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Parameter inference for stochastic systems is considered as one of the funda-
mental classical problems in the domain of computational systems biology. The
problem becomes challenging and often analytically intractable with the large
number of uncertain parameters. In this scenario, Markov Chain Monte Carlo
(MCMC) algorithms have been proved to be highly effective. For a stochastic
system, the most accurate description of the kinetics is given by the Chemical
Master Equation (CME). Unfortunately, analytical solution of CME is often in-
tractable even for considerably small amount of chemically reacting species due
to its super exponential state space complexity. As a solution, Stochastic Simu-
lation Algorithm (SSA) using Monte Carlo approach was introduced to simulate
the chemical process defined by the CME. SSA is an exact stochastic method to
simulate CME but it also suffers from high time complexity due to simulation
of every reaction. Therefore computation of likelihood function (based on exact
CME) and hence the rejection step (in an acceptance-rejection based MCMC
like Metropolis-Hastings) becomes expensive. In this generic work, we introduce
different approximations of CME as a pre-conditioning step to the full MCMC
in order to make rejection cheaper. The goal is to avoid expensive computation
of exact CME as far as possible. We show that, with effective pre-conditioning
scheme, one can save a considerable amount of exact CME computations main-
taining similar convergence characteristics. Additionally, we investigate three
different sampling techniques (dense sampling of the same process, longer time
sampling of the same process and i.i.d sampling of different processes) under
which convergence of MCMC using exact CME for parameter inference can be
analyzed. We find that under i.i.d sampling, better convergence can be achieved
than that of other two techniques (atleast for the processes, we have investigated).
We verify our theoretical findings for two different fundamental processes: lin-
ear birth-death and dimerization. Although, we succeed in saving a considerable
amount of CME computations for two simple one-dimesional processes, challenges
remain in extending it for higher dimensions which is a non-trivial problem.
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Abbreviations and Acronyms

CME Chemical Master Equation
CLE Chemical Langevin Equation
RRE Reaction Rate Equation
SSA Stochastic Simulation Algorithm
MCMC Markov Chain Monte Carlo
i.i.d (I.I.D) Independent Identically Distributed
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Chapter 1

Introduction

Life is an interplay between determinism and randomness. This descrip-
tion of life is dependent on the level of observation and state of the system.
When viewed from macroscopic level and the system is in equilibrium, de-
terminism is perceived. In this framework (equilibrium and macroscopic
scale), according to the laws of large number, one can expect a negligible
fluctuation to a scale of 1/

√
N to a system behavior having N degrees of

freedom. But life is also a dissipative system operating (thermodynamically)
far from equilibrium [23] and hence can exhibit large fluctuations even in the
macroscopic scale [15]. Now imagine, if the number of molecules are signifi-
cantly less (which is the usual case with most of the fundamental processes
inside a living cell), stochasticity takes over. A number of significant publi-
cations [2, 3, 16, 21, 22, 28] has already been established the fact. Therefore,
stochasticity appears to be inherent in Nature. As an example, we can con-
sider cellular processes which are nothing but set of chemical reactions. The
reactions can be modeled using conventional reaction-rate-equations (RRE)
as long as the number of interacting molecules is large. The problem occurs
when this number is considerably small. We can not apply the classical mass
action kinetics to determine the system behavior. Instead, the deterministic
reaction rates are replaced by probabilistic reaction rates and the resulting
modeling approach becomes Stochastic Chemical Kinetics [7, 17, 27].At this
level, the most accurate description of the kinetics is given by the Chemical
Master Equation (CME).

Unlike a deterministic system (which requires to solve coupled ODEs),
stochastic chemical kinetics relies on generation of random numbers to real-
ize different trajectories corresponding to each simulation. To predict which
trajectory is statistically correct (and hence the solution of the stochastic
equation) seems to be a difficult task until D.T. Gillespie comes with his
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CHAPTER 1. INTRODUCTION 8

pioneering Monte Carlo technique known as the Stochastic Simulation Al-
gorithm or SSA [8]. The beauty of this algorithm lies in the fact that its
random walk realization exactly represents the distribution of the Chemical
Master Equation or CME [9] which is a set of coupled first order ODE’s de-
scribes the time evolution of the probability distribution of system being at a
particular state among a discrete set of states. Though an exact description
of the system, CME is often hard to solve analytically (most of the times) as
well as numerically (sometimes). Moreover, for a bimolecular reaction, it is
hard to predict the average behavior of the system [10].

Apart from the modeling approach using CME and its algorithmic treat-
ment as SSA, stochastic chemical kinetics requires an efficient estimation of
reaction rates or parameters which is often needed in systems biology involves
experiments. Efficient estimation of the reaction rates leads to reconstruction
of biochemical networks from experimental data: a fundamental problem in
systems biology. In stochastic chemical kinetics paradigm, the continuum
assumption of the number of molecules is not valid (as it is small) and hence
least square fitting or maximum likelihood are not the best way to estimate
the parameters [26]. In this scenario, Monte Carlo based approaches are
proved to be efficient. Monte Carlo based methods can be classified into two
main categories: Maximum Likelihood methods [20, 26] to obtain maximum
likelihood estimates (MLE) of the parameters and Bayesian inference meth-
ods to obtain maximum a posteriori (MAP) estimates of the parameters.
Now one of the techniques for Bayesian inference is Markov Chain Monte
Carlo which first creates a random walk or a Markov process having station-
ary distribution same as the posterior distribution and then Monte Carlo
sampling to sample directly from The major assumption underlying the CME
is that reactions are occurring in well-mixed environments. Typically, this
assumption is valid in sub-micron intracellular compartments since normal
diffusion created homogeneity of molecular species over small volumes. The
primary reason which has limited the exploitation of the CME approach is
the lack of exact solutions. Hence, much of the literature to date have fo-
cused on identifying cases where exact solutions of the CME are possible
and more generally on obtaining approximate solutions to the moments of
the CME using sophisticated mathematical approaches. Here are some key
papers relevant to the theme of this work:
Golightly and Wilkinson [11] proposes that one should use the Chemi-
cal Langevin Equation(CLE) rather than the Kurtz process (jump Markov
process description) to describe the underlying stochastic process. The strat-
egy is to use maximum likelihood estimation (MLE), where the probability
distribution is given by a Gaussian centered at the expectation and spread
by the co-variance found using the RRE. This method clearly fails in many
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cases, however for simple reaction kinetics this gives a significant speed up.
The paper extends into using MCMC for parameter search. Furthermore
there is a discussion on unseen states, this is out of the scope of our work
and can be omitted. Currently the most accepted MLE method uses CLE
approximation.
Now, Zimmer and Sahle [29] takes a different approach. They construct a
new likelihood function which is made up differences between an ODE trajec-
tory, which they call multiple shooting, and the observation. This results in
a very cheap likelihood to calculate. This method again for simple reaction
kinetics behaves well, its resolution increases with sample size. This method
of course converges when one increases the number of observations.
Next, Milner et. al. [19] extend the paper by Golightly and Wilkinson
[11]. The paper uses moment closure to approximate the moments of the
RRE. This is currently the best method in the literature. It of course runs
into classical problems of approximating via the CLE.
Finally, Efendiev et. al. [4] takes on the preconditioned MCMC which
demonstrates that using inexpensive coarse-scale computations one can im-
prove the acceptance rate of MCMC up to 10 times.
In this work, we aim at CME and its relevant approximations to use as a pre-
condition for MCMC. This investigation is novel in the sense that CME has
never been exploited in this preconditioned fashion for parameter inference.
Moreover, this work shows promises to obtain a scale-free preconditoned
MCMC with higher acceptance rate with proper choice of preconditioning
scheme. It also guides us towards the limitations of CME in general for pa-
rameter inference and how we can possibly overcome it by avoiding the exact
computations of CME as far as possible.



Chapter 2

Theoretical Concepts and Algo-
rithms

2.1 Stochastic Chemical Kinetics

In cellular systems, we often encounter small number of chemically reacting
species. In this mesocopic environment , the interactions (dynamical be-
havior) between them govern by inherent randomness. Therefore, to model
the time evolution of such system, we need a stochastic approach which is
precisely the concept behind the stochastic chemical kinetics: chemical
reactions modeled by stochastic processes. The commonest way for such kind
of description is achieved by the chemical master equation (CME).

2.1.1 Chemical reactions and master equation

A homogeneous chemical reaction network can described as: {D,R}, where
D is the set of species interacting with each other specified by set of reactions
R. The state of the system at time t is [x, t] = {0, 1, . . . }D: the number of
molecules of each kind. Now, as the system is stochastic, there is some
associated probability with which the state transition takes place. We call
the reaction propensities denoted by wr : ZD+ → R+. Now if N ∈ ZD×R is
the stoichiometric matrix, we can write:

x
wr(x)−−−→ x− Nr (2.1)

Now, the CME describes the time evolution of the probability of the number
of chemical species present at time t. For example, if we have p(x, t) is the
probability that x number of molecules is present in the system at time t, we
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CHAPTER 2. THEORETICAL CONCEPTS AND ALGORITHMS 11

can write the CME [6, 27] as follows:

∂p(x, t)

∂t
=

R∑
r=1;x+N−r ≥0

wr(x+ Nr)p(x+ Nr, t)−
R∑

r=1;x−N+
r ≥0

wr(x)p(x, t) (2.2)

Where, Nr = N+
r + N−r . Let us take the following two examples of a linear

birth-death process and dimerization process (which is also going to be used
for further analysis later in this thesis)

Example 2.1.1. A linear birth-death process has the birth and death rate
constant or linear. Therefore, we can have the following equation [5, eq :
2.4]:

φ
κ−→ x

x
µx−→ φ

(2.3)

We have N = [−1 1] w = [k µx]T . The corresponding master equation
becomes [5, eq : 2.5]

∂p(x, t)

∂t
= [x ≥ 1]kp(x−1, t)−kp(x, t)+µ(x+1)p(x+1, t)−µxp(x, t) (2.4)

Example 2.1.2. Dimerization is one of the fundamental processes which
spans from chemical, biological and physics system. Let us take the following
set of reactions from [5, eq : 2.9]:

φ
k−→ x

x
µx−→ φ

x+ x
νx(x−1)−−−−→ φ

(2.5)

The equation can be further simplified (by dropping the mass loss) to:

φ
k−→ x

x+ x
νx(x−1)−−−−→ φ

(2.6)

We mention the above simplification as our analysis of dimerization later
is based on these equations. Now, we can write the corresponding master
equation as:

∂p(x, t)

∂t
= [x ≥ 1]k(p(x−1, t)−p(x, t))+ν(x+2)(x+1)p(x+2, t)−νx(x−1)p(x, t)

(2.7)
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2.2 MCMC and Preconditioned MCMC for

Parameter estimation

2.2.1 Monte Carlo Methods

In mathematics, we often encounter complicated functions whose integration
over its domain of defintion is not straightforward to compute (high dimen-
sional non-smooth integrands). Monte-Carlo methods are the way to obtain
the numerical approximation of those kind of integrations by expressing the
integral in terms of expectation derive from the Law of Large Numbers. For
example, consider the following integration:

I =

∫
Ω

f(x)dx (2.8)

Where, Ω is the domain of the integration for the function f(x). Now, the
integration can also be written in the form of expectation of a random variable
X with repspect to some probability measure in the following way:

E(f(x)) =

∫
Ω

f(x)ρ(x)dx (2.9)

If density function ρ(x) > 0 whenever f(x) 6= 0, we can re-write (2.9) as :

E(f(x)) =

∫
Ω

f(x)ρ(x)dx

=

∫
Ω

f(x)

q(x)
ρ(x)q(x)dx

= E

(
f(X)ρ(X)

q(X)

)
= E(g(X))

(2.10)

Now, considering Ω finite, from the Laws of Large Numbers, we have for iid
r.v {Xi}∞i=1

E(g(X) = lim
N→∞

1

N
ΣN
i=1g(Xi) (2.11)

Therefore, we can first generate {Xi}Ni=1 from ρ(X) and then calculate the
expectation based on Laws of Large Numbers to finally approximate the
integration IMC ∼ 1

N
ΣN
i=1g(Xi). the Monte-Carlo error in estimation is given

by:

Err =

∣∣∣∣ lim
N→∞

1

N
ΣN
i=1g(Xi)− I

∣∣∣∣ (2.12)
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The convergence rate in Monte-Carlo approach is of O(1/
√
N) - the reason

behind time expensive simulations using Monte-Carlo methods. IMC is the
unbiased estimator for the integration I and it converges almost surely to I
(using strong law of large numbers).

Applications of Monte-Carlo methods can be well understood through
Bayesian inference. Bayesian inference involves expressing the posterior dis-
tribution in terms of likelihood and prior. This is acheived through via Bayes’
theorem in the following way:

f(θ|x) =
f(θ)f(x|θ)∫
f(θ)f(x|θ)dθ

∝ f(θ)f(x|θ) (2.13)

Where, θ is the set of paramters; f(θ) is the prior and f(x|θ) is the likeli-
hood function. x = (x1, x2, ...xN) conditionally independent and identically
distributed (CIIDs). Now once the posterior distribution f(θ|x) is known,
we can derive the mean and variance for each parameters as well as predictive
distribution. For example, predictive distribution can be obtained through:

f(y|x) =

∫
f(y|θ,x)f(θ|x) dθ (2.14)

Now, using the Monte-Carlo trick, we can write:∫
f(y|θ,x)f(θ|x) dθ ∼ 1

N
ΣN
i=1f(y|θ(N),x);θ(N) ∼ f(θ|x) (2.15)

Now summarizing the above discussion, we can describe Monte-Carlo meth-
ods as to first sample i.i.ds from a target density ρ(X) (posterior for example)
defined in a high-dimensional space and finally approximate the density us-
ing empirical point-mass function. Now the question arises, what if sampling
from ρ(X) is not straightforward (e.g. Cauchy distribution). We need to
apply more efficient sample strategies which can evaluate ρ(X) up-to a nor-
malizing constant. This is precisely the key motivation behind our next topic
- Markov Chain Monte Carlo (MCMC).

2.2.2 Markov Chain Monte Carlo

MCMC explores the state space by constructing an ergodic Markov Chain
{ηi}Ni=1 whose stationary distribution, say Π is the same as the target dis-
tribution ρ(X). After that the chain is simulated until convergence and the
next N observed values from the chain approximates a Monte-Carlo sample
from ρ(X). This immediately raises the question how to construct the chain
whose stationary distribution is same as the target distribution. One way
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to generate the chain is via the Metropolis-Hastings algorithm. The algo-
rithm was first proposed by Metropolis et al. [18] and later it was extended
by Hastings [13]. Unlike Gibb’s sampling (another sampling technique) , it
avoids any need to sample from complicated distributions. It can be applied
to problems where the state is either continuous or discrete, as long as it is
possible to compute the ratio of the probabilities, or probability densities, of
two states An algorithmic representation is as follows: One of interesting

Algorithm 1: The Metropolis-Hastings Algorithm

Given: Observations {X(ti;θ}, i = 1 . . . N , θ : Unknown parameter
vector; A proposal distribution q(X); Target distribution ρ(X)
Result: Sample estimate θ̂ of θ
Initialize: θ1 at i = 1

repeat
Generate θ∗ ∼ q(θ|θi)
if ρ(θi)q(θi|θ∗) > 0 then

α(θi,θ∗) = min

(
ρ(θ∗)q(θ∗|θi)
ρ(θi)q(θi|θ∗) , 1

)
else

α(θi,θ∗) = 1
end

θi+1 =

{
θ∗ with probability α(θi,θ∗)
θi with probability 1− α(θi,θ∗)

i = i+ 1
until Convergence is detected ;

facts about MCMC is that it is not Bayesian and hence marginal likelihood
does not require but we need to mention the likelihood function. Often the
likelihood function is hard to compute and because of multiplication we may
encounter very small number difficult to handle during computations. One
way to alleviate the problem is to take log-likelihood. In this work, we aim
to estimate the parameter for stochastic chemical kinetics using MCMC and
CME. The problem with MCMC for exact CME is that the rejection step
is expensive. Therefore, cheaper likelihood function should be constructed
to avoid time expensive rejection step. The idea is to construct a two stage
algorithm in which at the first stage we use an approximate prior to make
rejection cheaper at the cost of accuracy. In the final step, we compute exact
SSA (simulate exact CME) for only few promising samples. This way of
preconditioning avoids solving CME exactly unless it is deemed necessary.
In the next subsection we present a preconditioned version of MCMC [4].
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2.2.3 Preconditioned Markov Chain Monte Carlo

Algorithm 2: Preconditioned Markov-Chain-Monte-Carlo

Given: Observations {X(ti;θ}, i = 1 . . . N , θ : Unknown parameter
vector; A proposal distribution q(X); Target distribution ρ(X)
Result: Sample estimate θ̂ of θ
Initialize: θ1 at i = 1

repeat
Generate θ∗ ∼ q(θ|θi)
if ρ∗(θi)q(θi|θ∗) > 0 then

α∗(θi,θ∗) = min

(
ρ∗(θ∗)q(θ∗|θi)
ρ∗(θi)q(θi|θ∗) , 1

)
Consider Q(θ∗|θi) =
α∗(θi,θ∗)q(θ∗|θi) +

(
1−

∫
α∗(θi,θ∗)q(θ∗|θi)dθ∗δθi(θ∗)

if ρ(θi)Q(θ∗|θi) > 0 then

α(θi,θ∗) = min

(
ρ(θ∗)Q(θi|θ∗)
ρ(θi)Q(θ∗|θi) , 1

)
θi+1 =

{
θ∗ with probability α(θi,θ∗)
θi with probability 1− α(θi,θ∗)

i = i+ 1
end

end

until Convergence is detected ;

In the above algorithm, we do not need to compute the term Q(θ∗|θi)
using integration. Instead, we can write [4]

Q(θ∗|θi)
Q(θ∗|θi)

=
ρ∗(θi)

ρ∗(θ∗)

Therefore,

α(θi,θ∗) = min

(
ρ(θ∗)ρ∗(θi)

ρ(θi)ρ∗(θ∗)
, 1

)
The goal of preconditioning is to increase the acceptance rate per CME (in
this context).
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2.3 Convergence in MCMC with exact CME

Here we consider some simple elementary processes for which we investigate
the convergence of MCMC with exact CME.

2.3.1 Methods for convergence

There are three ways to increase data and under which we can consider
convergence:

1. More dense sampling of the same process

2. Longer sampling of the same process

3. Sampling of several processes

2.3.2 Analysis of convergence schemes

Analysis of convergence is often a difficult task. Sometimes, we can not prove
it analytically. In those cases, we have to find at least one counter example to
that particular convergence scheme. Here we follow the same approach. For
example, the convergence for pure birth process can not be improved under
the scheme 1, hence not appropriate. The detailed explanation is below.

2.3.2.1 Pure birth process

The is because for a homogeneous Poisson process (with mean κt), dense
sampling of the same process leads to poor estimate of parameter κ. For
example, let us consider the following pure birth process:

φ
κ−→ X (2.16)

Now, this could be represented mathematically by {Xt; t} ∼ Po(κt);X0 = 0,
where Po() denotes the Poisson process, Xt denotes the number of events
(birth) at time t. Now, as we increase the data, at infinity the estimate κ̂
will converge to κ. As ideally Xt = κt (from the definition of κ = birth rate)
we have the following estimate:

κ ∼ Xt

t
±
√
V ar(Xt/t) (2.17)

Therefore, from the above equation it is evident that the dense sampling
of the same process is not the way for the parameter κ to converge as the
variance term in the right hand side does not vanish.
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2.3.2.2 Linear birth-death process

The linear birth-death process, described in the example 2.1.1 similarly indi-
cates why convergence scheme 2 cannot be expected to work. Let us consider
the equations once again:

φ
κ−→ X

X
νX−−→ φ

(2.18)

As linear birth-death process (above) is a M/M/∞ queue, the stationary
distribution (at t→∞) is κ

ν
. Therefore as we simulate the same process for

longer time, the convergence will be towards the ratio κ
ν

and therefore, we
can not estimate κ and ν separately under the second scheme of convergence.
Hence we can essentially only expect convergence θ̂ → θ according to the in-
crease of data in the sense of 3, that is, sampling an increasing number of
i.i.d. processes. The idea here is to find at least one counter example which
does not satisfy a convergence scheme listed above. For the convergence
criteria 3, we have to modify our computations for the likelihood function
because the simulated path is not continuous due to i.i.d processes. There-
fore, the joint log-likelihood (as implemented in the algorithm) will be the
summation of log-likelihood for each process.

2.3.2.3 Dimerization

Dimerization can be approximated with birth-death process (we will see in
subsequent sections), therefore expected to be suffered from the problems
above. Therefore, we can investigate the convergence only under the scheme
3. We will see in chapter ??, that it works.

2.4 Exact solution of CME and Precondition-

ing schemes

In this section, we first describe the exact analytical solution (if exists) for
the CME corresponding the processes in discussion and finally, we formulate
corresponding preconditioning schemes.
Let us consider the linear-birth death process in example (2.1.1) again. We
have the following reactions:

φ
κ−→ x

x
µx−→ φ

(2.19)
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and the corresponding master equation as

∂p(x, t)

∂t
= [x ≥ 1]kp(x−1, t)−kp(x, t)+µ(x+1)p(x+1, t)−µxp(x, t) (2.20)

Now, if the initial data is not Poisson distributed, we have the following
general analytical solution of the above CME due to [25]

p(x, t) =

min{x,x(0)}∑
l=0

(
x(0)
l

)
e−lµt(1− eµt)x(0)−lλ(t)x−leλ(t)

(x− l)!
(2.21)

where λ(t) = k(1−e−µt)
µ

. Now for dimerization process (below):

φ
k−→ x

x+ x
νx(x−1)−−−−→ φ

(2.22)

we have the following CME

∂p(x, t)

∂t
= [x ≥ 1]k(p(x−1, t)−p(x, t))+ν(x+2)(x+1)p(x+2, t)−νx(x−1)p(x, t)

(2.23)
Equation 2.23 above does not have a simple analytical solution [5], like linear-
birth death process. Therefore, we solve it numerically in a one dimensional
lattice having N points where N is scaled according to the volume of the
system.

2.4.1 Moment based approximations of CME

Here we describe moment based approximations of CMEs used as a precon-
ditioner.

2.4.1.1 Approximation based on expectation

The idea here is to obtain a set of ODE/simple time derivative of the expec-
tation for the corresponding process and after solving, use it as the parameter
for a Poisson distribution (approximation). To achieve this, first we need to
consider the following lemma due to [5, lemma.∼ 2.1]:

Lemma 2.4.1. Let p satisfy a proper formulation of the master equation 2.2,
Then as long as the both sides make sense, we have:∑

x≥0

T (x)
∂p(x, t)

∂t
=

R∑
r=1

E[(T (X − Nr)− T (X))wr(X)], (2.24)

where, T : ZD+ → R is any suitable test function
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Now, let us consider T (x) = xi, then we will have,∑
x≥0

x
∂p(x, t)

∂t
=

R∑
r=1

E[(X − Nr)−X)wr(X)],

dmi

dt
=

R∑
r=1

E[(Nr)wr(X)] =
R∑
r=1

(Nr)E[wr(X)]

(2.25)

Now the left hand side of the equation is nothing but the time derivative of
the expectation, let us denote it by mi. N = [−1 1] and w(x) = [k µx], for
the linear birth-death process. Putting these values in the final expression
of 2.25, and using the following proposition [5, prop.∼ 2.3] based on the
assumption of linear propensity function with vanishing higher moments:

Proposition 2.4.2. Divide the integers 1...R into two disjoint sets R1 and
R2 such that ∀r ∈ Ri : wr is linear and ∀r ∈ Ri : wr depends on the dimension
of the vanishing higher moments. Then

dmi

dt
=

R∑
r=1

Ni
rwr(m) (2.26)

we have,
dm

dt
= k − µm (2.27)

Which has the solution:

m(t) =
k

µ
− 1

µ
exp(−µt+ C) (2.28)

Now, C can be obtained from the initial value m(0). The final dynamic
expression for m(t) is:

m(t) =
k

µ
(1− exp(−µt)) +m(0) exp(−µt) (2.29)

and the correpsonding dynamic solution (Poisson approximation)

p(x, t) =
m(t)x

x!
exp(−m(t)) (2.30)

For dimerization in 2.22, we have the expression for expection:

dm

dt
= k − 2νm(m− 1) (2.31)

Therefore, this is equivalent to a birth-death process where µ is replaced by
2ν(m − 1). This is called Explicit linearization, which we use as one of
the preconditioning technique for dimerization.
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2.4.1.2 Approximation based on expectation and variance

The approach is the same as above but along with the expectation, we will
have one more moment, variance. After solving the corresponding ODEs (for
both mean and variance), we obtain corresponding Gaussian approximation
to the exact CME. To formulate the ODE’s, we consider the following propo-
sition [5, prop.∼ 2.5] based on the linearization of the propesnity wr (using
Taylor expnasion)

Proposition 2.4.3. If all propensities wr are at most quadratic and if the
third central moments may be neglected, then

dmi

dt
= −

R∑
r=1

nir

(
wr(m) +

∑
g,l

∂2wr(m)

∂xg∂xl

Cgl
2!

)
dCij
dt

= −
R∑
r=1

(
nir
∑
g

∂wr(m)

∂xg

Cgj
1!

+ njr
∑
g

∂wr(m)

∂xl

Cil
1!

)

+
R∑
r=1

n[i,j]
r

(
wr(m) +

∑
g,l

∂2wr(m)

∂xg∂xl

Cgl
2!

)
(2.32)

Where, C is the covariance matrix. For our processes, we replace covari-
ance as variance v as we have only one species. Additionally, nr[i, j] = nirn

j
r.

Now using the above proposition, we have the ODEs of mean and variance
for our linear birth-death process

dm

dt
= k − µm

dv

dt
= k + µm− 2µv

(2.33)

Solving the above set of ODEs, we get the following dynamic solution for
mean and the variance:

m(t) =
k

µ
(1− exp(−µt)) +m(0) exp(−µt)

v(t) = m(t)−m(0) exp(−2µt)

(2.34)

Now, we have the approximation as p(x, t) = N (m(t), v(t)), where N ( ) de-
notes the Gaussian distribution.
For dimerization, we have the following set of ODEs. Unlike, linear birth-
death, it does not have a explicit form of solution and therefore solved nu-
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merically.

dm

dt
= k − 2νm(m− 1)− 2νv

dv

dt
= k + 4νm(m− 1) + 4νv − 4νv(2m− 1)− 4νs

(2.35)

s is the third central moment which can be neglected for approximation.

2.4.2 Scaling and Discrete correction for Gaussian

Here we introduce the concept of scaling to set the acceptance rate of full
MCMC between [0.1, 0.4]. The scaling is introduced during the proposal step
for the parameters. In proposal step, we use log normal distribution to keep
the same support (postive) for proposal and target distribution. Recall the
acceptance step of Metropolis-Hastings (MH) algorithm 1, we have

α(θi,θ∗) = min

(
ρ(θ∗)q(θ∗|θi)
ρ(θi)q(θi|θ∗)

, 1

)
Now,as we fomulate the proposal of MH using log-normal distribution, we

have q(θ∗|θi)
q(θi|θ∗) = exp(S ∗ N (0, 1), where S is the scale factor. It scales the

variance (σ2)of the Normal random variate by factor of S2.

Proposition 2.4.4. If X ∼ N (µ, σ2), then aX + b ∼ N (aµ+ b, a2σ2)

Proof.

Pr(aX + b < k) = Pr(X < (k − b)/a)

=
∫ (k−b)/a
−∞

1√
2πσ

exp(−(x− µ)2/2σ2)dx

=
∫ k
−∞

1√
2π(aσ)

exp(−(y − (aµ+ b))2/2a2σ2)dy [y = ax+ b, dy = adx]

= cdf of N (aµ+ b, a2σ2)

Now, for our case µ = 0, σ2 = 1, a = S, b = 0. Accordingly, we take
the log-likelihood of the data instead of simple likelihood. Therefore, the
proposal step becomes, k′ = k exp(S ∗ N (0, 1) for k, µ′ = µ exp(S ∗ N (0, 1)

for µ. For proposal step preserving the ratio k
µ
, we have the ratio q(θ∗|θi)

q(θi|θ∗) =

Π2
j=1 exp(S∗N (0, 1))j. All these steps are in accordance with the construction

of MH algorithm.
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Proof. Let G(x → x′) be the proposal distribution. Let’s also assume, x′ =
x exp(S ∗ N (0, 1) Then,

G(x→ x′) = P (x′|x) = NL(x′, µ = log(x), σ = S)

= 1
x′σ
√

2π
exp(− log(x′/x)2

2σ2 )

Similarly we have (due to symmetry of the proposal),

G(x′ → x) = P (x|x′) = NL(x, µ = log(x′), σ)

= 1
xσ
√

2π
exp(− log(x/x′)2

2σ2 )

Now, G(x→x′)
G(x′→x)

= x′/x = exp(S ∗ N (0, 1). As k and µ are selected indepen-

dently, we have G(k→k′)G(µ→µ′)
G(k′→k)G(µ→µ′) = (k′µ′)/(kµ) = Π2

j=1 exp(S ∗ N (0, 1))j

For dimerization we implement the scaling in the same way as above.
Apart from introducing the scaling factor, we also introduce a discrete cor-
rection to Gaussian approximation for precondtioning. Experimentally, we
find that (see Chapter (3) Results for more details), for fine temporal scale
the Gaussian approximation overshoots the target distribution. It seems
that as the Gaussian is a continuous distribution, in smaller scale this ad-
justment is quite important and can not be ignored. For linear birth-death
process, the Gaussian is not good in the regime where the exact solution is
far from Poissonian. If we consider the exact solution, we find that the term
exp(−tµ) defines the scale. Hence for about t > 1/µ, Poissonian/Gaussian
works similar way. For dimerization, this correction is not well understood.
It is experimentally adjusted.



Chapter 3

Results

In this chapter, we analyze the convergence for linear birth-death and dimer-
ization processes. Moreover, we also analyze the correctness, convergence
and efficiency of corresponding preconditioning schemes.

3.1 Linear birth-death process

3.1.1 I.I.D convergence
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Figure 3.1: L1 norm Relative error in parameter (κ, µ) estimation for a linear
birth-death process with exact CME under dense, longer sampling and iid
sampling schemes of converegnce
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3.1.2 Preconditioned MCMC

3.1.2.1 Correctness of preconditioning schemes
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Figure 3.2: Correctness of the different preconditioning schemes (Poisson,
Gaussian, Gaussian (with discrete correction) with respect to exact CME

3.1.2.2 Convergence of preconditioned MCMC
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Figure 3.3: Convergence of the different preconditioning schemes (Poisson,
Gaussian (with discrete correction) with respect to exact CME for temporal
granularity 1 (left) and 10 (right) respectively
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Figure 3.4: Acceptance rate (per exact CME) (left) and the number of exact
CME solved for preconditioning and full MCMC (right). Upper left and right
figures are for temporal granularity 1 and lower left and right are for gran-
ularity 10. Blue, white and black bars indicate the exact CME, the Poisson
approximation and the Gaussian approximation for linear birth-death prob-
lem respectively

3.1.2.3 Effectiveness of preconditioned MCMC

Remark 1. Figure 3.1 demonstrates bettter analysis of convergence for lin-
ear birth-death process, under iid sampling scheme. Figures 3.2 and 3.3 show
granularity wise performace and similar iid convergence chracteristics (with
respect to exact CME) for different precondition schemes respectively. Fi-
nally, figure 3.4 is quite promising in the sense that, with almost similar
error characteristics (iid convergenece), we can save more than 50% of exact
CME computations. Moreover, the preconditioning schemes are independent
of scaling factor which shows promises to have a scale-free schemes for in-
creasing the acceptance rate. The figures comparing the number of exact CME
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solved are generated by fixing the scale factor to 0.3 because the acceptance
rate for exact CME is in [0.1, 0.4] at scale factor 0.3 for both the temporal
granularities. Therefore at this scale factor, we can actually compare the effi-
ciency of precondtioning. As the poisson approximation works better (almost
similar to that of Gaussian) in coarse scale, the acceptance rate as well as
the number of exact CME saved for temoral scale 10 is similar for both the
approximations. On fine scale (upper left and right), Gaussian outperforms
Poisson approximation. This is in support of the figure 3.2.

3.2 Dimerization process

3.2.1 I.I.D convergence
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Figure 3.5: L1 norm Relative error in parameter (κ, ν) estimation for a
dimerization process with exact CME under dense, longer sampling and iid
sampling schemes of converegnce
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3.2.2 Preconditioned MCMC

3.2.2.1 Correctness of preconditioning schemes
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Figure 3.6: Correctness of the different preconditioning schemes (Poisson,
Gaussian, Gaussian (with discrete correction) with respect to exact CME

3.2.2.2 Convergence of preconditioned MCMC
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Figure 3.7: I.I.D convergence characteristics of different preconditioning
schemes (explicit linearization, Gaussian (with discrete correction) with re-
spect to exact CME for granualrity level 0.1 (left) and 0.4 (right) respectively
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Figure 3.8: Acceptance rate per exact CME (left) and number of exact CME
solved in preconditioned and full MCMC (right) at tempral scale 0.1 (upper
left and right) and at 0.4 (lower left and right). Blue, white and black bars in-
dicate the exact CME, explicit linearization and the Gaussian approximation
(with correction) respectively

3.2.2.3 Effectiveness of preconditioned MCMC

Remark 2. The experimentation for dimerization yields similar results to
that of linear birth-death process. The explicit linearization precondtion scheme
performs better in fine scale than corase scale as evident from figure 3.6.
Both, explicit linearization and gaussian approximaton follow similar iid con-
vergence characteristics as that of exact CME according to figure 3.7. Finally,
figure 3.8 supports 3.7 as we can observe that in finer scale (0.1) explicit
linearization and gaussian approximation (with correction) perform similar
(although gaussian is slightly better) in terms of saving exact CME compu-
tations. In coarser scale (0.4), the performance of explicit liearization based
precondtioned MCMC degrades, while that of Gaussian counterpart remains
same. We fix the scale factor at 0.2 for both the temporal scale.
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Discussions and Future directions

The goal of this work is to save time expensive exact CME computations until
it is required. The preconditioning steps avoid expensive rejection through
various approximations of CME and finally solve the exact CME (using exact
SSA) only for the samples which can best approximate the target distribu-
tion. The results above shows promises about using preconditioned MCMC
and CME for effective parameter inference at least for some simple funda-
mental processes for which we can construct CME in proper form. As future
directions, we can address several issues such as: The above method can
be extended to more complicated 2 dimensional problems according to some
preliminary results obtained for the following example of bimolecular birth-
death reaction [5]:

φ
k1−→ x

φ
k2−→ y

x
µx−→ φ

y
µy−→ φ

x+ y
νxy−−→ φ

(4.1)

This system has 2 species and the correspnding CME will be 2 dimensional.
Therefore, we have will have 6 ODEs for moments (2 for means and 4 for
covariance. Using 2.32, we can derive the following set of ODEs assuming

29
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k1 = k2 = k,

dm1

dt
= k − (C12ν)/2− (C21ν)/2−m1µ− νm1m2

dm2

dt
= k − (C12ν)/2− (C21ν)/2−m2µ− νm1m2

dC11

dt
= k + (C12ν)/2 + (C21ν)/2 +m1µ− 2C11(µ+ νm2)− νm1(C12 + C21) + νm1m2

dC12

dt
= C12(ν/2− 2µ− νm1 − νm2) + C21ν/2− νC11m2 − νC22m1 + νm1m2

dC21

dt
= C21(ν/2− 2µ− νm1 − νm2) + C12ν/2− νC11m1 − νC22m2 + νm1m2

dC22

dt
= k + (C12ν)/2 + (C21ν)/2 +m2µ− 2C22(µ+ νm1)− νm2(C12 + C21) + νm1m2

(4.2)

After, solving the above system of ODEs, we obtain the following Gaussian
approximation of the exact CME. Therefore, figure 4.1 shows promises to
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Figure 4.1: Countour plot of probability density of the Gaussian approxima-
tion (right) for the exact CME of Bimolecular birth death process (left)

have Gaussian approximation as an effective preconditioner for bimolecular
birth-death process.
Generally we use species count based formulation of CME. In [24] the author
proposes the formulation of CME based on reaction counts instead of species
counts. This formulation is claimed to be effective approximation to species
count based CME for certain processes. Our linear birth-death process is one
of them. Although this is not a usual approach to CME, it can be interesting
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to use this formulation as a preconditioner.
We have used the Next Reaction Method (NRM) by Gillespie to generate a
trajectory which uses Realizations of Poisson processes that are consistent for
each reaction channel. Now in the paper, [1] , the author propose an efficient
modified next reaction method for exact simulation, extended to systems
with time dependent propensities as well as system with delays. The idea is
to incorporate this algorithm instead of our existing NRM to add more time
efficiency especially for systems with delays.
As more complicated exammple of birth-death process we can consider a de-
layed one. In a very recent paper [12] It is shown mathematically that the
difference between delayed birth death process and approximated delayed
CLE descriptions converges to 0 with the increase of data. For CME based
framework it has not been investigated yet.
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