
Aalto University

School of Science

Degree Programme in Computational and Systems Biology

Gökcen Eraslan

ADirichlet-Multinomial Mixture Model For
Clustering Heterogeneous Epigenomics Data

Master’s Thesis
Espoo, September 15, 2014

Supervisors: Assistant Professor Harri Lähdesmäki, Aalto University
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Epigenetic information sheds light on essential biological mechanisms including
the regulation of gene expression. Among the major epigenetic mechanisms are
histone tail modifications which can be utilized to identify cis-regulatory elements
such as promoters and enhancers. Nucleosome positions and open chromatin
regions are other key elements of the epigenomic landscape.

Thanks to the advances in high-throughput sequencing technologies, comprehen-
sive genome-wide analyses of epigenetic signatures are possible at present. Despite
the growing number of epigenetic datasets, the tools to discover novel patterns
and combinatorial presence of epigenetic elements are still needed. In this thesis,
we introduce a model-based clustering approach that uncovers epigenetic patterns
by integrating multiple data tracks in a multi-view fashion where different views
correspond to different epigenetic signals extracted from the same genomic loca-
tion. Moreover, to address the inaccuracy of the positions of anchor points, such
as TF ChIP-seq peak summits or TSS, a profile shifting feature is implemented.
Finally, owing to the hyperprior regularization, our approach can also account
for the correlation between the number of reads mapped to consecutive base pair
positions.

We demonstrate that the genome-wide clustering of promoter and enhancer re-
gions in human genome reveals distinct patterns in various histone modification
and transcription factor ChIP-seq profiles. Furthermore, TFBS enrichment in
different classes of enhancers and promoters that are identified by our method is
investigated which shows that some transcription factors are significantly enriched
in a subset of enhancer and promoter clusters.
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Chapter 1

Introduction

Each human cell has about 1.8 meters of DNA. In order for this long DNA to fit into
the cell nucleus, utilization of an efficient method for compaction is inevitable. In the
nucleus, compaction is achieved at different levels. At the simplest level, the protein
complexes called histones act as key elements. These complexes are composed of
eight proteins known as core histones and act as a spool around which the DNA
strands are wound. Winding of DNA around histones causes it to be packaged
into a much smaller volume. Along with approximately 147 base pair long segment
of wound DNA, core histones are called nucleosomes which are the fundamental
repeating structures of chromatin. It is known that each chromosome in humans
contains millions of base pairs, therefore there are thousands of nucleosomes in every
chromosome forming a beads-on-a-string structure [1]. Multiple nucleosomes can
further arrange more compact forms by wrapping into structures called 30nm fibers.
Finally, at the highest level of compaction, these fibers lead to even denser structures
known as chromosomes during the cell division. These levels are illustrated in Figure
1.1.

One major property of histones is their long tails on the N-terminal end of histone
amino acid chain. These tails are the main factors involved in post-translational his-
tone modifications caused by chromatin modifying enzymes. Histone modifications,
which are discussed in Chapter 2, can cause chromatin structure to be loosened or
tightened by altering the electrostatic attraction between positively charged histone
and negatively charged DNA backbone or alternatively by recruiting other proteins
modifying the chromatin structure. Loosened chromatin structure makes the DNA
regions wrapped around histones accessible so that the DNA-binding proteins can
attach to open DNA. This dynamic nature of DNA compaction is the essential
mechanism behind the regulation of gene expression and thus of great importance.

Following the sequencing of the entire human genome, approximately 3.2 billion
base pairs long DNA sequence is regarded as the essential source of information in
genomics studies. This information made it possible for scientists to annotate mo-
tifs, transcription factor binding sites (TFBSs), protein-coding genes and regulatory
elements. Nevertheless, the biological mechanisms underlying complex phenomena
such as the multiplicity of cell types originating from the same genetic sequence
cannot be explained solely by sequence-based analyses. In this respect, developing
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Levels of DNA compaction. Adapted from [43]

an understanding of the additional layer of information regarding the regulation of
gene expression, called epigenetics, is of significant value.

Epigenetics describes the mechanisms which lead to changes in the regulation
of gene expression and activity without altering the sequence of genome. Examples
of such epigenetic mechanisms utilized in this study are histone modifications and
nucleosome occupancies.

With the advent of next-generation techniques, the epigenetic enrichment data
can be obtained from the genome through various strategies coupling high through-
put sequencing with experimental techniques, most notably chromatin immunopre-
cipitation followed by sequencing (ChIP-seq) [25, 32], DNase-I hypersensitivity fol-
lowed by sequencing (DNase-seq) [4] and micrococcal nuclease followed by sequenc-
ing (MNase-seq) [36]. These methods are discussed in Chapter 2.

Epigenetic patterns are utilized as indicators to identify cis-regulatory elements
such as promoters and enhancers [12]. Discrimination of different classes of func-
tional elements on the basis of epigenomics data is another challenge which was
addressed in previous studies using various clustering approaches. The clustering
of the enhancer and promoter regions on the basis of histone modification patterns
was first performed by Heintzman et al. through a simple k-means approach [12].
ChromaSig [14] is a heuristic clustering method to discover frequently occurring
histone modification patterns genome-wide without using any annotations. It has
been shown that among the identified patterns are known signatures associated with
promoters and enhancers, as well as the patterns yet to be linked to any functional
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element. Another clustering method for epigenomics analysis, CATCHprofiles, is
proposed by Nielsen et al [30]. In this approach, the most similar profile pairs are
merged and aligned to remaining profiles iteratively to determine the topology of
the cluster hierarchy. Similar to ChromaSig, CATCHprofiles also does not use any
annotation information thus the entire genome is examined to identify chromatin
signatures. Kundaje et al. [21] proposed another hierarchical clustering-based ap-
proach called CAGT which can group chromatin profiles around functional elements
into clusters using k-medians algorithm. This procedure is followed by merging re-
dundant clusters through the hierarchical agglomerative clustering. Nair et al. [29]
introduced a mixture model-based clustering method where the ChIP-seq data is
binned and the number of reads fall into each bin are modeled using independent
Poisson distributions. Similar to our approach, this method uses the EM algorithm
to estimate the parameters of the distributions in the mixture and posterior mem-
bership probabilities.

Available methods have severe limitations in their ability to exploit the intrin-
sic structure of epigenetic signals. For instance, clustering results of distance-based
approaches are highly sensitive to the choice of distance (or similarity) metric. Hi-
erarchical clustering, a commonly used technique in available approaches, requires
clusters to be subjectively determined and the interpretation of the hierarchy is
problematic. Furthermore, an unbiased and principled method for determining the
optimal number of clusters is lacking in available methods. Last but not least, cur-
rent approaches do not provide rigorous methods for handling multiple data types
meaning that the methods usually ignore the fact that different data types con-
tribute to the clustering in different ways. Most commonly, ad-hoc approaches are
preferred such as concatenating the data vectors which may lead to incorrect results,
especially in cases where the signal magnitudes of different data types are varying.

To address given shortcomings of available approaches, we introduce a model-
based clustering method which exploits the discrete, sparse and non-negative nature
of epigenomic data and integrates multiple data tracks to account for the combina-
torial presence of different epigenetic patterns.The probabilistic approach presented
in this thesis is based on the hierarchical Bayesian model previously proposed by
Holmes et al. [13] where the data is modeled using a mixture of Dirichlet-multinomial
compound distributions. Modeling through Dirichlet-multinomial compound mix-
ture yields a powerful means to capture the magnitude and shape of discrete data
as well as the variation in clusters. Furthermore, our approach extends the original
model by treating various epigenetic signals extracted from the same genomic locus
asmultiple views of the locus of interest, so that each cluster of the mixture exhibits a
set of Dirichlet-multinomial compound distributions, whose elements correspond to
the views of the data. This leads to K×M many independent Dirichlet-multinomial
compounds for a K-cluster model fitted to the data withM different data tracks. A
rigorous model selection-based method to determine the number of clusters is also
presented in our study. Owing to the regularization of the hyperprior, our approach
can also account for the correlation between the number of reads mapped to consec-
utive base pair positions. Moreover, we implemented a profile shifting technique to
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address the inaccuracy of anchor points positions such as TF ChIP-seq peak summits
or TSS.

We demonstrate clustering of enhancer and promoter regions using multiple data
tracks from the ENCODE dataset of cell type K562 including ChIP-seq profiles of
various histone modifications and TFs as well as the DNase-seq profiles. Addition-
ally, significant enrichment of TFBSs in identified clusters are reported in this study.



Chapter 2

Background

2.1 Enhancers and promoters

Transcription factors and other regulatory molecules bind to typically non-coding
DNA regions called cis-regulatory elements. Among the mostly studied cis-regulatory
elements, promoters are located on the DNA upstream to the transcription start sites
of genes and act as a binding platform for the transcription machinery including the
essential enzyme of transcription, RNA polymerase. However, the involvement of
promoters alone results transcription at the basal level. Another cis-regulatory ele-
ments called enhancers are required to increase transcription rate by catalyzing the
chemical reaction. Even though the enhancer sequences may be kilobases away from
the gene they affect, they can physically interact with promoters. The widely ac-
cepted model elucidating enhancer-promoter interaction is DNA-looping model [33].
According to this model, promoter and enhancer sites are brought into direct con-
tact through the establishment of a loop structure. This phenomenon is illustrated
in Figure 2.1.

Given the critical roles of promoters and enhancers in the regulation of gene
expression as well as in the cell development and differentiation, these elements are
subject to deep interest in scientific literature. In this thesis, we focus on identifying
distinct classes of regulatory elements based on the their epigenetic signatures.

2.2 Histone modifications

Histones are the principal protein components of chromatin. Two categories of hi-
stones exist: core histones and linker histones. Two copies of each core histone,
namely H2A, H2B, H3 and H4, are found at the center of nucleosomes. An essen-
tial component of core histones is the histone tail protruding from the nucleosome.
Histone tails provide sites for covalent modifications which in turn can alter the
chromatin structure or lead to the recruitment of nuclear proteins. Furthermore,
histone modifications, chromatin structure and gene expression levels are shown to
be strongly correlated [18]. Linker histones, H1, are bound to the outside of nucle-
osome so that the DNA wrapped around nucleosomes is kept in place and also the

5
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Figure 2.1: Interaction between enhancer and promoter. Adapted from [26]

Figure 2.2: H3 and H4 core histone tails decorated with histone modifications [20].

structure of chromatin fibers are stabilized.
Although there are several different types of modifications including but not lim-

ited to methylation, acetylation, phosphorylation, ubiquitination and citrullination,
we focus on acetylation and methylation modifications and utilize profiles of these
modifications in our study. Acetylation of lysine residues reduces the attraction be-
tween histone and wrapped DNA by neutralizing their positive charge. On the other
hand, methylation of lysine residues does not alter the charge of histone significantly
but can be recognized by proteins that are quite sensitive to lysine methylation and
are capable of changing chromatin structure. Some modifications occurring in H3
and H4 tails are given in Figure 2.2.

The common nomenclature of histone modifications is composed of four main
parts, namely“histone name”, “amino acid abbreviation and position”, “type of mod-
ification” and “number of modifications”, e.g. H3K79me2 corresponds to dimethyla-
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Core

Histone

Residue Site/

Variant

Localization Transcriptional

Function

H3

K4

me1 Active/poised

enhancers Activation

me2 Promoters/

enhancers

me3 Active/poised

promoters

K9

ac Promoters/

enhancers/

coding regions

Activation

me1
Poised enhancers Repression

me3

K27
ac Active enhancers Initiation

me3 Poised enhancers/

Poised promoters

Repression

K36 me3 Gene bodies Activation,

elongation

K79 me2 - Activation

H4 K20 me1 Promoter/coding

regions

Activation

H2A - Z (Along with H3.3)

Promoters and

Enhancers

Regulation, DNA

damage,

chromosome

stability

Table 2.1: Functions of various histone variant and modifications used in this
study[3, 8, 15, 17, 31, 39].

tion of 79th residue (lysine) of H3 core histone.
With the advent of high-throughput sequencing technologies, association of hi-

stone tail modifications with regulatory genomic elements have become common-
place. For instance, it was previously reported that H3K4me1 and H3K27ac marks
are linked to active enhancers [12]. Furthermore, according to the histone code
hypothesis [16, 38], combinations of histone modifications dictate some biological
function on the basis of DNA-chromatin interactions. Even though the knowledge
of specific functions of these combinations are far from complete, this hypothesis
leads to the idea that multiple histone modifications should be assessed together to
carry out extensive studies. Histone modifications and variants used in this study
as well as their associations with regulatory elements and transcriptional functions
are presented in Table 2.1.
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(a) (b)

Figure 2.3: ChIP-seq(a) and DNase-seq(b) protocols. Adapted from [26]

2.3 Experimental techniques

The data used in this study are generated through three different experimental
strategies. In this section, these methods are discussed. First of these methods is
the ChIP-seq protocol which allows for the detection of DNA-protein interactions
genome-wide. In this method DNA-bound protein, e.g. a TF or a histone with a
specific modification, is first crosslinked to DNA through formaldehyde, then DNA
is fragmented by sonication and DNA-protein complexes are isolated. Next, the
antibody specific to the protein of interest is utilized to capture the fragment of
DNA crosslinked to the target protein. Proteins are released and DNA fragments
are sequenced through massively parallel sequencing techniques and the resulting
data are aligned to the reference genome [25, 32]. For each nucleotide position in
the genome, the number of reads covering the position in question are computed.
This procedure leads to genome-wide profiles which can then be assessed to identify
regions where the reads are enriched. When applied to histone proteins with epige-
netic marks (such as methylation), this method yields critical information regarding
the epigenomic landscape.

In DNase-seq technique, an enzyme called Deoxyribonuclease I (DNase I), which
digests nucleosome-depleted DNA, is employed. Akin to ChIP-seq, DNase-digested
fragments are then sequenced and aligned to the reference genome. Enrichment in
DNase-I hypersensitive sites provides a powerful means to identify open chromatin
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regions that are accessible to DNA-binding proteins e.g. TFs. The workflows of
ChIP-seq and DNase-seq protocols are illustrated in Figure 2.3.

MNase-seq is a method to determine nucleosome occupancy using micrococcal
nuclease enzyme. Nucleosomal DNA is protected from MNase enzyme, therefore
nucleosomal DNA fragments having length of approximately 147bp can be isolated,
sequenced and analyzed. Enriched regions identifies nucleosome-occupied regions.



Chapter 3

Materials

In this thesis, we utilize discrete genome-wide profiles of various histone modification,
TF binding and nucleosome positioning data generated through high-throughput se-
quencing techniques, such as ChIP-seq and DNase-seq. Profiles flanking the genomic
positions of functional genomic elements are clustered to identify different classes
of elements. Therefore, histone modification profiles of regulatory elements are re-
garded as their features in the clustering algorithm so that elements with similar
profiles are grouped into the same cluster.

In order to extract the data to be clustered, two types of information are required:
loci and signals. A locus is the specific location on a chromosome, such as the range
between 15,358,042nd and 15,358,142nd base pairs on chromosome 21. This location
may refer to the nucleotide position of a cis-regulatory element such as an enhancer
or an annotated transcription factor binding site. To extract the signal, also referred
to as the coverage signal, first a 2000bp window is centered at the given locus and
for every nucleotide position within the window, number of reads that cover the
position in question are retained. This leads to a 2000-dimensional vector with
integer elements. However, to satisfy the requirements of multinomial sampling, we
used a slightly different definition of coverage signal where only the 5’ ends of reads
are taken into account. This topic is discussed in more detail in Section 4.3.

Considering many loci, these vectors form a matrix whose rows correspond to
loci, columns to nucleotide positions and elements to number of reads starting from
this position. This process is illustrated in Figure 3.1. Additionally, a form of
binning can be applied to reduce the computational burden where the read counts
of consecutive nucleotide positions are summed up and represented as a single value.
This is also referred to as “50bp resolution” when the read counts of 50 nucleotide
positions are represented as one integer.

3.1 Data

ENCODE is an international collaboration aiming to annotate the functional el-
ements in human genome. The project provides a wealth of publicly available
data. Among the datasets provided by the ENCODE project, we used ChIP-seq

10
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Figure 3.1: An illustration showing how the coverage signals of n different data types
are extracted from N genomic regions. Adapted from [40]

and DNase-seq signals. Details about the data are given in Table 3.1. The data has
been downloaded in raw FASTQ format and preprocessed as described in Section
3.3.

3.2 Clustered loci

p300 binding sites generated in Stanford University are downloaded from ENCODE
wgEncodeAwgTfbsUniform data track whereas DNase-I HS peaks generated in Duke
University are downloaded from ENCODE data track wgEncodeOpenChromDnase.
p300 binding sites which colocalize with DNase-I HS peaks are identified. Next,
GENCODE v17 gene list are utilized to filter out identified p300 binding sites within
2000bp of a TSS. Furthermore, to eliminate lower quality p300 peaks, only the first
thousand p300 peaks with the highest signal value1 are included in the analysis.

For the clustering of promoter regions, first TSSs of protein-coding genes have
been downloaded from the Ensembl database through biomaRt package [7] of the
R programming language [35]. Then, the DNase hypersensitive sites are identified.
The mean signals of the data extracted from promoter and enhancer regions are
shown in Figure 3.2. Moreover, in Appendix D, mean signals at enhancer and
promoter regions are plotted separately for different data types for clarity. Note that,
throughout the thesis, in all plots where the mean signals are shown (i.e. aggregation
plots) the mean signals are represented as small points, and the smoothers are plotted
only to show the trend in the data. A combination of generalized linear models and
additive models called generalized additive models (GAM) [47, 48], is used to plot
smoothers through the implementation in MGCV [46] and ggplot2 R packages [42].

1In the p300 peak list of ENCODE project, peaks with the highest signal value are also the
most significant ones on the basis of q-values.

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeOpenChromDnase/
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Figure 3.2: Mean profiles of reads within 2000bp windows centered at 1000 en-
hancer(a) and promoter(b) regions. Also note that the directionality is taken into
account while extracting the promoter signal, meaning that the signal from the
negative strand is reversed.
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Experiment Targeted Protein Track Input Lab Cell Type

ChIP-seq

H3K4me1

wgEncodeBroadHistone Yes Broad Institute
K562

H3K4me2

H3K4me3

H2A.Z

H3K27ac

H3K27me3

H3K9ac

H3K9me1

H3K9me3

H3K36me3

H4K20me1

H3K79me2

CTCF

Pol2

DNase-seq - wgEncodeOpenChromDnase No Duke

Table 3.1: Details of ENCODE signal tracks used in this study

3.3 Data preprocessing

Preprocessing steps are as follows:

1. Downloaded raw FASTQ files are uncompressed and separate replicates are
pooled through concatenation.

2. Reads are aligned to the reference genome (hg19 assembly) by Bowtie 0.12.7
read aligner [22]. “-m 1”option is used to retain only uniquely mappable reads.

3. SAM files produced by Bowtie are converted to sorted BAM files using sam-
tools [23].

4. Polyclonal reads in BAM files are removed by “samtools rmdup” command to
avoid potential PCR duplicates.

5. Resulting BAM files are converted to BED files using bedtools [34].

6. (Only for the ChIP-seq data) SPP is a ChIP-seq processing and peak calling
tool [19] that can find the fragment length d (also referred to as peak separation
distance) based on the peak of the cross-correlation between signals of the two
strands. Using this feature of SPP (version 1.10), the correct amount of shifting
is detected and reads from both strands are shifted towards the 3’ end by the
half of detected shifting distance, d

2
, so that the signals from different strands

colocalize. This process is shown in Figure 3.3.

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeOpenChromDnase/


CHAPTER 3. MATERIALS 14

Figure 3.3: For the data from different strands to colocalize, reads from both strands
must be shifted by the distance d

2
in 5’ to 3’ direction. Adapted from [45].

7. For the data types for which the control data is available, a normalization
procedure is applied based on the following formula

round

(
S − C · NS

NC

)
where S and C represent the signal being normalized and the control data,
whereas NS and NC denote total number of reads in the signal and in the
control data, respectively. The control signal is first multiplied by the ratio
of total number of reads in the signal to total number of reads in the control
signal. Then normalized control signal is subtracted from the signal and the
resulting values are rounded to integers.

8. p300 binding sites and DNase-I HS peaks provided by ENCODE in narrowPeak
format are downloaded. Binding sites that are at least 2000bp away from
GENCODE TSS list and overlapping with DNase-I HS peaks are recorded.



Chapter 4

Methods

4.1 Dirichlet-multinomial compound distribution

Binomial distribution is a discrete probability distribution where the number of
successful outcomes of independent success/failure experiments (also called Bernoulli
trials) are modeled. Following conditions must be met for modeling using a binomial
distribution:

• Each trial must be independent,

• Each outcome must be either a success or a failure,

• The number of trials must be fixed,

• The probability of success must be equal in all trials.

Therefore, there are two parameters: probability of success p and number of trials
J . Given these parameters, probability mass function can be given as

Binomial(k; J, p) =

(
J

k

)
pk(1− p)N−k,

where k is the number of successful outcomes, pk represents the probability of getting
k independent successful outcomes, (1−p)J−k indicates the probability of getting J−
k unsuccessful outcomes whereas

(
J
k

)
term, called the binomial coefficient, represents

the number of permutations of k successful and J − k unsuccessful outcomes.
Generalization of binomial distribution to more than two categories is called

the multinomial distribution where the probabilities and the number outcomes of
different categories are represented as vectors rather than scalars. The probability

15
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mass function is given below:

Multinomial(~X; ~p, J) =

(
J

X1, X2, . . . , XS

) S∏
i=1

pXi
i

=
J !

X1!X2! . . . XS!

S∏
i=1

pXi
i ,

where S is the number of rival categories, ~X is an S-dimensional vector representing
the number of outcomes for each category, N is the number of total trials, and ~p is
an S-dimensional vector denoting the probabilities for S categories. Akin to the bi-
nomial distribution, the first term represents the permutations of the outcome vector
~X and is called the multinomial coefficient. For example, binomial and multinomial
distributions can be used to model tossing a coin and rolling a die, respectively.

In Bayesian statistics, a common choice for the prior of multinomial distribution
is the Dirichlet distribution which is a multivariate generalization of the beta dis-
tribution. For the outcome vector ~X and parameter vector ~α, Dirichlet distribution
returns the probability vector of events given that each event has occurred αi − 1
times1. Therefore, Dirichlet distribution can be defined as the probability distribu-
tion over probability vectors whose elements are real numbers in interval (0, 1) and
sum up to 1.

The space of S−dimensional vectors whose elements sum up to a number, such as
the support of the Dirichlet distribution with S parameters, defines a (S−1)-simplex.
For instance, a 3-dimensional vector space can be represented as a 2−simplex, which
is a triangle. Figure 4.1 demonstrates 4 different Dirichlet distributions where x, y
and z indicates three elements of ~α parameter vector and the “height” of the bumps
represents the density. In this example, it can be observed that the bumps are
closer to the events (vertices) that are observed more often. For instance in the first
Dirichlet distribution, x is observed 6 − 1 = 5 times whereas the other events are
observed 2− 1 = 1 times, and hence the bulk is closer to the x point.

Probability distribution function of Dirichlet distribution can be given as

Dirichlet(~p; ~α) =
1

B(~α)

S∏
i=1

pαi−1
i

where ~p is a vector of probabilities, ~α is a vector of Dirichlet parameters and the
normalizing constant B(·) is the multinomial beta function2.

Dirichlet-multinomial is a compound probability distribution. In compound
probability distributions, the parameters of one distribution are assumed to be
distributed according to another distribution. The compound distribution arises

1This is an intuitive but rough description because ~α parameters can also take values less than
1.

2Multinomial beta function can also be represented in terms of the gamma function: B(~α) =∏S
j=1 Γ(αj)

Γ(
∑S

j=1 αj)
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Figure 4.1: Densities of four Dirichlet distributions with parameters ~α =
(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4) clockwise from top to left [44]. The order of the
parameters is (x, y, z).
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when the random variable parameters are marginalized out. Here we use Dirichlet-
multinomial compound distribution (also called multivariate Pólya distribution)
which results from compounding Dirichlet and multinomial distributions by marginal-
izing multinomial parameters ~p3

DirMult(~X; ~α) =

ˆ
~p

P (~X|~p)P (~p|~α)d~p

=
J !∏S

i=1Xi!

B(~X+ ~α)

B(~α)
.

where J =
∑S

i=1Xi. Although modeling integer data with this distribution provides
a flexible and powerful means, this comes at a cost. Maximum likelihood estimate of
Dirichlet-multinomial compound distribution does not have a closed-form solution;
therefore, numerical methods are used to find out ML and MAP estimates. This
may cause rather slow implementations if, especially, iterative algorithms such as
the EM algorithm are involved.

One important reason to prefer Dirichlet-multinomial compound over multino-
mial distribution is that former can account for the variability in the data. This can
be demonstrated easily by reparamerizing the compound distribution with ~mα0 ≡ ~α
where α0 =

∑S
j=1 αj and ∀j ∈ 1, . . . S, mj =

αj

α0
so that

∑S
j=1mj = 1. In this

parameterization, ~m vector can be viewed as the proportion of successful trials for
each category, similar to the multinomial parameters sum to one, whereas α0 gives
the overall precision (inverse variance) of the data.

4.2 Mixture models and the EM algorithm

Mixture models result from a weighted sum of multiple distributions where the
mixing weights are non-negative and sum up to 1. This form of combination is also
referred to as a convex combination. Convex combination assures that the mixture
of distributions has a valid probability density function. Following is the general
formula for mixture models [28]

p(xi; ~θ) =
K∑
k=1

πkp(xi|zi = k, ~θ)

=
K∑
k=1

πkpk(x|~θ) .

It is assumed that each observed data point xi has a corresponding unobserved
data point zi which is a discrete latent variable representing which distribution
the data point belongs to, namely the membership of the data point. The prior
of zi variable is a categorical distribution with parameter vector ~π, hence p(z) =

3Derivation of Dirichlet-multinomial density function can be found in Appendix A.3.
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Cat(~π). ~θ represents the parameter vector of individual distributions. Intuitively,
the generative process of mixture models can be described in two steps. First, one
individual distribution out of K is chosen by sampling from Cat(~π) which leads to
z. Then, based on the value of zi, a sample is drawn from the distribution with
parameters matching z, namely p(·|θzi).

Mixture models are widely used for clustering where the mixed distributions
represent the distributions of individual clusters. In this case, the probability of an
observation belonging to a particular cluster is estimated. This probability is called
the posterior probability of latent membership variable z, namely p(zi = k|xi, ~θ).
The posterior, which is also known as the responsibility, can be written using Bayes
rule

p(zi = k|xi, ~θ) =
p(zi = k)p(xi|zi = k, ~θ)∑K

k′=1 p(zi = k′)p(xi|zi = k′, ~θ)
(4.1)

=
πkp(xi|zi = k, ~θ)∑K

k′=1 πk′p(xi|zi = k′, ~θ)
.

~θ and ~π parameters of the mixture model can be easily estimated through maxi-
mum likelihood estimation (MLE) or maximum a posteriori estimation (MAP), if the
values of z are observed. However, z is hidden, z and thus it must be marginalized
to achieve the log likelihood to be maximized. For the entire dataset this likelihood
is

log p(~X; ~θ) = log
∑
~Z

p(~X, ~Z; ~θ)

which is often intractable. Expectation-maximization (EM) algorithm [6] provides
an iterative algorithm to estimate the parameters of models involving latent vari-
ables. The trick that is used in the EM algorithm is to maximize a lower bound on
the log-likelihood given above, which is more tractable [27]. Using Jensen’s inequal-
ity, a lower bound can be obtained by

log p(~X; ~θ) = log
∑
~Z

p(~X, ~Z; ~θ) (4.2)

= log
∑
~Z

q(~Z)

q(~Z)
p(~X, ~Z; ~θ)

= log
∑
~Z

q(~Z)
p(~X, ~Z; ~θ)

q(~Z)

≥
∑
~Z

q(~Z) log
p(~X, ~Z; ~θ)

q(~Z)
,

where q(~Z) represents and arbitrary distribution over the hidden variable ~Z. In

the EM algorithm the posterior of ~Z variable, namely p(~Z|~X, ~θ), is used as q(~Z) to
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obtain a tight lower bound on complete data likelihood.
EM algorithm consists of two steps. First, q(~Z), which is p(~Z|~X, ~θ), is estimated

using Equation 4.1 by assuming that the model parameters ~θ and ~π are known.
This is known as the expectation step. Then, in the second step, know as the
maximization step, based on the posterior ~Z values computed previously, which can
now be denoted as p(~Z|~X, ~θold), the lower bound is maximized and the new model
parameters are obtained

log p(~X; ~θ) ≥
∑
~Z

q(~Z) log
p(~X, ~Z; ~θ)

q(~Z)

=
∑
~Z

q(~Z) log p(~X, ~Z; ~θ)− q(~Z) log q(~Z)

=
∑
~Z

[
p(~Z|~X, ~θold) log p(~X, ~Z; ~θ)

]
+H(q)

= E~Z [log p(
~X, ~Z; ~θ)] +H(q) ,

where H(q) = −
∑

~Z p(
~Z|~X, ~θold) log p(~Z|~X, ~θold) is a non-negative entropy term

which can be ignored in maximization since it does not depend on ~θ. Therefore

~θnew = argmax
~θ

E~Z [log p(
~X, ~Z; ~θ)] . (4.3)

This can also be applied to the MAP estimation

~θnew = argmax
~θ

E~Z [log p(
~θ, ~Z; ~X)] . (4.4)

The iterations of these two steps continue until the increase in the likelihood of the
data (or the posterior in MAP case) is negligible. When the iterations are over,
the posterior probability of memberships, which are also called soft labels, can be
converted to hard labels by using a MAP estimate

z∗i = argmax
k

p(zi = k|xi, ~̂θ)

4.3 Model description

In our model, the process of aligning the reads that are generated by a high-
throughput sequencing technique to the reference genome is modeled using a multi-
nomial distribution. Let us assume that a 2kb window is centered at a genomic
region of interest and for every 2000 positions the number of reads covering these
positions are counted. Resulting 2000-dimensional vector can be interpreted as a
sample from a multinomial distribution where the number of categories is 2000 and
the number of trials is the sum of the counts of 2000-dimensional vector. An analogy
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Figure 4.2: Difference between two forms of coverage signals.

is that aligning a read to the genome is similar to rolling a 2000-sided die. However,
as described in Section 4.1, one important requirement for binomial (and thus multi-
nomial) modeling is that every trial must lead to the success of exactly one category.
However, if the alignment of a read to the genome is regarded as a multinomial trial
and the coverage of whole reads is used in the model, one read affects more than one
position which corresponds to one trial leading to the success of multiple categories.
Therefore the requirement of multinomial distribution is violated. To fulfill this re-
quirement, only 5’ ends of reads are counted in the generation of signals which leads
very sparse data matrices. The difference between considering whole reads and 5’
ends only are illustrated in Figure 4.2.

Given a window size of 2kb, a single data type such as H3K4me1 and 1000
genomic loci to cluster, entire data can be represented as one 2000 × 1000 matrix
where the rows represent loci and columns represent nucleotide positions. However,
as discussed in Chapter 3, a lower nucleotide resolution, such as 50bp, is preferred
to reduce the computational cost of clustering. In this case, our coverage matrix
becomes a 40× 1000 matrix since the number of bins is 2000/50 = 40.

In this thesis, we propose a Dirichlet-multinomial mixture model to cluster ge-
nomic loci by exploiting various epigenetic data extracted from the loci being clus-
tered. Dirichlet-multinomial mixture model which is previously applied to the mi-
crobial metagenomics data by Holmes et al. [13] is extended in the following ways:

• Multiple data types can be incorporated in a multi-view fashion where differ-
ent views correspond to different epigenetic signals extracted from the same
genomic locus,

• Hyperprior can be regularized to reflect the dependence of consecutive base
pair positions in the real data and,

• Profile shifting can account for the uncertainty in the genomic loci being clus-
tered.

The data matrix is represented asX with elementsXij denoting the number of input-
subtracted reads whose starting position (5’ end) is mapped to bin j of locus i. Total
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(regularization)

Notation Description

η Fixed Gamma shape 
parameter

ν Fixed Gamma rate parameter

ηh Fixed Gamma shape 
parameter (regularization)

νh Fixed Gamma rate parameter 
(regularization)

α Dirichlet parameter vector 
(of length S)

π Dirichlet mixture weights

p Multinomial parameter vector

X Data generated through 
multinomial sampling

K Number of  mixture 
components

N Number of loci

M Number of data types

Figure 4.3: Model diagram in directed factor graph notation

number of genomic loci are N and the number of bins in a 2kb window is S, e.g. for
2kb window length and 50bp nucleotide resolution, S = 40. Therefore X is an N×S
matrix. Different data types of N regions are represented as X(1), X(2), . . . ,X(M)

where M represents the number of data types such as H3K4me1, H3K27ac, etc.
Entire dataset consisting of all loci and all data types is denoted as X(∗) whereas all
data types of a single locus i is represented as ~X

(∗)
i .

Every row of X is assumed to be generated from a multinomial distribution with
parameter vector ~pi where the elements pij represents the probability that 5’ end
of a read mapped to bin j of locus i. Multinomial parameters ~pi are sampled from
Dirichlet mixtures of size K with parameters ~αk and mixture weights πk where K
indicates the number of clusters. Z matrix represents binary memberships. Directed
factor graph notation is given in Figure 4.3.

4.3.1 Likelihood

Likelihood for observing one data type (e.g. H3K4me1) of a genomic locus is

Li( ~Xi|~pi) =

(
Ji

Xi1Xi2 . . . XiS

) S∏
j=1

p
Xij

ij (4.5)

=
Ji!∏S

j=1Xij!

S∏
j=1

p
Xij

ij (4.6)
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where Ji =
∑S

j=1Xij. Here, we assume that different data types of a locus are
independent, hence the likelihood for all data types of a locus i can be written as

Li( ~X
(∗)
i |~p(∗)i ) =

M∏
m=1

Li( ~X
(m)
i |~p(m)

i ) (4.7)

thus the multinomial likelihood for all loci is

L(X(∗)|p(∗)) =
N∏
i=1

M∏
m=1

Li( ~X
(m)
i |~p(m)

i ) (4.8)

4.3.2 Prior, posterior and marginal likelihood

Dirichlet prior for multinomial parameters ~pi is

Dir(~pi|~α) =
1

B(~α)

S∏
j=1

p
αj−1
ij , (4.9)

where ~α vector represents Dirichlet parameters. Assuming that the multinomial
parameters, ~pi, are generated by a mixture of Dirichlet distributions, the prior can
be expressed as

Dir(~pi|~α, ~π) =
K∑
k=1

Dir(~pi|~αk)πk .

For multiple data types (views), priors are multiplied since priors of different data
types are assumed to be independent

Dir(~p
(∗)
i |~α(∗), ~π) =

K∑
k=1

πkDir(~pi
(∗)|~α(∗)

k )

=
K∑
k=1

πk

M∏
m=1

Dir(~pi
(m)|~α(m)

k ) ,

which leads to the following posterior

P (~p
(∗)
i | ~X(∗)

i , ~α(∗), ~π) =

∑K
k=1 πkL(X

(∗)
i |~pi(∗))Dir(~pi(∗)|~α(∗)

k )∑K
k=1 πkP (X

(∗)
i |~α(∗)

k )
. (4.10)

The“evidence”or“marginal likelihood”term in the denominator of Equation 4.10 has
a key role in the mixture model and can be obtained by integrating out multinomial
parameters ~pi which in turn yields the Dirichlet-multinomial compound distribution
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P ( ~X
(∗)
i |~α(∗)

k ) =
M∏

m=1

ˆ
P ( ~X

(m)
i |~p(m)

i )Dir(~p
(m)
i |~α(m)

k )d~p
(m)
i (4.11)

=
M∏

m=1

J
(m)
i !∏S

j=1X
(m)
ij !

B( ~X
(m)
i + ~α

(m)
k )

B(~α
(m)
k )

(4.12)

Since the actual denominator of Equation 4.10 is denoted as a mixture of Dirichlet-
multinomial compounds, the following gives the marginal likelihood for one locus,
i

K∑
k=1

P ( ~X
(∗)
i |~α(∗)

k )πk =
K∑
k=1

(
πk

M∏
m=1

J
(m)
i !∏S

j=1X
(m)
ij !

B( ~X
(m)
i + ~α

(m)
k )

B(~α
(m)
k )

)
(4.13)

which can also be written for all genomic loci as

P (X(∗)|~α(∗), ~π) =
N∏
i=1

K∑
k=1

(
πk

M∏
m=1

J
(m)
i !∏S

j=1X
(m)
ij !

B( ~X
(m)
i + ~α

(m)
k )

B(~α
(m)
k )

)
. (4.14)

Without any hyperpriors, ~α parameters maximizing this expression (Type II MLE)
could have been estimated through the expectation-maximization algorithm, how-
ever, to provide more control over the mean and the variance of parameters, Gamma
hyperpriors are utilized and therefore the MAP estimate is computed.

4.3.3 Hyperprior

Gamma hyperpriors are defined on the Dirichlet parameters i.e. αjk ∼ Γ(η, ν). Here
η and ν are fixed shape and rate parameters of the Gamma distribution. Thus
independent and identically distributed Gamma hyperpriors can be written as

p(~α
(1)
1 , ..., ~α

(1)
K , ~α

(M)
1 ..., ~α

(M)
K ) =

M∏
m=1

K∏
k=1

S∏
j=1

Gamma(α
(m)
jk ; η, ν) (4.15)

=
M∏

m=1

K∏
k=1

S∏
j=1

νηα
(m) η−1
jk e−να

(m)
jk

Γ(η)
.

However, considering the real data (e.g. ChIP-seq, DNase etc.), it would be more ac-
curate to reflect the correlation between the number of reads mapped to consecutive
base pair positions to the model rather than assuming all Dirichlet parameters are
independently drawn from the same Gamma distribution. 2000 Dirichlet parameters
sampled independently from Gamma distribution with rate and shape parameters
0.1 and 0.1 are plotted in Figure 4.4. It can be clearly observed that there is no
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Figure 4.4: 2000 Dirichlet parameters sampled from Gamma(0.1, 0.1).

resemblance between these samples and the mean profiles of the data given in Fig-
ure ?? as samples are independently drawn from the same Gamma distribution
and hence have no bimodal or unimodal shape commonly observed in the signal of
enriched regions.

To reflect this fact to our model, a regularization term is incorporated into
Gamma hyperprior to favor smoother Dirichlet parameters over the ones which have
higher read count differences between consecutive base pair positions4:

p(~α
(1)
1 , ..., ~α

(1)
K , . . . , ~α

(M)
1 ..., ~α

(M)
K ) ∝ Γ(ηh)

−MKνηhMK
h Γ(η)−MKSνηMKS (4.16)

exp

{
−

M∑
m=1

K∑
k=1

(
νhh

(m)
k +

S∑
j=1

να
(m)
jk

)}
M∏

m=1

K∏
k=1

h
(m) ηh−1
k

S∏
j=1

α
(m) η−1
jk ,

where h
(m)
k =

∑S
j=2(α

(m)
jk − α

(m)
j−1 k)

2 and ηh and νh are the fixed parameters of the
smoothing Gamma term.

To keep α
(m)
jk values positive during the optimization step of EM, we use ~λ = log ~α

transformation through the multivariate change of variables method where ~λ and ~α

4The derivation is given in Appendix A.1.
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Figure 4.5: The prior densities of two Dirichlet parameters (α1 and α2) with and
without regularization

vectors represent all Dirichlet parameters across different data types and clusters5

p(~λ
(1)
1 , ..., ~λ

(1)
K , . . . , ~λ

(M)
1 ..., ~λ

(M)
K ) ∝ Γ(ηh)

−MKνηhMK
h Γ(η)−MKSνηMKS (4.17)

exp

{
−

M∑
m=1

K∑
k=1

(
νhh

(m)
k +

S∑
j=1

να
(m)
jk

)}
M∏

m=1

K∏
k=1

h
(m) ηh−1
k

S∏
j=1

α
(m) η
jk ,

where α
(m)
jk = eλ

(m)
jk .

The effect of the regularization is demonstrated in Figure 4.5. On the left-hand
side, prior joint density of two independent Dirichlet parameters is plotted where

p(α1, α2) = Gamma(α1; η = 3, ν = 1) ·Gamma(α2; η = 3, ν = 1).

Second plot on the right-hand side shows the regularized prior density based on
Equation 4.16 where parameters are η = 3, ν = 1, ηh = 1, νh = 4. Since Gamma dis-
tribution reduces to an exponential distribution with parameter νh, when the shape
parameter (ηh) is one, these regularization parameters favor α values with small
differences. Therefore, this reduces the differences between consecutive Dirichlet
parameters and yields smoother Dirichlet parameters.

4.3.4 Expectation-maximization

MAP estimates of Dirichlet parameters ~α and ~π are computed through the EM
algorithm

5The derivation is given in Appendix A.2.
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Q̂ = argmax
Q

P (Q|X) (4.18)

= argmax
Q

P (~α(∗), ~π|X(∗))

= argmax
Q

P (X(∗)|~α(∗), ~π)P (~α(∗))

= argmax
Q

P (X(∗)|~α(∗), ~π)
M∏

m=1

P (~α(m))

= argmax
Q

M∏
m=1

P (X(m)|~α(m), ~π)P (~α(m)) , (4.19)

where hyperparameter vector Q is defined as Q = (~α(1), . . . , ~α(m), ~π) and it is
assumed that ~π has a uniform prior. The logarithm of the posterior P (Q|X) can
be written as follows

logP (Q|X) ∝
N∑
i=1

log

[
K∑
k=1

(
πk

M∏
m=1

B( ~X
(m)
i + ~α

(m)
k )

B(~α
(m)
k )

)]
(4.20)

+
M∑

m=1

K∑
k=1

(
(ηh − 1) log h

(m)
k − νhh

(m)
k +

S∑
j=1

η logα
(m)
jk − να

(m)
jk

)
+terms independent of Q . (4.21)

Using Equation 4.14, we can write the marginal likelihood augmented with Z
latent variable as

P (X,Z|Q) =
N∏
i=1

K∏
k=1

(
πk

M∏
m=1

J
(m)
i !∏S

j=1X
(m)
ij !

B( ~X
(m)
i + ~α

(m)
k )

B(~α
(m)
k )

)Zik

(4.22)

and the log posterior is

logP (Q,Z|X) ∝ logP (X,Z|Q) + logP (Q) . (4.23)

Then logP (X,Z|Q) and logP (Q) can be written using Equations 4.22 and 4.17
respectively
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logP (X,Z|Q) ∝ log

 N∏
i=1

K∏
k=1

[
πk

M∏
m=1

B( ~X
(m)
i + ~α

(m)
k )

B(~α
(m)
k )

)

]Zik
 (4.24)

∝
N∑
i=1

K∑
k=1

{
zik

[
log πk +

M∑
m=1

(
logB( ~X

(m)
i + ~α

(m)
k )− logB(~α

(m)
k )

)]}
log P (Q) = MK(ηS log ν − S log Γ(η) + ηh log νh − log Γ(ηh)) (4.25)

+
M∑

m=1

K∑
k=1

(
(ηh − 1) log h

(m)
k − νhh

(m)
k +

S∑
j=1

η logα
(m)
jk − να

(m)
jk

)

As shown in Equation 4.4, the expected log posterior, which is the lower bound to
logP (Q|X), is maximized

logP (Q|X) ≥ EZ[logP (Q,Z|X)] +H (4.26)

EZ[logP (Q,Z|X)] =
N∑
i=1

K∑
k=1

{
E[zik]

[
log πk +

M∑
m=1

(
logB( ~X

(m)
i + ~α

(m)
k )− logB(~α

(m)
k )

)]}

+
M∑

m=1

K∑
k=1

(
(ηh − 1) log h

(m)
k − νhh

(m)
k +

S∑
j=1

η logα
(m)
jk − να

(m)
jk

)
+terms independent of Q. (4.27)

Here, E[zik] denotes the membership probabilities (responsibilities) which is given
below

E[zik] = P (zik = 1| ~X(∗)
i ) (4.28)

=
P (zik = 1)

∏M
m=1 P (

~X
(m)
i |zik = 1)∑

k′ P (zik′ = 1)
∏M

m=1 P (
~X

(m)
i |zik′ = 1)

=
P (zik = 1)

∏M
m=1 P (

~X
(m)
i |~α(m)

k )∑
k′ P (zik′ = 1)

∏M
m=1 P (

~X
(m)
i |~α(m)

k′ )
(4.29)

=
πk
∏M

m=1

B( ~X
(m)
i +~α

(m)
k )

B(~α
(m)
k )∑

k′ πk′
∏M

m=1

B( ~X
(m)
i +~α

(m)

k′ )

B(~α
(m)

k′ )

, (4.30)

where P ( ~X
(m)
i |zik = 1) = P ( ~X

(m)
i |~α(m)

k ). Note that, this has the same form as the
membership probability equation given in Equation 4.1 in Section 4.2.

In the maximization step of the EM algorithm EZ[logP (Q,Z|X)] is maximized
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w.r.t. πk and α
(m)
jk . Maximization w.r.t. πk leads to

πk =
1

N

N∑
i=1

E[zik] (4.31)

and maximization w.r.t α
(m)
jk gives us6

∂EZ[logP (Q,Z|X)]

∂α
(m)
jk

=
N∑
i=1

{
E[zik]

[(
ψ(X

(m)
ij + α

(m)
jk )− ψ(

S∑
j=1

X
(m)
ij + α

(m)
jk )

)

+

(
ψ(α

(m)
jk )− ψ(

S∑
j=1

α
(m)
jk )

)]}
(4.32)

+(ηh − 1)
g
(m)
jk

h
(m)
k

− νhg
(m)
jk +

η

α
(m)
jk

− ν , (4.33)

where

g
(m)
jk =

∂h
(m)
k

∂α
(m)
jk

=
∂
∑S

j=2(α
(m)
jk − α

(m)
j−1 k)

2

∂α
(m)
jk

=


2(α

(m)
jk − α

(m)
j+1 k) for j = 1

2(α
(m)
jk − α

(m)
j−1 k) for j = S

2(2α
(m)
jk − α

(m)
j+1 k − α

(m)
j−1 k) otherwise

(4.34)

As shown in Equation 4.17, we optimize the function with respect to λ
(m)
jk = logα

(m)
jk

to keep α
(m)
jk positive. The derivative w.r.t. λ

(m)
jk can be given as7

∂EZ[logP (Q,Z|X)]

∂λ
(m)
jk

= α
(m)
jk

N∑
i=1

{
E[zik]

[(
ψ(X

(m)
ij + α

(m)
jk )− ψ(

S∑
j=1

X
(m)
ij + α

(m)
jk )

)

−

(
ψ(α

(m)
jk )− ψ(

S∑
j=1

α
(m)
jk )

)]}
(4.35)

+α
(m)
jk

(
(ηh − 1)

g
(m)
jk

h
(m)
k

− νhg
(m)
jk +

η

α
(m)
jk

− ν

)
. (4.36)

Steps of the EM algorithm are summarized in Algorithm 4.1.

6The derivation is given in Appendix A.4.
7The derivation is given in Appendix A.5.
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Algorithm 4.1 Steps of the EM algorithm

1. Initialize membership probabilities using soft k-means algorithm given in Ap-
pendix B.

2. Initialize λ
(m)
jk parameters by minimizing the negative of Equation 4.27 w.r.t.

λ
(m)
jk . Broyden-Fletcher-Goldfarb-Shanno (BFGS) [5, 9, 10, 37] method pro-

vided by R is used for numerical optimization.

3. Calculate membership probabilities, E[zik] using Equation 4.30.

4. Update λ
(m)
jk parameters using E[zik] values from previous step.

5. Calculate mixing weights, ~π using Equation 4.31.

6. Go to step 3, until convergence of expected log posterior given in Equation
4.26.

4.4 Model comparison

Choosing the right number of components, K, is one of the most challenging steps
of data clustering. Here we take two Bayesian model selection approaches, namely
Bayesian information criterion (BIC) and Laplace approximation which provide
methods to determine the most suitable model for the given problem.

In Bayesian model selection approaches, the posterior probability of the model is
utilized to select a model from a set of models so that the model having the highest
probability of generating the given data is favored

p(MK |X) ∝ p(X|MK)p(MK) ,

where p(MK) represents the prior probability of K component model.
BIC approach provides an asymptotic approximation to the model posterior

probability
BIC = −2 log L̂+ k log(n) ,

where L̂, k and n represent the likelihood8, number of parameters in the model and
number of observations, respectively. Here, k log(n) acts a penalty term depending
on the number of model parameters so that more complex models are penalized
more strongly. For example, in our model, clustering of a data with S many bins,
M different data types and K components

k = S ×K ×M + (K − 1)

where S×K ×M denotes the number of Dirichlet parameters estimated and K − 1

8Since the MAP estimation is used in this study, L̂ parameter represents the posterior rather
than the likelihood.
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represents K many mixture weights (~π) sum to one. Subsequent to the calculation
of BIC values for clusterings with different number of components, the model with
the lowest BIC value is preferred. This provides a reliable means to find the optimal
number of clusters in the data.

Alternatively, p(X|MK) term, which is also called “the model evidence”, can be
computed by marginalizing out the Dirichlet parameters assuming that p(MK) is
uniform

p(X|MK) =

ˆ
p(X|Q,MK)p(Q|MK)dQ .

Although this integral cannot be calculated analytically, it can be estimated
using Laplace approximation

log p(X|MK) ≈ log p(X|Q̂,MK) + log p(Q̂|MK) +
M

2
log(2π)− 1

2
log |H| (4.37)

where Q̂ is the parameters maximizing the posterior which are estimated through
EM, H is the Hessian matrix9 of the second derivatives of negative log posterior
evaluated at Q̂ and M is the number of parameters in Q.

4.5 Profile shifting

Genomic regions being clustered, such as enhancers, usually involve a peak calling
process which identifies the regions where the data is enriched. However, this process
is not 100% accurate and hence peak summits, where we center a large window of
length 2kb, might not be actually at the center of region of interest.

To account for this phenomena, we propose a profile shifting process where an
additional integer parameter of d denoting the amount of distance between the given
location of the peak summit and the actual peak summit is estimated during the
EM algorithm.

Profile shifting adds one more step to the EM algorithm which is described in
Algorithm 4.1. After Step 5, for each genomic region separately, windows are shifted
by the amount of d∗ which ranges between −w

8
and w

8
where w is the window length,

and the values of d∗ parameters which yield the highest likelihood of the data are
retained. Since we keep separate d∗ values for each genomic region, in the end a
d∗vector of length N is obtained. Next EM iteration uses the data shifted by the
amount of d∗ and this continues until the convergence of the EM algorithm.

4.6 Artificial data generation

Histone modification-enriched genomic regions typically have a unimodal or bimodal
shape due to the occupancy of nucleosomes with histone modification flanking a func-

9Calculation of the elements of Hessian matrix is given in Appendix C.
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tional element. To reflect this aspect of the real data, we utilized sum of Gaussian
functions to generate Dirichlet-Multinomial parameters from which the data can be
sampled. The following equation provides a means to generate a multimodal signal
conveniently:

f(µ1, σ1, scale1, . . . , µm, σm, scalem, w) =
m∑
i=1

exp

(
−(x− (µi · w))2

2(σi · w)2

)
· scalei

where

• µi is the relative position of the peak summit within the window in [0, 1]
interval,

• σi represents the “width” of the peak similar to the standard deviation of a
Normal distribution,

• scalei is the y-component of the peak summit,

• m is the number of peaks,

• w is the length of the window in base pairs.

For instance, the following function describes a signal with two peaks on both sides
of the window center:

f(µ1 = 0.3, σ1 = 0.2, scale1 = 100, µ2 = 0.7, σ2 = 0.2, scale2 = 100, w = 2000)

The resulting template profile is shown in Figure 4.6.
Through sampling from a Dirichlet-multinomial compound with generated pa-

rameters, it is easy to create artificial data similar to those observed in enriched
genomic loci. Results of clustering on the data generated by this scheme is given in
the next chapter. Additionally, a method for generating artificial data randomly is
given in Appendix G.
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Figure 4.6: A bimodal shaped data which can be used as parameters of Dirichlet-
multinomial compound to generate artificial data.



Chapter 5

Results

5.1 Artificial data clustering

Using the method described in Section 4.6, artificial data consisting of two data
types and two clusters are generated. Generated data vectors has the length of 2000
and clusterings were performed in 40bp resolution. Number of samples per cluster is
500 with 1000 being the total sample size. The total number of reads per sample is
100 which leads to the expected bin count (coverage) of 100

2000
· 40 = 2. Mean signals

of the true clusters and the ones identified by the model are given in Figure 5.1.
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Figure 5.1: Mean signals of the true clusters(a) and the clusters identified by the
model(b)

Using this proof-of-priciple example, it can be said that the model perfectly
clustered the artificial data with the only difference being the switch of cluster
labels.1 BIC curve of clustering results with varying number of components is given

1The area under curve (AUC) value for the clustering is computed as 1.

34
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Figure 5.2

in Figure 5.2a, where number two can be identified as the knee of the curve. In Figure
5.2b, estimated Dirichlet parameters are shown along with the clustered data.

5.1.1 Comparison with data concatenation

When multiple data types are involved in clustering, most commonly used approach
is to concatenate data vectors. However, this approach has some drawbacks. For
instance, if the signal of one of the data types has a higher magnitude than the
others, it can dominate the clustering and lead to misleading results, especially if
the cluster structure of the data type in question is different than the others.

Here, we compare the mixture model extended with multi-view approach to the
same model without the multi-view extension to demonstrate the advantages of the
multi-view approach. Two data sets with one thousand samples are generated for
this purpose. In both of the data sets, the first data type has a distinct two-cluster
structure, whereas the second data type has only one. While the signal magnitudes
of the data types are similar in the first data set, second one has differing magni-
tudes such that the data type with a single component structure has a higher signal
magnitude2. To cluster the generated data using the model without the multi-view
extension, data vectors are concatenated. Mean signals of the generated data is
given in Figure 5.3.

While both approaches can cluster the first data set perfectly (AUC = 1), the
second data set is clustered accurately only by the multi-view approach. Results
showing the estimated Dirichlet parameters and the data is given in Figure 5.4.

2Data types with lower signal magnitudes has 100 reads per sample which leads to the expected
bin count of 100

2000 · 40 = 2. Second data type of the second data set has 500 reads per sample which
leads to the expected bin count of 500

2000 · 40 = 10.
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Figure 5.3: Mean signals of the true clusters in the artificial data.
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Figure 5.4: Clustering results demonstrating multi-view(a) and data concatena-
tion(b) approaches on the data set with varying signal magnitudes. Dirichlet pa-
rameters along with the heatmaps showing the clustered artificial data. The rows
represent clusters whereas the columns represent different data types.
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Figure 5.5: The comparison of clustering performance through ROC curves.
AUC values are 1(a) and 0.6976(b).

It can be clearly seen that, in the concatenation approach, high signal magnitude
dominated the clustering so that the method was not able to distinguish between
two distinct clusters that exist in the first data type. Additionally, receiver operating
characteristic (ROC) curves for both results are given in Figure 5.5.

5.1.2 Profile shifting

The epigenomics data that we aim to analyze are extracted from the genomic regions
of interest. However, the methods that determine these genomic loci, such as peak
callers, may not perform with 100% accuracy. So, the positions where the data are
extracted might need to be corrected by some means. As described in Section 4.5,
our model can account for this uncertainty of the anchor points such as TF ChIP-seq
peaks or TSSs, in other words, during the clustering, a discrete parameter vector of
length N , denoted as d in the previous chapter, representing the amount of shifts is
estimated in the EM iterations.

Here, to demonstrate the effect of profile shifting on clustering, artificial data
composed of 100 samples and two equally sized clusters are generated. Data vectors
are of length 1600 and the resolution is 40bp. To define shifting amounts for each
sample, 100 integers are sampled from a Skellam distribution3 with mean 0 and
standard deviation 120. The initial artificial data, randomly shifted data and the
clustering result of our model are given in Figure 5.6. It can be seen that the shifting
distances are correctly recovered by our model.

3Skellam distribution can be defined as the difference between two independent random variables
each having Poisson distributions.
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Figure 5.6: Artificial data(a), randomly shifted data(b) and the clustering result of
the randomly shifted data(c).

5.2 Enhancer clustering

We applied our method to heterogeneous epigenomics data extracted from enhancer
regions. As described in Chapter 3, enhancer loci consist of DNase-I sensitive and
TSS-distal p300 binding sites. For every binding site, 5’ ends of reads for the data
types that are relevant to enhancer presence are counted in bins of 40bp over a region
of -1kb to +1kb relative to p300 peak summit. Data types chosen for the clustering
are CTCF, H2A.Z, H3K27ac, H3K4me1, H3K4me2, H3K4me3, H3K79me2, H3K9ac
and Pol2.

First step of the analysis is to perform clustering using varying number of com-
ponents and to determine optimum number of clusters present in the data using
model selection methods, e.g. BIC

K̂BIC = argmin
K∈{1,2,...,12}

BICMK
.

Figure 5.7 shows BIC goodness-of-fit values4 for clusterings with different number
of components (BICMK

) which indicates that the optimal number of clusters present

in the data is five, i.e. K̂BIC = 5. Therefore, rest of the figures in this section
are based on the clustering with five components. In Figure 5.8, mean profiles of
clusters are shown for each data type. The data type with highest signal magnitude
is H3K27ac which is the indicative of active enhance regions. It is noteworthy that
clusters 2, 3 and 4, 5 are mirror images of each other, while cluster 1 seems to be

4Since these values are quite similar to Laplace approximation values, only BIC figures are
given. Laplace approximation curves can also be found in Appendix E.
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Figure 5.7: BIC values for different clusterings of enhancer loci

slightly more symmetrical than the rest.
In addition to the cluster mean signals, parameters of the Dirichlet distributions

give useful information. While the shape of the Dirichlet parameters represents the
relative read counts fall into the bins, the magnitude of the parameters indicates the
inverse variance (precision) of the read counts in the corresponding bin. In Figure
5.9, the clustered data are shown along with the Dirichlet parameters where the
data are indicated as heatmaps and the parameters are given above the data. Note
that, the height of the heatmaps are proportional to the number of genomic loci
within the cluster hence it can be said that smallest cluster is number 5. When the
Dirichlet profile magnitudes of data types are compared, it can be said that CTCF
clusters has the highest variation, which is also related to the fact that no distinct
patterns are observed in the heatmaps showing the clustered CTCF data. Finally,
the asymmetrical Dirichlet profiles of cluster 4 and 5 for the RNA polymerase II data
type are worth mentioning. Such asymmetrical Pol2 profiles, which are also present
in Figure 5.8, may indicate the direction of the enhancer RNA (eRNA) transcription.

In Appendix F, another visualization shows how the cluster memberships of each
enhancer change as the number of components increases. These figures give us an
idea about how cluster memberships would differ, if we partitioned the data into
smaller or larger number of clusters. Therefore, observing a group of genomic loci
falling into the same cluster in most clusterings suggests that this cluster is more
distinct and separable than the others. It can be said that enhancer clusters 3 and
4 are examples of such cases.

5.2.1 Transcription factor binding site enrichment

The TFBS enrichment in different classes of enhancers that are identified by our
method is also investigated. For this analysis, ChIP-seq peaks of 60 transcription
factors that are generated by ENCODE Uniform pipeline (track wgEncodeAwgTfb-

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
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Figure 5.8: Mean profiles of five enhancer clusters. The rows represent clusters
whereas the columns represent different data types. Similar to other plots showing
the mean signal, mean data are indicated as small points and the smoothers are
plotted only to display the trend in the data.

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
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Figure 5.9: Dirichlet parameters along with the heatmap showing the clustered
enhancer data. Again, the rows represent clusters whereas the columns represent
different data types.

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
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TF Enrichment Cluster(s) Function of the TF

BDP1

Not enriched in

4
TFIIIB subunit and Pol III
recruiter involved in
transcriptional activation

SETDB1 3
H3K9-selective histone
methyltransferase,
transcriptional repression

RAD21 5 DNA repair
BRF2 4, 5 TFIIIB subunit

RPC155

Enriched in

1, 3
Largest component of Pol III
which transcribes housekeeping
genes

ATF3 2, 3
Transcriptional activator and
repressor

TR4 5
Transcriptional activator and
repressor

NELFe 3
A complex which binds to Pol II
to suppress elongation

Table 5.1: Summary of TFBS enrichment in enhancer clusters for selected TF.

sSydhK562) are downloaded. Then, for each TF-cluster pair a significance test was
performed by the GAT tool [11] to determine whether the TF enrichment in the
cluster of interest is more than expected by chance. To achieve this, first, random
locations with same size distribution of TF peaks are created within the mappable
regions5 of the genome, and then the number of randomly created regions over-
lapping with the enhancer cluster is compared to the number of observed overlaps
between the cluster and TFBSs in question. This comparison yields to the empirical
p-value of the enrichment which can then be adjusted through Benjamini-Hochberg
correction to obtain the q-value. Rows and columns of the heatmap consisting of
− log transformed q-values are clustered using hierarchical clustering by gplots R

package. The results are shown in Figure 5.10
Results of the significance test enabled us to discover TFs that exhibit interesting

enrichment patterns e.g. TFs significantly enriched only in some clusters but not
in the others. One such interesting group of TFs are BDP1 (B double-prime 1),
SETDB1 (SET domain, bifurcated 1), RAD21 and BRF2 (B-related factor 2) which
are not enriched in a subset of enhancer clusters. On the other hand, RPC155,
ATF3 (activating transcription factor 3), TR4 (testicular receptor 4) and NELFe
(negative elongation factor E) are only enriched in clusters (1, 3), (2, 3), (5) and
(3), respectively. Summary of these results are given in Table 5.1. The function of
TFs are provided by Factorbook [41].

5ENCODE 36mer mappability data generated in Guigó lab at Centre de Regualció Genòmica
were used. During the simulations conducted to compute q-values, only the positions with map-
pability score of one in the genome were taken into account.

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
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Figure 5.10: Significance test results of TFBS enrichment analysis. For each TF-
enhancer cluster pair, empirical p-values with Benjamini-Hochberg correction are
calculated using GAT tool [11]. Negative log-transformed q-values are presented.
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Figure 5.11: BIC values for different clusterings of promoter loci

5.3 Promoter clustering

In addition to discover epigenomic patterns in enhancer regions, we aimed to cluster
promoters by taking multiple data types which are relevant to promoter presence
into account. In this section, results of this analysis are presented. As described in
Chapter 3, first, TSSs overlapping with DNase-I hypersensitivity peaks are deter-
mined. Subsequently, 5’ ends of reads falling into 40bp bins over a region of -1kb
to +1kb relative to TSS centers are counted. The data types used in this analysis
consist of H2A.Z, H3K27ac, H3K4me1, H3K4me2, H3K4me3, H3K79me2, H3K9ac
and Pol2.

Similar to the enhancer clustering, we used BIC goodness-of-fit values to deter-
mine a reasonable number of clusters. BIC curve for the clustering results with
varying number of components is given in Figure 5.11. Unlike the one for the en-
hancer clustering results, here we observe a BIC curve with monotonically decreasing
values. For that reason, seven was visually chosen as a reasonable number of com-
ponents, since the decrease in BIC for the numbers larger than seven is negligible.

Mean signals of identified promoter clusters are given in Figure 5.12. First of
all, in all clusters the signal of H3K4me3, a characteristic histone mark for promoter
regions, has high magnitude and mostly bimodal-like shapes representing two his-
tones flanking the TSS. Except for cluster 6, all histone modifications exhibit an
asymmetrical profile which may indicate the direction of transcription [3].

Figure 5.13 shows the estimated Dirichlet parameters along with the heatmaps
representing the clustered data. Similar to Figure 5.9 given in the previous section,
in addition to the epigenetic signatures of various promoter clusters, this figure also
shows the variance of the data within clusters through the magnitude of Dirichlet
parameters.
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1, H2AZ 1, H3K27ac 1, H3K4me1 1, H3K4me2 1, H3K4me3 1, Pol2 1, H3K79me2 1, H3K9ac

2, H2AZ 2, H3K27ac 2, H3K4me1 2, H3K4me2 2, H3K4me3 2, Pol2 2, H3K79me2 2, H3K9ac

3, H2AZ 3, H3K27ac 3, H3K4me1 3, H3K4me2 3, H3K4me3 3, Pol2 3, H3K79me2 3, H3K9ac

4, H2AZ 4, H3K27ac 4, H3K4me1 4, H3K4me2 4, H3K4me3 4, Pol2 4, H3K79me2 4, H3K9ac

5, H2AZ 5, H3K27ac 5, H3K4me1 5, H3K4me2 5, H3K4me3 5, Pol2 5, H3K79me2 5, H3K9ac

6, H2AZ 6, H3K27ac 6, H3K4me1 6, H3K4me2 6, H3K4me3 6, Pol2 6, H3K79me2 6, H3K9ac

7, H2AZ 7, H3K27ac 7, H3K4me1 7, H3K4me2 7, H3K4me3 7, Pol2 7, H3K79me2 7, H3K9ac
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Figure 5.12: Mean profiles of seven promoter clusters. The rows represent clusters
whereas the columns represent different data types. Similar to other plots showing
the mean signal, mean data are indicated as small points and the smoothers are
plotted only to display the trend in the data.
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Figure 5.13: Dirichlet parameters along with the heatmap showing the clustered
promoter data. Again, the rows represent clusters whereas the columns represent
different data types.
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TF Enrichment Cluster(s) Function of The TF

GATA1

Not enriched in

6

TF that binds to promoter
regions and regulates the
transcription

SMC3 3
Involved in DNA repair and
chromosome maintenance

GATA2 2

TF that binds to promoter
regions and regulates the
transcription

CoREST/RCOR1 1

Protein that binds to
REST transcriptional
repressor

SIRT6
Enriched in

7
Regulates epigenetic gene
silencing

TFIIIC-110 5,7

Subunit of Pol III
transcription factor TFIIIC
required for transcription

Table 5.2: Summary of TFBS enrichment in promoter clusters for selected TF.

5.3.1 Transcription factor binding site enrichment

Similar to the analysis given in Section 5.2.1, we also assessed the enrichment of
various TFs in promoter clusters. The GAT tool was used similarly to compute
q-values for every cluster-TF pair where the TFs that are enriched in promoter
regions more than expected by chance are revealed. The heatmap showing − log
transformed q-values is presented in Figure 5.14.

While quite a few transcription factors are enriched in all promoter clusters, the
lower half of the heatmap shows patterns that require further investigation. Table
5.2 summarizes TFs that are only enriched in (or only not enriched in) a few clusters
along with the function of TF in question.

5.4 Hyperprior regularization

In Figure 5.15, clustering result of H3K4me1 and H3K27ac profiles of width 2kb
centered at thousand enhancer regions are shown. Every vertical panel consists
of three clusters of a single data track. Within a panel, clusters are represented
as heatmaps below the Dirichlet parameters fitted to the cluster in question. The
effect of regularization can be observed by comparing the Dirichlet parameters of two
clusterings performed with(5.15a) and without(5.15b) regularization. Although the
profile of Dirichlet parameters is closer to the real data profiles when regularization
is applied, no improvement on the clustering results are observed.
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Figure 5.14: In this figure, significance test results of TFBS enrichment analysis
are given. For each TF-promoter cluster pair, empirical p-values with Benjamini-
Hochberg correction are calculated using GAT tool [11]. Negative log-transformed
q-values are presented.
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Figure 5.15: The Dirichlet parameters of the model-based clustering method fitted
to the data.



Chapter 6

Discussion

The study of epigenomics provides crucial information concerning the key biological
mechanisms such as the gene regulation. The analysis of vast amount of publicly
available epigenomic datasets is essential as it may shed light on many critical ques-
tions of biology. However, the datasets are growing faster than the computational
means required for the analysis and therefore novel methods are still needed. One of
the most commonly used analysis techniques is clustering methods aiming to uncover
commonly occurring epigenetic signatures. A vital aspect lacking in currently avail-
able clustering methods is the handling of multiple data types in a principled manner
to account for the combinatorial presence of epigenetic marks. The determination
of a reasonable number of clusters emerges as another challenging task.

In this study, we provide a probabilistic clustering technique tailored for the het-
erogeneous epigenomics data that are intrinsically sparse and discrete. The epige-
nomics data of various data types that are extracted from the genomic locus of in-
terest are handled rigorously by using a well-known technique called the multi-view
clustering approach. This technique can accurately model the epigenomics data with
various number of marks each having differing signal magnitudes and shapes. We
demonstrated this aspect of the model by comparing the technique with the same
mixture model lacking the multi-view approach which can only model concatenated
epigenetic data vectors. Results show that concatenation may fail especially in cases
where the data types have varying signal magnitudes.

Another challenge that needs to be addressed is the uncertainty of the locations of
anchor points such as TSSs. In this work, we implemented a profile shifting technique
by exploiting the iterative essence of the expectation-maximization algorithm, so
that the profiles are aligned by means of shifting during the process of clustering.
The effect of this aspect is also demonstrated. Considering the fact that there is a
correlation between the count data of consecutive nucleotide positions which results
from the unimodal or bimodal shape of histone modification signals, we introduced
an hyperprior regulation to account for this phenomena.

We applied our model to various histone modification and transcription factor
ChIP-seq data extracted from the enhancer and promoter regions to identify distinct
epigenetic patterns. Moreover, a TF enrichment analysis is conducted to determine
the transcription factors that are significantly enriched in a subset of enhancer or
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promoter clusters.

6.1 Future work

Our approach can be further used to discover novel patterns present in other types
of genomic loci such as transcription factor binding sites, transcription termination
sites (TTS) or intron-exon boundaries. Alternatively, the clustering can also be
applied to the data generated through other experimental protocols.

Biological meaning of the relation between enhancer/promoter clusters and TFs
that are significantly enriched in specific clusters requires further investigation. The
association between identified clusters and TFs can be supported by motif enrich-
ment analysis where the motifs encountered in clusters are compared to those of
TFs.

Another potential research direction is to extend the model to a classifier similar
to the approach taken by Holmes et al.[13] where a mixture model is trained for
each class separately and the probabilities of the new data being generated by the
trained models are compared.

We introduced a finite mixture model where the data are clustered for vary-
ing number of components iteratively and then, a reasonable number of clusters
is identified by means of a model selection approach. An alternative approach for
overcoming the identification of correct number of clusters would be to extend the
model into an infinite mixture model using a Dirichlet process prior.
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Appendix A

Derivations

A.1 Derivation of Equation 4.16
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A.2 Derivation of Equation 4.17

Multiplying p(~α) by the determinant of Jacobian matrix of the inverse mapping
~λ→ ~α, which is a diagonal matrix, yields p(~λ):
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A.3 Derivation of Dirichlet-multinomial distribu-

tion density

Since Dirichlet is conjugate prior of multinomial, it is mathematically convenient
such that the following integration has a closed form. The integration can be calcu-
lated using equations multinomial(4.6) and Dirichlet(4.9) mass and density functions
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In the fourth line, we multiply and divide the integrand by B( ~Xi + ~αk) to achieve

the posterior term Dir(~p; ~Xi + ~αk) which integrates to one.
Since we assume that the probabilities of multiple data types of the same genomic

loci are independent, the likelihood of a locus i withM data types can be calculated
by multiplying likelihoods of individual data types
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A.4 Derivation of Equation 4.33

Logarithm of multinomial beta function can be written using its representation in
terms of gamma function

B(~α) =
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(A.8)
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To take the derivative of EZ[logP (Q,Z|X)] w.r.t α
(m)
jk , first let’s write expected

log posterior (Equation 4.26) using only terms depend on α
(m)
jk and then rearrange
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the equation:
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log Γ(α
(m)
jk )− log Γ(

S∑
j=1

α
(m)
jk )

)]}

+

(
(ηh − 1) log h

(m)
k − νhh

(m)
k +

S∑
j=1

η logα
(m)
jk − να

(m)
jk

)}

Using Psi (digamma) function ψ(x) = d(log Γ(x))
dx

= Γ′(x)
Γ(x)

, we can write the deriva-

tive of Equation A.10 w.r.t α
(m)
jk as follows:

∂EZ[logP (Q,Z|X)]

∂α
(m)
jk

=
N∑
i=1

{
E[zik
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ψ(X

(m)
ij + α

(m)
jk )− ψ(

S∑
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X
(m)
ij + α

(m)
jk )

)

−

(
ψ(α

(m)
jk )− ψ(
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α
(m)
jk )

)]}
+ (ηh − 1)

g
(m)
jk

h
(m)
k

− νhg
(m)
jk +

η

α
(m)
jk

− ν

(A.11)
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A.5 Derivation of Equation 4.36

∂EZ[logP (Q,Z|X)]

∂λ
(m)
jk

=
∂EZ[logP (Q,Z|X)]

∂α
(m)
jk

dα
(m)
jk

dλ
(m)
jk

=
∂EZ[logP (Q,Z|X)]

∂α
(m)
jk

1

dλ
(m)
jk

dα
(m)
jk

=
∂EZ[logP (Q,Z|X)]

∂α
(m)
jk

1
1

α
(m)
jk

=
∂EZ[logP (Q,Z|X)]

∂α
(m)
jk

α
(m)
jk

= α
(m)
jk

N∑
i=1

{
E[zik]

[(
ψ(X

(m)
ij + α

(m)
jk )− ψ(

S∑
j=1

X
(m)
ij + α

(m)
jk )

)

−

(
ψ(α

(m)
jk )− ψ(

S∑
j=1

α
(m)
jk )

)]}
(A.12)

+α
(m)
jk

(
(ηh − 1)

g
(m)
jk

h
(m)
k

− νhg
(m)
jk +

η

α
(m)
jk

− ν

)
(A.13)



Appendix B

Soft k-means clustering algorithm

Algorithm B.1 Soft k-means clustering algorithm [24].

1. Cluster centers, denoted as m(k), are initialized using kmeans++ algorithm
[2].

2. Membership probabilities of the data points are calculated using the following
formula:

r
(n)
k =

exp(−β d(m(k), x(n)))∑
k′ exp(−β d(m(k′), x(n)))

where r
(n)
k shows the probability that data point x(n) is a member of cluster

k. The only parameter of the method,β, defines the stiffness which makes the
algorithm identical to hard k-means as it goes to infinity. d(·) function defines
the distance which is the Euclidean distance in our case.

3. Cluster centers are computed based on the following equation:

m(k) =

∑
n r

(n)
k x(n)∑
n r

(n)
k

4. If the sum of differences between the previous cluster centers and last cluster
centers are negligible stop, otherwise go to step 2.
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Appendix C

Calculation of the Hessian matrix
elements in Laplace approximation

Diagonal and off-diagonal elements of the Hessian matrix H in Equation 4.37 can
be calculated using Equation 4.36 as follows:

−∂
2EZ [F (Q,Z)]

∂λ
2 (m)
jk

= −∂
2EZ [F (Q,Z)]

∂λ
(m)
jk ∂α

(m)
jk

α
(m)
jk

= −α(m)
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{
E[zik]

[(
ψ(X

(m)
ij + α
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jk )− ψ(

S∑
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X
(m)
ij + α

(m)
jk )

)

−

(
ψ(α

(m)
jk )− ψ(

S∑
j=1

α
(m)
jk )

)]}

−α2 (m)
jk

N∑
i=1

{
E[zik]

[(
ψ1(X

(m)
ij + α

(m)
jk )− ψ1(

S∑
j=1

X
(m)
ij + α

(m)
jk )

)

−

(
ψ1(α

(m)
jk )− ψ1(

S∑
j=1

α
(m)
jk )

)]}

−α(m)
jk

(
(ηh − 1)

g
(m)
jk

h
(m)
k

− νhg
(m)
jk +

η

α
(m)
jk

− ν

)

−α2 (m)
jk

[
(ηh − 1)

(
r
(m)
jjk h

(m)
k − g

2 (m)
jk

h
2 (m)
k

)
− νhr

(m)
jjk − η

α
2 (m)
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]
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−∂
2EZ [F (Q,Z)]

∂λ
(m)
j′k ∂λ

(m)
jk

= −∂
2EZ [F (Q,Z)]

∂λ
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(m)
jk

−α(m)
jk α
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N∑
i=1

{
E[zik]

[
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α
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jk )− ψ1(

S∑
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(m)
ij + α

(m)
jk )
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−α(m)
jk α
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j′k
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(m)
jj′kh

(m)
k − g

(m)
jk g

(m)

j′k

h
2 (m)
k

− νhr
(m)
jj′k


where r

(m)
abk represents an element of the Hessian matrix of regulation term h

(m)
k with

indices a and b. Therefore

r
(m)
abk =

∂g
(m)
ak

∂α
(m)
bk

=
∂2h

(m)
k

∂α
(m)
ak ∂α

(m)
bk

Hessian matrix of h
(m)
k , which is denoted by r

(m)
abk , is given below:

2 −2 0 · · · 0 0
−2 4 −2 0 · · · 0

0 −2
. . . . . . . . .

...
... 0

. . . . . . −2 0

0
...

. . . −2 4 −2
0 0 · · · 0 −2 2


Super- and sub-diagonal elements are −2 since the first partial derivative of

Dirichlet parameters (last case in Equation 4.34) between the first and last ones also
depend on the previous and next Dirichlet parameters.
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Appendix D

Promoter and enhancer mean sig-
nals
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Figure D.1: Enhancer mean signals plotted separately for different data types
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Figure D.2: Promoter mean signals plotted separately for different data types



Appendix E

Laplace approximation results
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Figure E.1: Laplace approximation goodnes-of-fit values for the mixture models
modeling the enhancer(a) and promoter(b) data.
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Appendix F

Change of labels across different clus-
terings

Visualizing which cluster a genomic locus falls into when the clustering is performed
with various number of components may provide useful information. To create such a
visualization, after adding an amount of jitter to integer cluster labels, we plotted the
points that represent the labels of genomic loci of interest on the parallel coordinate
system such that each vertical line (axes of parallel coordinate system) shows a
different clustering result. Next, a spline interpolation was performed to connect the
labels of a locus across different clustering results. Colors of the splines are chosen
based on the result of clustering with optimum number of clusters determined by
BIC, which are 5 and 7 for enhancer and promoter clusterings, respectively. The
cluster labels in each vertical line are ordered in a way that the cluster label with
the highest number is at the top.

Observing that some loci consistently fall into the same cluster in different clus-
tering results suggests that this group of loci is a major cluster which is more distinct
and separable than the others. For instance, in Figure F.1a, 4 out of 5 clusters,
with the exception being the fifth cluster represented in purple color, are consistent
throughout the clustering results with more than 5 components. In other words, no
major bifurcations are observed for these clusters. Fewer such cases are observed in
promoter clustering results i.e. clusters 3 and 6 given in green and purple colors.
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(a) Enhancer labels

(b) Promoter labels

Figure F.1: Cluster labels of each regulatory element resulting from clusterings with
different number of components



Appendix G

Random generation of artificial data

Artificial data can be generated through Gaussian functions described in Section
4.6. However, three parameters characterizing a bell-shaped curve, namely µ, σ and
scale are required to be specified manually for each data type and each cluster.
Specifying these parameters by hand can be cumbersome. Therefore, we defined
probability distributions appropriate for each parameter to make the process truly
random. The description of the generative process showing how to create these
parameters randomly is given in Algorithm G.1. Generated Dirichlet parameters
can then be used for generating the artificial data by sampling from the mixture of
Dirichlet-multinomial compound with generated parameters. Mean profiles of the
clusters of the data generated through this scheme is shown in Figure G.1.

Algorithm G.1 Generative process for creating Dirichlet-multinomial parameters
in a random fashion

1. Number of clusters is drawn from a zero-truncated Poisson: K ∼ ztPois(λK)

2. For each data type:

(a) For each cluster:

i. Sample number of peaks in a window from a zero-truncated Poisson:
nPeaks ∼ ztPois(λpeak)

ii. For each peak i in nPeaks:

A. Sample µi parameter which is in [0, 1] interval: µi ∼ Beta(αµ, βµ)

B. Sample σi parameter: σi ∼ Beta(ασ, βσ)

C. Sample scalei parameter: scalei ∼ Gamma(αscale, βscale)

3. Sample Dirichlet-multinomial mixture weights from a symmetric Dirichlet:
π ∼ Dirichlet(απ1)
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Figure G.1: Cluster mean signals of artificially generated data in 50bp resolution.
Rows represent different clusters whereas columns correspond to different artificial
data types.
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