since the skull and non-brain voxels are usually of

no interest to neuroscientific studies, it is therefore useful to remove them

from any further computation. This leads to a significant improvement in

performance, and also avoids unbalanced results due to the huge amount

of background voxels that are present in the images. Fig. 3.2 shows an

example of skull-stripping. The rightmost image is the result of skull-

stripping, where voxels corresponding to the skull have been masked out.

Skull-stripping methods can be usually grouped in three categories: man-

ual methods, morphology-based techniques (Höhne and Hanson, 1992),

and brain surface modelling (Smith, 2002). A manual segmentation usu-

ally leads to better results than most automated methods, since humans

can take into account the complex information required for this task.

31



Image analysis

Nonetheless, the time and expertise requirements make it a nonviable

solution for most studies. The most common class of skull-stripping tech-

niques are the ones based on morphology (FIL Methods Group; Hahn

and Peitgen, 2000; Shattuck et al.). The first step usually consists in

a foreground/background segmentation using a simple intensity thresh-

old. However, the detected foreground is almost always connected to non-

brain tissues such as the eyeballs. To separate these non-brain tissues,

morphological filtering is usually applied, by eroding links between brain

and non-brain regions of the image. These morphology-based methods are

mostly semi-automated, since the definition of thresholds needs to be done

manually. The third type of skull-stripping methods are the ones resort-

ing to deformable surface models (Dale et al., 1999; Popescu et al., 2012;

Smith et al., 2004). A typical example of a surface model is a tessellated

mesh of triangles. The model is fitted to the brain surface in the image, by

iteratively deforming the surface from a starting position, until an opti-

mal solution is found. Despite the higher computational power required,

the results of this type of methods are usually robust and reach manual-

segmentation levels of accuracy. Other methods exist that combine both

morphological techniques with deformed models (Galdames et al., 2012;

Iglesias et al., 2011; Ségonne et al., 2004), or methods based in non-local

means MRI denoising (Coupé et al., 2011; Eskildsen et al., 2012).

(a) Original image. (b) Skull-stripped image.

Figure 3.2. Example of the masking procedure. The frame on the left (a) shows the orig-
inal MRI image, while (b) depicts the skull-striped brain.

32



4. Clustering and consistency

Data clustering in an essential methodology in statistical data analysis.

Typical examples of research fields where it is commonly applied include

data mining, big data analysis, image processing and bio-informatics.

A simple definition of clustering is to partition a set of data into different

groups,i.e. clusters. These clusters share a similarity of some kind (Jain,

2010), and the definition of such similarity, usually assessed by a pre-

defined distance measure, is at the core of any clustering method. The

number of clusters can be selected a priori, or decided from the data itself

through a number of model selection criteria, such as Akaike information

criteria (Akaike, 1974) or minimum description length (Rissanen, 1978).

In this chapter, several clustering methods, and different distance mea-

sures are detailed. Clustering methods can be categorised in various

ways. They can be divided according to their active principle, where most

clustering methods are based either on competitive learning (Ahalt et al.,

1989; Rumelhart and Zipser, 1985), or density estimation (Bishop, 2006;

McLachlan and Basford, 1987). The former are more data-driven, while

the latter build upon previously constructed models. Another type of data-

driven approaches are the evolving clustering method (ECM) (Song and

Kasabov, 2001).

Clustering results can also take the form of hard clustering, where each

data element belongs to one and only one cluster; or soft clustering, where

each element may belong to more than one cluster, with a varying degree

of membership. Another form of categorising different clustering methods

is according to their clustering results. These can be hierarchical, non-

hierarchical, or graph-based.

In most clustering methods, the selection of parameters and the setting

of initial conditions influences significantly the clustering outcome, and it

is not always trivially solved. As shown in the last section of this chapter,
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Table 4.1. Typical distance measures used to measure data similarity.

Measure Distance Measure Distance

Euclidean
√

(x− y) · (x− y)
Correla-

tion
1− (x− x) · (y − y)

||x− x||||y − y||
Manhat-

tan

N∑
k=1

|xk − yk| Cosine 1− x · y
||x||||y||

Chebychev maxk |xk − yk| Jaccard1
∑N

k=1 xk ∧ yk∑N
k=1 xk ∨ yk

Hamming1 1

N

N∑
k=1

xk ⊕ yk Dice1 2
∑N

k=1 xk ∧ yk
||x||20 + ||y||20

1 typically used when x and y are binary vectors.

several techniques exist to alleviate this problem. One of those techniques

is suggested in Publication I, where the extraction of consistent informa-

tion from randomly initialised clustering methods is proposed.

4.1 Distance measures

In order to perform any type of clustering, the definition of the distance

function d(x,y), between two data vectors x and y is required. There are

many examples of such distance functions, with some examples shown in

Table. 4.1. The selection of the distance is mainly dependent on the task

at hand, as well as the statistics of the data and the feature extraction

methods used (Turney and Pantel, 2010). Most distances are based on

the Lp norm (Deza and Deza, 2009; Dunford and Schwartz, 1958), such

as Euclidean, Manhattan and Chebychev distances. These measures are

commonly used throughout many fields. The cosine (Turney and Pantel,

2010) and the correlation (Galton, 1886; Stigler, 1989) distances measure

the angle between two vectors. While correlation is based on the Pear-

son’s correlation coefficient, the cosine distance can be derived from the

Euclidean dot product. When dealing with binary vectors or sets, popular

distances include the Hamming distance (Hamming, 1950), the Jaccard

index (Jaccard, 1912) and the Dice coefficient (Dice, 1945), although the

latter does not possess the triangle inequality property.
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4.2 Competitive learning methods

In competitive learning methods, the premise is that the system can learn

representations of data, through training of a set of parameters. After

learning, the network is ready for generalisation.

Competitive learning is an unsupervised form of learning, akin in na-

ture to Hebbian learning (Hebb, 1949). The basic procedure for a compet-

itive learning method is (Rumelhart and Zipser, 1985):

1. Start with a set of randomly weighted network “units”

2. Limit the “strength” of each unit, typically done with a neigh-

bouring function;

3. Allow the units to compete, usually through weight updating, for

the right to respond to a given subset of inputs.

Therefore, as more data is fed to the units, each of them will converge to

the “centre” of a particular subset of input data, responding with higher

strength for input data “close” to that subset.

Typical competitive learning methods include K-means (Hartigan, 1975)

and self-organizing maps (SOMs) (Kohonen, 2001). These methods are

also examples of non-hierarchical clustering algorithms, where the result

is a “flat” clustering of the input data.

4.2.1 K-means clustering

In K-means (Hartigan, 1975; Lloyd, 1982) the objective is to assign data

points to K cluster centroids, which serve as cluster prototypes. The learn-

ing occurs by minimising the squared distances inside each cluster.

K-means is a particular case of the K-medoids algorithm, when the Eu-

clidean distance is used, which results in spherical clusters. Other mea-

sures return different shapes for the clusters, such as cubical clusters for

the Manhattan distance.

Formally, for a particular distance function d(x,y), the objective func-

tionH that K-medoids optimises for a set of data vectors X = {x(1), . . . ,x(N)}
is given by:

H =

N∑
n=1

K∑
j=1

wnk d(x(n),mj) , (4.1)

where vector mj represents the centroid of cluster j and wnk is the mem-

bership of data point n to cluster k.
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Since K-means can be derived from the expectation-maximization (EM)

algorithm (Dempster et al., 1977), the optimisation of H consists of a two-

step iterative optimisation:

Expectation or assignment step: Data points are assigned to the clos-

est cluster centroid:

wnk =

⎧⎨⎩ 1 if k = argminj d(x(n),mj)

0 otherwise
(4.2)

Maximisation or update step: The centroids are updated according

to the data points that are assigned to them. This update can be

done in batch mode:

mk =

∑
nwnkx(n)∑

nwnk
, (4.3)

or, for faster convergence, in a sequential mode:

mnew
k = mold

k + λnwnk(x(n)−mold
k ) , (4.4)

where λn is a learning parameter that decreases monotonically.

Despite its simplicity, K-means has several limitations. Since it is a

heuristic algorithm, there is no guarantee of convergence to the global

optimum, and the result is heavily dependent on the initialisation of the

algorithm. Furthermore, K-means tends to find clusters of similar spatial

extent, which is rarely the case for real data.

Several modifications and improvements to K-means have been pro-

posed. In K-means, each data element is assigned to a single cluster,

resulting in a hard clustering. A well-known variant of K-means is the

fuzzy C-means method (Bezdek, 1981; Dunn, 1973), where each data el-

ement can be a member of multiple clusters, with a membership value

assigned to each cluster (soft clustering). Other approaches include ker-

nel K-means (Schölkopf et al., 1998) and X-means (Pelleg et al., 2000).

4.2.2 Self-Organizing Maps

Self-organizing maps (SOMs) can be described in an unsupervised artifi-

cial neural network framework (Kohonen, 2001). They are typically used

for high-dimensional data visualisation. SOM may be formally described

as a non-linear, ordered, smooth mapping of high-dimensional input data

manifolds onto the elements of a regular, low-dimensional array. It per-

forms a lattice projection that preserves similarity information in the in-

put space, through competitive learning, and with an Hebbian learning
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rule (MacKay, 2002). SOM has been shown to be comparable to the best

methods of information visualisation, in terms of precision, but not in re-

call (Nybo et al., 2007).

As an input pattern is given as input to the network, the only map unit

activated by it is the winning neuron, best representing the input pat-

tern, called best matching unit (BMU). During the learning process, the

neighbourhood of the winning neuron is also taken into account, by up-

dating the location of the neighbour neurons. The learning process can

be considered to take place in two distinct phases. During the ordering

phase, the weight vectors organise themselves topologically. Afterwards,

a fine-tuning of the feature map is carried out in order to provide an ac-

curate statistical quantification of the input space (Haykin, 1999). After

training, the result is a topographic map of the input patterns. In this

map, the spatial locations of the neurons in the lattice are indicative of

intrinsic statistical features contained in the input patterns. Thus, the

continuous input space is mapped on a discrete set of prototype vectors.

SOM is a parametric method, where the dimensions and shape of the

map need to be selected from the beginning. The map of prototype vec-

tors is organised in a grid, composed of rectangular or hexagonal units. In

case of a rectangular shape, map units have four neighbours, while units

in a hexagonal map have six. Units at the edge of a map have a lower

amount of neighbours, except if the opposite sides of the map are con-

nected. This connection can be one sided only, resulting in a cylindrical

shape, or through both sides, where the map shape is a toroid.

In SOM, the winning neuron c is found using a minimum-distance cri-

terion, usually Euclidean distance, between the input vector x(n) and the

weight vectors of the map:

c = c(x(n), t) = argmink ‖x(n)−mk(t)‖ , (4.5)

where mk(t) denotes the centroid vector of neuron k at iteration step t.

During the learning process, both the BMU and its neighbouring neu-

rons are pulled closer to the input vector, by adjusting the centroid:

mk(t+ 1) = mk(t) + α(t)hck(t)[x(n)−mk(t)] , (4.6)

where hck(t) is the neighbourhood function of neuron k centred around

the winning neuron c at iteration t. Typically, a Gaussian neighbourhood

function is used:

hck(t) = α(t) exp(−‖mc(t)−mk(t)‖2/2σ2) . (4.7)
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where 0 < α(t) < 1 is an exponential decaying factor, and σ2(t) the neigh-

bourhood radius. Both of these terms decrease during the learning stage.

Other neighbourhood functions include the bubble and the cut Gaussian.

The algorithm can also run in batch mode (Kohonen, 2001). In this

case, the whole dataset is processed before the weight adaptation stage.

Instead of (4.6), the update formula takes the following form:

mk(t+ 1) =

∑
n hck(t)x(n)∑

n hck(t)
. (4.8)

This results in prototype vectors that are a weighted average of the data

samples, with weights given by the neighbourhood function.

Aside from the specification of the SOM geometry, and before training,

also the SOM prototypes need to initialised. This initialisation can be ran-

dom,e.g. taken from random input vectors, or sampled from the two prin-

cipal eigenvectors of the input data (linear initialisation). Although SOM

is very robust regarding initialisation, using linear initialisation typically

results in faster algorithmic convergence.

In order to use SOM as a clustering technique, interesting groups of

map units, i.e. clusters, must be selected (Vesanto and Alhoniemi, 2000).

Clustering the map units, instead of the original data, has the significant

advantage that the set of prototypes can be significantly smaller than the

original data set, resulting in a reduction of the computational cost. In

clustering based on local minima, the centroids of the clusters are cho-

sen to be the local minima of the SOM (Vellido et al., 1999; Vesanto and

Alhoniemi, 2000). A map unit is a local minimum if its average distance

to the neighbouring map units is smaller than any of the corresponding

distances of its neighbours. The rest of the map units are then assigned

to the cluster of the nearest centroid, in the Euclidean sense.

Because of its ease of use, as well as the ability to efficiently map high-

dimensional data into a 2D lattice, SOM has been widely used in many

applications, with over 10.000 published papers (Laaksonen and Honkela,

2011), most using the SOM toolbox (Alhoniemi et al.). Furthermore, many

variants of SOM have also been proposed. Examples include TASOM (Shah-

Hosseini and Safabakhsh, 2003), where adaptive learning rates and neigh-

bourhood functions are employed, and Neural Gas (Martinetz et al., 1991),

in which weights are adapted independently of any topological arrange-

ment. Other researchers have also proposed a supervised version of SOM,

where labelled data is used to train the map (Hagenbuchner and Tsoi,

2004; Kohonen, 2001).
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4.3 Density estimation methods

Another set of clustering techniques is based in the estimation of under-

lying probability density function (pdfs) (Silverman, 1986). These algo-

rithms assume a generative model for the data, where the data is gen-

erated by a mixture of underlying probability distributions. Hence, each

cluster can be described by one or more mixture components (McLachlan

and Basford, 1987).

Most density estimation methods are based on the EM algorithm (Demp-

ster et al., 1977). After estimating the parameters, e.g. through maximi-

sation of the log-likelihood function, the model can then be used to predict

subsequent clustering results. Recently, Bayesian-based approaches have

also been developed, to improve the mixture models for data clustering,

leading to, e.g. the latent Dirichlet allocation method (Blei et al., 2003).

When comparing statistical models to competitive learning, the choice

of clustering criterion is less arbitrary and the approach includes rigorous

statistical testing. Furthermore, density based methods have the advan-

tage of being able to cope with arbitrarily shaped clusters. Yet, the defi-

nition of the underlying models is not always easy to set. Another typical

limitation of these methods relates to the curse of dimensionality, which

hinders their performance, when dealing with high-dimensional data.

4.3.1 Discriminative clustering

A particular method called discriminative clustering (DC) (Kaski et al.,

2005; Sinkkonen and Kaski, 2002), is of particular relevance for this the-

sis. The main goal of DC is to cluster all data X, using the informa-

tion within a subset of pairs (x(n), ¢(x(n))), where ¢(x(n)) is the label of

x(n) (Sinkkonen and Kaski, 2002).

DC can be seen as a density estimation algorithm (Kaski et al., 2005),

since it is based on a generative distributional clustering model. Nonethe-

less, a Hebb-like competitive learning stage is conducted, to estimate the

clustering assignments. It performs semi-supervised clustering (Chapelle

et al., 2006; Zhou, 2011; Zhu, 2006), where training is done in unlabelled

data, with the help of a small amount of auxiliary data (labels).

The clusters obtained by DC are local in that a data element belongs to

a cluster k, defined as a Voronoi region Vk, x(n) ∈ Vk, if the distance to the

centroid defining that region, mk, is less than or equal to its distance to

any other centroid. Using the same notation as in Section 4.2, this can be
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formally described as a binary membership of data points to a cluster:

wnk =

⎧⎨⎩ 1 if k = argminj ‖x(n)−mj(t)‖
0 otherwise

(4.9)

The Voronoi regions are also homogeneous in terms of their labels,i.e. a

cluster should not group elements with two different labels. DC assigns a

distributional prototype

ψk = EVk
[p(¢|x)] , (4.10)

to each Vk. The parameters of such prototype are fitted to cluster all the

existing data, given the label.

The basic DC model (Sinkkonen and Kaski, 2002) is a piecewise-constant

generative model for ¢, conditioned in x, with the likelihood given by:

L =
∑

k

∑
nwnkp(¢|x(n))] , (4.11)

where the probability is given by a cluster-specific multinomial distribu-

tion.

Instead of predicting the classes by prototypes ψk, DC partitions directly

the primary data space, by searching for the set of all mk, M , that max-

imises the marginalised posterior:

MAPDC = p(M |¢,x) =
∫
ψ
p(M ,ψ|¢,x)dψ . (4.12)

Kaski et al. (2005) suggest the use of:

p(m,ψ) ∝ p(ψ) =
∏
k

p(ψk) , (4.13)

where the factors p(ψk) ∝
∏C

i ψ
n0
i−1

ki are Dirichlet priors with parameters

n0i , and C is the total number of classes. For computational convenience,

typically n0i = 1, ∀i, as suggested in Kaski et al. (2005).

The logarithm of the objective function (4.12), after applying the Bayesian

rule and marginalising for ψ, can not be optimised by gradient-based ap-

proaches, since they would only be affected by samples at the border of the

clusters, which would have zero probability. This is avoided by introduc-

ing a smoothing approach, as in Sinkkonen and Kaski (2002), consisting

of a Gaussian transformation of the data sample memberships:

wnk = Z−1(Xk) exp
(−||x(n)−mk||2/2σ2) . (4.14)

The parameter σ controls the membership smoothness and Z normalises

to unity the sum of all elements belonging to Vk.
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In this DC formulation, categories may still over-fit to apparent depen-

dencies in small data sets. One possible regularisation approach consists

in favouring an equal number of data points per cluster. This reduces

over-fitting and overcomes the "dead unit“ problem, common in K-means

with bad initialisation, where clusters can end up empty. The "equalised“

objective function is then (Kaski et al., 2005):

log(MAPDC)
EQ ∝

∑
i

∑
k

log Γ
(
n0i + nik

)
−(1 + λEQ)

∑
k log Γ

(
N0 +

∑
xwnk

)
. (4.15)

where λEQ >= 0 and N0 =
∑

i n
0
i . The smoothed number of samples, nik,

is defined as
∑
¢(x)=iwnk. Γ corresponds to the Gamma function.

The parameter λEQ governs the amount of regularisation applied. Higher

values of λEQ favour solutions with an equal amount of samples per clus-

ter. DC does not require a high percentage of labelled data, but prefers a

good balance between the number of labels per class.

4.4 Graph-based methods

Since graph-based methods are not studied in this thesis, but are none-

theless worth mentioning, only a brief explanation about them is given in

this section. For a good overview on this topic, the author suggests the

book by Mirkin (2012).

Graph-based algorithms, sometimes referred to as spectral clustering

methods, represent the data points as nodes in a graph (Donath and Hoff-

man, 1973; Fiedler, 1973; Jain, 2010). Graphs are structures formed by

a set of nodes, or vertices, and their connecting edges (Gross et al., 2013;

Schaeffer, 2007). An essential definition in graph clustering is cut size,

i.e. the sum of the weights assigned to the edges connecting different clus-

ters. The edge weights of a graph correspond to distances between data

samples. Graph-based clustering is the task of grouping graph nodes into

clusters, with the goal of minimising the cut size of the graphs.

Shi and Malik (2000) first proposed an efficient approximate graph-

cut based clustering algorithm with cluster size constraints, called Nor-

malised Cut. This was extended to a multi-class version (Yu and Shi,

2003) and to handle an arbitrary number of clusters (Meila and Shi, 2001).

Other approaches to spectral clustering include the representation of data

using the normalised eigenvectors of a kernel matrix (Ng et al., 2002),

and the graph Laplacian (Belkin and Niyogi, 2001; Luxburg, 2007). Spec-
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tral clustering has also been applied to the co-clustering problem (Dhillon,

2001) or to transductive learning (Joachims, 2003).

The main limitation of graph-based methods is that they often require

the computation of a distance matrix between all samples. When dealing

with high-sample data, this can be computationally intractable. Even re-

cent spectral clustering methods such as ClusterReg (Soares et al., 2012),

DaSpec (Shi et al., 2009), or diffusion maps (Coifman et al., 2005) suffer

from this limitation.

4.5 Evolving clustering method

Yet another clustering method is the evolving clustering method (ECM) (Song

and Kasabov, 2001). This algorithm performs a simple evolving, adap-

tive, maximum distance-based clustering, with a fast one-pass approach.

ECM is an unsupervised learning method, that clusters an input stream

of data, without pre-defining the number of clusters of such data. The

maximum distance between the centre of a cluster created by ECM and

the samples belonging to that cluster cannot be larger than a threshold

value. This value is a preset clustering parameter, and is responsible for

defining the number of possible evolved clusters. Such parameter can also

be adjusted during the clustering process, according to some optimisation.

An extension to this method, called ECMc (Kasabov and Song, 2002),

uses the results from ECM as initial values, and further optimises the

clusters in an off-line mode with a predefined objective function. By alter-

nating between the adaptive clustering with ECM and off-line optimisa-

tion of ECMc, it is possible to obtain improved clustering results, although

only in batch mode.

4.6 Consistency analysis

Typical clustering algorithms have, at least, a few parameters. Further-

more, the algorithms may approach the solution via different paths, de-

pending on the algorithm’s initial conditions. The selection of such pa-

rameters, as well as the optimal definition of the initial conditions is not

always trivial, and the clustering results may heavily depend on them.

Ensemble learning (Bishop, 2006; Granger and Ramanathan, 1984; Po-

likar, 2012), i.e. using multiple runs of learning algorithms, is a typi-
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cal machine learning paradigm used to solve this problem. It includes

methods such as bagging (Breiman, 1996), random tree forests (Breiman,

2001), boosting (Freund and Schapire, 1995) and cross-validation (Stone,

1974). Ensemble learning is typically used when one has access to some

ground-truth, although some approaches have been used in an unsuper-

vised framework (Fern and Lin, 2008; Gao et al., 2013; Hong et al., 2008).

As mentioned before in Section 4.3.1, another related approach is semi-

supervised clustering. In such approaches, the burden is again placed

on the label selection. While typically a small set is manually selected,

this selection becomes again subjective and might not be available for all

classes. To avoid the infection of a priori or subjective information, labels

could be created using a automatic data-driven approach.

As detailed in Publication I, a method based on an analysis of consis-

tency in clustering methods can be utilised to automatically estimate data

labels. Such analysis is particularly relevant for any algorithm where

parameter selection and initialisation may lead to different optimisation

paths. A particular example is SOM, with its intrinsic stochastic nature

and dependence on the initialisations.

The approach proposed in this dissertation is based on exploiting the

variability of different clustering runs. With different random initialisa-

tions, cluster representations of data may vary. Therefore, data points

sharing the same cluster in a given run may be assigned to different clus-

ters in another. Consistent clusters are therefore defined as those com-

prising elements that are grouped together in a large number of runs.

An illustration of this concept is given in Fig. 4.1, using toy-data. On

the leftmost example, the numbered circles are all in the same cluster. In

the other two cases, circle 3 appears in different clusters from the other

two. Consistency in clustering membership, such as 1 and 2, is indica-

tive of high similarity between the two elements. Circle 3 has too much

variability in its clustering grouping to be considered consistent.

The overall similarity of the clusters can be assessed via a variety of

distance measures (Vinh et al., 2010). In this dissertation, two such mea-

sures are proposed. One is based on the elements included in each clus-

ter (4.16), and a complementary one is based on the distributional infor-

mation of the elements belonging to different clusters (4.18).

After running Z clustering runs on data X, with dimensions [S×N ], the

first measure assessing the distance between two clustering assignments
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Figure 4.1. Clustering results with three different initialisations, using toy data. The
circles represent different data points, while the dashed lines define cluster
borders. Circles 1 and 2 always appear together for different runs, represent-
ing one same class. Circle 3 won’t be picked to represent any such class due
to the variability of its clustering. Figure taken from Publication I.

is defined as:

d1(ci, cj) =
1

N

∑N
n ci(n) ∧ cj(n)∑N
n ci(n) ∨ cj(n)

, (4.16)

where

cz(n) =

⎧⎨⎩ 1 if element n belongs to cluster z

0 otherwise
(4.17)

∧ and ∨ are the AND and OR logic operators, respectively.

The main objective of d1 is to group clusters according to the elements

contained therein. In practice, this measure attempts to remove the re-

dundancy obtained by running several times similar clustering methods.

Clusters with d1(ci, cj) ≥ D1 are merged together, where the value D1 is

mainly dependent on the parameter variation of the clustering methods

used, and is typically over 0.8.

Once redundant clusters have been merged, the next stage needs to deal

with clusters that have identical distributions. For example, when deal-

ing with data with three well defined clusters, and selecting K = 4, the

three true clusters will be split artificially. Since the methodology is un-

supervised, there is no way to avoid these types of splits. Therefore, a

measure based on distribution distance is required to reduce the number

of split clusters.

In the case of Gaussian-like distributions, one distance measure can be

defined as:

d2(ci, cj) = ‖Eci [x(n)]− Ecj [x(n)]‖+ ‖Varci [x(n)]− Varcj [x(n)]‖ . (4.18)

where Ecp [X] and Varcp [X] represent the row-wise expected value and

variance of all elements x(n) belonging to cluster p. Due to the data nor-

malisation, 0 ≤ ||x(n)|| ≤ 1, the proposed distance, corresponding to the
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sum of mean and variance differences, gives a higher weight to the former

than the latter. The computation of mean and variances is computation-

ally efficient, therefore the calculation of this distance avoids the complete

derivation of the distribution.

Clusters with d2(ci, cj) ≥ D2 are again merged. D2 is usually ≥ 0.9, to

avoid grouping together clusters that might represent different classes.

This still allows for some variability in a cluster distribution, taking into

account noise and other artifacts in the observed data.

In the case of non-Gaussian distributed data, d2 might not be adequate.

Nonetheless, the idea behind the use of a generic Gaussian-like measure

rests on the central limit theorem. Since we often deal with a compo-

sition of identically distributed clusters, the resulting clusters should be

approximately normally distributed.

Other distributional comparison methods can be adapted to replace (4.18),

including the Kullback-Leibler (Kullback and Leibler, 1951) or the Jensen-

Shannon (Manning and Schütze, 1999) divergences. The choice of d2 de-

pends mainly on the data set and computation requirements.

The pseudo-code for clustering consistency analysis proposed in this dis-

sertation is given in Alg. 1. It describes how to use the proposed measures

to retrieve data points consistently grouped together. Using distance mea-

sure d1, the first stage clusters correspond to an intersection of only those

cluster elements that are consistently grouped together. The second mea-

sure, d2, allows for some variability in cluster distributions, and since it

occurs only after the first, it does not decrease the clustering consistency.

Note that, unlike typical clustering algorithms, not all data points will be

assigned to a cluster, since not all will be consistent in their assignments.

Furthermore, besides the clustering method used as basis for the consis-

tency search, the dimensions of the data to analyse also heavily influence

the number of runs needed to produce reliable results. Nonetheless, this

procedure can be used as an estimation of representative points of the

different classes present in the data.
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Algorithm 1: Pseudo-code for consistency analysis of different cluster-

ing runs. D1 and D2 are two user selected thresholds, for distance d1

and d2, while Z is the number of different clustering runs.

Data: X, [S ×N ], data matrix

Result: C̃, [N × L] clusters composed of data elements consistently

grouped together

Estimation of consistent elements:

for z = 1 to Z do

random initialisation of parameters

Obtain clustering assignments Cz

end

Ĉ = [C1 . . . CZ ]

while any d1(ĉi, ĉj) > D1 do

čp = ĉi ∧ ĉj

end

Č = [ĉ1 . . . ĉP ]

while any d2(čp, čq) > D2 do

c̃l = čp ∨ čq

end

C̃ = [c̃1 . . . c̃L]
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5. Brain tissue segmentation

The field of medical imaging has been evolving rapidly in recent years,

leading to a wide variety of tools to image the brain. In particular, the res-

olution increase in MRI-based techniques allows for better diagnosis and

studies of the brain. Nonetheless, medical image segmentation remains a

challenging problem, due to image complexity and absence of anatomical

models that fully capture deformations in the brain structures (Ashburner

and Klöppel, 2011; Kapur et al., 1996; Mortazavi et al., 2012; Sotiras et al.,

2013). In addition, different MRI field strengths can affect segmentation

results (West et al., 2013).

Manual segmentation methods are subjective and it is common to find

disagreements and variability between independent experts (Warfield et al.,

2004). Therefore, several semi-automated and automated methods in

brain tissue segmentation have been developed to alleviate these prob-

lems. In this chapter, several tissue segmentation methods are briefly

reviewed, with a clear focus on lesion detection. Also, because they are

needed for a proper characterisation of each tissue, as well as the pro-

posed segmentation, different tissue distributions and some typically used

measures of segmentation accuracy are presented.

The methodology described in the Section 5.3 is one of the main contri-

butions of this dissertation, and is detailed in Publication III. It consists of

a self-supervised tissue segmentation approach, based on a discriminative

strategy, and avoids the extensive use of a priori information, rendering

it very versatile, and able to cope with different tissue types. Further-

more, it also returns tissue probabilities for each voxel, crucial for a good

characterisation of the evolution of brain lesions, as well as the charac-

terisation of regions of transition between tissues. The last section in

this chapter shows examples of the application of this methodology, using

simulated data and real data, where ground-truth is available, similar to
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the results detailed in Publication III. Publications IV and V were con-

ducted with a more pragmatic objective in mind, and the segmentation

was performed on a real data cohort. The contributed approach is used

to show that changes in cognitive scores of patients with neurodegener-

ative disease are correlated with early-stage lesions. Furthermore, the

development of WML was shown to be preceded by quantifiable changes

in normal-appearing white matter. The last exemplary result comes from

a tumour segmentation, where the self-supervised tissue segmentation

method proposed in this dissertation was able to segment several regions

of the tumour.

5.1 Background

Vannier et al. (1985) first proposed using multi-spectral data to the sta-

tistical analysis of MRI. Since then, major developments have happened

in the brain segmentation field (Cuingnet et al., 2010; Heckemann et al.,

2008; Iglesias et al., 2011; Klauschen et al., 2009; Valverde et al., 2014).

The simplest method to segment brain tissues is manual tracing, which

is very subjective and time-consuming (Warfield et al., 2004). Computer-

based methods allow for faster and more objective tissue segmentations.

They are also more reliable, especially when dealing with pathological

conditions (Mortazavi et al., 2012), but do not always use all the infor-

mation available. Several of these methods still rely on manual tracing

to create ground-truth data or labels for segmentation (Choi et al., 1991;

Harvard Medical School; Shattuck et al., 2008; Wismüller et al., 2004).

To avoid human intervention, other approaches have been developed to

create subject-specific automatic labels based on clustering (Vovk et al.,

2011), mixture models (Lee et al., 2009; Zhang et al., 2001) or atlas regis-

tration (Cocosco et al., 2003).

Segmentation methods tend to use several different basic approaches,

rendering a proper categorisation hard. Nonetheless, they can be broadly

grouped in three types: data-driven, statistical analysis and neural or

fuzzy networks.

Data-driven methods were among the first methods developed to per-

form brain segmentation. Several rely on intensity thresholds, to detect

the different tissues (Lim and Pfefferbaum, 1989; Schnack et al., 2001),

especially when dealing with brain lesions (Anbeek et al., 2004; Khademi

et al., 2012). These often require human intervention to set the thresh-
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olds, leading to subjectivity and loss of generalisation. Other data-driven

approaches include level-set methods (Fang et al., 2011), deformable mod-

els (Kapur et al., 1996), region growing (Hojjatoleslami et al., 1999) and

hierarchical techniques (Pachai et al., 1998). While simple, the accuracy

of these methods is limited, and they are very sensitive to noise.

Statistical methods are among the most widely used methodologies to

perform brain segmentation techniques. Approaches based on the EM al-

gorithm (Leemput et al., 1999, 2001; Manjón et al., 2010; Zhang et al.,

2001) or non-parametric k-nearest neighbours (kNN) methods (Anbeek

et al., 2004; de Boer et al., 2009; Vrooman et al., 2007; Wu et al., 2006)

work by estimating the probability maps of the brain tissues. Other meth-

odologies segment images through Parzen windows (Sajja et al., 2006),

rule-based methods (García-Lorenzo et al., 2009) or support vector ma-

chines (SVMs) (Lee et al., 2005; Vovk et al., 2011). The main disadvantage

in most statistical approaches is the assumption of normal distributions

which, in the case of brain lesions, is seldom verified.

The third main category of brain segmentation methods are the fuzzy

and the neural networks. These cover a wide range of techniques, from

artifical neural networks (ANNs) (Alirezaie et al., 1998; Dyrby et al., 2008;

Reddick et al., 1997; Zijdenbos et al., 2002) to fuzzy clustering (Admiraal-

Behloul et al., 2005; Brandt et al., 1994; Lin et al., 2010; Nakamura and

Fisher, 2009; Pham and Prince, 1998; Seghier et al., 2008; Shen et al.,

2010). The main issue for these classifiers is the excessive training time,

as well as the careful selection of training data. Also, as with intensity-

based methods, noise presents many difficulties for segmentation.

Recent advances in MRI, namely whole brain coverage, high spatial res-

olution, and good contrast-to-noise ratios, have led to an increased us-

age of brain atlases, with standard prior tissue probabilities (Klauschen

et al., 2009). The majority of modern brain segmentation methods regis-

ter the images to segment to such atlases. In particular, most brain image

segmentation software packages are atlas-based (BrainVoyager (Goebel

et al., 2006); SPM2/SPM5 (Ashburner and Friston, 2005); FSL (Smith

et al., 2004) and FreeSurfer (Fischl et al., 1999)). One major drawback

of employing atlas priors happens when significant anatomical changes

occur, e.g. due to brain lesions, regions with high degree of variability, in

elderly people, with brain atrophy or in the case of infants. In such condi-

tions, it is difficult to establish a priori the anatomy and number of tissues

to be analysed (Cardoso et al., 2011; Pachai et al., 1998). To avoid strong
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anatomical priors, several methods employ more general priors, based on

intensity distributions or other statistical relations.

The study of lesions has received an increased focus in previous years,

with particular emphasis to MS detection (Cruz-Barbosa and Vellido, 2011;

Dyrby et al., 2008; Khademi et al., 2012; Sajja et al., 2006; Zijdenbos

et al., 2002) and tumour segmentation (Cruz-Barbosa and Vellido, 2011;

Dou et al., 2007; Gordillo et al., 2013; Prastawa et al., 2003). A common

trend in modern methods of lesion detection is to consider lesion voxels

as distribution outliers (García-Lorenzo et al., 2009; Leemput et al., 2001;

Schmidt et al., 2012; Shiee et al., 2010). Nevertheless, since the quan-

tity of MS voxels is much smaller, when compared to other classes, the

estimation of its pdf may not be as accurate as for other classes. These

outlier approaches rely on the correct identification of all healthy tissues,

typically with the aid of probability atlases. Another recent imaging tech-

nique, diffusion tensor imaging (DTI) (Le Bihan et al., 2001; Merboldt

et al., 1985), has also seen an increased usage, when dealing with brain

lesions, due to its ability to reveal abnormalities in the white matter struc-

ture. Several studies have proposed to use DTI, or a combination of it and

standard MRI images to perform brain tissue segmentation (Commowick

et al., 2008; Sage et al., 2009; Trivedi et al., 2006; Zhan et al., 2009).

5.2 Tissue intensity distributions

When dealing with brain tissue segmentation, as well as in several ma-

chine learning approaches, a core concept is feature selection. Most tis-

sue segmentation methods use pixel intensities of single or multi-spectral

MRI as data features. There, images are represented as gray values, typ-

ically ranging from 1 to 255. Fig. 5.1 shows the intensity distributions of

simulated MRI data, using 3 sequences. As shown in the figure, several

tissue distributions overlap in the data space, even if their main peaks

may be rather clearly identified.

While the data shown in Fig. 5.1 is simulated, it is based on a high-

resolution, high-SNR MRI volume of a normal subject (Collins et al., 1998).

Besides being anatomically realistic, it also models partial volume (PV)

making it one of the best benchmark sets in MRI.

After basic preprocessing, cf. Chapter 3, all imaging sequences can be

vectorised, each data element becoming a vector composed of the gray

values of each voxel in all available sequences. This is the basic feature
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(a) 3D distribution of the gray levels

of the different tissues.

(b) {T1, T2} intensity

distribution histogram.

(c) {T1, PD} intensity

distribution histogram.

(d) {T2, PD} intensity

distribution histogram.

Figure 5.1. Intensity distribution images for simulated MRI data with lesion and 3%
noise. (a) shows the three-dimensional plot of all the data points in the
{PD, T1, T2} space. (b)-(d) are projections of the 3D sequence space in a 2D
histogram of intensities, where the z-axis is proportional to the number of
elements projected to each (x,y) coordinate.

vector for brain imaging data. Other features can be added to increase

spatial information, such as coordinates (Anbeek et al., 2004; Mayer and

Greenspan, 2009), local region mean (Akselrod-Ballin et al., 2009) or tex-

tures describing neighbouring voxels (Theocharakis et al., 2008).

5.2.1 Partial Volume Effects

The intensity of a specific MRI voxel depends on the contents of the cor-

responding anatomical volume and the sequence used. Due to the finite

spatial resolution of MRI, and since voxels may contain more than one

tissue, this poses a major problem. When a voxel is composed by only

a single tissue, the signal intensity will be characteristic of that tissue

type. On the other hand, when one voxel represents more than one tissue

type, the signal will be a combination of the contributions of the differ-

ent tissues. This phenomenon is called partial volume effect (PVE) (Ángel

González Ballester et al., 2002).

When the brain region to be analysed corresponds to tissue transitions,

or degenerative lesions, the PVE is particularly evident (Mortazavi et al.,

2012). Several segmentation methods ignore this effect, giving only a
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hard-classification for all voxels, assigning one tissue for each voxel (Am-

ato et al., 2003; Garcia-Sebastian et al., 2009).

Direct estimation of PVE is a difficult problem, without a unique solu-

tion. Several methods consider PVE a corrupting phenomenon, and try

to correct it, while recent methodologies focus on its estimation, to obtain

sub-voxel accuracy. This estimation can be done by solving a linear sys-

tem, using the information provided by multi-spectral MRI (Brandt et al.,

1994; Choi et al., 1991; Soltanian-Zadeh et al., 1993). Or, more commonly,

the estimation is based in modelling the statistical distributions of tis-

sues, and fit them to the imaging data (Khademi et al., 2012; Leemput

et al., 2003; Manjón et al., 2010; Pham and Prince, 1998; Santago and

Gage, 1993; Ángel González Ballester et al., 2002). Most such approaches

also limit the number of possible tissues per voxel.

In Publication III, a statistical approach is also followed. In that case,

the PVE is taken into account, by directly estimating the probabilities of

tissue representation in each voxel. This approach requires different tis-

sue distributions in a multi-spectral setting, but does not limit the num-

ber of possible tissue combinations. Despite some clear advantages, and

because the method is based only on tissue intensities, the estimation ac-

curacy decreases with noise. On the other hand, it does not impose any

existing information on the data, rendering it a rather generic approach

for tissue segmentation.

5.2.2 Contrast-enhancement through ICA

In order to improve the separability of different tissues, contrast-enhancing

methods can be applied, the most typical of which being high-pass im-

age filtering. In MRI, different tissues react differently to changes in the

imaging parameters (Huettel et al., 2008). In addition, one can assume

that the intensity of each voxel is a weighted combination of the contri-

butions from the different tissues present in such voxel. If the number

of sequences equals or surpasses the number of tissues represented in

those images, then independent component analysis (ICA) can be applied

to this data. ICA is a statistical and computational technique used to re-

veal hidden factors that underlie sets of random variables, measurements,

or signals (Hyvärinen et al., 2001). This technique is probably the most

widely used method to solve the blind source separation (BSS) (Cardoso,

1990; Jutten and Cardoso, 1995) problem, and is implemented in many

algorithms, such as FastICA (Gävert et al.; Hyvärinen and Oja, 1997) and
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Infomax (Amari et al., 1996; Bell and Sejnowski, 1995). Since a thorough

overview of BSS and ICA methods is beyond the scope of this dissertation,

only a brief explanation of ICA on the innovations will be detailed. The

books by Comon and Jutten (2010) and Hyvärinen et al. (2001) provide

more details on the aforementioned topics.

In the basic ICA model, the independent components are considered ran-

dom variables with no time structure. The assumption of independence is

the active principle behind the model identification. ICA estimates prop-

erly the sources by optimising a number of possible contrast functions,

typically based on high-order statistics (Hyvärinen and Oja, 1997).

To relax the aforementioned assumption, considering time-dependent

stochastic processes, instead of random variables, one can use the inno-

vation of a process, i.e. the new information fed to the process at a given

time point. This leads to ICA on the innovations (Hyvärinen, 1998), which

can also be adapted to deal with spatial-dependent data. The innovation

process s̃(n) is defined as the error of the best prediction of a stochastic

process s(n). Thus, the innovation process is defined by:

s̃(n) = s(n)− E[s(n)
∣∣n, s(n− 1), s(n− 2), . . .] . (5.1)

The innovation process, in the simplest case, can be reasonably approx-

imated by the difference process:

s̃(n) ≈ Δs(n) = s(n)− s(n− 1) . (5.2)

The independent component analysis on the innovations is based on the

lemma (Hyvärinen, 1998) that states that if x(n) and s(n) follow x(n) =

As(n), then the innovation processes follows the same model:

x̃(n) = As̃(n) . (5.3)

Therefore, it is enough that s̃(n) has independent components.

The benefit of applying ICA on the innovation process rather than on

the original signals is that the innovations are usually more independent

and more non-Gaussian than the original processes.

When applying ICA on innovations to brain imaging data, the objective

is to increase the contrast between tissues, which allows for a better seg-

mentation. The main restriction is, as mentioned before, that the number

of independent components needs to equal, at most, the number of se-

quences used. Even when dealing with multi-spectral data, this is seldom

the case. Therefore, the use of ICA is often limited,cf. Publication II.
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Other methods to improve contrast, while reducing noise, include non-

linear anisotropic (Gerig et al., 1992), and wavelet (Nowak, 1999) filtering.

Unfortunately, these do not take into account multi-spectral data, render-

ing them impractical. When applied to each sequence separately, they

would cause a difference of intensity values in the voxels of each tissue.

5.3 Self-supervised segmentation

One of the main contributions of this dissertation is the application of a

self-supervised methodology to brain tissue segmentation. This approach

is rooted on a discriminative clustering strategy, as shown in Section 4.3.1.

The method is suited for the identification and segmentation of various

brain tissues, including lesions such as MS and tumours. Fig. 5.2 illus-

trates an overall view of the methodology.
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Figure 5.2. Flowchart depicting the proposed self-supervised brain segmentation
method.

The discriminative clustering method, as described in Publication III,

estimates the probability of membership of each voxel to all tissue classes,

by maximising the difference between tissue intensities, while minimising

the intensity variance within each tissue distribution. This probability of

membership, or representation, is a direct measure of PVE. The main re-

quirements of such approach is the existence of multi-spectral data, where

the tissue distributions in the various sequences are as independent as

possible, as well as the existence of a small set of labelled data elements.

The "self-supervision" stems from the fact that the labelled data re-

quired by DC is based on an analysis of clustering consistency of SOM

(cf. Publication I and Section 4.6).

Clusters computed by DC are built based on labels for the different tis-
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sues. Those clusters may represent a single tissue, or a weighted combina-

tion of various tissues. Such combination compensates for possible minor

errors in the construction of labels, as well as allow for the existence of

clusters corresponding to tissue transitions. In MRI, such transitions can

arise from two different sources. The first caused by partial volume ef-

fects, due to which a voxel can contain more than one tissue. The other

case occurs when a particular tissue starts losing some of its "standard"

properties, typical in the case of progressive diseases.

As seen in Section 4.3.1, each voxel has a specific membership degree to

the different clusters, obtained by DC. By combining the probability of a

DC cluster to comprise a given tissue, with the membership of a voxel to

all clusters, an estimation of tissue probability per voxel is obtained.

5.3.1 Segmentation robustness

DC, as many other clustering algorithms, is a parametrised method. There-

fore it requires an appropriate selection of such parameters. Using an ap-

proach similar to the one used for consistent clustering analysis, see Sec-

tion 4.6, DC can be run with several different initialisations and an av-

erage estimation calculated. Such approach produces a more accurate

estimate of clustering outcomes, while providing some information on the

stability of the solutions.

Since the methodology proposed is developed for tissue segmentation,

where the number of tissues is never smaller than three (CSF, GM, WM),

the minimum value for the number of clusters K is also set to three. Fur-

thermore, when dealing with the segmentation of healthy tissues and le-

sions, a maximum of five clusters can be set. Higher values would lead to

an over-segmentation. These values can be adapted to the study at hand,

allowing for a general segmentation, whether or not lesion is present.

When dealing with brain lesions, the number of lesion voxels is typically

much smaller than that of other tissues, in particular white matter. The

parameter λEQ tries to compensate this disparity. Therefore, different

values for this parameter, ranging from 0 to 1, can also be used. To avoid

such imbalances, another approach is to use the same number of training

voxels for each tissue, at the risk of having only a few samples per tissue.

To prune out possible misuses of existing label information, runs result-

ing in clusters merging two or more different labels are discarded. The

results of the remaining runs can then be averaged out to obtain the final

tissue segmentation result.
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The pseudo-code version of algorithm is detailed in Algorithm 2.

Algorithm 2: Pseudo-code of discriminative clustering.
Discriminative clustering:

for K = 3 to 5 do

create K random cluster prototypes

for λEQ = 0.4 to 1 do

optimise (4.11)

calculate (4.12)

end

P̂¢ (x(n),K) = EλEQ [P̂¢ (x(n),K, λEQ)]

end

– Select only results for which the labels were not mixed in

different clusters

P̂¢ (x(n)) = EK [P̂¢ (x(n),K)]

5.4 Error measures

When dealing with segmentation techniques, a key concept is error cal-

culation. Due to the complexity of the human brain anatomy, ground-

truth or “gold standards” are not always available. Even when using

manually delineated data, different independent experts may not always

agree (Warfield et al., 2004), leading to inter-expert variability. In these

cases, one can apply methods such as STAPLE (Commowick and Warfield,

2010; Warfield et al., 2004), where several expert segmentations are used

to estimate a reference standard.

Assuming ground-truth or “gold standards” are available, several mea-

sures can be used. Two of the most typically used distances in tissue

segmentation are the Dice coefficient (κd) (Dice, 1945):

κd =
2TP

2TP + FP + FN
, (5.4)

and the Jaccard index (κj) Jaccard (1912)), cf. Section 4.1:

κj =
TP

TP + FP + FN
, (5.5)

where the parameters are the number of true-positive (TP), true-negative

(TN), false-positive (FP) and false-negative (FN) pixels, or voxels. Both
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Dice and the Jaccard measures are limited between 0, for complete mis-

classifications, and 1 for perfect performance.

These two measures are often associated with the sensitivity (ηsvt):

ηsvt =
TP

TP + FN
. (5.6)

and the specificity (ηspf ) coefficients:

ηspf =
TN

TN + FP
. (5.7)

Sensitivity and specificity characterise how many data points are cor-

rectly segmented and how many of the ones outside the ROI are correctly

excluded, respectively.

One problem with specificity is that it involves the number of true neg-

atives, hence becoming directly dependent on the data set size. To avoid

this problem, sensibility (ηsbl) can be used instead:

ηsbl = 1− FP
TP + FN

. (5.8)

While both Dice and Jaccard distances provide a good summarising in-

dex of an overall classification, their sensitivity to high values of classifi-

cation is rather low. Conformity (κc, Chang et al. (2009)) is a more sen-

sitive and rigorous measure, allowing for a better discrimination of small

variability in segmented images. It is defined as:

κc = 1− FP + FN
TP

, if TP >0. (5.9)

Despite their advantages, both conformity and sensibility can take nega-

tives values, which are hard to interpret. In particular, when the segmen-

tation and the ground-truth do not have any overlap, κc takes the value

of negative infinity, while ηsbl is negative for classification regions larger

than the reference.

All the aforementioned measures can be adapted for fuzzy classifica-

tion (Cardoso et al., 2011; Crum et al., 2006; Shattuck et al., 2001), but

their definition is not particularly suited for those cases. In such circum-

stances, the rms error can be employed:

rms =

√
1

N

∑
¢

(P̂¢x(n)− P¢x(n))2 , (5.10)

where P̂¢ x(n) and P¢ (n) are the estimated and true probabilities of x(n)

to belong to class ¢, respectively. This measure can be computed consid-

ering that each data point is assigned to only one class, by thresholding

(hard classification, rmsh), or that each voxel can have contributions from

several classes (soft classification, rmss).
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5.5 Experimental results

In this section, are shown some examples of results obtained when ap-

plying the self-supervised segmentation methodology. For more details on

these and other results, the reader is directed to Publications II to V.

5.5.1 Simulated data

The performance of the proposed self-supervised segmentation method

was evaluated on simulated data from the Brainweb site1, where ground-

truth is available.

This data set included brain both healthy and with MS lesion, all with

multi-spectral images, comprising PD, T1- and T2-weighted sequences.

CSF GM WM

(a) HARD

(b) SOFT

(c) 0% Noise

(d) 3% Noise

G
ro

un
d-

tr
ut

h
So

ft
 s

eg
m

en
ta

tio
n

Figure 5.3. Results for the segmentation using simulated healthy brain data, with 0%
and 3% noise levels and no inhomogeneity. The first two rows show the
ground truth, both with hard (a) and soft (b) class assignments. The soft
segmentation results for noiseless and noisy data are displayed in rows (c)
and (d), respectively. From left to right, the classes shown are CSF, GM and
WM, respectively. Adapted from Publication III.

In Fig. 5.3 are shown the results obtained when segmenting simulated

healthy brains. Similar results for simulated brains with MS lesion are

1http://brainweb.bic.mni.mcgill.ca/brainweb/, visited 06/2014
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shown in Fig. 5.4. In both figures, sub-figures (a) and (b) show the ground

truth, in hard and soft perspectives, respectively. The proposed method’s

segmentation is depicted in sub-figures (c) and (d) for the noiseless and

3% noise data. Visual inspection shows a clear agreement between the

soft ground-truth segmentation and the estimated soft segmentation, for

both noiseless and noisy data. One can also see, especially in the borders

of the WM, that noise has a slight detrimental effect on the results, but

that effect is quite mild.
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CSF GM WM MS

Figure 5.4. Similar results as the one presented in Fig. 5.3, but including a class of MS
lesion, depicted in the right-most column.

To quantitatively evaluate the results of the proposed method, since

ground-truth is available, one can compute a series of error measures.

Such measures are shown in Table. 5.1, for healthy brains, and brains

with MS lesion, both with 3% noise level. In the case of the simulated

healthy brains, κd coefficients over 0.96 were reached for all tissues. The

high values of sensitivity and specificity show that the method is very ac-

curate, even in the presence of noise. For the data with simulated brain

lesions, the results are again quite good, with even the lesion tissue ob-

taining a κd score of 0.89. Note that, in this simulated data, the wrongly

classified voxels obtained correspond mostly to partial volume voxels, with
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Table 5.1. Quantitative evaluation of the segmentation results for simulated data for
both healthy and brains with lesion, with 3% noise and no inhomogeneity.

κj κd κc ηsvt ηspf ηsbl ( rmsh−rmss

rmss ) (%)
H

ea
lt

hy
CSF 0.94 0.97 0.94 0.97 0.99 0.97 48.4

GM 0.93 0.96 0.92 0.96 0.97 0.96 68.6

WM 0.94 0.97 0.94 0.96 0.99 0.98 41.0

L
es

io
n

CSF 0.86 0.93 0.84 1.00 0.98 0.85 55.9

GM 0.89 0.94 0.86 0.90 0.99 0.99 55.0

WM 0.95 0.97 0.94 0.98 0.97 0.96 55.5

MS 0.79 0.89 0.74 0.87 1.00 0.91 29.7

a particular high level of noise. Of remarkable importance is the ability

of the proposed segmentation method to handle the PVE, shown in the

values of rms improvement, comparing a hard classification to a soft one.

This improvement is highlighted in the last column of Table. 5.1.

5.5.2 Grand challenge

Fig. 5.5 shows the results obtained for one patient of the GrandChallenge

dataset2 (Styner et al., 2008), where the objective was to identify voxels

corresponding to MS, in a population of 54 subjects.

(a)

(b)

RATER SEGMENTATION

CSF GM WM MS

Figure 5.5. Segmentation results for a patient from the Grand Challenge data set. The
labelled voxels are shown in (a) and the soft segmentation obtained by DC is
displayed in (b). The classes exhibited are CSF, GM, WM and MS, from left
to right respectively. The lesion segmentation, provided by an expert rater, is
shown on the left bottom frame. Adapted from Publication III.

In this study, ground-truth was given by two expert raters. Although the

segmentation is in-line with the one from the rater depicted in the figure,

there are a few differences. As an example, the proposed method suggests

2http://www.ia.unc.edu/MSseg/results_table.php, visited 04/2014
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Figure 5.6. Results obtained by several methods, when applied to the test data set of the
MS Lesion GrandChallenge.

a set of lesion voxels that are not considered by the rater. Nevertheless,

it is important to note that those have the same multi-spectral gray level

behaviour as the lesion. In any case, by visual inspection, and taking into

account only tissue intensities, the results are quite reasonable, despite

some artefactual lesions found in the frontal area of the brain.

Fig. 5.6 shows a plot with the segmentation score values of different

methods on the GrandChallenge dataset.

The proposed method scores 77.5%, without resorting to any anatomi-

cal prior. Using a mild, and rather general prior, the score improves to

78.6%. While these results keep the method in the middle of the table, it

is worth mentioning that these scores are almost the best from all model

distributions methods. Other approaches tend to rely on very specific pri-

ors, rendering them quite specific to the study of MS. Furthermore, the

segmentation provided by the two expert raters is quite different. Calcu-

lating the Dice scores between the manual segmentations for all training

patient, results in an agreement of only 27.13%±2.1%. This value is bigger

than the difference between the scores of the best method and the worst,

making a method comparison hard to evaluate.

5.5.3 LADIS data

The proposed segmentation was also applied to data from the Leukoaraio-

sis and Disability (LADIS) study (LADIS Study Group, 2011), with multi-

spectral MRI images from patients that suffer from mild to severe WML.

The extent of hyperintensities on white matter regions was evaluated on
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FLAIR images only, both by visual rating scales and a semi-automated

volumetric analysis, as detailed in van Straaten et al. (2006). The lesions

classified through the aforementioned method are referred in this disser-

tation as conventionally estimated WML.

A B C D E

F G H I J

Figure 5.7. Lesion probabilities for a patient of leukoaraiosis and disability study
(LADIS) study. (A) FLAIR image for a given subject suffering from WML,
at a middle level height. (B) conventionally estimated white matter lesion.
(C-E) estimated white matter lesion, using the proposed segmentation algo-
rithm, for full, intermediate and small proportion of lesion. (F-J) present
similar images for the zoomed portion depicted by the white box in A. Figure
taken from Publication IV.

Fig. 5.7 shows one original FLAIR sequence of a subject in the LADIS

study suffering from WML, both the full image slice (A) and a zoomed

portion of it (F), together with the rater’s segmentation (B and G) and the

lesion segmentation results (C-E and H-J). The proposed method classi-

fied each lesion voxel as having a small (E and J), intermediate (D and I),

or high (C and H) proportion of lesion tissue. The evolution around the

foci of lesion, from fully blown, in the centre, to the intermediate stage

and small proportion of lesion, at the edges, can be seen in frames H-

J. One can see a small difference between the rater’s segmentation and

the full+intermediate segmentation results, i.e. , the voxels that would be

considered lesions through a hard classification approach. Yet, a careful

analysis of the image intensities in frame F suggests an overestimation of

the lesion in B. A major advantage of this method is shown in frames E

and J, where the voxels shown are indicative of possible locations of future

lesions, and only present in a soft classification approach.

The data from the LADIS study included MRI sequences taken at two

different time points, t0 and t3, separated by 3 years. Using the proposed

method to segment the images at both time points, it is possible to show

how the detection of early changes in the brain suggest possible future
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Figure 5.8. Follow-up results obtained for one patient of the LADIS study. Rows (I) and
(II) show the images related to the first and second MRI acquisition times, re-
spectively. Column (A) corresponds to FLAIR images, with the heat-map in-
tensity distribution shown below it. Columns (B-D) show the estimated white
matter lesions, for full, intermediate and small probability, respectively. Be-
low the pictures is the total volume detected for each lesion probability. Fig-
ure taken from Publication V.

locations of lesion, and how those lesions evolve with time. An example

of such study is shown in Fig. 5.8. The top row shows, from left to right,

the FLAIR sequence (A), the voxels with complete (B), intermediate (C)

and small (D) probability of being lesion, all at time t0, whereas the bot-

tom row shows the same results for t3. Below each FLAIR sequence, a

heat-map of gray intensity distribution is shown. The heat-maps display

variations between the gray level distributions in the two time instances.

In particular, at t3, it clearly shows a non-homogeneous gradient. The

volumetric estimates for each of the lesion levels are shown below the cor-

responding images. The most important finding is that most voxels with

a small probability of being lesion at t0 have developed into full-blown

lesion at t3. Furthermore, the lesion has spread according to the areas

suggested at t0, by all three estimated volume areas.

5.5.4 Tumour segmentation

The methodology in this dissertation can also be applied to tumour seg-

mentation. After an initial segmentation, the tumour region was focused

in a similar approach as detailed in Publication III. The results of the
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segmentation of this ROI can be seen in Fig. 5.9. Frames A and B show,

respectively, the sequences T1c and FLAIR, at a height where the tumour

is particularly evident. In frame C is the hard segmentation proposed by

DC, and frames D to G show the soft segmentation for the non-enhancing,

necrotic, enhancing and edema regions of the tumour, respectively.

Tumour
segmentation

non-enhancing

necrotic

enhancing

edema

A B C

D E F G

Figure 5.9. Tumour segmentation using the proposed methodology. Frames A and B
show sequences T1c and FLAIR, respectively, while C depicts the hard seg-
mentation obtained. Frames D to G show soft segmentations for different
regions of the tumour: non-enhancing, necrotic, enhancing and edema, in
that order.

Without any specific prior or changes to the methodology, it is clear that

the approach can be used to segment different types of brain lesion.
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The recent development of technology has paved the way for an exponen-

tial increase in the availability of data from many different types. We can

take, as one of the most recent examples, the experiments conducted in

the Large Hadron Collider, which produce around 15 Peta-bytes of data

per year. This poses tremendous challenges both in storing such data, as

well as in its analysis.

The field of data mining deals with the problem of filtering and obtain-

ing relevant content from various sources, such as news feeds, books, web-

sites, photo collections and other databases. The automatic extraction and

analysis of such information is often a hard task, and constitutes a major

subject in information retrieval and data mining.

Several data mining methods are text-based, where information is ex-

tracted using pattern recognition techniques. Despite the advances in

natural language processing (NLP), using text is often limiting, since it

does not make use of the intrinsic multi-modal nature of many data sets,

which provides ample scope for mining information at various levels.

Besides text, information can also be encoded, for example, through vi-

sual content or multi-modal databases. Concomitantly, several approaches

have been proposed to handle visual information retrieval (Gupta and

Jain, 1997; Lew et al., 2006; Müller et al., 2010) and database analy-

sis (Derrfuss and Mar, 2009; Günay et al., 2009; Laird et al., 2005, 2009).

Even when textual annotations are present, these content-based methods

can improve overall retrieval accuracy.

One particular application of data mining methods relates to the extrac-

tion of information from neuroscientific publications and other reports.

Since most researchers do not have access to the original data reported

in published studies, articles typically constitute their main source of in-

formation about current research findings. One particular topic of inter-
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est are publications of fMRI studies, where crucial information is present

both in textual and visual formats.

This chapter gives a very brief overview of current approaches in data

mining, starting from the most typical textual perspective, and continu-

ing to visual information retrieval. For more details on these topics, the

author advises the books by Kao and Poteet (2007) and Baeza-Yates et al.

(1999). Following the research done in Publications VI and VII, Publica-

tion VIII presents a document mining method of multi-modal information

retrieval and analysis, where each document represents one fMRI report.

That approach, another main contribution present in this dissertation, is

detailed in the third section of this chapter. Finally, some of the results

obtained using the document mining methodology proposed are presented

in the last section.

6.1 Natural language processing and text mining

Text mining is the process of extracting information from textual data (Kao

and Poteet, 2007; Tan et al., 1999; Weiss et al., 2010). It encompasses

everything from information retrieval to text classification, including se-

mantic analysis. A closely related research field is NLP (Bates, 1995;

Indurkhya and Damerau, 2012), where the main goal is the extraction

of meaning from text. By applying NLP techniques towards text mining,

it is possible to perform information retrieval and text classification in

meaningful ways.

In order to extract interesting content from written text, the first NLP

methods made use of various knowledge representations, such as lexi-

cons of words, grammar rules and thesaurus of synonyms or abbrevia-

tions (Goddard, 2011; Miller, 1995; Navigli and Ponzetto, 2012). Mod-

ern NLP methods (Indurkhya and Damerau, 2012; Manning and Schütze,

1999), on the other hand, use statistical machine learning to learn such

rules. Machine learning approaches offer many advantages over rule-

based algorithms, such as scalability and robustness to unfamiliar inputs.

Nonetheless, thesaurus and grammar rules are often useful in guiding the

learning stages of many algorithms.

A document1 is a text document, in a natural language, with a clear in-

ternal structure. Each document tends to focus on a particular topic or

1In this thesis, a document may contain multi-modal information, such as im-
ages. Hence, a scientific publication is also considered a document.
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idea, but it can also be a discussion on several topics. To process text as a

whole, typical text mining approaches treat a document or a piece of text

as an unstructured bag of words (Salton et al., 1975), i.e. only the count of

words that are present in the text is relevant, discarding information such

as positions with respect to each other, or other structural relationships.

This model is widely used, and can be represented in a document-term

matrix format. A document-term matrix is a representation of the occur-

rences of all words present in a document collection.

Instead of using only simple words, one can also use n-grams, which

take into account word context. In n-grams notation, words correspond to

unigrams (1-grams), two consecutive words represent bigrams (2-grams)

and a sequence of n consecutive words is an n-gram. This notation is

widely used in statistical NLP, allowing for the creation of extremely ef-

fective models of language data. A limitation of this model is that term

frequencies need to be high enough for a proper statistical analysis. None-

theless, with the increased availability of data, this problem is alleviated.

Table. 6.1 shows a toy-example of a dictionary composed of n-grams.

The term frequency is displayed for each document. The first document

seems to deal mostly with anatomical regions, while the second deals with

Schizophrenia. Doc. III probably mentions changes related to activity in

the cingulate gyrus in Schizophrenic subjects. Both “a” and “the” are very

common words and do not contribute to understanding the text.

Table 6.1. Example of a document-term matrix with three documents and 5 terms.

a cingulate gyrus the Grey matter Schizophrenia · · ·
Doc. I 147 61 158 49 3

Doc. II 104 3 125 12 53 · · ·
Doc. III 162 30 133 1 24

...

6.1.1 Term weighting

As shown in Table. 6.1, some words tend to have high frequency values

throughout all documents. This causes problems, for instance, when ap-

plying clustering techniques to this type of data. On the other end of the

spectrum, also very rare words can hinder any statistical analysis of the

word collection. In order to remove such words, two approaches are com-

monly used. The first is to use a list of stop-words as a reference for all
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words to be ignored in the analysis. Instead of such lists, or in addition to

them, one can give proper relevance to important terms through weight-

ing schemes (Manning and Schütze, 1999; Salton and Buckley, 1988). The

weights can be local, where terms are analysed per document, or global,

where the term weights depend on the whole collection. Various such

weighting methods are listed in Table. 6.2.

The most widely used local weighting approach is term frequency (tf )

or, to avoid highly skewed distributions, its logarithmic version. This

measure counts the number of occurrences of a word wn in a document

dj . Global measures are evaluated on the whole document collection.

While document frequency counts the number of documents that con-

tain the term wn, inverse document frequency (idf ) gives less weight to

frequent terms in the document corpus. To combine global and local

weightings, a few different measures can be used. A widely used ap-

proach is tf -idf (Jones, 1972; Salton and Buckley, 1988), which combines

the logarithmic versions of both tf and idf . Other combination measures,

Okapi BM25 (Robertson et al., 1996) and pointwise mutual information

(PMI) (Church and Hanks, 1990), are more focused on document/topic

approaches, while term frequency-inverse document frequency (tf -idf ) is

better suited to give more weight to terms relevant in each document.

6.1.2 Stemming

Another important aspect in information retrieval is the process of stem-

ming. Stemming reduces terms to their “stem” or “root” form, e.g. “run-

ning>run”. While this corresponds typically to a shorter form of a written

word, sometimes the stem is not identical to the morphological word root,

such as “went>go”. By treating words with the same stem as synonyms,

also known as conflation, text mining algorithms reduce the dimensional-

ity of dictionaries, allowing for better analysis of the textual data.

Several stemming algorithms have been proposed, from basic look-up

tables, through rule-based methods to stochastic algorithms. The most

widely used stemmer was developed by Porter (1980). The major limita-

tion of most stemming algorithms is the reliance on language based rules,

rendering them very language-specific. On the other hand, stochastic al-

gorithms use training sets to identify stems, and are heavily dependent on

the chosen training data. Despite their limitations, stemming algorithms

remain an essential part of most text information retrieval methods.
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Table 6.2. Commonly used weighting schemes in text mining. In a term-document matrix
format, each document dj is represented by the values of the column features
fj(wn), which correspond to the number of occurrences of term wn in document
dj . The total number of documents and terms present in a collection are defined
as Nd and Nw, respectively.

Local weighting

Term frequency, tf (wn) fj(wn)

Logarithmic tf (wn) log(1 + fj(wn))

Global weighting

Document frequency1, df (wn)
∑Nd

j=1 I(fj(wn))

Collection frequency, cf (wn)
∑Nd

j=1 fj(wn)

Inverse document frequency, idf (wn)
Nd

df (wn)

Combined

Term frequency-inverse document

frequency, tf -idf
log(1 + fj(wn)) log

(
Nd

df (wn)

)
Pointwise mutual information, PMI2 log

(
fj(wn)

cf (wn)

Nw
· 1
Nd

)

BM253 idf(wn) · fj(wn)·(k1+1)

fj(wn)+k1·(1−b+b· #dj
Ej [#dj ]

)

1 I(A) = 1, if A > 0, and 0 otherwise.
2 In statistical notation, PMI = log(

p(wn,dj)
p(wn)p(dj)

).
3 k1 and b are free parameters, usually selected as k1 ∈ [1.2, 2.0] and b = 0.75.

#dj is the length of document dj in words.

6.2 Content-based image information retrieval

With the rapid increase in the creation of electronic visual content, driven

by the pervasive availability of cameras, from mobile phones to web-cams,

the volume of visual information is increasing exponentially. While many

technical problems associated with the generation of visual data have

been solved, the task of content detection and subsequent classification

is still unsolved. This is the field of content-based information retrieval

(CBIR) methods (Müller et al., 2010), which focus on automatic analysis

of image contents. Such methods are crucial when textual information is

nonexistent or incomplete, but can also improve retrieval accuracy in the

presence of text annotations (Lew et al., 2006).

Early approaches used text queries, and employed representation schemes

like relational models, frame models, and object-oriented models to search

for content (Colombo et al., 1999). They relied mostly on manual tags
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to construct databases that could then be queried. Such approaches had

several problems, from the human intensive tagging requirements, to sub-

jective annotation strategies. To overcome those limitations, new meth-

ods were proposed, based on computer vision techniques. By focusing on

feature-based similarities over images (Laaksonen et al., 2000), video (Flick-

ner et al., 1995), it is possible to find content without relying on text

annotations. Although feature-based methods provide a reliable way of

retrieving information, they are usually not intuitive.

Recent CBIR approaches make use of multi-modal information (Schroff

et al., 2007; Sjöberg et al., 2008), typically by using both text annotations

and visual content. These allow them to diminish the so called semantic

gap, i.e. the difference between low-level features and human semantic

concepts. By constructing a feature vector composed of both visual and

textual features, the search for similarities can be conducted at a semantic

level. This stems from the natural languages of the textual data, which

are closer to human semantic perception.

While several CBIR methods do take into account multi-modal infor-

mation, the visual content is usually seen as a whole, and they do not

segment particular image regions. Since images can be composed by sev-

eral different regions, a natural extension is to focus on information re-

trieval from segmented images with associated text (Barnard et al., 2003;

Blei and Jordan, 2003). Despite recent advances, these approaches typi-

cally require images annotated with reliable ground truth information, to

model the joint (text and visual) feature distributions of image regions.

6.3 Document mining in neuroscience

Neuroscience is a particular field in which CBIR methods have been of

particular relevance. With a pool of thousands of different neuroimaging

journal publications, it is crucial to develop tools to synthesise and ag-

gregate such data (Derrfuss and Mar, 2009). This kind of meta-research

tools collect consistent findings across different studies, and can be used

to evaluate activity changes in brain regions or networks, according to

particular tasks or brain lesions reported by many different researchers.

The majority of available neuroimaging meta-analysis approaches use

a coordinate-based analysis to generate probabilistic mappings between

cognitive processes and neural states. Other methods do resort to a visual

mapping of brain activity, to create the meta-analysis outcomes (Lewis,
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2006), but data collection is still done by hand. Furthermore, in such

methods, the regions of brain activity are typically approximated by spheres,

instead of accurate spatial representations. While most meta-research

studies still rely on human curators (Laird et al., 2009; Levy and Glim-

cher, 2012), rendering them cumbersome and with limited applicability,

automatic approaches have also been proposed. Yarkoni et al. (2011) com-

bine text-mining, meta-analysis and machine-learning techniques to cre-

ate a fully automated framework to retrieve functional information from

neuroscientific publications, depicted in Fig. 6.1. In addition to requiring

the existence of activation coordinates, which are not always reported,

none of the vast visual information, such as figures and charts, is used

to generate the aforementioned mappings. Furthermore, and despite the

use of rigorous multiple comparisons corrections, neuroimaging studies

typically suffer from restricted sample sizes, which leads to many “false

positive” reports of brain activity in meta studies (Wager et al., 2009).

Term-based
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Automated coordinate
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‘Pain’

Figure 6.1. Flowchart describing a typical neuroscience meta-analysis method. First, all
the coordinates reported in articles related to a particular term are extracted.
Then, those peak coordinates are used to build a whole-brain map of activity
probability. Adapted from Yarkoni et al. (2011).

As shown in the previous section, several content-based information re-

trieval methods do take into account multi-modal information, but they

are not particularly suited to the analysis of neuroimaging data. Neu-

roimaging data can be considered as multi-layered information. The low-

est or deepest layer is the anatomical brain itself, the brain activity is the

next layer, while the combination of these layers leads to fMRI data. The

final layer is a surrogate representations of such data, and corresponds

to the fMRI images constructed by statistical analysis algorithms. Often,

the last layer of information is the 2D representation of the full statistical

maps, which are shown in neuroimaging publications. In order to extract

as much brain activity2 information as possible, one needs to devise a

2In this dissertation, the “brain activity” concept is interpreted in the absolute
sense, but includes also differences in brain activity, when compared to a refer-
ence state.
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method that goes beyond the imaging layer, and as close as possible to the

activity itself. One of the main contributions of this dissertation is such a

framework, allowing for the creation of an ontology of brain activity areas

published in neuroscientific reports. It relies on the fact that typical neu-

roimaging studies report their data in a consistent way, where activation

areas are overlayed on an anatomical image. In Publication VI, a CBIR

method similar to the one proposed by Laaksonen et al. (2000) was used to

extract, characterise and cluster fMRI images, based on their functional

properties. This first approach was limited to a low-level feature charac-

terisation of fMRI images, without trying to explore the “deepest layers”

of such images. Publication VII improves that framework, creating and

classifying three-dimensional brain activity maps estimated from stud-

ies dealing with effects of brain diseases in the DMN. Finally, Publication

VIII extends the framework to a multi-modal approach, using textual con-

tent to characterise the estimated brain activities.

The following subsections give a general overview of the methodology

proposed in Publications VI, VII and VIII, with a summarising flowchart

shown in Fig. 6.2.

Blob Mining

Wordcloud 

Creation

Dendogram 

Computation

Blob Clustering

- Figure extraction

- Object identification

- Image retrieval

- Blob identification

- Text extraction

- word->stem->word

- dictionary creation

- weigthing by tfidf

- Grouping by overlap 

and intensity profile

- Cluster using group 

geo-centroids

- Hierarchical clustering 

by article inclusion

Figure 6.2. Flowchart of the document mining procedure. Starting with the ’blob’ min-
ing and clustering, the article information is used to group activity maps in
a dendrogram, where each node can be characterised using textual informa-
tion. Figure taken from Publication VIII.
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6.3.1 ’Blob’ mining in neuroimaging articles

To retrieve the brain activity information from each neuroimaging pub-

lication, the first objective is to obtain fMRI activity reports depicted in

images. As mentioned before, in neuroimaging reports, fMRI images dis-

play changes in brain activity using colour overlays onto anatomical MRI.

These functional activity coloured regions are often known as ’blobs’.

Different authors of neuroscientific studies tend to report their results

in slightly different styles. Furthermore, each document has inhomogene-

ous content information, such as multiple image frames per figure, other

plots, annotations, or captions. These need to be handled before proceed-

ing with the fMRI image analysis. After extracting the figures from the

portable document format (PDF) files of publications, and in order to dis-

tinguish between different images in a publication, a compound figure

segmentation method needs to be applied. The aim of this step is to iden-

tify, in each figure, the composing elements or images, as well as to char-

acterise each of these. Several approaches can be used to detect such

figure elements, including salient object segmentation (Zhou et al., 2013)

and systematic detection and analysis of uniform space gaps (Chhatkuli

et al., 2013). The methodology proposed in this dissertation uses a similar

approach, but is mainly based in morphologically considerations, cf. Pub-

lication VII.

Blob 
Mining
Blob 

Mining

Image identificationFigure extraction

FMRI image retrieval

Blob identification

Image cleaning

Article

Figure 6.3. Flowchart describing the ’blob’ mining procedure. First, figures are retrieved
from articles (images adapted from (Johnson et al., 2007)). This is then fol-
lowed by the detection and retrieval of fMRI images. After a cleaning proce-
dure, the brain activity reported in those images is identified. Adapted from
Publication VII.

73



Data mining

After removing the background, and to identify each constituting im-

age, figures are transformed to black and white, for the background and

non-background areas respectively. Assuming that there is always back-

ground around images, and that those images have a minimum size, it is

always possible to segment the figures into their compound images. This

procedure is depicted in the “Image identification” frame of Fig. 6.3.

Since the goal is only to analyse fMRI images, the next step is to se-

lect them from the previously segmented images, as seen in frame FMRI

image retrieval of Fig. 6.3. This selection is mostly done based on an en-

semble of heuristic properties, including a minimum percentage of colour,

and the aspect ratio typical of a brain image. The full detail of the prop-

erties used can be found in Publication VII.

Once in presence of images comprising a single brain with reported ac-

tivity, the next step is to fully characterise such activity. Then, a few

anatomical and functional parameters need to be estimated. These in-

clude several features of relevance, such as the type of section and the

slice height, as well as the ’blobs’. After retrieving the fMRI images, and

to allow for a proper comparison with anatomical templates, artifacts need

to be removed. Common artifacts include text annotations and lines. Sim-

ple morphological techniques can be used to remove textual annotations,

while Hough transform (Duda and Hart, 1972; Szeliski, 2010) deals very

efficiently with lines, see Section 3.1.3.

After all pre-processing steps are performed, the last step consists in

the estimation of the spatial location and intensity of the reported brain

activity, as shown in the Blob identification frame of Fig. 6.3. To allow

for a correct mapping of the fMRI data, one needs to identify which of

the three standard planes are used in each image. As mentioned in Sec-

tion 2.1, these brain views correspond to the axial, sagittal and coronal

perspectives. The identification of such planes can be done using anatom-

ical symmetry properties: axial sections are mostly symmetric about both

axes, coronal sections are symmetric with respect to the vertical axis, and

sagittal sections are clearly asymmetric.

Reports of fMRI activity areas are typically overlayed on anatomical

MRI templates, usually in SPM (Friston, 2003) or Colin (Brett et al.,

2002) formats. Colin volumes tend to have smaller voxel size and spac-

ing than SPM ones, and therefore a measure of image complexity can be

used to distinguish between them. In the proposed method, such measure

is based in the Canny filter (Canny, 1986) edge detection.
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After the volume and section are determined, all that remains is the

identification of the slice where the brain activity occurred. With no other

information characterising the location of brain activity besides the orig-

inal slice image, this step finds the best matching slice from among the

template images. As detailed in Section 3.1.2, there are many methods

for image matching, from standard correlation to key-point matching (Bay

et al., 2008; Lowe, 2004; Szeliski, 2010). When dealing with images from

fMRI reports, one needs to take into account the varying sizes and rota-

tions of the images, when comparing to the templates. This suggests that

key-point matching methods would be suitable for this task. But, when

dealing with electronic documents, image resolution is rather low, which

limits the applicability of such techniques. Furthermore, due to the graph-

ical characteristics of activity ’blobs’, the number and type of features vary

significantly between template and extracted images. Therefore, a com-

bination of both correlation and SIFT matching is proposed. This can be

done in a step-by-step approach, comparing all template slices from the

volume and section previously identified, with a gray-scale version of the

extracted images. First, a correlation procedure is performed. If the cor-

relation between a scaled and/or rotated image and one of the template

slices to which the image is compared to is above a high threshold, then

correlation should be enough to find the correct match. If the correla-

tion values are too low, then the slice with smallest SIFT feature distance

should be selected as the best match.

Once the correct slice is found, the complete spatial coordinates are iden-

tified for the extracted image. While most coordinate-based meta-analysis

methods rely on simple coordinates, often corresponding to the point of

maximal activity, the proposed framework allows for the estimation of the

full spatial information of the fMRI activity ’blobs’. Since these ’blobs’

are typically reported as coloured regions, a segmentation based on hue

information is enough for their identification. Unfortunately, the report-

ing style and colours used by different researchers can vary, as shown

in Fig. 2.5. Furthermore, these ’blobs’ can correspond to an increase or

decrease in activity, usually through the hot and cool color scales respec-

tively. Therefore, the task of detecting the correct colormap is far from

trivial. One way to simplify the process is to consider that ’blobs’ are only

reports of activity, and ignore the type of change. This is a limitation of

the proposed method, but since the current main goal is to find areas and

their relations, it is not yet a crucial one.
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With the spatial and intensity information from the ’blobs’ determined,

one can characterise those regions in more detail. For each ’blob’, a set

of features can be defined, as shown in Publication VI. The location of

maximum activation, which may also be reported in textual format, can

be determined by calculating the centroid of mass of the activation re-

gion. The size of such region is given by its area and perimeter. Other

shape measures, such as compactness, extent or eccentricity can also be

determined. Often, though, one may use, instead of those features, the

activity patterns directly, e.g. when combining the information contained

in various publications.

Although each ’blob’ is considered an independent entity, the informa-

tion about the originating articles, figures and images for each ’blob’ is

also stored. This preserves the original relations between ’blobs’, allow-

ing for comparisons across different structural levels, from articles to the

’blobs’ themselves.

6.3.2 Summarising brain activity

The information retrieved in the previous section can easily be used to

create a brain database. In order to create visual representations of the

brain activity, most existing databases use fixed models, centred in the

coordinates extracted from the publications (Lewis, 2006; Nielsen, 2003).

With the proposed approach, a much more thorough information is ob-

tained, since the complete activated area is recorded, which allows for a

more precise estimate of brain activity.

Using the Colin (Brett et al., 2002) brain template as reference, all ’blob’

intensity information can be mapped to their respective Talairach (Ta-

lairach and Tournoux, 1988) coordinates. The result is a four-dimensional

intensity map I, where each element In(x, y, z) corresponds to the inten-

sity of ’blob’ n, in its respective original image, at coordinates (x, y, z).

By superimposing these intensity maps over a common volume tem-

plate, it is possible to obtain a visual summary of the brain activity re-

ported in the analysed publications, as depicted in Fig. 6.4.

In the proposed approach, those summarising intensity maps use the

hot colour scale, directly representing the estimated spatial intensity of

each ’blob’.

In Publication VII, the main goal was to calculate an average intensity

map for three different classes: Healthy, Alzheimer and Schizophrenia.

After manually identifying which images corresponded to each of class,
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Figure 6.4. Example of the mapping procedure from a two dimensional image to a whole-
brain activity map. On the left side is the fMRI image extracted from a pub-
lication (A), with the corresponding three dimensional activity map projected
in axial (B), sagittal (C) and coronal (D) views on the right.

one summarising image per class could be produced. This resulted in

three average intensity maps, where the intensity of each voxel corre-

sponded to the average activity reported for each class of publications.

6.3.3 Intensity based clustering

After the construction of the intensity maps, and instead of directly using

a classifying approach, one can start exploring relations between publica-

tions and different activity regions, as shown in Publication VIII.

In order to identify similar activation regions, reported in different ar-

ticles, one can group all ’blobs’ according to their spatial similarity. The

main goal here being to group common activation patterns across vari-

ous images, figures or even articles. In Publication VI, this grouping was

performed based only on a pre-defined feature vector of each ’blob’. While

that study demonstrated the feasibility of such approach, the feature defi-

nition and the wide range of some of the features pose crucial limitations.

To avoid these limitations, in Publication VIII, a two-step clustering ap-

proach took only into account spatial information, such as location, ’blob’

sizes, overlaps and sections.

To compare pairs of brain intensity maps, one needs to take into consid-

eration the overlap and similarity between their intensity patterns. The

measure proposed in Publication VIII takes into account those two factors,

and is based on the cosine distance (Turney and Pantel, 2010):

d1(n1, n2) =
i∗n1

· i∗n2

‖i∗n1
‖‖i∗n2

‖ , (6.1)

where i∗n1
and i∗n2

are the vector forms of In1 and In2 , extracted from im-
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ages n1 and n2, and for which both In have values greater than 0. By

iteratively joining similar intensity maps, until a predefined threshold, a

set of functional activation groups is obtained.

Since the intensity maps originated from 2D images, the comparison

of ’blobs’ from close, but different heights, is not easy to handle, using

only the aforementioned distance. Also, the intensity similarity between

maps originating from two different section types is hard to measure. To

solve such limitations, and still join maps with similar spatial locations, a

second clustering step can be performed. By calculating the average cen-

troid of the 3D spatial coordinates of the ’blobs’ belonging to each group, it

becomes possible to cluster such groups, based on spatial coordinate prox-

imity. Hence, one merger is based on overlapping brain activity, wheres

the other is based on centroid distance proximity.

At this stage, the only information obtained is an average of how the

brain activity in different brain regions looks like. In order to search for

relations between different regions and different tasks, other types of in-

formation need to be explored.

6.3.4 Finding related activity regions

One may also assume that different articles reporting similar brain activ-

ity regions share a common pattern, which suggests the search for partic-

ular relations between the articles that built such overall regions. This

step uses information regarding which articles built the previously men-

tioned clusters.

By hierarchically joining clusters based on the similarity of originating

articles and their respective reported ’blobs’, a dendrogram representative

of article relation can be built. In such dendrogram, each branch is a

consolidation of the two nodes that have the most overlap, in terms of

articles pooled together in previous clusters, which correspond as well to

similar brain activity regions.

This dendrogram can be seen as a summarising structure of co-occurring

brain activity regions, where it is possible to search for article relations

between regions. In Fig. 6.5, an example of such a dendrogram is pre-

sented, taken from Publication VIII. Four different article ensembles, cor-

responding to nodes with the least overlap of articles between them, but

with common reported brain activity, are also shown in the figure and can

be further studied.
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Figure 6.5. Dendrogram grouping articles based on their reported brain activity. Figure
taken from Publication VIII.

6.3.5 Merging text and image data

While in Publication VII, all maps were averaged based on manually de-

fined labels for three classes (Healthy, Alzheimer and Schizophrenia), the

clustering procedure proposed above allows for a more complex search of

relations between the reports of different articles, cf. Publication VIII.

To build the aforementioned dendrogram, only visual information was

used. Yet, it is important to bridge the semantic gap, also in this context,

and allow a proper brain activity ontology (Tegginmath et al., 2014). To

achieve this goal, one can also use the textual information contained in

the studied publications.

The search for interesting patterns allowing for a complete characteri-

sation of all dendrogram nodes starts with the collection of text informa-

tion from all publications, including the title, the abstract and the con-

clusion/discussion sections. Only this subset of text structures is used

to avoid confounding topics, since it is typical for article introductions to

mention a wide variety of literature survey information and methods not

fully related to the topic studied in those articles.

To reduce the dimensionality of the data, the stemmed versions of words

should be used to calculate term frequencies. Furthermore, common stop

words should also be filtered out. To allow for a natural language anal-

ysis, the stemmed terms should also be replaced by the most common
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originating word after the initial text processing.

Once the text is processed, a bag-of-words matrix can be calculated. To

preserve textual structure and permit the occurrence of common neurosci-

entific terms composed of more than one word, the terms of such bag-of-

words matrix should include words, bi-grams and tri-grams. By weighing

the node terms using tf -idf , and selecting the most common ones, it is

possible to build a textual characterisation of each node.

Once all this information is gathered, one can search for the most impor-

tant terms in articles with brain activity in specific regions, or vice-versa.

To simplify the visualisation of the most relevant terms in a group of arti-

cles, word-clouds can also be built (Rivadeneira et al., 2007). They easily

depict the differences and commonalities between co-occurring brain ac-

tivity regions and articles.

6.4 Experimental Results

In this section, some results, obtained using the proposed document min-

ing approach, are shown. The publications used to show these results fo-

cused on the study of the resting state network, and the effects of Alzheimer

and Schizophrenia in the human brain activity. For more detailed results,

the reader is directed to Publications VII to VIII.

6.4.1 DMN and brain disorders

The average brain activity of 195 neuroscientific articles dealing with the

DMN, in healthy patients is depicted in Fig. 6.6. The brain activity is

shown at several axial heights and is superimposed over the Colin tem-

plate. The extracted brain activity coincides with the typical subsystems

reported to compose the DMN: the posterior cingulate/precuneous, the

medial pre-frontal cortex and the inferior parietal lobes. Note that such

an image is not present in any of the analysed articles. Yet, it can be

produced by superimposing the reported images.

6.4.2 Characterising fMRI images

Figure 6.7 depicts four examples of brain activity regions found through

the proposed document mining procedure, at various nodes of the den-

drogram of Fig. 6.5, M1 to M4. Since the nodes do not contain all arti-

cles analysed, as shown in parentheses by the total number of articles
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Figure 6.6. Average brain activity reported in publications dealing with healthy brains,
superimposed on a Colin brain template, shown at various axial heights.
Most of the activity is reported on the occipital, temporal and frontal areas of
the brain, which correspond to the typical default mode network areas.

in participating in that node, the reported activity is different from the

one shown in Fig. 6.6. From left to right, are displayed the axial, coronal

and sagittal views of the activity map volumes, centred at their maximum

value of intensity. Each of these regions is a graphical representation of

the brain activity reported in four ensembles of articles, with as small as

possible article overlap between them. As expected, they correspond to

different co-occurring regions of brain activity. All volumes have activa-

tion in the posterior cingulate cortex, although each with a subtle change

in location, while only M2 and M4 show considerable frontal activity. No-

tice that each node may correspond to a different activity function, since

their corresponding articles may address a rather specific set of research

questions. In particular, comparing those regions to the DMN activity

map displayed in Fig. 6.6, none of the nodes, hence the articles that con-

tributed to them, exhibited activity in the lateral parietal cortices.

Finally, using the textual information contained in the articles that built

the previously shown brain activities, it is possible to build word-clouds
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(85)

Figure 6.7. Average brain activity change reported in four different ensembles of articles
(one per row), superimposed on a Colin-based brain template. From left to
right are the axial, coronal and sagittal views of the nodes. In parentheses,
the number of articles that built each set. Adapted from Publication VIII.

of the differences and commonalities between those node activity regions.

Such word-clouds are shown in Fig. 6.8. The word-clouds displayed in the

corners contain the n-grams that are most common in each set of articles,

but that are not present in any of the other ensembles. The size of the n-

grams is proportional to their weight in the bag of words corresponding to

each set. While the M1 word-cloud is characterised by n-grams mainly re-

lated with frequency analysis, M2 contains mostly methodology consider-

ations. M4 seems to deal with Alzheimer and Parkinson’s disease effects,

while M3 is somewhat harder to characterise. As expected, the terms that

are prevalent in the cloud containing n-grams common to all article sets,

shown in the middle of Fig. 6.8, are related to the main topics mentioned

in the article collection, e.g. Alzheimer disease (AD), Schizophrenia, rest-

ing state network (rsn) or mild cognitive impairment (mci).

82



Data mining

M
1

M
2

M
3

M
4

Figure 6.8. Word-clouds of four different article sets. On the corners are the word-clouds
of n-grams representing the corresponding node, but not other nodes. The
cloud in the middle contains the n-grams common to all four clusters. Figure
taken from Publication VIII.
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7. Discussion

This is not the end. It is not even the beginning of

the end. But it is, perhaps, the end of the beginning.
— Winston Churchill

The contributions proposed in this dissertation are related to different

topics of research in Neuroinformatics. From a novel approach to per-

form brain segmentation, to a document mining procedure, developed to

handle fMRI reports, both methods are valuable applications of machine

learning techniques to the field of neuroscience. At the core of these meth-

odologies rests one of the most widely used frameworks in data mining,

cluster analysis. This dissertation contributes to all these topics, provid-

ing technical solutions to several problems that neuroscience researchers

and health specialists face every day. Hopefully, such contributions will

pave the way to new insights on the human brain, and the implications of

brain lesions in its normal functioning.

7.1 Data clustering consistency estimation

The first contribution of this dissertation is an approach to identify which

data elements are consistently clustered together, which allows for an es-

timation of the reliability of each data grouping. In this dissertation, such

principles are applied to multiple runs of clustering algorithms, such as

self-organizing maps and discriminative clustering, allowing for a robust

estimation of data consistency across runs. In real data sets, typically due

to noise, the number of data points consistently grouped together is often

limited. Therefore, the groups of consistent data elements may not cover

the whole data set. Nonetheless, these can be used as labels or training

data for subsequent classification or semi-supervised clustering methods.
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The greatest advantage of the proposed clustering consistency estima-

tion is its ability to avoid parameter selection. Furthermore, by finding

labels in a data-driven approach, one avoids an expensive and time con-

suming manual label estimation.

Despite its advantages, the application of such methodology has also

some limitations. When dealing with unbalanced data, it is possible that

some of the less populated clusters are not found. Clustering relies on

clear differences between groups of data. If these differences are not sig-

nificant, and the number of available samples of one of those groups is

clearly insufficient to represent it, the results will not be optimal.

7.2 Self-supervised brain tissue segmentation

Another major contribution presented in this dissertation is a self-superv-

ised method to perform brain tissue segmentation. Using conventional

multi-spectral MRI data, and relying only on intensity differences, it per-

forms tissue identification for many tissues present in the brain. Despite

its non-specificity regarding the type of segmentation, the performance of

the proposed self-supervised method is in-line with more dedicated meth-

ods. Unlike many other segmentation approaches, the proposed method

handles partial volume effects, by estimating tissue probabilities for each

voxel. Furthermore, it avoids the use of anatomical priors, allowing it to

be flexible regarding variations in MRI machine settings and time/site of

image collection. Another advantage is its ability to deal with different

tissue types. Although the proposed method prefers a balanced number of

voxels per class, it still works remarkably well when dealing with lesions,

which often have a significantly smaller number of voxel count.

Since the segmentation is based on a semi-supervised clustering method,

it requires labels to guide the learning process. This data can be acquired

using the data clustering consistency estimation procedure proposed also

in this thesis. Even when such an approach does not achieve perfect re-

sults, errors in the labels are easily compensated, due to the method’s use

of distributional information of the data. Furthermore, when a dedicated

segmentation is sought, it is possible also to manually select labels.

This dissertation and publications contained herein show several appli-

cations of the proposed self-supervised segmentation method. The soft

classification provided by the proposed method is perfectly suited to eval-

uate different stages of lesions, as well as assess lesion progression. It
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also allows for the quantification of pathological brain changes, at very

early stages, enabling the study of lesion evolution in longitudinal stud-

ies. This quantitative analysis is of remarkable use in clinical settings,

and may help in the early diagnosis of brain lesions.

Although the proposed tissue segmentation method achieves accuracy

values in-line with other state of the art approaches, it has some limita-

tions as well. Of crucial importance, in any multi-spectral MRI setting, is

the selection of the sequences used. Depending on the task at hand, the

intensity distributions of the different tissues need to be as independent

as possible, in order for the algorithm to distinguish them. Furthermore,

image noise, resolution and movement artifacts are all factors that may

jeopardise the segmentation outcome, especially when dealing with par-

tial volume effects. All these factors tend to blur the differences between

tissue intensity distributions, posing difficulties to the segmentation.

Using the segmentation results of the proposed method, experts may

obtain better diagnoses and dissipate dubious evaluations. Although the

method was developed having neuroimaging in mind, it should be appli-

cable to any multi-spectral setting where the different classes to be seg-

mented are distinguishable through gray values distributions.

7.3 Multi-modal mining of neuroscientific documents

A content-based information retrieval system of neuroscientific journals is

the third contribution of this dissertation. This framework retrieves fMRI

images from published articles, and maps the activity reported therein

to a template, allowing for an automatic summarisation and comparison

between studies. With the huge amount of neuroimaging research data

being produced every day, the task of gathering and analysing such data

becomes highly complex. This task becomes even more daunting due to

the very limited publicly available repositories of such data. To circum-

vent this limitation, and gather, indirectly, such information from all pos-

sible sources, current data mining approaches rely on meta-research of

neuroscientific literature. While typical automatic meta-research meth-

ods involve the extraction of text-based brain coordinates from such pub-

lications, the proposed approaches try to access the layer of neuroimaging

data information through their reports in scientific publications.

The proposed framework can be divided in two parts. The first consists

in building databases of functional brain activity, by automatically de-
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tecting fMRI images from published articles, and summarising the brain

activity reported therein. The second part structures the database, by

using several information elements present in the set of articles. Those

structures collect relational information between articles/studies. Fur-

thermore, textual information contained in those articles is used to char-

acterise the resulting relations and activity maps.

Using a database built with the proposed approach, a neuroscientist can

search for particular keywords, either from a functional, methodological

or anatomical origin, to find interesting activity maps and their corre-

sponding studies. Such a database can be used to test situations where

there is either a clear agreement between different research reports or a

challenge between theories. The former is a key aspect to the construction

of functional neuro-atlases, whereas the latter may lead to true findings

in neuroscience.

There are some limitations when using reported fMRI images to extract

brain activity information. First, all images are assumed to represent a

similar scale of activity, irrespectively of the number of subjects studied.

Also, different thresholds and methods are used by different researchers.

These problems impair the aforementioned database creation and any

statistical analysis performed therein. To mitigate such problems, an ex-

tension of the proposed method could be implemented in online publishing

systems. This extension would calculate the anatomical and functional

characteristics reported in fMRI images, and enable authors to provide

clear descriptions or keywords of such images. With minimal effort, the

quality of the gathered information would improve tremendously.

Another restriction of the proposed framework is related to how textual

information is used. At the moment, text is only a supporting "tool" that

guides and characterizes visual information extracted from published ar-

ticles. A future venue of research would be the unification of both in-

formation sources, possibly through the use of a textual brain ontology.

Such ontology could then be extended and complemented with informa-

tion automatically extracted from neuroscientific documents, both visual

and textual, further improving the results obtained and the knowledge

contained therein.

The extraction of information from medical images proposed in this dis-

sertations is based on a few premises. The main one is that researchers

don’t have access to each others’ data, only to their results in a printed

format. Currently this premise still holds, with lack of publicly available
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data and results. There are some efforts to fix this, like the recent sup-

port from the Elsevier publisher for authors to upload their neuroimaging

data1, or the openfMRI project2, dedicated to the open sharing of fMRI

datasets. Therefore, the ideas presented here are still timely and hope-

fully will be the precursor of several others in years to come, when publicly

available online data is the norm.

1http://www.elsevier.com/about/content-innovation/
3d-neuroimaging-data, visited 05/2014.
2https://openfmri.org/, visited 07/2014.
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