Aalto University

School of Science
Master's Programme in Machine Learning and Data Mining

Unsupervised methods in multilingual and multimodal semantic modeling

Master's Thesis
Espoo, August 4, 2014

Supervisor: Prof. Erkki Oja, Aalto University

Instructor: Prof. Timo Honkela, Aalto University

Aalto University School of Science Master's Programme in Machine Learning and Data Mining		
Author: Murtaza Hazara		
Title: Unsupervised methods in multilingual and multimodal semantic modeling		
Number of pages: 101	Date: September 15, 2014	Language: English
Professorship: Information and Computer Science	Code: T-61	

Supervisor: Prof. Erkki Oja

Advisor: Prof. Timo Honkela

Abstract

: In the first part of this project, independent component analysis has been applied to extract word clusters from two Farsi corpora. Both word-document and word-context matrices have been considered to extract such clusters. The application of ICA on the word-document matrices extracted from these two corpora led to the detection of syntagmatic word clusters, while the utilization of word-context matrix resulted in the extraction of both syntagmatic and paradigmatic word clusters. Furthermore, we have discussed some potential benefits of this automatically extracted thesaurus.

In such a thesaurus, a word is defined by some other words without being connected to the outer physical objects. In order to fill such a gap, symbol grounding has been proposed by philosophers as a mechanism which might connect words to their physical referents. From their point of view, if words are properly connected to their referents, their meaning might be realized. Once this objective is achieved, a new promising horizon would open in the realm of artificial intelligence.

In the second part of the project, we have offered a simple but novel method for grounding words based on the features coming from the visual modality. Firstly, indexical grounding is implemented. In this naïve symbol grounding method, a word is characterized using video indexes as its context. Secondly, such indexical word vectors have been normalized according to the features calculated for motion videos. This multimodal fusion has been referred to as the pattern grounding. In addition, the indexical word vectors have been normalized using some randomly generated data instead of the original motion features. This third case was called randomized grounding. These three cases of symbol grounding have been compared in terms of the performance of translation. Besides that, word clusters have been excerpted by comparing the vector distances and from the dendrograms generated using an agglomerative hierarchical clustering method.

We have observed that pattern grounding exceled the indexical grounding in the translation of the motion annotated words, while randomized grounding has deteriorated the translation significantly. Moreover, pattern grounding culminated in the formation of clusters in which a word fit semantically to the other members, while using the indexical grounding, some of the closely related words dispersed into arbitrary clusters.

Keywords: symbol grounding, automatic thesaurus extraction, multimodal fusion, hierarchical clustering

Acknowledgment

First and foremost, I would like to express my sincere gratitude to my instructor Prof. Timo Honkela for giving me an opportunity to work on this lovely evergreen subject and supporting me by valuable instructions and his kind behavior. In addition, I would like to thank my supervisor Prof. Erkki Oja for his motivation, enthusiasm, and immense knowledge. Besides my supervisor and instructor, my special thanks goes to Klaus Förger whose guidance and help initiated my motivation. Finally, I appreciate all those people who participated in annotating the motion videos; without their help, this thesis would not have been possible.

Table of contents

1. Introduction 1
1.1. Persian (Farsi) language 2
1.1.1. Persian adjectives and adverbs 2
1.1.2. Zero-width-non-joiner problem 3
1.2. Symbol grounding problem 4
1.3. Multimodal technology 5
1.3.1. Multimodal language technology6
1.3.2. Automatic multimodal translation 6
1.4. Motion capture 7
1.5. Text mining 7
1.5.1. Word clustering 7
1.5.2. Syntagmatic vs. paradigmatic 7
2. Methodologies 9
2.1. Principle component analysis 9
2.2. Independent component analysis 10
2.3. WordICA 12
2.4. Hierarchical clustering 13
2.4.1. Cophenetic correlation coeffiecients 15
2.4.2. Extracting clusters from a dendrogram 15
2.4.2.1. Extracting arbitrary number of clusters from a dendrogram 16
2.4.2.2. Extracting clusters from a dendrogram based on the inconsistency coefficient 16
2.4.3. Applying hierarchical clustering to one-dimensional distributions 17
2.4.1. Verify the clustering tree 17
2.5. Motion data generation and the web-based questionnaire 18
2.6. Finding synonyms of motion-related words using video indexes. 19
2.6.1. Finding synonyms of verbs automatically 20
2.6.2. Finding verb-modifier synonyms automatically 20
2.7. Finding word similarities by fusing visual features 20
2.7.1. Normalizing word-video matrices using video-similarity 20
2.7.2. Extracting synonyms from the normalized word-video matrix 22
2.8. Automatic translation 22
2.8.1. Automatic translation using indexical grounding 22
2.8.2. Automatic translation using pattern grounding 23
3. Experiments and the results 25
3.1. Word clustering experiment 25
3.1.1. Datasets 25
3.1.2. Extracting features from word-document matrix of Alef dataset 25
3.1.3. Extracting features from word-word matrix of Alef dataset 26
3.1.4. Extracting features from word-document matrix of Tabnak dataset 27
3.1.1. Extracting word features from word-word matrix of Tabnak dataset 27
3.2. Motion data analysis 28
3.2.1. Verbs and adjectives distribution 29
3.2.2. Grouping adverbs 31
3.3. Synonym results 36
3.3.1. English Synonym Results 37
3.3.2. Farsi synonym result 38
3.3.3. Finnish synonym result 39
3.3.1. All synonyms results 41
3.4. Translation results 41
3.4.1. Translation of English annotations to Finnish 41
3.4.2. Translation of Finnish annotations to English 43
3.4.3. Translation of English annotations to Farsi. 43
3.4.4. Translation of Farsi annotations to English. 46
3.4.5. Translation of Farsi annotations to Finnish. 46
3.4.6. Translation of Finnish annotations to Farsi. 48
3.4.7. All translations results 49
3.5. Hierarchical clustering result 51
3.5.1. Hierarchical result of English annotations 51
3.5.2. Hierarchical clustering result of Finnish verbs 53
3.5.3. Hierarchical clustering of Farsi annotations 55
3.5.4. Cophenetic correlation coefficients. 58
4. Discussion and Conclusion 59
5. Bibliography 61
Appendix A. Adverbs combined 71
Appendix B. Frequency of verbs and adjectives in the corpora 72
Appendix C. Verb frequencies in both corpuses 73
Appendix D. Automatic detection result synonyms 75
D.I. Synonyms result of English annotations 75
D.II. Synonyms in Farsi annotations 77
D.III. Synonyms in Finnish annotation 79
Appendix E. Automatic translation result 82
E.I. Translating from English to Finnish. 82
E.II. Translating from Finnish to English 85
E.III. Translating from English to Farsi 88
E.IV. Translting from Farsi to Enlish 91
E.V. Translating Farsi to Finnish 93
E.VI. Translating Finnish annotations to Farsi 96
Appendix F. Cophenetic correlation coefficient results 99

1. Introduction

With the reduction in Internet connection prices, the utilization of more powerful computer memory and faster broadband services in every corner of the globe, a vast collection of text documents have been rapidly amassed. This has urged industrial and governmental corporations to concentrate on creating intelligent agents for extracting valuable information and knowledge from text corpora. Such intelligent agents can be helpful in various decision making processes such as monitoring social networks for marketing or anticipating potential terrorist attacks. In the realm of artificial intelligence, an apt classical question is how we can enable such artificial intelligence agents to understand natural languages.

Identification of similar words has been one of the traditional but rudimentary approaches toward automatic semantic analysis [127]. There are many ways of expressing one concept, and many concepts can be expressed by one word. In the last few decades, several algorithms have been proposed for an automatic construction of thesaurus which can capture such many-to-many semantic relationships among words. One can benefit from an automatic thesaurus for information retrieval tasks and overcoming the data sparsity problem. It can also shed light on the content of a large corpus. However, from the semantic point of view, in a thesaurus, a word is just defined by or connected to other words without being linked to the outer objects. On the other hand, symbol grounding is a more sophisticated approach for conquering the meaning of a word.

Symbol grounding can be interpreted as a hook that connects the words in our heads to the outer objects. In anthropic mechanism [44], it is believed that cognition can be explained by physical rules. Furthermore, Fodor [125] suggested that the meaning of a symbol is grounded in the relationship between the symbol system and the world. If correct, one can stimulate cognition by providing an artificial intelligence with the right rules for manipulating symbols. In other words, we would be able to create an artificial agent that can understand natural languages such as English as we do. Although symbol grounding and consciousness are quite popular concepts among philosophers, they have not gained considerable recognition by information scientists. In this project, we study the influence of symbol grounding on automatic translation and synonym detection, which can be regarded as one of the first works in the translation field according to our best knowledge.

In the first part of this project, WordICA is applied on two Farsi corpora. This part is mainly about extracting a numerical representation for every word in Farsi corpora. Numerical representations of the words can be obtained by defining words in the vector space model. In this model, a word is demonstrated by a vector whose components are real numbers. For example, a word can be mapped to an integer number by counting its frequency in a specific document, and if we consider all the available documents, then we can form a vector in a d dimensional space, where d denotes the number of documents. This kind of numerical representation can then be input to independent component analysis (ICA) algorithm for extracting automatic thesaurus. Furthermore, Independent component analysis has been applied for word clustering because it has the capability of automatic document clustering which can be utilized in future works.

In the second part of the project, we proposed a novel framework for capturing the meaning of motionrelated words. Arena made by OptiTrack was employed to create motion videos. In addition, motion features such as the means and standard deviations of coordinates, velocities, and the accelerations of different body parts were calculated. Every motion video was represented by such 602-dimensional motion data.

An online web-based form has been designed where English, Finnish, Swedish, and Farsi speaking people can annotate a set of motion videos. Word vectors have been formed by counting the frequency of a word in a video. There are 124 motion videos; hence, words are represented by 124 dimensional vectors. Then, the word vectors were normalized by the 602-dimensional motion data. As a matter of fact, we want to study how the system performance would change in terms of translation and synonym detection, if we fuse textual and visual modalities. In other words, words are grounded by the data from visual modality. That's how this part of the project is related to the symbol grounding problem.

Since Farsi is one the studied language in this project, and some readers might not be so familiar with it, a very brief introduction to this language is presented in section 1.1. Section 1.2 explains the symbol grounding problem very shortly. Section 1.3 expounds multimodal technologies. Section 1.5 mentions some application of text mining. Then, in Chapter 2, the methodologies including PCA, ICA, WordICA, and hierarchical clustering is stated. Besides that, in this chapter, the methods of synonyms detection and translation of motion-related words are clarified. Chapter 3 describes the results of both the symbol grounding and word clustering experiments. Finally, Chapter 4 asserts a conclusive statement about the exploitation of WordICA for word clustering and symbol grounding for automatic translation systems.

1.1. Persian (Farsi) language

Persian is an Iranian language which is itself a branch of Indo-European languages [131, 132, 133, 135]. It is a polycentric language spoken by almost 130 million people mainly in Iran, Afghanistan, and Tajikistan. It is also spoken in Iraq, Pakistan, Uzbekistan, and Turkmenistan by minorities. It is natively referred to Farsi in Iran. Although Persian is the official language in Iran, nearly half of its population is non-native Persian speaker; the other languages spoken in Iran are Azerbaijani, Balochi, Kurdish, and Arabic [134]. In Afghanistan, it is known as Dari, an official language together with Pashtu [136].

Old Persian was written from left to right on cuneiform script. After the Islamic conquest of Iran, in the ninth century, modern Persian was established and enriched by many Arabic loanwords. Its alphabet is based on Arabic script with four more letters being added to it. Accordingly, modern Persian is written from right to left. Furthermore, there is no difference between capital and lower case letters.

It is a morphologically rich language, and there are over a hundred affixes to form new words. It is claimed that Farsi is an agglutinative language. New words can be formed both by combining bounding morphemes and compounding two existing words. In writing, Farsi generally makes use of only consonants and long vowels, not showing short vowels in the written form. In addition, Professor Mahmoud Hessaby demonstrated that Persian can derive more than 226 million words [137].

1.1.1. Persian adjectives and adverbs

Persian adjectives have a limited inflection space; they may be simple, comparative, or superlative. If a simple adjective is not an Arabic loanword, its comparative and superlative form can be easily made by adding a suffix to it.

Table 1: Persian comparative and superlative adjectives		
Simple adjective	Comparative adjective	Superlative adjective
(bad) بـب-bad	(worse) بدت-badtar	(the worst) بدترين-badtarin
(wild) خشن-khashen	(wilder) -خشت-khashentar	(the wildest) خشنترين-khashentarin
(kind) مرمبان-mehraban	(kinder) مربربن)-mehrabantar) مربربانترين-mehrabantarin

Adverbs are primarily identical with, or derived from, nouns or adjectives. Some Arabic loan words are transformed into a manner or a sentence adverb by adding the Arabic "tanwin accusative" loans ending in -an: e.g., ghalban-قلبـا (meaning by heart). Adjectival adverbs, which are identical with or originating from adjectives, are mostly of manner: تـند-tond (quickly, hastily). Intensifying adverbs, which qualify other adjectives or adverbs, are the quantifying adjectives: خيلى-kheyli (very).

Table 2: Persian Adverbs				
adverb	meaning	Type of adverb	root	Part of speech
(nesbatan)(نسبتا)	Relatively	Sentence adverb	(relation) نسبت-nesbat	Noun
(nazdik)(نزيك)	Near	Nominal adverb	(near, now) j-nazd $^{\text {- }}$	Noun
(yawash)(يو)	Slowly	Adjectival adverb	(slow, slowly) يواش-yawash	Adjective, adverb
بسيار	very	Intensifying adverb	(very) بسيار-besiyar	Adjective

1.1.2. Zero-width-non-joiner problem

Detection of word boundaries is an important preprocessing task in statistical text mining. In the literature, this task is referred to as tokenization. Tokenization of Persian text documents is still a challenging process as some words might be written in a concatenated form, or attached morpheme might be separated with a space.

In Farsi, the shape of a letter is determined by whether it is joined or separate. For example, the verb "is doing" in Farsi might be written in these three different forms:

1. مى كند
2. مى كند
3. ميكند

However, only the first version is grammatically correct. There are two morphemes in this verb:

1. $م$ (mi)= it is a morpheme that shows present continuous terms in this case
2. كند (konad)= it is the root of verb "do" for the present tense

When there is space between two things, it means that they are two words. Thus, two morphemes that are parts of the same word should not be separated by a space. On the other hand, if they are joined, its spelling would not be correct according to the Farsi grammar. The solution is to use a zero-width-nonjoiner; in this case, while there is no space between the last letter of the first morpheme and the first letter of the second morpheme, they are not joined.

In the first part of this project, frequencies of words should be extracted to convert words into a numerical representation. When counting the frequencies of substrings in Farsi text, the zero-width-non-joiner (ZWNJ) can be problematic. Zero-width-non-joiner is a kind of space that cannot be seen, and it is there to separate letters before and after without adding a space. It is most frequent in verbs where its derivational morpheme should be separated without a space. In addition, typing Farsi words with English letters is quite popular, which has worried Persian linguist experts. Thus, there was an extensive effort to utilize machine learning techniques for building online user friendly websites in which a user
can type Farsi words using Latin letters, and receive the words back in Perso-Arabic letters. Behnevis [42] is an online service which offers such conversion. The problem of such online tools is that too ZWNJ might be added without the user being aware of it. For example, both of these two verbs seem to be correct and equivalent of each other:

1. \quad. $=(U+0645 U+06 C C$ U+200C U+06A9 U+0646 U+062F)
2. $\quad=0=1$ U+0645 U+06CC U+200C U+200C U+200C U+06A9 U+0646 U+062F)

However, it is only by comparing their Unicode that we can notice their differences. In fact, in the first version, only one ZWNJ ($\mathrm{U}+200 \mathrm{C}$) is used, while in the second version, two more ZWNJs are added. Hence, when working with Farsi words, unnecessary ZWNJs must be removed in the preprocessing steps; otherwise, frequencies of some words might not be captured correctly, which results in inaccurate numerical representations of words.

1.2. Symbol grounding problem

A symbol is any object which is a part of a symbol system such as natural language [50-54]. English alphabet is an example of a set of symbols whose shapes are selected arbitrarily. In addition, the shape of a symbol is neither the hint of its meaning nor the shape of the object it refers to. A tool is required to find the referent of a symbol, and when the symbols are connected to their referent, they become meaningful. Symbol grounding is a mechanism using which the object to which a symbol refers can be detected.

Symbol grounding problem is about how words get their meaning. This problem can be further clarified using an intuitive example. Suppose that you want to learn a foreign language such as Chinese, and the only available tool is a monolingual Chinese dictionary in which the Chinese words are defined using other Chinese words; you cannot find any kind of clue such as an image in this dictionary. In other words, the words in this dictionary are not connected to anything in the world. In this case, when you intend to recognize the meaning of a new word, you have to also look up all the words which are included in the definition of that word; this will make your search for the meaning of a word like an infinite loop. The only reason cryptologists of ancient languages and secret codes seem to be able to successfully accomplish something very like this is that their efforts are grounded in a first language and in real world experience and knowledge [54].

The aforementioned example has been inspired by the famous Chinese room argument proposed by John Searle [143]. He has imagined himself alone in a room communicating appropriately with people outside the room in Chinese just by following the computer instructions which manipulates the Chinese symbols, while in fact, he has no knowledge of Chinese. Although people who are outside think that he is a Chinese speaker, he did not manage to realize the meaning of any of the Chinese words. He concludes that understanding is a biological process and no computer can understand Chinese by following a program. In other words one cannot get semantics from syntax. Searle's argument has initiated a hot debate among recent philosophers. Critics have offered several counter arguments among which "The Robot Reply" captured our attention [144]. In this reply, it is conceded that a natural language processing program does not create any understanding, but if the program is embedded inside a robotic body with sensors and motor enabling the robot to make contact with the physical entities, it would be possible for the robot to understand a natural language. That's how we are inspired to utilize multimodal language technologies to capture the semantics of motion related words.

Symbolists like Fodor believe that symbols get their meaning by being appropriately connected to the outer objects in the World [48, 49]. The fact that our own symbols do have intrinsic meaning whereas the computer's symbols do not indicates that automatic translation and artificial intelligence in general can benefit from symbol grounding.

The symbol grounding problem is also relevant to consciousness. According to Max Velmans and Susan Schneider [43], consciousness is the most familiar and the most mysterious aspect of our lives. There are two doctrines concerning consciousness. In anthropic mechanism, everything about human beings can be explained in mechanical terms as surely as can everything about clockwork or gasoline engines [44]. However, one of the chief obstacles that all mechanistic theories have faced is providing a mechanistic explanation of the human mind and consciousness. For one, although Descartes endorsed profoundly the mechanistic conception of the material world and some human function such as passion, he argued that one cannot explain the conscious mind in terms of the spatial dynamics. The theory that opposed to this mechanism is vitalism, which maintains that vital activities cannot be explained by the laws which govern lifeless matter; hence, consciousness can be neither explained nor measured by physical laws. It is not of our major concern whether consciousness can ever be explained mechanistically. However, the question of how consciousness might be related to language is more pertinent to this study.

Ned Block proposes two distinct types of consciousness which he called phenomenal (P-consciousness) and access (A-consciousness) [45]. P-conscious states include the experiential states we have when we see, hear and have pains. These experiences, considered independently of any impact on behavior. Aconsciousness, on the other hand, is the phenomenon whereby information in our minds is accessible for verbal report, reasoning, and the control of behavior. So, when we perceive, information about what we perceive is access conscious; when we introspect, information about our thoughts is access conscious [46], and so on. According to David Chalmers, A-consciousness can be understood in mechanistic terms [47]. Accordingly, it would be possible to unravel the mystery of relation between perceiving an event and its verbal report.

1.3. Multimodal technology

In a multimodal technology the communication is accomplished through various modalities. A mode or modality refers to a channel through which a message or information is sent or received. For examples, in human-human communication, multifarious modalities such as speaking, writing, gesturing and touching are exploited. Similarly, multimodality can be seen in human-computer interaction by the use of different input/output channels. Exploiting multiple modalities enhances our human-computer interaction and makes it more natural.

Nowadays, multimodal systems can be found in sophisticated inventions such as haptic devices for generating sensation to the skin [56, 57], disability assistive applications [58], wearable virtual devices [59, 60], GPS navigation systems [61], military super-soldier enhancing devices [62], personal digital assistants [63], speech enabled interfaces [64], smart advertisement [65, 66], virtual keyboard [67], virtual reality [68, 69], and many other technologies [55].

The central process in a multimodal system is multimodal fusion which refers to assimilating information from assorted input channels. In addition to improving interface design, fusion of multiple modalities can also increase the accuracy of classification and decision making processes. For example, in [111], the authors have combined facial and voice data to recognize four emotions: "sadness, anger, happiness,
and neutral state". Their results demonstrate that facial data is more informative about emotion than acoustic data. In fact, according to their experiments, the performance of their emotion recognition system was 70.9 percent when the acoustic data was the only utilized input, while exploiting facial data led to an overall performance of 85 percent. On the other hand, by fusion of voice and facial data, the overall performance of the recognition system soared to 89.1 percent.

The abundant successful stories of multimodal fusion have propelled research scientists to focus more on this subject. For example, in [70], the fusion of audio-visual features along with other textual information has been shown to be effective in detecting events from a team sport video.

There are three approaches for combining different modalities: early fusion, late fusion, and the hybrid method. In early fusion, the information is fused at the feature level; for instance, audio and visual feature vectors are concatenated for a classification task. In the literature, this approach is known as the recognition-based fusion [71-73]. In late fusion, multiple modalities are connected in the semantic space. For instance, audio and visual feature vectors can be processed by some classifiers to produce higher level representations such as phoneme and viseme; then, instead of combining audio and visual feature vectors, phoneme and viseme vectors can be incorporated. Late fusion is also referred to as decision level fusion [74-80]. Hybrid method is a combination of early and late fusion [81-85]. In [66], an overview of these three methods and an in-depth view of various strategies for multimodal fusion is offered.

1.3.1. Multimodal language technology

Multimodal language technologies refer to technologies that combine text or audio features with features from some other modalities such as image. The majority of researches in this field have focused on combining audio and vision for the various purposes including but not limited to speech recognition [87-90], biometric identification [91, 92], speaker recognition [93, 94], semantic concept detection [90, 93], video classification [96], and human tracking [97].

Some researchers have also tried to merge textual information with features from other modalities. In [98], the authors have applied maximum entropy model to fuse text with image based data at the feature level for semantic image indexing. In [99], features from audio, video, text, and weblog modalities have been fused at the hybrid level for the purpose of sport video analysis. In [100], features from text, audio, video and speech modalities have been combined at the hybrid level for video topic clustering. In [101], features from text (closed caption), audio, video and motion modalities have been merged linearly at the decision level for video retrieval.

1.3.2. Automatic multimodal translation

The majority of the previous works in the realm of multimodal language technology has been concentrated on information retrieval, clustering and classification. There exist few researches which have been devoted to automatic multimodal translation. For example, in [102], the authors have been trying to develop a system so that the lip movements in dubbed movies can be automatically synchronized to the translated speech. In [103], Duygulu et al have built an automatic lexicon from a set of annotated images; these images were annotated in different languages including English and French. Each image annotation consists of a set of words. Every word can be linked to a region in an image. There is no information about such connection between the words in an annotation and the regions in the corresponding image. This connection was learned by applying a variant of EM algorithm. Then each region in an image is linked to words from various languages. Accordingly, by object recognition, an automatic lexicon was created. In [104], textual and visual features were fused for automatic
annotation, and from the authors' point of view, the problem of image annotation could be viewed as analogous to the problem of cross-lingual retrieval.

1.4. Motion capture

Motion capture is the process of recording a live motion and translating it into actionable data that allows a 3D recreation of the performance. It involves measuring an object's position and orientation in physical space, then recording that information in a computer-usable form. Objects of interest include human and non-human bodies, facial expressions, camera or light positions, and other elements in a scene [138]. Data acquisition is implemented using markers attached near the joints of an actor; using these markers, low level data such as the positions and angles between the markers are recorded. Such raw low level data enables us to animate a humanoid character. Motion capture was started as a photogrammetric tool analysis in 1970's; later, it found its way into education, training, sports, biomechanics, and gesture recognition, and nowadays, it is extensively exploited in generating animation for cinema and video games [139, 140].

1.5. Text mining

Text mining is a data mining technique for extracting useful information from unstructured or semistructured text documents. Text mining is an interdisciplinary field which incorporates data mining, web mining, information retrieval, information extraction, computational linguistics and natural language processing. Some of the basic tasks in text mining include document classification, document clustering, concept co-occurrence, named entity recognition, part-of-speech tagging and summarization. Text mining has been exploited in multifarious fields such as security [105], biomedical [106-109], marketing [110, 111], sentiment analysis [112, 113], business intelligence [114], and social media monitoring [115, 116].

1.5.1. Word clustering

Word clustering refers to the task of automatically identifying semantically similar words and putting them in the same group. One of its immediate applications is the automatic construction of thesaurus. Automatically produced thesaurus is a requisite part of translation and information retrieval systems. According to Dekang Lin [117], a certain sense of a word might have been used at a specific period of time, which makes it unlikely to be captured by manually compiled lexicons. For example, by analyzing San Jose Mercury corpus (45 million words), it has been found that more than half of the occurrences of the word "westerner" refers to "hostage". Thus, when searching for hostage-related articles, westerner might be a good keyword search candidate. Overcoming the data sparsity problem is another advantage of automatic word clustering; Dagan has demonstrated in [118], that smoothing the maximum likelihood estimate of a word based on the likelihood of its synonym has exceled the back-off smoothing. In [122, 123], it is stated that word clusters can shed light on the overall content of underlying corpus; in other words, word clusters can be viewed as a summary of a large corpus. In [124] a broad overview of clustering algorithms has been given. Furthermore, Implementation of some text clustering algorithm can be found in several toolkits such as Lemur [120] and BOW toolkit in [121].

1.5.2. Syntagmatic vs. paradigmatic

An automatic thesaurus might capture various semantic relations such as synonym, antonym, hyponym, meronym and hypernym. Sahlgren [127] has placed various semantic relations among words under two
umbrellas namely syntagmatic and paradigmatic. Words co-occuring in the text are syntagmatically related. Such relation is linear and combinatorial; in other words, words with this kind of relation can be combined together. For instance, "shoot" and "gun" are syntagmatically related. Another example of such relation is the words which emerge in a normal sentence like "I am hungry." On the other hand, in a paradigmatic relation, words can be substituted. Such relations hold between words that do not cooccur in the same context but whose neighboring words are often the same, like the words "house" and "apartment" in the sentence "I own [an apartment | a house]". These two relations are often regarded as orthogonal axes in a grid.

	Paradigmatic relations Selections: "x or y or..." Syntagmatic relations She Combinations: He			
draws	breen	paint		
"x and y and..."	They	paint	red	clay
color				

2. Methodologies

Principal component analysis is applied on the high dimensional dataset collected from motion videos to convert them to two dimensional data points so that they can be visualized. In addition, WordICA which is based on Independent component analysis is employed on word-word and word-document matrix for extracting word features which can be utilized for automatic detection of word clusters. In the following sections, I have explained these methods briefly.

2.1. Principle component analysis

Principal component analysis is an eigenvector-based procedure which converts a set of correlated observations to a set of uncorrelated variables. PCA was first introduced by Karl Pearson [38]. It is a popular statistical tool utilized for exploratory data analysis and making predictive models. This tool can reveal the underlying structure of data in a way that best explains the variance in data. When encountering a high dimensional data, a preprocessing step is to visualize its reduced dimensional version. PCA can be very useful by yielding such a lower dimensional picture of the high dimensional data. Such dimensionality reduction can be achieved by projecting the data into the first few principal components. In addition to dimensionality reduction, it can be applied to reduce the noise and prevent the overfitting problem. PCA is closely related to the factor analysis and singular value decomposition.

Figure 1: Principal components analysis centers the sample and then rotates the axes to line up with the directions of highest variance. If the variance on \boldsymbol{z}_{2} is too small, it can be ignored and we have dimensionality reduction from two to one.

Figure 1 depicts a very simple example of PCA when applied on a two dimensional dataset. The principal component, z_{1}, is along the direction which data most spreads out. In other words, it has the largest possible variance. The other principal components have the highest variance with the constraint that they should be orthogonal to all other previous components. These principal components can be obtained using the covariance approach or the singular decomposition method. Since the covariance method is more straightforward, I explain the method of achieving the principal components using its intuitive steps.

Consider a matrix, X, with rows being the observations and columns being the variables. PCA maps each row vector to a new space with principal components being its basis. For example, one can extract the first two principal components of a high dimensional dataset and map these high dimensional data points to a new space with only two dimensions being the principal components. This can be a very
useful preprocessing step. To extract the principal components, first of all, the empirical mean is removed from the columns. Then, the eigenvectors of the covariance matrix are sorted in terms of their eigenvalues. The first eigenvector which corresponds to the largest eigenvalue would be the principal component.

2.2. Independent component analysis

Independent component analysis is a generative blind source separation model utilized for extracting source signals from a linear mixture of signals without having a priori knowledge about the nature of mixture. ICA works on three assumptions that need to be considered carefully before applying it on a problem. The first assumption is that the source signals are uncorrelated and statistically independent. In other words, the value of a signal at a specific time does not tell anything about the value of other signals at that time. The second assumption is that the source signals are mixed linearly. The last assumption is that the source signals should not follow Gaussian distribution.

In order to clarify on ICA, I refer to a concrete example of the classic 'cocktail party problem'. Imagine a cocktail party is held in a room where four people are speaking simultaneously, while their sound is recorded by four microphones. As the microphones are positioned in different locations, the individuals' speech signal will contribute differently to each microphone. Furthermore, each microphone records the sound of all four individuals. This problem can be written using algebraic notations.

$$
\begin{aligned}
& x_{1}=a_{11} s_{1}+a_{12} s_{2}+a_{13} s_{3}+a_{14} s_{4} \\
& x_{2}=a_{21} s_{1}+a_{22} s_{2}+a_{23} s_{3}+a_{24} s_{4} \\
& x_{3}=a_{31} s_{1}+a_{32} s_{2}+a_{33} s_{3}+a_{34} s_{4} \\
& x_{4}=a_{41} s_{1}+a_{42} s_{2}+a_{43} s_{3}+a_{44} s_{4}
\end{aligned}
$$

x_{i} denotes the output of the i-th microphone; s_{i} represents the i-th individual's speech signal; and, $a_{i j}$ stands for a weight which depends on the distance between i-th microphone and j-th person. This problem can be further simplified using matrix notation:

$$
\begin{gather*}
x=A s \tag{1}\\
u=W x \tag{2}
\end{gather*}
$$

In (1), s denotes the source signals; A represents the mixing matrix; and, x stands for the microphone output. If we knew A, we could apply straightforward linear Algebra methods to extract s; however, we have no clue of how the source signals are mixed in practice. In other words, there are two unknowns and one known variable. In this case, one can apply ICA because its assumptions hold; the amplitude of each voice at a specific time does not tell us anything about the amplitude of another voice at that time, so the independence assumption of the source signals holds. The source signals are mixed linearly, and they do not follow Gaussian distribution. There are well-known algorithms which find an estimation u of the source signal s by computing the separating matrix W.

Infomax [1,2] and FastICA[3,4] are the two most popular algorithm for ICA. Infomax finds the separating matrix W by utilizing negentropy and minimizing the mutual information of the estimated source signals u_{i}. On the other hand, FastICA exploits kurtosis and maximizes the non-Gaussianity of the estimated u_{i}. FastICA is based on central limit theorem. An observation in central limit theorem tells us
that the distribution of two independent random variables is closer to Gaussian than the two original variables. Furthermore, Hyvärinen and Oja [3] has demonstrated that maximizing the non-Gaussianity of the estimated source signals can be reduced to minimizing their mutual information. He also concludes that the source signals must be non-Gaussian; otherwise, ICA cannot be applied.

Both Infomax and FastICA implement centering, whitening, and dimensionality reduction as the preprocessing steps. These steps have been demonstrated using a simple but intuitive example in

Figure 2: (a) shows the original data generated from a uniform distribution. The two source signals are defined by horizontal and vertical coordinates of the data points. (b) demonstrates how the source signals are linearly mixed. (c) depicts the whitening step. (d) reveals the estimated source signals found by FastICA.

Figure 2.a demonstrates the original data. 1000 data points are generated from the uniform distribution. The first source signal s_{1} is defined by the horizontal coordinate of the data points, and the second source signal s_{2} is determined by the vertical coordinate of the data points. The two source signals are generated independently, and they follow uniform distribution. Hence, this is a perfect example for ICA. Figure 2.b exhibits linear mixture of the two source signals. (3) and (4) shows how they are mixed.

$$
\left\{\begin{array}{l}
x_{1}=0.54 s_{1}+0.84 s_{2}(3) \\
x_{2}=0.42 s_{1}+0.27 s_{2}(4)
\end{array}\right.
$$

Figure 2.c shows the whitening step. This step is implemented by removing the mean from the data and multiplying it by the inverse of square root of the covariance matrix; it is worth mentioning that whitening has restored the original shape of the data, and ICA just needs to rotate it. The output of FastICA algorithm is also manifested in Figure 2.d; a geometric interpretation of the ICA is that it rotates the axis and minimizes the Gaussianity of data projected onto each axis.

ICA has been applied in various fields including but not limited to audio signal processing [5-7], image processing [7-12], bioinformatics [8-26], time series and financial data [27-30], and text document analysis [31-33]. WordICA is another successful application of ICA in natural language processing.

2.3. WordICA

WordICA [36] is an unsupervised machine learning approach that can automatically find word features from unannotated corpora. These word features can be utilized for tasks such as word clustering. Since WordICA is an unsupervised technique, one does not have to worry about annotating a large corpus, which makes it an efficient method. In fact, sufficient corpus for training classical language technologies is not available in many languages including but not limited to Farsi. In addition, these features can be exploited to produce automatic lexical resources; these resources will be useful in developing applications such as natural language interface and machine translation systems.

ICA is a numeric algorithm, so it is required to transforms words into numbers. One way to achieve this transformation is applying the bag of words model. In this model, a word is represented by a vector with one element equal to one and other elements equal to zero. Thus a word is represented by a vector in a numerical space whose dimension is determined by the number of context words. In addition, it should be emphasized that the word orders and their dependencies are ignored in this model. Besides that, the dimension of this space can be reduced by utilizing SVD, PCA, or other dimensionality reduction methods.

Word-word matrix and word-document matrix are the two conventional ways of transforming a text document into a numerical representation. The rows of word-word matrix indicate the analyzed words, and its columns indicate the context words. The analyzed words can be the set of the N most frequent words or any other set of N words. The context words come from the set of M most frequent words. This will form an N-by- M matrix denoted by X whose element $x_{c n}$ means the frequency of c-th word occurred with a specific distance from the n-th context word. This distance can be, for example, the two immediate preceding and two immediate following words. In addition, in word-document matrix, rows represent the N most frequent words, and columns denote the documents. Each element of worddocument matrix refers to the frequency of a word in a document.

The rows of word-word or word-document matrix represent a vector in a high dimensional space. Because these matrices are sparse, it is safe to express that the components of these vectors follow a distribution which is far from Gaussian distribution. One can also view the rows of these matrices as mixture signals. In other words, some underlying source signals have been mixed and formed them. As the non-Gaussianity assumption is valid here, we can apply ICA to extract the underlying factors. These underlying source signals are in the same space as the words; thus, they can be exploited for word clustering.

Word clustering using ICA can be achieved by comparing word vectors against independent component vectors extracted from word-word or word-document matrix. Some distance measure such as cosine
distance is employed to determine the distance between a word vector and a component vector. The closest words to a component can form a cluster. One interpretation of such cluster is that its words have similar document or context distribution.

2.4. Hierarchical clustering

Hierarchical clustering [126] is a well-known clustering method by which one can build a hierarchy of clusters. This clustering method can be either agglomerative or divisive. In agglomerative hierarchical clustering, one starts with each data points being placed at its own singleton cluster; then, two closest clusters are merged iteratively until all the data points are merged into one single cluster. Thus, agglomerative clustering is a bottom-up approach. On the other hand, divisive clustering is a top-down approach; in other words, all the data points are at one single cluster at first; then, iteratively, the clusters are split into smaller clusters until every data point is at its own cluster.

In hierarchical clustering, one does not need to know the number of clusters in advance. It just requires distances between data points and a measure of similarity between clusters. The distance between every pair of data points can be measured using Euclidean, Cosine, or any other metrics. However, computing the distance between two clusters is trickier. There are seven methods with which one can measure the similarity between two clusters.

1. Single linkage: the distance between two clusters A and B is the shortest distance between any object in A and any object in B.

$$
D(A, B)=\min _{x, y}\{d(x, y) \mid x \in A, y \in B\}
$$

2. Complete linkage: the distance between two clusters A and B is the largest distance between any object in A and any object in B.

3. Group average distance: the distance between two clusters A and B is the average distance between any object in A and any object in B. 'this method is also known as Unweighted Pair Group Method with Arithmetic Mean (UPGMA).

4. McQuitty's method: suppose that there are three clusters with labels A, B, and C. Also, imagine that clusters A and B are merged together to form a new cluster E. Then, the distance between
cluster E and C is computed by a weighted average of the distances between C and sub-clusters of E which are A and B. this method is also known as Weighted Pair Group Method with Arithmetic Mean (WPGMA).

$$
D(E, C)=\frac{(|A| \times D(A, C)+|B| \times D(B, C))}{(|A|+|B|)}
$$

5. Centroid: the distance between two clusters A and B is the distance between their centroids r_{A} and r_{B}.

$$
D(A, B)=d\left(r_{A}, r_{B}\right)
$$

6. Median: the distance between two clusters A and B is the Euclidean distance between their weighted centroids \bar{r}_{A} and \bar{r}_{B}, where the weighted centroids are defined recursively. For example, if A was created from clusters p and q, then its weighted centroid is defined in this way:

$$
\begin{gathered}
\bar{r}_{A}=\frac{1}{2}\left(\bar{r}_{p}+\bar{r}_{q}\right) \\
D(A, B)=\left\|\bar{r}_{A}-\bar{r}_{B}\right\|_{2}
\end{gathered}
$$

7. Ward: the distance between cluster A and B is computed in this way; first, for each cluster we compute the sum of squared deviations from the cluster's centroid r_{A} and r_{B}. Then we merge these two clusters and compute the sum of squared deviations from the newly created cluster's centroid $r_{A B}$. Finally, we sum up all the first two values and subtract the third value from it; finally, we take a weighted average of it.

$$
D(A, B)=\frac{|A| \times|B|}{|A|+|B|}\left|\sum_{x \in A}\left(x-r_{A}\right)^{2}+\sum_{x \in B}\left(x-r_{B}\right)^{2}+\sum_{x \in A B}\left(x-r_{A B}\right)^{2}\right|
$$

One can select any of the above method to compute the distances between two clusters. However, we should notice that the choice of distances between two objects limit our options. For example, ward, centroid, and the median method are appropriate only when the distance between two objects is Euclidean.

The result of a hierarchical clustering is visualized using a dendrogram. For example, Figure 3.a demonstrates six 2-dimensional data points. Euclidean metric is applied to determine the distance among data points; at first, each data point is placed at its own single cluster; then, iteratively, the two closest clusters are merged using 'average' method. As you can see in the above figure, every two objects will be merged at some level. The height corresponds to this level is called 'cophenetic distance' [39].

2.4.1. Cophenetic correlation coeffiecients

There are two distinct types of distances among objects. The first type of distance is computed by considering the vectors that define the objects in the original vector space model. It is referred to as the original distance. Let's consider the six objects in Figure 3.a; each one of them is defined by a twodimensional vector. For example the numerical representation for object $b=(1,3)$ and for object $c=(1,1)$. If Euclidean metric is selected, the distance between object b and c is two.

Figure 3: (a) represents the data points which are going to be clustered. (b) displays a traditional hierarchical clustering tree. (c) denotes the resulting dendrogram. The distance between data points is measured using Euclidean metric, and 'average' method is utilized for computing the similarity of clusters.

The second type of the distance is read from the height of the links in a dendrogram. A link in a dendrogram is a straight line connecting two branches. The height of a link determines the distance among the objects that fall into the left-side branch and the objects which lie in the right-side branch. This distance is called 'cophenetic distance' [39]. For instance, the cophenetic distance between object b and c in Figure 3.c is 2 . In this case, the cophenetic distance correctly reflects the original distance which was also 2. On the other hand, the cophenetic distance between object b and d in Figure 3.c is 4.13, while the Euclidean distance between these two objects is 2 .

Cophenetic correlation coefficient measures how faithfully a dendrogram preserves the original pairwise distances among data points.

$$
c=\frac{\sum_{i<j}(x(i, j)-\bar{x})(t(i, j)-\bar{t})}{\sqrt{\left[\sum_{i<j}(x(i, j)-\bar{x})^{2}\right]\left[\sum_{i<j}(t(i, j)-\bar{t})^{2}\right]}}
$$

Where $x(i, j)$ is the original distance between object i and j, while $t(i, j)$ represents their cophenetic distance.

2.4.2. Extracting clusters from a dendrogram

The height of a link illustrates the cophenetic distance between the objects in the left-side and objects in the right-side branch. Cophenetic distance is an approximation for the original distances among the objects. In a densely packed area, the height of a link is compatible with the height of the links below it, which means the cophenetic distances in a dense area are consistent with each other. Thus, the objects
in a dense area are not far from each other, while they are farther from the other objects. Hence, a dense area is an indication of a single cluster. Besides that, one can decide about the number of underlying clusters by observing a dendrogram. This makes the dendrogram a very simple but powerful information visuzalition tool using which one can observe the potential clusters.

2.4.2.1. Extracting arbitrary number of clusters from a dendrogram

After deciding about the number of clusters, one can cut the denrogram to partition data into clusters of objects. For example, the objects in Figure 3.c can be divided into three clusters; three clusters are selected because there are three dense areas. To implement the partitioning, imagine a hypothetical horizontal line. If this hypothetical line is laid over the highest link, all the objects will be put into one cluster. If the line is placed right below the highest link and above the second highest link, then the data is partitioned into two clusters. Similarly, if the line is situated right below the second link, the data is divided into 3 clusters. In other words, to divide the data into 3 clusters, one should cut a dendrogram through three branches. The objects below each branch will be deposited into a single cluster. For instance, when the dendrogram in Figure 3.c is cut into three partitions, these clusters are extracted: $\{d, e, f\},\{b, c\}$, and $\{a\}$.

2.4.2.2. Extracting clusters from a dendrogram based on the inconsistency coefficient

In the method that has just been expounded, the task of dividing data into distinct clusters was based on the observation of densely packed area in a dendrogram. This observation was itself built upon the idea of inconsistent links. The inconsistency of a link with respect to the links below it can also be measured mathematically [40, 41]. One can apply the inconsistency coefficient formula to map each link to a real number. This number will give us a clue of how much a link complies with the average height of the links below it. Abrupt change in the inconsistency coefficient of a link reveals that the height of that link does not agree with height of the links below it. This delineates a potential natural division in the data.

The higher the inconsistency of a link, the less similar are the objects connected by that link. In other words, although the objects placed below the left branch of the link might be close to each other, they are farther from the objects situated below the right branch. Thus, an inconsistent link illustrates a border of cluster or a natural division among data. In order o find the inconsistent link, one must find the inconsistency coefficient of all the links in a dendrogram. Then using a cutoff value, one can cut through the dendrogram. Table 3, demonstrates the influence of the cutoff value on the clustering of objects visualized in Figure 3.a.

Table 3: Clustering the 2-dimensional objects using the inconsistency coeeficient					
Link id	Inconsistency coefficent	Cluster labels			
		Objects	Cutoff=1.6	Cutoff=1.5	Cutoff=0.8
		a	1	1	2
1	0	b	1	2	1
2	0	c	1	2	1
3	0.7071	d	1	2	3
4	1.4847	e	1	2	3
5	1.5937	f	1	2	3

Agglomerative hierarchical clustering was applied to six objects which you can observe their coordinates in Figure 3.a; the dendrogram demonstrated in Figure 3.c is the result of such hierarchial clustering. A dendrogram shed light on the number of possible clusters, but what we still need to extract is the clustering label of each object. In order to determine to which cluster each object belongs, we must
either cut the dendrogram into horizontal slices or cut it using the inconsistency coefficient of the links. Here, I clarify on the second method using a concrete example.

In Table 3, you can see the inconsistency coeeficient of every five links in the dendrogram of Figure 3.c. The inconsistency coefficients of link 1 and 2 are zero because their children are leaf nodes. The other three links have nonzero inconsistency coefficient. In terms of the inconsistency coefficient value, link 3 is more consistent with its below links than link 4 and 5 . This is also consipicuous in the dendrogram; the height of link 3 does not change significantly from the height of link 1, while the height of link 4 and 5 vary much more from the height of their below links. Hence, the inconsistency coefficient of link 3 indicates a border in the data. Its value can be assigned to the cutoff variable. The value of this variable will determine the clustering labels.

If cutoff is set to 1.6 , all the objects will be distributed into one cluster since the inconsistency of all the links are smaller than the cutoff value. If cutoff is set to 1.5 , the data would be divided into two partitions. That's because the inconsistency coefficient of link 5 is higher than cutoff $=1.5$, so that link will be cut through; all the objects that are below the link 5 go into one cluster, while the objects below the right branch go into the second cluster.

The process of dividing a dendrogram based on the cutoff value is implemented in top-down approach. For example, when cutoff is 0.8 , link 5 is cut at first; the objects below its right branch, namely \{a\}, go into the first cluster. Then, link 4 is cut; the objects below its right branch, namely $\{b, c\}$, put into the second cluster, and the objects below its left branch, namely $\{d, e, f\}$, placed in the third cluster. As the inconsistency coefficient of all the remaining links are below the cutoff value, the partitioning process is stop at this stage leading to the extraction of three clusters.

As you have seen, using any threshold for the cutoff variable in this example results in a horizontal division of the dendrogram; however, one should notice that the clustering based on cutoff value does not necessarily map to horizontal slices of a dendrogram. As a result, dividing a dendrogram according to thresholding of the inconsistent links is less intuitive than the horizontal division of the dendrogram.

2.4.3. Applying hierarchical clustering to one-dimensional distributions

One can also apply hierarchical clustering to 1-dimensional distributions. For example, in Figure 4.a, you can see 6 normal distributions. Each one of the distributions has been represented by a vector of 500 components. In other words, one can also view each distribution as a point in a 500-dimensional space. In this case, cosine distance can be applied to determine the similarity among distributions. Furthermore, one can also apply hierarchical clustering to put the distrubutions in hierarchical clusters.

As you can see in Figure 4.b, at first, cyan and yellow have been merged; this is simply because the mean of the two distributions are almost identical. Next, the magenta and the red distributions are merged to it. Blue and green distributions have been merged in the last iteration. The height of the link at which two clusters are merged can show inconsistency if it is higher than the height of the links below it. Thus, one interpretation of Figure $4 . b$ is that \{yellow, cyan, magenta, and red\} are in one cluster, while blue and green are in their own separate clusters.

2.4.1. Verify the clustering tree

In order to verify a hierarchical clustering, one should measure the similarity among objects using the cophenetic distances and check how well these cophenetic distances reflect the original distances among objects. This task can be analyzed using cophenetic function that is provided by popular
statistical toolboxes. This function returns a value which is called 'cophenetic correlation coefficient' [39]. The closer this value is to 1 , the more precisely the clustering solution reflects the natural divisions in data.

(a)

Clustering using average method

(b)

Figure 4: (a) represents 6 normal distributions; the values of each one of these distributions have been stored in a vector of 500 components. (b) shows the hierarchical clustering of the distributions. Average method and cosine distance have been applied.

2.5. Motion data generation and the web-based questionnaire

In order to create motions, Arena made by NaturalPoint OptiTrack was used as the motion tracking software system equipped with 24 infrared cameras working at 100 frames per second [141]. The cameras track retro-reflective markers attached to an actor. Furthermore, the mocap software calculates the 3D coordinates of the markers and also solves the joint rotations for a skeleton in each frame. Every frame is stored in a file with BVH format (BioVision Hierarchy). Such raw motion data allows animating a humanoid character with a segment of a motion and saving the animation to a video file.

Although the raw mocap data is a good representation for a single frame of a motion, its high dimensionality characteristic makes it an inappropriate representation for the whole motion which can have thousands of frames. Therefore, based on the raw motion data, higher level features (602dimensional) for representing motion segments were calculated that included the means and standard deviations of coordinates, velocities, and the accelerations of different body parts. See [142] for a more detailed explanation of the contents of this 602-dimensional dataset.

Each one of the two actors performed 12 locomotions with varying styles such as 'sad', 'slow', 'regular', 'fast' and 'angry'. From these 24 motions, 100 additional motions were created by time warping and interpolating the raw motion data, which allowed variation in both verbs and modifiers. To make the interpolation task easier, the actors start all their movements with their right legs from the same position and toward the same direction. See chapter 3 from [142] for a detailed description of how these motions were generated and interpolated.

A web-based questionnaire has been designed for collecting annotations. Annotators can describe a motion video with one verb and from zero up to three modifiers. In total, there are 124 videos which
have been divided into 3 sets namely A, B, and C. Set A contains the 24 unmodified videos. Set B has 40 videos with $50 \%-50 \%$ interpolations; and the rest of videos were included in set C. Every motion was presented with a stick figure character as shown in Figure 5.

Figure 5: a stick figure character which is walking angrily.

2.6. Finding synonyms of motion-related words using video indexes

One way of finding the synonyms of the annotated words is to manually categorize them by putting them into some groups. In this case, each group consists of all synonyms and the different ways of saying the same words. For example, a group can be the synonyms of 'slowly'. Some people might use an adjective like 'slow'; some might use an adverb like 'slowly'; and, some might even write a word with an incorrect spelling. Besides that, some people might have used synonyms of 'slowly' such as 'leisurely'. In this approach, after observing the resulting lexicon, the words were grouped manually. Now, we are interested in finding these categories automatically. These categories can be extracted using two approaches. In the first approach, words are defined in the context of the videos in which they emerge; then, using the video ID as the contextual information, an automatic thesaurus of the motion annotated words is extracted. We refer to this approach as the indexical grounding. In the second approach, in addition to utilizing the video indexes as the context of words, the vectors corresponding the annotated motion words are normalized using the motion data. In this case, we would expect more accurate synonyms to be extracted. Otherwise, all our effort of employing motion data, coming from the visual modality for symbol grounding, in the construction of a thesaurus would rise up in the smoke. We refer to this case as the pattern grounding.

I clarify these two approaches using a step by step description. First, we represent a word by a vector. The dimension of this vector is 124 ; there is one dimension for each video. Let's say, we are going to form a vector for the word 'slowly'. The first component of this vector represents the frequency of 'slowly' in the first video. In other words, we count how many people have described the first video as 'slowly'. Then, its second component will be the frequency of 'slowly' in the second video. Other components of this vector are defined in the same way. Finally, we will have a vector which represents the word 'slowly' in a 124-dimensional space. We can do the same process for all other words, which leads to a matrix whose rows represent words and columns represent videos. One can find synonyms of all words by applying a distance metric on this matrix. It is worth mentioning that in this approach, the only anchor which connects the annotated words to the physical motions is the video index.

Our observations show that adverbs are distributed in different places of the vector space. This is due to the fact that one can describe different verbs with the same adverb. For example, one can describe 'running', 'walking', and 'limping' by 'slowly'. Hence, adverbs can be used for many videos; this means that adverbs are distributed evenly which is closer to uniform distribution. Because of this observation, we form such matrix only for verb and verb-adverb combination.

2.6.1. Finding synonyms of verbs automatically

We can extract categories of verbs automatically from the verb-video matrix. The rows of this matrix represent verbs, and the columns represent videos. Since each verb is represented by a vector, one way to find its synonyms is by computing the distances between vectors. One can use either Euclidean or cosine distance measure for computing the similarity. The closer two vectors, the more similar their corresponding verbs are.

2.6.2. Finding verb-modifier synonyms automatically

Similarly, one can represent a verb-adverb with a vector. I have to say that by modifier, I mean both adverbs and adjectives, and since most of the annotated modifers are adverbs, modifiers and adverbs are used interchangeably. We can count the frequency of each verb-adverb in all videos and put the resulting numbers in the components of a vector. For example, a vector can represent 'walk-slowly'. The first element of this vector shows the frequency of 'walk-slowly' in the first video; in other words, it tells us how many people have described the first video by 'walk-slowly'. After each verb-adverb is represented by a vector, one can compare the distance between vectors and extract similar verbadverbs.

2.7. Finding word similarities by fusing visual features

In the previous section, similar words have been extracted from word-video matrix, where we only used the video index as the only anchor to connect the words to the physical motions; column 1 of the wordvideo matrix denotes the video whose index is 1 . Column 2 represented the second video, and other columns were defined in the same way. In other words, in the previous section, we considered the distribution of words in a vector space in which the video distributions is neglected. By video distribution, I mean the similarity of videos. One can compute the similarity of videos by extracting some feature vector from motion videos. Thus, each motion video is denoted by a vector. The components of such vector denote data such as the speed of limb ends and their direction. This feature vector has been calculated using the software by which the motions were created.

By comparing the corresponding vectors of two motion videos, one can compute how similar they are. This comparison can be done in the original vector space or in a reduced-dimensional vector space. In this experiment, we have computed the video similarities in the original space because the accuracy is more important to us than the resulting time-complexity. Finally, the word-video matrix is normalized using the video-similarity information as clarified in the next section. We refer to this normalization as the pattern grounding.

2.7.1. Normalizing word-video matrices using video-similarity

In order to compute their similarities, videos have been transformed to a vector space so that a numerical representation can be extracted. To achieve this numerical representation, 602 features are obtained from the motion capture system. Coordinates of limb ends, their direction, and their speed are examples of such features we have extracted from each motion video. Thus each one of 124 videos is
denoted by a vector in a 602-dimensional space. Now that we have the raw data, we can compute the similarities of the videos. This can be achieved by computing the distances among vectors by applying a similarity measure such as cosine distance.

The next step in fusing visual features with the textual features is to normalize both verb-video and verb_adverb-video matrix based on the motion data. If a video is very close to another video in the 602dimensional vector space, one can expect their verb and adverbs to be similar. For example, suppose video i and video j are very close, so we expect that column i and column j of the verb-video and verb_adverb-video to be similar. If not, some people might have annotated these two similar videos by synonym verbs. Besides that, the annotators might have forgotten to use all the possible adverbs, or it might be caused by the limited option they had as people can annotate a motion video with at most 3 modifiers.

One way to normalize word-video matrices is to define a neighborhood for every video. This neighborhood can be determined by a fixed distance or set differently for each video. We have decided to start symbol grounding experience with a fixed neighborhood distance as it is simpler to implement. The distances of the closest neighbor of every video have been computed; the longest of such distances is 0.2575 , and the shortest one is 0.0119 . In other words, there is a video whose closest neighbor is 0.2575 far away. This has propelled me to select 0.3 as the fixed cosine distance that determines the neighborhood of a video. In this way, every video has at least one neighbor. Figure 6 shed light on the distribution of the number of neighbors.

Figure 6: every video has at least 1 video in its neighborhood. In addition, the majority of the videos have at most 10 videos in the neighborhood.

The next step of symbol grounding is to determine how much influence a video has on its neighbors. Suppose video j and video k are two neighbors of video i. Then, column j and column k of both verbvideo and verb_adverb-video matrix should be normalized by columns i of the aforementioned matrix. This normalization can be achieved by adding a multiple of column i to column j and k. Now, we should determine what multiple of a column should be added to its neighbors. The steps of normalization are further clarified in the following algorithm.

An algorithm for normalizing verb-video and verb_adverb-video matrix by incorporating the motion data
Input: α is the maximum addition proportion which can be a positive value between 0 to 1
1 for every video i
2 neighborhood= extract neighbors from the motion feature space
sort the neighbors according to their distance from video i
shortest_distance=the distance of the closest neighbor from video i
for every video j in the neighborhood of video i
current_distance $=$ distance of video j from video i
critical_value $=($ shortest_distance $/$ current_distance $) \times \alpha$
add (critical_value \times column i) to column j of word-video matrix
end
end
Using the above algorithm, the neighbors of a video are normalized by the video. Such normalization is implemented by adding a multiple of the video vector to its neighboring video vectors. This addition is carried out with respect to the distance of a neighbor to the video. The closer a neighbor is to the video, a larger multiple of that video is added to it. This is controlled by the critical_value. In addition, α determines the maximum addition proportion. For example, if $\alpha=0.5$, half of the video vector is added to its closest neighbor.

The above algorithm has been applied to both verb-video matrix and verb_adverb-video matrix. Since the motion data originates from the visual modality, and it was fused with the textual features, we have implemented symbol grounding. Next, we should analyze whether this kind of normalization and hence symbol grounding is effective or not.

2.7.2. Extracting synonyms from the normalized word-video matrix

We normalize verb-video matrix using the aforementioned algorithm. Therefore, the symbols, which in this case are the verbs, are grounded using visual data. Next, we compute vector distance among all the rows of this normalized verb-video matrix and select five closest synonyms of every verb.

The verb_adverb-video matrix is also normalized in the same way as the verb-video matrix was normalized. First, the videos should be transformed into numerical vectors. This has been achieved by utilizing motion data. After that, the distance between every pair of videos is computed and video distance matrix is built. Next, a fixed neighborhood distance is selected; using such distance, the neighbors of every video are determined. Finally, we apply the normalization algorithm that was mentioned in the previous section, to the verb_adverb-video matrix.

2.8. Automatic translation

One can utilize videos as the contextual information and translate verbs and verb-adverbs from a language to another language. Furthermore, we want to observe if incorporating motion data can improve the quality of translation. Since this motion data is extracted from the visual modalities, this kind of incorporating motion data with text data is considered to be symbol grounding.

2.8.1. Automatic translation using indexical grounding

In this section we want to check how good translating verbs and verb-adverbs is if we use only the contextual information which is video indexes. We employ videos as the contextual information to transform verbs into vectors. One can do this by counting the occurrences of each verb in every video. Since there are 124 videos, the resulting vector will be 124-dimensional. The first component of such vector represents the number of occurrences of the corresponding verb in the first video. The other components of the vectors are defined in the same way.

Now that we have a vector representation for every verb, we can compare the verb vectors of two languages by exploiting a distance measure such as 'cosine distance'. The next step is to select, for example, 5 closest verbs in the target language for each verb in the source language, and count how many of these verbs are semantically related to the verb in the source language. Of course, the higher this number the better the translation is.

Frequency of all possible combinations of verbs and adverbs in each video are also extracted. Using this frequency information, one can convert a verb-adverb into a 124-dimensional vector. We put these vectors into the rows of a matrix so that each row of the matrix represents a verb-adverb combination, and each column represents a video. We execute this process for verb-adverbs of both the target and source language. Finally, the distance matrix is created by computing the proximity between each row of the two matrices. After that, for each verb-adverb, we sort the closest vectors; the corresponding verbsadverbs would be good candidates for translation.

2.8.2. Automatic translation using pattern grounding

In this section, we translate the verbs and verb-adverbs by grounding them using the motion data coming from the visual modality. The verb-video matrix is created for the annotated words in both the target and source language. Then, by converting videos into vectors using the motion data, one can determine the closest neighbors of each video. Finally, the verb-video matrix is normalized using the normalization algorithm mentioned previously.

Frequency of all possible combinations of verbs and adverbs in each video are extracted. Using this frequency information, one can convert a verb-adverb into a 124-dimensional vector. We put these vectors into the rows of a matrix so that each row of the matrix represents a verb-adverb combination, and each column represents a video. We execute this process for verb-adverbs of both the target and source language. Then, we normalize these two matrices using the normalization algorithm. Finally, a distance matrix is created by computing the proximity between each row of the two matrices. After that, for each verb-adverb, we sort the closest vectors; the corresponding verbs-adverbs would be good candidates for translation.

3. Experiments and the results

For the first part of the project, word features have been extracted from two available Farsi corpora. For these corpora, both word-context and word-document matrices have been formed, and then ICA has been applied to both of these matrices. The ICA yielded some word features which were exploited in the detection of automatic word categories. Next, these categories are labeled manually. The datasets, the preprocessing step, and their word clusters are described in section 3.1.

The second part of the project is about the utilization of the motion data for the purpose of symbol grounding. At first, we made some observations about the potential relationship between the textual and visual features. The videos were mapped to 2-dimensional vectors using PCA and visualized by pies. After that, the verbs and verb-adverbs, emerged on videos, have been presented on the resulting pies. This revelatory observation propelled us to fuse the features from two distinct modalities of text and vision. The annotated verbs and verb_adverbs have been represented by vectors; these vectors were normalized using the motion data extracted from the visual modality. Such normalization turned out to be fruitful in increasing the accuracy of synonym detection and translation processes.

3.1. Word clustering experiment

Automatic word clusters have been extracted from two Farsi corpora. Independent component analysis (ICA) has been applied on these two corpora. ICA does not require any apriori knowledge or assumption about the language; thus, no preprocessing is necessary; however, some preprocessing tasks such as removing the plural sign can be useful.

ICA has been employed to extract 10 components from the word-word and word-document matrix. An extracted component can be perceived as an abstract embodiment of a word cluster. In addition, since both the extracted component and the word vectors are defined in the same vector space, a similarity measure such as cosine distance can be used to determine which words go with which cluster. In other words, the proximity between an extracted component and the word vectors lead to automatic construction of a thesaurus.

3.1.1. Datasets

The first dataset contains 10010 news articles from Alef which is a popular online news agency in Iran. The second corpus includes 20872 news documents from Tabnak which is another popular online news agency in Iran. The documents of both corpora are concatenated into two big files [128]. In addition to the content of each document, extra information such as the title and category is also incorporated into the file. In the preprocessing step, meaningless symbols such as semicolons, one-letter and two-letter words have been removed. Furthermore, a few inflectional morphemes such as (plural sign=ها) and (present or past continuous tense sign=مي) have been excluded.

3.1.2. Extracting features from word-document matrix of Alef dataset

In the first experiment with Alef dataset, word-document matrix is formed. 500 words ranked from 201 to 700 , in terms of frequency, make up the dictionary, so the 200 most frequent words have been ignored. In other words, the word-document matrix associated with the Alef dataset has 500 rows and 10010 columns. Thus, each document is defined in a 500 dimensional space. We can also view the words in a 10010 dimensional space. Since we want to cluster words, we work with rows and extract 10 components using FastICA package developed in Helsinki University of Technology by Hurri and his colleagues [37]. Each component is an abstract representation of a word cluster in a 10010 dimensional
space. Then, cosine distance is computed between each one of these five hundred words and each component. In other words, a distance matrix is created. The rows of this distance matrix denote the component and the columns represent the words, so in this case, it is a 10 by 500 matrix. For each component, five closest words are selected; this can be done by sorting the rows. In addition, the label for each cluster is assigned by considering a relation between the meanings of the words; which means that the label assignment is not automatic.

Table 4: Automatic thesaurus construction using word-document matrix extracted from the Alef corpus	
Detected category	Extracted words
economy	make; it is used together with another term; in other words it is a half token)
politic	
management	
politic	
economy	مصرف(consumption) رشد) (increase) سرمايه(capital) اقتصاد) (economy) كاهش) (reduction)
religion	
sport	(west)غرب(financial)
Law and politic	
law	ماده(bill) اجرايى(executive) قانونى(legal) جلسه()
economy	

Table 4 reveals that the utilization of ICA on word-document matrix has led to the detection of syntagmatic word clusters. For example, in one of the extracted clusters, some economically related words namely \{"consumption", "increase", "capital", "economy", "reduction"\} are put in the same group. All the aforementioned words could have been used in the same context such as economic related articles.

3.1.3. Extracting features from word-word matrix of Alef dataset

500 most frequent words form the dictionary, and the context words are 2000 most frequent words. Thus, word-word matrix X for this dataset is a 500-by-2000 matrix. The words we want to cluster are represented by vectors in a 2000 dimensional space. 10 components are extracted from this word-word matrix, and each component is a 2000 dimensional vector which represents a cluster. The cosine distance is utilized to determine the closeness of a word to each cluster. Finally, for each cluster, five most representative words are reported in the Table 5. These words are relevant in a sense that they have been occurred in a similar context.

The utilization of ICA on word-word matrix has led to the extraction of both paradigmatically and syntagmatically related words. For example, collocations such as \{Zionist, Regime\}, \{inter, national\}, \{principal, law=constitution\}, and \{Ahmadi, Nejad\} embody syntagmatic relations. On the other hand, extracted words such as \{affair, case, problem, background\} strongly exemplify a paradigmatic synonymous relation.

Automatic category	Words selected by WordICA method
management	شود(become) رياست) شوراى(council) كفتكو (decutive) (session, meeting, convention)(جلسه(discussion)
government	صیيونيسىى(Zionist) (\%)
political	
currency	(limitations, about, nearly, almost)حلدود
Law	
Synonyms of affair	
Ahmadi Nejad	
government	
law	(material, bill=law proposal) مادهال
Time	

3.1.4. Extracting features from word-document matrix of Tabnak dataset

First of all, a dictionary of all the words in this dataset is created. The words are ordered in terms of frequency so that the most frequent word is ranked the first word. Since a few of the most frequent words do not convey much information, they are not considered in the experiment. The analyzed words are from the list of words ranked from 201 to 700 . This will lead to a 500 -by- 20872 matrix. ICA is applied to this matrix, and 10 independent components are extracted. The values of each component denote the word features. Each one of 500 words is compared with each one of the 10 components. In other words, 5000 comparison is accomplished. Finally, 5 closest words to each component are selected. They can be the most representative 5 words for a cluster. These ten automatically extracted clusters are reported in the Table 6.

By applying WordICA on a word-document matrix extracted from the Tabnak corpus, clusters are detected in which the words are mostly syntagmatically related. For instance, the words namely \{"Turkey","Europe","Union","relationship","security"\} are strongly related in a syntagmatic manner.

Although most of the extracted words are related, they might seem semantically far from each other from a person's point of view who is unfamiliar to the Iranian culture. I shed light on the possible relation among the words which belong to the last cluster namely \{Sepah, culture, commander, language, Hussein\}. After the 1979 Iranian revolution, a revolutionary army is founded which was called Sepah [129]. It was first governed autonomously, but then became a branch of Iran's military. According to the Iran's constitution, its objective is to defend the Islamic system of Iran. This unequaled military army is active in diverse areas including culture. Furthermore, this army is greatly inspired by Hussein [130] (grandson of Prophet Muhammad) who is considered to be the most influential figure in Shiite Islam. Imam Hussein has significantly impressed the culture, language, and political view of Iranians and other Islamic nation. That's how these words become syntagmatically related in a religious and political context.

3.1.1. Extracting word features from word-word matrix of Tabnak dataset

500 most frequent words are analyzed for finding word clusters. The contextual information is collected from 2000 most frequent words. In other words, the word-word X matrix is 500-by-2000. 10 independent components are extracted from this matrix. Each one of these component is an abstract representation of a word cluster. Each one of the 500 analyzed words is compared with these 10 components, and the words which are closest to a component may form a cluster. You can find these 10 word clusters in the Table 7.

Table 6: Automatic thesaurus construction using word-document matrix extracted from the Tabnak corpus	
Detected category	Extracted words
adverbs	
politic	تركيه(Turkey) ارويا (Europe) اتحاديه(union) روابط)(relationship) انيّيتى (security)
football	 (Mahdi, who is possibly a famous football player) (Reza, who is also another football player) رضا (Piroozi=another name for Prespolis, which is a famous football team; يـيروزى the second meaning=victory)
judicial	رسيدگى) (marriage) ازدواج (considering)
religion	
politic	
war	
sport	
sport	
War and politic	(culture)فرهنــ (Sepah= Army of the Guardians of the Islamic Revolution)ol (Hussein= name of a person) زبان(language) حسين (commander) فرماند)

In Table 7 the application of WordICA on word-word matrix extracted from the Tabnak corpus has led to the detection of both paradigmatic and syntagmatic word clusters. For instance, the words in the second cluster namely \{"is", "has become", "has not become", "has arrived", "has been"\} are all instances of paradigmatic synonyms. There are also other paradigmatically related words such as \{"got", "has gotten"\}, \{"leader", "leadership"\}, \{"in order to", "so that"\}, \{"this", "that"\}, and \{"Imam", "Hazrat"\}. Both "Hazrat" and "Imam" are glorious Arabic title used to honor a (usually a prophet or a saint) person. On the other hand, several syntagmatically related words have been excavated, like \{"Zionist", "Regime", "foreign", "minister", "affair"\}, and \{"Islamic", "Republic", "council", "parliament", "Iran"\}.

3.2. Motion data analysis

In this part of the project, the annotations of motion videos collected in February from the online webbased form is analyzed. This form is for annotating motion videos using English, Finnish, Swedish, Farsi, or any other language. Each one of the 124 videos has been transformed to a 602 -dimensional vector using the motion data [142]. Besides that, every word, which has been used for annotating a video, has
also been converted to a 124-dimensional vector. The videos and the words used for annotating them have been depicted on the same 2-dimensioal plane.

Table 7: Automatic thesaurus construction using word-word matrix extracted from the Tabnak corpus	
Automatic category	Words selected by WordICA method
	(to وet)
Light verbs	(has been) بوده
Light verbs	
Adjectives for supreme leader of Iran	اين(this) رهبر (leader)
Foreign affair	
Linking words	
Foreign affair	
Governmental	اسلامى(Rslamic) جمهورى(Republic) شوراى(council) مجلس(parliament) ايران()
Adjectives for supreme leader of Iran	معظه(leadership) مقام(dignity) رهبر) رهبر(leader) انقاب) (revolution)

3.2.1. Verbs and adjectives distribution

There are 124 videos in the form. People who fill the form are not limited to use a select few words. An interesting research question is to see whether people have different opinions about the meaning of a verb. This has propelled us to visualize the variety of people's choice on verbs and adjectives. In order to do so, we have extracted the frequency of verbs and modifiers from the form. In addition, the motion data such as limb end position and the velocities of the animated characters have been calculated. As a result 602 -dimensional data points have been created which cannot be visualized. Therefore, PCA is utilized as a dimensionality reduction method, and only the first two principal components have been considered to convert it to a two-dimensional data which can easily and intuitively be analyzed.

In the following figures, each video is represented by a pie. The position of the pie has been determined by the first two principal components of the high dimensional motion data calculated from the raw motion capture data coming from the visual modality. Besides that, the size of a pie reflects the number of verbs assigned to that video. The color reflects different selection of words. If videos with similar color distributions are put close to each other in a densely packed area in this newly created space, it would indicate that similar videos can be clustered well even in this two-dimensional space. Thus, the features we have selected can be utilized in the future to map the words to actions. In other words, the perfect scenario for automated animation design would be having small clusters with different colors for each cluster.

Figure 7 demonstrates the distribution of the Farsi verbs assigned to motion videos. As it can be seen in the figure, the verb "walking" has occupied most of the space; in other words, there is a large variation in how people use the verb "walking" in Farsi. This indicates that building an optimal motion search based only on verbs is such a tremendous task as the subjectivity of verbs should also be considered.

Furthermore, people are unanimous about the verbs. Limping is less used than the first two verbs, and it occupies the lower left corner of the figure; running has occupied the right and middle part of the space. Besides that, if we forget about the walking, running and limping can be clustered very easily. In other words, people are unanimous whether an action is running or limping.

Figure 7: Distribution of the 5 most frequent verbs. Each pie corresponds to one video; its position is determined by the first and second principal component of the visual data; its size is proportional to the number of verbs assigned to that video.

Figure 8 shows that people are less unanimous in their selection of a modifier than a verb. In other words, an action can be described by many modifiers. The adverb "slowly" appears in most part of the space while it is concentrated in the left upper corner of the space. On the other hand, limping is in the left lower corner, and synonyms of fast lie in the right part of the space. Some adverbs have been qualified by other adverbs such as "very" and "a little". These kinds of modifiers do not change the meaning. There are also some synonyms such "تسريع" "تند", and " This has propelled me to group adverbs into some clusters so that only one of them will be the representative of the whole cluster.

Figure 8: distribution of the 10 most common modifiers. The position of a pie is determined by the two principal components. The size of a pie reflects the number of answers given to its corresponding video, and the position denotes the style.

Figure 9 demonstrates the distribution of verbs combined with adjectives. Among these 10 most frequent combinations, the ones that are synonym of "limping" have occupied the bottom left corner of the space, while the synonyms of "walking" are mostly in upper left corner of the space. In addition, people are less unanimous about whether a motion is running or walking fast.

3.2.2. Grouping adverbs

There are many adverbs used to describe a motion, so by manually grouping them into clusters, we can have a better understanding of its visualization. The process of segmentation is a heuristic approach. The adverbs list has been observed at first. Some of the adverbs can be said in different ways. For example, limping can be expressed in four different ways:

Figure 9: distribution of the 13 most common frequent combinations of verb and its modifier.

1. لنگَ_لنگان
2. لنگ_لنگ_ زنان
3. لنگان_لنگان
4. لنكان

In addition, two other used words are synonyms of limping:

1. كشان_كشان
2. با_شليدن

In addition to different ways of expression and synonyms, morphemes have also been considered. Derivational morphemes can be added to adjectives for converting it into an adverb. For instance, the adjective "خوشـحال" can be converted to an adverb by adding one morpheme to its beginning and one morpheme to its end.

Table 8: Composition of the adverb "happily" in Farsi

Word	morphemes	Meaning	Part of speech
با خوشحالى	با+خوشحال	With happiness/happily	Adverb
خوشحال	خوشحال	happy	adjective

Annotators have utilized both adjectives and adverbs to describe a motion; some of the adverbs can be easily reduced to adjectives if we remove their derivational morphemes and keep only the roots. However, we should notice that the first morpheme can be written immediately next to the root or with one space from it. This space can be a zero-width-non-joiner or a full space.

Furthermore, there are modifiers such as "خيلي (=very)" and "كمي (=a little)" in Farsi whose role is to qualify other adverbs; if we remove these kinds of modifiers the meaning of a sentence is not hurt.

All things considered, six groups of adverbs have been created manually by considering synonyms and different ways of expression, while removing meaningless morphemes and modifiers. These six groups correspond to these six adverbs:

1. آرام=slow
2. عصبانى=angry
3. بيحال=languid
4. H تناراحت=sad
5. سريع=fast
6. \quad. $=$ normal

Other groups could have also been constructed, but because their corresponding adverbs were very rare, they have not been segmented into clusters.

Figure 10 represents the distribution of adverbs after combining the six most frequent adverbs into groups. Although the majority of the annotators were more unanimous about the adverb "fast", a few motions have been labeled using the opposite adverb "fast" and "slow". These cases might be caused by expressing the same motion using different verbs. Those annotators who have described these motions as walking might have utilized the adverb "fast" to distinguish it from the regular walking. On the other hand, those people who have described the same action as running might have utilized the adverb "slow" to differentiate it from regular running. In addition, the term "fast" appears on the right side of the line $x=-0.1$, while the term "limping" appears below the line $y=0.1$. It is worth mentioning that such information is obtained from a two-dimensional representation of a high dimensional data. Furthermore, sadness has been used with slowness, while happiness has come mostly with fastness. Anger is also associated with fastness.

Figure 10: distribution of the 6 most common adverbs. Each adverb represents a group of adverbs which have been segmented by removing meaningless morphemes and modifiers; also, different ways of expression and synonyms have been considered.

Figure 11 shows the distribution of the verb-adverb combination. The majority of the annotators are unanimous about "running fast". Besides that, "walking sad" has appeared mostly with "walking slowly", while "walking angrily" has come mostly with "walking fast", which reveals how these motions and emotions are related to each other.

Figure 11: distribution of the 7 most verb-adverbs combination.
Figure 12 shows the distribution of the 10 most common English annotated verbs. By comparing this figure, the previous figures demonstrated in this chapter, and the figure 5 of chapter 5 from [142], we can see that synonyms of \{'walking', 'رفـن , را, ', 'kävelee'\} has occupied the upper left corner of the 2dimensional space; while synonyms of \{'limping', 'لنگيـدن', 'ontuu'\} lie in the lower left corner, and the synonyms of \{'running', 'دويـند', 'juoksee'\} are in the right part of the figures. This similar distributional pattern prompted us to use the video index as the context for transforming verbs and verb-adverbs into vectors. Now that we have a numerical representation for verbs and verb-adverbs, we can find synonyms and translations. Furthermore, synonyms have emerged very close to each other; as a result, by exploiting the motion data, coming from the visual modality, to normalize the verb and verb-adverb vectors, one can expect to extract more appropriate synonyms and translations.

Figure 12: distribution of the ten most common English annotated words

3.3. Synonym results

In addition to symbol grounding using motion data, I have also grounded the verbs and verb-adverbs using a random matrix whose size is exactly the same as the motion data matrix; in this case, the components of the vector defining a video does not have anything to do with the video itself. In fact, the components are nothing but random numbers. Therefore, two relevant videos might be farther than two irrelevant videos because their corresponding vectors have been generated randomly. The purpose of randomized-grounding is to compare it with the indexical-grounding and pattern-grounding. In the following tables, letter 'ss' represent the indexical-grounding case; ' s ' denotes the pattern-grounding circumstance; and, 'rs' displays the randomized-grounding condition.

I have counted the number of good synonyms in each case; by good synonyms, I mean satisfactory apt synonyms; for instance, wandering is a good synonym of walking, while limping is not. On the other hand, if we consider these verbs in a general situation where we have other verbs such as 'swimming', 'eating', 'speaking', 'thinking' or any verbs from other domains excluding the motion realm, we would
perceive 'limping' as a synonym of 'walking' or even 'strolling' because they describe certain kinds of movement. However, we have narrowed down our verb selection only to the motion field and excluded other domains.

In the tables of the following sections, you can see the most common verbs and their automatically detected synonyms. I have included only the 3 most frequent words; if you are interested in observing the recognized synonyms of less frequent verbs, you can find them in Appendix D.

3.3.1. English Synonym Results

Table 9: Extracted synonyms of the English motion verbs

$\stackrel{0}{\square}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{\ddot{0}} \\ & \text { 可 } \end{aligned}$	$\frac{8}{8}$	$\stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{0}{0}} \stackrel{0}{\pi}$	2nd	3rd	4th	5th	
walking	392	-s	Walking	walk	Strolling	Ambling	wandering	5
		s	walk	Walking	Strolling	amble	wandering	5
		rs	Walking	Limping	walk	limping	scuffing	2
limping	202	-s	Limping	stagger	leaping	climbing	hobbling	4
		S	Limping	scuffing	stagger	limb	leaping	5
		rs	Limping	scuffing	walking	walk	moving	3
Limping	110	-s	limping	leaping	stagger	hobbling	scuffing	5
		s	limping	scuffing	moving	leaping	shuffling	5
		rs	limping	scuffing	walking	walk	Walking	2

First of all, I have to say that we are interested in analyzing the natural language as it emerges; thus, the annotations have not been preprocessed. Hence, small-letter words are distinguished from capital-letter ones. The most frequent verb is 'walking'. In fact, it has been used 392 times for describing a motion video. It seems that all the five closest verbs of 'walking' detected by both indexical-grounding and pattern-grounding approaches are its appropriate synonyms, while in the randomized-grounding approach, only two verbs are its applicable synonyms. At first, it may sound paradoxical that 2 apt verbs have been identified; one may ask himself why both the closest and the third closest word to 'walking' are still its very good synonyms in the randomized-grounding. Well, I have to say at this point, that in the randomized-grounding approach, we are still utilizing the correct video indexes as a word context. As a matter of fact, it is only the normalization process which is implemented randomly. In other words, every component of a word vector stores the original frequency of that word in a video, and the index of each component is precisely mapped to the index of its corresponding video. For instance, if 'walking' has been used to describe the $12^{\text {th }}$ video 34 times, the $12^{\text {th }}$ component of the 'walking' vector is assigned 34 initially. It is only after the normalization step that something is added to 34 . This normalization in the indexical-grounding step is based on a meaningful concept, while in the randomized-grounding approach it is baseless. Though, this normalization is implemented softly. Hence, the fact that the closest word to 'walking' is still its relevant synonym is not a contradiction or a big surprise.

Besides considering the synonyms of a verb, the synonyms of the combination of a verb and an adverb are also analyzed. When counting the number of good synonyms for a verb_adverb, the meaning of both the verb and the adverb of the extracted verb_adverb should overlap with meaning of current verb_adverb so that the extracted verb_adverb is identified as a good synonym. For example, in 'ambling_liesurely', the meaning of ambling overlaps with walking, and also the meaning of leisurely
overlaps with the meaning of slowly; on the other hand, the meaning of 'joyfully' is very far from 'slowly'. That's why, 'walking_joyfully' cannot be a good synonym of 'walking_slowly'.

Table 10: Extracted synonyms of the English motion verb-modeifiers

	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{\ddot{0}} \\ & \text { 苞 } \end{aligned}$	$\frac{\ddot{0}}{\stackrel{0}{x}}$		2nd	3rd	4th	5th	
walki ng_sl owly	57	-s	walking_tho ughtfully	walking_unp urposefully	walk_slowly	Walking_Joy fully	Ambling_Lei surely	2
		s	walking_ver y slowly	walking_sadl y	walking_care fully	Strolling_Slo wly	walking_tho ughtfully	2
		rs	Walking_Slo wly	walking_sadl y	walking_care fully	walking_ver y_slowly	Limping_Slo wly	2
E	28	-s	Hobbling_Sl owly	limping_sadl y	walking_asy mmetrically	shuffling_wo unded	scuffing_pai nstakingly	1
		s	limping_sadl y	limping pain fully	scuffing_pai nstakingly	scuffing_slo wly	Hobbling_Sl owly	2
		rs	limping_pain fully	walking_care fully	$\underset{\text { wly }}{\text { Limping_Slo }^{\text {Lich }}}$	walking_asy mmetrically	scuffing_pai nstakingly	1
	21	-s	limping_slo wly	$\underset{\text { wly_ }}{\text { Limping } S l o}$	walk_injured	limping_sadl y	Walking Wa tchfully	0
		s	$\begin{aligned} & \text { limping_slo } \\ & \text { wly } \end{aligned}$	Limping_Slo wly	limping_sadl y	limbing_very _slowly	Limping_Pai nfully	1
		rs	limping_slo wly	Limping_Slo	walking_care fully	walking ver y_slowly	Limping_No rmally	0

The most common verb_adverb combination among English annotations has been 'walking_slowly'. The adverb 'slowly' has emerged 57 times with the verb 'walking'. It does not mean that 57 distinct videos have been annotated by 'walking_slowly'. Instead, it illustrates that an annotator has used this verb_adverb to describe a certain set of videos; then another person might have annotated a different set of videos by 'walking_slowly'; the total frequency of 'walking_slowly' has been 57. In addition, since the frequency of 'walking' is much bigger than the frequency of 'walking_slowly', the vector which represents 'walking_slowly' is sparser than the one representing 'walking'. As a result, the number of good detected synonyms for verb_adverbs is less than good synonyms for verbs.

It is worth noticing that the pattern-grounding approach has managed to detect the best synonym for 'walking_slowly' as closest verb_adverb. In other words, if we just focus on the closest extracted verb_adverb, we can see more conspicuously that the pattern-grounding approach beats the other two approaches. The second most frequent verb-adverb is 'limping-slowly'. Although, the pattern-grounding approach did not manage to detect its best synonym as the closest one, it has found more good synonyms than the other two approaches. In the indexical-grounding approach, the only factor which determines the closeness of two words is the co-occurance in the same context. For example, 'HobblingSlowly' has co-ocurred frequently with 'limping-slowly'; that's why, they have been categorized as synonyms. On ther other hand, in pattern-grounding approach, the proximity of the context is also analyzed. As a result, 'Hobbling-slowly' has moved down to the fifth closest, while 'scuffing-slowly' which has not been identified as a synonym previously, is correctly categorized as a synonym with the help of pattern-grounding.

3.3.2. Farsi synonym result

For Farsi annotations, only the synonyms of verb-adverbs have been extracted because the Farsi verbs used for annotating the motion videos have much less diversity than the English or Finnish motion verbs.

		$\frac{\ddot{0}}{\stackrel{0}{0}}$		2nd	3rd	4th	5th	
$\begin{gathered} \hat{o} \\ i \\ \vdots \\ -1 \\ -1 \end{gathered}$	389	-s	راه_رفتن_آهس	راه_رفتن_نارا>	راه_,_رفن_خسته	$\begin{gathered} \text { راه_رفتن_غمكي } \\ \text { نا } \end{gathered}$	راه_رفتن_بى_>	1
		s	راه_رفتن_آهس	راه_رفتن_ناراح	dod,_od,	راه_رفتن_غمكيي		2
		rs	راه_رفتن_آهس.	راه_رفتن_ناراح	راه_,رفتن_خسته	قدم_زدن_اهس	راه_ لنكان_لنگ__	2
$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 3 \\ & 3 \\ & 3 \\ & 0 \\ & 0 \\ & 3 \\ & 3 \end{aligned}$	346	$-s$	راه_رفتن_لنـگ_	راه_رفتن_لنگان	لنگيدن_خسته	لنگيدن_آسيب_	لنگان_لنكان_,راهـ رفتن_خيلى_لنگا يدن	3
		s	راه_رفتن_لنگ_	قدم_زنن_بالنگ يدن	راه_,رفتن_كمى _لنگان_لنگان	قدم_زن_با_لن كيدن	لنكيدن_آسيب_	4
		rs	راه_, لنتان_لنگ_	راه_رفتن_كمى	راه_رفتن_كمى _لنگان_لنگان	راه_,رفتن_خسته	لنگّيدن_خسته	2
$\stackrel{\rightharpoonup}{0}$	135	-s	راه_,رفتن_تن	راه_رفتن_خوش	راه_,رفتن_سريع	راه_رفتن_عصبا	راه_, رفتن_باعجا.	3
3		s	راه_,_فتن_تند	راه_رفتن_خوش	راه_,_فتن_سريع	راه_رفتن_باعجل。	راه_رفتن_عصبا	3
3		rs	راه_,_فتن_تند	راه_رفتن_لنـن__	راه_, لنتَان_لنگان	, اله_رفتن_سريع	راه_رفتن_كمى _لنگان_لنگان	2

When pattern-grounding approach is applied to find the closest verb-adverb vectors, more appropriate synonyms are found for Farsi verb-adverbs. Furthermore, some of the apt synonyms get a better rank in terms of its proximity to the current verb-adverb. For instance, 'رفـ_رفتن_باعجلـه,' is ranked the $5^{\text {th }}$ closest
 when pattern-grounding is exploited.

3.3.3. Finnish synonym result

The synonyms of Finnish verbs and verb_adverbs have been extracted from the annotations by considering the video indexes in which they have been used as the context. Next, they have been grounded using motion data. Finally, the vectors corresponding the Finnish verbs and verb-adverbs have also been normalized using random data. The following tables include the synonyms of the three most frequent Finnish verb and verb-adverbs.

In Table 12, we can see that both indexical-grounding and pattern-grounding approach has a good performance in finding relevant synonyms. For example, all five extracted synonyms of the most
frequent verb, 'kävelee', are its correct synonyms. On the other hand, when randomized-grounding approach is applied, only one apt synonym is found.

$\begin{aligned} & \stackrel{0}{5} \\ & > \end{aligned}$		$\frac{\ddot{0}}{\stackrel{0}{0}}$	范荡	2nd	3rd	4th	5th	
	618	-s	kävellä	käppäilee	käveleminen	Kävelee	löntystelee	5
		s	kävellä	käppäilee	Kävelee	löntystelee	maleksii	5
		rs	kävellä	nilkuttaa	ontua	ontuu	linkuttaa	1
E	229	-s	nilkuttaa	ontua	linkuttaa	laahustaa	raahustaa	3
		s	ontua	nilkuttaa	linkuttaa	raahustaa	laahustaa	3
		rs	nilkuttaa	ontua	linkuttaa	laahustaa	kävelee	3
	164	-s	ontuu	linkuttaa	ontua	linkkaa	liikkuu	4
		s	ontuu	linkuttaa	ontua	raahustaa	$\underset{\text { a }}{\text { laaha_jalka }}$	4
		rs	ontuu	ontua	linkuttaa	kävelee	kävellä	3

Table 13: Extracted synonyms of the Finnish motion verb-modifiers

	64	-s	$\underset{\text { stí }}{\substack{\text { kävellä_hitaa }}}$	kävelee_suru llisena	kävelee_epä varmasti	kävelee_hyvi n_hitaasti	käveleskelee _mietteliääst i	2
		s	kävellä_hida s	kävelee_hyvi n hitaasti	$\underset{\text { stí }}{\text { kävellä_hitaa }}$	kävelee_suru llisena	maleksii_hit aasti	4
		rs	$\underset{\text { stí }}{\text { kävellä_hitaa }}$	kävelee_suru llisena	kävelee miet teliäästi	kävelee varo vasti	kävelee renn osti	1
	52	S	kävellä_riva kasti	kävelee_mää rätietoisesti	kävelee päät täväinen	kävelee_käv elee_normaa listi	Kävelee_Rei ppaasti	4
		s	kävelee_mää rätietoisesti	kävelee_päät täväinen	$\begin{aligned} & \text { kävellä_riva } \\ & \text { kastí } \end{aligned}$	kävellä_reip paasti	$\begin{gathered} \text { kävellä_rent } \\ 0 \end{gathered}$	4
		rs	kävelee_mää rätietoisesti	kävelee_tava llisesti	kävelee_päät täväinen	kävellä_reip as	kävellä_riva kasti	4
	47	-s	nilkuttaa_hit aasti	$\begin{aligned} & \text { ontuu_varov } \\ & \text { asti } \end{aligned}$	ontuu_vaival loisesti	nilkuttaa kiv ulloisesti	linkuttaa_vai vainen	1
		s	nilkuttaa_hit aasti $^{-}$	ontuu_varov asti	ontuu hyvin kivuliaasti	ontuu_vaival loisesti	ontuu takav etoisesti	1
		rs	nilkuttaa_hit aasti	$\begin{aligned} & \text { ontuu_varov } \\ & \text { asti } \end{aligned}$	kävelee vaiv alloisesti	ontuu_vaival loisesti	ontuu_pahast	1

Four relevant synonyms for the most frequent Finnish verb-adverb have been extracted using the pattern-grounding approach; it is only the $4^{\text {th }}$ extracted synonym which is irrelevant. Pattern-grounding
also performs more accurately when finding the synonyms of 'kävelee_reippaasti'; in fact, this approach yields in four apt synonyms with only the $5^{\text {th }}$ extracted synonym being irrelevant, while the irrelevant synonym is ranked the $4^{\text {th }}$ closest synonym using indexical-grounding and the $2^{\text {nd }}$ by randomizedgrounding.

3.3.1. All synonyms results

In the following table, you can observe the number of relevant synonyms extracted using all three different approaches. For every verb and verb-adverb, five potential synonyms have been found. The potential synonyms are ranked according to their proximity to the studied verb or verb-adverb. If the meaning of a potential synonym is significantly close to the meaning of the studied verb, it is considered as a relevant synonym of that verb. The potential synonym of a verb-adverb is relevant when the meaning of both the verb and adverb are closely related. With these constraints in mind, the potential synonyms of the 10 most frequent verbs and verb-adverbs have been collated. The following table demonstrates just the numbers; the actual synonyms of the 3 most frequent verbs and verb-adverbs have been represented in previous sections. An interested reader can also visit Appendix D for observing all extracted synonyms.

Table 14: All synoym results			
	Number of relevant synonyms(out of 50)		
	indexical grounding	pattern grounding	Randomizedgrounding
Farsi verb-adverbs	25	28	18
English verbs	44	46	25
English verb-adverbs	17	19	12
Finnish verbs	40	40	21
Finnish verb-adverbs	28	34	22

Table 14 demonstrates that pattern-grounding slightly improves automatic synonym detection of verbs and verb-adverbs from Farsi, English and Finnish annotations. On the other hand, when grounding is based on random data, the performance of finding relevant synonyms deteriorates. Hence, it is safe to say that pattern-grounding is a meaningful and reliable process which can be utilized to enhance the synonym detection task.

3.4. Translation results

Translation of both verbs and verb-adverbs among English, Finnish, and Farsi language has been implemented using indexical-grounding, pattern-grounding, and randomized-grounding approach, and the number of good translations have been counted in each case. In the following sections, the translations of the three most frequent verbs and verb-adverbs have been covered. If interested in observing all translation result, you are recommended to check Appendix E.

3.4.1. Translation of English annotations to Finnish

Both the indexical-grounding and pattern-grounding approach has resulted in five good translations for 'walking'. On the other hand, the result of randomized-grounding is not so good. The indexicalgrounding approach is qualified slightly better for translating 'limping'. The reason for this attainment is that the fifth closest translation is 'liikkuu' which is a general verb that can describe any motion. The fifth closest translation extracted by pattern-grounding is 'raahustaa' which should be translated to
'shamble' and not 'limping'. Yet, using pattern-grounding approach, the less frequent English verbs are translated more accurately to Finnish.

Table 15: Translation of the English to Finnish motion verbs

$\begin{aligned} & \text { ? } \\ & 7 \end{aligned}$		$\begin{aligned} & 0 \\ & i \\ & i \end{aligned}$		2nd	3rd	4th	5th	
$\begin{aligned} & \stackrel{00}{\overrightarrow{3}} \\ & = \\ & \overline{3} \\ & 3 \end{aligned}$	392	-S	kävelee	kävellä	Kävelee	käveleminen	käppäilee	5
		S	kävelee	kävellä	Kävelee	käppäilee	astelee	5
		rs	kävelee	kävellä	ontuu	nilkuttaa	ontua	2
$\begin{aligned} & \text { on } \\ & \text { en } \\ & \text { B } \end{aligned}$	202	-s	ontuu	nilkuttaa	linkuttaa	ontua	liikkuu	5
		S	nilkuttaa	ontuu	linkuttaa	ontua	raahustaa	4
		rs	ontuu	nilkuttaa	linkuttaa	ontua	kävelee	4
	110	-S	ontuu	nilkuttaa	linkuttaa	ontua	liikkuu	5
		S	ontuu	nilkuttaa	ontua	linkuttaa	raahustaa	4
		rs	ontuu	nilkuttaa	ontua	linkuttaa	kävelee	4

Table 16: Translation of the English to Finnish motion verb-modifers

	$\begin{aligned} & \text { D } \\ & \text { U } \\ & \text { U } \\ & \text { 헌 } \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & \sum \end{aligned}$		2nd	3rd	4th	5th	
$\begin{aligned} & \frac{\lambda}{3} \\ & \frac{0}{3} \\ & \frac{1}{n} \\ & 00 \\ & .0 \\ & \frac{3}{\pi} \\ & 3 \end{aligned}$	57	-S	kävelee hita asti	kävellä hita asti	löntystelee_r ennosti	käveleskelee mietteliääst i	kävelee_renn osti	4
		S	kävelee hita asti	kävellä_hida s	kävellä hita asti	kävelee_rau hallisesti	kävelee hyvi n_hitaasti	5
		rs	kävelee hita asti	kävellä_hita asti	kävelee_ren nosti	kävelee_rau hallisesti	$\text { ontuu_hitaas }_{\overline{\mathrm{ti}}}$	4
	28	-S	$\text { ontuu_hitaas }_{\overline{\mathrm{ti}}}$	nilkuttaa hit aasti	ontuu_raska asti	ontuu_alakul oisesti	nilkuttaa_kiv ulloisesti	2
		S	$\text { ontuu_hitaas }_{\overline{\mathrm{ti}}}$	nilkuttaa_hit aasti	ontuu_varov asti	ontuu_vaival loisesti	laahustaa_on tuen	3
		rs	ontuu_hitaas ti	ontuu_varov asti	ontuu_vaival loisesti	nilkuttaa_hit aasti	$\underset{\mathrm{ti}}{\text { ontua_hitaas }^{\text {onta }}}$	3
	21	-S	nilkuttaa_kiv ulloisesti	laahustaa va ivalloisesti	$\text { ontuu_hitaas }_{\overline{\mathrm{ti}}}$	ontuu_väsyn eesti	raahustaa tu skaisesti	3
		S	nilkuttaa_hit aasti	$\text { ontuu }_{\overline{\mathrm{ti}}} \text { hitaas }$	ontuu_vaival loisesti	ontuu_hyvin kivuliaasti	ontua_surulli nen	2
		rs	ontuu_hitaas ti	ontuu_vaival loisesti	kävelee_ram miten	ontuu pahas ti	ontuu_hyvin kivuliaasti	2

Table 16 shows that using the pattern-grounding approach, the translation of English verb-adverb to Finnish is enhanced. For example, all five Finnish verb-adverbs are appropriate translations for 'walking_slowly'. Although the correct translations for 'limping_painfully' are not highly ranked, using
pattern－grounding the correct tranlations for other verb－adverbs are ranked more appropriately，and more correct translations are found．You can find the translation of other verb－adverbs in the Appendix E．

3．4．2．Translation of Finnish annotations to English

Verb		$\frac{0}{0}$	范荡范	2nd	3rd	4th	5th	
kävelee	618	－s	walking	Walking	walk	striding	Ambling	5
		s	walking	Walking	walk	Strolling	amble	5
		rs	walking	Walking	Limping	walk	limping	3
ontuu	229	－s	limping	Limping	scuffing	stagger	leaping	3
		s	limping	Limping	scuffing	shuffling	limb	4
		rs	limping	Limping	scuffing	walking	moving	3
nilkuttaa	164	－s	limping	Limping	stagger	scuffing	leaping	3
		s	limping	Limping	limbing	scuffing	limb	4
		rs	Limping	limping	scuffing	walking	moving	3

In Table 17，Pattern－grounding obviously boosts the translation performance．The number of good translations is counted manually and after human interpretation；in addition，typos have been disregarded．For instance，using pattern－grounding，the $5^{\text {th }}$ closest translation is＇limb＇；it is most likely that an annotator has meant＇limp＇by typing＇limb＇because none of the motion video has anything to do with the word＇limb＇；furthermore，the use of＇limb＇as a verb in＇limbing＇is another evidence of this logical reasoning．

In Table 18，we can see that pattern－grounding leads to more apt translations for the most frequent Finnish verb－adverb．Although randomized－grounding results into one more applicable translation for ＇kävelee＿reippaasti＇，its best translation is＇walking＿briskly＇which is ranked the $3^{\text {rd }}$ by randomized－ grounding，while it is ranked the $2^{\text {nd }}$ by pattern－grounding．In addition，pattern－grounding approach slightly enhances the translation of less frequent verb－adverbs．

3．4．3．Translation of English annotations to Farsi

Although both indexical－grounding and pattern－grounding approaches has recognized 5 good translations for the English verb＇walking＇，the translations which have been discovered using pattern－ grounding are more appropriate as the $4^{\text {th }}$ translation of the indexical－grounding，which is＇تنـد＿，${ }^{\prime}$＇， has an adverb which constrain the meaning of the verb．In other words，＇تنــــ＿＇${ }^{\prime}$＇is made of a verb ＇ pattern－grounding are Farsi verbs．The Farsi translation of＇limping＇can be expressed in various ways． For instance it can be translated into a single Farsi verb such as＇نزگَيدن＇or to a combination of Farsi verb－ adverb＇نتان＿لنگان＿，راه＿，نتن＇；in the latter case the adverb has come before the verb．There can also be an appropriate translation where the adverb comes after the verb such as in＇راه＿رفتن＿لنگان＿لنזان＇．

Table 18: Translation of the Finnish to English motion verb-modifers

		$\frac{\otimes}{\delta}$		2nd	3rd	4th	5th	
	64	-s	walking_slo wly	walking_tho ughtfully	walking_unp urposefully	walking_ver y_slowly	walking_wai ting	3
		s	walking_slo wly	walking_ver y_slowly	walking_tho ughtfully	walking_idly	walking_wai ting	4
		rs	walking_slo wly	walking_ver y_slowly	walking_car efully	Walking_Slo wly	limping_pai nfully	3
	52	-s	Walking_Pu rposefully	walking_ere ct	walking_ene rgetically	walking_fast	walking_con fidently	2
		s	walking_stea dily	walking_bris kly	Walking_Pu rposefully	walking_ere ct	walking_acti vely	3
		rs	walking_con fidently	walking_fast	walking_bris kly	walking_stea dily	walking_ene rgetically	4
	47	-s	$\begin{aligned} & \text { limping_slo } \\ & \text { wly } \end{aligned}$	limping_sadl y	Hobbling_Sl owly	shuffling_w ounded	limping_pai nfully	2
		s	$\begin{aligned} & \text { limping_slo } \\ & \text { wly } \end{aligned}$	limping_pai nfully	limping_sadl y	scuffing_slo wly	scuffing_pai nstakingly	1
		rs	$\underset{\text { wly }}{\operatorname{limping}^{\text {lim }}}$	limping_pai nfully		scuffing_slo wly	walking_slo wly	2
Table 19: Translation of the English to Farsi motion verbs								
$\stackrel{0}{5}$		$\begin{aligned} & \frac{0}{8} \\ & \sum \end{aligned}$		2nd	3rd	4th	5th	
$\begin{aligned} & \text { 品 } \\ & \stackrel{y}{\bar{n}} \end{aligned}$	392	-s	راه_, رفتن	راهرفتن	قدم_زدن	تند_اه__رفتن		5
		s	راه_, رفتن	راهرفتن	قدم_زدن	پياده_ روى	كام_برداشتن	5
		rs	راه_/رفتن	قدم_زدن	كام_برداشتن	راهرفتن	لنكَيدن	4
limpin g	202	-s	لنگّيدن	لنكان_لنگان_ر فتن	لنگان_نـكان_راهـ رفتن	لنكان_لنگان_راه 	مى_لنگّ	5
		s	لنكَيدن	لنگان_لنگان_,راهـ رفتن	لنعان_لنگان_, فتن	قدم_برداشتن	لنكان_لنتان_راه	4
		rs	لنكَيدن	لنكان_لنگان_راه رفتن		قدم_زن	كام_برداشتن	2
$\begin{aligned} & \text { en } \\ & \text { 合 } \\ & \hline \end{aligned}$	110	-s	لنكّيدن	لنگان_لنگان_, فتن	لنكان_لنگان_راهـ رفتن	مى_لنكَد	لنكان_لنگان_راه 	5
		s	لنكان_لنكان_راه رفتن	لنكّيدن	لنگان_لنگان_, فتن	لنكان_لنكان_راه 	,اه0,_فتن	5
		rs	لنگّيدن	, راه_,_0ن	لنكان_لنكان_راه رفتن	قدم_زن	كام_برداشتن	3

It is worth mentioning that the translations have been found by considering only the verb inputs which annotators have provided. It is also possible that in the verb box of the motion form an annotator has inputted an expression which is made of a verb-adverb combination. 'قدم_برداشـنن' = \{'to step, to walk'\} is not considered as an appropriate translation for 'limping' as the correct adverb constraing the meaning of 'walking' to 'walking limpingly' or to 'limping' is not known. The adverb might have been 'لنتـان'='limpingly', but because we are selecting the translation of 'limping' from only Farsi verbs, ' 'قـدم_برداشـتن 'shall not be considered as a good translation of 'limping'. As a result, the indexicalgrounding approach has a little better performance in translating the English verb 'limping' to Farsi verbs. However, pattern-grounding prevails in terms of finding more appropriate translations for less frequent English verbs.

Table 20: Translation of the English to Farsi motion verb-modifiers

		$\frac{\ddot{0}}{\stackrel{0}{x}}$	黄荡	2nd	3rd	4th	5th	
	57	-s	راه_,_فتن_آرام	قدم_زن_آهسته	راه_,رفتن_آهسته	قدم_زدن_آرام	راه_رفتن_ـا_آراه	4
		s	راه_,_فتن_آرام	راه_,_فتن_آهسته		راه_,رفتن_اهسته	قدم_زن_آهسته	4
		rs	,اه_,_رفتن_آرام	راه_,_فتن_آهسته	راه_,_فتن_بافكر	راه_رفتن_نارار	راه_رفتن_بى_>	2
$\begin{aligned} & \frac{\lambda}{3} \\ & \frac{0}{n} \\ & 0 \\ & 0 \\ & : \\ & : \end{aligned}$	28	-s	لنگان_لنگان_رفت	لنكان_آنكان_رفت	ننكان_نـلنان_رفت	ننـان_خرابتان_رفت	راه_,_فتن_بير	2
		s	لنگیين_آهسته	لنگَيدن_خسته	لنگَيدن_خيلى_I	لنكيدن_ارام	لنگیيدن_آرام	4
		rs	لنگّيدن_خسته	راه_,_رفت_خسته	لنگّيدن_آهسته	راه_رفتن_لنكان	لنكان_لنگان__رفت	3
	21	-s	لنكان_لنعان_رفت		لنكان_خنگان_رفت	لنگّيدن_يادرد	لنكان_لنگان_ان_رفت	3
		s	لنگَيدن_خسته	قدم_زنن_بالنگي ن	راه_ _فتنا_لنكان	قدم_برداشتن_اه	راه_ لنتان_لنگ__	3
		rs	قدم_زدن_بالنكي ن ن	راه_, رفتن_لنگگ_	راه_رفتن_لنعانان	, إل_رفتن_خسته	,اه_,_فتن_آرام	3

It is obvious that more appropriate Farsi translations have been extracted for English verb-adverbs. In addition, best translations are ranked more appropriately using pattern-grounding; for instance, the

On the other hand, it is ranked the third using randomized-grounding approach. Besides that, the other translations found for 'limping_slowly' by random-grouding are more general than the translations found by pattern-grounding. In other words, the translations found by pattern-grounding are more appropriate as the meaning of both verbs and adverbs overlap precisely between the source and target language.

3．4．4．Translation of Farsi annotations to English

Table 21：Translation of the Farsi to English motion verbs

$\begin{aligned} & \text { ? } \\ & > \end{aligned}$		$\frac{\stackrel{0}{\circ}}{2}$	药范荡	$2^{\text {nd }}$	3rd	4th	5th	
	1637	－s	walking	walk	Walking	Limping	limping	3
\%		S	walking	walk	Walking	Limping	moving	4
		rs	walking	Limping	limping	Walking	scuffing	2
	339	－s	running	jogging	Running	Jogging	run	5
		S	running	jogging	Running	Jogging	sprinting	5
		rs	running	jogging	Running	walking	Jogging	4
药	312	－s	limping	Limping	scuffing	stagger	hobbling	4
		S	limping	Limping	scuffing	limbing	limb	4
		rs	Limping	limping	scuffing	walking	moving	3

Using pattern－grounding，the translation of Farsi verbs into English verbs is enhanced．In addition，as earlier stated，typos are ignored；thus，＇limb＇and＇limbing＇are interpreted as＇limp＇and＇limping＇．In total， 2811 Farsi annotations have been recorded；out of these 2811 annotations， 1637 annotations include the verb＇，＇，＇＝＝＇to walk＇．This is because most motions can be described using＇ combined with an apt adverb．As a result，the Farsi verbs which have been used to annotate the motion videos are much less diverse than the English verbs；in other words，Farsi verbs are more general，while English annotated verbs are more specific．Yet，the translation of these general Farsi verbs to more specific English verbs has good performance．

The most frequent Farsi verb－adverb is＇رامـتن＿آرام，＇which is translated into＇to walk slowly＇．Although I did not count＇walking＿carefully＇as one of its good translations，in a deeper point of view，the meaning of＇walking＿carefully＇is closer to the meaning of＇walking＿slowly＇than the＇walking＿sadly＇．It is worth noticing that＇walking＿sadly＇is rated the third best translation of＇رفـتن＿آرام＇0ا，＇，by indexical－grounding approach，while it is ranked down to the $5^{\text {th }}$ best translation．From this point of view，pattern－grounding excels the indexical－grounding．
 ＇walking＿limpingly＇or＇limping＇．Although most of its extracted translations convey the meaning of ＇limping＇，the scope of their meanings is narrowed down by some adverbs；in other words，they are more specific than the verb－adverb in the source language．Hence，none of them is considered as a good translation．

3．4．5．Translation of Farsi annotations to Finnish

Pattern－grounding has a much better performance than the other two approaches in translating ＇＇，，${ }^{\prime}=$＇to walk＇．For the other two Farsi verbs，all three approaches has performed fairly well； however，pattern－grounding prevails in translating the less frequent Farsi verbs，while randomized－ grounding profoundly deteriorates the translation．Although neither＇kävelee＇nor＇raahustaa＇has been considered as good translation of＇لنگيـدن＇，the meaning of＇raahustaa＇＝＇to scuff＇is closer to＇لنگيـدن＇＝＇to limp＇．

Table 22: Translation of the Farsi to English motion verb-modifiers

		$\frac{0}{0}$	ज	2nd	3rd	4th	5th	
$\begin{gathered} \bar{i} \\ i \\ i \\ -1 \\ -\frac{1}{2} \end{gathered}$	389	-s	walking_slo wly	walking_ver y slowly	walking_sad ly	walking_car efully	walking_tho ughtfully	2
		s	walking_slo wly	walking_car efully	walking_ver y_slowly	$\begin{aligned} & \text { Limping_No } \\ & \text { rmally } \end{aligned}$	walking_sad ly	2
		rs	walking_slo wly	limping_pai nfully	Limping_Sl owly	Limping_Ve ry fast	Walking_Sl owly	2
$\begin{array}{ll} -\bar{a} \\ 0 \\ 3 & 3 \\ 3 & 3 \\ 3 \\ 3 & 0 \end{array}$	346	-s	$\begin{aligned} & \text { Limping_Sl } \\ & \text { owly } \end{aligned}$	limping_slo wly	$\begin{gathered} \text { Limping_Pa } \\ \text { infully } \end{gathered}$	$\underset{\text { d }}{\text { walk_injure }}$	limping_pai nfully	0
		s	limping_pai nfully	$\underset{\text { owly_S }}{\text { Limping_Sl }}$	limping_slo wly	Limping_Pa infully	scuffing_ver y slowly	0
		rs	limping_pai nfully	$\begin{aligned} & \text { Limping_Sl } \\ & \text { owly } \end{aligned}$	$\underset{\text { ry_fast }}{\text { Limping_Ve }}$	walking_slo wly	limping_slo wly	0
$\begin{aligned} & \hat{o}_{1} \\ & 0 \\ & 0 \\ & 3 \\ & 1 \\ & 3 \\ & 1 \end{aligned}$	135	-s	Limping_Ve ry fast	limping_hur riedly	walking_acti vely	walking_uns teady	walking_slig htly weirdly	1
		s	Limping_Ve ry fast	Striding_Fas t	walking bri skly	walking hea vily	Walking_Qu ickly	3
		rs	Limping_Ve ry fast	Limping_No rmally	walking_bri skly	limping_pai nfully	limping_hur riedly	1

Table 23: Translation of the Farsi to Finnish motion verbs

Verb	$\begin{aligned} & \text { D } \\ & \text { U } \\ & \text { U } \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & \sum \end{aligned}$		2nd	3 rd	4th	5th	
راه_رفتن	1637	-s	kävelee	kävellä	nilkuttaa	ontuu	ontua	2
		S	kävelee	kävellä	löntystelee	Kävelee	nilkuttaa	4
		rs	kävelee	kävellä	nilkuttaa	ontuu	ontua	2
دويدن	339	-S	juosta	juoksee	hölkkää	juokseminen	Juoksee	5
		S	juosta	juoksee	hölkkää	starttaa_juok suun	juokseminen	5
		rs	juosta	juoksee	hölkkää	hölkyttää	nilkuttaa	4
لنگيدن	312	-s	ontuu	nilkuttaa	ontua	linkuttaa	raahustaa	4
		S	ontuu	nilkuttaa	ontua	linkuttaa	raahustaa	4
		rs	nilkuttaa	ontuu	ontua	kävelee	linkuttaa	4

The most frequent Farsi verb-adverb is 'راه_, 'آرفـتن_, which can be best translated as 'to walk slowly'. Only the $1^{\text {st }}$ and $2^{\text {nd }}$ extracted translations of the indexical-grounding are accurate, while the the $1^{\text {st }}, 4^{\text {th }}$ and $5^{\text {th }}$ extracted translations of the pattern-grounding are good translations. Furthermore, the $3^{\text {rd }}$ extracted Finnish verb-adverb, 'kävelee_kävelee_nilkuttaen_hitaasti', is not considered as a good
transaltion because it has 'nilkuttaen'='limpingly' as its additional qualifier adverb which narrows down the meaning of 'kävelee'='to walk'.

The second most frequent annotated Farsi verb-adverb is 'راهرفتن_لنگـن_لنگـنا'='to walk limpingly'. It is a general word covering the meaning of 'limping' action. However, the only extracted translation which is as general is 'kävelee_ontuen'. All the other extracted translations have more specific meaning. Since it is not accurate to translate from a general word to a specific interpretation of that word, I have counted only one good translation for 'رفـ_رفتن_لنگان_لنگـان'. Besides that, the strength of pattern-grounding is demonstrated in the accurate translation of the third most frequent Farsi verb-adverb. All its 5 extracted translations are apt and precise.

		$\frac{8}{8}$	范䔍	2nd	3rd	4th	5th	
$\begin{gathered} \bar{i} \\ i \\ i \\ -1 \\ -\frac{1}{2} \end{gathered}$	389	-s	kävelee_hita asti		kävelee mie tteliäästi	kävelee_var ovasti	kävelee_sur ullisena	2
		s	$\underset{\text { astí }}{\text { kävelee_hita }}$	kävelee_epä varmasti	kävelee käv elee nilkutta en_hitaasti	kävelee rau hallisesti	kävelee hyv in_hitaasti	3
		rs	kävelee_hita asti	$\text { ontuu_hitaas }_{\overline{\mathrm{ti}}}$	kävelee ram miten	kävelee_ont uen	kävelee ren nosti	1
	346	-s	kävelee_ont uen	ontuu_kivuli aasti	ontu_ $_{\overline{\mathrm{t}}}^{\mathrm{i}} \mathrm{itaas}$	ontuu_vaiva lloisesti	nilkuttaa_hit aasti	1
		s	${ }_{\mathrm{ti}} \text { ontuu_pahas }$	kävelee_ont uen	$\text { ontuu_hitaas }_{\mathrm{ti}}$	ontuu_kivuli aasti	kävelee_ram miten	1
		rs	kävelee_ont uen	$\text { ontuu_hitaas }_{\overline{\mathrm{ti}}}$	ontuu hyvin _kivuliaasti	ontu_ $_{\mathrm{ti}}$ pahas	kävelee_ram miten	1
$\begin{aligned} & \hat{0} \\ & 0 \\ & 0 \\ & 0 \\ & 3 \\ & 3 \\ & 1 \end{aligned}$	135	-s	kävellä_reip as	kävelee_tom erasti	kävelee_ont uen	kävelee_hiu kan_ontuen	kävelee_reip paasti	3
		s	kävelee_reip paasti	kävelee tom erasti	kävelee_nop easti	kävelee tar mokkaasti	kävellä_reip paasti	5
		rs	kävelee_ont uen	$\text { ontuu_pahas }_{\mathrm{ti}}$	kävellä_reip as	kävelee_ram miten	kävelee_reip paasti	2

3.4.6. Translation of Finnish annotations to Farsi

In Table 25, we can see that Finnish verbs have been translated properly to Farsi verbs because they are more specific expression of motions than the Farsi annotated verbs;

Table 26 demonstrates that the translation of Finnish annotated verb-adverbs to Farsi verb-adverbs has been boosted by applying pattern-grounding. The translations extracted by pattern-grounding approach are more precise because the meaning of both verb and adverb overlap significantly. For example, using randomized-grounding and indexical-grounding, only two translations out of the extracted translations for 'ontuu_hitaasti' covers both the meaning of 'ontuu' and 'hitaasti', while using pattern-grounding, four translations cover precisely the meaning of 'ontuu' and 'hitaasti'.

Table 25: Translation of the Finnish to Farsi motion verbs

Verb		$\frac{0}{0}$	$\stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{\rightharpoonup}{0}} \underset{\tilde{x}}{x}$	2nd	3rd	4th	5th	
kävelee	618	-s	راه_, رفتن	راهرفتن	قدم_زن	كام_برداشتن	تند_اه__رفتن	4
		s	راه_, رفتن	راهرفتن	قدم_زن	كامبردراشتن	لنگان_لنكان_راه رفتن	4
		rs	راه_, رفتن	قدم_زن	كام_برداشتن	راهرفتن	لنگان_لنگان_راه رفتن	4
ontuu	229	-s	لنگّيدن	لنگان_لنگان_راه رفتن	لنگان_لنگان_, فتن	, إه_,_er	لنكان_لنتان_راه	5
		S	لنگَيدن	لنگان_لنگان_راهـ رفتن	لنگان_لنگان_, فتن	كشال_كشال_, -_رفتن	قدم_برداشتن	5
		rs	لنكّين	لنكان_لنكان_راهـ	, إه,_رفتن	قدم_زن	كام_برداشتن	5
nilkuttaa	164	-s	لنكّيدن	لنكان_لنكان_راه رفتن	لنكان_لنگان_, فتن	,d,0.هرفتن	مى	5
		s	لنگَيدن	لنكان_لنگان_راهـ رفتن	لنگان_لنگان_, فتن	قدم_برداشتن	لنكان_لنتان_رفتن_اه	5
		rs	لنگّيدن	لنكان_لنگان_راهـ رفتن	,اه_,_رفت	قدم_زن	كام_برداشتن	5

3.4.7. All translations results

Table 27 demonstrates that verbs can be translated more efficiently than when verbs are combined with adverbs. This is because verbs have been used to annotate a set only three different motions \{walking, running, or limping\}, while the selection of adverbs depend on how an annotator observe a motion; in other words, the same motion can be described using various adverbs, and the scope of the variety of used adverbs is as large as the view of a person. In addition, the adverbs explain the style of a motion, and an annotator view the style of a motion from a different angle. This means the selection of adverbs is culture dependent. As a result, matching these diverse adverbs between two different languages would be more difficult than matching verbs.

Our observation shows that pattern-grounding is helpful in translating verbs. When pattern-grounding is applied, the good translations will get higher rank than the irrelevant extracted translations. Furthermore, since randomized-grounding has worsened the translation of verbs significantly, the application of pattern-grounding in translating the motion verbs seems to be a meaningful and a reasonable process.

The translation of verb-adverbs has also been enhanced when pattern-grounding is exploited. However, the translation of English and Finnish verb-adverbs to Farsi verb-adverbs was not deteriorated by randomized-grounding. It is, nevertheless, worth mentioning that in all our experiments, patterngrounding surpasses randomized-grounding in translating verbs and verb-adverbs.

Table 26: Translation of the Finnish to Farsi motion verb-modifiers

		$\begin{aligned} & 8 \\ & i \\ & i \end{aligned}$		2nd	3rd	4th	5th	$\begin{aligned} & \text { 응 } \\ & 0.0 \\ & 0 \text { on } \\ & \text { \# } \\ & \text { \# } \end{aligned}$
	64	-S	راه_رفتن_متفكرا	قدم_زدن_آهس.	راه_رفتن_آرام	راه_رفتن_آهسته	راه_رفتن_بى_>	3
		S	راه_رفتن_متفكرا	راه_رفتن_بى_ح	قدم_زدن_آهس	راه_رفتن_آهسته	راه_رفتن_بى_هـ	2
		rs	راه_رفتن_متفكرا	راه_رفتن_آرام	راه_رفتن_آهسته	راه_رفتن_ناراح	راه_رفتن_بى_ح	2
kävelee _reippa asti	52	-S	راه_رفتن_مصمم	راه_رفتن_تن	راه_رفتن_سريع	,اه_,_فتن_مغرور	راهرفتن_به_طور ى_نرمال	2
		S	راه_رفتن_مصم	راه_رفتن_خوشح	راه_رفتن_با_عج	راه_رفتن_با_انرز	راه_رفتن_تن	3
		rs	راه_,_فتن_سريع	راه_رفتن_تن	راه_رفتن_با_عج	راه_رفتن_مصمم	راه_,رفتن_خوشح	3
	47	-S	لنگيدن_خسته	لنگًان_لنگان_بد	لنگیيدن_آهسته	راه_رفتنان_لنگان	لنگان_لنگان_آرام	3
		S	لنگ̌يدن_آهسته	لنگ̌يد_خسته	لنگیيدن_آرام	لنگيدن_خيلى_آ هسته	لنگيدن_به_آراه \checkmark	4
		rs	لنگیيدن_خسته	لنگیيدن_آهسته	راه_رفتن_لنگان	راه_رفتن_خسته	راه_رفتن_آرام	2

Table 27: All translation results

	Number of good extracted translations (out of 50)		
		indexical grounding	pattern grounding
English verbs to Farsi verbs		randomized grounding	
Farsi verbs to English verbs	35	37	29
Farsi verbs to Finnish verbs	39	40	26
Finnish verbs to Farsi verbs	39	40	25
Finnish verbs to English verbs	44	43	39
English verbs to Finnish verbs	38	42	32
English verb-adverbs to Finnish verb-adverbs	43	44	24
Finnish verb-adverbs to English verb-adverbs	23	23	23
Farsi verb-adverbs to English verb-adverbs	19	24	17
English verb-adverbs to Farsi verb-adverbs	22	27	11
Farsi verb-adverbs to Finnish verb-adverbs	24	27	22
Finnish verb-adverbs to Farsi verb-adverbs	27	26	15

3.5. Hierarchical clustering result

Farsi verbs, Farsi verb-adverbs, English verbs, English verb-adverbs, Finnish verbs, and Finnish verbadverbs have been clustered using agglomerative hierarchical clustering in both indexical-grounding and pattern-grounding cases. The cophenetic correlation value has been computed for the resulting dendrograms. Ward, median, and centroid methods have not been considered because cosine distance is employed as a metric to compute the similarity of objects. In the following section, the hierarchical clustering result of the average method is displayed.

3.5.1. Hierarchical result of English annotations

In this section, you can see the dendrograms which have been resulted from employing the agglomerative hierarchical clustering on English verbs which have been used to annotate the motion videos. Besides that, the resulting dendrogram has been cut horizontally to produce some clusters.

Figure 13 shows the dendrogram achieved by applying agglomerative hierarchical clustering on English annotated verbs. Only the 30 most frequent English annotated verbs have been included in the dendrogram. These verbs are not normalized by the pattern-grounding process; in other words, the dendrogram displays the result of indexical-grounding approach. Furthermore, the average method is exploited to compute the similarity of objects and clusters.

Figure 14 displays the dendrogram of pattern-grounded English verbs. As stated in section 2.4.2.1, a dendrogram can be cut horizontally into any arbitrary number of clusters. This makes dendrogrogram a very useful information vizualization tool; a researcher can observe a dendrogram and decide subsequently about the number of clusters. I have decided to cut the dendrogram in Figure 14 into 4 clusters; in order to be fair, the indexical-grounding dendrogram in Figure 14 is also cut into 4 clusters.

	Table 28: hierarchical clustering result of English verbs
Indexical-	cluster1=\{amble, Striding\} cluster2=\{walking, limping, Limping, Walking, scuffing, grounding marching, walk, stomping, shuffling, moving, strolling, limb, wandering, Strolling, shuffle, hobbling, stagger, meandering, striding, plodding, leaping, dancing \} cluster3=\{limbing\} cluster4=\{running, jogging, Running, Jogging, sprinting\}
Pattern-	cluster1=\{marching, stomping, dancing\} cluster2=\{running, jogging, Running, Jogging, sprinting\} cluster3=\{limping, Limping, scuffing, shuffling, moving, limb, grounding limbing, shuffle, hobbling, stagger, plodding, leaping $\}$ cluster4=\{walking, Walking, walk, strolling, wandering, Strolling, amble, Striding, meandering, striding $\}$

Using pattern-grounding, the English verbs are clustered appropriately, while using indexical-grounding approach, they spread erratically into inappropariate clusters. For example, the verbs which explain walking and limping are mixed in cluster2, while they are separated into two suitable clusters using pattern-grounding. In addition, cluster3 contains only 'limb' as its single member. On the other hand, when English verbs are pattern-grounded, they go to their correct and precise cluster. Cluster1 represent the 'marching' motion; cluster2 denotes 'running; cluster3 exemplify 'limping'; and cluster4 typify 'walking'. The only verb which has been misclassified is 'leaping'.
hierarchical clustering of English verbs using average method

Figure 13: Hierarchical clustering of the English motion verbs using Indexical-grounding approach. The above figure demonstrates the dendrogram obtained by applying agglomerative hierarchical clustering on 30 most frequent English verbs which have been used to annotate the motion videos. The average method has been utilized to compute the distance between two clusters.

In addition to correctly clustering the English verbs, the pattern-grounded dendrogram looks more consistent than the indexical-grounded dendrogram. This property can be observed by comparing the height of the links in the dendrograms. This observation can be made more precise by computing the cophenetic correlation coefficient. The cophenetic coefficient of the indexical-grounding dendrogram is 0.87 , and it is 0.89 for the pattern-grounding case.
hierarchical clustering of symbol grounded English verbs using average method

Figure 14: Hierarchical clustering of the English motion verbs using pattern grounding approach.The above figure displays the dendrogram of English verbs. The average method has been used to determine the distance between objects and clusters pattern-grounded. In addition, only the 30 most frequent English verbs have been included in the dendrogram.

3.5.2. Hierarchical clustering result of Finnish verbs

Finnish verbs have been represented by 124 -dimensional vectors. There is one component for every video. Originally, it is the frequency of a verb in a video which is stored in the corresponding component; next, using the pattern-grounding process, the components of these vectors are normalized. These vectors have been hierarchically clustered using average, complete, single, and weighted methods. Figure 15 and Figure 16 demonstrates the dendrogram obtained by the average method.

Both of the dendrograms in Figure 15 and Figure 16 have been cut vertically into 4 clusters. The resulting clusters are included in the following table.
hierarchical clustering of Finnish verbs using average method

Figure 15: Agglomerative hierarchical clustering of Finnish verbs using the indexical-grounding approach. The verbs are indexically grounded. The average method has been selected as the similarity measure.

	Table 29: hierarchical clustering result of Finnish verbs

hierarchical clustering of symbol grounded Finnish verbs using average method

Figure 16: The agglomerative hierarchical clustering of pattern-grounded Finnish verbs using the pattern-grounding approach. The average method has been chosen as the similarity measure.

Both indexical-grounding and pattern-grounding approaches divided the Finnish verbs into appropriate clusters. In fact, they only difference between the clustering results of these two approaches is that the verb 'astelee' is assigned to cluster2 being recognized as the synonym of 'harpoo', while using patterngrounding, it is assigned to cluster1 being identified as a synonym of 'kävelee'. Besides that, the cophenetic correlation coefficient has been improved from 0.91 in indexical-grounding case to 0.93 in pattern-grounding case. In other words, the pattern-grounded dendrogram is more consistent than the indexical-grounded dendrogram.

3.5.3. Hierarchical clustering of Farsi annotations

Farsi verbs, which have been used to annotate motion videos, have also been clustered using aggolomerative hierarchical clustering. The dendrogram resulting from this hierarchical clustering is cut vertically into 4 communities.

Table 30 shows the resulting clusters when the dendrogram in Figure 17 and Figure 18 are cut vertically into 4 slices.
hierarchical clustering of Farsi verbs using average method

Figure 17: Agglomerative hierarchical clustering of indexical-grounded Farsi verbs using the indexicalgrounding approach. Average method is selected as the similarity measure.

Table 30: hierarchical clustering result of Farsi verbs

 , كشال_كشال_,راه_,رفتن ,لنگ_زدن, lang_langan_rah_raftan, لنگان_لنگان_سريعرفتن,
 \}قدمبرداشتن\{=cluster3 \} $\}$

 cluster3=\{مى_لنگد,لنگان_لنگان_راه_رفتن,قدم_برداشتن, لنگان_لنگان_رفتن,لنگان_لنگان_راهرفتن,لنگيدن, ,لنگان_لنگان_سريعرفتن, لال_كشال_, الـ_رفتن, النگ_زدن, آهسته_دويدن, دويدن_آهسته,هروله,دويدن\{=\{ cluster4 $\}$

Let's first analyze the clusters resulted from cutting the indexical-grounded dendrogram.Cluster1 of this method has 4 members with every verb being a distinct motion; in other words, the verbs which belong to this cluster are not synonym of each other. Cluster2 consists of the synonyms of both
 members; they are all synonyms of 'دويـن'='running'. The main property of a good clustering is that the members of a cluster consist with the cluster from some point of view; since we are interested in dividing the verbs, one expect that the members of a cluster be synonyms of a specific verb. In addition, in a good clustering, the clusters have comparable sizes; one would not see neither too large nor too small communities. Since the verbs in cluster1 and cluster2 are not synonym of a single verb, and because cluster3 has only one member, the indexical-grounded dendrogram is not considered to be a desirable hierarchical dendrogram. On the pther hand, the pattern-grounded hierarchical dendrogram has led to perfect clusters both from the semantic and from the size point of view. Cluster1 consists of
 synonyms of 'لنگیــدن'='limping'; and, cluster4 cover synonyms of 'دويـنن'=' $=$ 'running'; also, notice that cluster2 and cluster1 which are related comes one after another.
hierarchical clustering of symbol-grounded Farsi verbs using average method

Figure 18: Agglomerative hierarchical clustering of pattern-grounded Farsi verbs using the patterngrounding approach. Average method is chosen as the similarity measure.

3.5.4. Cophenetic correlation coefficients

In Table 31, I have just reported the average method results; if you are interested in other methods, you can see the tables in the appendix. Table 31 shows that using pattern grounding a dendrogram is created that represents the original distances slightly better than when symbols are just indexically grounded. In other words, when verbs or verb-adverbs are grounded using visual data, the resulting dendrograms are more consistent. The only case which the cophenetic correlation value decreases is in clustering Farsi pattern-grounded verbs. However, as we have seen in the section 3.5.3, patterngrounding leads to accurate clustering of Farsi verbs. There might be a random normalization which even excels the cophenetic value of the pattern-grounding result; however, according to the observation we had, there is no guarantee that such randomized-grounding would produce meaningful cluster.

Table 31: cophenetic values of the agglomerative hierarchical clustering using the average method

Cophenetic value

Dataset	indexical grounding	pattern grounding
Farsi verbs	0.8150	0.7918
Farsi verb-adverbs	0.9070	0.9443
English verbs	0.8722	0.8921
English verb-adverbs	0.8832	0.8935
Finnish Verbs	0.9123	0.9313
Finnish verb-adverbs	0.8645	0.9162

4. Discussion and Conclusion

The application of ICA on word-document matrix extracted from Tabnak and Alef corpora led to the detection of syntagmatic word clusters such as \{Quran, God, religion\}, \{oil, nuclear (power), Iran, inter, national\}, \{Gaza, Zionist (Regime), USA\}, and \{currency, Dollar\}. On the other hand, utilization of ICA on the word-word matrices, extracted from these two corpora, resulted in the discovery of paradigmatic word clusters such as synonyms in addition to the syntagmatic word clusters. The resulting clusters of both of these two methods can be exploited in the automatic construction of a thesaurus.

Both individuals and search engines can benefit from this kind of automatic thesaurus. Such thesaurus can be viewed as the summary of a large corpus; for example, the extracted word clusters of these two corpora were mainly about politics, sport, religion and war. In addition, some of the word clusters can shed light on the strategic planning of a news agency; for instance, the emergence of these terms in one cluster \{Sepah, culture, commander, language, (Imam) Hussein\} can indicate the exploitation of religion for both political and cultural ends.

Such automatic thesaurus can also assist an individual to overcome his vocabulary problem; a person may know what he is looking for, but he is unable to articulate the problem in terms recognized by the search engine. For instance, a user who is searching for "Dollar" in the context of Iranian economy is very likely to be also interested in reading about "currency" related topics. Furthermore, it can serve as a brainstorming tool. For example, a researcher who is investigating about 'oil' might be enlightened if he also studies about 'nuclear power' as these two key terms reveal a decisive relationship between Iran and the international community.

Semantic-based search engines could be reinforced by using such automatic thesaurus. The relevance of a document can be determined by the frequency of a key term and the utilization of semantically related words. For example, if the search term is "Quran", the documents which contains the terms "God" and "religion" would be more inclusive than documents containing only "Quran"; thus, they can obtain a higher ranking placement in the list of search results. Besides that, a search engine can employ such automatic thesaurus for enhancing its keyword suggestion tool. For instance, if a user is seeking for "Gaza", he can be suggested to also search for "Zionist Regime" and "USA". Of course, all of the aforementioned applications of an automatic thesaurus extracted by ICA might be over-ambitious ideas as some of the extracted words are not so strongly and semantically related.

For the second part of the project, motion data was analyzed. In order to see whether symbol grounding can be effective in the detection of synonyms, we have implemented an experiment. First of all, every motion video was transformed into a 602 -dimensional vector using the motion data. The motion data includes features such as the means and standard deviations of coordinates, velocities, and accelerations of different body parts. After that, the dimensionality of the motion data was reduced using PCA. Besides that, every video was portrayed as a pie in a 2 -dimensional space using the first two principal components as the coordinates of the pies.

According to our observation, there was a large variation in how people used "رفـتن , اه " ="walking". Furthermore, people were more unanimous about verbs than modifiers. The most interesting part of this experiment was that the three main locomotion verbs namely \{'walking', 'ارا0,', 'kävelee'\}, \{'limping', 'لنگیــند', 'ontuu'\} and \{'running', 'دويـنـ', 'juoksee'\} occupied roughly the same space. This propelled us to transform verbs and modifiers into vectors by using video indexes as their context. We called this type of transformation as the indexical-grounding.

Another observation was that synonyms emerge close to each other. In other words, the verbs and verb-adverbs in similar videos tend to be semantically related. The video similarity could be calculated using the motion data. Using the motion data and a threshold, we defined a neighborhood for every video. A video influenced all of its neighbors by normalizing them according to their distances. In order to understand this normalization, we should note that every video is associated with two vectors. One vector is calculated based on the raw mocap data obtained by Arena; one can extract the video similarities from this vector. The second vector includes the frequencies of verbs and verb-adverbs; there was one component for every verb and verb-adverb. A portion of the vector components of every video have been added to the vector components of the neighboring videos. Since the vectors corresponding the verbs and verb-adverbs have been normalized by the motion data, textual and visual modalities have been fused. We referred to this type of fusion as the pattern-grounding as it was based on the content of the videos.

In addition to normalizing using the original motion data, verb and verb-modifier vectors were also normalized using a random data; this normalization was referred to as randomized-grounding. We compared these three cases of grounding in terms of synonym detection and translation performance.

Although both pattern-grounding and indexical-grounding methods performed well in terms of the number of good detected synonyms, in the thesaurus extracted by the pattern-grounding method, the appropriate synonyms got a higher ranking placement. On the other hand, the thesaurus extraction performance deteriorated significantly using randomized-grounding, which indicates that the selected motion features were apt and felicitous. Furthermore, Pattern-grounding enhanced the translation slightly by placing the more appropriate translations to a higher ranking than the indexical-grounding.

Hierarchical clustering was also applied to extract four clusters from the dendrogram of the 30 most frequent Finnish, Farsi and English annotated motion verbs in both the indexical and the patterngrounding cases. When pattern-grounding was employed, the clusters were balanced in terms of the number of belonging members; every member of these clusters fits semantically to the other members of the same cluster; and the cophenetic correlation coefficient enhanced slightly. On the other hand, by utilizing the indexical-grounding, some of the extracted clusters had only one member, and the semantically related verbs dispersed arbitrarily to different clusters.

All things considered, we proposed a simple but novel method to fuse textual and visual modalities; we also observe that such fusion has been a useful process in synonym detection and translation. It might be too soon to claim that we have found an anchor or a way for connecting the verbs to their corresponding physical action, but it is safe to say that a at least a glimmer of light from the practical perspective has been shed on the so-called "symbol grounding problem".

The 602-dimensional variables, which were calculated based on the raw data coming from the Arena software, were the representative of every one of the 124 motion videos. It might be possible to check which features would be most informative to classify or cluster the motion verbs in each language. For instance, the ankle's position and speed might be adequate to recognize "walking" motion. Based on this inductive knowledge one can experiment whether it would be ever possible to map from selected features representing physical motions to their corresponding verbs and modifiers. One can apply supervised approaches to learn such mapping from numerical representatives of motions to verbs and modifiers.

5. Bibliography

[1] Bell AJ, Sejnowski TJ (November 1995). "An information-maximization approach to blind separation and blind deconvolution". Neural Comput 7 (6): 1129-59.
[2] Bell AJ, Sejnowski TJ (December 1997). "The "Independent Components" of Natural Scenes are Edge Filters". Vision Res. 37 (23): 3327-38.
[3] Hyvärinen, A.; Oja, E. (2000). "Independent component analysis: Algorithms and applications". Neural Networks 13 (4-5): 411-430.
[4] Hyvarinen, A. (1999). "Fast and robust fixed-point algorithms for independent component analysis". IEEE Transactions on Neural Networks 10 (3): 626-634.
[5] A. Cichocki and S.-I. Amari, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. John Wiley \& Sons, Inc., 2002.
[6] A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Analysis. Wiley-Interscience, May 2001.
[7] A. J. Bell and T. J. Sejnowski, "The "independent components" of natural scenes are edge filters." Vision Res, vol. 37, no. 23, pp. 3327-3338, December 1997.
[8] O. Déniz, M. Castrillón, and M. Hernández, "Face recognition using independent component analysis and support vector machines," Pattern Recogn. Lett., vol. 24, no. 13, pp. 2153-2157, 2003.
[9] S. Fiori, "Overview of independent component analysis technique with an application to synthetic aperture radar (sar) imagery processing," Neural Netw., vol. 16, no. 3-4, pp. 453-467, 2003.
[10] H. Wang, Y. Pi, G. Liu, and H. Chen, "Applications of ica for the enhancement and classification of polarimetric sar images," Int. J. Remote Sens., vol. 29, no. 6, pp. 1649-1663, 2008.
[11] M. S. Karoui, Y. Deville, S. Hosseini, A. Ouamri, and D. Ducrot, "Improvement of remote sensing multispectral image classification by using independent component analysis," in 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing. IEEE, August 2009, pp. 1-4.
[12] L. Xiaochun and C. Jing, "An algorithm of image fusion based on ica and change detection," in Proceedings 7th International Conference on Signal Processing, 2004. Proceedings. ICSP ’04. 2004. IEEE, 2004, pp. 1096-1098.
[13] R. Llinares and J. Igual, "Application of constrained independent component analysis algorithms in electrocardiogram arrhythmias," Artif. Intell. Med., vol. 47, no. 2, pp. 121-133, 2009.
[14] E. Niedermeyer and F. L. Da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams and Wilkins; 4th edition, January 1999.
[15] J. C. Rajapakse, A. Cichocki, and Sanchez, "Independent component analysis and beyond in brain imaging: Eeg, meg, fmri, and pet," in Neural Information Processing, 2002. ICONIP '02. Proceedings of the 9th International Conference on, vol. 1, 2002, pp. 404-412 vol.1.
[16] J. Wisbeck, A. Barros, and R. Ojeda, "Application of ica in the separation of breathing artifacts in ecg signals," 1998.
[17] M. Scherg and D. Von Cramon, "Two bilateral sources of the late aep as identified by a spatiotemporal dipole model." Electroencephalogr Clin Neurophysiol, vol. 62, no. 1, pp. 32-44, January 1985.
[18] R. Phlypo, V. Zarzoso, P. Comon, Y. D'Asseler, and I. Lemahieu, "Extraction of atrial activity from the ecg by spectrally constrained ica based on kurtosis sign," in ICA'07: Proceedings of the 7th international conference on Independent component analysis and signal separation. Berlin, Heidelberg: SpringerVerlag, 2007, pp. 641-648.
[19] J. Oster, O. Pietquin, R. Abächerli, M. Kraemer, and J. Felblinger, "Independent component analysisbased artefact reduction: application to the electrocardiogram for improved magnetic resonance imaging triggering," Physiological Measurement, vol. 30, no. 12, pp. 1381-1397, December 2009. [Online]. Available: http://dx.doi.org/10.1088/0967-3334/30/12/007
[20] R. Vigário, J. Särelä, V. Jousmäki, M. Hämäläinen, and E. Oja, "Independent component approach to the analysis of eeg and meg recordings." IEEE transactions on bio-medical engineering, vol. 47, no. 5, pp. 589-593, May 2000.
[21] J. Onton, M. Westerfield, J. Townsend, and S. Makeig, "Imaging human eeg dynamics using independent component analysis," Neuroscience \& Biobehavioral Reviews, vol. 30, no. 6, pp. 808-822, 2006.
[22] B. Jervis, S. Belal, K. Camilleri, T. Cassar, C. Bigan, D. E. J. Linden, K. Michalopoulos, M. Zervakis, M. Besleaga, S. Fabri, and J. Muscat, "The independent components of auditory p300 and cnv evoked potentials derived from single-trial recordings," Physiological Measurement, vol. 28, no. 8, pp. 745-771, August 2007.
[23] J. C. Mosher, P. S. Lewis, and R. M. Leahy, "Multiple dipole modeling and localization from spatiotemporal meg data," Biomedical Engineering, IEEE Transactions on, vol. 39, no. 6, pp. 541-557, 1992.
[24] A. C. Tang and B. A. Pearlmutter, "Independent components of magnetoencephalography: localization," pp. 129-162, 2003.
[25] J. Parra, S. N. Kalitzin, and Lopes, "Magnetoencephalography: an investigational tool or a routine clinical technique?" Epilepsy \& Behavior, vol. 5, no. 3, pp. 277-285, June 2004.
[26] K. Petersen, L. K. Hansen, T. Kolenda, and E. Rostrup, "On the independent components of functional neuroimages," in Third International Conference on Independent Component Analysis and Blind Source Separation, 2000, pp. 615-620.
[27] C.-J. Lu, T.-S. Lee, and C.-C. Chiu, "Financial time series forecasting using independent component analysis and support vector regression," Decis. Support Syst., vol. 47, no. 2, pp. 115-125, 2009.
[28] M. Coli, R. Di Nisio, and L. Ippoliti, "Exploratory analysis of financial time series using independent component analysis," in Information Technology Interfaces, 2005. 27th International Conference on, 2005, pp. 169-174.
[29] E. H. Wu and P. L. Yu, "Independent component analysis for clustering multivariate time series data," 2005, pp. 474-482.
[30] S.-M. Cha and L.-W. Chan, "Applying independent component analysis to factor model in finance," in IDEAL '00: Proceedings of the Second International Conference on Intelligent Data Engineering and Automated Learning, Data Mining, Financial Engineering, and Intelligent Agents. Springer-Verlag, 2000, pp. 538-544.
[31] Kolenda, Independent components in text, ser. Advances in Independent Component Analysis. Springer-Verlag, 2000, pp. 229-250.
[32] E. Bingham, J. Kuusisto, and K. Lagus, "Ica and som in text document analysis," in SIGIR '02: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval. ACM, 2002, pp. 361-362.
[33] Q. Pu and G.-W. Yang, "Short-text classification based on ica and Isa," Advances in Neural NetworksISNN 2006, pp. 265-270, 2006.
[34] Kolenda, T., Hansen, L. K., and Sigurdsson, S. 2000. Independent components in text. In Advances in Independent Component Analysis, pp. 229-250. London: Springer-Verlag.
[35] Bingham, E., Kab' an, A., and Girolami, M. 2001. Finding topics in dynamical text: application to chat line discussions. In Poster Proceedings of the 10th International World Wide Web Conference WWW10), pp. 198-199. Hong Kong: The Chinese University of Hong Kong.
[36] Timo Honkela, Aapo Hyvärinen, and Jaakko Väyrynen. WordICA - Emergence of linguistic representations for words by independent component analysis. Natural Language Engineering, 16(3):277-308, 2010.
[37] Hurri, J., Gäavert, H., Säareläa, J., and Hyväarinen, A. 2002. FastICA software package. Technical report, Laboratory of Computer and Information Science, Helsinki University of Technology, Espoo, Finland.
[38] Pearson, K. (1901). "On Lines and Planes of Closest Fit to Systems of Points in Space" . Philosophical Magazine 2 (11): 559-572.
[39] Sokal, R. R. and F. J. Rohlf. 1962. The comparison of dendrograms by objective methods. Taxon, 11:33-40
[40] Jain, A., and R. Dubes. Algorithms for Clustering Data. Upper Saddle River, NJ: Prentice-Hall, 1988.
[41] Zahn, C. T. "Graph-theoretical methods for detecting and describing Gestalt clusters." IEEE Transactions on Computers. Vol. C-20, Issue 1, 1971, pp. 68-86.

[42] http://www.behnevis.com

[43] Susan Schneider and Max Velmans (2008). "Introduction". In Max Velmans, Susan Schneider. The Blackwell Companion to Consciousness. Wiley. ISBN 978-0-470-75145-9.
[44] Mechanism (philosophy). (2014, May 25). In Wikipedia, The Free Encyclopedia. Retrieved 17:17, May 27, 2014, from http://en.wikipedia.org/w/index.php?title=Mechanism (philosophy)\&oldid=610089880
[45] Ned Block (1998). "On a confusion about a function of consciousness". In N. Block, O. Flanagan, G. Guzeldere. The Nature of Consciousness: Philosophical Debates. MIT Press. pp. 375-415. ISBN 978-0-262-52210-6.
[46] Consciousness. (2014, May 18). In Wikipedia, The Free Encyclopedia. Retrieved 19:09, May 27, 2014, from http://en.wikipedia.org/w/index.php?title=Consciousness\&oldid=609088845
[47] David Chalmers (1995). "Facing up to the problem of consciousness". Journal of Consciousness Studies 2: 200-219.
[48] Fodor, J. A. (1980) Methodological solipsism considered as a research strategy in cognitive psychology. Behavioral and Brain Sciences 3: 63-109.
[49] Fodor, J. A. (1985) Précis of "The Modularity of Mind." Behavioral and Brain Sciences 8: 1-42.
[50] Newell, A. (1980) Physical Symbol Systems. Cognitive Science 4: 135-83.
[51] Pylyshyn, Z. W. (1984) Computation and cognition. Cambridge MA: MIT/Bradford
[52] Fodor, J. A. (1987) Psychosemantics Cambridge MA: MIT/Bradford.
[53] Kleene, S. C. (1969) Formalized recursive functionals and formalized realizability. Providence, R.: American Mathematical Society.
[54] Harnad, S. (1990) The Symbol Grounding Problem. Physica D 42: 335-346.
[55] Fakhreddine Karray, Milad Alemzadeh, Jamil Abou Saleh and Mo Nours Arab (2008). "HumanComputer Interaction: Overview on State of the Art". International Journal on Smart Sensing and Intelligent Systems, Vol. 1, No. 1, pp. 137-159.
[56] G. Robles-De-La-Torre, "The Importance of the sense of touch in virtual and real environments", IEEE Multimedia 13(3), Special issue on Haptic User Interfaces for Multimedia Systems, pp 24-30 (2006).
[57] V. Hayward, O.R. Astley, M. Cruz-Hernandez, D. Grant and G. Robles-De-La-Torre, "Haptic interfaces and devices", Sensor Review 24(1), pp 16-29 (2004).
[58] H. Iwata, "Haptic interfaces", in J.A. Jacko and A. Sears (eds), The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies, and Emerging Application, Lawrence Erlbaum Associates, Mahwah (2003).
[59] W. Barfield and T. Caudell, Fundamentals of Wearable Computers and Augmented Reality, Lawrence Erlbaum Associates, Mahwah (2001).
[60] W. Barfield and T. Caudell, Fundamentals of Wearable Computers and Augmented Reality, Lawrence Erlbaum Associates, Mahwah (2001).
[61] Global Positioning System, "Home page", http://www.gps.gov/, visited on 31/5/2014.
[62] S.G. Burnay, T.L. Williams and C.H. Jones, Applications of Thermal Imaging, A. Hilger, Bristol (1988).
[63] J. Y. Chai, P. Hong and M. X. Zhou, "A probabilistic approach to reference resolution in multimodal user interfaces", Proceedings of the 9th International Conference on Intelligent User Interfaces, Funchal, Madeira, Portugal, pp 70-77 (2004).
[64] S.L. Oviatt, P. Cohen, L. Wu, J. Vergo, L. Duncan, B. Suhm, J. Bers, T. Holzman, T. Winograd, J. Landay, J. Larson and D. Ferro, "Designing the user interface for multimodal speech and pen-based gesture applications: state-of-the-art systems and future research directions", Human-Computer Interaction, 15, pp 263-322 (2000).
[65] M.N. Huhns and M.P. Singh (eds), Readings in Agents, Morgan Kaufmann, San Francisco (1998).
[66] C.S. Wasson, System Analysis, Design, and Development: Concepts, Principles, and Practices, John Wiley \& Sons, Hoboken (2006).
[67] E.A. Bretz, "When work is fun and games", IEEE Spectrum, 39(12), pp 50-50 (2002).
[68] J. Vince, Introduction to Virtual Reality, Springer, London (2004).
[69] K. McMenemy and S. Ferguson, A Hitchhiker's Guide to Virtual Reality, A K Peters, Wellesley (2007).
[70] Xu, H., Chua, T.S.: Fusion of AV features and external information sources for event detection in team sports video. ACM Trans. Multimed. Comput. Commun. Appl. 2(1), 44-67 (2006)
[71] Vo, M.T. (1998). "A framework and Toolkit for the Construction of Multimodal Learning Interfaces", PhD. Thesis, Carnegie Mellon University, Pittsburgh, USA.
[72] Pavlovic, V.I., Berry, G.A., Huang, T.S. (1997). "Integration of audio/visual information for use in human-computer intelligent interaction". Proceedings of the 1997 International Conference on Image Processing (ICIP '97), Volume 1, pp. 121-124.
[73] Andre, M., Popescu, V.G., Shaikh, A., Medl, A., Marsic, I., Kulikowski, C., Flanagan J.L. (1998). "Integration of Speech and Gesture for Multimodal Human-Computer Interaction". In Second International Conference on Cooperative Multimodal Communication. 28-30 January, Tilburg, The Netherlands.
[74] Cohen, P.R.; Johnston, M.; McGee, D.; Oviatt, S.L.; Pittman, J.; Smith, I.A.; Chen, L.; Clow, J. (1997). "Quickset: Multimodal interaction for distributed applications", ACM Multimedia, pp. 31-40.
[75] Johnston, M.; Bangalore, S. (2000). "Finite-state Multimodal Parsing and Understanding", In Proceedings of the International Conference on Computational Linguistics, Saarbruecken, Germany.
[76] Nigay, L.; Coutaz, J. (1995). "A generic platform for addressing the multimodal challenge". Proceedings of the Conference on Human Factors in Computing Systems, ACM Press.
[77] Bouchet, J.; Nigay, L.; Ganille, T. (2004). "Icare software components for rapidly developing multimodal interfaces". ICMI '04: Proceedings of the 6th international conference on Multimodal interfaces (New York, NY, USA), ACM, pp. 251-258.
[78] Russ, G., Sallans, B., Hareter, H. (2005). "Semantic Based Information Fusion in a Multimodal Interface". International Conference on Human-Computer Interaction (HCl'05), Las Vegas, Nevada, USA, 20-23 June, pp 94-100.
[79] Vo, M.T., Wood, C. (1996). "Building an application framework for speech and pen input integration in multimodal learning interfaces". In Proceedings of the Acoustics, Speech, and Signal Processing (ICASSP'96), May 7-10, IEEE Computer Society, Volume 06, pp. 3545-3548.
[80] Corradini, A., Mehta M., Bernsen, N.O., Martin, J.-C. (2003). "Multimodal Input Fusion in HumanComputer Interaction on the Example of the on-going NICE Project". In Proceedings of the NATO-ASI conference on Data Fusion for Situation Monitoring, Incident Detection, Alert and Response Management, Yerevan, Armenia.
[81] Johnston, M.; Bangalore, S. (2000). "Finite-state Multimodal Parsing and Understanding", In Proceedings of the International Conference on Computational Linguistics, Saarbruecken, Germany.
[82] Sun, Y., Shi, Y., Chen, F. and Chung , V.(2007). "An Efficient Multimodal Language Processor for Parallel Input Strings in Multimodal Input Fusion," in Proc. of the international Conference on Semantic Computing, pp. 389-396.
[83] Reitter, D.; Panttaja, E. M.; Cummins, F. (2004). "UI on the fly: Generating a multimodal user interface," in Proc. of HLT-NAACL-2004, Boston, Massachusetts, USA.
[84] D'Ulizia, A.; Ferri, F.; Grifoni P. (2011). "A Learning Algorithm for Multimodal Grammar Inference", IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, Vol. 41 (6), pp. 1495-1510.
[85] Pérez, G.; Amores, G.; Manchón, P. (2005). "Two strategies for multimodal fusion". In Proceedings of Multimodal Interaction for the Visualization and Exploration of Scientific Data, Trento, Italy, 26-32.
[86] P. K. Atrey, M. A. Hossain, A. El Saddik, and M. S. Kankanhalli. Multimodal fusion for multimedia analysis: A survey. Springer Multimedia Systems Journal, 16(6):345-379 (2010).
[87] Potamianos, G., Neti, C., Gravier, G., Garg, A., Senior, A.: Recent advances in the automatic recognition of audiovisual speech. Proc. IEEE 91(9), 1306-1326 (2003)
[88] Lucey, S., Sridharan, S., Chandran, V.: Improved speech recognition using adaptive audio-visual fusion via a stochastic secondary classifier. In: International Symposium on Intelligent Multimedia, Video and Speech Processing, pp. 551-554. Hong Kong (2001)
[89] Iyengar, G., Nock, H.J., Neti, C.: Audio-visual synchrony for detection of monologue in video archives. In: IEEE International Conference on Acoustics, Speech, and Signal Processing. Hong Kong (2003)
[90] Iyengar, G., Nock, H.J., Neti, C.: Discriminative model fusion for semantic concept detection and annotation in video. In: ACM International Conference on Multimedia, pp. 255-258. Berkeley (2003)
[91] Aleksic, P.S., Katsaggelos, A.K.: Audio-visual biometrics. Proc. IEEE 94(11), 2025-2044 (2006)
[92] Bredin, H., Chollet, G.: Audio-visual speech synchrony measure for talking-face identity verification. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 2, pp. 233-236. Paris (2007)
[93] Neti, C., Maison, B., Senior, A., Iyengar, G., Cuetos, P., Basu, S., Verma, A.: Joint processing of audio and visual information for multimedia indexing and human-computer interaction. In: International Conference RIAO. Paris, France (2000)
[94] Jaffre, G., Pinquier, J.: Audio/video fusion: a preprocessing step for multimodal person identification. In: International Workshop on MultiModal User Authentification. Toulouse, France (2006)
[95] Wu, K., Lin, C.K., Chang, E., Smith, J.R.: Multimodal information fusion for video concept detection. In: IEEE International Conference on Image Processing, pp. 2391-2394. Singapore (2004)
[96] Guironnet, M., Pellerin, D., Rombaut, M.: Video classification based on low-level feature fusion model. In: The 13th European Signal Processing Conference. Antalya, Turkey (2005)
[97] Town, C.: Multi-sensory and multi-modal fusion for sentient computing. Int. J. Comput. Vis. 71, 23553 (2007)
[98] Magalhaes, J., Ruger, S.: Information-theoretic semantic multimedia indexing. In: International Conference on Image and Video Retrieval, pp. 619-626. Amsterdam, The Netherlands (2007)
[99] Xu, H., Chua, T.S.: Fusion of AV features and external information sources for event detection in team sports video. ACM Trans. Multimed. Comput. Commun. Appl. 2(1), 44-67 (2006)
[100] Xie, L., Kennedy, L., Chang, S.F., Divakaran, A., Sun, H., Lin, C.Y.: Layered dynamic mixture model for pattern discovery in asynchronous multi-modal streams. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 1053-1056. Philadelphia, USA (2005)
[101] Yan, R., Yang, J., Hauptmann, A.: Learning query-class dependent weights in automatic video retrieval. In: ACM International Conference on Multimedia, pp. 548-555. New York, USA (2004)
[102] Shigeo Morishima and Satoshi Nakamura. 2004. Multimodal translation system using texturemapped lip-sync images for video mail and automatic dubbing applications. EURASIP J. Appl. Signal Process. 2004 (January 2004), 1637-1647. http://dx.doi.org/10.1155/S1110865704404259
[103] Duygulu, P., Barnard, K., de Freitas, N., Forsyth, D., "Object Recognition as Machine Translation: Learning a lexicon for a fixed image vocabulary", Proc. European Conference on Computer Vision (ECCV2002), Copenhagen, Denmark, May 27 - June 2, 2002 (Lecture Notes in computer Science, Volume 2353/2002, pp.97).
[104] J. Jeon, V. Lavrenko and R. Manmatha, "Automatic Image Annotation and Retrieval Using Crossmedia Relevance Models," Proc. ACM SIGIR’03, pp 119-126, 2003.
[105] Zanasi, Alessandro (2009). "Virtual Weapons for Real Wars: Text Mining for National Security". Proceedings of the International Workshop on Computational Intelligence in Security for Information Systems CISIS'08. Advances in Soft Computing 53. p. 53. doi:10.1007/978-3-540-88181-0_7. ISBN 978-3-540-88180-3.
[106] Cohen, K. Bretonnel; Hunter, Lawrence (2008). "Getting Started in Text Mining". PLoS Computational Biology 4 (1): e20. doi:10.1371/journal.pcbi.0040020. PMC 2217579. PMID 18225946.
[107] Jenssen, Tor-Kristian; Lægreid, Astrid; Komorowski, Jan; Hovig, Eivind (2001). "A literature network of human genes for high-throughput analysis of gene expression". Nature Genetics 28 (1): 21-8. doi:10.1038/ng0501-21. PMID 11326270.
[108] Masys, Daniel R. (2001). "Linking microarray data to the literature". Nature Genetics 28 (1): 9-10. doi:10.1038/ng0501-9. PMID 11326264.
[109] Joseph, Thomas; Saipradeep, Vangala G; Venkat Raghavan, Ganesh Sekar; Srinivasan, Rajgopal; Rao, Aditya; Kotte, Sujatha; Sivadasan, Naveen (2012). "TPX: Biomedical literature search made easy". Bioinformation 8 (12): 578-80. doi:10.6026/97320630008578. PMC 3398782. PMID 22829734.
[110] Coussement, Kristof; Van Den Poel, Dirk (2008). "Integrating the voice of customers through call center emails into a decision support system for churn prediction". Information \& Management 45 (3): 164-74. doi:10.1016/j.im.2008.01.005.
[111] Coussement, Kristof; Van Den Poel, Dirk (2008). "Improving customer complaint management by automatic email classification using linguistic style features as predictors". Decision Support Systems 44 (4): 870-82. doi:10.1016/j.dss.2007.10.010.
[112] Pang, Bo; Lee, Lillian; Vaithyanathan, Shivakumar (2002). "Thumbs up?". Proceedings of the ACL02 conference on Empirical methods in natural language processing 10. pp. 79-86. doi:10.3115/1118693.1118704.
[113] Erik Cambria; Robert Speer, Catherine Havasi and Amir Hussain (2010). "SenticNet: a Publicly Available Semantic Resource for Opinion Mining". Proceedings of AAAI CSK. pp. 14-18.
[114] Cody, W.F., J.T. Kreulen, V. Krishna, W.S. Spangler. The integration of business intelligence and knowledge management. IBM SYSTEMS JOURNAL, Vol.41, No.4, 2002
[115] Courtney D. Corley, Diane J. Cook, Armin R. Mikler, Karan P. Singh. Text and Structural Data Mining of Influenza Mentions in Web and Social Media. Int. J. Environ. Res. Public Health 2010, 7, 596-615; doi:10.3390/ijerph7020596
[116] D. Zeng, et al., "Social Media Analytics and Intelligence," IEEE Intelligent Systems, vol. 25, no. 6, 2010, pp. 13-16.
[117] Dekang Lin. 1998. Automatic retrieval and clustering of similar words. In Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics - Volume 2 (ACL '98), Vol. 2. Association for Computational Linguistics, Stroudsburg, PA, USA, 768-774. DOI=10.3115/980691.980696 http://dx.doi.org/10.3115/980691.980696
[118] Ido Dagan, Lillian Lee, and Fernando Pereira. 1997. Similarity-based method for word sense disambiguation. In Proceedings of the 35th Annual Meeting of the ACL, pages 56-63, Madrid, Spain.
[119] James R. Curran and Marc Moens. 2002. Improvements in automatic thesaurus extraction. In Proceedings of the ACL-02 workshop on Unsupervised lexical acquisition - Volume 9 (ULA '02), Vol. 9. Association for Computational Linguistics, Stroudsburg, PA, USA, 59-66. DOI=10.3115/1118627.1118635 http://dx.doi.org/10.3115/1118627.1118635
[120] http://www.lemurproject.org/
[121] A. McCallum. Bow: A toolkit for statistical language modeling, text retrieval, classification and clustering. http://www.cs.cmu.edu/~mccallum/bow, 1996.
[122] L. Baker, A. McCallum. Distributional Clustering of Words for Text Classification, ACM SIGIR Conference, 1998.
[123] R. Bekkerman, R. El-Yaniv, Y. Winter, N. Tishby. On Feature Distributional Clustering for Text Categorization. ACM SIGIR Conference, 2001.
[124] Charu C. Aggarwal, ChengXiang Zhai. (2012). "A Survey of Text Clustering Algorithms". In Mining Text Data (pp. 77-128). Springer US. http://dx.doi.org/10.1007/978-1-4614-3223-4_4
[125] Fodor, Jerry A. (1983). Modularity of Mind: An Essay on Faculty Psychology. Cambridge, Mass.: MIT Press. ISBN 0-262-56025-9
[126] Anil K. Jain and Richard C. Dubes. 1988. Algorithms for Clustering Data. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.
[127] M. Sahlgren. The Word-Space Model: using distributional analysis to represent syntagmatic and paradigmatic relations between words in high-dimensional vector spaces. PhD thesis, Stockholm University, 2006.
[128] A.Balali, A. Rajabi, S. Ghasemi, M. Asadpour, H. Faili. "Content Diffusion Prediction in Social Networks" 5th International Conference on Information and Knowledge Technology, Iran, 2013
[129] Army of the Guardians of the Islamic Revolution. (2014, June 7). In Wikipedia, The Free Encyclopedia. Retrieved 19:11, June 9, 2014, from http://en.wikipedia.org/w/index.php?title=Army of the Guardians of the Islamic Revolution\&oldid= $\underline{611987344}$
[130] Husayn ibn Ali. (2014, June 9). In Wikipedia, The Free Encyclopedia. Retrieved 19:31, June 9, 2014, from http://en.wikipedia.org/w/index.php?title=Husayn_ibn_Ali\&oldid=612197803
[131] P O Skjaervo. "Persian, Modern." Concise Encyclopedia of Languages of the World. Harvard University, Cambridge, MA, USA. $1^{\text {st }}$ ed. 2009. Print
[132] P O Skjaervo. "Iranian Languages." Concise Encyclopedia of Languages of the World. Harvard University, Cambridge, MA, USA. $1^{\text {st }}$ ed. 2009. Print
[133] Emmerick, Ronald Eric. "Iranian languages." Encyclopedia Britannica Online. Retrieved July 5, 2014
[134] Afar, Janet. "Iran." Encyclopedia Britannica Online. Retrieved July 5, 2014
[135] "Persian language." Encyclopædia Britannica. Encyclopædia Britannica Ultimate Reference Suite. Chicago: Encyclopædia Britannica, 2013.
[136] "Afghanistan." Encyclopædia Britannica. Encyclopædia Britannica Ultimate Reference Suite. Chicago: Encyclopædia Britannica, 2013.
[137] Persian vocabulary. (2014, April 24). In Wikipedia, The Free Encyclopedia. Retrieved 14:12, July 5, 2014, from http://en.wikipedia.org/w/index.php?title=Persian vocabulary\&oldid=605576894
[138] Scott Dyer, Jeff Martin, John Zulauf, "Motion Capture White Paper," 12 Dec 1995, on-line at ftp://ftp.sgi.com/sgi/A\|W/jam/mocap/MoCapWP v2.0.html
[139] Maureen Furniss, "Motion Capture." Retrieved from http://web.mit.edu/comm-forum/papers/fu rniss.html
[140] Motion capture. (2014, June 10). In Wikipedia, The Free Encyclopedia. Retrieved 12:32, June 20, 2014, from http://en.wikipedia.org/w/index.php?title=Motion capture\&oldid=612424957
[141] Förger, K. \& Takala, T. \& Pugliese, R. 2012. Authoring Rules for Bodily Interaction: From Example Clips to Continuous Motions. Conf. On Intelligent Virtual Agents, September 12-14, 2012, Santa Cruz, California, USA. LNCS, Intelligent Virtual Agents. Springer Berlin. 14 pages.
[142] Förger, K. \& Honkela, T. \& Takala, T. 2013. Impact of Varying Vocabularies on Controlling Motion of a Virtual Actor. Conf. On Intelligent Virtual Agents, August 29-31, 2013, Edinburgh, UK. LNCS, Intelligent Virtual Agents. Springer Berlin. 10 pages.
[143] John R. Searle (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3, pp 417-424. doi:10.1017/S0140525X00005756.
[144] Cole, David, "The Chinese Room Argument", The Stanford Encyclopedia of Philosophy (Summer 2014 Edition), Edward N. Zalta (ed.), URL = http://plato.stanford.edu/archives/sum2014/entries/chinese-room/.

Appendix A. Adverbs combined

In this section, I have included the adverbs which have been combined.

Words	Meaning	Part of speech
لنَّ_لنكَان	limping	Adverb
لنگَ_لنگَ_كنان_	limping	Adverb
كثان_كشان	limping	Adverb
با_شليدن	limping	Adverb
لنكَان_نكَان	limping	Adverb
لنكَان	limping	Adverb

The above table contains all the synonyms of "limping" adverb expressed by annotators. There have been also two rare cases in which two verbs have been used as an adverb. I have also considered that.

Words	Meaning	Part of speech
به آرامى	Slowly	Adverb
ارام	Slow	Adjective
كند	Slow	Adjective
يواش	Slowly	Adverb
به كندى	Slowly	Adverb
آهسته	Slow	Adjective
به آهستگى آكى	Slowly	Adverb
نرم	Soft	Adjective
به نرمى	Softly	Adverb

The above table contains all the synonyms of the adverb "slowly". Unlike the "limping", annotators have used adjective or an adverb to describe the slowness of a motion.

Words	Meaning	Part of speech
عصبى	Nervous	Adjective
غضبناكانيت	Angrily	Adverb
enraged	adjective	

The above table contains all the synonyms of the adverb "angrily".

Words	Meaning	Part of speech
بك حال	Languid	Adjective
با بيحالى	Languidly	Adverb
با بى حالى	languidly	Adverb

The above table contains all the synonyms of the adverb "languidly".

Words	Meaning	Part of speech
سرشوشى	Happy	Adjective
سر خوشالى	Happy	Adjective
بوشا شادى	Happily	Adverb
شاد	Happily	Adverb
Happy	Adjective	

The above table contains all the synonyms of the adverb "happily".

Words	Meaning	Part of speech
با ناراحتى	Sadly	Adverb
ناراحت	sad	adjective
غمكَين	Sad	Adjective
با اندوه	With grief, with sorrow	Adverb
پثرمرده	Withered, faded	Adjective
با افسردگى	Depressingly	Adverb

The above table contains all the synonyms of the adverb "sadly".

Words	Meaning	Part of speech
با شتاب شتابان	Hastily	Adverb
تند	Hastily	Adverb
با سرعت	Speedily	Adverb
سريعله	Fast	Adverb
Fast	Adjective	
Hurriedly	Adjective	

The above table contains all the synonyms of the adverb "fast".

Words	Meaning	Part of speech
طبيعى	Natural	Adverb
معمولى	Normal	Adverb

The above table contains all the synonyms of the adverb "normal".

Appendix B. Frequency of verbs and adjectives in the corpora

There are two corpuses from which the word frequencies are extracted, the first large corpus is Alef dataset, and the second one is Tabnak.

In this part, we count the frequencies of verbs, and by verbs, I mean whatever in input to the first box of each page of the form. In English, the actions animated in the form can be simply described by one word; however, in Farsi, one might use a verb that contains two words or two morphemes separated using a zero-width-non-joiner. Thus, the frequencies of substrings rather than words must be counted.

In Farsi, one uses an infinitive to describe an action in one word; infinitives and their derivation wordforms are not equivalent in Farsi. Since an individual is asked to fill the forms using one word or expression and not a sentence, actions are described by infinitives rather than the word-forms. In addition, it is the word-forms instead of their corresponding infinitives which occur in a corpus.

People have utilized 12 different verbs in total to describe the motions they have seen in the forms. In order to count the frequencies of a verb, both its infinitive and all its inflections have been taken into account. In other words, when the inflection of an infinitive is observed, its frequency is increased by one.

Appendix C. Verb frequencies in both corpuses

In the below table, you can see the verbs frequencies in both Alef and Tabnak dataset.

Verb categories	verbs	Spell or grammatical error	Frequencies in form answers	Frequencies in the Alef corpus	Frequencies in the Tabnak corpus
Walk			1030	63	205
	راهرفتن (walk)	no	1021		
	قدم زدن (walk)	no	4		
	قانم زدن (walk)	yes	1		
	راه رفتن با خوشحالى (walk happily)	no	1		
	راه رفت (he walked)	no	1		
	1) (path)	yes	1		
	$1)$	yes	1		
Run			159	77	280
	دويدن (to run)	no	157		
	ورزش دويدن (to run+exercise as a noun)	yes	1		
	دويدن آهسته (walk slow)	yes	1		
limp			40	1	4
	$\begin{gathered} \text { لنگيدن } \\ \text { (to } \operatorname{limp}) \end{gathered}$	no	29		
	لنگان لنگان رفتن (to limp)	no	9		
	لنگـ زدن (to limp)	no	1		
	لنگيدن خسته (to limp + tired)	yes	1		
Think			4	717	2289

In the following sections, I have included the synonyms of the 10 most frequent verbs and verb-adverbs and their translation between Finnish, English, and Farsi language.

Appendix D. Automatic detection result synonyms

Verbs have been represented by a 124-dimensional data points. They can also be viewed as vectors with 124 components; the first component denotes the frequency of a verb in the first video; the other components are defined in the same way. In other words, videos act like the context for the verbs. Next, the distances among all verbs have been computed using cosine metric, and for each verb, 5 closest verbs have been extracted. They can represent synonyms; the number of relevant extracted synonyms can indicate how effective this method is.

D.I. Synonyms result of English annotations

Instead of choosing 0.3, the fixed neighborhood distance is set to 0.5 . This number determines the radius of the neighborhood of a video; thus, a video has a larger neighborhood than the Farsi and Finnish cases.

$\begin{aligned} & 0 \\ & \stackrel{0}{5} \end{aligned}$		$\frac{0}{\delta}$	$\text { ज } \stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{\rightharpoonup}{0}}$	2nd	3rd	4th	5th	
walking	392	-s	Walking	walk	Strolling	Ambling	wandering	5
		S	walk	Walking	Strolling	amble	wandering	5
		rs	Walking	Limping	walk	limping	scuffing	2
limping	202	-s	Limping	stagger	leaping	climbing	hobbling	4
		S	Limping	scuffing	stagger	limb	leaping	5
		rs	Limping	scuffing	walking	walk	moving	3
Limping	110	-s	limping	leaping	stagger	hobbling	scuffing	5
		s	limping	scuffing	moving	leaping	shuffling	5
		rs	limping	scuffing	walking	walk	Walking	2
running	74	-s	sprinting	Running	Sprinting	Rushing	Run	5
		S	Running	sprinting	jogging	run	Jogging	5
		rs	Running	Limping	jogging	scuffing	walking	2
jogging	68	-s	Jogging	lurch	a_morning_jog	swagger	start_running	3
		S	Jogging	running	lurch	a_morning_jog	Running	4
		rs	Jogging	Limping	running	scuffing	limping	2
Walking	51	-s	walking	stride	walk	striding	ramble	5
		S	walking	walk	striding	stride	strutting	5
		rs	walking	walk	Limping	limping	scuffing	2
scuffing	31	-s	Limping	limping	shuffle	edging	shuffling	4
		S	Limping	limping	shuffle	shuffling	edging	4
		rs	Limping	limping	walking	moving	shuffle	4
marching	24	-s	Marching	stamping	Storming_off	funny_walk	ample	3
		S	Marching	march	stamping	stomping	Storming_off	4
		rs	stomping	walking	Walking	Limping	walk	4
walk	21	-s	walking	Walking	striding	Strolling	Ambling	5
		s	walking	Walking	striding	Strolling	Ambling	5
		rs	walking	Walking	limping	Limping	scuffing	2

stomping	21	-s	Stamping	dancing	stamping	marching	Stomping	5
		s	Stamping	Stomping	Speed_Walk	lumber	angry_walk	4
		rs	marching	Limping	walking	limping	scuffing	2
indexical-grounding								44
pattern-grounding								46
randomized-grounding								25

In the above table, only the 10 most frequent verbs are demonstrated. For each one of these verbs, 5 closest verbs are extracted from verb-video matrix. If an extracted verb overlaps with meaning of the current verb, it is considered to be a good synonym. Number of good snonyms has been counted, and it turns out that in the indexical-grounding approach 44 semantically related verbs have been extracted. The maximum number of semantically related verbs that could have been extracted is 50 ; thus, using cosine distance measure on verb-video matrix has led to relatively good result. Furthermore, if patterngrounding process is based on the original motion data, 2 more good synonyms are detected. Since the motion data was created by extracting suitable features from the motion videos, we can claim that grounding English verbs based on motion features makes sense. On the other hand, if the patterngrounding is based on a random data, the performance of finding good synonyms deteriorates.

	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \text { on } \end{aligned}$	$\frac{8}{8}$	※	2nd	3rd	4th	5th	$\begin{aligned} & \text { 흘 } \\ & \text { 品 } \\ & \text { \# } \\ & \text { \# } \end{aligned}$
	57	-s	walking_tho ughtfully	walking_unp urposefully	walk_slowly	$\begin{aligned} & \text { Walking_Jo } \\ & \text { yfully } \end{aligned}$	Ambling_Le isurely	2
		s	walking_ver y slowly	walking_sad ly	walking_car efully	Strolling_Sl owly	walking_tho ughtfully	2
		rs	Walking_S1 owly	walking_sad ly	walking_car efully	walking_ver y slowly	Limping_Sl owly	2
$\begin{aligned} & \text { ? } \\ & \frac{0}{n} \\ & \text { on } \\ & \text { an } \\ & \text { B } \end{aligned}$	28	-s	Hobbling_S1 owly	limping_sadl y	walking_asy mmetrically	shuffling_w ounded	scuffing_pai nstakingly	1
		s	limping_sadl y	limping_pai nfully	scuffing_pai nstakingly	scuffing_slo wly	Hobbling_Sl owly	2
		rs	limping pai nfully	walking car efully	$\underset{\text { owly }}{\text { Limping_Sl }^{\text {and }}}$	walking asy mmetrically	scuffing_pai nstakingly	1
	21	-s	limping_slo wly	$\underset{\text { owly }}{\text { Limping_Sl }}$	walk_injure d	limping_sadl y	Walking_W atchfully	0
		s	limping_slo wly	$\begin{aligned} & \text { Limping_Sl } \\ & \text { owly } \end{aligned}$	limping_sadl y	limbing_ver y slowly	Limping_Pai nfully	1
		rs	limping_slo wly	$\underset{\text { owly }}{\underset{\text { Limping_Sl }}{ }}$	walking_car efully	walking_ver y_slowly	Limping_No rmally	0
	20	-s	walking_tho ughtfully	wandering_d epressively	walk_thougt hful	walking_wal king_casuall y	walking_slig htly_threate ningly	0
		s	meandering slowly	walking_slo wly	Walking_W ondering	Strolling_S owly	walking_idl y	3
		rs	walking_car efully	walking_slo wly	limping_pai nfully	limping_slo wly	walking_sad ly	1
		-s	shuffling_m ournfully	walking_unp urposefully	meandering sadly	wandering_s adly	walking_wit h_doubt	2

Pattern-grounding excels the other two approaches even when the combination of verbs and adverbs are analyzed. In addition to finding more good synonyms, the pattern-grounding approach also manges to make some of the potential synonyms closer to the analyzed word. For instance, if we focus on 'walking-very-slowly' which is the $4^{\text {th }}$ most frequent verb-adverb, we would notice that the closest verbadverb is also its best synonym.

D.II. Synonyms in Farsi annotations

Extracting similar verbs has been not been applied on Farsi verbs because the verb 'walking' is so frequent that it has occupied most the vector space. However, one can extract similar verb-adverbs from the verb_adverb-video matrix.

	$\begin{aligned} & 0.0 \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \text { dix } \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & \sum \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{0}{0}} \stackrel{\text { ت}}{\underset{\sim}{x}} \stackrel{0}{0}$	2nd	3rd	4th	5th	
$\begin{gathered} \hat{0} \\ 1 \\ \vdots \\ \vdots \\ -1 \\ -1 \end{gathered}$	389	-S	راه_رفتن_آهس	راه_رفتن_ناراح	راه_رفتن_خسته	راه_رفتن_غمگيي	راه_رفتن_بى_ح	1
		S	راه_رفتن_آهس	راه_رفتن_ناراح	راه_رفتن_خسته	راه_رفتن_غمگيي	$\begin{gathered} \text { راه_رفتن_خيلى آرام } \end{gathered}$	2
		rs	راه_رفتن_آهس.	راه_رفتن_ناراح	راه_رفتن_خسته	قدم_زدن_اهس	راه_رفتن_لنگگ_	2
	346	-s	لراه_رفتن_لنـن__	راه_رفتن_لنگان	لنگیيدن_خسته	لنگيدن_آسيب_ ديده	لنگان_لنگان_راه رفتن_خيلى_لنگ يدن	3
		S	راه_رفتن_لنگ__	قدم_زدن_بالنگً	_لنعان_رفتن_كمان_ان_	قدم_زدن_با_لن	لنگيدن_آسيب_	4
		rs	راه_رفتن_لنـگ_	راه_رفتن_كمى _تند	راه_رفتن_كمى _لنگان_لنگان	راه_رفتن_خسته	لنگیيدن_خسته	2
	135	-S	راه_رفتن_تن	راه_رفتن_خوش	راه_رفتن_سريع	راه_رفتن_عصبا نى	راه_رفتن_باعجا。	3
		S	راه_رفتن_تن	راه_رفتن_خوش.	راه_,_فتن_سيع	راه_رفتن_باعجل -	راه_رفتن_عصبا نى	3
		rs	راه_رفتن_تن	راه_رفتن_لنگگ_	راه_رفتن_لنعان _لنگان	راه_رفتن_سريع	راه_رفتن_كمى _لنگان_لنگان	2
	117	-S	راه_رفتن_آرام	راه_رفتن_خسته	راه_رفتن_با_نارا	نر راه_رفتن_غمكي	ارال_رفتن_بى_>	2
		S	راه_رفتن_با_نارا حتى	راه_رفتن_خسته	قدم_زدن_باخ ستگى	راه_رفتن_آرام	راه_رفتن_غمگيي	2
		rs	راه_رفتن_آرام	راه_رفتن_خسته	راه_رفتن_آهس	راه_رفتن_لنگان_	قدم_زن_اهس	0
$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 3 \end{aligned}$	84	-S	راه_رفتن_ناراح	راه_رفتن_آرام	راه_رفتن_با_نارا	راه_رفتن_بى_>	راه_رفتن_غمگية	1
		S	راه_رفتن_ناراح	قدم_زدن_اهس	راه_رفتن_آرام	قدم_زدن_باخ ستگى	لنگان_لنگان_راها رفتن_خيلى_اه يسته	1
		rs	راه_رفتن_آرام	راه_رفتن_ناراح	راه_رفتن_آهس	راه_رفتن_لنـگ__	راه_رفتن_لنگان	0
$\begin{aligned} & 6 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	79	-s	راه_رفتن_سريع	راه_رفتن_با_عج	, اله_رفتن_خوش	راه_رفتن_كمى _تند	راه_رفتن_با_سر	4
		S	راه_رفتن_سريع	راه_رفتن_با_عج	راه_رفتن_خوش	راه_رفتن_كمى_	راه_رفتن_كمى _سريع_	4

More relevant synonyms are detected when pattern-grounding is implemented. Furthermore, in general, the correct synonyms would get closer to the studied verb-adverb by pattern-grounding; for example, 'رفتن_با_ناراحتى, 'رف:' is ranked the $3^{\text {rd }}$ closest verb-adverb to 'رفتن_اراحت,', while with the help of pattern-grounding, it is ranked the $1^{\text {st. }}$.
D.III. Synonyms in Finnish annotation

The synonyms of both Finnish verbs and verb-adverbs have been extracted. In the following table, you can see the synonyms of the 10 most frequent Finnish verbs and verb-adverbs.

$\begin{aligned} & \text { ® } \\ & \stackrel{\circ}{0} \\ & \text { 춘 } \end{aligned}$	618	-s	kävellä	käppäilee	käveleminen	Kävelee	löntystelee	5
		S	kävellä	käppäilee	Kävelee	löntystelee	maleksii	5
		rs	kävellä	nilkuttaa	ontua	ontuu	linkuttaa	1
若	229	-s	nilkuttaa	ontua	linkuttaa	laahustaa	raahustaa	3
		S	ontua	nilkuttaa	linkuttaa	raahustaa	laahustaa	3
		rs	nilkuttaa	ontua	linkuttaa	laahustaa	kävelee	3
	164	-s	ontuu	linkuttaa	ontua	linkkaa	liikkuu	4
		s	ontuu	linkuttaa	ontua	raahustaa	laahaa_jalka a	4
		rs	ontuu	ontua	linkuttaa	kävelee	kävellä	3
$\begin{aligned} & \ddot{0} \\ & \frac{\ddot{y y}}{0} \\ & \underset{\theta}{0} \end{aligned}$	106	-s	juosta	juokseminen	ryntää	pyrähtää	lähtee juoks emaan	5
		s	juosta	juokseminen	lähtee_juoks emaan	ryntää	pyrähtää	5
		rs	juosta	juokseminen	kävelee	ontua	ontuu	2
	82	-s	kävelee	käppäilee	käveleminen	reippailee	löntystelee	5
		S	kävelee	käppäilee	maleksii	astelee	käyskentelee	5
		rs	kävelee	nilkuttaa	ontuu	ontua	linkuttaa	1
	66	-s	hölkätä	hölkyttää	hölkkäämine n	Hölkkää	jolkottelee	4
		s	hölkyttää	hölkätä	lönkyttelee	jolkottelee	hölkkäämine n	4
		rs	hölkyttää	hölkätä	kävelee	juosta	kävellä	3
$\begin{aligned} & \text { 彩 } \end{aligned}$	52	-s	ontuu	nilkuttaa	linkuttaa	laahustaa	raahustaa	3
		S	ontuu	raahustaa	nilkuttaa	laahustaa	linkuttaa	3
		rs	ontuu	nilkuttaa	linkuttaa	kävelee	laahustaa	3
	45	-s	ontuu	nilkuttaa	ontua	liikkuu	linkkaa	4
		S	nilkuttaa	ontuu	ontua	raahustaa	liikkuu	4
		rs	ontuu	nilkuttaa	ontua	laahustaa	raahustaa	3
	34	-s	ontuu	klenkkaa	raahustaa	ontua	raahautuu	2
		S	ontua	raahustaa	ontuu	klenkkaa	raahautuu	2
		rs	ontuu	nilkuttaa	ontua	linkuttaa	raahustaa	1
$\begin{aligned} & \text { 퓽 } \\ & . \end{aligned}$	16	-s	juoksee	juokseminen	ryntää	pyrähtää	ottaa_spurtit	5
		S	juoksee	juokseminen	lähtee_juoks emaan	ryntää	pyrähtää	5
		rs	juoksee	kävelee	ontua	nilkuttaa	ontuu	1
indexical-grounding								40
pattern-grounding								40
randomized-grounding								21

Although the resulting synonyms using indexical-grounding is not precisely identical to the results of pattern-grounding approach, there is no profound difference between these two approaches in terms of number of found relevant synonyms. However, the performance of pattern-grounding approach would deteriorate significantly when Finnish verbs are grounded using a random data.

	$\begin{aligned} & \stackrel{0}{0} \\ & \frac{0}{\ddot{0}} \lambda \\ & \text { in } \end{aligned}$		范荡	2nd	3rd	4th	5th	
	64	-s	$\underset{\text { stí }}{\substack{\text { kävellä_hitaa }}}$	kävelee suru llisena	kävelee_epä varmasti	kävelee hyvi n_hitaasti	käveleskelee mietteliääst i	2
		s	$\underset{\text { s }}{\substack{\text { kävellä_hida } \\ \hline}}$	kävelee_hyvi n_hitaasti	$\underset{\text { stí }}{\substack{\text { kävellä_hitaa }}}$	kävelee_suru llisena	maleksii_hit aasti	4
		rs	$\underset{\text { stí }}{\text { kävellä hitaa }}$	kävelee_suru llisena	kävelee miet teliäästi	kävelee_varo vasti	kävelee_renn osti	1
$\underset{\mathrm{ti}}{\text { kävelee }}$	52	-s	kävellä_riva kasti	kävelee mää rätietoisesti	kävelee päät täväinen	kävelee_käv elee_normaa listi	Kävelee Rei ppaasti	4
		s	kävelee_mää rätietoisesti	kävelee_päät täväinen	kävellä_riva kasti	kävellä_reip paasti	$\begin{gathered} \text { kävellä_rent } \\ \text { o } \end{gathered}$	4
		rs	kävelee_mää rätietoisesti	kävelee_tava llisesti	kävelee_päät täväinen	kävellä_reip as	$\underset{\text { käveliä_riva }}{\text { ká }}$	4
	47	-s	nilkuttaa hit aasti	$\begin{aligned} & \text { ontuu_varov } \\ & \text { asti } \end{aligned}$	ontuu_vaival loisesti	nilkuttaa kiv ulloisesti	linkuttaa_vai vainen	1
		s	nilkuttaa_hit aasti	$\begin{gathered} \text { ontuu_varov } \\ \text { asti } \end{gathered}$	ontuu_hyvin kivuliaasti	ontuu_vaival loisesti	ontuu_takav etoisesti	1
		rs	nilkuttaa_hit aasti	$\begin{aligned} & \text { ontuu_varov } \\ & \text { asti } \end{aligned}$	kävelee_vaiv alloisesti	ontuu_vaival loisesti	ontuu_pahast	1
	41	-s	nilkuttaa no peasti	kävelee_reip pahasti	ontu__reippa	ontuu_takav etoisesti	nilkuttaa rei ppaasti	3
		s	ontuu_pahas ti	kävelee_ram miten	nilkuttaa_no peasti	laahaa jalka a_pahasti	kävelee_laah ustaen	4
		rs	kävelee rauh allisesti	kävelee_ram miten	kävelee vaiv alloisesti	ontuu_hitaas	kävelee hita asti	1
	40	-s	kävellä_itsev armasti	kävelee_itse varmasti	kävelee_jäyk ästi	kävelee_kiir eettä	$\begin{gathered} \text { kävellä_renn } \\ \text { osti } \end{gathered}$	1
		s	kävelee itse varmasti	kävellä itsev armasti	$\underset{\text { ostí }}{\text { kävellä_renn }}$	kävelee_verk kaisesti	vetelehtii hit aasti	3
		rs	kävelee_hita asti	$\begin{gathered} \text { kävellä_renn } \\ \text { osti } \end{gathered}$	kävelee_itse varmasti	kävelee_nor maalisti	kävelee rauh allisesti	2
$\begin{gathered} \text { kävelee_normaal } \\ \text { isti } \end{gathered}$	28	-s	kävellä_itsev arma	kävellä_nor	kävellä_itsev armasti	kävelee_tava llisesti	kävellä_rent o	2
		s	kävellä_itsev arma	kävellä_rent o	kävelee_tava llisesti	kävelee jäyk ästi	kävelee_käv elee_normaa listi	2
		rs	kävelee_renn osti	kävellä_itsev arma	kävelee_tava 1lisesti	kävelee_reip paasti	kävelee_mää rätietoisesti	1
	21	-s	linkuttaa_vai vainen	${ }_{\overline{\text { ti }}}$	nilkuttaa_hit aasti	ontuu_hyvin _kivuliaasti	ontuu_kivual iaasti	5
		s	linkuttaa_vai vainen	nilkuttaa_hit aasti	ontuu_hyvin _kivuliaasti	ontuu_hitaas	$\begin{aligned} & \text { ontua_surulli } \\ & \text { nen } \end{aligned}$	4
		rs		nilkuttaa hit aasti	ontuu hyvin kivuliaasti	ontuu_kivuli aasti	$\underset{\text { keasti }}{\text { nilki }}$	5
- $-7=$	20	-s	ontuu_vaike	linkuttaa_kiv	ontuu_voima	ontuu_vihais	Ontuu_vaiva	3

			asti	ulias	kkaasti	esti	lloisesti	
		s	ontuu_vaike asti	nilkuttaa＿vai keasti	linkuttaa＿kiv ulias	raahustaa＿va ikeasti	ontuu＿vaival loisesti	5
		rs	ontuu＿vaike asti	nilkuttaa＿hit aasti	$\text { ontuu_hitaas }_{\overline{\mathrm{ti}}}$	ontuu＿vaival loisesti	kävelee＿vaiv alloisesti	4
	15	－s	kävelee kiir eettömästi	kävelee hie man＿alakulo isesti	kävellä＿epäv armasti	kävelee＿tyyn esti	$\underset{\text { stí }}{\text { vaeltaa_hitaa }}$	3
		s	kävelee＿hita asti	kävelee＿kiir eettömästi	kävellä＿hida s	kävelee hie man＿alakulo isesti	kävellä＿epäv armasti	3
		rs	kävelee＿hita asti	kävelee_ontu en	kävelee＿ram miten	kävelee＿renn osti	$\text { ontuu_hitaas }_{\mathrm{ti}}$	2
픙 E 0 0 0 0 0 0	15	－s	juoksee＿koh tuullista＿vau htia	$\underset{\text { sti }}{\substack{\text { juosta＿renno }}}$	juoksee＿reip paasti	juoksee juo ksee＿hitaasti	hölkkää＿ren nosti	4
		s	hölkkää＿reip paasti	juoksee＿koh tuullista＿vau htia	juoksee rauh allisesti	$\underset{\text { sti }}{\text { juosta＿renno }}$	juoksee＿reip paasti	4
		rs	juoksee reip paasti	$\underset{\text { sti }}{\text { juosta＿renno }}$	$\text { ontuu_h }_{\overline{\mathrm{ti}}}$	hölkkää hita asti	kävelee＿varo vasti	1
indexical－grounding								28
pattern－grounding								34
randomized－grounding								22

When the combination of Finnish verb and adverbs are considered，more relevant synonyms are extracted using the pattern－grounding approach．Even for less frequent verb－adverbs such as ＇juoksee＿rennosti＇，the pattern－grounding approach assigns a lower rank to inappropriate synonyms such as＇juoksee＿reippaasti＇．

Appendix E．Automatic translation result

In Appendix，you can find the translation result of the 10 most frequent verbs and verb－adverbs．The translation has been implemented using indexical－grounding，pattern－grounding，and randomized－ grounding approach．In addition，English，Finnish，and Farsi annotations have been been considered in the translation process．

Verb translation has been implemented by considering a verb vector in the source language and the closest verb vectors in the target language．Five of such closest verbs have been reported in the following tables．Verb－adverbs have been translated using the same process．

E．I．Translating from English to Finnish

In this section，the result of translating from English to Finnish is declared．

$\begin{aligned} & \circ \\ & >0 \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \stackrel{0}{\circ} \\ & \Sigma \end{aligned}$	范荡范	2nd	3rd	4th	5th	
$\overline{3} \cdot \underline{0}$	392	－s	kävelee	kävellä	Kävelee	käveleminen	käppäilee	5
		s	kävelee	kävellä	Kävelee	käppäilee	astelee	5

		rs	kävelee	kävellä	ontuu	nilkuttaa	ontua	2
$\begin{aligned} & \text { ED } \\ & \text { EI } \end{aligned}$	202	－s	ontuu	nilkuttaa	linkuttaa	ontua	liikkuu	5
		S	nilkuttaa	ontuu	linkuttaa	ontua	raahustaa	4
		rs	ontuu	nilkuttaa	linkuttaa	ontua	kävelee	4
若	110	－s	ontuu	nilkuttaa	linkuttaa	ontua	liikkuu	5
		S	ontuu	nilkuttaa	ontua	linkuttaa	raahustaa	4
		rs	ontuu	nilkuttaa	ontua	linkuttaa	kävelee	4
	74	－s	juoksee	juosta	juokseminen	ryntää	pyrähtää	5
		s	juoksee	juosta	juokseminen	starttaa＿juok suun	hölkkää	5
		rs	juoksee	juosta	kävelee	nilkuttaa	hölkkää	3
$\begin{aligned} & .00 \\ & .8 \\ & .8 \\ & .00 \\ & \hline 0 \end{aligned}$	68	－s	hölkkää	hölkätä	hölkyttää	hölkkäämine n	Hölkkää	5
		S	hölkkää	hölkyttää	hölkätä	lönkyttelee	jolkottaa	5
		rs	hölkkää	hölkyttää	juosta	nilkuttaa	linkuttaa	3
	51	－s	kävellä	kävelee	reippailee	Kävelee	käveleminen	4
		S	kävellä	kävelee	astelee	käppäilee	Kävelee	5
		rs	kävellä	kävelee	ontuu	nilkuttaa	ontua	2
范	31	－s	ontuu	ontua	nilkuttaa	raahustaa	linkuttaa	1
		S	ontua	ontuu	raahustaa	laahustaa	nilkuttaa	2
		rs	ontuu	nilkuttaa	ontua	linkuttaa	kävelee	0
	24	－s	marssii	tramppaamin en	marssia	harppoo	tömistää	4
		s	marssii	tömistää	harppoo	tramppaamin en	marssia	4
		rs	harppoo	kävelee	ontuu	kävellä	linkuttaa	3
$\begin{aligned} & \underset{\#}{\#} \\ & i=1 \end{aligned}$	21	－s	kävellä	kävelee	Kävelee	käveleminen	hidastelee	4
		S	kävelee	kävellä	käppäilee	Kävelee	astelee	5
		rs	kävellä	kävelee	nilkuttaa	ontuu	linkuttaa	2
	21	－s	tömistelee	tömpsyttelee	tömpsii	tömistely	tömistellä	5
		s	tömistelee	polkee＿jalka a	tömpsyttelee	tömpsii	tömistely	5
		rs	kävelee	ontuu	nilkuttaa	linkuttaa	ontua	1
indexical－grounding								43
pattern－grounding								44
randomized－grounding								24

Pattern－grounding approach has led to slightly better translation from English verb to Finnish．

$\begin{array}{ll} \frac{0}{2} \\ \frac{1}{0} \\ > & \frac{0}{0} \end{array}$		$\begin{aligned} & \text { O } \\ & \frac{0}{\Sigma} \end{aligned}$		2nd	3rd	4th	5th	
ミ$\times \infty{ }_{\sim}^{\infty}$	57	－S	kävelee＿hita asti	kävellä＿hita asti	löntystelee＿ rennosti	käveleskelee ＿mietteliääs	kävelee＿ren nosti	4

		s		ti					
		kävelee_hita asti	kävellä_hida s	kävellä_hita asti	kävelee_rau hallisesti	kävelee_hyvi n hitaasti	5		
		rs	kävelee_hita asti	kävellä_hita asti	kävelee_ren nosti	kävelee_rau hallisesti	$\underset{\text { sti }}{\text { ontuu_hitaa }}$	4	
	28		-s	$\underset{\text { sti }}{\text { ontuu_hitaa }}$	nilkuttaa_hit aasti	ontuu_raska asti	ontuu_alaku loisesti	nilkuttaa_kiv ulloisesti	2
		s	ontuu_hitaa sti	nilkuttaa_hit aasti	$\begin{gathered} \text { ontuu_varov } \\ \text { asti } \end{gathered}$	ontuu_vaival loisesti	laahustaa_o ntuen	3	
		rs	$\underset{\text { sti }}{\text { ontuu_hitaa }}$	ontuu_varov asti	ontuu_vaival loisesti	$\begin{aligned} & \text { nilkuttaa_hit } \\ & \text { aasti } \end{aligned}$	$\underset{\mathrm{ti}}{\text { ontua_hitaas }}$	3	
	21	-s	nilkuttaa_kiv ulloisesti	laahustaa_v aivalloisesti	$\begin{gathered} \text { ontuu_hitaa } \\ \text { sti } \end{gathered}$	ontuu_väsyn eesti	raahustaa_t uskaisesti	3	
		s	nilkuttaa_hit aasti	$\underset{\text { sti }}{\text { ontuu_hitaa }}$	ontuu_vaival loisesti	ontuu_hyvin _kivuliaasti	ontua_surull inen	2	
		rs	ontuu_hitaa	ontuu_vaival loisesti	kävelee_ram miten	ontuu_paha sti	ontuu_hyvin kivuliaasti	2	
$\begin{aligned} & \frac{0}{n} \\ & \frac{1}{2} \\ & \frac{2}{\omega} \\ & \frac{2}{3} \\ & -\frac{1}{3} \\ & \frac{0}{\sqrt{0}} \\ & 3 \end{aligned}$	20	-s	kävelee_hita asti	kävelee_epä varmasti	kävelee_sur ullisena	tallustaa_mi ettien	pohdiskella_ mietteliäs	1	
		s	kävelee_hyvi n_hitaasti	kävelee_hita asti	kävelee_epä varmasti	käyskentelee _mietteliääs ti	kävelee_var ovasti	2	
		rs	kävelee_hita asti	kävelee_sur ullisena	$\underset{\text { sti }}{\text { ontuu_hitaa }}$	kävelee_epä varmasti	kävellä_hita asti	2	
	18	-s	kävelee_alla päin	matelee_alla päin	$\begin{aligned} & \text { Kävelee_Hit } \\ & \text { aasti } \end{aligned}$	kävelee_alak uloisesti	kävellä_poh diskeleva	1	
		s	kävellä_poh diskeleva	kävelee_alla päin	kävelee_mie tteliäästi	kävelee_sur ullisena	kävellä_hita asti	1	
		rs	kävelee_mie tteliäästi	kävelee_mas entuneesti	kävelee_sur ullisena	kävelee_hita asti	kävellä_hita asti	2	
	16	-s	kävellä_reip paasti	kävelee_pää ttäväinen	kävelee_reip paasti	kävelee_ilois esti	kävellä_rivak asti	1	
		s	kävelee_nor maalisti	$\begin{gathered} \text { kävellä_rent } \\ \text { o } \end{gathered}$	kävellä_reip paasti	kävelee_mä ärätietoisesti	kävelee_reip paasti	1	
		rs	kävelee_pää ttäväinen	kävellä_reip paasti	kävelee_reip paasti	kävelee_mä ärätietoisesti	kävelee_tav allisesti	2	
	16	-s	nilkuttaa_va roen	$\underset{\text { sti }}{\text { ontuu_hitaa }}$	nilkuttaa_hit aasti	ontuu_kivuli aasti	kävelee_raa hautuen	2	
		s	$\begin{gathered} \text { ontuu_hitaa } \\ \text { sti } \end{gathered}$	nilkuttaa_hit aasti	$\underset{\mathrm{ti}}{\text { ontua_hitaas }}$	ontuu_varov asti	ontuu_raska asti	3	
		rs	$\underset{\text { sti }}{\text { ontuu_hitaa }}$	ontuu_vaival loisesti	ontuu_hyvin _kivuliaasti	ontuu_kivuli aasti	ontuu_varov asti	1	
	15	-s	reippailee_t armokkaasti	nilkuttaa_hy vin_hyvin_vä hän	kävellä_pyst ypäin	käveleminen jäykästi	käveleminen _epäluonnoll isesti	0	
		s	reippailee_t armokkaasti	nilkuttaa_hy vin_hyvin_vä hän	kävellä_pyst ypäin	käveleminen jäykästi	käveleminen _epäluonnoll isesti	0	

Pattern－grounding enhances the automatic ranslation of English verb－adverb to Finnish verb－adverb． However，since a randomized－grounding also has led to a comparable translation performance，it cannot be said with certain that it was pattern－grounding that enhances the translation in this case．

E．II．Translating from Finnish to English

In this section，you ca find the translation result of 10 most frequent annotated Finnish verbs and verb－ adverbs to English．

Verb		$\frac{\otimes}{0}$	黄荡茳	2nd	3rd	4th	5th	
kävele e	618	－s	walking	Walking	walk	striding	Ambling	5
		s	walking	Walking	walk	Strolling	amble	5
		rs	walking	Walking	Limping	walk	limping	3
ontuu	229	－s	limping	Limping	scuffing	stagger	leaping	3
		s	limping	Limping	scuffing	shuffling	limb	4
		rs	limping	Limping	scuffing	walking	moving	3
nilkutt aa	164	－s	limping	Limping	stagger	scuffing	leaping	3
		s	limping	Limping	limbing	scuffing	limb	4
		rs	Limping	limping	scuffing	walking	moving	3
$\begin{gathered} \text { juokse } \\ \mathrm{e} \end{gathered}$	106	－s	running	sprinting	Running	Sprinting	Rushing	5
		s	running	Running	sprinting	Starting＿run ning	Sprinting	5
		rs	running	Running	sprinting	jogging	walking	4
kävell	82	－s	walking	Walking	walk	Ambling	striding	5

Using pattern-grounding, more appropriate translations have been found, while using a randomizedgrounding, the translation performance is worsened in comparison to the indexical-grounding approach.

		$\frac{\otimes}{\infty}$		2nd	3rd	4th	5th	
	64	-s	walking_slo wly	walking_tho ughtfully	walking_unp urposefully	walking_ver y_slowly	walking_wai ting	3
		s	walking_slo wly	walking_ver y slowly	walking_tho ughtfully	walking_idly	walking_wai ting	4
		rs	walking_slo wly	walking_ver y_slowly	walking_car efully	Walking_Slo wly	limping_pai nfully	3
	52	-s	Walking_Pu rposefully	walking_ere ct	walking_ene rgetically	walking_fast	walking_con fidently	2
		s	walking_stea dily	walking_bris kly	Walking_Pu rposefully	walking_ere ct	walking_acti vely	3
		rs	walking con fidently	walking_fast	walking bris kly	walking stea dily	walking ene rgetically	4
	47	-s	$\underset{\text { wly }}{\operatorname{limping}^{\text {lim }}}$	limping_sadl y	Hobbling_Sl owly	shuffling_w ounded	limping_pai nfully	2
		s	limping_slo wly	limping_pai nfully	limping_sadl y	scuffing_slo wly	scuffing_pai nstakingly	1
		rs	limping_slo	limping_pai	Limping_Slo	scuffing_slo	walking_slo	2

In addition to finding one more appropriate translation, pattern-grounding slightly boosts the translation of Finnish verb-adverbs by assigning the more accurate translations higher ranks. For example,
＇walking＿regularly＇is ranked the $5^{\text {th }}$ best translation of＇kävelee＿normaalisti＇using the indexical－ grounding approach，while pattern－grounding improves its rank and raise it to the $3^{\text {rd }}$ best translation．

E．III．Translating from English to Farsi

In this section，you can find the translation of English verbs and verb－adverbs to Farsi verbs and verb－ adverbs．

$\frac{0}{5}$		$\frac{0}{0}$	黄范范	2nd	3rd	4th	5th	
	392	－s	راه＿，رفتن	راهرفتن	قدم＿زدن	تند＿اه＿＿رفتن	راه＿می＿，	5
		s	راه＿，رفتن	راهرفتن	قدم＿زدن	پياهه روى	كام＿برداشتن	5
		rs	راه＿，رفتن	قدم＿زن	كامبـبرداشتن	راهرفتن	لنگیيدن	4
$\begin{aligned} & \text { 吕 } \\ & \text { E } \end{aligned}$	202	－s	لنگّيدن	لنعان_لنكان_رفت	لنكان＿لنكان＿راهـ رفتن	لنگان_لنتان_,_راه	مى＿لنگّ	5
		s	لنكَيدن	لنكان＿لنتان＿راه رفتن	ننگان_لنگان_رفت	قدم＿برداشتن	لنكان_لنگان_,_رفتن	4
		rs	لنگیيدن	لنكان＿لنگان＿راهـ رفتن	راه＿，＿فتن	قدم＿زن	كام＿برداشتن	2
$\begin{aligned} & \text { En } \\ & \text { E } \\ & \text { n } \end{aligned}$	110	－s	لنگَيدن	لنكان_لنكان_رفت	لنكان＿لنگان＿，راه رفتن	مى＿لنگّ	لنكان_لنگان_رفتن_اه	5
		s	لنگان＿لنگان＿，اها رفتن	لنگَيدن	لنیان＿نكان＿，رفت ن	لنكان_لنگان_رفتن_اه	راه＿，＿فتن	5
		rs	لنگیين	，اهo，رفتن	لنكان＿لنكان＿راه رفتن	قدم＿زن	كام＿برداشتن	3
	74	－s	دويدن	می＿دود	سريع＿دويدن	دويدن＿سريع	با＿سرعت＿دويدن	5
		S	دويدن	مى＿دود	سريع＿دويدن	دويدن＿سريع	با＿سرعت＿دويدن	5
		rs	دويدن	می＿دود	سريع＿دويدن	راه＿，رفتن	قدم＿زدن	3
	68	－s	دويدن＿آهسته	آهسته＿دويدن	دويدن	نرم＿دويدن	آهسته＿دميدن	5
		s	دويدن＿آهسته	دويدن	آهسته＿دويدن	نرم＿دويدن	آهسته＿دميدن	5
		rs	دويدن	هروله	دويدن＿آهسته	آهسته＿دويدن	قدم＿زدن	4
	51	－s	تند＿راه＿رفتن	راهرفتن	راه＿，رفتن	پياده	راه＿رفتن＿تيز	5
		s	راهرفتن	راه＿，＿رفتن	تند＿راه＿رفتن	پياده	قدم＿زن	5
		rs	راه＿，رفتن	قدم＿زدن	راهرفتن	كام＿برداشتن	لنگیيدن	4
	31	－s	لنگَيدن	لنگان＿لنگان＿راه رفتن	راه＿，＿رفتن	lang＿langan ＿rah＿raftan	لنكان_لنتان_,_راه	0
		s	لنكَيدن	لنكان＿لنگان＿راها رفتن	لنكان＿لنگان＿رفت	كشال＿كشال＿ر＿اd	لنعًان_لنكان_راه	1
		rs	لنگَيدن	لنگان＿لنگان＿راهـ رفتن	，010，＿رفتن	قدم＿زن	كام＿برداشتن	0

	24	-S	هدفمند_بودن		خبره	تيز_و_قوى_گش	نرمش_كردن	0
		S	نرمش_كردن	رزه_رفتن	هدفمند_بودن		خبره	1
		rs	كام_برداشتن	راه_,	راهرفتن	قدم_زدن	رز¢ه_رفتن	5
$\stackrel{y}{\underset{\sim}{n}}$	21	-S	راه_رفتن	راهرفتن	قدم_زدن	تند_اه_,_فتن	لنگان_لنگان_رفت ن	4
		S	راه_, رفتن	راهرفتن	قدم_زدن	تند_راه_رفتن	Fام_برداشتن	5
		rs	راه_رفتن	قدم_زدن	راهرفتن	لنگيدن	كام_برداشتن	4
	21	-S	عصبانى_راه_,_رف تن	طبل_زدن_در_ـر	سريع_راه_رفتن	رقصيدن	راه_رفتن_با_ء	1
		S	عصبانى_راه_رف تن	طبل_زدن_در_ـ_	سريع_راه_رفتن	رقصيد	راه_رفتن_با_\& صبانيت	1
		rs	گام_برداشتن	راه_رفتن	راهرفتن	قدم_زدن	لنگيدن	0
indexical-grounding								35
pattern-grounding								37
randomized-grounding								29

Translation of English verbs and verb-adverbs to Farsi has been enhanced moderately when patterngrounding is applied. Since randomized-grounding has worsened the translation, it can be claimed that pattern-grounding using the motion data is a meaningful and reasonable way of normalization.

		$\begin{aligned} & \frac{0}{0} \\ & \sum \end{aligned}$		2nd	3 rd	4th	5th	
	57	-S	راه_رفتن_آرام	قدم_زد_آهسته	راه_رفتن_آهسته	قدم_زدن_آرام	شاه_رفتن_با_آراه	4
		S	راه_رفتن_آرام	راه_رفتن_آهسته	راه_رفتن_بى_>	راه_,_فتن_اهسته	قدم_زن_آهسته	4
		rs	راه_رفتن_آرام	راه_رفتن_آهسته	راه_رفتن_بافكر	راه_رفتن_ناراح	راه_رفتن_بى_>	2
$\begin{aligned} & \frac{\lambda}{3} \\ & \frac{0}{n_{1}} \\ & \text { on } \\ & \text { B } \\ & \text { B } \end{aligned}$	28	-S	ننگان_لنگان_رفت	لنگان_لنگان_رفت	ننگان_لنگان_رفت	ننگان_لنگان_رفت	راه_,_فت__پير	2
		S	لنگيدن_آهسته	لنگیיدنخسته	لنگيدن_خيلى_أ هسته	لنگيدن_ارام	لنگيدن_آرام	4
		rs	لنگیدن_خسته	راه_رفتن_خسته	لنگیيد_آهسته	راه_رفتن_لنگان	ننگان_لنگان_رفت	3
	21	-S	نلنگان_لنگان_رفت	لنكان_لنگان_رفت	ننگان_لنگان_رفت	لنگيدن_چادرد	ننگان_لنگان_رفت	3
		S	لنگیيدن_خسته	قدم_زدن_بالنگي	راه_رفتن_لنگان	قدم_برداشتن_اه	راه_رفتن_لنگ_	3

				دن	لـ	سته	لنكان	
		rs	قدم＿زنن＿بالنكي ن	راه_رفتن_لنـگ__	راه＿，رفتن＿لنتان رلنـان	راه＿，رفتن＿خسته	راه＿，＿فتن＿آرام	3
	20	－s	راه_,رفتن_متفكرا	راه＿，	راه_رفتن_بى_>	راه__فتن_متفكرا	，اه＿，＿رفتن＿خسته	1
		s	راه_رفتن_متفكرا	راه＿，رفتن＿آهسته	راه_رفتن_متفكرا	قدم＿زنـ＿با＿نارا حتى	راه＿，＿فتن＿آرام	2
		rs	راه_رفتن_متفكرا	راه＿，＿فتن＿خسته	راه＿رفتن＿آرام	راه_رفتن_ناراح	راه＿，رفتن＿آهسته	2
	18	－s	راه_رفورده_شكد.	قدم＿زن＿بيحال	سركردان＿فقير	رفتن_بى_خيل_	راهرفتن＿ناراحتى	2
		s	راه＿，＿فتن＿افسرده	$\begin{gathered} \text { راه_رفتن_غمكي } \\ \text { نا } \end{gathered}$	راه_رفتن_به_آرا	رت_خورده_شكس.	راه＿，رفتن＿ناراح	4
		rs	راه_رفتن_بى_حا	راه＿，رفتن＿با＿نارا حتى	راه_رفتن_به_آرا	راه_رفتن_نارا>		2
	16	－s	راه_رفتن_بيخيا	راه＿，رفتن＿نرم	راه＿，رفتن＿با＿اء تماد＿به＿نفس	راه＿，＿فتن＿نرمال	راه＿，＿فتن＿سبك	1
		s	راهرفتن＿به＿طور ى＿نرمال	, اله_رفتن_ـا_خو	, اله_رفتن_معمول.	راه＿，＿فتن＿عادى	راه＿，＿فتن＿نرمال	0
		rs	راه＿رفتن＿تند	راه＿，رفتن＿سريع	راه＿，رفتن＿با＿اء تماد＿به＿نغس	راه_,رفتن_با_خو	راهرفتن＿به＿طور ى＿نرمال	1
	16	－s	لنكان＿لنگان＿رفت	لنكان_آنكان_رفت	，راه＿رفتن＿لنتان	راه_رفتن_با_م	لنكان_لنكان_رفت	4
		s	راه_رفتن_لنكان	راه_رفتن_لنگ__	لنعان_لنگانان_رفت	قدم＿زدن＿بالنگي ن	لنگَيدن＿اهسته	5
		rs	لنكان＿لنكان＿رفت نـلنكان	راه＿，رفتن＿لنكان	راه_رفتن_لنگ_	لنگَيدن＿خسته	راه＿，＿فتن＿آرام	4
	15	－s	كام＿بلند＿برداشت ن＿كاميهاى＿بلند 	كام＿بلند＿برداشت نـ＿عادى＿כام＿بر داشتن	كام_برد داشتن_ء	رڭّ＿رفتن＿منظم	رثْ_رفند_تند	2
		s	كام＿بلند＿برداشت ن＿مامرياى＿بلند ـبـبرداشتن	كام＿بلند＿برداشت نـ＿عادى＿كام＿بر داشتن	كامبرداشتن_ء	ر夫ّ＿رفتن＿منظم	ر夫夫ْ_رفتن_تند_	2
		rs	راهرفتن＿بـ＿طور ى＿نرمال	$\begin{gathered} \text { راه_رفتن_معمول } \\ \text {, } \end{gathered}$	راه_رفتن_با_سر	راه＿，＿فتن＿سبك	راه_رفحتن_با_خو	2
	15	－s	راه＿，＿فتن＿آرام	，اه＿，＿فتن＿آهسته	لنگان＿نـكان＿راهـ رفتن＿با＿عصباني ت	راه_رفتن_به_س	راه＿رفتن＿ناراح ت	0
		s	راه＿رفتن＿آرام	قدم＿زن＿باخـ	راه＿，＿فتن＿نارا＞	راه＿，＿فتن＿آهسته	راه＿，＿رفتن＿اهسته	0

				تگى	ت			
		rs	راه_رفتن_آرام	راه_رفتن_آهسته	راه_رفتن_ناراح	راه_,_فتن_خسته	راه_رفتن_لنگان	0
	15	-s	لنگيدن_عجله	لنعكان_لنكان_خراب_سر	راه_رفتن_نفس_ نفس_زنان	-اه_,_رفتن_تند_ا,	مى_لنگد_لنگلن كان_راه_مى_رو ง	3
		S	لنگيدن_عجله	لنعگان_لنگان_سر	راه_رفتن_نفس_نـن_	راه_رفتن_تند_را,	لنگیيدن_سريع	3
		rs	لنگيدن_عجله	لنعان_لنتان_سرابر	راه_رفتن_نفس_نان_	راه_رفتن_تند_, ارفتن	راه_رفتن_لنگيد	3
				indexical-gro	unding			22
				pattern-grou	nding			27
				randomized-gr	ounding			22

In addition to finding more appropriate translations, using pattern-grounding approach, the correct translations have been ranked higher in comparison to the tranlsations found by the other two approaches.
E.IV. Translting from Farsi to Enlish

In this section, you can find the translation result from Farsi to English for the 10 most frequent verbs and verb-adverbs.

$\begin{aligned} & 0 \\ & \vdots \\ & \hline 0 \end{aligned}$		$\frac{0}{0}$	$\stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{0}{0}} \stackrel{0}{\tilde{\pi}} \underset{\sim}{0}$	2nd	3rd	4th	5th	
in	1637	-S	walking	walk	Walking	Limping	limping	3
		S	walking	walk	Walking	Limping	moving	4
		rs	walking	Limping	limping	Walking	scuffing	2
$\begin{aligned} & 2 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	339	-S	running	jogging	Running	Jogging	run	5
		S	running	jogging	Running	Jogging	sprinting	5
		rs	running	jogging	Running	walking	Jogging	4
$\begin{aligned} & 3 \\ & 0 \\ & 0 \end{aligned}$	312	-S	limping	Limping	scuffing	stagger	hobbling	4
		S	limping	Limping	scuffing	limbing	limb	4
		rs	Limping	limping	scuffing	walking	moving	3
$\begin{aligned} & 9 \\ & 9 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	140	-s	walking	Strolling	wandering	falter	walk	4
		S	walking	Strolling	strolling	loiter	walk	5
		rs	walking	Limping	walk	limping	Walking	3
$\begin{array}{lll} 3 & 16 & \\ \cdots & 9 & 3 \\ 7 & \frac{1}{2} & \vdots \\ 7 & 3 \end{array}$	36	-S	limping	Limping	moving	limb	scuffing	4
		S	Limping	limping	scuffing	moving	shuffling	4
		rs	Limping	limping	scuffing	walking	moving	3
\underbrace{n}_{1}	29	-S	marching	walking	Walking	march	stomping	5
		S	marching	walking	walk	march	stomping	5

When pattern-grounding is exploited, the translation of Farsi verbs into English is slightly enhanced, while randomized-grounding worsen the translation.

		$\frac{\otimes}{\infty}$		2nd	3rd	4th	5th	
$\begin{gathered} \hat{o} \\ \vdots \\ \vdots \\ -1 \\ -1 \end{gathered}$	389	-s	walking_slo wly	walking_ver y slowly	walking_sad ly	walking_car efully	walking_tho ughtfully	2
		s	walking_slo wly	walking_car efully	walking_ver y_slowly	Limping_No rmally	walking_sad ly	2
		rs	walking_slo wly	limping_pai nfully	Limping_Sl owly	Limping_Ve ry fast	Walking_Sl owly	2
	346	-s	$\underset{\text { owly_Sl }}{\underset{\text { Limping_Sl }}{ }}$	limping_slo wly	Limping_Pa infully	walk_injure	limping_pai nfully	0
		s	limping_pai nfully	Limping_Sl owly	$\underset{\text { wly }}{\text { limping_slo }^{\text {wlo }}}$	$\underset{\text { infully }}{\text { Limping_Pa }}$	scuffing_ver y_slowly	0
		rs	limping_pai nfully	Limping_Sl owly	Limping_Ve ry_fast	walking_slo wly	$\begin{gathered} \text { limping_slo } \\ \text { wly } \end{gathered}$	0
$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 3 \\ & 3 \\ & 3 \\ & 1 \end{aligned}$	135	-s	Limping Ve ry fast	limping hur riedly	walking_acti vely	walking uns teady	walking_slig htly weirdly	1
		s	Limping_Ve ry fast	Striding_Fas t	walking_bri skly	walking_hea vily	$\begin{aligned} & \text { Walking_Qu } \\ & \text { ickly } \end{aligned}$	3
		rs	$\underset{\text { ry_fast }}{\text { Limping_Ve }}$	Limping_No rmally	walking_bri skly	limping_pai nfully	limping_hur riedly	1
	117	-s	walking_sad ly	walking_ver y_slowly	walk_depres sed	walking_slo wly	walking_sor rowfully	3
		s	walking_car efully	Limping_No rmally	walking_slo wly	walking_sad ly	scuffing_slo wly	1
		rs	limping_pai	walking_slo	Limping_No	Limping_Ve	Walking_Sl	0

Pattern-grounding slightly engances the translation of Farsi verb-adverbs into English verb-adverbs, while randomized-grounding deteriorates the quality of translation.

E.V. Translating Farsi to Finnish

Verb
Frequency
Mode

1 st
extracted
verb 3rd

4th
\# good
translation

راه_,	$\begin{gathered} 163 \\ 7 \end{gathered}$	-s	kävelee	kävellä	nilkuttaa	ontuu	ontua	2
		S	kävelee	kävellä	löntystelee	Kävelee	nilkuttaa	4
		rs	kävelee	kävellä	nilkuttaa	ontuu	ontua	2
دويدن	339	-S	juosta	juoksee	hölkkää	juokseminen	Juoksee	5
		S	juosta	juoksee	hölkkää	starttaa_juok suun	juokseminen	5
		rs	juosta	juoksee	hölkkää	hölkyttää	nilkuttaa	4
لنگیدن	312	-S	ontuu	nilkuttaa	ontua	linkuttaa	raahustaa	4
		S	ontuu	nilkuttaa	ontua	linkuttaa	raahustaa	4
		rs	nilkuttaa	ontuu	ontua	kävelee	linkuttaa	4
قدم_زدن	140	-s	kävelee	kävellä	hidastelee	maleksii	löntystelee	5
		S	kävelee	maleksii	kävellä	löntystelee	käyskentelee	5
		rs	kävelee	kävellä	nilkuttaa	ontuu	ontua	2
لنگان_لنعا ن_راهرفتن	36	-s	ontuu	nilkuttaa	ontua	linkuttaa	laahustaa	4
		S	ontuu	ontua	nilkuttaa	raahustaa	linkuttaa	4
		rs	ontuu	nilkuttaa	ontua	kävelee	linkuttaa	4
گام_برداش تن	29	-s	kävelee	harppoo	kävellä	marssii	nilkuttaa	4
		S	harppoo	kävelee	marssii	tömistää	kävellä	5
		rs	kävelee	kävellä	nilkuttaa	ontua	ontuu	2
لنگان_لنگا ن_رفتن	23	-s	ontuu	liikkuu	linkuttaa	nilkuttaa	ontua	5
		S	ontuu	linkuttaa	ontua	nilkuttaa	raahustaa	4
		rs	linkuttaa	ontuu	ontua	konkkaa	raahustaa	3
راهرفتن	18	-s	kävelee	kävellä	Kävelee	käppäilee	löntystelee	5
		S	kävellä	kävelee	käppäilee	Kävelee	harppoo	5
		rs	kävellä	kävelee	ontua	nilkuttaa	ontuu	2
قدم_بردا شتن	11	-s	polkee_jalka a	laahaa_jalka a	$\begin{gathered} \text { haastaa_riita } \\ a \end{gathered}$	raahautuu	tömistää	2
		S	nilkuttaa	ontuu	linkuttaa	ontua	raahustaa	0
		rs	nilkuttaa	ontua	kävelee	linkuttaa	ontuu	1
هروله	9	-s	kiirehtiä	hölkyttää	hölkkää	lönköttelee	hölkyttelee	3
		S	kiirehtiä	hölkkää	hölkyttää	hölkyttelee	hypähtelee	4
		rs	kävelee	nilkuttaa	kävellä	juosta	ontuu	1
indexical-grounding								39
pattern-grounding								40
randomized-grounding								25

The translation performance has been enhanced slightly by applying pattern-grounding, while it has been profoundly deteriorated using randomized-grounding.

	$\begin{aligned} & \text { D} \\ & \text { U } \\ & \text { O} \\ & \text { O} \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & \sum \\ & \hline \end{aligned}$		2nd	3rd	4th	5th	
$1: 3$	389	-S	kävelee hita asti	kävellä hita asti	kävelee_mie tteliäästi	kävelee_var ovasti	kävelee_sur ullisena	2

		s	kävelee hita asti	kävelee_epä varmasti	kävelee_käv elee_nilkutta en_hitaasti	kävelee_rau hallisesti	kävelee hyv in_hitaasti	3
		rs	kävelee_hita asti	$\text { ontuu_hitaas }_{\mathrm{ti}}$	kävelee_ram miten	kävelee_ont uen	kävelee_ren nosti	1
	346	-s	kävelee_ont uen	ontuu_kivuli aasti	$\text { ontuu_hitaas }_{\mathrm{ti}}$	ontuu_vaiva lloisesti	nilkuttaa_hit aasti	1
		s	ontuu_pahas	kävelee_ont uen	$\text { ontuu_hitaas }_{\overline{\mathrm{ti}}}$	ontuu_kivuli aasti	kävelee_ram miten	1
		rs	kävelee_ont uen	$\text { ontuu }_{\overline{\mathrm{ti}}}$	ontuu_hyvin kivuliaasti	ontuu_pahas	kävelee_ram miten	1
$\begin{gathered} 0 \\ 0 \\ i+1 \\ 3 \\ 4 \\ y \end{gathered}$	135	-s	kävellä_reip as	kävelee tom erasti	kävelee_ont uen	kävelee_hiu kan_ontuen	kävelee_reip paasti	3
		s	kävelee_reip paasti	kävelee tom erasti	kävelee_nop easti	kävelee_tar mokkaasti	kävellä_reip paasti	5
		rs	kävelee_ont uen	$\text { ontuu_pahas }_{\mathrm{ti}}$	kävellä_reip as	kävelee_ram miten	kävelee_reip paasti	2
$\begin{aligned} & \hat{o} \\ & \vdots \\ & \vdots \\ & \vdots \\ & \frac{1}{\hat{a}} \\ & \vdots \end{aligned}$	117	-s	kävelee_mie tteliäästi	kävellä_suru llinen	kävelee_mas entuneesti	kävelee_sur ullisena	kävelee_epä varmastı	3
		s	kävelee_epä varmasti	kävelee käv elee_nilkutta en_hitaasti	kävelee_väs yneesti	kävelee mas entuneesti	kävellä_suru llinen	2
		rs	$\text { ontuu_hitaas }_{\overline{\mathrm{ti}}}$	kävelee hita asti	kävelee_ram miten	ontuu_pahas	kävelee_ont uen	0
$\begin{aligned} & \hat{o} \\ & 1 \\ & 0 \\ & \vdots \\ & 1 \\ & 3 \end{aligned}$	84	-s	$\text { ontuu_hitaas }_{\mathrm{ti}}$	nilkuttaa_hit aasti	$\text { ontua_hitaas }_{\mathrm{ti}}$	$\begin{aligned} & \text { ontuu_varov } \\ & \text { asti } \end{aligned}$	$\begin{gathered} \text { ontuu_raska } \\ \text { asti } \end{gathered}$	0
		s	kävelee_käv elee_nilkutta en_hitaasti	kävelee_epä varmasti	nilkuttaa hit aasti	ontuu hyvin kivuliaasti	ontua hitaas	0
		rs	$\text { ontū_ }_{\overline{\mathrm{ti}}}^{-\mathrm{hita}^{2}}$	kävelee_ont uen	ontuu_pahas	ontuu_hyvin kivuliaasti	kävelee_ram miten	0
$\begin{aligned} & \hat{o} \\ & 0 \\ & 0 \\ & \vdots \\ & 3 \end{aligned}$	79	-s	kävelee_reip paasti	kävelee_pää ttäväinen	kävellä_reip paasti	kävelee_urh eilullisesti	kävelee_iloi sesti	2
		s	kävelee_reip paasti	kävelee_pää ttäväinen	kävelee_mä ärätietoisesti	$\begin{gathered} \text { kävellä_rent } \\ \mathrm{o}^{2} \end{gathered}$	kävellä_reip paasti	2
		rs	kävelee_reip paasti	kävelee_ont uen	kävellä_rent	kävellä_reip as	ontuu_pahas	2
	76	-s	kävelee_nilk uttaen	kävelee_ont uen	ontua_toispu oleinen	ontuu_pahas	kävelee_laa hustaen	3
		s	kävelee_ont uen	$\underset{\text { ontu__varov }}{\text { asti }}$	ontuu_pahas	$\text { ontuu_hitaas }_{\overline{\mathrm{ti}}}$	ontua_hidas	1
		rs	kävelee_ont uen	ontuu_pahas	kävelee_ram miten	kävelee_käv elee_nilkutta en_hitaasti	ontuu hyvin _kivuliaasti	2
$\begin{aligned} & \bar{o} \\ & \vdots \\ & \vdots \\ & 3 \\ & \vdots \\ & \vdots \\ & b \end{aligned}$	72	-s	kävelee_nor maalisti	$\begin{gathered} \text { kävellä_nor } \\ \text { maali } \end{gathered}$	kävelee_ren nosti	$\begin{gathered} \text { kävellä_rent } \\ \mathrm{o} \end{gathered}$	kävelee_jäy kästi	4
		s	kävelee_nor maalisti	kävellä_rent o	kävellä_itse varma	kävelee_ren nosti	kävelee_tav allisesti	4
		rs	kävellä_rent	kävelee nor maalisti	kävellä_itse varma	kävelee_ren nosti	kävelee_ont uen	3
. -	65	-s	kävelee_vih	kävelee_käv	kävelee_raiv	kävellä_kiuk	kävelee_kiu	4

Pattern-grounding has slightly bossted the translation of Farsi verb-adverbs to Finnish verb-adverbs, while randomized-grounding has strongly deteriorated the translation.

E.VI. Translating Finnish annotations to Farsi

Verb		$\begin{aligned} & 8 \\ & 8 \\ & \sum \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{0}{0}}$	2 nd	3rd	4th	5th	
kävelee	618	-S	راه_,	راهرفتن	قدم_زن	گام_برداشتن	تند_راه_,_فتن	4
		S	راه_,	راهرفتن	قدم_زدن	كام_برداشتن	لنگان_لنگان_راها رفتن	4
		rs	راه_,	قدم_زن	Fام_برداشتن	راهرفتن	لنگان_لنگان_راهـ رفتن	4
ontuu	229	-S	لنگیدن	لنگان_لنگان_راهـ رفتن	لنگان_لنگان_ر	راه_رفتن	لنگًان_لنگان_راه	5
		S	لنگيدن	لنگان_لنگان_راه رفتن	لنگان_لنگان_فـن فتن	كهـر__كشال_را	قدم_برداشتن	5
		rs	لنگيدن	لنگان_لنگان_راهـ رفتن	راه_,	قدم_زن	Fام_برداشتن	5
nilkuttaa	164	-S	لنگین	لنگان_لنگان_راهـ رفتن	لنگان_لنگان_ فتن	راه_رفتن	مى_لنگد	5
		S	لنگيدن	لنگان_لنگان_راهـ رفتن	لنگان_لنگان_ فتن	قدم_برداشتن	لنگان_لنگگان_راه	5
		rs	لنگيدن	لنگان_لنگان_راه رفتن	راه_رفتن	قدم_زدن	گام_برداشتن	5
juoksee	106	-S	دويدن	مى_دود	سريع_دويدن	دويدن_سريع	$\begin{gathered} \text { با_سرعت_دويد } \\ \text { ن } \end{gathered}$	5

Except 'laahustaa', other Finnish verbs have been translated quite well into Farsi; one reason for this good translation is that Finnish verbs are specific expression of some motion, while the Farsi verbs which have been used to annotate these motions are more general expression.

		$\begin{aligned} & \frac{0}{0} \\ & \sum \end{aligned}$		2nd	3rd	4th	5th	$\begin{aligned} & \text { 응 } \\ & 0.0 \\ & \circ \\ & \text { on } \\ & \text { \# } \end{aligned}$
	64	-S	راه_رفتن_متفكرا	قدم_زدن_آهس.	راه_رفتن_آرام	راه_رفتن_آهسته	راه_رفتن_بى_>	3
		S	راه_رفتن_متفكرا	راه_رفتن_بى_>	قدم_زدن_آهس	راه_رفتن_آهسته	راه_رفتن_بی_هـ	2
		rs	راه_رفتن_متفكرا	راه_رفتن_آرام	راه_رفتن_آهسته	راه_رفتن_ناراح	راه_رفتن_بى_وحه	2
	52	-S	راه_,_فتن_مصم	راه_رفتن_تن	راه_,_ستن_سيع	راه_رفتن_مغرور	راهرفتن_به_طور ى_نرمال	2
		S	راه_,_فتن_مصم	راه_رفتن_خوشح	راه_رفتن_با_عج	راه_رفتن_با_انرز	راه_رفتن_تن	3
		rs	راه_رفتن_سريع	راه_رفتن_تن	راه_رفتن_با_عج	راه_رفتن_مصمم	راه_رفتن_خوشح	3
$\begin{aligned} & \text { 気 } \\ & \text { 受 } \\ & \text { I } \\ & \text { I } \end{aligned}$	47	-S	لنگیدن_خسته	لنعًان_لنگًان_ب	لنگیيدن_آهسته	راه_رفتن_لنگان	لنگان_لنگان_آرام	3
		S	لنگیيد_آهسته	لنگیدن_خسته	لنگَيدن_آرام	لنگيدن_خيلى_I هسته	لنگيدن_به_آراه \checkmark	4
		rs	لنگیدن_خسته	لنگيدن_آهسته	راه_,رفتن_لنگان 	راه_,_فتن_خسته	راه_رفتن_آرام	2
	41	-S	راه_رفتن_لنگان 	لنگان_لنگان_راهـ رفتن_با_توندى	راه_,	لنگیيدن_سريع	لنگیيدن_معلول	2
		S	, راه_رفتن_لنگًان_	,راه_رفتن_لنگان	راه_, لنتان_لنتگ_	رالنگان_رفتن_كمكان	قدم_زدن_بالنگي	5
		rs	راه_رفتن_لنگًان_	راه_رفتن_كمى_	راه_,	راه_, لنتان_لنـگ__	لنگيدن_سريع	3
	40	-S	قدم_زدن_با_آرا ى	راه_رفتن_نرمال	, راه_رفتن_با_غرو	راه_رفتن_معمو	راه_رفتن_عادى	4
		S	قدم_زدن_متفكرا	راه_رفتن_با_آراه	راه_,رفتن_عادى	قدم_زدن_با_آرا م	راه_رفتن_معمو لى	4
		rs	راه_رفتن_معمو لى	راه_رفتن_آرام	راه_,_فتن_عادى	راه_رفتن_آهسته	راه_رفتن_با_خو	4
	28	-S	راه_رفتن_معمو لى	راه_,_فتن_عادى	راه_رفتن_با_خو	راهرفتن_به_طور ى_نرمال	راه_رفتن_ملايم	4
		S	راه_رفتن_معمو لى	راه_رفتن_عادى	راه_,	راه_رفتن_ملايم	راهرفتن_به_طور ى_نرمال	5
		rs	راه_رفتن_با_خو	, اها_رفتن_معو	راهرفتن_به_طور	راه_,_فتن_عادى	راه_رفتن_تند	3

			شحالى	لى	ى_نرمال			
$\begin{gathered} \text { ontuu_vaivalloisest } \\ \text { i } \end{gathered}$	21	-S	لنگان_لنـگان_آرام	لنگ̌ين_خسته	لنگان_لنگان_كند	لنتان_لنگان_لنـان	راه_رفتن_با_مـ	3
		S	لنگ̌يدن_خسته	لنكان_لنعان_آرام	لنگيدن_ارام	لنگان_لنگان_فـنان فتن_كند	لنگیيد_آهسته	4
		rs	لنگ̌يدن_خسته	راه_رفتنان_لنگان	راه_رفتن_لنتگ_	لنگیدن_آهسته	قدم_زدن_اهسته	3
	20	-S	لنگَيدن_درد	راه_رفتن_لنگان 	راه_,_فتن_خمى	لنگان_لنگان_,	لنگان_لنگان_خراب	3
		S	لنگیيدن_با_زحم	لنگان_لنگان_راه رفتن_خيلى_لنگ يدن	لنگيدن_خسته	لنگَيدن_عاجزانه	راه_رفتن_لنگان	4
		rs	راه_رفتن_لنكان	راه_رفتن_لنـگ__	لنگیيد_خسته	راه_,	لنگان_لنگان_,راه رفتن_خيلى_لنگگ يدن	4
$\underset{\mathrm{ti}}{\text { kävelee_rauhallises }}$	15	-S	راه_رفتن_بى_خ	راه_رفتن_آرام	راه_رفتن_بى_>	راه_رفتن_سردر	راه_رفتن_گنده	1
		S	راه_رفتن_بى_>	قدم_زدن_باطما نينه	راه_رفتن_آهسته	راه_رفتن_بى_هد	راه_رفتن_آرام	3
		rs	راه_رفتن_آرام	راه_رفتن_بى_>	راه_رفتن_عادى	قدم_زدن_بالنگي	راه_رفتن_آهسته	2
juoksee_rennosti	15	-S	دويدن_با_عجله	دويدن_تند	دويدن_با_آراه ش	دويدن_بانرمى	دويدن_كمى_تن	2
		S	دويدن_معملى	دويدن_خوشحال	دويدن_كمى_تن	دويدن_با_عجله	دويدن_با_انرزى	2
		rs	دويدن_كمى_تن	دويدن_با_عجله	دويدن_خوشحال	دويدن_تند	دويدن_معملى	1
indexical-grounding								27
pattern-grounding								36
				randomized-g	ounding			27

Although the number of good translations found by randomized-grounding is comparable to the number of good translations recognized by indexical-grounding, the quality of translation implemented by indexical-grounding is better because the good translations detected by this method are ranked higher. In other words, the appropriate extracted Farsi translations found by indexical-grounding are closer to the original Finnish verb-adverbs than the appropriate translations extracted by randomized-grounding. In addition, the translation of Finnish verb-adverbs to Farsi verb-adverbs is boosted by utilizing patterngrounding.

Appendix F. Cophenetic correlation coefficient results

In the following tables, you can see the cophenetic values computed for agglomerative hierarchical clustering of English, Finnish, and Farsi verbs and verb-adverbs.

Hierarchical clustering of English verbs			
indexical-grounding	pattern-grounding		
method name	cophenet value	method name	cophenet value
average	0.8741	average	0.8928
weighted	0.8250	weighted	0.8853
complete	0.7826	complete	0.7637
single	0.7215	single	0.7593

The above table demonstrates that regardless of the selected method, pattern-grounding will lead to a clustering tree in which distances among objects reflect the original distances more appropriately than the clustering tree of the the indexical-grounding approach. In other words, when English verbs are grounded using motion data, they can be clustered more accurately.

Hierarchical clustering of English verb-adverbs			
indexical-grounding	pattern-grounding		
method name	cophenet value	method name	cophenet value
average	0.8816	average	0.8935
weighted	0.8794	weighted	0.8299
complete	0.7978	complete	0.8101
single	0.6412	single	0.7343

Cophenetic correlation coefficients show that English verb-adverbs can be clustered more precisely when pattern-grounding is applied.

Hierarchical clustering of Finnish verbs			
indexical-grounding	pattern-grounding		
method name	cophenet value	method name	cophenet value
average	0.9123	average	0.9313
weighted	0.8911	weighted	0.9181
complete	0.8095	single	0.8260
single	0.8014	complete	0.8149

The above table shows that Finnish verbs can be clustered more exactly when pattern-grounding is applied.

Hierarchical clustering of Finnish verb-adverbs				
indexical-grounding			pattern-grounding	
method name	cophenet value	method name	cophenet value	
average	0.8645	average	0.9162	
weighted	0.8588	weighted	0.9105	
complete	0.7252	complete	0.8560	
single	0.6344	single	0.5846	

The above table shows that pattern-grounding can be almost always beneficial for hierarchical clustering of Finnish verb-adverbs except when single method is applied.

Hierarchical clustering of Farsi verbs			
pattern-grounding	pattern-grounding		
method name	cophenet value	method name	cophenet value
average	0.785	average	0.789
weighted	0.762	weighted	0.761
complete	0.717	single	0.719
single	0.706	complete	0.651

The above table shows that Farsi verbs can be clustered more precisely when pattern-grounding is applied.

Hierarchical clustering of Farsi verb-adverbs			
indexical-grounding		pattern-grounding	
method name	cophenet value	method name	cophenet value
average	0.889	average	0.929
weighted	0.866	weighted	0.920
single	0.797	single	0.917
complete	0.757	complete	0.840

The above table shows that Farsi verb-adverbs can be clustered more accurately using patterngrounding.

