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A significant part of human communication is nowadays transmitted via electronic
devices and applications which enable immediate contacts between individuals
irrespective of location and time. An important side product of these media is
the availability of large and detailed data sets on human communication that
allow inferences to be made on the structure of the underlying social networks.
The theory of temporal networks offers a suitable framework for studying time-
resolved human communication both at the level of the whole system and at the
level of individuals. This thesis studies three different real-world communication
networks and addresses three questions.

First, percolation of temporal subgraphs constructed of consecutive communica-
tion events is studied. A phase transition from a fragmented to a connected phase
and a percolation threshold is found in all networks. Emphasis is given to diffe-
rences between static and temporal percolation, and on metrics that are of impor-
tance to the latter. Ensuring that the lifetime of temporal subgraphs spans the
data interval was seen significant when determining the birth of a nucleus — a core
group of nodes ultimately forming the giant temporal subgraph.

Second, the natural continuation of the first point is the study of those nodes
who are responsible for the phase transition, .e. nodes who are influential for the
system. It is seen that the number of events and especially the degree of a node
are good predictors of a node being part of the nucleus of the temporal network.
The third phase of the study focuses purely on the node level and addresses the
influence of a node’s actions within its local neighborhood. For this, a novel method
of labeling the events of a temporal subgraph is presented. It is found that nodes
with high degree and a large number of events are associated with larger temporal
subgraphs.

Keywords: temporal networks, temporal percolation, influential node, complex
networks, data analysis
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Merkittdvéa osa ihmisten vilisestd kommunikaatiosta vélittyy nykyéadn elektro-
nisten viestinten viélityksella. Naméa viestimet mahdollistavat ajasta ja paikasta
riippumattoman yhteydenpidon, seki tuottavat suuria ja yksityiskohtaisia tietoai-
neistoja kommunikaatioverkostoista ja nédiden kuvaamista sosiaalisista verkostois-
ta. Aikariippuvien verkostojen teoria mahdollistaa néiden verkostojen tutkimisen
seké yksiloiden ettéd koko verkoston tasolla. Téssé tyossa tarkastellaan kolmea em-
piiristd kommunikaatioverkostoa ja tutkitaan erityisesti kolmea kysymysta.
Ensiksi, tyossa tutkitaan perédkkéisista puheluista tai viesteistd koostuvien aliver-
kostojen perkolaatiota. Kaikista kolmesta verkostosta tunnistetaan perkolaatiot-
ransitio sirpaleisesta tilasta yhdistyneeseen tilaan seké hetki, jolloin tdmé tapah-
tuu. Tyossé keskitytddn vertailemaan kuinka staattisten ja aikariippuvien verkos-
tojen perkolaatiotransitiot eroavat toisistaan, ja mihin erityisesti pitda kiinnittaa
huomiota jalkimmaéisessd tapauksessa. Analyysin avulla voidaan todeta, etté
aliverkostojen elinikd on merkittdva késite perkolaatiohetken méarittdmisessé.
Liséksi pystyimme tunnistamaan koko verkostolle merkityksellisen aktiivisen yti-
men synnyn.

Toiseksi, tyossa tutkitaan ovatko tdmén merkityksellisen ytimen solmut tunnis-
tettavissa muista verkoston solmuista. Tulosten perusteella voidaan sanoa sol-
mun kontaktien médran ja erityisesti sen asteluvun selittdvén hyvin solmun to-
dennékoisyyden kuulua ytimeen.

Kolmanneksi, tyossd tutkitaan solmujen kayttdytymistd ja merkitysté
lahiympéristoilleen. Téatd varten kehitettiin menetelmé aliverkostojen kon-
taktien luokittelemiseksi. Havaintojen perusteella todetaan, ettd solmut joilla on
suuri médrd kontakteja ja suuri asteluku esiintyvét suurempien aliverkostojen
yhteydessa.

Avainsanat: aikariippuvat verkostot, aikariippuva perkolaatio, olennainen solmu,
data-analyysi
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1 Introduction

Network science has helped us to extract relevant information from a great variety of
complex systems. The reason behind its success is that it provides a simple approach
for studying systems and their differences: just define the elements, nodes, of the
system and represent their mutual interactions with links. For instance, network
science has been successfully used in studying metabolical networks [1], information
networks such as the World Wide Web [2], and especially, social networks [3-6].

Sociologists were among the pioneers of using — and developing — network science
already in the 1960s. However, social networks are now more relevant than ever.
This is due to the immense advancements in communication devices and the ex-
plosive growth in their use we have seen during the last few decades. Eventually
these lead to (only exaggerating slightly) status quo: any two people wherever can
connect with each other whenever.

In particular, people’s inherent need to communicate and their desire to be in contact
with each other has lead to mobile phones, email, and other means of electronic
communication, as well as services built specifically for social networks, such as
Facebook. For network science these media are significant because of their ability
to keep records of everything that takes place on them. Especially, such electronic
data sets enable us to perform studies and test hypotheses at the scale of large
groups or even populations, not just at the level of individuals or small groups
where sociologists were long limited to.

Treatment of these immense data sets requires computational power, but in order to
utilize all the details of the data, a more elaborate representation of the underlying
social network itself is needed. In particular, such sets of data are in fact composed
of streams of interactions events (calls, emails) that contain information on social
dynamics on multiple time scales. Hence the traditional view of social networks as
static entities representing a “snapshot” of the state of affairs at some particular
point in time is no longer sufficient. This leads to the framework of temporal net-
works [7]. With the dimension of time, we are able to account for both the structure
of the underlying networks and the interaction events happening on the network.

Studying the occurrence patterns of events of empirical human communication net-
works reveals information both at the system and individual level. Particularly, at
the network level, it is interesting to see if there exists a characteristic time scale
within the system which limits all phenomena, i.e. to study the temporal percolation
of the network. At the other extreme of the size scale lay the nodes representing
individuals — the definitive building blocks of any social network. Clarifying the
level of influence of an individual on the system and on their local neighborhood —
given a restricted amount of data — has applications beyond basic research.
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1.1 Objectives and Scope

The concept of percolation is related to whether a system is connected at global
scale or fragmented to multiple smaller parts. Essentially, this reveals if the under-
lying framework offers a substrate for global phenomena. In the social context, one
example of such is information spreading, and percolation helps to predict whether
a piece of information can reach the majority of individuals in a social network.

As motivated above and stated in the title, studying temporal percolation in a
communication network is the main objective of this Thesis. As percolation in
temporal networks has been little studied, this requires defining novel concepts and
metrics. These are put into use when inspecting three empirical communication net-
works constructed from three different sources, namely mobile phone calls, mobile
phone short messages (SMS) and emails. We are especially interested in whether
one can detect the percolation threshold — a specific point at which the system be-
comes connected — and thus the birth of the nucleus of the giant temporal subgraph
percolating the system, that is, an influential group of nodes who are responsible
for this transition.

The first immediate follow-up question is whether the nodes forming this influential
nucleus are different from the other nodes? We study this by choosing a node
property and observing how it affects a node’s likelihood of participation in the
nucleus. The explanatory properties are chosen specifically so that they only utilize
local information on nodes, “local” meaning the network structure immediately
surrounding the node. This restriction is based on the nature of social networks:
most processes of social influence and information transmission are rather local and
restricted to small network neighborhoods. Also, the applicability of the results is
enhanced if no computationally expensive network-level properties for nodes need
to be calculated.

Second — in a more literal meaning of the word “influential” — we are interested
how the actions of a single individual node affect its local neighborhood. To study
this, we construct a novel approach of labeling the events of the nodes. The method
enables us to study the role of a node with respect to its neighbors and their events.

These two questions are combined to the second objective of this Thesis. That
is, we want to investigate which nodes in temporal networks are the most
influential regarding temporal connectivity and flow of information.

The pursuit for the objectives begins in Chapter 2 with an introduction to network
science and especially to the temporal networks framework. We describe the basic
definitions and tools, and also highlight some important findings. Emphasis is given
to the concept of percolation. Next Section is devoted to discussing the character-
istics of social networks and human communication networks. The last Section of
Chapter 2 is dedicated to representing related work on influential node identification
on both static and temporal networks and clarifying our targets on the matter.

In the following Chapter 3 we introduce the methods and the data sets used in this
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Thesis. Next, in Chapter 4, we will report the results of the studies. As we have
two main objectives, they both have their individual discussion Sections after the
corresponding results are represented. Finally, this Thesis is finished with a general
summary and conclusions.
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2 Background

In essence, network science is a multidisciplinary field combining ideas from math-
ematics, physics, computer science and sociology. It has gained attention because
of a straightforward principle: it is simple, and especially because it works. In this
Chapter we go through the principles of network science, temporal networks, per-
colation, special characteristics of social and communication networks, and related
work on identifying the influential nodes of a network. An informed reader can skip
the familiar parts without losing consistency, whereas additional information can be
found in the comprehensive works of References [8,9].

2.1 Introduction to Network Science

Although some of the key ideas of network science are already centuries old, this
umbrella term for the whole field has become established in the 21st century.! A
seminal article by Watts and Strogatz on small-world networks from 1998 can be
seen as a breaking point for the whole field [10]. The biggest contribution of the
article was that the differences and similarities of real networks constructed from
completely different sources (social, biological and technological) could be demon-
strated with simple tools that have now become parts of the canonical toolbox of
network scientists.

The first step of using the network framework is constructing the network (also called
a graph) from data representing real-world phenomena. In principle this is very
easy, we just need to define who are the elements of the system and represent them
as nodes (or alternatively called wertices) of the network. Then, the interactions
between the elements of the system are represented in the network by connecting
the nodes with links (edges). Note that there is no unique way of defining the nodes
and links; often, we can construct multiple different network representations from
the same data. Formally, this step consists of constructing the set of nodes V' and
the set of links L which together define the network G = (V,L). If not defined
otherwise, the network is assumed to be unchangeable. This can be emphasized by
calling it a static network.

The next step is choosing a suitable way to represent the network in practice. The
most traditional one is to use the adjacency matriz, which is defined element-wise
as

(2.1)

. 1 if there is a link connecting node ¢ to node j
7710 otherwise.

Also, depending on the system that the network represents, we need to define
whether it is directed or undirected (bidirectional). In a directed network, the in-
teractions represented by the links are considered to be directional, whereas in the

'For a classical example, see the problem of the seven bridges of Konigsberg http://en.
wikipedia.org/wiki/Seven_Bridges_of_K/,C3%B6nigsberg (11.6.2014.).
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undirected case A;; = A;; holds for all < and j. It is also quite common that the
interactions depicted as links are not equally strong. Their strength differences can
be included in the representation by assigning an arbitrary weight w; ; to each link.

Since real-world networks are usually sparse, the adjacency matrix representation is
inefficient for computational purposes as the large number of zero-valued elements
requires a lot of memory. Often it is replaced for instance by a neighbor list, where
the format node_i:node_j,node_m describes first the node in question and then the
nodes it is connected to. Figure 2.1 clarifies these concepts.

(a) (b) (c)

a b ¢ d
a /0 1 1 0 @8 9@
A—b 1 0 1 1 b: a,c,d
“¢|l1 100 es ayls
d\0o 1 0 0 d: b

Figure 2.1: An example of an undirected network with four nodes and four links (a) and
the corresponding adjacency matrix (b) and neighbor list (c) representations.

Now that we know how to represent networks, we can move on to see what can be
done with them. For this, we need metrics which describe the networks.

On a general level, metrics are applied to measure something. They have descriptive
power just by themselves, but often we want to state something about the relative
strength of some phenomenon and thus we need a reference point to compare to. An
important baseline for all the network measures is the Erdos-Rényi random network
model (ER). The most common version of it is constructed by taking N nodes,
going through all the possible links between the node pairs, and using probability
p to define whether a link exists or not. This is denoted as the G(N, p)-network
ensemble. As a more elaborate reference, the so-called configuration model is often
applied. In this model, nodes can have arbitrary numbers of links — e.g. exactly
the same as the nodes of some real-world network — but the networks are otherwise
maximally random (see e.g. [8]). Then, if a real-world network has a property that
differs from the same property of the reference network, we know that the difference
originates in the way the real network evolved or was constructed. The concept
of using or creating the proper reference is omnipresent in every aspect of network
science.

The simplest network metrics include for instance the number of nodes in the net-
work, denoted conventionally with N, and number of links m. However, these
contain no information on how exactly the nodes are connected. In the next three
Sections we introduce more elaborate concepts for studying networks and the phe-
nomena they reveal, moving gradually from small to larger scales.
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2.1.1 Degree and Scale-Freeness

The simplest way to study how the links are distributed between the nodes is to
calculate the number of links each node has, denoted with k; and called the degree of
node 7. Of course, in the case of directed networks, we can consider the incoming and
outgoing links with in-degree and out-degree, respectively. The established practice
is to call nodes connected by a link neighbors of each other, and thus the degree of
a node equals the number of its neighbors.

Exploring networks at the level of degrees already gives some interesting results. For
instance, we notice that in social networks high-degree nodes are usually connected
to other high-degree nodes, in other words, popular people know popular people.
This phenomenon is called assortativity [11].

Even more information of the network is revealed when studying the degree distri-
butions, .e. the probability density functions of degrees. It has been shown that
often the distributions have broad tails, meaning that while most nodes have small
degrees, there are always some nodes with very large degrees. Such networks where
the degree distribution py, that is, the probability that a node has a degree k, follows
a power-law (py o k~%) are called scale-free [12,13].

Nodes with many connections, aptly called hubs, have an important role in the
function of the networks. For instance, if the hubs are removed from the system, the
network breaks down easily: think of the consequences of closing down the Heathrow
and JFK airports at once.

2.1.2 Clustering, Paths and the Small-World Phenomenon

Moving from individual nodes to larger neighborhoods, the next question is how
links relate to one another.

One important and simple metric describing this is the clustering coefficient. It has
both global and local versions. The global one is defined as

3 X (number of triangles in the network)
C = : , (2.2)
number of connected triples of nodes

where a triangle means a set of three nodes connected with three links, and a triple
a node with two distinct neighbors. The global clustering coefficient is also called
transitivity, which reveals the purpose of the metric better: if we consider that the
link connecting two nodes is a relation, then transitivity for that relation means that
if nodes ¢ and j are connected and nodes j and k are connected, then also nodes j
and k are connected by a link (i.e. A= B,B=C = A= (). In social context this
means that you, and a friend of your friend, are connected. Thus, if a network has a
transitive tendency between the links, then the clustering coefficient displays higher
values. It has been shown that this is true for most real-world networks, especially
for social networks [9].
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The local clustering coefficient is a similar metric as the global version, with the
difference that it considers only the local vicinity of each node individually, defined

as
number of triangles connected to node i

C, = (2.3)

number of pairs of neighbors of node 7

C; is undefined if the degree of a node is less than two. The usual convention is
to handle these cases by defining C; ;<2 = 0 or discarding them from the analy-
sis. With this definition clustering can be set against node-specific metrics, such
as degree, in order to find out possible dependencies or their lack. To conclude,
both clustering coefficients are measures of the density of triangles in a network.
Usually the clustering coefficients are calculated for directed networks by consider-
ing the links undirected, though taking the directionality into account is possible if
specifically needed.

Triangles are constructed with three links connected in a certain way, but we can
also study an arbitrary chain of links. This brings us to the very important concept
of a path: a sequence of nodes connected by links. To make the definition more
usable and intuitive, we usually restrict that the same node or link can not exist
in a path twice (called a self-avoiding path). Note that as paths are sequences, the
links in them have an order. In addition, in directed networks the order must follow
the direction of the individual links (i.e. a one-way street). The length of a path
is the number of its links. In short, the path length gives us a distance metric for
networks.

There are networks where some pairs nodes do not have a path between them,
i.e. their distance is infinite. This is possible for undirected networks only if the
network consists of multiple components that do not have any links between them
(a component is defined as a subset of nodes where all nodes can be connected via
some path). Also, in directed networks, a path may only exist between nodes i and
J but not the other way around. Clearly, the possible structural separation in the
form of components is a major bounding factor for everything in networks, and thus
the size of the largest connected component (LCC) of a network, measured in nodes,
is often studied.

When paths are known, one can study how compact a network is by asking how far
away a randomly chosen node is from another randomly chosen node? To answer
this, we need to study the length of the shortest path between two nodes ¢ and 7, also
called a geodesic path and denoted with d; ;. The mean shortest distance between
all possible pairs of nodes of a network, [, is defined as

1
l=—— d;,, 2.4
%N(N—l); 7 (24)

where the links are now assumed to be undirected and the network to consist of one
component only. The mean distance greatly affects the dynamics taking place on
networks. Consider for instance a data packet traveling in the Internet: if the mean
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shortest distance is small, the packet goes through a smaller number of routers and
thus reaches its destination faster.

In real-world networks, the mean shortest distance has been seen to be surprisingly
short. This phenomenon has a representative name: networks with short typical
distances are called small-world networks [10].> As already motivated with the
Internet example above, the small-world property allows information, or any other
diffusion process such as epidemics, to spread effectively. In the social context the
effect means that all the humans on Earth are connected through a short chain of
acquaintances. This was the remarkable result obtained by Milgram in 1967 [4] and
more recently seen in a planetary-scale Internet-based communication network [14].

2.1.3 Mesoscopic Level

The next logical step in the analysis of networks is to study groups of multiple nodes
to reveal mesoscopic structural properties of networks. At its simplest, this amounts
to studying a subgraphs of the original network G’ = (V' L') by taking subsets of
nodes V'’ C V and links I/ C L. However, without proper rules of choosing
the subgraphs, not much can be gained. One such rule is to take all disconnected
subgraphs, leading again to the definition of a component. As seen next, there are
other rules that split networks into parts that may overlap.

As seen above, clustering coefficients measure the density of triangles in a network.
However, networks may have recurrent patterns of groups of nodes of arbitrary shape
or size. This leads to the concept of a motif: a pattern of nodes and links which
is overrepresented compared to a randomized reference network [15]. For example,
it was seen that in food networks, where a directed link exists from species X to
species Y if X feeds on Y, a chain of three nodes is much more common than would
be expected at random.

A widely seen property of networks is that they have groups of nodes that are
densely linked between each other but have only few links connecting them to other
such groups. This phenomenon leads us to the concept of community [16]. For
instance, scientists tend to collaborate with other scientists in their field, and this
separation of disciplines is seen in collaboration networks where links connect people
who are authors in a joint paper. There are only few scientists who participate in
interdisciplinary collaboration, thus connecting the different fields (communities)
[17]. Contrary to motifs which measure the occurrence of predefined patterns in
the network, communities may come in a multitude of sizes and shapes, typically
determined by some algorithm that optimizes their boundaries. Partly because no
single perfect definition for a community exists, and because of the fact that in
most cases it is hard or even impossible to know what the real “ground truth”
communities which should be found are, there is a plethora of different community

2A more rigorous definition for the small-world effect requires that the mean shortest path
distance scales logarithmically as a function of the size of the network, [ o< log N.
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detection algorithms. Some well-performing and popular algorithms are Infomap [18]
and the Louvain method [19] but still, community detection must be utilized with
prudence [20].

2.1.4 Dynamical Processes and Static Percolation

Because many real-world processes take place on networks, networks constructed
of empirical data are often used as substrates for studying dynamical processes
such as spreading of epidemics or information. In principle the approach is simple:
we define the rules for the dynamics and run them on the network constructed of
data. For example, compartmental models of epidemic spreading can be applied to
model both disease and information spreading on networks [21]. Clearly, when the
possible spreading pathways are restricted by real network structures, in contrast
to simplified structures or fully mixed systems, the simulation results are closer to
what is observed in real world [22].

To conclude the static network part of the Background section, we introduce the
important concept of percolation transition. As the name suggests, it was originally
used in mathematical physics to study how a fluid flows through a porous material.
The question is whether there is a continuous open channel that connects two spec-
ified points and enables flow when the medium is organized randomly. In network
setting, the analogous question is whether any two nodes are likely to be connected
via a path when the links of the system are assigned randomly.

To study percolation analytically, control and order parameters are needed. When
the control parameter is changed, the outcome is seen in the order parameter. Many
systems go through a sudden phase change where the behavior of the order param-
eter changes from one state to another. For instance, a material may display net
magnetization (order parameter) when the temperature (control parameter) drops
low enough. Percolation is one example of such a phase change, where the transition
happens from fragmented and disconnected phase to a connected one. The value of
the control parameter where the change happens is called the percolation threshold.

Let us illustrate the percolation transition in networks with a simple example. As
introduced, G(N, p) is a random network where the existence of each link is deter-
mined independently with probability p. A percolation problem is now to study
the birth of the giant component, i.e. a unique component whose size, measured in
number of nodes, scales with the system size.> When the probability of a link p is
small, all components of the system are naturally small. In the other extreme, when
p — 1, almost all the possible links exist and the network is a single component.
If we plot the relative size of the largest component, scaled with the system size,
we see a sharp transition. Also, the phase change is seen in the average size of the
components other than the currently largest one. As expected, they first grow in

3Strictly speaking defined only in the limit N — oo as the component that spans a finite fraction
of nodes.
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size but eventually join together and form the giant. The behavior is illustrated in
Figure 2.2.

Analytical approaches to percolation in networks that are more complex than the
random network model and closer to the ones observed in reality are also possible
[23]. However, when having an empirical data set representing some network instead
of some generative network model, percolation is usually approached at the other
direction, 7.e. we study how the system breaks down when nodes or links are removed
or disabled, or how connectivity emerges when only a subset of the original nodes
and links are considered active.

Why is it important to study percolation in empirical networks? The existence of
a giant component has important consequences on the functionality of a network
and especially on processes taking place on it. That is, the giant component ensures
that a network is connected and thus, for instance, information can be transmit-
ted between its nodes. If there is no giant component, the network is practically
inoperable.
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Figure 2.2: An illustration of the percolation transition and the birth of the giant com-
ponent. The relative size of the giant component (red, continuous) jumps from zero at the
percolation threshold and approaches one. The average size of other components than the
largest (blue, dashed) diverges at the threshold.



2 BACKGROUND 11

2.2 Temporal Networks

We have already discussed processes taking place on networks. A popular approach
is to define the dynamics of the process separately from the underlying network
presentation: consider for example a road network as a basis for traffic simulations.
However, if the underlying network is not static — the roads might have traffic lights —
using a static representation either needs additional rules or results in false outcomes.
This problem is approached directly by the framework of temporal networks (or
time-dependent networks), which provides a simple representation for networks that
change with time [7]. As with static networks above, we now go through the theory
of temporal networks and present some notable properties of real-world temporal
networks.

Formally, a temporal network G(V, €) is a set of events £ and nodes V. Each event
is a quadruple, e = (u,v,t,0t) € £, where u,v € V are the nodes the event starting
at time t with a duration dt¢ connects. Thus, the events can be considered as temporal
links. Since now the networks have a lifespan, we traditionally denote the difference
between the ending time of the last event and the beginning time of the first event,
i.e. the data set duration, with 7". The number of events is denoted with E and the
total number nodes participating in events with N. Figure 2.3 illustrates the idea
of temporal networks with a common way of representing a temporal network data
set as an event list.

An important concept within the theory is the aggregated network, which is a cor-
responding static version of a temporal network, constructed by assigning a link
between nodes u and v if at least one event connects them. Thus, one way to con-
ceptualize temporal networks is to consider the events as momentary activations of
the underlying aggregated links. Note that the temporal (aggregated) representation
allows directed and undirected definitions of the events (links). It is also common
to assign weights to the links of the aggregated network based on the number of
contacts or the total duration of them.

Note that this framework does not constrain the time scales of the events. With
the same framework, we can represent slow changes of networks such as creating
completely new links and destroying old links. Then the duration of an event would
be the lifetime of the link. However, as the changes of the network structure are
usually slow compared to the events occurring on the links, the underlying aggregate
network is often assumed to be constant and we utilize temporal network theory on
the much faster timescale of events.

The immediate question is now how are the events distributed in different real-
world temporal networks and what effect this has on the function of the networks.
As quantifying the properties of nodes and links is the first step in analyzing static
networks, in the temporal setting we study the event sequences associated with
nodes and links. The simplest metric is clearly the number of events per node, E;,
which reveals its temporal activity. If necessary, the event number can naturally be
split to account for the incoming and outgoing events separately (E; v, Fiour).
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(a) (b)

t1 =1, 6t; = 10

1 10 a b
13 8 a c
15 4 Db d
19 2 d b
25 5 ¢ a
32 4 ¢ Db

Figure 2.3: An example of a temporal network (a) and the corresponding event list rep-
resentation (b). The undirected aggregated network corresponding this temporal network
is seen in Fig. 2.1.

The next step is to examine how the events of a single node or link are distributed
with respect to each other. For this, we study inter-event time sequences, which
measure the “silent” times between consecutive events. It has been seen that in hu-
man communication, such distributions have broad tails, meaning that most events
happen relatively close to each other but some have long intervals separating them.
This phenomenon is know as bursty behavior [24]. The result is significant since it
is very different from what would be expected from a random reference, which in
the case of temporal networks is usually an assumption that the events are initiated
by a Poisson process. This temporal clustering of events also has significant effects
on the processes operating via them. For instance, it has been shown that even
when the topological distances of a network are small, burstiness makes spreading
processes slow in the temporal sense [25,26]. To measure the burstiness of a node i
(or a link), Reference [27] proposes a metric

I Gt O S (2.5)

(o7 + pir)

where o, and p, are the standard deviation and mean of the inter-event time se-
quence. For a maximally bursty sequence B; = 1, for a Poissonian sequence B; = 0
and for a completely periodic sequence B; = —1.

To further study temporal properties of networks, many of the methods for static
networks have their temporal counterparts. One of the most significant is the con-
cept of time-respecting path [28]. As different components of a static network cor-
respond to regions that are disconnected from each other, the addition of time may
lead to temporally isolated nodes. A time-respecting path is constructed of events
instead of links, and the consecutive events in a path must share a node and respect
both the direction of the links and the time. That is, the next event must happen
after the previous event. Whether the first event must end before the second starts
is usually an application-specific decision, such as requiring that an individual can
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have only one active phone call at any given time. Time-respecting paths allow us to
study the reachability of each node, i.e. the set of other nodes that can be reached
via time-respecting paths [29].

Clearly, the introduction of time for paths also gives them a duration. Even though
a node is connected to multiple other nodes with a time-respecting path, some of the
paths can be considerably faster than others, i.e. reach the target in a shorter amount
of time. Then, similarly to the average distance between a random pair of nodes
of network, we can study the average temporal distance (or latency) between them.
The temporal distance between nodes u and v is defined as the shortest time it takes
for u to reach v [30]. Naturally, a temporal network with short average temporal
distances and high average reachability is more efficient for diffusion processes than
one with long distances and low reachability.

The addition of the time dimension makes the mesoscopic examination of temporal
networks significantly more difficult than the corresponding static problem. Even
a proper definition of a temporal subgraph — discussed in detail in Section 3.1 —
is not trivial. However, some encouraging work has been published. Temporal
motif analysis can reveal recurrent temporal patterns of temporal networks [31,32]
and betweennes preference quantifies if a node prefers some time-respecting path of
length two over others [33].

To this date, there are very few models of temporal networks that are capable of
reproducing properties seen in empirical data. One exception is the activity driven
model [34]. The key assumption of the model is that each node has an activity
potential which determines the probability that it activates events in a given interval.
However, the model has also many simplifications comparing to reality, such that
when active, a node creates a fixed number of events that are targeted randomly to
any of the other nodes.

2.2.1 Temporal Percolation

The addition of the time dimension creates a new environment for the percolation
transition of a system. Topological connectivity is not enough anymore — percolation
must now also respect the mutual occurrence patterns of events. Also, if we manage
to define the control variable already in the time domain, that is, as an interval,
then the percolation threshold would demonstrate a characteristic time scale of
the system. The threshold is important since we can immediately state that any
dynamical process with a shorter characteristic time scale than the threshold has no
possibility of reaching the majority of the nodes of the network.

Temporal percolation has been little studied, partly because of the lack of analytical
models. However, some work has been done. One approach incorporating the ideas
above is presented in Reference [35] where the authors study temporal percolation
in the activity driven model. They approach the problem by integrating multiple
consecutive snapshots of the network up to a certain time, thus forming the control
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variable as an interval, and are able to analytically predict the birth of the giant
component.

In this Thesis, we approach temporal percolation with empirical contact sequences.
This introduces additional aspects to be considered. First, as the underlying nodes
represent real individuals, the control parameter should account for this in a reason-
able way. That is, we want to have a control parameter that acts on the individual
nodes and their event sequences instead of reflecting network-wide properties only.
Second, nodes are typically not always active with a constant rate, e.g. one node
may have events only in the first half of the data and another only in the second half.
However both nodes must be in equal position when considering their participation
in the system-level percolation transition.

Furthermore, the time domain enables us to study new concepts, such as that of a
nucleus, a core group of nodes whose activity will ultimately form the giant com-
ponent of the network. All the ideas introduced here will be considered in depth in
Chapters 3 and 4 of this Thesis.

2.3 Social Networks

In the following two Sections we will show how network theory can and has been
applied to the specific type of networks we utilize in this study, namely communica-
tion networks. Since we are interested in communication between humans, we start
by discussing the broader concept of social networks.

Though we have already referred to social networks, we have yet to define them
properly. We start with the nodes. Following the definition common in social
sciences [5], the atomic building blocks of social networks — social entities — are
called actors. Sometimes one actor node comprises multiple people: for instance,
departments within a corporation, or nations of the world can be seen as one actor.
However, from now on we consider one node to represent a single individual.

The definition of a link is not that straightforward. Though the underlying idea that
links represent interactions between nodes still holds, the problem arises from the
diversity of different possible means of interaction between humans. Importantly,
as the social science term relational tie suggests, links can represent more abstract
associations, such as kinship, friendship or mutual interests. In Table 2.1 we present
possible definitions for a link in a social network, and the social relation it is based on.
Clearly, there are many overlaps and ambiguities. For instance, how does one define
a friend? Do all the people share the definition so that the links are reciprocal?*
Also, as network theory enables, the links can have a weight, which now represents

40ne of the most heartbreaking results of social network science was made by psychiatrist
Jacob Moreno in the 1930s. He studied the friendships in a group elementary school students.
As conventionally one might think, the boys were friends with boys and the girls with other
girls, except for one boy who liked a single girl. That specific link was not bidirectional. http:
//en.wikipedia.org/wiki/Network_science (1.7.2014.).
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Table 2.1: Possible definitions of a link in a social network, following References [5,36].

type of social relation link is based on

common spatial location
similarity mutual interest
belong to the same club
share an attribute (e.g. gender)

kinship (e.g. descendant, marriage)
social relation formal role (e.g. executive, student)
informal status (e.g. friends with, knows about)

sexual contact
interaction face to face discussion
collaboration (e.g. scientists in an article)

migration (e.g. refugees)
movement & flow transactions of resources (e.g. lending)
information transfer (e.g. electronic messages)

the strength of a social tie. This strength can be measured via some proxies, such
as basing the strength of a friendship on the number of mutual encounters (if data
about them exists) or direct rankings (if executing questionnaires is possible).

Despite these underlying challenges of rigorous definitions, Borgatti et al. express
that the power and importance of social network analysis result from the fact that
it makes the individuals part of a network, and that the position within the network
determines the opportunities and constraints the individual encounters [36]. When
the analysis is performed at the level of individuals, the unit of interest is often
an ego network, which studies the egos (single individuals) and their local network
neighborhood.

Social network analysis has revealed many interesting phenomena arising from hu-
man interactions. For instance, it has shown the existence of homophily, the ten-
dency of people to interact with others who are similar to themselves, i.e. share
some attributes such as gender, religion or socioeconomic status [37]. A more strik-
ing result is the weak tie hypothesis which states that there is a positive correlation
between the strength of a tie and the number of mutual acquaintances [38]. Thus,
the weak links are important for the function of the network, since they can act
as bridges connecting different network neighborhoods and provide one with novel
information (e.g. hints about new jobs) or keep the network structurally intact (re-
moving the weak ties breaks the network into multiple components [39]).

In the last few decades social network analysis has gained a lot of attention both
in academia and the media. This is mostly due to the services and applications the
advancements in information communication technology enables, and the popularity
of their usage. To name a few, mobile phones, email, and Facebook are part of the
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everyday life of many. For science, the electronic data sets most of these services
store about their users and their actions are valuable since they provide details
about human behavior of unprecedented magnitude and precision. A data-driven
approach can then be utilized to study the social networks per se, and even conduct
controlled experiments on social influence, that is, how the behavior of an individual
is affected by others [6,40-44]. Nevertheless, it’s important to note that a social
network constructed from a data set is not the true underlying social network but
a representation of some of its facets.

Online interactions are typically recorded with time stamps. These enable us to
utilize the temporal networks framework, thus making the theory of dynamical pro-
cesses studied on social networks better correspond to reality. For instance, for
spreading of infectious disease the order of contacts matters: one cannot get infected
when in contact with someone who will only be infectious in the future [45,46]. Note
that for disease spreading contacts can be direct physical contacts (e.g. for sexually
transmitted disease) or represent shared space or location (e.g. germs in public
transport). The setting is similar for information spreading: in order to pass the
information forward, one needs to get it from someone first.

2.3.1 Communication Networks

In general, information can be transmitted in a plethora of ways. One possibility is
to distribute it in one-to-many fashion, where the target is to get as large audience
for piece of information as possible, and hope that the audience acquires it. To
name a few, public service announcements and advertisements work this way. On
the other hand, when information is distributed in one-to-one fashion between equal
humans — via some medium — the contacts ultimately create an easily comprehensible
communication network.

There are multiple media via which the communication between individuals can
take place. The oldest and most “natural” are face-to-face discussions which can
happen only if the participants simultaneously share a spatial location. Of course,
today the requirement for mutual space can be relaxed with the help of technology
and applications such as Skype, but the underlying nature of this fundamental com-
munication method remains intact. Communication media can be divided into two
categories depending on whether the communication requires simultaneous action
from all the participants (e.g. calls) or whether the information transfer can be de-
layed and thus dependent on when the recipient acknowledges it (e.g. email, SMS).
In Table 2.2 we present a breakdown of a few different channels of communication
between individuals, and give references to network studies about them. Note that
the different media differ also in whether they are strictly between two participants,
as calls generally are, or whether there can be multiple recipients as in emails.

By studying communication networks we can understand both system level-phenomena,
such as information diffusion in social networks, and, especially, individual-level be-
havior and differences between individuals. As discussed in Sections 2.2 and 2.3, the
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Table 2.2: Different communication channels divided by whether they require presence
in the same physical space and whether the communication requires mutual action from
all the participants.

H mutual action ‘ delayed

mutual space || face-to-face conversations [47] -

video conferences traditional letters
via device instant messages [14] email [48-50]
mobile phone calls [25,39] SMS [51, 52]

Twitter [53-55]

necessary components for these studies are in place: there are multiple large data
sets representing real-world communications, and there is the analytical framework
of temporal networks for handling the analysis of such data.

When inferring knowledge about human communication patterns from data sets, we
have to deal with two significant problems. The first is that due to privacy issues
we generally do not have access to the content of the contacts; however, few studies
on email communication and public channels, such as Twitter, make an exception
to this. Because of the lack of content it is impossible to know the nature of the
relationship between consecutive events. That is, we can’t say whether there is a
causal relation, 7.e. one event is caused by another, or merely a temporal correlation.
The second issue is that data sets often comprise only one communication medium at
a time, even though people may communicate on multiple channels simultaneously.
For instance, workplace communication is a combination of at least face-to-face,
email and mobile phone conversations. To account this, there is a framework of
multiplex networks where the nodes are connected with links from multiple classes,
each class representing one communication channel [56]. Unfortunately, suitable
data sets are still scarce, though some ambitious projects which aim to track the
whole spectrum of communication are under way [57].

Despite these problems, analysis of communication networks has already given in-
sight at both the network and individual levels. At the larger scale it has been
seen that both the topology of the network and the occurrence times of contacts
have a significant effect on dynamic processes on networks [25,58]. At smaller scale,
many interesting properties have been found. For example, there is a backbone sub-
structure in the email network which is important for information diffusion, and that
correlation between events of neighboring links occur, implying the possible causal
relation between these events [49,51]. Long-lasting (18 months) studies with mobile
phone and additional survey data have revealed that the characteristic communica-
tion patterns of individuals remain constant even though the people to whom the
communication is targeted change [59].
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2.4 Related Work on Identifying Influential Members

Identifying important, significant or influential nodes in a network is a problem
with built-in controversy: the power of any network is often that a single node
usually plays a negligible role in the function of the network. Thus, removing one
node or disabling it in dynamical processes does not cause differences at the large
scale, because almost always alternative routes can compensate for the removed
node. However, when comparing the nodes of some network between each other we
can find differences in their importance to the system. To be able to perform this
comparison, we need both explanatory and response variables.

For the explanatory variable we can choose any of the node-level metrics that the
theory of (temporal) network analysis provides. The simplest, as discussed above,
are the degree or the number of events of a node. Furthermore, there is a whole
family of centrality metrics for this task. Some well-known metrics in this group are
the PageRank [60] and betweenness centrality [61] which calculates the fraction of
shortest paths passing through each node. Also related to these is the k-shell index of
a node [62]. Nodes with high k-shell values are found closer to the topological center
of the network. Also, most centrality measures have their temporal counterparts [7].

In theory, all metrics are equally valid, but for practical purposes it is better to
choose metrics which can be calculated from local information, such as the degree
or burstiness of a node. Also, one can criticize the meaningfulness of node-level
metrics which are calculated from network-wide information especially for social
networks. They reveal information about the location of node in the network but
essentially assume that a node is indirectly affected by its friends’ friends’ friends,
etc.

The response variable is often obtained by choosing a node with a given value for the
explanatory variable and giving it a special role in some dynamical process taking
place in the network. One common choice is epidemic spreading where the node
is given either the role of the initial spreader or it is immunized completely. Then
we average over all the nodes sharing a value of the explanatory variable and, in
case of a stochastic dynamical process, over multiple runs. If the diffusion speed or
prevalence is seen to vary depending on the type of nodes, they can be seen as more
or less influential for the system. However it must be noted that the underlying
dynamical process completely defines the outcome: if the chosen process does not
represent reality, neither do the results.

This idea has been used extensively for static networks and recently the focus is
shifting towards the temporal setting. The degree, k-shell index and activity of
the nodes have been seen to be relatively good predictors for the importance of a
node [63-65]. A few significant studies skip the bias-inducing phase of choosing the
dynamical process and observe the diffusion process directly from suitable data [54,
66]. The results from empirical studies mostly agree with the simulated outcomes.
Significant nodes can also be searched by considering a network as a controllable
entity [67].
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In this Thesis, we approach the question of the influence of a node at two scales.
First, we consider influential groups of nodes, and then influential individuals.

As will be shown, the nucleus of a temporal network, i.e. the set of nodes that
will give rise to a giant component, is important for the system. Thus, the nodes
who are responsible for creating the nucleus are more influential than a random
group of nodes in any process taking place on the network. We will study whether
it is possible, given just properties of a node that can be calculated from its local
information, to predict whether it is part of the nucleus.

At the individual level, we treat the term “influential” in a more literal way. That
is, we study the role of nodes within their local neighborhoods, and see whether
some nodes are good for continuing information spreading, and whether some nodes
create more action than others. These phenomena are reflected against the same
node properties used already in the influential group studies.
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3 Methods

In this Chapter we will go through the methods used in this study. First, we
will discuss how a temporal network can be split into temporal subgraphs in a
meaningful way which enables observing the percolation transition. Then, we will
define a method for labeling the events within each subgraph based on their role.
This allows to see what kind of role each node has in the given subgraph and to study
the node’s level of influence. As discussed above, comparing observed results to a
reference is always important. In Section 3.2 we introduce the reference model used
in this Thesis and the general convention for creating other reference models. This
Chapter is concluded by presenting the used data sets and their basic properties.

3.1 Temporal Subgraphs

To be able to study temporal networks not just as an complete entity but at a
smaller scale which is suitable for studies of individual nodes, we first need to break
the full network into smaller parts, to temporal subgraphs.

Basically, a temporal subgraph (TSG) Gr(V’,£’) is any subset of the nodes and
events from the original temporal network, V/ C V and & C £. However, taking
an arbitrary subset of both results in subgraphs which are unusable for inferring
information. In order to give the subgraphs a sensible interpretation, the rules
controlling their creation must embody the features of the underlying temporal

communication network. For constructing such TSGs, we follow the definitions of
Reference [32].

First, we define two events to be At-adjacent if two events happen within a time
span of At and share at least one common node. Note that if the events have
duration other than zero, then the time difference between the ending time of the
first event and the starting time of the second event cannot exceed At. Also note
that the direction of events does not matter. With the help of the adjacency we
can define At-connectivity of any two events: events e; and e; are At-connected
if and only if a sequence of At-adjacent events connects the two. Then, with the
At-connectivity we can give an unambiguous definition of a temporal subgraph: a
temporal subgraph is a maximal set of At-connected events, that is, a set where no
more At-connected events can be added.?

The definition is deterministic in the sense that we always end up with the same
set of subgraphs with a specific At, independently of the order in which the events
are encountered. Since At-adjacency is independent of the direction of the events,
also non-causal event patterns, such as an outgoing event before incoming event are
included. Note that each event can belong to one TSG only, whereas nodes can
participate in multiple TSGs (and also appear multiple times in the event sequence

®Note that in Ref. [32] the definition for the temporal subgraph is does not require the maximal
set of events but only that all the consecutive events are included.
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Figure 3.1: A schematic for constructing the temporal subgraphs and the event labeling
rules. The temporal network with duration 6 = 0 events of panel (a) is broken into
subgraphs. In panel (b) using At = 10 results in two subgraphs. With A =15 (c) all the
events are in a single subgraph. The labeling of the events of the subgraphs in panel (c) is
seen in panel (d). Note that the event starting at 15 gets a transmitter label to its root,
since it is At-connected to an incoming event via another previous outgoing event.

of one TSG). One way to think of the role of the parameter At is to consider it as
a waiting time counter for a node that is activated after an event where the node
participates ends. If an event occurs to the same node before the counter reaches
zero, the event is added to the existing TSG.

This definition of a temporal subgraph avoids a few common problems that ex-
ist in other methods for breaking down a temporal network into smaller pieces.
For example, a common method of studying subgraphs defined by predefined time-
slices [68,69] (for example, construct a network separately for each day of the data)
loses the possible differences at shorter time scales than the slice and introduces
arbitrary boundaries where the subgraphs are split. The method used in this Thesis
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is data-driven in the sense that the subgraphs emerge from the true activity of the
individuals and thus it enables comparison between different subgraphs. Another
possible approach would be to study causal time-respecting paths which are created
by At-connected events, where the causality means that the direction of the events
must enable flow. However, the causality condition is very restrictive and results in
small temporal subgraphs when At is small. When At is large, flow paths start to
split and include parts of themselves, leading to combinatorial problems.

One benefit of the TSG method is that the computational complexity of calculating
the TSGs is O(F) if the events are properly sorted. The algorithm is also very
simple. Basically, we choose any event that is not assigned to a TSG as a seed
of a new TSG, go both forward and backward in time to find all the At-adjacent
events, and add them to the TSG. This is repeated recursively until no new events
are found. At the end of one iteration we have found one TSG and can move to
the seed event of the next one, if there are unassigned events left. A pseudocode
implementation of the algorithm is presented in Algorithm 3.1 and an illustration
of the method is displayed in Figure 3.1.

3.1.1 Temporal Subgraphs with Event Labeling

Temporal subgraphs provide a tool for splitting temporal networks into smaller
pieces and form the basis of studies at the node level. If we in addition label the
events according to their role within a given TSG and use these labels to give scores
to the nodes, we can then utilize this information to analyze the role of the nodes
and their influence. To the best of authors’ knowledge, the proposed method of
temporal subgraphs with event labeling (TSGEL) method has not been introduced
elsewhere.

The fundamental idea behind the labels is the source/transmitter/sink -paradigm
where nodes initiate information flows, act as relays further transmitting informa-
tion, or receive but do not further transmit information. Such flows are based on
causality in the direction and order of events. As the events are directed, we con-
sider the roots and tips of the events separately and assign them a label according
to other previous or future events, if any. The rules to label event e of a given TSG
are:

label rule
source no At-connected incoming event to the root node before e

root - -
transmitter otherwise

transmitter at least one At-adjacent outgoing event in the tip node after e

tip

sink otherwise

Thus we have four labels altogether. Note that the root uses At-connectivity whereas
the tip uses At-adjacency. This is because an event root can be At-connected to a
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previous incoming event via other outgoing events, and then it is intuitive to give
it a transmitter label as the other outgoing event root gets a transmitter label. In
other words, if we assume that an incoming event e; and a later outgoing event e;
of node w are adjacent with some At, we must assume that an even later outgoing
event e, of node w is also related to the incoming event e;, if e, is At-adjacent to
e;. In the tips of the events the situation is clearer and we need to only look for
the At-adjacent outgoing event in the tip node. Panel (d) of Figure 3.1 shows an
example of the labeling method.

The labeling of the events can be done simultaneously when calculating the sub-
graphs. Note that the method also works when the events have zero duration, and
multiple events can start or end for a given node at the same instant. However, the
underlying idea of the labels, that one event causes others, is lost since immediate
events clearly can’t represent causal human behavior. Also note that the method
does not allow temporally overlapping events.



3 METHODS 24

Algorithm 3.1 Algorithm to find the temporal subgraphs of a temporal network
G with a given At.

Require: £ is a set of events of a temporal network Gt that do not overlap for
any of the nodes, and £.7 is the subset of events where one of the participants
is node 7. Each e € £ has fields e.t, e.0t, e.u, e.v denoting the starting time,
duration, initiator and receiver of the event, respectively. In addition, the field
e.assigned € {True,False} indicates whether the given event is already as-
signed to a TSG and is initially False for all events.

function TSGFINDER(E, At)
TSGs < 0
for e in £ do
if not e.assigned then > if event is not in TSG
oneTSG « ()
e.assigned < True
eQ push e > push e to the empty event queue
while eQ # () do
€curr POP QQ
oneTSG < oneTSG U {ecyr }
DTADJACENT(E, At €cypr, €Q)

— =
= O

TSGs + TSGs U oneTSG 1 add the found TSG to TSGs container
return TSGs

—_ =

14: function DTADJACENT(E, At, e, eQ)) > push At-adjacent events of e to eQ)

15: for e, in {€.(e.u),E.(ev)} do > candidate At-adjacent events for e
16: if not e..assigned then

17: if e..t > et+e.dt and e.t <e.t+ e.dt + At then > e. after e
18: ec..assigned <— True

19: eQ push e,

20: else if e..t +e..0t <et and e.t+e..0t + At > et then

21: ec..assigned <— True

22: eQ push e,
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3.2 Random Time Shuffle Reference

As already discussed, we need something to compare the results with. The standard
convention in science would be to organize a controlled experiment where we are
able to divide the participants to treatment and control groups. Clearly this is
not possible, since we are not able — or ethically allowed — to intervene in human
activities. Thus, we need to construct a reference from the data we already have.

With empirical temporal networks, the established practice in creating a reference
is to shuffle the events of the original data with different rules [7]. This way we can
control which event correlations we want to preserve and which destroy. Then, the
difference between the results with the shuffled data and the original must originate
from the removed correlations. In principle, the shuffling methods are employed
when we are interested in phenomena at the level of the whole network and time
scales of the order of the data duration 7T'. For individual nodes or links the alter-
ations are either trivial or difficult to interpret.

In this Thesis, we use the random time shuffling (RTS) of the events, where the
starting times and durations of the events are randomly redistributed. Note that
the starting time and the duration are always switched together, thus keeping the
original events intact. The RTS method destroys correlations of event timings both
within and between links but preserves the underlying aggregated network, number
of events of nodes and links, and the circadian patterns (to be introduced shortly).
Since we need to preserve the validity of the data with non-zero event durations,
i.e. the events of a node must not overlap, the shuffling is executed with the Markov
Chain Monte Carlo method. At each step, two events are chosen uniformly at
random and their switching is accepted if it does not create overlapping events. The
method is halted after 5 x E successful switches.

3.3 Data Sets

In this Thesis we use three empirical data sets representing human communication
via different channels: mobile phone calls, mobile phone SMS messages, and emails.
The first two are constructed from the same mobile phone data set. Next we present
the data sets, their pre-processing and their basic statistical properties.

3.3.1 Mobile Phone Data

The mobile phone data comes from the billing system of an European carrier with
a market share of ~ 20% of the population within that country.® We have access
to data for one entire year (2007) but will use shorter data periods since these are
computationally more convenient. Both mobile phone calls and SMS messages are
included in the same data set. Essentially, the data is a list of customer IDs (a

5We thank A .-L. Barabési of Northeastern University for the mobile phone data.
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hashed phone number) and their time-stamped connections via either calls or SMS
messages. The hashed ID’s guarantee anonymity; the data cannot be linked to
persons. Note that we naturally do not have any information on the content of calls
and messages, and hence no definite conclusions on the possible causality of any
event sequences can be drawn. For instance, if B calls C after talking with A, we
cannot know if the latter call was triggered by the former.

In addition to the call and SMS events, we have access to some demographic infor-
mation for the users who are customers of that specific carrier. We call these users
the company users. The raw data also contains the connections to phone numbers
which do not belong to customers of this company (i.e. the non-company users),
but we will shortly justify why they are discarded from the analysis completely. The
demographic information for the company users contains for instance age and gender
of the customer, activation and disconnection dates of the contract and whether the
contract has prepaid or postpaid billing. Unfortunately, many customers have in-
complete information and partly due this, the demographic information is not used
in this Thesis.

Though the calls and SMS are mixed in the original data, as they are also mixed as
communication channels, we consider them as a separate temporal networks. This
separation is possible since calling and messaging are mostly used for different types
of communication. The different nature of SMS messages and calls is seen e.g. in
their correlations and timings — messages typically appear as repeated “ping-pong”
event strings between two customers, whereas call patterns are more diverse [51].

The raw data goes through multiple pre-processing steps in order to filter anomalies
from the data and, especially, to ensure that the data is as good representation of
the underlying social network as possible. The steps, and the reason why they are
executed, are:

1. Remove corrupted events i.e. events that have erroneous information in either
the duration or the cost columns of raw billing data. Examples are negative
cost value or zero duration value for a call.

2. Sort the events by their start time.

3. Remove all the events where at least one participant is a non-company user.
Even though this makes the network more sparse, this step is essential since we
can not be sure about the reliability of the non-company users and their events
(the number of calls made by non-company users varies abnormally, indicating
that the billing system records these events differently than company events).

4. Remove all events that do not take place on a mutual link. A mutual link is
a link where at least one event occurs in both directions. This step helps to
reduce anomalies caused by e.g. marketing calls and call centers and therefore
the remaining events correspond better to real social interactions.

5. Check that there are no overlapping calls for any of the nodes. An event
starting at the same second than the previous ends is accepted. Since the
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SMS messages have duration zero, they cannot overlap.

In our analysis we use two different sets of call data, where the duration of the
shorter one is one month and the duration of the longer one is six months. The
first month of the six-month data is the same as the one-month data. The order of
magnitude of the number of nodes is 10° for both mobile phone networks.

3.3.2 Emalil Data

The email data represents the email communication network extracted from the logs
of a university’s email server [50]. This data is received and we use it as it is — it
is known that the pre-processing steps applied at the data source include removing
other than intra-institute messages and certain mass mailers. The data spans a
period of 82 days and it represents email communication between 2997 individuals.
The real occurrence times of the messages have been concealed by offsetting the
time stamps of the events. However, the offset is the same for all events, keeping
the intervals between events and circadian patterns intact.

3.3.3 Basic Properties of the Communication Networks

Though all the three data sets represent human communication via electronic de-
vices, they have some underlying differences. Mobile phone calls require activity
from both of participants, i.e. the call must be picked up for it to appear in the
records, whereas for SMS and email only the sender is required to be active. Also,
the messages are not necessarily read immediately upon reception, if they are read
at all. However, we make the assumption that the information in the message is
available to the user immediately as the message is sent, and thus consider them as
events with duration zero.

The structure of the underlying aggregated network also varies between the data
sets. Table 3.1 shows some basic statistics calculated for the undirected version of
the aggregated network alongside with temporal features. We see for example that
the call network is denser than the SMS network, visible in the larger values of mean
degree k; and mean clustering coefficient C;. The email network is clearly the small-
est and has the highest average degree, but this is partly the result of constricting
the data collection only to the dense network of intra-institute messaging.
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Figure 3.2: Circadian and weekly patterns of the temporal networks and an example
of the bursty behavior of an example node. In panels (a), (b) and (c) we see the hourly
number of events for call, SMS and email data, respectively. The circadian and weekly
patterns are clearly visible. For mobile phone data the week begins on Mon 8th Jan 2007,
00:00 (local time). For email data the day borders are matched to the presumed weekly
pattern. In panel (d) we see the bursty behavior in outgoing (red) and incoming (blue)
calls of a single node during an interval of two days.

In the temporal domain the simplest metrics are the averages of event counts per
node and per day. The email network has the most events per node and the SMS
network the fewest. In the call data, the daily number of events is approximately
the same for the 1-month and 6-month data sets, which is a sign of the stability of
the data set. It is also natural that the number of events per node does not grow as
fast as the time span covered by the data, since nodes contribute to the total event
count only when they are active.

The circadian pattern, that is, low activity during the night and high activity during
the day, and differences between different weekdays are seen in Figure 3.2. In the
mobile phone data we see a daily bimodal behavior in the hourly number of events
which is most likely caused by the transition from office calls during the day to
private calls during the evening. Email communication slows down for the weekend
as it is mostly used for work. We also show the bursty nature of the call activity of
one single individual in panel (d) of the figure.
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4 Results

This Chapter is divided in five Sections where we report the results of the analysis,
proceeding from system-level to node level. First, in Section 4.1 we see how the
temporal networks split into temporal subgraphs as the parameter At that defines
temporal adjacency of events belonging to the same subgraph is varied, and study
temporal percolation in the empirical networks. This is followed by a separate
discussion Section. Next, in Section 4.3 we study if there are differences in the local
topological and temporal properties of the nodes who are responsible for the system-
wide percolation transition seen in the previous Section. In Section 4.4 we use the
TSGEL method for addressing whether some individual nodes are more influential
than others. The Chapter is concluded with a discussion on influential nodes.

4.1 Temporal Percolation in Communication Networks

In Figures 4.1, 4.2 and 4.3 we see how the temporal networks break into TSGs when
the parameter At is varied for the call, SMS and email data sets, respectively. We
refer to these figures in the following five subsections where the temporal percolation
transition is discussed.

4.1.1 Distribution of TSGs

In panels (a) and (b) we show the size distribution of the TSGs, measured in either
nodes or events, for various values of the parameter At. The corresponding outcomes
for the RTS reference model are shown with dashed lines. These plots are similar to
those shown in Reference [31]. For all the data sets we see four common features.

The first is that the distributions are broad and widen as the parameter At is
increased, reflecting the natural growth of the subgraphs when At is increased.

The second important feature is that the RTS reference yields smaller temporal
subgraphs; a clear indication that there are temporal correlations in the original
data that enhance temporal subgraph formation. For instance, in call data with
At = 300 s, 5.4% of the subgraphs in original data have at least three nodes,
whereas in the RTS reference the corresponding fraction is 1.6%.

Third, and related to the second point, the shuffled outcomes are closer to the
original when At is larger. This indicates the time scale where the shuffling has
an effect: if the outcomes are similar, increasing At compensates for the destroyed
correlations between events.

Fourth, as the parameter At is further increased, the main difference in the dis-
tributions is in their tails, i.e. the largest temporal subgraphs are of different size.
This implies a transition in the system-wide behavior to a regime where the only
considerable change as a function of the parameter At is in the size of the largest
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temporal subgraph. This is a clear indication that a temporal percolation is taking
place: smaller temporal subgraphs merge into the largest TSG. Next, we inspect
how this transition happens in more detail.

4.1.2 Rise of the Giant TSG

In panels (c) and (d) we study the relative size of the largest temporal subgraph
TSGrax with a given At, measured both in nodes and in events. The normalizing
quantity is the total number of nodes N or events F in the network. On the right-
hand-side vertical axis we superimpose the average size of all other TSGs, that is,
excluding TSGp.x. In all the data sets we clearly see a phase change where the size
of the TSG,ax starts to encompass a large fraction of the nodes and the average size
of all other TSGs has a local maximum. Note that for the email data, we see the
most textbooklike phase transition in the sense that the average TSG size returns
to small values after the peak. This is because the underlying network is essentially
only one component and eventually almost all the nodes join it, whereas in the call
and SMS networks the components other than TSG,.x can grow independently (see
Table 3.1).

Clearly, we are seeing a percolation-like transition in the networks where a giant
temporal subgraph is born. Before we can answer the important question where
the percolation exactly happens, i.e. where the percolation threshold exactly is, we
need to address the differences between static and temporal percolation. In the static
case we are interested in the connectivity of the network and study the emergence
of the giant component, i.e. the unique largest component, as a function of some
control parameter. For static networks, behavior of various quantities around the
percolation threshold is well-known. Although this theory holds strictly speaking
only for infinite networks (or ensembles), for any network, the percolation threshold
can be approximated as the point where a large component emerges and various
quantities — such as the average size of other components — diverges. However,
for temporal networks this situation is much more difficult. Consider the giant
component — it is not enough that it becomes large, it should also be long-lived.

4.1.3 Lifetime of the Largest TSG

Thus, in order to understand when temporal percolation takes place, we focus on
the lifetime of TSGs. The lifetime of a temporal subgraph is the time difference
between the beginning of the first event and the end of the last event. Clearly, when
At is increased, the lifetime of subgraphs increases as well, since the requirement of
temporal proximity of adjacent events is relaxed. The parameter At in itself offers
us a reference: if the lifetime of a TSG surpasses the reference, it is a sign that
adjacent events within that specific TSG happen close enough in time so that they
keep the TSG alive. Thus, the lifetime is due to event correlations and not merely
due to the parameter. Note that with small values of At also the durations of the
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events can result in lifetimes exceeding the reference. Next we study the lifetime of
the largest subgraph TSGy,.x, size measured in nodes, which should be sufficient to
reveal possible system-wide phenomena.

In panel (e) of the figures we see the relative lifetime of the TSGax, Wwhere normal-
izing is done with the data time span 7. Also, the reference At/T is shown. In all
data sets we see that the lifetime of the largest subgraph exceeds the reference at
approximately one hour. Yet, the remarkable outcome is the stepwise behavior of
the relative lifetime. The system goes from lifetimes barely exceeding the reference
to a state where the TSGy,.x is present for the entire time span of the data. This is
a clear indication of a temporal connectivity emerging: when At is increased above
this threshold the subgraph is kept alive by the event correlations and the parameter
becomes irrelevant.

The lifetime of the largest subgraph is a significant factor when defining the per-
colation threshold. As we have not restricted the nodes in the networks based on
their activity, a node can be active only during the first half of the data. However,
when discussing system-wide phenomena we need to confirm that all the nodes have
at least in theory a chance of joining the giant component. This can be ensured by
requiring that the lifetime of the TSG,.x ~ T which results in the equal treatment
of the nodes irrespective of their activity periods.

4.1.4 Uniqueness of the Largest TSG

Although the substantial lifetime of the TSG is a necessary condition, it is not a
sufficient condition for defining the percolation threshold and the birth of the giant
component. It is possible that there are multiple components which reach large size
and long lifetimes and the TSG,.x alternates between these. Thus, for determining
the uniqueness of the giant component, it is important to verify that the set of nodes
assigned to the largest component does not change when At is increased. For this,
we define a stability metric

TS G (Af) N TSCrnae (Atis1) (1 .. A TSCona (Al

where the numerator is the number of nodes who are in the TSG,,.« with At; and
also present in the largest component with all larger At values, and the denominator
is the size of TSG .y at At; measured in nodes. When this metric stabilizes to 1, the
core group of nodes that form the unique giant component has been found. When
At is increased, new nodes join this core. In the following, we will refer to this core
group as the nucleus of the giant component.

The behavior of Equation (4.1) for each of the networks is seen in panel (f) of the
figures. In the call and SMS networks, we see a sharp transition from S = 0 to
S =1, whereas in the email data S is rather high (~ 0.8) already for the smallest
At and reaches S = 1 less sharply.
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It is also important to relate the value of At with the different indicators of the
phase transition. In the call data, all the indicators point towards critical At’s that
are close to each other. In the SMS network, the core group of nodes stabilizes at
much lower At than the other signs of phase transition take place. This is most
likely due to the “ping-pong” nature of SMS messaging: nodes who differ from this
behavior and send messages to multiple recipients within a short interval stand out
as a group. In the email data, the special features of the data set stand out. Because
the network is effectively just the LCC, the phase transition is seen in terms of nodes
earlier than in events. Also, because the activity in the email network goes down
significantly during the weekend, it results in the death of temporal subgraphs, late
stabilization of the relative lifetime, and oscillations in the stability measure.

4.1.5 Temporal Percolation Threshold

The final task in percolation studies is fixing the temporal percolation threshold.
Thus we want to specify the value of parameter At where the nucleus of the giant
component emerges, and denote this with At = At.. As stated, in the temporal
setting the size of the largest subgraph is not enough, we also need to observe the
lifetime and the specific nodes forming the nucleus of the giant component. Hereby,
we estimate At. based on when the relative lifetime of the TSG,,.x and the stability
of the nodes (Equation (4.1)) have stabilized to one. The values of the percolation
threshold, alongside with the corresponding relative size of the TSG,., are reported
in Table 4.1.

Table 4.1: Percolation threshold At. and the corresponding relative size of the TSGuax
for the call, SMS, and email networks, respectively.

Data set | At | TSGmax (Ate)|/ N

Call 18000 s 0.10
SMS 18000 s 0.02
Email | 86400 s 0.98
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Figure 4.1: Temporal percolation in the call network and the birth of the unique giant
component.

(a) & (b) Histograms of the number of TSGs of given size measured in nodes or events.
The dashed lines depict results for the RTS reference. The event correlations present in the
original sequence form larger TSGs compared to the reference but the difference vanishes
with larger values of At.

(¢) & (d) The relative size of the largest TSG and the average size of all the other TSGs
measured in both number of nodes and events. The system goes through a phase transition
where a giant TSG emerges.

(e) & (f) The lifetime of the largest TSG and the stability of nodes within the largest
TSG. Both measures reflect the stability and uniqueness of the giant component and
are important when determining the percolation threshold and the nucleus of the giant
component. The shading in panels (c)-(f) emphasizes intervals of one minute, one hour
and one day.
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Figure 4.2: Temporal percolation in the SMS network and the birth of the unique giant
component. In (a) & (b) the dashed lines depict results for the RTS reference and the
shading in panels (c)-(f) emphasizes intervals of one minute, one hour and one day.

System-wide behavior resembles qualitatively that seen with call data and explained in
Figure 4.1 with one distinction: in panel (f), the set of nodes present in the largest TSG
stabilizes much earlier. This difference is most likely due to the different nature of SMS
communication compared to call communication.
sages to multiple recipients within a short interval stand out from the rest, who typically
exchange messages with a single recipient only.

The group of nodes who send mes-
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Figure 4.3: Temporal percolation in the email network and the birth of the unique giant
component. In (a) & (b) the dashed lines depict results for the RTS reference and the
shading in panels (c)-(f) emphasizes intervals of one minute, one hour and one day.
System-wide behavior resembles qualitatively that seen with call data and explained in
Figure 4.1 with two distinctions. The first is that in the phase transition plots of panels
(c) and (d), the curves of the average size of other TSGs measured in nodes and events
have only one sizeable peak, after which they remain at low values. This is because in the
email network 99.9% of the nodes are in the LCC and the average size of other components
consists of only the few remaining nodes and the T'SG formed by them can not grow. The
second distinction is that the relative lifetime of the TSGy,.x reaches one only with quite
large parameter values. This is due to the low number of messages during the weekend
which causes the death of the subgraphs.
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4.2 Discussion on Temporal Percolation

It is important to note that the approach to temporal percolation presented above is
not the only definitive one. Clearly, the underlying framework of temporal subgraphs
determines percolation behavior, and as we already discussed in Section 3.1, it is
also possible to create subgraphs with stricter or more relaxed rules. If we tighten
the rules and require purely causal paths between the nodes (i.e. in addition to
the At-adjacency, we consider the direction of the events) we effectively study the
longest time-respecting path. However, this would result in percolation thresholds
with significantly higher At. Observations in Reference [30] support this claim. On
the other hand, we can relax the At-adjacency requirement by assigning a common
timer to all those nodes who are already assigned to a subgraph. This means that
an event which takes place within At of the last event of any of the nodes in the
TSG would be included, irrespectively of the previous or future events of that node.
Clearly, this would allow for percolation at lower values of At, but also makes
interpreting the results more difficult. For instance, do completely separated events
have a meaning in a communication network? Thus, the TSG method we applied
can be seen as an intermediate form of these two modifications and most suitable
for human communication networks.

The characteristics of the underlying networks also need to be considered. For in-
stance, is the requirement of the substantial lifetime of the giant component reason-
able if the event activity varies significantly? Since circadian patterns are typically
strong in networks representing human communication and thus the activity is very
low during the night, one could argue that studying the maximal temporal subgraph
only during the hours of the daytime would be enough. This is — indeed — a valid
question for further work. Also, studying how the active nodes change within the
TSGayx is interesting. That is, intuitively most nodes are active during the day, but
the nightly activity of some nodes keeps the giant component alive. However, these
are more application-specific questions and do not diminish the importance of the
concept of the TSG lifetime when studying the temporal percolation transition at
the system level.

It is also worth to noting that the definition of the TSG lifetime is independent of
the method chosen for constructing the subgraphs. Thus, it can be utilized with
any other definition of a subgraph. The only restriction is that the lifetime of each
subgraph must be driven by the events. Yet, as the observation of the large At.
for the email network indicates, the concept of lifetime should always be used with
care.

The TSG lifetime should also be stable with data time span T, if the underlying
network does not vary too much and 7T is sufficiently larger than the threshold At..
Observations when comparing the thresholds between the one-month and six-month
call data support this claim: the percolation threshold is exactly the same. However,
the relative size of the TSGy,.x with the longer data is larger, now ~ 30%. This
increase is expected as a longer time enables more nodes to have events that will
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join them to the TSGy, ..

Finally, what does the percolation threshold of 5 hours for the call data actually
represent? It is a kind of a characteristic time scale that combines features from
both node and network scales. That is, at the node level the adjacent events of single
node must be temporally close enough so that the TSG stays alive and spreads.
At the network level, sufficiently many nodes behaving in this fashion must be
neighbors of each other so that the TSG becomes unique and large enough. The
most meaningful interpretation for the percolation threshold is when comparing it
with epidemic spreading where the nodes can recover (see the SIR model in e.g. [8]).
Any process with a characteristic time scale for node activity attenuation that is
less than At,. cannot reach a significant proportion of a temporal network’s nodes
or remain alive for the whole time span of the network.
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4.3 Influential Groups of Nodes

After identifying the birth of the giant temporal subgraph in temporal networks,
the next immediate question is that whether the nodes responsible for its emergence
— the nucleus of the giant component — are more influential for the network than a
random group of nodes of similar size? We answer this question in the Section 4.3.1.
After that, in Section 4.3.2, we will study whether this group can be separated from
the rest on the basis of the local properties of its nodes.

4.3.1 Significance of the Nucleus for the Network

As discussed, we define the nucleus as the set of nodes forming the giant component
of a temporal network at the percolation threshold At.. Then, we can study the
significance of the nucleus by removing the nodes found in the largest temporal
subgraph at At = At. and replicating the percolation studies from the previous
Section 4.1. Here, removing the nodes means that we discard all the events of the
data set where at least one participant node is marked for removal.

The most descriptive metric to study the effect of removal is the relative size of
the largest subgraph in nodes, which we show in Figure 4.4 for the original data
and two references with the one-month call data. In the first reference the nodes
of the nucleus are removed. In the second, we remove the corresponding number of
random nodes. Since the latter reference is stochastic, we average the results over
five independent runs. Clearly, the phase transition takes place at larger values of
At for both references. However, specifically removing the nucleus nodes causes the
network to percolate later compared to the random removal of the nodes. Though
the difference might not seem enormous, it is good to notice the logarithmic hori-
zontal axis and that the first non-zero value for the targeted removal is when At is
one day, i.e. when the circadian patterns are included.

To conclude, we have shown that the group of nodes forming the nucleus are more
influential for the connectivity of the temporal network than a randomly chosen

group.

4.3.2 Properties of Nodes in the Nucleus

The next logical step is to study the properties of the nodes in the nucleus and see
whether they are different from the rest. Reciprocally, if we find good predictors
in terms of local node properties, it enables us to estimate whether a node with
given properties would be part of the influential nucleus without complete network
information.

We chose to study two temporal and two static node properties which can be calcu-
lated locally, i.e. using only the events for the specific node or aggregated network
information on the node and its first neighbors. The temporal properties we chose
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Figure 4.4: The relative size of the TSGy,ax for the original network and two references for
the one-month call data. In the first reference, the nucleus at At = At, is removed (solid
black), and in the second reference a corresponding number (10%) of random nodes are
discarded. The latter reference is stochastic, thus we show the average of five independent
runs and the standard error of the mean. We see that the targeted removal of the nucleus
hinders percolation more than the random removal.

are the total number of events per node E; and the burstiness of a node B;. The
static metrics are the degree k; and the clustering coefficient C; of a node.

In Figure 4.5 we see the relative mean values of these four properties calculated for
the nodes in the TSG,.« at a given At. Normalization is done with the correspond-
ing network average. At low At values, the curves are noisy because the largest
subgraphs are small and not yet stable. However, after this initial phase we see
some clear trends. The nodes in the largest temporal subgraphs have both larger
degree k; and larger number of events F; than the nodes who join at larger At. The
clustering coefficient has more variation and after the stabilization shows a growing
trend for the call and SMS networks. In contrast, burstiness has a decreasing trend,
especially for the call data. The relative differences are large. For instance in call
network the nodes in the nucleus have twice as many neighbors and events than the
network average.

Clearly, nodes with large degree, large number of events and high level of burstiness
are responsible for the creation of large temporal subgraphs and eventually the
nucleus as At is increased. However, to get a better view, it is important to also
study possible correlations between these properties.

To study the correlations at the node level, we choose two properties and calculate
the density of nodes in the network who have specific values for these given prop-
erties. In panels (a), (c), and (e) of Figure 4.6 we show the density of nodes given
three combinations of the properties for the one-month call data. Immediately we
see the strong correlation between the degree and the number of events, as well as
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Figure 4.5: The relative mean value of degree k; (a), number of events E; (b), clustering
coefficient C; (¢) and burstiness B; (d) of the nodes belonging to the TSGyax at a given
At. Normalization is done with the network average of each property. The At = At.
points are emphasized with thick black borders. The error bars show the standard error
for each point and the shading emphasizes intervals of one minute, one hour and one day.

degree and burstiness. In contrast, the degree and clustering coefficient are anti-
correlated. The other three possible combinations did not show correlations that
cannot be inferred from the shown ones.

Some of the observed correlations are trivial. For instance, the anticorrelation be-
tween degree and clustering is not surprising, since it is very unlikely that all the
neighbors of a high degree node are connected to each other. Also, the correla-
tion between the degree and the number of events is not surprising since people
who make many calls are likely to make them to many recipients. What is more
interesting is the observed correlation between the degree and the burstiness. As
Reference [70] suggests, burstiness is a property of links and not directly a property
of nodes except for what is inherited from the links. Then, when the event patterns
of the many links of a high degree node are merged to calculate the node bursti-
ness, intuitively one could expect that the burstiness decreases. However, we see the
opposite response. One possible explanation for this is the burstiness metric itself,
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Figure 4.6: Density of nodes with given properties in the one-month call data (panels (a),
(c) and (e)) with the average, and the probability that a node with a specific combination
of the properties belongs to the TSGpax at At = At. (panels (b), (d) and (f)). The
probability for a bin is shown if at least five nodes fall into it.

since it does not incorporate any component that is affected by the time scale of the
event patterns, that is, all distributions with same relationship between the mean
and standard deviation result in the same burstiness, even if one pattern spans one
month and the other one day. Yet, understanding this phenomenon in depth would
require further studies.

In addition to the global correlations between node properties, we are especially
interested in how the node properties are correlated when predicting whether a
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node belongs to the maximal temporal subgraph. This can be studied by choosing
two node properties P, and P, and studying the probability that a node with a
specific combination of these properties belongs to the TSGy,.x with given At. More
formally, we calculate

P(in TSGuax|P1 = p1, Po = p2, At)
_ # of nodes in TSGy,,, with property values py, ps

4.2
total # of nodes with property values py, po (42)

In practice, we use two dimensional binning of the data over the two properties and
thus perform the study over small intervals instead of just single values. To study
the interesting nucleus, we set At = At. and show the probability in panels (b), (d)
and (f) of Figure 4.6. Only bins that have at least 5 nodes with the corresponding
property values are shown.

When we compare the densities of the properties and the probability, we see that
the nodes who form the nucleus have property values that are rare in the network.
Conversely, if we can pick a node with high degree and high number of events, we
can be fairly sure that it will belong to the nucleus. When examining the mutual
correlations between the properties, we notice that actually the degree of a node is
a sufficient predictor for the nodes attendance to the influential nucleus. Results for
the SMS and email networks are qualitatively similar and are shown in Appendix A.

4.4 Influential Individual Nodes

In the previous Section we discussed the influence of the nucleus on system-level
connectivity and found that degree is a good predictor for a node’s attendance to
the nucleus. Next, we want to focus closer on the individual nodes, and study their
roles within temporal subgraphs. Thus, we’ll move on to using the TSGEL method.

From this point on, we concentrate only on the 6-month call data and discard the
SMS and email data. The main reason why the call data is more suitable and inter-
esting is that call communication requires mutual activity from both participants
of the call. The possible inactivity of message recipients in the other two media
hinders the interpretation of possible causal relations between events. Also, a few
data-specific features support the rejection of the SMS and email data sets. As
already discussed, SMS communication is used mostly in “ping-pong” styled com-
munication which does not promote wider spreading of information. Further, the
duration of the email data is short which results in a low number of TSGs per node.
Additionally, in both of these media the possibility of sending multimessages and
the overall low cost of messaging causes problems when interpreting the results.

First, in order to get started with the TSGEL method, a proper value must be
selected for the parameter At.
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4.4.1 Selecting the Proper At Parameter for TSGEL

The upper boundary for the parameter At comes directly from the percolation
studies. Clearly, if we want the TSGs to represent temporal correlations which
happen within a short intervals of each other, the value must be much less than
At.. Then what about the lower boundary? What is the value the parameter has
to have so that the method has the ability to capture the time scales important for
call communication? We can get insight to this by studying the density of preceding
events [51,52].

The density of preceding events is a distribution of intervals between the time of
beginning of an event of a node and the end times of all previous events of that same
node. Because we are not able to know which events are in reality causally connected,
we include all the intervals that fulfill the order condition. When combining the
intervals of all the nodes, we see a peak in the distribution at the location of a
characteristic interval, if one exists.

In addition, we can categorize the time intervals to preceding events based on the
direction of the events and whether two events are between two or three nodes.
This gives us altogether eight conditions, denoted with Out < In if we calculate
the intervals from an outgoing event of a node to the incoming events before it, and
Out <y In if we restrict that the outgoing event has to be with a new node, i.e.
other than the caller of the incoming event. In Figure 4.7 we see the probability
density function for the intervals for the call network, categorized in the possible
causal intervals in panel (a) and non-causal intervals in panel (b). The maximal
interval is restricted to 24 hours. Densities for the RTS reference are also shown.

In panel (a), we see a peak in all distributions at ~ 20 s. This is indicates that
it is likely that an individual, after making or receiving a call, makes a new call
relatively soon. This phenomenon is in line with the known bursty behavior of
humans. The requirement that the later event has a different participant than the
earlier one decreases the PDF values for small intervals. This indicates that calls
between two participants are more likely than a sequence of calls involving three.
The differences in the distributions for very small intervals are most likely due to
technical constraints which make calling in certain circumstances slightly faster.

Though the intervals seen in panel (b) do not arise from causal actions of the node
for which the specific interval is calculated, they can still represent causal behavior
of the other party. This is seen as the disappearing of the characteristic peak when
the two incoming calls cannot be from the same node or the incoming call cannot
be induced by the outgoing.

The comparison of the distributions with the reference indicates the time scales
where either causal or correlated actions affect the inter-event times between the
events. Thus, our choice for the parameter At must be large enough so that all
causality-related peaks are well contained in it. Note that the decrease of the RTS
reference near the interval of 24 hours is due to the circadian patterns.
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Figure 4.7: Density of preceding events, i.e. the probability density function of the time
intervals separating events of the nodes. In panel (a) we see time intervals of events with
a possible causal relation, whereas in (b) the time intervals are between events that do not
have a direct causal relationship. On the left side of the arrow is the direction of the event
which happens later in time. The condition <y requires that the latter event is with a
new node, ¢.e. other than the other participant in the earlier event. The horizontal dashed
line is the RTS reference, and the vertical dashed line emphasizes the 1-hour interval.

Based on these motivations, we choose the value At = 3600 s for the TSGEL studies.
Then, 33.7% of the TSGs have at least 2 events and 16.5% at least 3 nodes (the
absolute number is ~ 52 x 10%). The size of the TSG .,y is 2591 nodes (6780 events).

4.4.2 Role of the Nodes within a Subgraph

After running the TSGEL method with At = 3600 s, each root and tip of the events
that are connected to a given node has a label which illustrates how the node has
acted with respect to other events. By summing the labels of a given node, we can
study what role the node on average has in temporal subgraphs. We denote the
sum of the source labels of node i by 0; src and the sum of the sink labels by o; snk.
We discard subgraphs with less than three unique nodes from the analysis since
we are interested in node roles within local neighborhoods, and not in reciprocal
communication with only one other node.
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The sum of the event labels per node are trivially correlated with the number of
the node’s events. More specifically, the source and transmitter-out scores are equal
to the number of outgoing events, and the sink and transmitter-in scores sum up
to the number of incoming events. Since the sizes of the TSGs are relatively small
with the chosen At, the sum of sink and source scores should be closely related
to the number of the outgoing and incoming events, respectively. This is exactly
what we observe in panels (a) and (b) of Figure 4.8, which shows the density plot
of the number of outgoing events Ej; our versus the source score o;grc, and the
corresponding numbers for the incoming events and sink scores. The average of the
distribution is close to the linear upper bound, indicating that most of the outgoing
events begin only after a time span At from incoming event, and reciprocally that
an incoming event is not likely to spark up new events within the specified interval.
This observed symmetry comes directly from the TSGEL method: for instance, if an
outgoing event would be a transmitter event and thus make the source label count
smaller, it would have to have at least one matching incoming event which would
also be a transmitter event instead of a sink event.

However, the small differences between the label sums from the one-to-one match
between the event counts are interesting. For instance, are some node’s events more
likely to be transmitters than the events of some other node? If so, this reveals that
according to the event correlations, the node plays the role of a transmitter in its
neighborhood. We measure this with the relative source score o; spc/ E; our for each
node and study how it varies as a function of the four properties chosen previously,
namely the number of events, degree, clustering coefficient and burstiness of a node.
The conditional probability of the relative source score as a function of a given
property is seen in panels (c)-(f) of Figure 4.8. Note that because of the symmetry,
the results would agree if we would instead study the relative sink score.

We observe that the likelihood of an event having a source label decreases as a func-
tion of the number of outgoing events, degree and burstiness. In other words, nodes
with high values in these metrics are likely to have an incoming call taking place
close enough before they make a call. The decrease in the likelihood is significant,
for example, low-degree nodes have source events with ~ 80% chance whereas very
high degree nodes have transmitter labels more than half of the time. The fourth
property, i.e. the clustering coefficient, does not explain the relative source score.

The results on the roles of nodes within temporal subgraphs are in perfect agree-
ment with the results seen with the node properties of the nucleus in Section 4.3.
Actually, since the event labeling method with At < At. reveals the behavior of
a node within its topologically local neighborhood and temporally nearby events,
the observed behavior of the high number of events, high degree and high bursti-
ness nodes indicates that eventually these nodes join together and form the nucleus.
Thus, the nodes who act as transmitters and do not stop the growth of the tempo-
ral subgraphs are influential with respect to temporal connectivity in the system.
Clearly, the underlying correlations between the properties seen in Figure 4.6 do
still play a role here.
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Figure 4.8: Roles of nodes in temporal subgraphs for the 6-month call data with At =
3600 s. Only TSGs with at least three nodes, and nodes with at least 10 TSG participations
are taken into account. In panels (a) and (b) we show the density plot for the number of
events of a node versus the sum of corresponding labels. Panels (c)-(f) show the conditional
probability of the relative source number against node properties (the number of out-
events, degree, clustering coefficient and burstiness of a node). The green circles show bin
averages in all panels.
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4.4.3 Size of the TSG a Node Generates

Finally, we will study how large temporal subgraphs nodes sharing a property on
average create. We study this by first choosing a node property, then taking a subset
of the temporal subgraphs where a node with given property acts as a source at least
once, and finally calculating the conditional distribution of the size of the TSG as
a function of the given property. As above, we require that the TSGs have at least
three nodes.

In panel (a) of Figure 4.9 we show the conditional distribution of the TSG size,
measured in nodes, as a function of the number of events of a node. Clearly, as
the number of events grow, the larger temporal subgraphs a node creates. Or more
specifically, joins, since the node is not necessarily the one that initiates the sub-
graph. Basically, what is seen is related to the result in Section 4.3.2 that nodes
with high numbers of events participate in large subgraphs. However, as temporal
subgraphs can have multiple sources, looking at their size alone can be misleading

To get a better view of the size of the temporal subgraph that results from the actions
of a single source, we scale the size of the TSG with the number of sources it has.
If a single node has multiple source events in a single subgraph, it is counted as one
in the scaling. The conditional distribution of scaled size as a function of number
of events is seen in panel (b) of the Figure 4.9. As expected, the size plummets
when comparing to the unscaled metric. However, we observe a small but clear
increasing trend in the scaled size of the TSG. Though the absolute increase is not
large, crossing the TSG size of two can have significant consequences considering
the percolation.

Consider a case where the source contacts one node, resulting in a TSG of size two.
Then, in order that the size of the TSG would be larger than two, the initial node
must contact a third node, or the first contacted node must contact a new node.
Clearly, this results in a better starting point for system-wide percolation of the
TSG (see the reproductive number in e.g. [8]). In the other end, nodes with average
scaled TSG sizes less than two are connected to nodes behaving like sinks, i.e. they
do not contact new nodes even when they get calls from multiple unique sources.

As expected, the outcomes as a function of degree and burstiness agree with the
ones obtained with the number of events and thus they are not reported here. Also,
as above, clustering does not correlate with the TSG size. We also replicated the
results with At = 300 s. Then, naturally, the raw size metric is much smaller even
with large property values, but the interesting observation of crossing the TSG size
of two with the scaled metric is still present.
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Figure 4.9: The conditional distribution of the size of the TSG a source node participates
in, as a function of the number of events of the source node. Only TSGs with at least three
nodes and nodes with at least 5 TSG participations as a source are taken into account.
Panel (a) shows the size of the TSG in unique nodes, whereas in panel (b) the size is scaled
with the number of unique source nodes.

4.5 Discussion on the Influential Nodes

In the last two Sections we presented results on the second objective of this Thesis,
namely how can we recognize influential nodes in temporal communication networks.
We approached the question at two levels. First, we observed that the nucleus, the
set of nodes around which a giant temporal subgraph emerges, is influential when
it comes to connectivity of the system, and then studied properties of the nodes
forming the nucleus. We found that nodes with high degree, high burstiness and
large number of events are likely to be in the nucleus, and are thus influential for
connectivity. It was also seen that the degree, burstiness and number of events are
highly correlated between each other and the fourth property, clustering coefficient,
is anticorrelated with all of them. Then we used the TSGEL method to study how
nodes’ actions influence its local neighborhood. We found out, again, that nodes
with high degree, high burstiness and large number of events are rarely the ones
where the growth of a temporal subgraph finishes (i.e. sinks); rather, subgraphs
where such nodes act as sources are on average large. When the result is viewed in
the context of information diffusion, nodes with these properties are important in
their local neighborhood for transmitting information onward.

Results at both the group level (nucleus) and the individual level support each other
perfectly. To summarize, nodes with high degree and large number of events reach
more nodes when they act as sources. Additionally, nodes with high values of these
properties are unlikely to act as sinks that stop TSG growth. Thus, they are likely
to participate in large and long-living subgraphs, and eventually form the nucleus.

It is also important to discuss some of the features of the TSGEL method. Even
though the labeling is based on assumed causality of the events, the temporal sub-
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graphs are not necessarily causal. This was seen for instance when studying the size
of the TSG a source node creates: larger TSGs have nearly always multiple sources
who are not causally connected. Thus, the method is essentially able to only reveal
correlations within a node’s neighborhood: a node gets many transmitter labels
if it is in a neighborhood with many temporally adjacent events. This becomes
problematic with nodes that have a high number of events: no matter how their
events are distributed, they can’t be silent for long periods of time, and thus they
are rarely sources or sinks. Therefore, one could consider using different values of
the parameter At for different nodes, reflecting their level of activity. On the other
hand, isn’t the fact that high-activity nodes are not likely to remain inactive for any
longer periods of time exactly what makes them influential?

One possible approach that would enable us to make claims about the causal in-
fluence of a node would be to study causal paths or reachability within a temporal
subgraph. However, we would still need to make assumptions that events respecting
the direction and time are causal if they happen close enough to each other. On
the basis of this work and the problems encountered, the authors suggest that if one
wants to make conclusions on the causal influence of a node, one would need to use
data where such information is present (see e.g. Ref. [66]).

Our analysis of the influential nodes was mostly descriptive. However, to be able
to make claims on the unexpectedness of the results, we would need a reference to
compare with. For example, we could think of breaking the correlations between
degree, number of events and burstiness to see which of these has the largest effect.
However, it must be noted that then we would also break correlations that are
clearly characteristic of the individuals that form the network. We would end up
with a reference, but one can question the meaningfulness of a reference where
characteristic features of human behavior have been erased.
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5 Summary and Conclusions

Temporal networks research is currently an active field because of theoretical ad-
vances and especially the availability of suitable data sets. In this Thesis we have
studied three empirical communication networks, with two main objectives. The
first was to study temporal percolation in communication networks, and the second
to study whether we are able to identify which nodes in temporal networks are the
most influential regarding temporal connectivity and flow of information.

We observed a percolation transition in all the networks, in terms of temporal sub-
graphs suddenly spanning the entire network over its entire lifetime. We were also
able to approximately determine the corresponding percolation thresholds, that is,
critical values of the temporal adjacency parameter used in constructing temporal
subgraphs. Because of the additional dimension of time, there are issues to be con-
sidered beyond static percolation theory, and special attention was paid to these.
We found out that the concept of the lifetime of temporal subgraphs is important
when defining the percolation threshold. With the lifetime, we were able to de-
termine the nucleus of the network — an influential group of nodes that ultimately
form the giant component. As the giant component covers most of the nodes, the
nucleus takes care of covering the time dimension. The percolation threshold has
an important consequence when considering dynamical processes on temporal net-
works: any process with a characteristic time scale of node deactivation less than
the percolation threshold cannot reach a significant proportion of the nodes or cover
a significant fraction of the data time span of the network.

The second objective was split into two parts. First, we studied the properties of the
nodes that form the influential nucleus. We concentrated on node properties that
can be calculated from local information on the nodes only. We found out that the
degree, number of events and burstiness are highly correlated, and that the nodes
with a high value in these properties are likely to belong to the nucleus. Second, we
introduced a method for labeling the events within a temporal subgraph and found
out that, again, nodes with high degree, large number of events and high burstiness
are significant on two aspects: first, they rarely cease the growth of a TSG and
second, when acting as sources, they initiate slightly larger TSGs.

To conclude, the lifetime of a temporal subgraph is an important concept for tem-
poral percolation transition. Also, even though the problem of significant nodes can
be approached in multiple different ways — many more than discussed in this Thesis
— it is safe to assume that nodes with large degree and large number of events are
usually influential in a temporal network, and responsible for temporal percolation
transitions.
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Figure A1: Density of nodes with given properties in the SMS data (panels (a), (c¢) and
(e)) with the average, and the probability that a node with a specific combination of the
properties belongs to the TSGpax at At = At, (panels (b), (d) and (f)). The probability
of a bin is shown if at least five nodes fall into it.
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Figure A2: Density of nodes with given properties in the email data (panels (a), (c)
and (e)) with the average, and the probability that a node with a specific combination
of the properties belongs to the TSGpax at At = 5400 s (panels (b), (d) and (f)). The
probability of a bin is shown if at least five nodes fall into it. Note that for the email
network we chose a much smaller value for At than the percolation threshold, since at At,
nearly all the nodes are in the TSGpax and the probability would just be 1.
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