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1. Introduction and Motivation

One of the current unresolved issues in the Internet is the unavailability

of simultaneous utilization of multiple paths for data transmission. The

Internet consists of interconnected computer networks linked by various

mediums, such as wired lines, fiber-optic cables, and wireless links. Al-

though it was originally designed to provide multiple paths between the

endpoints for the sake of resilience, hosts had a single interface, and only

routers were equipped with several physical interfaces in the early days

of the Internet. However, the Internet has since then evolved greatly;

for example, most hosts have more than one interface, and the prolifer-

ation of mobile devices equipped with 3G, 4G, and WiFi brings with it

a growing number of multi-homed hosts onto the Internet. End-users

may benefit from increased redundancy and performance from using such

multi-homed hosts. Unfortunately, in practice this is not always the case

because TCP, which binds each connection to a single interface, carries the

majority of Internet traffic. This implies that TCP by itself is incapable of

utilizing the extra resources over multiple interfaces.

The idea of enabling multipath transmission, i.e. concurrently trans-

mitting data over multiple paths between two end hosts on the Internet

is not new. To the best of my knowledge, it was originally considered by

Dr. Maxemchuck in his Ph.D. dissertation [88] in 1975, right after the

birth of the Internet. The principal idea has been reinvented a dozen

of times since then. An important issue is whether a connection that is

split across multiple interfaces can indeed provide the bandwidth aggre-

gation. If data is split across different paths, the packets within the same

TCP connection may arrive at the receiver out of order. The receiver will

falsely indicate packet losses to the sender, which can lead to unneces-

sary retransmissions and a substantial reduction of sending rate caused

by congestion control.
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Introduction and Motivation

Earlier research has tried to solve the problem from various viewpoints.

In the beginning, most of the focus was on utilizing multiple TCP flows

to aggregate bandwidth with an additional mechanism to handle the re-

ordering issue at the receiver end. It was expected that the bandwidth ag-

gregation could henceforth potentially multiply the experienced through-

put by the number of available paths. If efficient bandwidth aggrega-

tion could be achieved in this way, a multi-homed device could obtain a

significantly better performance, especially when the bandwidth across

the different paths had similar Quality of Service (QoS) characteristics.

However, these approaches did not perform well in the context of hetero-

geneous paths, where the packet reordering can negatively affect perfor-

mance and strain the buffer requirements. To fix the reordering problem,

various intelligent scheduling algorithms were proposed to address path

dissimilarity in terms of capacity, delay, packet losses and queuing behav-

ior.

Gradually, it became apparent that simply utilizing multiple TCP flows

resulted in an unfair share of the bandwidth at the same bottleneck; for

example, n TCP flows get approximately n times throughput as a sin-

gle TCP flow does when they go through the same bottleneck. Therefore

a solution to this would be for the bandwidth, shared by multiple TCP

flows within the same connection, to be similar to a single TCP flow at

the shared bottleneck link. Using congestion control to tune the avail-

able bandwidth on each path is a powerful scheme with which to achieve

TCP-friendliness. A considerable amount of joint congestion control algo-

rithms were proposed to improve the fairness of multiple subflows within

the same connection. In addition to TCP-friendliness, the load balancing

feature, which moves traffic from more congested paths to less congested

ones, was also explored.

Although many attempts were made to provision multipath capability,

none of them made it into the mainstream approach as they all required

non-trivial changes to the Internet infrastructure. As a result there was

insufficient motivation to merit such changes to the Internet. The break-

through came from Multipath TCP (MPTCP) [44], which draws the ex-

perience gathered in previous work, and goes further in solving issues of

compatibility, fairness and load balancing.

In addition to being deployed on the Internet, MPTCP has also only re-

cently found use in data centers for carrying internal traffic. Data centers

provide a cost-effective way for computing and storage. Indeed, a data cen-
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Introduction and Motivation

ter may host thousands of servers interconnected through many switches

and routers. Recent growth in cloud applications from well-known com-

panies, such as Google, Microsoft, and Amazon, has resulted in the con-

struction of data centers of unprecedented size. Data centers are con-

stantly evolving in order to process large amounts of traffic with guaran-

teed bandwidths and short delays. With data center traffic becoming less

client-server and more server-server centric, new topologies are emerging,

for example, where the servers are multi-homed to provide more redun-

dant paths between communication peers. In these topologies, TCP falls

short because it fails to use multiple interfaces at the same time. Utilizing

MPTCP to replace TCP is a promising way to offer bandwidth aggregation

and traffic load balancing.

However, MPTCP faces the same challenges as TCP in a certain commu-

nication pattern produced by some applications, such as search engines

and Map-reduce [30] applications. These applications generate a large

amount of data in a many-to-one traffic pattern, which may cause Incast

effects as many servers reply to a single inquiry and sent data simulta-

neously to the server that initiated the inquiry. The consequence of the

Incast effect is a significantly degraded performance because when multi-

ple replies compete for the same bottleneck, heavy congestion will cause

unacceptable delays to the inquiry, undermining the advantage gained by

using multipath transmission. This poses a new challenge to the exist-

ing congestion control mechanism of MPTCP. It either needs to be revised

specifically for a data center context or other mechanisms need to be ex-

plored to avoid timeout by intricate competition among the multiple flows

within the same connection.

1.1 Research Question, Scope and Methodology

Previous work in the field has contributed a lot to the evolution of multi-

path transmission. However, new challenges are posed by the revolution-

ary development of the Internet and data center networks (DCNs). Hence,

in this thesis, the following questions are asked: what are the challenges

of multipath transmission and what would be potential solutions for the

existing and upcoming challenges?

The magnitude of these questions is very large. Therefore, the research

scope is limited to a network with heterogeneous paths (in terms of RTT,

packet loss, and available bandwidth) and to data center networking.

17



Introduction and Motivation

Figure 1.1. Research methodology used in this thesis.

Fig. 1.1 gives an overview of the methodology used in this thesis. As

shown in the figure, the research process starts from survey, measure-

ment, and analysis in order to figure out the existing research problems.

After that, key algorithms and mathematical models are designed to im-

prove the transport performance. Specifically, we look into the following

three questions:

• Question 1: what is the benefit of combining packet coding with MPTCP?

• Question 2: how the Delayed ACK mechanism should evolve in order to

mitigate the impact of TCP timeout on overall performance?

• Question 3: how to adapt the congestion control algorithm to deal with

the Incast effect in data center networks?

These questions are respectively discussed in detail as follows.

1) MPTCP [44] uses a connection level receive buffer as an aggregate

buffer to store out-of-order data. In the context of multipath trans-

mission, the aggregate buffer has to be large enough to accommodate

all received packets until the lost or delayed packets arrive. When the

paths have a very different path quality in terms of bandwidth, Round

Trip Time (RTT), and packet loss ratio, the required aggregate buffer

becomes too large to be possible in practice, especially when one path

enters Retransmission Timeout (RTO) and the other paths send data at

their full speed. If the receive buffer is bound, MPTCP may suffer from

the degradation of goodput. The goodput can even be worse than that
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of one regular TCP flow, undermining the advantage gained by using

multipath transmission. Many error-correction coding approaches have

been proposed to recover from packet losses or unexpected packet de-

lays. The existing approaches, however, have not gone deeply enough

into the impact of the coding design on computational overhead and re-

quired buffer size. For example, most of them use non-systematic cod-

ing, in which the output does not contain the input symbols. We seek to

understand and reveal the impact of various coding algorithms on the

MPTCP performance and also to model the receive buffer size accord-

ingly.

2) The Delayed ACK (DA) [18] is an option of TCP that allows the receiver

to delay sending an ACK for every other packet until the Delayed ACK

timer is reached. At the sender, the timeout timer should be no less

than the Minimum RTO (RTOmin) to avoid spurious timeouts. In the

gradual changeover from TCP to MPTCP as the dominant protocol in

the network, the Delayed ACK is an inherited feature and this can lead

to significant performance degradation. For example, when a subflow

enters a timeout, the receiver has to buffer data from all the other sub-

flows until the missing packet is received. The out-of-order data may

overrun the receive buffer to cause flow control at the sender, which

seriously impacts the overall performance. The research goal is to in-

vestigate whether it is possible to keep the delayed ACK function while

eliminating the negative effect of RTOmin.

3) In recent years, MPTCP has been proposed as a replacement for TCP

in multi-homed DCNs because it can efficiently offer improved through-

put and better fairness [109, 112]. However, it was found that MPTCP

has a problem in terms of Incast collapse, where the receiver suffers

drastic goodput drop when it simultaneously requests data over multi-

ple servers. Therefore, we conducted an investigation into how network

resources should be shared among MPTCP connections in the many-

to-one communication pattern, and to what extent the new congestion

control algorithm could mitigate the Incast effect.

In the methodology, an experimental approach through simulations was

used to study, validate and improve the solutions. The refining process

iterates until the desired performance results are obtained. Recent re-
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search on network simulators suggests that NS-3 [1] is one of the fastest

and most efficient for large scale networks. NS-3 supports all the prin-

cipal protocols needed and is more efficient than real implementation in

terms of making protocol extensions and applying new algorithms. How-

ever, using a MPTCP NS-3 simulator poses a challenge in applying the

mathematical models and algorithms to real devices and networks other

than the simulated ones that have been used. This is because the pro-

tocol complexity, parameter settings and traffic pattern may be different

between the simulation and the real world. For example, it is relatively

easier in the NS-3 simulator than in the Linux kernel to integrate packet

coding capability into MPTCP. Moreover, unlike in Linux kernel, the TCP

inside NS-3 cannot automatically adjust the buffer size based on require-

ment. In practice, the limitations of simulator are unavoidable but can be

alleviated by using the most common parameter settings that are used in

real implementation, comparing the results with those obtained on real

networks, and also validating the simulation results with theory.

The reader should note that the focus of this thesis leaves out the fol-

lowing important aspects of multipath transmission.

a) Multipath routing [39, 68, 84] for enhancing resilient end-to-end com-

munication and optimizing routing is beyond the scope of this work. The

focus is on how to provide multipath transmission capability to end-

points with an assumption that the IP routing protocol is able to provide

multiple routes between the communicating peers.

b) Although packet coding techniques have been used widely in this work,

the computational overhead caused by packet coding is not addressed

because there has been a wealth of work that utilizes dedicated hard-

ware or multi-core GPUs to accelerate the packet (de)coding speed. The

reader should refer to [26, 125, 126] for more information about the

packet (de)coding algorithms and computational efficiency.

c) Multihoming support for partial path failure [94, 96] is beyond the

scope of this work. Generally speaking, multihoming is the first step

towards multipath transmission because it offers the endpoints the ca-

pability of “knowing” multiple interfaces and is able to activate a certain

interface to send data. However, this thesis focuses on simultaneously

utilizing not just one, but more than one interface at the same time.
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1.2 Contributions

This thesis is a summary of five publications, where Publication I and

Publication II address the first research question, Publication III and

Publication IV answer the second research question, and Publication V

presents a solution to the third research question. The contributions of

these publications are briefly described below. More detailed discussion

can be found in Chapter 3.

Publication I proposes integrating packet coding techniques into the

MPTCP in order to mitigate the reordering issue at the receiver. At the

core of the scheme are the packet coding and scheduling algorithms, which

utilize both the regular and packet coding subflows. The regular subflows

deliver original packets, while the packet coding subflows deliver linear

combinations of the original packets.

Publication II presents how linear systematic packet coding design im-

proves the performance of MPTCP on heterogeneous paths when the re-

ceive buffer is bounded. The scheduling algorithms are used to provision

proactive and reactive redundancy to counter against expensive retrans-

missions. A mathematical model of the receive buffer size is made accord-

ingly.

Publication III provides a new Delayed ACK mechanism for MPTCP to

mitigate the reordering issue during timeout at the receiver. The goal is to

remove the RTOmin constraint at the sender while reserving the delayed

ACK function at the receiver. In order to eliminate the aggressiveness of

timeout after removing RTOmin, a packet coding algorithm is designed to

encode the timeout retransmitted packets to make the potential spurious

retransmissions useful.

Publication IV extends the new Delayed ACK mechanism to general

TCP to improve the bandwidth for each flow, and aggregate bandwidth

for all flows.

Publication V discusses how the network resources should be shared

in the many-to-one communication pattern in data center networks, and

proposes a new congestion control algorithm for MPTCP. The goal is to

mitigate Incast collapse by allowing multiple MPTCP subflows to compete

fairly with a single-TCP flow at the shared bottlenecks.
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1.3 Structure of the Thesis

In Chapter 2, the essential background is reviewed. After that, the main

contributions of this thesis are discussed in Chapter 3. The original pa-

pers are presented after a conclusion in Chapter 4.
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2. Background: Network Transport

This chapter presents the background of multipath transmission that is

essential for understanding the central arguments of this work. I start

with an overview of TCP/IP networks and DCNs in Section 2.1. In Sec-

tion 2.2, the existing approaches of multipath transmission are classified

into five categories, and the design criteria of each category is analysed.

Section 2.3 presents the architecture of MPTCP. What follows after that

in Section 2.4 is a discussion of packet coding in network transportation.

2.1 TCP/IP Networks

The Internet is a global system of interconnected computer networks that

uses the standard Internet protocol suite TCP/IP [150] to serve several

billion users worldwide. It carries an extensive range of information re-

sources and services such as the World Wide Web (WWW) [16], email, and

peer-to-peer applications [11]. The origin of the Internet reaches back to

research commissioned by the United States government in the 1960s in

order to build robust and fault tolerant communication via computer net-

works. In the early days of the Internet, around the 1970s, efforts were

undertaken to ensure the reliability of communications. Neither mobile

devices nor computers with multiple network interfaces were an imme-

diate design priority, and only the routers were equipped with several

physical network interfaces. After that, TCP/IP has been used by the vast

majority of applications to transport their data reliably across the Inter-

net.

Although there may be more than one path between two endpoints, the

Internet, for example, may potentially contain thousands of paths be-

tween two endpoints. TCP/IP, however, always uses a single “best” path1.

1A single path is selected according to a certain routing metric.
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Once the TCP connection has been established, it is bound to the IP ad-

dresses of two communicating hosts. If one of these addresses changes,

for whatever reason, the connection would fail. In fact, a TCP connection

cannot even be load-balanced across more than one path if the paths have

different QoS characteristics because this may result in packet reorder-

ing, and TCP misinterprets this reordering as a signal of congestion and

slows down.

In the past, end-users used to be connected to one Internet Service

Provider (ISP) only. The Internet is changing, though. For example,

multihoming tends to be present everywhere: mobile devices are now

equipped with 3G/LTE and WiFi interfaces, multi-homed topologies have

been proposed in data centers to provide many redundant paths, and mul-

tihoming has become commonplace for the server farms. These multi-

interface devices require multipath capability to improve end-to-end com-

munication performance and resilience. Unfortunately, in practice this

is a big challenge because more than 95% of Internet traffic is driven by

TCP [80], which binds each connection to a single interface even though

endpoints have nowadays evolved to have multiple network interfaces.

There is a mismatch between single-path transport and the multitude of

available network paths. This stands in contrast to the trend that more

and more endpoints are becoming multi-homed and there is a demand to

take advantage of multiple access interfaces. As a result, the TCP/IP’s

single-path design is becoming evermore ill-suited to take advantage of

multipath transmission.

During the last decade, data centers have risen to dominate the com-

puting landscape on the Internet. They provide a cost efficient solution

for provisioning a wide range of computing resources in diverse environ-

ments such as business, science, and mobile computing. Data centers in

big companies such as Google, Microsoft, and Amazon, have resulted in

the construction of data centers of unprecedented size. Multipath trans-

mission is also a challenge for DCNs. For example, in a DCN, many paths

are available between two servers, and a routing protocol may pick one

according to a certain metric for a particular TCP connection. That can

cause collisions where multiple flows go through the same link, affecting

throughput to such an extent that the average throughput is halved. In

order to offer large bandwidths and short delays, new data center topolo-

gies, such as multi-homed topologies, have been proposed to take advan-

tage of multipath transmission.
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2.2 Multipath Transmission

The earliest reference to concurrent multipath transmission, referred to

as dispersity routing, was in Dr. Maxemchuck’s Ph.D. dissertation [88] in

1975. After that a significant amount of research on multipath trans-

mission has been published. In 2006, Shakkottai et al. [122] consid-

ered the scenario where users split their traffic amongst all the avail-

able IEEE 802.11 access points (APs). In a non-cooperative pricing game,

they showed that multihoming outperforms unihoming, both in terms of

throughput as well as profit to the ISPs.

As a first step towards multipath transmission, some early approaches

have been proposed for performing vertical handoffs from one network to

another as a mobile user migrates across the coverage areas [134]. When

the coverage areas of two networks overlap, end users expect to have pro-

vided access through the higher data rate connection. In this thesis, a

similar scenario where a host has multiple active network interfaces is

considered. For example, a host is provided access through all of its inter-

faces instead of only one interface.

In this regard, striping is the principal technique used for aggregat-

ing resources through multiple interfaces to obtain higher performance

[140]. The striping itself is not specific to a certain protocol layer, but is

a common technique which could be utilized by all layers. Many striping

approaches were proposed for multipath transmission on various protocol

layers. In the remainder of this section, related work is classified accord-

ing to which of the layers of the protocol stack the proposed approaches

perform at: link layer, network layer, transport layer, application layer

and session layer.

2.2.1 Link Layer

At the link layer, multipath transmission is typically called bonding or

bundling because multiple physical channels are bundled into a single

logical channel. The primary goal of link layer bundling is to coordinate

multiple independent links between a fixed pair of systems, providing a

virtual link with a larger bandwidth than any one individual link.

Multilink PPP (MP) [132], designed for Integrated Services for Digital

Network (ISDN), aggregates links using the PPP protocol [129]. MP did

not specify any scheduling strategy but suggested that data fragments

could be distributed proportional to the links’ transmission rates. In order
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to detect fragment loss and disorder, MP used a 4-byte sequencing header

for synchronization and detecting lost fragments at the receiver. There-

fore, a reorder buffer was required at the receiver to accommodate the

out-of-order fragments. Adiseshu et al. [5] added a strIPe layer, a virtual

IP interface below the IP layer and above the data link layer, to aggre-

gate multiple data links. The strIPe layer implemented the sender side

striping algorithm and the receiver side resequencing algorithm. They

also proposed a family of efficient channel striping algorithms that solved

both the variable packet size and the First In, First Out (FIFO) delivery

problems. Another technique, Link Aggregation [2], allows multiple links

to be aggregated together to form a link aggregation group so that a MAC

(Media Access Control) client could treat the link aggregation group as if

it were a single link. This mechanism allows load balancing of available

links in bridged Local Area Network (LAN) environments, along with im-

proved resilience in the face of the failure of individual links. In addition,

the Frame Distributor is responsible for maintaining any frame ordering

constraints. Therefore, there is no requirement for the Frame Collector to

perform any reordering of frames received from multiple links.

An example of wireless channel bonding was discussed by Snoeren et al.

in [133], in which they proposed LQB (Link Quality Balancing), a scheme

that bundles multiple channels of the same Wide-area Wireless Access

Network (WWAN) technology. In order to equalize the transmission time

of different links, LQB adapts the fragment size to the current effective

throughput of each link. A link layer receive buffer is also required to

reorder fragments. Another example of wireless communication is Fat-

VAP [70], aggregating the bandwidth available at accessible APs and also

balancing their loads.

The main advantage of link-layer bonding is that the signalling rate of

the channel is relatively stable and can be used to mitigate reordering.

However, link layer approaches only work on a point-to-point link that

connects two devices. Therefore, they are not applicable in a general sce-

nario of end-to-end communications.

2.2.2 IP Layer

The IP layer, originally proposed to handle global addressing and routing,

seems a natural candidate to host the multipath capability for enhancing

end-to-end communication. In theory, each packet of a TCP flow could

be sent over a different path, and the IP protocol would ensure that all
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packets reach their destination. But, in practice, when packets inside

one connection take two or more paths through a network, they could

experience different propagation delays and arrive out of order. The TCP

receiver sends duplicate acknowledgements to the sender so that the TCP

sender’s fast retransmission (or even timeout retransmission) mechanism

will often mistake packet reordering for packet loss and reduce its offered

load to an unacceptably lower level. Kim et al. [75, 76] showed that the

TCP suffers significant performance degradation due to frequent packet

reordering, especially in a wireless environment. Therefore, the use of

multiple paths with varying characteristics poses challenges in the form

of reordering for all IP layer approaches.

A frequently used IP layer approach for aggregating bandwidth of multi-

ple IP paths is to use tunnelling mechanisms for transparently redirecting

packets from the server or a proxy to all IP addresses at the client. For

example, Phatak et al. [102, 103] proposed using IP-in-IP encapsulation

(also used for tunnelling in the mobile IP standard [99]) to distribute IP

packets across multiple network interfaces. In order to avoid fast retrans-

mission, they used an out-of-order sending scheduler, which distributed

packets proportionally to the paths’ effective rate. Chebrolu et al. [21, 22]

presented a network layer architecture to aggregate bandwidth on mul-

tiple paths for real-time applications. They assumed an infrastructure

proxy. The proxy (like the Home-Agent in Mobile IP [100]) was aware of

the multiple interfaces of the client, and tunnelled the captured packets

to the client using IP-in-IP encapsulation. In order to minimize the re-

ordering effect, they used a scheduling algorithm, Earliest Delivery Path

First (EDPF), which estimated the delivery time of the packets on each

path, and scheduled each packet onto the path that delivered it the ear-

liest. Kim et al. [75, 76] introduced PRISM, a proxy based inverse mul-

tiplexer that enabled TCP to efficiently utilize the community members’

WWAN connections. PRISM striped each TCP flow over multiple paths.

It manipulated the transport-layer acknowledgements (ACKs) so as to ap-

pear in order to the sender so that PRISM was able to mask a variety of

adverse effects specific to each link via an intelligent ACK-control mech-

anism. Most IP layer approaches are transparent to upper layers, but

PRISM [75, 76] is an IP layer approach that explores the transport-layer

feedback mechanism. Thus, PRISM could be treated as a cross-layer ap-

proach.

Host Identity Protocol (HIP) [89] and shim6 [95] have been proposed and
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implemented to provide multihoming support for failover with the possi-

bility of flow-based load balancing. Both HIP and shim6 introduced an ad-

ditional addressing layer to allow changing IP addresses on network inter-

faces, while keeping constant transport-layer identifiers. Those protocols

enabled IP packet flows to dynamically change paths in the presence of

link failure. However, they do not support simultaneous multipath trans-

mission without additional extensions. SIMA [104] was an extension of

HIP to use multihoming for assigning separate TCP connections indepen-

dently to different paths. Gurtov et al. in [49] designed and implemented

Multipath HIP (mHIP), a multipath scheduler based on HIP, to distribute

the incoming traffic among multiple available paths. Utilizing a Fastest

Path First scheduling algorithm (a variation of the EDPF algorithm), they

striped packets within a TCP connection to multiple paths with minimal

reordering. Unlike other IP layer approaches, mHIP applied a congestion

avoidance algorithm to redirect traffic from the more congested paths to

the less congested paths. Polishchuk et al. [105] proposed a TCP-friendly

congestion control algorithm for mHIP to prevent the stealing of band-

width from legacy TCP flows at the shared bottlenecks. The concept of

joint congestion control algorithm adopted in [49] and [105] is also used

by some transport layer approaches (they will be discussed later). How-

ever, the reordering and congestion avoidance algorithms used on the IP

layer (or between IP and TCP like HIP [89]) have insufficient information

(e.g., congestion status and RTT) and need to repeatedly design additional

mechanisms which have already been on the transport layer.

As discussed earlier, reordering at the receiver is the main challenge

for all IP layer approaches. These approaches use various scheduling al-

gorithms to minimize the reordering effect. We summarize the schedul-

ing algorithms used in the IP layer approaches and find three primary

scheduling strategies. The first is the fastest path first scheduling strat-

egy. This strategy was commonly used in various approaches such as

[21, 22] and [49]. The second one is to schedule packets proportionally

to the paths’ rate, such as [102, 103]. This scheduling strategy is also

used in the link layer, for example, MP [132]. The third one is to mask the

reordering effect by using the fake TCP ACKs [75, 76].

2.2.3 Transport Layer

Compared with IP layer approaches, transport layer approaches can enjoy

maximum benefit because congestion control can be used as a mechanism
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for resource allocation in a network. At this layer, end-systems can easily

obtain information about each path: capability, latency, loss rate and con-

gestion state. This information can then be used to react to congestion in

the network by moving traffic away from congested paths.

Numerous attempts have been made to tune existing transport proto-

cols, Stream Control Transmission Protocol (SCTP) [135] and TCP, for

multipath capability. SCTP was designed with multihoming in mind al-

though it used only one primary path at the same time and switched to

another path for retransmission of lost data or as a backup in the case of

primary path failure. Several SCTP extensions, such as Concurrent Mul-

tipath Transfer SCTP (CMT-SCTP) [10, 66, 67, 85], cmpSCTP [83], WiMP-

SCTP [63] and LS-SCTP [3], enabled SCTP to simultaneously transmit

data over multiple paths. CMT-SCTP [10, 66, 67, 85] has a separate

buffer to guarantee path independence. This design preserves the TCP-

friendliness of each flow under the assumption that no bottleneck is shared

by multiple paths. CMT-SCTP proposed a few algorithms which aug-

mented and/or modified the current SCTP to counter the negative side-

effects of reordering at the receiver. Moreover, CMT-SCTP offers a few

retransmission policies for lost packets. cmpSCTP [83] distributes data

over the available paths through real-time path monitoring. It has a sep-

arate congestion control for each path so as to ensure fair integration with

other traffic in the network. WiMP-SCTP [63] offers two transmission

modes: “Data-striping Mode” and “Data-duplicating Mode” for a differ-

ent wireless link status. When the link status is good, the “Data-striping

Mode” is selected to aggregate bandwidth. On the other hand, when the

network status is bad, the “Data-duplicating Mode” is selected to increase

destination reachability. LS-SCTP [3] proposed separating the flow con-

trol and congestion control. The congestion control is performed per path,

whereas the flow control is performed per connection. It allows the sender

to schedule data on certain paths according to bandwidth estimation.

There has been a considerable amount of academic work on multipath

SCTP based on CMT-SCTP. For example, Dreibholz and Adhari et al. [4,

37, 38] examined the challenges of CMT-SCTP over asymmetric paths.

They identified the issue of sender and receiver queue blocking as a prob-

lem that could lead to poor performance. In order to improve the perfor-

mance, Dreibholz [37] and Adhari et al. [4] proposed a few mechanisms

accordingly, such as buffer splitting, chunk rescheduling, and smart fast

retransmission. And Dreibholz et al. [38] also proposed using the multi-
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streaming feature of SCTP. That particular feature requires a scheduler

on both sides to decide the order in which packets on different paths are

sent and delivered to the application. Budzisz et al. [20] proposed an

mSCTP-CMT protocol to investigate the applicability of CMT-SCTP for

distributing data between two paths under the same association (connec-

tion) during the handover transition process. They emphasized the con-

sequence of a sender-introduced reordering and its effect on congestion

control. The authors found that in CMT-SCTP, the receive buffer may

be filled with out-of-order data caused by complete or short-term failures

during handover. They solved this problem by allowing no further data

transmission on the path which experiences a single TCP timeout.

In contrast to SCTP, which was designed with multihoming support,

TCP is unaware of multiple interfaces and allows only a single IP address

per endpoint. However, TCP has dominated Internet traffic, which has

sparked a lot of interest in enabling TCP to support simultaneous multi-

path transmission.

pTCP [61, 62] functions as a wrapper around a modified version of TCP.

It opens multiple TCP flows, one for each interface in use. pTCP performs

intelligent striping of data across the micro-flows (TCP flows), and does

data reallocation to handle variations in the presence of heterogeneous

path characteristics. R-MTP [86] is a rate-based reliable transport pro-

tocol. It relies on explicit bandwidth probing to estimate bandwidth in

order to adjust the rate on the available paths accordingly. For exam-

ple, it measures packet inter-arrival times and jitter to sense bandwidth

scarcity. The probing period must occur on a fine time-scale to reflect the

fluctuation of the available bandwidth. R2CP [60, 77] is a receiver-centric

transport protocol with a simple sender design. It allows a mobile host to

have control over the reliable delivery of data from the sender over multi-

ple paths. R2CP schedules transmissions based on the congestion window

and the round-trip-time of each connection to avoid out-of-order arrival

at the receiver. Similar to the mSCTP-CMT protocol, R2CP also supports

handover. Lee et al. [81] investigated schemes to address the reordering

issue in multipath transmission by tuning a few TCP parameters (e.g., in-

creasing the fast retransmit threshold, enabling delayed ACKs, and mak-

ing use of flow-aware routers). Chen et al. [23] proposed transmitting

multiple copies of the same packet on different paths to combat extremely

high packet loss rates. But the performance degrades sharply as the loss

rate increases beyond 20%. In cTCP, Y. Dong et al. [33] proposed using
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a single congestion window to control the global throughput and a single

sending buffer to be shared among all paths. Its scheduling algorithm

is a Credit-Weighted Round-Robin which allowed a fair data distribution

among the available paths. Sarkar [120] proposed Concurrent Multipath

TCP (cmpTCP), which concurrently splits packets over all the paths from

a shared sending buffer, with each path only maintaining a virtual re-

transmission buffer. Sarkar also developed a Markov model in cmpTCP

for estimating the data transport rate on each path and then computed file

transmission time by adding estimated data transport rates on all paths.

In the case of M/TCP, Rojviboonchai and Hitoshi [116] proposed imple-

menting an alternative TCP option called the multi-route option to dis-

tinguish the routes of the connection. They used One-Way-Trip Time

(OWTT) [118] at the sender to estimate the delay time of the forward

path and reverse path separately in order to calculate RTO timers. By

using the multi-route option and OWTT measurement, the endpoint can

deal with the congestion control of each path with high accuracy. Ro-

jviboonchai et al. [117] proposed R-M/TCP, which is a Rate-based M/TCP

that performed congestion control in a rate-based and loss avoidance man-

ner. Specifically, R-M/TCP estimates the queue length at the bottleneck

link. If the queue length grows beyond a predefined threshold, the sender

will recalculate a new congestion window to achieve a fair share at the

bottleneck. Tsao and Sivakumar [141] investigated whether multiple in-

terfaces having highly disparate bandwidths were worthy of being aggre-

gated. They proposed three mechanisms for TCP acceleration. The princi-

pal idea was to receive TCP data segments over a comparably high-speed

WiFi and return ACKs over a low-speed 3G link.

In accordance with the discussion above, it seems straightforward that

multipath transmission is just for utilizing multiple TCP (or SCTP) flows

with intelligent scheduling algorithms to avoid reordering at the receiver,

even in the presence of heterogeneous paths. However, it was found that

simply concurrently utilizing multiple TCP flows at a bottleneck link would

result in a fairness issue, i.e. an unfair share of the bandwidth at a bot-

tleneck link. For example, NewReno [55] is the most common TCP con-

gestion control variant as it yields an equal share of the congested link.

This equal share outcome of NewReno will result in an unfair share of

the bandwidth if more than one TCP flow is active for a single MPTCP

connection at the bottleneck link. Zhang et al. [151] proposed mTCP as

a solution for the problems of fairness by avoiding establishing subflows
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across the same bottleneck. In CMT-SCTP, Iyengar et al. [66] assumed

that the bottleneck queues on the end-to-end paths are independent. The

strong assumptions made by Zhang et al. [151] and Iyengar et al [66] for

mTCP and CMT-SCTP are not feasible in practice, however.

An important transport layer approach designed with the fairness prop-

erty in mind is MPTCP [44], which is a major extension to TCP and al-

lows a pair of hosts to use several paths to exchange the segments that

carry the data from a single connection. Congestion control is used to

guarantee fair resource allocation on multiple paths. Various congestion

control algorithms based on the idea of Resource Pooling (RP) [148] have

been proposed for MPTCP such as the Fully Coupled Congestion Con-

trol [113], (semi-) Coupled Congestion Control (CCC) [110, 149], Dynamic

Window Coupling (DWC) [54], and Opportunistic Linked Increase Algo-

rithm (OLIA) [74]. All these algorithms do not modify the Slow Start,

Fast Retransmission and Fast Recovery phase of TCP, but only the con-

gestion avoidance phase. The difference between these congestion control

variants is discussed in [130]. The CCC has been adopted by the Inter-

net Engineering Task Force (IETF) as the standard congestion control

algorithm for MPTCP. The challenge of achieving fairness for legacy TCP

flows is not specific to MPTCP, but it is also a challenge for SCTP and all

other multipath transmission approaches. For example, congestion con-

trol algorithms for CMT-SCTP have been studied in CMT/RP-SCTP [36]

and [34, 35]. The transport layer is not the only protocol position to solve

the fairness issue; the IP layer approaches also exist [49, 105]. Unlike

the IP layer approaches, which need to repeatedly add congestion de-

tection/control mechanisms, TCP layer approaches are able to use these

mechanisms directly.

Although SCTP shares the same issues with MPTCP in terms of fair-

ness, reordering, and retransmission policies, moving legacy applications

from TCP to SCTP involves a number of challenges such as making SCTP

work through NATs, the need to modify applications, and the lack of an

easy way to negotiate SCTP versus TCP between a client and a server.

None of the issues are insurmountable, but together they make adoption

of SCTP as a TCP alternative a challenge. The main difference between

SCTP and MPTCP from a compatibility viewpoint lies in the interface

they provide to the applications. Specifically, unlike SCTP which modi-

fies the interfaces of legacy TCP to applications, MPTCP presents a single

TCP interface to the application layer. This seemingly minor difference
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makes MPTCP compatible with all legacy applications. As such, the im-

plementation of multipath in TCP, which dominates Internet traffic, is a

much more attractive deployment strategy.

2.2.4 Application Layer

Provisioning multipath capability at the application layer has received a

lot of attention because a solution that is almost independent of the un-

derlying access technologies and network-layer routing is promising. It is

a common practice that an application establishes multiple transport con-

nections, binds them to different IP addresses, and distributes the data in

proportion to the available path capacity over these connections.

In the early stage (1980s-2000s) of the research on application layer

multipath transmission, the focus was on bandwidth aggregation using

multiple TCP connections over the same physical path. For instance,

File Transfer Protocol (FTP) [106] is able to establish several connections

when a file transfer is initiated. The data to be transferred is divided into

fixed-size segments and sent over a connection that is idle and able to

transfer data. Allman et al. [8] developed a new application called XFTP

that used multiple TCP connections for transferring data over long-fat

links, like satellite links. GridFTP [69] is another extension of the FTP

protocol implemented for bulk data transfer, where parallel TCP connec-

tions are created to increase the throughput in a bottleneck link. Hacker

et al. [50] examined the effects of using parallel TCP flows to improve

end-to-end network performance while avoiding congestion. They found

that in the absence of congestion, the use of parallel TCP connections was

equivalent to using a large Maximum Segment Size (MSS) on a single con-

nection with the added benefit of reducing the negative effects of random

packet loss. The above approaches aim at increasing application through-

put by using multiple TCP connections through the same physical path.

However, if they are used for striping data over different physical paths,

the reordering issue at the receiver would render them inefficient because

they have failed to consider the reordering issue caused by heterogeneous

paths.

In the 2000s, researchers started to seek solutions to provide bandwidth

aggregation over different physical paths. A simple approach to achieve

this goal is to directly add support for multiple interfaces to a given appli-

cation by opening multiple TCP sockets, one each for every active inter-

face, and performing striping of data across different sockets. Golubchik
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et al. in [46] investigated the potential benefits of an application layer

multipath streaming approach between a set of senders and a receiver.

They found that multipath streaming exhibited better loss characteris-

tics than single path streaming. The results were encouraging and could

be used in guiding the design of multipath streaming systems. Given

that popular files are often replicated on multiple servers, it becomes

natural for clients to connect in parallel to several mirror servers to re-

trieve a file. Rodriguez and Biersack in [115] described a parallel access

scheme that allows users to fetch different portions of a file from mul-

tiple servers at the same time and reassemble the file locally. Tullimas

et al. [142] proposed MultiTCP, a receiver-driven TCP-based system, for

multimedia streaming aiming at providing resilience against short term

insufficient bandwidth by using multiple TCP connections for the same

application. MultiTCP was a “smart” application that allowed the appli-

cation to control the desired sending rate during congestion periods. Wang

et al. [146, 147] proposed Dynamic MPath-Streaming (DMP), a scheme

for live streaming over multiple wired TCP connections. No TCP modifi-

cations are required, but multiple TCP senders fetch packets with video

data from a server that queued and simultaneously pushed them over

multiple paths. Packets are assigned additional sequence numbers to en-

sure correct reassembly at the receiver. DMP is also a “smart” application

layer approach because it observes the TCP send buffer scheduling data in

proportion to the data rate of available paths. MRTP [87] is a multipath

transmission extension to the Realtime Transport Protocol (RTP) [121]

for real-time applications. MRTP is complementary to SCTP in support-

ing multimedia services by exploring multipath transport in ad hoc net-

works, where link bandwidth may fluctuate and paths are unreliable. An

underlying multipath routing topology (multiple interfaces are not neces-

sarily required) is assumed.

In addition to multipath approaches for specific applications, HTTP [42]

with multipath capability is currently one of the most common protocols

for streaming video on the Internet through multiple paths. Evensen et

al. [40, 41] and Kaspar et al. [71, 72] described an HTTP-based method for

downloading multimedia content simultaneously over multiple network

interfaces.

Application layer approaches split a single file or byte stream into log-

ical segments which are concurrently transmitted over different paths.

These kind of approaches seem to be simple in the sense that the applica-
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tions are in full control of the striping decisions with no requirement for

any protocol changes at lower layers so that clients and servers can find

an optimal way to collaborate. However, the complexity and overhead at

the application layer are considerable. For example, an application-level

sequence number has to be included in each of the application defined

headers, and the application has to explicitly ensure that the application

layer data units, which carry unique application-level sequence numbers,

do not get fragmented during transmission. Moreover, a dedicated rese-

quencing mechanism is required to reassemble the data at the receiver. In

practice, different paths may have diverse characteristics, and the strip-

ing ratio may not exactly match the data rate ratio of different paths. A

large receive buffer (on the application level) is required to accommodate

the out-of-order data. Moreover, in order to split intelligently, the appli-

cation has to redundantly implement a bandwidth estimation mechanism

in spite of the same mechanism already having been performed by TCP

through its congestion control mechanism.

2.2.5 Session Layer

Session-layer striping is an approach that tries to open multiple TCP flows

without any changes to existing applications by providing specialized mid-

dleware or virtual sockets between the application layer and transport

layer. Sivakumar et al. in [131] proposed PSockets (Parallel Sockets), a

library that transparently partitions upper layer data into multiple trans-

port streams through the same physical path. PSockets has the same Ap-

plication Programming Interfaces (APIs) as that of a regular socket. The

principal idea is to split data across several open sockets with no manual

tuning. Qureshi et al. in [108] presented Tavarua, a middleware for pro-

viding network striping capability to applications with high demands on

uplink throughput. ATLB [52, 53] consists of a distributed data transfer

method and a path-failure detection/recovery method. ATLB calculates

the data arrival time for each path, considering the time that data seg-

ments spend in the TCP queue at a sender and the time needed for data

segments to pass through the network. ATLB enables in-order data de-

livery to a receiver to mitigate the reordering effect at the receiver. Like

other session layer approaches, PATTHEL [13] also provides APIs for the

application developers to be able to use it. The difference lies in the fact

that first of all PATTHEL incorporates a separate data channel and a con-

trol channel, where the control channel is for managing the connection.

35



Background: Network Transport

Figure 2.1. Milestones in the evolution of multipath transmission. MT: Multipath trans-
mission

Second, PATTHEL is a cross-layer protocol because it adds an entrance to

the routing table in order to deliver data over a certain channel.

Session-layer striping is very similar to application-layer striping. It

also faces the same challenges that application layer striping does, for ex-

ample, the reordering issue. But the good point is that although it still

requires client and server-side modifications, it partly solves the compat-

ibility issue faced by the application layer approaches.

2.2.6 Summary

The timeline of the important approaches for provisioning multipath trans-

mission capability presented in this chapter are summarized in Fig. 2.1.

The first paper on TCP was published in 1974. In the following year,

multi-homed TCP [88] was proposed to concurrently transmit data over

multiple paths. From that point onward, various forms of multipath trans-

mission have been proposed. The idea of building multipath capability

into TCP was, to the best of my knowledge, first suggested by Huitema [65]

as an Internet draft in IETF in 1995. In 2006, Key et al. [73] used fluid-

flow modeling to demonstrate that multipath transport can provide not

only robustness but also balanced congestion in a stable manner. The

latter is achieved with the right coupled congestion control algorithms.

Their research provides sufficient incentives to enable multipath capabil-

ity on the transport protocol. In 2008, Wischik et al. [148] investigated the

resource pooling principle, which makes a collection of resources behave

like a single pooled resource. This principle is a significant step towards a

practical multipath-aware end system. From 2009, IETF started to define

and standardize MPTCP, which utilized the CCC algorithm based on the

partial resource pooling principle.
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In the rest of this section, I first summarize the challenges of all the

presented multipath transmission approaches and then evaluate the ap-

proaches from the perspective of the challenges. The first challenge the

multipath transmission approaches must face is compatibility. A solu-

tion must require as few changes to the existing infrastructure as pos-

sible. Otherwise, it cannot be widely accepted in practice. The second

challenge associated with all the multipath approaches that have been

presented (excluding those running on the same physical path) is that

of the packet reordering at the receiver. Given the dynamic nature

of network paths, some amount of reordering is inevitable even on the

same physical path. However, when packets are delivered over differ-

ent paths, the packets may arrive at the receiver frequently out of order.

Many repeated ACKs sent by the receiver to the sender will slow down

the sending rate because of the misinterpretation of out-of-order pack-

ets. The packet reordering at the receiver may also cause the head-of-line

blocking (HLB) problem (In Publication III, HoL blocking is used to refer

to the same problem). When traffic between two hosts follows different

paths, each of them may have different QoS characteristics and queuing

behaviors. Therefore, packets may probably arrive at the peer out of or-

der. These out-of-order packets must be accommodated at a buffer and

reordered before being forwarded to upper layers. Large amount of out-

of-order data may overflow the reordering buffer, causing the so-called

HLB and leading to a significant degradation in the overall performance.

In order to counter against HLB, Barré et al. [14] proposed disabling the

under-performing paths when the out-of-order data reaches the maximum

allowed resequencing buffer. However, it is always too late to disable the

under-performing paths because the HLB may have happened already.

The HLB problem is not used to evaluate the existing approaches because

HLB is a common problem for all presented approaches no matter which

layers they are located on. The third challenge is fairness and load

balancing. In the early stage of multipath transmission research, most

approaches emphasized bandwidth aggregation with scheduling and re-

ordering algorithms. Few of them considered the fairness and load bal-

ancing issues. Today, these issues have become challenges along with the

revolutionary development of multipath transmission.

It has been noted that currently there is no single multipath approach

that is able to cover these challenges in a satisfactory manner. I now

proceed to evaluate the multipath transmission approaches from the first
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three of the challenging perspectives mentioned above.

• Compatibility: the compatibility of an approach is evaluated by employ-

ing two metrics. The first is whether the approach is compatible with

the legacy applications. Obviously, application layer approaches have

a serious compatibility issue because the multipath transmission prop-

erty needs to be implemented for specific applications. The session layer

approaches seem the best because they keep the same APIs as a regu-

lar socket (e.g, PSockets [131]), thus requiring no changes to both the

legacy protocols and applications at all. The second most compatible

is MPTCP which keeps the same interface to the upper layers so that

the multipath transmission capability is enabled for all applications

transparently. Furthermore, the IP layer and link layer approaches are

also compatible with the legacy applications because they do not change

the interfaces between applications and transport protocols. The sec-

ond evaluation metric is the sequence number design on the transport

layer because it affects whether the “new” packets are able to traverse

the legacy middle-boxes. Striping sequence numbers across two paths

leaves gaps in the sequence space seen on any individual path. Some

middle-boxes may block the packets carrying discontinuous sequence

numbers [59, 111]. Session layer and application layer approaches obvi-

ously have no control over the choice of sequence numbers used on the

transport layer. Therefore, they are not compatible with legacy middle-

boxes. Those approaches are not the only ones that use a single sequence

number space, and there are many other approaches that also adopt the

same design, for example some of the transport layer approaches such as

CMT-SCTP [66, 67], R-MTP [86] and R-M/TCP [117]. A viable solution

is to use double sequence number spaces: per subflow sequence number

is used to detect losses and drive retransmissions, while the connection-

level sequence number is used to allow reordering at the receiver. Only

few transport layer approaches use the double sequence number space

design such as LS-SCTP [3], cmpSCTP [83] and MPTCP [44]. In sum-

mary, transport layer approaches (which employ the double sequence

number space design) are the best approaches compatible with both ap-

plications and the network infrastructure.

• Reordering: when packets travel through different paths which may

have mismatched characteristics, they may arrive at the destination out
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of order. All the presented approaches deal, to some extent, with the re-

ordering issue on the layer which they are located at. If they ignore or

have no control over the reordering mechanism on the transport layer,

their approach may suffer from performance degradation because of the

misinterpretation of out-of-order packets. For example, the approaches

beneath the transport layer just simply strip data on multiple TCP sub-

flows. TCP interprets out-of-order packets as lost and might, therefore,

unnecessarily retransmit data and reduce its transmission rate. The

double sequence number space design is a viable solution for solving

this problem because the sequence numbers carried in the TCP head-

ers are separate on each path so that the interpretation of out-of-order

packets and ACKs remain the same as before.

Note that although the IP-in-IP encapsulation [102, 103] is also a kind

of double sequence number design, the TCP process is unaware of the

fact that the packets are tunnelled through another interface. There-

fore, the receiver sees all packets coming from one path. Without careful

consideration of the ACK mechanism, the TCP process would still misin-

terpret the out-of-order packets. Unlike the transport layer and IP layer

approaches, the application layer approaches need no additional mech-

anism to solve the problem of misinterpretation of out-of-order packets

because the applications use multiple standalone TCP flows to deliver

data and use an application level sequence number space to resequence

the packets coming from different paths. In summary, the transport

layer and application layer are in the best position to solve the reorder-

ing issue.

• Fairness: fairness could also be seen as a compatible property with

legacy TCP flows. The formal fairness requirement on multipath trans-

mission was unclear in the beginning. For example, the early research

on multipath transmission focused on bandwidth aggregation by taking

advantage of the resources through multiple interfaces. The target in

the research community matched the potential expectation of end users

because an end user can benefit from the aggregated bandwidth if he

or she has paid for both accesses. Thus, the fairness emphasized the

fairness of each individual subflow; for example, each subflow gets as

much bandwidth as a standalone TCP flow does. In recent years, the

research focus was on the fairness of the multiple subflows as a whole

at shared bottlenecks. The principle is that a multipath transmission
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should behave as a single TCP flow at shared bottlenecks [130]. Conges-

tion control is used as a powerful tool to achieve aggressiveness control.

For this reason, the transport layer is still in the best position because

otherwise an approach is needed to implement the congestion control

mechanism that has already been implemented on the transport layer

(e.g., [49]).

Generally, transport-layer approaches best fit the requirements of to-

day’s multipath transmission in terms of compatibility, reordering, and

fairness. However, transport layer approaches require significant changes

to both endpoints and are, thus, disadvantaged in terms of getting broadly

accepted and more quickly deployed in the near future. But approaches

like MPTCP may prove themselves in the long term after successful stan-

dardization. Indeed, Bonaventure [17] found that in 2013, Apple Inc. en-

abled MPTCP for a specific application “SIRI” through which they control

the server-side.

In the next section, the IETF MPTCP is discussed as a typical example

of the multipath transmission protocol.

2.3 IETF MPTCP

The multipath transmission capability has received a lot of attention in

the research community ever since the beginning of the Internet. Unfor-

tunately, no multipath protocol has been implemented and adopted widely

on the Internet because of compatibility, reordering, and fairness issues.

In this section, an extensive overview of MPTCP is presented because our

research on multipath transmission is mainly based on MPTCP.

During the past few years, MPTCP has remained an active field of in-

terest for academia, with the IETF also currently showing considerable

interest in the protocol. MPTCP aims to offer higher aggregate band-

width and robustness by pooling multiple paths within one transport con-

nection. For the design of MPTCP, the following set of goals have been

identified for its acceptable operation [43]:

• Improved Throughput: MPTCP performs at least as well as a single

TCP flow running on the best path.

• TCP-fairness: MPTCP is TCP friendly. For instance, it behaves as a
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single TCP flow at a shared bottleneck.

• Balance Congestion: MPTCP utilizes the least congested path the most.

• Middle-boxes: MPTCP can traverse various types of middle-boxes, such

as NATs and firewalls, because each subflow is equivalent to a normal

TCP connection.

• Compatibility: application developers do not need to change their ap-

plications to take advantage of MPTCP, which presents a signle TCP

interface to upper layers.

The first goal is the prime performance incentive for developing MPTCP,

the second goal guarantees bottleneck fairness, while the third goal ad-

heres to the principle of RP. To achieve these first three goals, it is im-

portant that intelligent scheduling and congestion control algorithms are

developed. The last two goals are very important from an implementa-

tion viewpoint because they allow MPTCP to be implemented in prac-

tice. Through extensive measurement, Hesmans et al. [56] and Honda

et al. [59] found that MPTCP could traverse most of the middle-boxes.

The MPTCP client could also fallback to regular TCP to preserve con-

nectivity in the presence of certain middle-boxes or if the server is un-

aware of MPTCP [59, 111]. Moreover, to allow clients to benefit from

MPTCP in its early deployment (e.g., servers have not upgraded to sup-

port MPTCP), Detal et al. [31] proposed a protocol converter, MIMBox, to

translate MPTCP to TCP and vice versa.

An important difference between MPTCP and TCP is the congestion

control algorithm. The standard TCP congestion control [9] yields an

equal share of the congested link. It increases the congestion window

upon reception of acknowledgements and decreases the slow-start thresh-

old upon detection of losses. As mentioned in Section 2.2.3, MPTCP has

adopted the CCC as its congestion control algorithm to update its conges-

tion window according to the following principles:

• For each non-duplicate ACK on subflow i, increase the congestion win-

dow of the subflow i by min(α/cwndtot, 1/cwndi)

• Upon detection of a loss on subflow i, decrease the subflow congestion
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window by cwndi/2

where cwndtot is the total congestion window of all the subflows and α is

a parameter which regulates the aggressiveness of the MPTCP connection

to make it fair to TCP flows.

In Section 2.2.6, two sequence number designs adopted by multipath

transmission approaches are summarized: single sequence number de-

sign and double sequence number design. MPTCP implements double se-

quence number spaces as follows. In MPTCP, each subflow is equivalent

to a normal TCP flow with its legacy 32-bits sequence numbering space.

This design allows MPTCP to be compatible with certain middle-boxes.

For example, continuous TCP sequence numbers allow MPTCP packets

to traverse sequence-number-checking firewalls, which check whether the

sequence number is out of the valid range. In addition to the 32-bits se-

quence number space, MPTCP maintains a 64-bits connection-level se-

quence number space to reassemble the packets coming from different

subflows. A Data Sequence Signal (DSS) option [44] specifies a full map-

ping from the connection-level sequence number to the subflow sequence

number.

2.3.1 Reordering

As in the summary in Section 2.2.6, every multipath transmission ap-

proach needs to solve the reordering issue, especially when the data is

delivered over heterogeneous paths. Although MPTCP improves the over-

all throughput by pooling the resources on multiple paths, the reordering

issue is still unresolved. The state of the art of the reordering problem in

MPTCP is examined as follows.

Barré et al. [14] evaluated the impact of heterogeneous paths on the

receive buffer and aggregated throughput. The experiment result shows

that losses on one subflow have a limited impact on the performance of

the other subflows. However, this observation is based on an assumption

that the receive buffer is big enough to accommodate all the out-of-order

data. Arzani et al. [12] found that the send buffer size also has significant

impact on MPTCP’s performance. For example, MPTCP provides higher

performance gains with a larger send buffer. Chen et al. [24] explored

the performance of MPTCP over wireless networks. In order to avoid per-

formance degradation, they set the receive buffer up to 8 MB, which is

not feasible in practice for many devices, especially for mobile devices.
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Zhou et al. [154] conducted extensive experiments to examine the good-

put performance of MPTCP with bounded receive buffers and found that

if the paths had similar end-to-end delays, the MPTCP goodput was near

optimal, whereas if there was a large variation of the end-to-end delays,

the goodput would be significantly degraded. For a wireless environment,

they proposed dynamically adjusting the congestion window for each TCP

subflow so as to mitigate the variation of end-to-end path delay, maintain-

ing similar end-to-end delays over multiple paths. For wired environment

with stable end-to-end delay, in order to reduce the out-of-order packets,

they proposed using a delay-aware scheduling algorithm to predict the re-

ceiving sequence. The drawback of [154] is that they ignored the impact

of packet losses on the reordering issue. Nguyen et al. [91, 92] evalu-

ated the performance of MPTCP in terms of load sharing and through-

put optimization with and without the CCC option respectively. The re-

sults showed that the context of mismatched path characteristics had a

great impact on the performance of MPTCP with bounded receive buffers.

Raiciu et al. [111] proposed mechanisms of opportunistic retransmission

and penalizing slow subflows to avoid the reordering problem. For exam-

ple, if a subflow has caused too many out-of-order packets in the receive

buffer, the congestion window of that subflow is reduced by half and its

slow-start threshold is set to the current congestion window. But if that

subflow has been in the slow-start phase already, the reordering problem

may become worse because the penalization mechanism will set its slow-

start threshold to a smaller value. Paasch et al. [97] proposed improving

the penalization mechanism by adjusting the slow-start threshold only

when a subflow is not in its slow-start phase. However, Paasch et al. also

identified that the penalization mechanism is far from perfect because a

subflow at full sending speed may still overflow the receive buffer while

another subflows is in slow-start.

From the previous discussion, some more efficient scheduling algorithms

are still needed to mitigate the reordering effect.

2.3.2 Multi-homed Data Center

Traditional DCNs have been built using hierarchical topologies: racks of

hosts connect to a top-of-rack switch (TOR); these switches connect to ag-

gregation switches; in turn they are connected to a core switch. Unless

traffic is localized to TORs, the higher levels of the topology become se-

rious bottlenecks. In order to address this limitation, new data center
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topologies are emerging. For example, Greenberg et al. proposed VL2 [47]

which uses multiple core switches to provide full bandwidth between any

pair of hosts in the network. FatTree uses large quantities of lower speed

links between switches. In BCube [48], sources probed congestion on all

paths, and then used source routing to avoid congestion. In recent years,

a focus has been placed on initiatives to use MPTCP in multi-homed data

centers to improve the overall performance. Raiciu et al. [112] were the

first proposing a natural evolution of data center transport from TCP to

MPTCP in multi-homed data centers. They showed that MPTCP could

efficiently and seamlessly use available bandwidth, providing improved

throughput and better fairness compared to single path TCP. The same

authors in [109] investigated what caused these benefits. They found that

using MPTCP allows us to rethink DCNs and approach them with a dif-

ferent mindset as to the relationship between transport protocols, routing

and topology. As DCNs are very different from the Internet in many re-

spects, such as bandwidth, topologies, latency and traffic patterns [15],

it is not wise to replace TCP with MPTCP immediately without solving

the potential challenges first. One of the challenges of great interest is

the Incast effect, a behavior of MPTCP that results in the gross under-

utilization of link capacity in certain many-to-one traffic patterns.

The Incast effect is explained as follows. DCNs support a myriad of ser-

vices and applications. Some applications, such as search engines (e.g.,

Google and Bing) and Map-reduce, generate large amounts of intricate

traffic as many replies to a single inquiry are sent simultaneously to the

node that initiated the inquiry. A new inquiry is not issued until all replies

have been received. Although each individual reply has only hundreds of

kilobytes of data for transfer, it is commonly constrained by a completion

deadline. When the replies traverse a shared bottleneck in a many-to-

one fashion, the perceived application-level throughput at the initiator

collapses because some of the replies may be much delayed due to time-

out caused by heavy congestion. From the protocol viewpoint, it is the

TCP congestion control mechanism that causes unacceptable delays in the

case of RTO. Therefore, the legacy congestion control and retransmission

paradigm need to be revised.

The Incast effect was first termed by Nagle et al. in [90]. There exist

many approaches in trying to solve it. Phanishayee et al. [101] observed

that the Incast effect is caused by the overflow of the bottleneck buffer.

They offered a few approaches including using different TCP variants
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for better packet loss recovery and using short timeouts. Vasudevan et

al. [143, 144, 145] believed that the TCP RTOmin does more harm than

good in data center networks. They proposed reducing RTOmin from its

current value of 200 ms to values of 1 ms or less (e.g., 200 μs) so that there

would be a shorter idle in each timeout. However, as the authors pointed

out, most systems lacked the high-resolution timers required for such

fine-grained RTO values. Psaras and Tsaoussidis [107] demonstrated that

the conservative RTOmin setting might cause severe TCP performance

degradation. They proposed a mechanism named Adaptive MINRTO to

identify the packets whose ACKs were (possibly) going to be delayed, and

applied extended RTOmin to those packets only.

Alizadeh et al. [7] proposed Data Center TCP (DCTCP), a modified TCP,

which aggressively maintained a low switch queue length so as to keep

enough of a buffer to deal with sudden bursts of traffic. In DCTCP, Ex-

plicit Congestion Notification (ECN) [114] is the key tool to indirectly con-

trol the occupied router buffer size. DCTCP tends to offer lower through-

put because it uses a very small buffer space. In order to improve the

throughput of DCTCP, Das and Sivalingam [29] proposed TDCTCP by

modifying the DCTCP congestion control algorithm and the delayed ACK

timeout calculation algorithm. TDCTCP provides more stable throughput

than DCTCP although the packet delay is higher than DCTCP.

Haitao et al. [51] proposed ICTCP, a receiver side congestion control. In

ICTCP, the receive window sizes of the connections are dynamically ad-

justed to alleviate the congestion based on the ratio of incoming through-

put to expected throughput. Zhang and Ansari [153] proposed a control

congestion algorithm, FQCN (Fair Quantized Congestion Notification), in

order to improve the fairness of multiple flows sharing one bottleneck

link and to facilitate quick convergence of the queue length at the bot-

tleneck link to the equilibrium queue length. Zhang et al. [152] proposed

shrinking the Maximum Transmission Unit (MTU) to mitigate the Incast

throughput collapse. They found that although decreasing MTU size was

not an approach that could fix the problem, it was able to delay the onset

of Incast. Tam et al. [139] investigated three root causes for Incast col-

lapse and proposed three approaches for the beginning, the middle and

the end of a TCP connection respectively. The three approaches are: ad-

mission control of TCP flows, timestamp based retransmission, and reit-

erated FIN packets for tail loss. Kulkarni and Agrawal [79] proposed a

spontaneous proactive retransmission strategy. In order to prevent time-
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out, they allowed TCP senders to retransmit unacknowledged packets pe-

riodically without waiting for signals from the receiver.

Some researchers understood the Incast problem in a different way. For

example, Shpiner et al. [128] presented the significant unfairness prob-

lem of TCP flows in DCNs and introduced a switch-level hash-based algo-

rithm, Hashed Credits Fair (HCF), to address the Incast effect. Devkota

and Reddy [32] suggested modifying the switch to regulate flow rates, so

that the severe drop that causes Incast throughput collapse is less likely

to happen.

Incast collapse is not specific to MPTCP, but is inherited from TCP. No

existing approach, however, is entirely satisfactory to avoid the Incast ef-

fect in MPTCP without incurring additional major extensions. Therefore,

it motivates us to address the Incast issue of MPTCP by manipulating the

TCP extensions for multipath operation because MPTCP has to make the

necessary extensions anyway. Specifically, Publication V investigates how

to share network resources among different MPTCP flows by performing

an additional congestion control based on the CCC mechanism.

2.4 Packet Coding

Packet coding has emerged as an important approach in the operation of

communication networks. The major benefit of packet coding stems from

the ability of its redundancy to compensate for missing packets. This

makes data transmission over lossy networks robust and efficient. In re-

cent years, there has been a resurgence of interest in the use of packet

coding in wireless, content distribution, and multicast networks. Packet

coding is a technique frequently used in this thesis, such as Publication

I, Publication II, Publication III, and Publication IV. Therefore, packet

coding is discussed in a separate section to emphasize its importance in

this thesis. Some of the related work in the discussions that follows may

not be specific to multipath transmission, but the coding and scheduling

algorithms can be borrowed for the purpose of multipath transmission. In

this thesis, packet coding refers to any linear combinations of packets in a

finite field. There are a few coding methods which have been widely used,

for example, network coding, forward error correction coding, and foun-

tain coding. The existing work, therefore, is classified into these three

categories.

Starting with the initial work of [6, 78], network coding techniques have
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seen a rapid growth in the theory and their potential applications. These

developments have been summarized in [58]. However, to a large ex-

tent, network coding theory has not yet been implemented in practical

systems. Chou et al. in [25] introduced the idea of embedding the co-

efficients used in the linear combination in the packet header, and also

that of the notion of generations (blocks). Ho in his dissertation [57]

made a significant step towards a robust implementation of network cod-

ing. Some efforts in [45, 64, 138, 155] have been made to combine TCP

and network coding. Huang et al. [64] showed that network coding could

compensate for the lost packets so as to improve the throughput in wire-

less mesh networks. Zhuoqun et al. [155] proposed integrating network

coding in wireless mesh networks to minimize reordering and timeout at

the receivers. Fragouli and Sundararajan et al. [45, 137, 138] proposed

a mechanism that incorporated network coding into a special TCP imple-

mentation (TCP-Vegas [19]) with minor changes to the protocol stack. In

their mechanism, whenever the source was allowed to transmit, it sent a

random linear combination of all packets in the congestion window. The

receiver acknowledged the degrees of freedom (i.e. the number of linear

independent packets) and not the original packets. Note that the network

coding used in [45, 137, 138] was implemented in an end-to-end manner.

Forward Error Coding (FEC) is a fault tolerance technique introduced to

improve network throughput and performance. LT-TCP [136] is a trans-

port protocol designed to be robust in environments with high loss rates

and bursty losses. It uses adaptive segmentation, loss estimation and

FEC to improve goodput by avoiding expensive timeouts. LT-TCP was

designed to operate over a single path and cannot leverage additional ca-

pacity on multiple paths. Li et al. [82] proposed applying FEC to counter

packet losses. They proposed an algorithm to schedule packets on paths

such that the average number of lost packets was minimized while the

FEC encoding remained fixed irrespective of the network conditions. Nguyen

and Zakhor [93] proposed a distributed video streaming application from

multiple senders to a single receiver for bandwidth aggregation. Their

idea was to apply FEC in the rate allocation algorithm to minimize the

probability of packet loss in bursty loss environment. Sharma et al. [123,

124] proposed MPLOT (Multi-Path LOss-Tolerant protocol) to utilize avail-

able bandwidth on multiple heterogeneous, highly lossy paths. MPLOT

estimated path parameters (loss, capacity, and RTT) continuously to pro-

vide adaptive FEC coding. In particular, MPLOT performs latency-aware
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packet mapping, a similar scheduling strategy to that used in [49, 100,

154]. Specifically, it maps packets that are not required immediately to

paths with long delays, while mapping the more immediately useful pack-

ets to paths with short RTTs.

Fountain codes [127] are a low-cost approach to the problem of reliable

communication over a packet erasure channel. Cui et al. [27, 28] proposed

applying the rateless coding to multipath scheduling to mitigate the im-

pact of path heterogeneity.

Coding across packets is a powerful technique to improve network through-

put by either recovering missing packets in lossy networks or by achieving

the upper bound in certain multicast topologies. In this thesis, packet cod-

ing is used as a key element to address the reordering issue of transport

protocols. Packet coding is an elegant design choice because the notion of

an ordered sequence of TCP segments is missing (in the space of a gener-

ation/block) and the packet delays/losses are essentially masked from the

receiver. However, it is not our goal to demonstrate that packet coding

is a better choice than any other options. Rather, we explore the design

space in which packet coding can integrate into transport protocols, and

to what extent packet coding could improve their efficiency. In addition to

the bright side of packet coding, its overhead in networks and hosts is also

considered. For instance, every successful packet reception brings a unit

of new information. Therefore, the receiver must collect enough packets

before the original packets can be recovered, resulting in an additional

decoding delay to end-to-end communication. Sanghavi [119] addressed

the question of how many original packets could be revealed before the

whole generation was decoded. However, the decoding delay depends on

not just the number of recovered packets, but also the order in which they

are decoded. In addition to the decoding delay, computational complex-

ity is another concern preventing packet coding from being used widely.

Publication II looks into ways of reducing the computational overhead.

However, as mentioned previously in the research scope (in Chapter 1),

computational overhead incurred by packet coding is not the subject of

discussion in this thesis.

48



3. Summary of Results

In this chapter the main contributions of this thesis are discussed. The

contributions consist of a packet coding based MPTCP with bounded re-

ceive buffers, the evolution of the Delayed ACK mechanism from TCP to

MPTCP, and a new congestion control algorithm for MPTCP in DCNs.

The future work is discussed at the end of this chapter.

3.1 Packet Coding Meets MPTCP

When packets are sent over heterogeneous paths, they may arrive at the

receiver out of order. If the resequencing buffer is bounded, the out-of-

order data will overrun the buffer and cause HLB. Increasing the size

of the resequencing buffer can mitigate the HLB effect, but an infinite

buffer is not feasible in practice. As discussed in Section 2.2.6, reorder-

ing at the receiver has been a challenge for all multipath approaches. To

solve this challenge, it is essential to design an efficient packet schedul-

ing algorithm. This has motivated us to develop a packet coding based

scheduling algorithm for MPTCP. The goal is to understand to what ex-

tent the packet coding techniques could help mitigate the reordering issue

for MPTCP when using bounded receive buffers on heterogeneous paths,

and whether additional mechanisms are required to compensate for the

insufficiency of packet coding.

Section 2.4 discusses the existing work of integrating packet coding into

network transportation. Packet coding is well known for its redundancy

property in communication networks. However, it is also known for its

negative effects, for example, computational overhead. A principle to re-

duce the computation overhead is to encode fewer packets. In coding the-

ory, a non-systematic coding is any error-correcting code in which output

does not contain the input symbols. In contrast, in a systematic coding,
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the input data is embedded in the encoded output. Compared with non-

systematic coding, systematic coding incurs less computation overhead

because some “coded packets” are original packets requiring no encoding

and decoding operations. Most existing coding approaches for multipath

transmission use, to the best of my knowledge, non-systematic coding.

Instead, Publication I and Publication II utilize systematic coding. The

packet coding design is described as follows. The data stream is divided

into generations. In a generation (Let θ denote the generation size), each

packet is interpreted as a symbol over the field GF (2s), where s indicates

the packet size (assuming each packet has the same size). The coded

packets are generated by combining the packets from the same genera-

tion using random coefficients over the field GF (2s). Let Ak denote the

linear independent coefficient matrix and Iθ denote an identity matrix.

The generator matrix M for encoding a generation is

M =
[
Ak|Iθ

]
, (3.1)

where k is the number of redundant packets. If θ is fixed, the larger the

k is, the more computational overhead will be incurred.

The packet coding design introduced above is the common part used in

Publication I and Publication II. Now a different part is discussed. The

core of the packet coding design in Publication I is that packet coding is

integrated to some but not all subflows. For example, choosing the sub-

flows having the best performance to carry coding packets is always a

good choice in terms of providing enough compensation, even in the worst

cases. Specifically, regular subflows and packet coding subflows are used

at the same time: the regular subflows deliver original packets, while

the packet coding subflows deliver the linear combinations of the origi-

nal packets. The goal is to mitigate the reordering impact on the receive

buffer by taking advantage of redundant coding packets to compensate for

the lost packets. However, the computational overhead is not minimized

because the compensation is over-provided in most cases. The challenge

is how to choose the optimal coding subflows, a process which incurs min-

imum coding effort while satisfying the compensation requirement. Pub-

lication II proposes Systematic Coding Multipath TCP (SC-MPTCP) to

solve this challenge. For example, only redundant packets are encoded

and each subflow is allowed to deliver them. Moreover, the sender up-

dates the redundancy (i.e. k) according to the estimated retransmission

ratio on all subflows. Therefore, the computational overhead further re-
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Figure 3.1. Different transmission procedures

duces because the number of coding packets sent as redundancy is minor

compared with that of the original packets in normal cases.

Packet coding is also known for its negative effect on the decoding buffer

which further affects the decoding delay. For example, every coding packet

brings in new information to the receiver, even though it does not re-

veal an original packet immediately. Thus, the receiver needs a buffer

to accommodate the coding packets from the same generation before be-

ing able to decode them. Fig. 3.1 shows an example of a few simplified

transmission procedures of MPTCP and SC-MPTCP to explain our choice

on coding design. It is assumed that the sending window size is 5 and

a sender transmits five packets one of which is lost. Fig. 3.1a shows the

transmission procedure of a non-systematic coding approach, where all

the packets from the same generation are buffered until enough coded

packets arrive. The generation size determines the decoding buffer, with

a larger generation, for example, requiring more buffer to accommodate

the coding packets from the same generation. Although Publication I uses

a systematic coding design, it does not set the sending priority between

the original packets and coding packets. Therefore, the advantage of sys-

tematic coding is not fully utilized.

Fig. 3.1b presents the transmission procedure of the systematic coding

approach used in Publication II. In the process of sending a generation,

the redundant packets are sent initially and then the original packets

are sent in subsequent transmissions. The goal is to allow the coding

packets to arrive at the receiver before the original packets. This schedul-

ing strategy could release the in-order arriving original packets immedi-

ately and only buffer the redundancy. For example, as shown in Fig. 3.1b,

when p1 arrives and is forwarded (up) to the upper layer, the coded packet

(p1+p2+p3+p4) could be recoded to (p2+p3+p4) by removing p1 arithmeti-
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Figure 3.2. Pre-blocking warning trigger illustration

cally so that the buffer space of p1 could be released immediately. There-

fore, the required decoding space (as well as decoding delay) is greatly

reduced.

Packet coding is usually used for proactive redundancy, which is timely

updated according to dynamic path characteristics. However, the proac-

tive redundancy may be inevitably underestimated in practice anyway. In

such a case, reactive redundancy is needed to compensate for the missing

packets as quickly as possible. Publication II introduces a pre-blocking

warning mechanism to retrieve missing packets without waiting for ex-

pensive retransmissions and also explores an appropriate condition to

trigger the pre-blocking warning mechanism. As shown in Fig. 3.2, two

subflows deliver data to the receiver. The receiver has one buffer for each

subflow and one shared aggregate buffer. The subflow in-order arriving

packets are inserted into the aggregate buffer for connection-level reorder-

ing. If a subflow in-order arriving packet fails to be inserted into the ag-

gregate buffer, it is implied that the current subflow will be blocked with

a high probability. This phenomenon is used to trigger the pre-blocking

warning mechanism. Wherever it is triggered, an ACK carrying the re-

quired number of packets for a certain generation is sent to the sender.

The sender would send the required packets immediately on the same

subflow in response.

The proposal is evaluated using a network simulator NS-3 (NS-3.10 and

NS-3.11 are used in Publication I and Publication II respectively) on a

N-path topology with and without the CCC option. Let MTCP denote the

MPTCP without the CCC option. Fig. 3.3 shows the minimum required

receive buffer to achieve the maximum aggregate throughput. In the sim-

ulation, the packet loss ratio and RTT of one subflow are set to 0.1% and
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Figure 3.4. Average Buffer Delay

20 ms respectively. The path heterogeneity is increased by setting the

packet loss ratio and RTT of the other subflow from 1% to 5% and from 40

ms to 60 ms respectively. It is observed that the required buffer increases

when either the packet loss ratio or the RTT of the other subflow grows.

We deduce that the larger the path heterogeneity is, the more receive

buffer is needed for reordering. In Fig. 3.3, the curves of SC-MPTCP with

the pre-blocking warning mechanism enabled are not plotted. Instead,

the receive buffer is set according to

Buf = 2 ·
N∑
i=1

BWi ·RTTmax, (3.2)

which is the default receive buffer setting in MPTCP. It is found that SC-

MPTCP could always approach the same performance as MPTCP with un-

limited receive buffers. This result implies that SC-MPTCP could achieve

the desired performance with a normal receive buffer setting.

Fig. 3.4 shows the average buffer delay under the impact of packet loss

and RTT. The packet loss ratio and RTT of one subflow are set to 0.1%

and 20 ms respectively. The packet loss ratio of the other subflow changes

from 1% to 5% using different RTTs. The result is that the average buffer

delay of MTCP increases when the path heterogeneity grows. The non-

systematic coding MTCP (NSC-MTCP) also introduces non-trivial decod-
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ing delays. Compared with NSC-MTCP, SC-MTCP reduces the average

buffer delay by up to 90%.

One of the goals of multipath transmission is to aggregate bandwidth.

However, due to path heterogeneity and bounded receive buffers, the per-

formance may degrade significantly. Fig. 3.5 shows the aggregate goodput

of different protocols. It is observed that SC-MPTCP and SC-MTCP with

bounded receive buffers could approach almost the same average goodput

as MPTCP and MTCP with large receive buffers, even if the path het-

erogeneity is huge. Under the same path conditions, the performance of

MPTCP and MTCP is poor, even worse than that of a single-path TCP

flow. Furthermore, MPTCP degrades more significantly than MTCP. The

reason is that due to the resource pooling feature of MPTCP [148], the

live subflow moves its traffic away to another subflow ( even though it is

blocked). This problem does not come from SC-MPTCP but is inherited

from MPTCP.

3.2 New Delayed ACK Scheme for MPTCP

Publication III uses a different solution to previous work in order to solve

the reordering issue in MPTCP. Specifically, Publication III investigates

the impact of TCP timeout on the aggregate goodput and the aggregate

buffer. The major contribution is a new Delayed ACK mechanism (NDA)

removing the RTOmin constraint at the sender while reserving the de-

layed ACK function at the receiver. The solution requires only minor mod-

ification to the legacy Delayed ACK mechanism [18] with no extra traffic

overhead. The solution also takes advantage of packet coding techniques

but incurs negligible computational overhead.

The DA mechanism is an option of TCP that allows the receiver to delay

sending an ACK for every other packet within a window given by the DA
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Table 3.1. Path parameters in different scenarios

Scenario RTT Bandwidth Loss ratio File

Datacenter 200 μs-1 ms 1 Gbps 0.5% 800 MB

LAN 1 ms-10 ms 100 Mbps 0.5% 500 MB

Internet 10 ms-100 ms 100 Mbps 0.5% 300 MB
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Figure 3.6. The impact of RTOmin on aggregate goodput

timer. When DA is enabled at the receiver, the RTO timer at the sender

is set to be no less than RTOmin in order to avoid spurious timeouts. The

TCP RTO timer is modeled by RFC 6298 [98] as

RTO = max (SRTT + 4 ∗ RTTVAR,RTOmin) , (3.3)

where SRTT holds the smoothed RTT, and RTTVAR the RTT variation.

Currently, there exists no consistent setting of RTOmin in practice. A typ-

ical value for RTOmin is 200 ms, which is one or two orders of magnitude

larger than the normal RTT in high speed networks. RTOmin can lead

to significant performance degradation in the presence of timeouts, es-

pecially in multipath transmission where one path enters timeout while

the other paths send data at their full speed. Fig. 3.6 shows the aggre-

gate goodput of MPTCP as a function of RTOmin in three typical network

settings. The aggregate receive buffer is set to 512 KB and the other

parameters are set according to Table 3.1. As illustrated by Fig. 3.6,

MPTCP achieves the desired aggregate goodput when RTOmin is small,

whereas upon RTOmin reaching a certain value, the aggregate goodput

drops sharply. Therefore, removing the RTOmin constraint (i.e., RTOmin

= 0 ms) is effective for all network settings.

To better understand how RTOmin affects MPTCP performance, we now

review a process of a subflow timeout retransmission using the DA mecha-

nism. RTOmin is assumed to be larger than the estimated smoothed RTT.

Otherwise, RTOmin adds no extra waiting time in the case of timeouts.

As shown in Fig. 3.7, the packet p1 is delivered on a subflow and is lost

without subsequent packets coming. In accordance with the rules of TCP
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Figure 3.7. TCP timeout on a subflow using the legacy Delayed ACK mechanism
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Figure 3.8. TCP timeout using the new Delayed ACK mechanism

RTO, p1 will be retransmitted after RTOmin. In accordance with the rules

of the delayed ACK function, when p1 reaches the receiver, the receiver

will delay sending an ACK until the Delayed ACK timer (DACK) expires

so that the packets p2 and p3 are also delayed in arriving at the receiver.

Note that the timeout happens in the context of multipath transmission.

When a subflow has a timeout, the receiver has to buffer the out-of-order

data from all the subflows until the missing packet (p1) is received. The

out-of-order data may overrun the receive buffer to cause HLB, seriously

impacting the overall performance.

Can we just disable the DA mechanism as it harms the performance of

MPTCP during timeouts? The answer is no because the DA mechanism

has been already used widely on the Internet. It is not possible to switch

it off while just ignoring its wide deployment and benefits (e.g., reduced

protocol overhead and ACK traffic). In order to solve the dilemma, a new

Delayed ACK mechanism, NDA, is proposed to remove the RTOmin con-

straint at the sender while reserving the delayed ACK function at the

receiver.

The idea is to retransmit a coded packet instead of an original one dur-

ing a timeout on any subflow. We first illustrate the principal idea in

Fig. 3.8 and then discuss the coding design in detail. When a subflow
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enters timeout, instead of waiting for RTOmin, the sender does the re-

transmission after TCP-RTO that is set according to

TCP-RTO = SRTT + 4 ∗ RTTVAR. (3.4)

Note that in order to avoid spurious retransmission, the sender retrans-

mits a coded packet (p1+p2) instead of p1, a linear combination of p1 and

p2. p2 is the next unsent packet or the next unacked packet on the same

subflow.

The coding design now is discussed in detail as follows. On each occa-

sion the encoding/decoding process involves two original packets. Let p1

and p2 denote them. Each packet is interpreted as a symbol over the field

GF (2s), where s indicates the packet size. The processing flow of the time-

out retransmission is described in Fig. 3.9 where if the sender receives an

ACK≤2 or does not receive any ACK at all before the TCP-RTO timer

expires, a new coded packet would be sent out. Otherwise, the process

would end. Each time a new packet is generated, a different predefined

coefficient vector V is used.

Comparing with the legacy DA mechanism, our solution could greatly

reduce the idle time during timeout. However, there still exists opti-

mization space. For example, the receiver could acknowledge every coded

packet immediately so that the second coded packet could be sent out af-

ter one RTT instead of a successive timeout. The optimized process is

illustrated in Fig. 3.10 where the receiver sends an ACK immediately if

it receives a timeout retransmitted packet. Therefore, a timeout retrans-

mitted packet could arrive at the receiver in TCP-RTO+RTT. The required
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receive buffer of MPTCP using NDA is modelled as follows:

Buf =
N∑
i=1

BWi ·
[
TCP-RTO + (d+1)RTT

]
max

, (3.5)

where d indicates the number of RTTs to complete the fast retransmis-

sions before starting the RTO timer.
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Figure 3.11. Aggregate receive buffer size required to handle the out-of-order data

An NS-3 (NS-3.11) network simulator is used to evaluate the solution.

In the following, we want to demonstrate that MPTCP using the NDA

mechanism requires a much smaller aggregate buffer than MPTCP us-

ing the DA mechanism. Fig. 3.11 presents the required aggregate receive

buffer in three typical network settings. The RTT of one path is fixed to

200 μs, 1 ms, and 10 ms in three network settings respectively and the

RTT of the other path changes. The theory value is calculated according

to Eq. (3.5) where d is set to 0. The result shows that the MPTCP us-

ing the DA mechanism requires much more aggregate receive buffer than

MPTCP using NDA, even one or two orders of magnitude more in local

area and data center networks. It implies that NDA is more efficient in

high speed networks. Moreover, the MPTCP using NDA always requires

only a bit more aggregate buffer than MPTCP without the DA mechanism

at all. This is because NDA introduces one or a few more RTTs than no DA

mechanism. The result calculated in theory according to Eq. (3.5) closely

matches the result of MPTCP without Delayed ACK, which demonstrates
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Figure 3.12. Goodput as the function of packet loss in wireless lossy networks

the correctness of the mathematical model on the aggregate receive buffer

in MPTCP.

Publication IV demonstrates that the same NDA mechanism also works

for legacy TCP in wireless lossy environments. Fig. 3.12 plots the good-

put of a single TCP flow as the function of loss ratio using four different

Delayed ACK strategies, where DA with optimization means that in the

DA mechanism the receiver is allowed to send ACK immediately if it re-

ceives a retransmitted packet. It is shown that the TCP flow using the DA

mechanism has the worst performance. Although the optimized DA could

improve the goodput, the improvement is limited. This result implies that

the transmission idle during each timeout is the main reason for TCP per-

formance degradation. Among the Delayed ACK strategies, NDA allows

TCP to obtain the best performance. The gain comes from two-order ef-

fects. One comes from removing the RTOmin constraint because a smaller

RTO timer makes the TCP react quickly to timeouts, resulting in a small

timeout idle. The other effect comes from eliminating consecutive RTO by

allowing the receiver to acknowledge each timeout retransmission, which

further reduces the timeout idle.

3.3 Adapting MPTCP for Data Centers

As discussed in Section 2.3.2, multi-homed topologies have been proposed

to offer bandwidth aggregation in data centers. MPTCP is a natural evo-

lution of TCP so as to leverage path diversity to improve performance

and provide robust data transfers. However, in data center networks,

MPTCP faces the Incast congestion challenge as TCP does in the many-

to-one communication pattern. Publication V investigates how network

resources should be shared among multiple MPTCP flows in the many-to-

one traffic pattern. The main contribution is a new congestion control al-

gorithm for MPTCP, Equally-weighted MPTCP (EW-MPTCP), to be used
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Figure 3.13. k-homed FatTree topology

in multi-homed data center networks. EW-MPTCP focuses on avoiding

packet losses before Incast congestion.

In the Incast communication pattern, the receiver does not issue the

next request until all the responses return within a limited time. This

communication pattern implies that all the responses should be treated

as a whole when they go through a shared bottleneck. Otherwise, if n

MPTCP connections compete at a shared bottleneck, all the connections

together are approximately n times as aggressive as one MPTCP con-

nection. The radical aggressiveness may cause the bottleneck buffer to

overflow with the responses for the same request, which will significantly

enlarge the request completion time. EW-MPTCP utilizes a congestion

avoidance approach to improve the aggressiveness of the MPTCP connec-

tions as a whole. The goal is to allow MPTCP connections for the same

request to behave as aggressively as an individual TCP connection when

they go through a shared bottleneck.

In our study, it is observed that the Incast collapse usually happens

on the access links between the servers and ToRs (Top-of-Rack servers).

Thus, we extract the access networks to build a k-homed FatTree topology

shown in Fig. 3.13 where n senders transmit their data portion through

k different paths to a single receiver. The weight of a standard TCP con-

nection is defined as 1. Let Wi,j (1≤i≤n, 1≤j≤k) denote the weight of an

MPTCP subflow fi,j , where fi,j is the jth subflow of the ith MPTCP con-

nection. The following equilibrium should be satisfied

n∑
i=1

k∑
j=1

Wi,j = 1. (3.6)

Note that among different MPTCP connections, we argue that the ag-

gressiveness of each individual MPTCP connection should be equally weighted

because first the MPTCP connections are established between different

communication peers (e.g., different senders). Each connection should be
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treated equally. Second, equally weighting MPTCP connections is an ap-

pealingly simple mechanism in that it does not require any sort of explicit

shared bottleneck detection and could scale well with different numbers

of ToRs. Therefore, for each fixed i, the following equilibrium should be

satisfied

k∑
j=1

Wi,j = 1/n. (3.7)

The physical meaning of Eq. (3.7) is that each MPTCP connection ac-

quires aggressiveness proportionally to 1/n. Note that MPTCP utilizes

the CCC algorithm to make itself no more aggressive than single-TCP.

Therefore, at the shared bottleneck, multiple MPTCP connections receive

the same throughput as one TCP flow.

We now introduce the question of how to fit the equally-weighted concept

into the congestion control algorithm. The equally-weighted algorithm is

performed upon the CCC algorithm (see Section 2.3) on each subflow of

an MPTCP connection. Specifically, each subflow needs to perform an

additional congestion control by weighting the congestion window in re-

verse proportion to the number of responses. The expected result is that

the subflows as a whole could fairly compete with a single-TCP flow at

the shared bottleneck. Unlike the CCC algorithm which only performs in

the congestion-avoidance phase, the equally-weighted algorithm also per-

forms in the slow-start phase because in the slow-start phase the conges-

tion window tends to grow exponentially for a short period, during which

the Incast congestion may have already happened. The EW-MPTCP algo-

rithm (combined with the CCC algorithm) is described as follows:

• During the addictive increase phase, for each ACK on subflow s, in-

crease window by min (α/cwndtot, 1/cwnds) /n.

• During the addictive increase phase, for each loss on subflow s, decrease

window by cwnds/2.

• During the slow start phase, set the initial SSThresh to ssh0/n.

Here, ssh0 denotes the default SSThresh, which is set to 65536 in var-

ious TCP implementations. We assume the sender knows the value of n

either in advance under the control of one entity or in an initialization
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process at the beginning of the connection.

In EW-MPTCP, the congestion control behavior of the subflows is not

only affected by the equally weighted congestion control but also the cou-

pled congestion control inherited from MPTCP. Therefore, EW-MPTCP

also keeps the resource pooling feature of MPTCP.
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Figure 3.14. Goodput of EW-MPTCP and MPTCP

EW-MPTCP is evaluated by a network simulator NS-3 (NS-3.17). In

the simulation, two typical scenarios are considered: fixed data volume

per server and fixed data volume per request. In the first scenario, each

sender generates the same amount of data traffic to the receiver with

the number of senders increasing. In the second scenario, the total data

volume of all senders is fixed regardless of the number of senders. The

comparison between the goodput of MPTCP and EW-MPTCP is shown in

Fig. 3.14. The result shows that MPTCP has the same goodput as EW-

MPTCP only when the number of senders is small and starts to suffer

when the number of senders increases in both scenarios. Under the same

setup, EW-MPTCP achieves a smooth and increasing goodput when the

number of senders grows.

In the simulation shown in Fig. 3.14, the number of senders is set to, for

instance, fewer than 49. This constraint is relaxed to study to what extent

EW-MPTCP could handle the Incast congestion and what its limitations

are. Fig. 3.15 presents the simulation result where the total volume of

data per request is fixed. In the simulation, three different sizes of MTU
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Figure 3.15. Goodput of EW-MPTCP with more senders in the case where the data traffic
volume per request is fixed

are used while increasing the number of senders from 50 to 300. It is

shown that EW-MPTCP would also collapse at some point and a small

MTU could mitigate the collapse. Note that Incast congestion in data cen-

ters is not originally from MPTCP but is inherited from TCP. Publication

V has also demonstrated that the algorithm not only works for MPTCP

on multi-homed data center topologies but also works for TCP on single-

homed data center topologies.

3.4 Open Questions

In this section, we discuss future work that can be based on the results

of this thesis. First, multipath transmission research in this thesis has

mainly focused on MPTCP. The solutions could be applied to other proto-

cols, like CMT-SCTP, as well and vice versa. Therefore, more efforts are

needed to evaluate the performance of MPTCP and CMT-SCTP by utiliz-

ing each other’s mathematical models and key algorithms.

Second, MPTCP takes the advantage of multiple available paths to sup-

port load balancing, moving traffic from more congested paths to less con-

gested ones. From the mobility viewpoint, it might be the ideal protocol to

support mobility if it can pro-actively detect a connectivity failure on one

path and switch to another path. Therefore, it is worth investigating how

MPTCP behaves in handover and what changes are required to MPTCP

for desired performance (in terms of delays and bandwidth variation) dur-

ing the handover period. We believe that the packet coding scheme pre-

sented in Publication I and Publication II can be used for improving the

handover performance.

Third, the solution in Publication V shows an efficient congestion control

algorithm for MPTCP as well as TCP in the DCNs to avoid the Incast ef-

fect in the many-to-one communication pattern. More efficient algorithms
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are required to scale to large DCNs with thousands of servers replying to

the inquiry. In accordance with the development of multipath transmis-

sion, compatibility is one of the most important factors affecting whether

a solution could be accepted widely or not. Unlike the Internet, which

requires new protocols to be backward compatible with it, a DCN is a

relatively close network managed by a single administration so that new

networking techniques can be implemented without much concern about

interoperability. Therefore, in the DCN environment we suggest “reusing”

the existing TCP Incast solutions which require one administration.
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4. Conclusion

Communication devices equipped with multiple network interfaces are

now increasingly emerging. For example, smart phones and laptops are

often shipped with the built-in network adapters of different wireless

technologies. Concurrently using multiple interfaces to transmit data has

attracted much attention from the industry and academia. Considerable

efforts have been put into developing multipath transmission capability at

different protocol layers. Despite these efforts, however, research achieve-

ments have not yet addressed all the challenges posed by the new multi-

homed devices and networks.

This thesis focuses on understanding and analyzing various multipath

transmission approaches. Based on the existing work, a practical mul-

tipath transmission solution should possess a few key features. These

include, for example, a) application and network infrastructure compati-

bility, b) a reordering buffer and a mechanism to handle the out-of-order

data, c) a coupled congestion control algorithm to keep MPTCP TCP-

friendly, and d) load balancing to move traffic from more congested paths

to less congested ones. Our research focuses on the reordering issue caused

by mismatched path characteristics. To solve this issue, various meth-

ods were leveraged such as mathematical buffer models, packet coding

based packet scheduling algorithms, and new Delayed ACK mechanisms.

Specifically, two different solutions have been proposed under the same

practical assumption that the reordering buffer is bounded. The first so-

lution proposed the adoption of coded packets as proactive redundancy to

counter against expensive retransmissions. The redundancy is continu-

ously updated according to the estimated path characteristics. In order to

avoid the proactive redundancy being underestimated, the pre-blocking

warning mechanism retrieves the reactive redundancy without waiting

for normal retransmissions. In the other solution, the reordering issue is
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mitigated by removing the RTOmin constraint from the RTO timer calcu-

lation while reserving the delayed ACK function. In order to eliminate

the aggressiveness of the timeout timer after being decreased, the time-

out retransmitted packets are encoded to benefit from potential spurious

retransmissions.

In addition, the MPTCP Incast effect has also been investigated in multi-

homed DCNs. In the Incast communication pattern, a client sends a re-

quest to many servers and the client does not issue new requests until

all responses from the current request have been returned. We argue

that all responses from the servers to the client should be treated as a

whole so that the response traffic would behave in a TCP friendly fash-

ion at shared bottlenecks without incurring heavy congestion. To achieve

this goal, an equally-weighted congestion control algorithm is proposed

for MPTCP. Specifically, an MPTCP connection allows each of its subflows

to perform an additional congestion control operation by weighting the

congestion window in reverse proportion to the number of servers.

Currently, multipath transmission can potentially be used in almost

all networks because networks are designed with multipath capability.

The largest example of a multipath network is the Internet itself. Multi-

path transmission could provide both the users and the network operators

with an opportunity to efficiently and flexibly utilize their respective re-

sources. The vision of multipath transmission in the near future is that,

on one hand, multiple interfaces for various techniques keep the users

connected while, on the other hand, multiple interfaces are used in paral-

lel to improve the data transmission performance or manage the network

resources appropriately. The solutions presented in this thesis could pro-

vide great insight into the development of multipath transmission in the

future.
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