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Työssä tarkastellaan laskentamenetelmiä, joiden avulla voidaan analysoida use-
ampipotkurisia meritekniikan laitteita. Tavoitteena on luoda laskentatyökalu,
jolla voidaan parantaa olemassa olevia laitteita ja arvioida uusien konseptien
suorituskykyä ja siten suunnitella hyötysuhteeltaan nykyistä parempia tuot-
teita. Ensiksi käydään läpi tällä hetkellä saatavilla olevia laskentamenetelmiä ja
arvioidaan niiden soveltuvuutta kirjallisuustutkimuksen avulla. Potkurin pyörimi-
nen mallinnetaan MRF-menetelmällä sekä pyörivän hilan menetelmällä, jossa hilan
eri osat on erotettu niin sanotulla liukuvalla pinnalla. Turbulenssi mallinnetaan
RANS-tyyppisellä kaksiyhtälömallilla SST k-ω. Teoria, johon laskentamenetelmät
perustuvat, käydään läpi ja mallien toimivuutta tutkitaan vertaamalla laskettuja
tuloksia mittauksiin. Vertailutapauksia on kaksi. Ensimmäisessä tapauksessa on
yksi potkuri avovesiolosuhteissa ja toisessa tapauksessa yksikkö, johon kuuluu
vastakkainpyörivä potkuri (CRP). Laskenta tehdään avoimen lähdekoodin vir-
taussimulointiohjelmistolla OpenFOAM-2.2.x, jossa sovelletaan esitettyjä lasken-
tamenetelmiä. Kaikki käytetyt menetelmät toimivat yksittäin, mutta edelleen
tarvitaan jatkotutkimuksia, jotta saavutettaisiin tavoiteltu laskentatyökalu use-
ampipotkuristen laitteiden analysoimiseen.
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Computational methods applied for the analysis of marine applications with more
than one propellers are studied. The goal is to establish a computational tool
that allows an improvement of existing products and the evaluation of new con-
cepts so that new products with an improved e�ciency can be designed. First, an
overall view of current possibilities is given and their capabilities are evaluated by
summarizing results from literature. The moving reference frame (MRF) method
and moving meshes based on the sliding grid method are used to account for the
e�ects due to propeller rotation. Turbulence is modelled with the two-equation
RANS-model SST k-ω. The theory behind these methods is presented and their
performance is evaluated by comparing computational results to measured data.
Two test cases are used: The �rst one is a single propeller in open-water conditions
and the other one is a contra-rotating propeller (CRP) unit in a towing tank. The
software adopted is the open-source CFD toolkit OpenFOAM-2.2.x that provides
the required methods. All methods tested are found to work well, although reach-
ing the ultimate goal of analysing multi-propeller marine applications still requires
further studies.
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ê Unit vector
E Coe�cient in the log-law
F Force
G Turbulence generation
I Turbulence intensity
J Advance coe�cint
k Turbulence kinetic energy
KQ Torque coe�cient
KT Thrust coe�cient
m Mass
n Number of propeller revolutions per second
p Pressure
p0 Ambient pressure
q Source term
Q Torque
r Position vector
R Reynols stress tensor
Re Reynolds number
S Strain rate tensor
Sf Face area vector
T Thrust
u+ Dimensionless velocity
uτ Friction velocity
V Volume
U Velocity
w Weight factor
y+ Dimensionless wall distance



viii

α Di�usion coe�cient
β? Turbulence model coe�cient
β1 Turbulence model coe�cient
δij Kroenecker delta
η E�ciency
γ Blending factor
κ Von-Karman constant, condition number
λ Lambda viscosity, eigenvalue of a matrix
µ Dynamic viscosity
ν Kinematic viscosity
ω Rotation vector, Speci�c dissipation of turbulence kinetic energy
φ General variable
ρ Density
σ Cavitation number
τ Stress tensor

Operators

∇A Gradient of vector A
∇ ·A Divergence of vector A
∇×A Curl of vector A
A ·B Inner product of vectors A and B
AB Outer product of vectors A and B
D

Dt
Total derivative in time

∂

∂t
Partial derivative in time∑

i Sum over index i

Abbreviations

AMI Arbitrary Mesh Interface
CFD Computational �uid dynamics
CRP Contra-rotating propeller
GAMG Geometric-algebraic multi-grid
ITTC International Towing Tank Conference
MRF Moving Reference Frame
PBiCG Preconditioned Biconjugate Gradient
RANS Reynolds Averged Navier-Stokes
R&D Research and Development
RRHRC Rolls-Royce Hydrodynamic Research Center



1

1 Background

1.1 Motivation

The motivation for this study is the wish to introduce modern tools into the analysis
of �uid dynamics problems related to products of Rolls-Royce Marine. A special
interest is in the analysis of multi-propeller devices such as the current Contaz
product that is a thruster unit with two propellers rotating in opposite directions
(contra-rotating propeller, CRP) manufactured by Rolls-Royce Oy Ab in Rauma,
Finland.

Figure 1: A contra-rotating propeller (CRP) unit manufactured by Rolls-Royce.

One bene�t of the contra-rotating concept in comparison to a single propeller is
the fact that it reduces the loading on each single blade improving e�ciency and
cavitation performance. In particular, this helps in situations where the propeller
size is limited for some reason (like shallow water) but still a given thrust is needed
that would otherwise lead to a too highly loaded single propeller.

Another bene�t of the CRP-concept comes from the fact that the second pro-
peller reduces the tangential velocity component produced by the �rst propeller.
Reducing the swirl directly contributes to e�ciency, since the rotational movement
of water behind the ship produces no thrust and is thus a pure loss [1, Ch.10.7].

The current concept is certainly not the hydrodynamically best possible solution
and it could be improved. Furthermore, there is a need to evaluate the performance
of new concepts such as a pulling CRP unit to see, if they allow further improvements
in e�ciency and, at the same time, evaluate if they are otherwise feasible. Currently
there are no large-scale pulling CRP units in the market and it might be that the
steering moments become too large for the overall costs to be reasonable. To be
able to improve the current products and to evaluate the feasibility of new concepts,
a tool for predicting the hydrodynamic performance of multi-propeller devices is
needed. Establishing such a tool is the main goal of this work.

Historically, problems in propeller hydrodynamics have been approached through
so called potential methods that are based on several simpli�cations. A discussion
of such methods is provided for example in Reference [2]. At present, a standard
analysis by means of computational �uid dynamics (CFD) includes full Navier-
Stokes equations which is also pursued in this work. There is a range of software
available for the task, both commercial codes with licensing costs and open-source
codes. Since the computations are expected to become quite large and need parallel
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processing, the open source CFD software package, OpenFOAM, was chosen for this
work in order to avoid licensing costs. OpenFOAM is licensed and distributed by the
OpenFOAM Foundation and developed by OpenCFD Ltd. [3].

This work consists of a general discussion of propeller analysis in Chapter 1.2
which is followed by an overview on relevant computational and experimental meth-
ods based on literature in Chapters 1.3 and 1.4. After the overview, the computa-
tional methods used in this work are presented in more detail in Chapters 2 and 3
and the rest of the work documets the performed CFD-analyses. An outline of the
computations will be presented in Chapter 1.5.

1.2 Propeller Performance

The simplest way to analyze propeller performance is to measure the thrust (T )
produced by the propeller and the torque (Q) used to drive the propeller. E�ciency
can be de�ned as the ratio of the acquired power in thrust production to the power
used to drive the propeller.

In the marine context, thrust and torque are usually given as non-dimensional
measures as a function of a non-dimensional speed called the advance coe�cient.
The de�nitions of thrust- and torque coe�cients, KT and KQ, and the advance
coe�cient, J , are given as

KT =
T

ρn2D4
(1)

KQ =
Q

ρn2D5
(2)

J =
U

nD
. (3)

Above, propeller diameter is denoted as D, n is the number of propeller revolutions
in one second, ρ is the water density and U is the advance speed, for example the
speed of a ship. The coe�cients are found by applying dimensional analysis and
assuming that free surfaces have no e�ect on the propeller performance. Under such
conditions the coe�cients are theoretically identical for all geometrically similar
blade forms.

The de�nition of e�ciency can be written as

η =
T U

2 π nQ
(4)

=
KT

KQ

J

2π

The thrust and torque coe�cients (KT and KQ) being similar for all cases with
an identical blade shape is not entirely true. There are several factors that a�ect
propeller performance even with a constant advance coe�cient J . One is turbulence
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around the propeller which is, to a large extent, a function of the Reynolds number
(Re)

Re =
UD

ν
(5)

where ν is the kinematic viscosity of water. With increasing propeller dimensions
the Reynolds number increases which will generally lead to a higher turbulence level.
Above su�ciently high Reynolds numbers when most of the blade is surrounded by a
turbulent boundary layer, the e�ect is probably not very signi�cant. The di�erence
between a model scale and a full scale propeller may, however, be signi�cant. Also
the turbulence of the incoming �ow plays a role. Since propeller computations
and measurements are conducted in model scale with a considerably lower Reynolds
number than those of real world applications in their operating conditions, Reynolds
number e�ects lead to an uncertainty the computations. The uncertainty can be
decreased by running simulations or making experiments with full scale geometries.
Both approaches are, however, expensive.

Another factor a�ecting force prediction is cavitation. It depends on the sur-
rounding pressure level and propeller loading. A non-dimensional number related
to cavitation, the cavitation number, is de�ned as

σ =
p0 − ps
1
2
ρU2

(6)

where p0 is the static pressure on the shaft center line and ps is the vapor pressure
at the ambient temperature. Cavitation has a relatively small in�uence on propeller
performance even in quite large extents. At a point called thrust breakdown, how-
ever, when cavitation increases above a certain level, it has a considerable negative
e�ect on thrust [4]. Thus, at moderate values of the advance coe�cient, cavitation
is not expected to impose considerable uncertainties into the computations.

1.3 CFD Methods

The �ow around contra-rotating propellers is always turbulent and unsteady due to
the interaction between propellers. There are ways to reduce an unsteady problem
into a steady one and thus save computational time. However, at the same time
simpli�cations are made and the feasibility of these simpli�cations depends on their
ability to depict the phenomena of interest [5]. In the following, an overview of
possible CFD-methods that might be used for tasks described above is given with
a literature review. The methods are discussed on a general level and are not
speci�cally related to OpenFOAM.

According to [6] there are basically three ways to treat the propeller rotations
when the propeller is geometrically resolved: the sliding plane, the Moving Ref-
erence Frame (MRF) and the mixing-plane approaches. The most computationally
demanding out of these but also the most accurate is the sliding plane approach.
Propeller movement is included by actually moving di�erent parts of the mesh. Since
some parts rotate and some parts remain unchanged the mesh will, in general, have
discontinuities. In order to handle the communication over the discontinuity, an
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interface is needed. The method is, by de�nition, time-dependent and as such also
computationally relatively expensive [6].

The moving reference frame (MRF) is a steady-state method in which di�erent
zones are given di�erent rigid body motions (such as a rotational speed) without
actually moving the mesh. The otherwise time-dependent �ow is turned into steady-
state by writing the governing equations as observed from a moving or, in other
words, relative coordinate system that follows the body movement. In such a co-
ordinate system there clearly seems to be no movement. A thorough description
of the MRF method in OpenFOAM will be given in Chapter (2.3). Since the geome-
try remains �xed throughout the simulation the method is also known as the �xed
rotor -approach. The MRF approach can be used when the transient interactions be-
tween adjacent zones is weak but not if the interactions need to be resolved [6]. Yet
another name for the MRF method is the quasi-steady method.

The mixing plane approach also leads to a steady-state solution. The �uid
domain is divided into zones and terms are added and modi�ed like in the MRF

method. All regions with di�erent motions are treated as independent problems
and information is passed between adjacent regions by averaging information in the
circumferential direction on zone boundaries. The averaging removes any oscillations
otherwise present in the solution [6].

In the following three subsections, experiences conserning these three methods,
their feasibility and usage, are presented. The applicability of the methods is dis-
cussed separately in case of thruster units, CRP units and problems with a non-
uniform in�ow to the propeller. The literary results are re�ected on the current
study in order to make a decision on what methods will be applied in the computa-
tional part of this work.

1.3.1 Propeller-Structure Interaction

In a study of Sànchez-Caja et al. [5], the mixing-plane- and the MRF methods were
compared to unsteady computations with a sliding plane in the case of a ducted
single propeller with a rudder. They found out that propeller forces were better
predicted with the MRF approach than with the mixing-plane approach. Grid size
was approximately 1 · 106 cells in the coarsest and 9 · 106 cells in the �nest grid.
The MRF method predicted propeller forces that were within one percent of the
time-accurate results. However, the mixing plane approach performed better at
predicting e�ciencies producing results within half a percent of the time accurate
results. Also rudder forces were better predicted with the mixing plane approach.
They state that, if the simpler models (mixing plane or MRF) are used, it is important
to ensure that there is no signi�cant interaction between the mesh regions that are
separated by an interface. In particular, there should be no solid walls downstream
of the interface that block the �ow [5].

The above mentioned implies that the interface should be set far enough from
the propellers which is impossible in CRP cases. Thus it does not encourage to use
either of the mixing plane or the MRF methods in CRP cases. It also implies that the
precense of the thruster unit downstream of the propellers in the case of a pulling



5

CRP will involve di�culties.
Guo et al. [7] studied the interaction of a single pulling propeller and a pod using

the mixing plane and sliding plane approaches with the RANS-solver FLUENT.
The mesh size was approximately 3.6 · 106 cells. They concluded that the forces
and moments of a single blade vary by about 7% and 6%, respectively, during one
propeller revolution. The variations are due to the pod located downstream of the
propeller. The total forces and moments on the propeller vary, however, by only
0.6% and 0.7%, respectively. Guo did not validate the results, however, due to the
lack of experimental data. He pointed out one problem with the mixing plane. Part
of the inbound �ow to the strut is averaged on the mixing plane and part is not
which leads to physically debatable �ow conditions at the strut [7].

Re�ecting on the present study, Guo's results imply that the mixing plane will
decrease the reliability of forces on the strut at least in the case of a pulling con�g-
uration. Sànchez-Caja et al. [5] yielded better rudder forces with the mixing-plane
than the MRF approach but in a case of a ducted propeller. Thus, the two �ndings
are not in contradiction. Furthermore, the presence of solid structures even on the
downstream side of the propeller will a�ect forces on a single blade which con�rms
the unsteadiness of all CRP cases where there are always several bodies interacting
with each other.

Sànchez-Caja et al. [8] studied a podded propeller construction constisting of a
single pulling propeller, pod and a strut using the sliding mesh and mixing plane
approaches. They also computed the propeller in open-water conditions. In the
latter study they obtained thrust- and torque coe�cients as well as e�ciencies within
1.5% of results measured at MARIN. Their results, however, predicted by 4.5% too
high thrust- and torque coe�cients as compared to measurements conducted at
VTT. E�ciency was, however, predicted within an error of 0.2%. The di�erences
between the two measurements are discussed in the report and they can at least
partially be attributed to di�erent hub geometries, Reynolds numbers and measuring
equipment. In their study, one time increment ∆t corresponds to 0.625◦ propeller
rotation.

The propeller performance in the mixing plane thruster computation gave the
thrust within 8.5% and e�ciency within 6.5% of measured values. The reasons for
the deviation are also discussed. The grid near the propeller was not �ne enough,
about one percent is attributed to the di�erence between the time dependent and
quasi steady methods. Less than 2% error is estimated to be due to simpli�cations
in the computational model. The time accurate computation was able to predict
the forces on the strut and pod much better than the mixing plane approach. They
also found out that the time dependent computation predicts lower pressure peaks
than the mixing plane approach. This is addressed to the lack of shed vortices in
the steady computation which increases loads.

1.3.2 Contra-Rotating Propellers

Wang et al. [9] computed a contra-rotating propeller in open water conditions. They
used a time-accurate RANS-based method with the sliding plane approach and
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tested the in�uence of time-step size and three two-equation turbulence models
on the thrust- and torque coe�cients. They tested three di�erent time step sizes
corresponding to propeller rotations of 0.25◦, 0.50◦ and 1.0◦ in a time step. All results
di�er from each other and the accuracy improves with a decreasing time increment.
This implies that not even 0.25◦ is a su�ciently small time step to capture the time-
accurate history of the thrust- and torque coe�cients without some error from the
time discretization. They ran computations with two CRP combinations. In the
�rst set, both propellers had the same number of blades and, in the second one, the
blade numbers were di�erent. The e�ect of time step size was found to be weaker
in the case of di�erent blade numbers than when both propellers have the same
number of blades. The turbulence models tested were the standard k-ε, the RNG
k-ε and the SST k-ω model. Out of these three models, the SST k-ω model gave
the most accurate solutions while the standard k-ε model was least accurate. The
errors of the predicted time-averaged thrust- and torque coe�cients compared to
experimental values were of the order of 5%. The prediction of the front propeller
was found to be more accurate than the prediction of the aft propeller.

Feng et al. [10] studied the open-water performance of a contra-rotating propeller
with FLUENT. They studied the performance of the front propeller in three ways.
One steady-state computation was made with a single blade (without aft propeller)
so that periodic boundary conditions were imposed on the sides of the blade domain
and the MRF approach was used. The second computation was conducted with a
single complete front propeller without including the aft propeller. The case was
computed as a time accurate analysis where the sliding mesh approach was used
to model the rotation. In the third computation, two propellers were computed
using the sliding mesh approach. The time step was chosen to correspond to a front
propeller rotation of 2◦ per time step. They kept the rotational speed of the aft
propeller constant and the speed of the front propeller was varied. In each case the
di�erencies from measured values were less than 2% for KT and KQ and less than
4% for e�ciency at advance coe�cients of J = 0.9. At larger advance coe�cients
(J > 1) the errors were of the order of 10% where, however, the accuracy of the
experimental values is not clear. At small values of advance coe�cient the time-
accurate method performed better than the single-blade steady-state computation.
However, all computations reproduce the trends correctly[10].

Opposed to the study of Wang et al. [9] who used time steps down to 0.5◦/∆t the
study of Feng et al. shows that even a time step of 2◦/∆t can be an acceptable choise
at least at moderate values of advance coe�cient J . It should also be noted that
the di�erences between results acquired with di�erent time steps in Ref. [9] were not
very large, either. According to these two CRP studies, a propeller force prediction
in open water conditions within approximately 5 percent could be expected, in
particular at moderate values of advance coe�cient, J .

1.3.3 Propeller Acting in a Wake Field

Dhinesh [11] computed a single propeller �rst in open water conditions and then
in a ship wake with the STAR CCM+ software. The open water computation was
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conducted using the MRF approach which gave KT and KQ values within the order
of 1% from measured values. No numerical data is given in the report so the error
is evaluated visually from graphs. The case with the ship hull included was a time-
accurate analysis and was computed using the sliding plane approach. In that case,
the force coe�cients were predicted within 5% of measured values [11].

Even if the two cases were computed using di�erent methods the di�erence in
errors also implies that a loss in reliability can be expected when moving from open
water computations to cases where the propeller is located in a wake. This is quite
expected since the wake is, �rstly, not well-de�ned and secondly, more complicated
than a uniform �ow. In the current study this implies an increased uncertainty in
the force prediction in the case of a pushing CRP compared to a pulling propeller
set-up.

1.3.4 Conclusions

The computational tool under development is expected to be able to analyze both
pushing and pulling propeller concepts. The results of Guo [7] indicate that the
mixing plane approach is debatable due to the lack of physicality of the �ow leaving
the aft propeller and forces on structures. Also Ref. [5] states that using the mixing
plane or the MRF methods with structures downstream of solid structures is not
recommended. Furthermore, it is shown in [8] that the mixing plane performs quite
poorly in predicting propeller loads while, however, Feng [10] states that trends are
modelled correctly by all methods which is the �rst priority in an R&D tool.

The sliding plane is shown to perform well in several studies which was expected,
since it contains the least simpli�cations. Earlier experience both at the Aalto
University and at Rolls-Royce imply that at some point the MRF will no more be
able to give reasonable results. One of such cases is for example an inclined in�ow
to the propeller. Thus, both literature and experience encourage to study such a
method.

According to results by Wang [9], a complete convergence from the time step
point of view is not reached even with a time step corresponding to a propeller
rotation of a quarter of a degree. However, Feng [10] used a time step corresponding
to two degrees of rotation and still achieved reasonable results. Thus, in this study
two degrees of rotation per time step will be used as a starting point for the time step
size in time-accurate computations and a time step corresponding to 0.5◦ propeller
rotation will also be used as in order to provide good comparison.

Wang [9] reported the SST k-ω turbulence model to work properly in propeller
computations so it will be used as a basis also in this work. According to the
literature review it is clear that the sliding plane method must be a part of this study.
Both steady methods have their advantages and disadvantages but at least one of
them should be included due to their much lower computational costs compared to
the time-accurate method. The standard OpenFOAM distribution does not have an
implementation of the mixing plane method at present but includes both the MRF

and sliding plane approaches so those two methods will be studied in more detail.
Also the �ndings of Refs. [5] and [7] show the MRF as a slightly better option than
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the mixing-plane. For future studies, the mixing plane should, however, also be kept
in mind.

1.4 Experimental Methods

The traditional method for studying propeller performance is to conduct experi-
ments. They are quite expencive but irreplacable due to the lack of reliable enough
computational tools to predict complicated �ow phenomena.

Measurements can be made in so called towing tanks where the propeller is
transported in a pool. Usually the propeller, hub and possible surrounding structures
are attached to a frame that is moved relative to water. Propeller forces and torques
are measure with a dynamometer.

Another way to measure propeller performance is the cavitation tunnel. Contrary
to towing tank, in a cavitation tunnel the propeller is �xed in space and the water
�ows inside the tunnel like air �ows in a wind tunnel. The pressure can be adjusted
in cavitation tunnels. It can be either increased to prevent cavitation or decreased
to accentuate cavitation e�ects.

A third way to conduct measurements is to perform full-scale tests. Due to
obvious reasons, they are expensive and no full-scale data is available for this study.
In this work, two measurements are used as a basis for validation of computational
results. The �rst measurements have been conducted in a cavitation tunnel and the
second tests in a towing tank. The measurements used are dicussed closer in the
following two subsections.

1.4.1 Cavitation Tunnel

The open-water tests were conducted at the Rolls-Royce Hydrodynamic Research
Center (RRHRC) in Kristinehamn, Sweden. The facility has a closed section cavi-
tation tunnel (T-32) that can be pressurized or depressurized in order to decrease
or increase cavitation e�ects. Propeller forces and moments are measured with an
inhouse dynamometer consisting of stretch slips that are coated with resin to protect
them against water.

The tunnel itself is driven by a 250 kW motor. The propeller is driven by another
smaller motor located outside of the tunnel in the upstream direction from the
propeller. The driving moment is passed to the propeller through a shaft on the
upstream side of the propeller. Between the shaft and water there is a non-rotating
cover and at the end of the shaft there is the dynamometer for force and moment
measurement. Since the motor is in the atmospheric pressure and the propeller in
the pressurized tunnel, the forces induced by the pressure di�erence are taken out
computationally by measuring the tunnel pressure at the propeller level and pressure
outside the tunnel.

The test section of the tunnel 800× 800mm2 and the water velocity in it is
measured using a pitot tube. The velocity is kept within ± 0.01m/s of the nominal
value which usually ranges from 3 to 5m/s. The pitot tube is located upstream of
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the propeller outside the tunnel wall boundary layer to represent the free velocity.
This velocity is used in calculating the advance coe�cients J .

The measurement uncertainties depend on the operating conditions such as water
velocity and propeller rotational speed and furthermore on sensors such as the pitot
tube and dynamometer. At high values of advance coe�cient J , relatively high water
velocities can be used which makes the uncertainty related to the in�ow smaller.
However, at high J-values the measured forces and moments approach zero and
thus their relative uncertainty increases. At small water velocities the case is the
opposite. The fact that the forces increase at low J-values poses a limit for the tunnel
velocity through limitations through to dynamometer. The forces are not allowed
to rise above a certain level to prevent damage on the dynamometer. Reaching a
given J = U

nD
with lower absolute loads on the propeller is possible by decreasing

both the water velocity and the rotational speed of the propeller [12]. The propeller
used in the measurements is a Rolls-Royce design so there is also reliable surface
data available for modeling with a computer.

1.4.2 Towing Tank

Tests for a CRP arrangement have been conducted at SVAtech GmbH Potsdam
in a towing tank. The set-up includes a thruster and two propellers designed by
Rolls-Royce. Thrust and torque were measured from both propellers through a
shaft arrangement located behind the propellers. The dynamometer was the R40
from Kempf & Remmers. Thruster drag was measured with the balance R35X from
Kempf & Remmers attached to the frame supporting the model. A sketch of the
arrangement is shown in Figure 2. For more information on the towing tank facility,
see Reference [13].

Figure 2: Sketch of the CRP measurement set-up in the towing tank.
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1.5 Overview of the Computations

As discussed earlier, the methods used for the analysis are the sliding plane method
that is time-accurate and the steady-state MRF method. There are two sets of mea-
surements that are chosen to be used for validation purposes. One is an open-water
case with one propeller and the other is a CRP case consisting of two propellers and
a thruster unit.

In order to establish a computational method for the analysis of multi-propeller
marine applications, the performance of each of the methods chosen is tested. The
computations consist of six steps that are presented in Figure 3. From one case to
another, new methods are introduced and the simulation becomes more complicated.
At the end, all methods will have been tested and knowledge on di�culties and errors
related to them will be gained, which will allow the evaluation of the feasibility of
the established computational method. In the following, each step is discussed in
more detail.

Figure 3: Outline of the computations.

The �rst step is the simplest possible one with open water conditions and only one
blade. Thus, the grid has periodic boundaries and, therefore, also the least number
of cells of all cases. Yet another simpli�cation is the steady-state approximation with
the MRF -method. The least number of cells and the lack of time accuracy makes
this the computationally most e�cient case and it is used as much as possible for
di�erent kinds of tests and comparisons. It is used for

• con�rming the correctness of the case set-up

• testing di�erent discretizations and other solver settings,
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• grid convergence study and

• computation of an open-water curve and error analysis.

The open-water curve and the comparison to the experimental data will give the �rst
idea of errors present in the computations. The grid convergence study ensures that
the computational grid is su�ciently �ne before proceeding to more complicated
simulations and gives additional information on the magnitude of grid based errors.

The second case is identical with the �rst one with the exception that the com-
plete propeller is included. The mesh is created from the periodic grid by rotating it
�ve times and merging the resulting parts together. Consequently, there is no need
for periodic boundaries. No signi�cant di�erences were observed compared to the
�rst case so no further results will be given conserning step 2.

In the third step, the discontinuity is introduced into the mesh. Otherwise the
case will be identical to the previous ones. The new type of mesh will in�uence
the applicability of certain solver settings and, in particular, give new information
about errors and robustness of the computations. The main objective is to study
the performance of the non-conformal interface between the two mesh regions. In
OpenFOAM, the interface is called the Arbitraty Mesh Interface (AMI) [14].

The fourth step will give the �rst experiences with the time-accurate solver and
moving meshes. It is the same case as the one computed in the third step but a
di�erent solver, pimpleDyMFoam, is used. The main focus will be on the e�ects due to
temporal discretizations. Di�erent parameters a�ecting the time accurate method
are discussed and their e�ect on the accuracy of the computations will be studied.
By the end of the fourth step all methods will have been tested in the open water
case and knowledge gained on how they perform and how they are used.

In the �fth step the CRP-case will be built up and computed as a steady-state
problem. The settings used in the open water case are applied on the more compli-
cated case. The main focus is on the performance of the steady-state approximation
applied on a clearly unsteady case.

The �nal step is a time-accurate analysis of the CRP case. It will give knowl-
edge of computation times and possible new errors. The open water time-accurate
computation has theoretically no time-dependent nature so also the performance of
the time discretizations is evaluated again in a truly unsteady case.

After completing the six steps, there will be a computational set-up that is capa-
ble of analysing multi-propeller applications which was the original goal. Further-
more, there is knowledge about the errors, robustness and required computational
times of the method used.

2 Governing Equations

Fluid �ow must ful�ll the same conservation laws as any mechanical system. Usually
three laws are applied and they are the conservation of mass, momentum and energy.
The di�erence to, for example, rigid body dynamics is that it is di�cult or sometimes
even impossible to track a speci�c set of particles that the conservation laws apply to



12

(Lagrangian systems). A common way to come around this problem is to write the
equations for a �xed volume in space that does not move (Eulerian system). The
conservation law then connects the time rate of change of the conserved variable
within the volume and the �uxes through the volume boundaries. The total time
derivative ( D

Dt
) is expressed as

D

Dt
=

∂

∂t
+ U · ∇ =

∂

∂t
+ Ui

∂

∂xi
(7)

where ( ∂
∂t
) denotes the partial derivative with respect to time, U is the �uid velocity

vector and ∇ is the nabla-operator including spacial derivatives.
Water is to a very good accuracy an incompressible �uid. It means that the e�ect

of pressure on water density is very weak. There can still be a connection between
for example temperature and density. In this work also temperature is, however,
in all cases constant in space and time, so consequently the water density will be
constant in all cases. This simpli�es the solution routines as will be seen later. In
the following sections the equations that incorporate the conservation laws of mass
and momentum are �rst presented in their general forms and then simpli�cations
are made based on the incompressibility assumption.

2.1 Conservation of Mass

The conservation of mass in a general case can be written as [15, 2.3]

∂ρ

∂t
+∇ · (ρU) =

∂ρ

∂t
+
∂ρUi
∂xi

= 0 (8)

where ρ is density and U is the �uid velocity vector. Setting ρ = constant simpli�es
the continuity equation to the form in which it is used throughout this work:

∇ ·U =
∂Uj
∂xj

= 0 . (9)

2.2 Conservation of Momentum

The conservation of momentum is fundamentally a statement of Newtons second
law

F = m
DU

Dt
(10)

where F is a force vector and m is the mass of some set of particles. The forces
include surface forces such as pressure- and viscous forces and body forces such as
gravity. Being a vector equation in a three dimensional space the conservation of
momentum introduces three new scalar equations.

The total derivative of velocity in Eq. (10) includes the partial time derivative
and the momentum �ux according to Eq. (7). Thus the conservation of momentum
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per unit volume can be written

ρ
∂(U)

∂t
+ ρ∇ · (UU) = −∇p+∇ · τ + ρq (11)

ρ
∂(Ui)

∂t
+ ρ

∂(UiUj)

∂xj
= − ∂p

∂xi
+
∂τij
∂xj

+ ρ qi

The convection term, ρ∇ · (UU), has a total of nine terms corresponding to
three convective terms in each of the three equations. Even if the term with the
divergence of velocity is zero in an incompressible case it must be included in the
equations when an iterative procedure is used for solving a steady-state case. The
reason is that mass conservation is not guaranteed during the solution process.

For a Newtonian �uid such as water the shear stress tensor can be written in
terms of velocity gradients and viscosity [15, 2.4.3]

τ = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ δijλ

= 0, by continuity︷ ︸︸ ︷
(∇ ·U) (12)

where µ is the dynamic viscosity and λ is the so called λ-viscosity that will vanish
since the divergence of velocity vanishes for incompressible �ows. Dividing further
by density gives

τ/ρ = ν

(
∂ui
∂xj

+
∂uj
∂xi

)
(13)

By de�ning the strain rate tensor

S =
1

2

(
∇U + (∇U)T

)
Sij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(14)

the shear stress tensor can be expressed in a shorter form

τ/ρ = 2 νS (15)

If the density is constant the equation can be divided by ρ. By further substi-
tuting the shear stress in Eq. (15) into the momentum equation, Eq. (11), we get
the momentum equation for an incompressible newtonian �uid.

∂U

∂t
+∇ · (UU) = −∇(p/ρ) +∇ · (2 νS) + q (16)

∂Ui
∂t

+
∂

∂xj
(UiUj) =

−∂(p/ρ)

∂xj
+
∂(2 νSij)

∂xj
+ qi

The equation is in the di�erential form and incorporates the conservation of mo-
mentum for every point in space.
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2.3 Moving Reference Frame

A time-dependent case with rotating geometries can be reduced into a steady prob-
lem by changing the reference frame to follow the rotational movement. The method
has been presented already in 1985 by Holmes and Tong [16] and applied for exam-
ple by Siikonen [17]. In OpenFOAM the MRF method is implemented so that absolute
velocities are solved with equations expressed in the relative coordinate system. To
derive the equations, �rst some helpful de�nitions are introduced and then Eq. (16)
is expressed in the relative coordinate system.

The rotational movement can be expressed by a rotation vector ω. The tangential
velocity caused by the rotation at any point given by the displacement from origin
r can be expressed as the cross product

Ut = ω × r (17)

The time derivative of any vector a is experienced in a di�erent way by an observer
in the accelerating (rotating) coordinate system than by an observer in the inertial
frame of reference. The relation between the time derivatives in the case of rotational
movement is given as [18]

Da

Dt

∣∣∣
I

=
Da

Dt

∣∣∣
R

+ω × a . (18)

Setting a = r gives the relationship between the absolute and relative velocities.

UI =
Dr

Dt

∣∣∣
I

=
Dr

Dt

∣∣∣
R

+ω × r = UR + ω × r (19)

Furthermore, setting a = UI , using Eq. (19) to express velocity in the relative frame

of reference and noting that d r
Dt

∣∣∣
R

= UR gives an expression for the total derivative

of velocity [19]

DUI

Dt

∣∣∣∣∣
I

=
DUI

Dt

∣∣∣∣∣
R

+ ω ×UI =

D(UR + ω × r)

Dt

∣∣∣∣∣
R

+ ω × (UR + ω × r) = (20)

DUR

Dt
+

Dω

Dt
× r + 2 ω ×UR + ω × ω × r .

The momentum equation, Eq. (16), is rewritten

DUI

Dt
= −∇(p/ρ) +∇ · (2 νS) + q

Now it is emphasized that so far the equation has been expressed in the inertial
coordinate system in terms of the absolute velocity. In the following, the terms in
the momentum equation will be expressed in the relative coordinate system. The
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total derivative is already given in Eq. (19). Pressure is a scalar quantity and
thus independent of coordinate system. The di�usion term needs to be treated
separately. Before starting manipulating it a helpful relation is derived. Let us
de�ne a cylindrical coordinate system (r,θ,z) whose z-axis is aligned with the ω
vector and ê refers to a unit vector in that system. Direction êr points radially out
from the z-axis and êθ is perpendicular to both êr and êz. In such a system the
rotational movement can be simply expressed as

ω × r = ω r êθ (21)

and the ∇-operator is de�ned as

∇ = êr
∂

∂r
+ êθ

1

r

∂

∂θ
+ êz

∂

∂z
. (22)

A term that will arise in the derivation of the di�usion term is given as

∇(ω × r) = ∇(ω r êθ) =

êr [ωêθ + ωr
∂êθ
∂r︸︷︷︸
=0

] + êθ ω
∂êθ
∂θ︸︷︷︸

=−êr

= ωêrêθ − ωêθêr = (23)

 0 ωêrêθ 0
−ωêθêr 0 0

0 0 0

 .

As can be seen, the gradient of the rotational velocity is an antisymmetric matrix.
Expressing the di�usion term in the relative coordinate system yields

∇ · (2 νS) = ∇ ·
[
ν
(
∇UI + (∇UI)

T
)]

=

∇ ·
[
ν
(
∇(UR + ω × r) + (∇(UR + ω × r))T

)]
=

∇ ·
[
ν
(
∇UR +∇(ω × r) + (∇UR +∇(ω × r))T

)]
= (24)

∇ ·
[
ν
(
∇UR +∇(ω × r) + (∇UR)T + (∇(ω × r))T

)]
=

∇ ·

ν (∇UR + (∇UR)T
)

+ ν

∇(ω × r) + (∇(ω × r))T︸ ︷︷ ︸
=0 , since∇(ω×r) is antisymmetric


) =

∇ ·
[
ν
(
∇UR + (∇UR)T

)]
)

The manipulation above shows that the di�usion term can be expressed by either of
the velocities, the absolute or the relative velocity. Considering the source term q
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independent of the frame of reference the momentum equation can now be expressed
in the relative coordinate system

DUR

Dt
= −∇(p/ρ) +∇ ·

[
ν
(
∇UR + (∇UR)T

)]
+ q (25)

−Dω

Dt
× r− 2 ω ×UR − ω × ω × r︸ ︷︷ ︸

Additional terms

The total derivative of UR can still be further expanded and partially expressed
with absolute velocities. The reason for doing so becomes apparent later.

DUR

Dt
=
∂UR

∂t
+∇ · (URUR) =

∂UR

∂t
+∇ · (URUI −UR ω × r) = (26)

∂UR

∂t
+∇ · (URUI)−∇ ·UR︸ ︷︷ ︸

=0

(ω × r)− UR · ∇(ω × r)︸ ︷︷ ︸
=UR,r ω êθ−UR,θ ω êr=ω×r

=

∂UI

∂t
+
∂(ω × r)

∂t
+∇ · (URUI)− ω ×UR)

Substituting Eq. (26) to Eq. (25) and assuming that ω is constant in time we get

∂UI

∂t
+∇ · (URUI) = −∇(p/ρ) +∇ ·

[
ν
(
∇UR + (∇UR)T

)]
+ q+

ω ×UR − ω × ω × r︸ ︷︷ ︸
=ω×UI

(27)

∂UI

∂t
+∇ · (URUI) = −∇(p/ρ) +∇ ·

[
ν
(
∇UI + (∇UI)

T
)]

+ q− ω ×UI

Comparison with the original momentum equation, Eq. (16), shows that there
are only two changes in the momentum equation when it is expressed in the moving
reference frame. The �rst di�erence is in the convection term. The change can be
interpreted so that the convective velocity is the relative velocity but the velocity
being solved for is the original absolute velocity. The second change is on the right-
hand-side of the equation. There is an additional source term ω ×UI that comes
from the coordinate transformation.

If a method for solving the Navier-Stokes equations in the inertial coordinate
system exists it can be used for MRF computations by accounting for these two
changes in the momentum equation. In practice, the new acceleration term can be
included as a part of the original source q and is thus very easy to implement. The
convective �ux, which will be introduced in Chapter 3.2, must be computed in a
di�erent way and the continuity equation needs no changes whatsoever.
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2.4 Turbulence

The governing equations given earlier in Eqs. (9) and (16) describe both laminar and
turbulent �ows. Solving turbulent �ows with the basic equations is called Direct

Numerical Simulation (DNS) and is a valid and accurate method for turbulence
prediction. It is, however, too expensive for engineering purposes. The main reason
for that is the ratio of largest to the smallest turbulent eddies being too large in
practical �ows. The smallest eddies require a very �ne mesh and the largest eddies
require the computational domain to be large enough so that the overall number of
cells is very large. To overcome the costs di�erent ways to model, not fully compute,
turbulence have been developed [20].

In this work the Reynolds Averaged Navier-Stokes (RANS )-equations are used.
It means that the governing equations are averaged in time and the e�ect of turbu-
lence on the average �ow �eld is modelled. For the temporal averaging velocity and
pressure are divided into a temporally constant part and a �uctuating part.

U = U + u′ (28)

p = p+ p′ (29)

The time average of velocity U is de�ned as

U(x) = lim
T→∞

1

T

T∫
0

U(x, t) dt (30)

where the averaging interval T must be larger than the temporal �uctuations but
smaller than temporal variations of interest. Another way to interpret the average
�ow �eld called ensemble averaging is to take an average of solutions obtained by
solving the same �ow N times, which is described as [20, Ch. 9.4.1]

U(x, t) = lim
N→∞

1

N

N∑
1

U(x, t) (31)

The continuity equation being linear in velocity U remains unchanged in the av-
eraging process. The case is the same for all other terms in the momentum equation
except for the unlinear convection term. When averaged in time new terms contain-
ing turbulent velocity �uctuations arise. The time averaged momentum equation is
written as

∂U

∂t
+∇ · (UU) = −∇(p/ρ) +∇ · (2 νS) + q +∇ ·R (32)

where the only di�erence to the original momentum equation is the term R, which
is a second-order tensor including nine terms. Written in index notation the tensor
and its divergence read

Rij = −u′iu′j (33)

(∇ ·R)i =
−∂u′iu′j
∂xj

. (34)
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Since R is, by de�nition, symmetric only six new terms arise due to turbulence [20,
Ch. 9.4.1].

The new term is problematic, since it contains velocity �uctuations which are not
known if only time averaged equations are used. A fundamental assumption behind
the RANS-models is that the new term R is modelled as a di�usive term and thus
it is often called the Reynolds stress tensor. This also explaines the notation R.
According to the Boussinesq-hypothesis, Reynolds stresses are given as

Rij = −u′iu′j = 2 νTSij −
2

3
kδij (35)

which implies that turbulence can be modelled through two terms: The turbulent
viscosity, νT , and the turbulence kinetic energy, k. Comparing to the molecular
di�usion term it is seen that the turbulent viscosity works exactly as the molecular
viscosity. The turbulence kinetic energy is de�ned as

k =
1

2
u′ku

′
k (36)

and is, as implied by its name, the kinetic energy of the turbulent velocity �uctu-
ations per unit mass. The last term in Eq. (35) ensures that k is always correctly
reproduced from the de�nition of R.

2.5 Turbulence Modelling: SST k − ω RANS-Model

The SST k-ω-model is a two-equation RANS model. It includes two new equations
from which the e�ect of turbulence can be modelled. One equation is written for
the turbulence kinetic energy, k. The second equation is written for the speci�c
dissipation rate, ω, of the turbulence kinetic energy k and the turbulent viscosity is
de�ned as

νT =
k

ω
(37)

but is computed according to the Bradshaw assumption presented later. The tur-
bulence equations are presented in more detail in the following.

2.5.1 k- and ω - Equations

The model equation for the turbulent kinetic energy k is given as

∂k

∂t
+∇ · (Uk)− (∇ · U)k − ∇ · (Dk,eff∇k) (38)

= min{G , c1β
∗kω} − β∗ωk

and the model equation for the speci�c dissipation, ω, reads

∂ω

∂t
+∇ · (Uω)− (∇ · U)ω − ∇ · (Dω,eff∇ω) (39)

= γ(F1)G/νT − β(F1)ω2 − (F1 − 1)CDk,ω .
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The expressions for the parameters and �ltering functions in Eqs. (38) and (39) will
be given later.The third terms on the left-hand-sides of Eqs. (38) and (39) should
vanish according to the conservation of mass but are still required in iterative steady-
state computations. The term may in�uence the iteration process but should not
have any e�ect on the �nal result. Turbulent kinetic energy production G in Eq.
(38) is given as

G = 2νT |S|2 (40)

2.5.2 Model Parameters

The di�usion coe�cients Dk,eff and Dω,eff are de�ned in Eq. (41).

Dk,eff = αk(F1)νT + ν

Dω,eff = αω(F1)νT + ν (41)

The value of the coe�cients γ(F1), αk(F1), αω(F1) and β(F1) are �ltered between
the model coe�cients by function F1 according to Eq. (43).

(γ αk αω β)T = F1 (γ αk αω β)T1 + (1− F1) (γ αk αω β)T2 (42)

with the following values

γ1 = 0.5532 αk1 = 0.85034 αω1 = 0.5 β1 = 0.075

γ2 = 0.4403 αk2 = 1.0 αω2 = 0.85616 β2 = 0.0828

Coe�cient β∗ has the constant value of β∗ = 0.09 and c1 = 10. The switching
function which governs the choice between the ω- and the ε-equations is

F1 = tanh (Γ4) (43)

where

Γ = min

{
min

[
max

( √
k

β∗ωy
;
500ν

ωy2

)
;

4αω2k

CDkωy2

]
; 10.0

}
(44)

Term CDkω in Eq. (44) is de�ned as

CDkω =
2αω2

ω
(∇k · ∇ω) (45)

and is limited to the lower limit of CDkω ≥ 1 · 10−10. The eddy viscosity νT is
calculated according to the Bradshaw modi�cation as

νT =
a1k

max (a1ω; β1F2
1√
2
|S|)

(46)

where a1 = 0.31. The term F2 is a switching function dependent on wall distanse.
It is de�ned as

F2 = tanh (Γ2
2) (47)

where

Γ2 = min

[
max

(
2
√
k

β∗ωy
;
500ν

ωy2

)
; 100

]
(48)
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2.5.3 Boundary Treatment

The behaviour of turbulence near solid walls di�ers from the free stream conditions.
This is easy to understand if one thinks of turbulence as eddies. The viscinity of a
wall must a�ect the behaviour of eddies and, on the other hand, eddies change �ow
behaviour compared to laminar �ow.

Turbulent boundary layers have been researched over the years and it is pos-
sible (and mandatory) to introduce some of the results into a CFD-computation.
The domain where the viscous e�ects in the wall region a�ect the �ow is called a
boundary layer and can be divided into three parts. The division is made according
to the following non-dimensional quantities: a dimensionless velocity (u+) and a
dimensionless distance from the wall (y+). The non-dimensionalisation is made as
follows

u+ =
U

uτ
(49)

y+ =
yuτ
ν

(50)

where the friction velocity, uτ , is de�ned as

uτ =

√
τw
ρ

. (51)

Friction velocity is a velocity scale based on the friction force on the wall. It has
originally been derived by conducting a dimensional analysis of the velocity pro�le
in the lower parts of a viscous boundary layer [15].

A turbulent boundary layer is shown in Figure 4. The overlap layer or log-layer
in the middle of the boundary layer obeys a logarithmic relationship to the distance
from wall, which has been theoretically derived and con�rmed experimentally. It
extends approximately from y+ = 35 to y+ = 350. The velocity pro�le in the
log-layer is given as

u+ =
1

κ
ln(Ey+) (52)

where κ = 0.41, called von Kàrmàn constant, and E = 9.8 are experimental con-
stants. The �ow in the log-layer is dominated by both viscous e�ects and turbulent
eddies.

The part closest to the surface (y+ ≤ 5) is dominated by viscous e�ects only and
is called a viscous sublayer. Within the viscous sublayer, the dimensionless velocity,
u+, is directly proportional to the dimensionless distance from wall, y+, and is given
as

u+ = y+ . (53)

Between these two regions there is the so called bu�er layer where velocity does not
obey either of the laws. Spalding has proposed a �tting that matches data in all of
the three parts well up to the outermost part of the boundary layer [15]. However,
for the computational model only a distinction between the viscous sublayer and
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Figure 4: Turbulent boundary layer.

the logarithmic layer is made. By setting expressions (52) and (53) equal, the inter-
section of the logarithmic and linear pro�les can be found. Ten Newton's iterations
with the initial guess of y+ = 11 gives approximately the boundary between the two
layers.

y+
lam =

1

κ
ln(E y+

lam) =⇒ y+
lam ≈ 11.530 (54)

Under the assumptions of di�usion dominating over convective terms and pres-
sure gradient and the turbulent di�usion dominating over molecular di�usion, k and
ω, respectively, must ful�ll Eqs. (55) and (56) in the logarithmic layer [21, Ch. 4.6].

kLog =
u2
τ√
β?

(55)

ωLog =
uτ√
β?κy

=

√
k

C
1/4
µ κy

(56)

Wilcox also shows that ω is proportional to ω ∝ 1
y2

in the viscous sublayer:

ωSublayer =
6ν

β1y2
(57)

Such an asymptotic behaviour may lead to considerable numerical errors if ω is
evaluated from the transport equations so, in order to avoid the errors, ω-value
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should be explicitly set according to Eq. (57) in 7 to 10 cells closest to wall that
should all lie within y+ < 2.5 [21, Ch. 7.2]. Further discussion of the possibilities of
modelling turbulence near the walls is given by Hellsten [22].

In OpenFOAM, the expressions of ω given for the viscous sublayer and logarithmic
layer are averaged in the �rst cell

ω =
√
ω2
Sublayer + ω2

Log (58)

If one considers how the two terms behave as a function of the distance from wall,
y, the sublayer expression (57) being proportional to

ωSublayer ∝
1

y2

dominates near the wall and the expression for the logarithmic layer, Eq. (56), being
proportional to

ωLog ∝
1

y

will dominate at a greater distance from wall.
In addition to speci�c turbulent dissipation ω, also the turbulent viscosity is

treated in a special way near walls. If y+ is above the point where the linear
pro�le of the viscous sublayer and the logarithmic layer cross, turbulent viscosity
is evaluated according to the logaritmic layer relations by introducing an e�ective
kinematic viscosity de�ned as

τw = ρ νeff
∂U

∂y
≈ ρ νeff

UP

yP

νeff ≈ (τw/ρ)
yP
UP

(59)

where the index P refers to the �rst cell center from wall. Substituting the logarith-
mic velocity pro�le, Eq. (52), and the de�nition of friction velocity, Eq. (51)

u+ =
U

uτ
=

1

κ
ln(Ey+)

uτ =

√
τw
ρ

=⇒ τw =
ρ uτ κU

ln(Ey+)
(60)

into Eq. (59) yields the expression for the e�ective viscosity.

νeff = ν

uτ︷ ︸︸ ︷
κ

ln(Ey+)

y+︷ ︸︸ ︷
uτ

1

ν
yP = ν

κ y+

ln(Ey+)
(61)
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Below the intersection point, turbulent viscosity is neglected and the e�ective vis-
cosity is the molecular viscosity.

νeff = ν , if y+ < y+
lam (62)

With the treatments for ω and νT , no direct treatment is applied for the turbulent
kinetic energy k. The transport equation for k, Eq. (38), is modi�ed near walls.
The production term G is evaluated from

Gnear wall = νeff
|∇U · n|C1/4

µ

√
k

κy
(63)

which a�ects the value of k near boundaries.

3 Numerical Methods

The governing equations described in Sect. 2 are partial di�erential equations. They
are also non-linear and have continuous solutions. Analytical solutions to the equa-
tion are nowadays only known for rather simple cases and usually numerical methods
are used to solve cases of engineering interest. For computers the equations must
be brought into an algebraic form. Furthermore, the equations are linearized. The
outcome is a set of algebraic linear equations that is solved iteratively.

In order to turn the continuous equations into several discrete algebraic equa-
tions, the governing equations are formulated for discrete points in space and time.
There are several ways to achieve this. A traditional way is the �nite di�erence
method that is used for solving variables at some discrete points and approximating
derivatives with the Taylor series expansion. Another way is to divide the physical
domain into �nite blocks inside which a shape function is used to approximate the
variables. Variables are solved for in nodal points on the �nite block. The most
common way in computational �uid dynamics (CFD) is the �nite-volume approach.
It means that the governing equations are integrated over a control volume that is
also called a cell. Nowadays the so called co-located method is used. It means that
variables are solved in the center of each cell. In this chapter some basic principles
used in the formulation of the algebraic equations are shown with the help of a
general transport equation, Eq. (65), for a general variable φ. The discretization of
the computational domain will be explained in Chapter 3.1 and the discretization
of the equations in Chapter 3.2.

3.1 Discretization in Space

The physical domain is divided into control volumes that must ful�ll some require-
ments such as they are never negative and they must completely �ll the solution
domain. An example of two cells is shown in Figure 5.

All values are solved in the cell centers (points P and N). The terminology used
in OpenFOAM is used here which will make the derivation of the numerical schemes
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Figure 5: Cell in OpenFOAM.

more understandable. Cells are connected by faces. Each face is owned by one
adjacent cell and the other cell is called the neighboring cell. The face f has an area
|Sf | and a unit normal vector n pointing towards the neighbor. Thus a surface area
vector is de�ned as

Sf = |Sf |n

The vector d points from the center of the owner cell to the center of the neighbor
cell

d = PN (64)

The vector Pf points from the center of the owner cell to the center of face f and the
vector Nf from the center of the neighbor cell to the center of face f . The volume
of the owner cell is de�ned as VP .

The cells are not ordered in any way and they are connected to each other
through the faces only, not by any special indexing system. Such a mesh is called
unstructured. [23]

3.2 Equation Discretization

A general form of a transport equation is used to present how di�erent terms are
transformed from the di�erential forms into the discrete form.

∂φ

∂t
+∇ · (Uφ) = ∇ · (α∇φ) + qφ (65)
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In order to discretize the equation according to the �nite-volume approach, the
equation is integrated over a control volume V to obtain.

time derivative︷ ︸︸ ︷∫
V

∂φ

∂t
dV +

convection term︷ ︸︸ ︷∫
V

∇ · (Uφ) dV =

diffusion term︷ ︸︸ ︷∫
V

∇ · (α∇φ) dV +

source term︷ ︸︸ ︷∫
V

qφ dV (66)

The integration of the time derivative and the source term is straightforward. The
terms are simply multiplied by the cell volume VP . There are several ways for
approximating the time derivative itself. The simplest one is the implicit Euler
method where the time derivative is approximated as∫

V

∂φ

∂t
dV ≈ (φV )n+1 − (φV )n

∆t
(67)

where n is the readily solved time level and n+1 the time level in which the variables
are being solved. The method is �rst-order accurate in time but unconditionally
stable. The more accurate option is the backward method given as∫

V

∂φ

∂t
dV ≈ 3(φV )n+1 − 4(φV )n + (φV )n−1

2 ∆ t
. (68)

The backward method is second-order accurate in time with the cost of higher
requirements for memory due to the need to store the solution from two previous
time levels (n and n− 1) [20].

The integration of convection and di�usion terms needs a special attention. The
Gauss divergence theorem is applied on them which, in its general form, can be
written as [18, Ch. 16.4] ∫

V

∇ ? φdV =

∫
S

φ ? dS (69)

where φ is a (smooth) tensor �eld, ∇? represents any of the derivatives ∇· (diver-
gence), ∇× (curl) or simply ∇ (gradient). Surface S is closed and encloses the
volume VP and dS is the surface vector pointing out from the volume VP . Apply-
ing the Gauss theorem on the convection term the outer divergence operation will
vanish and the volume integral will be turned into a surface integral∫

V

∇ · (Uφ) dV =

∫
S

φU · dS (70)

By further approximating the surface integral by a sum over �nite discrete parts,
Sf , of surface S, the convection term becomes∫

V

∇ · (Uφ) dV =

∫
S

φU · dS ≈
∑
f

φU · Sf (71)
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Similar steps can be taken with the outer divergence operation in the di�usion term.
The discrete form of the transport equation is then obtained as

VP
∂φ

∂t
+
∑
f

φU · Sf =
∑
f

(α∇φ) · Sf + VPqφ (72)

Since the volume integral is turned into a surface integral the variables (U, α, φ,∇φ)
need to be expressed on the surfaces, too. Since they are normally expressed in
cell centers, a need for interpolation arises. There are several ways to interpolate
variables. In the following, three schemes are introduced.

3.2.1 Linear interpolation

Linear Interpolation or Central Di�erencing means that the value φ is interpolated
onto the face by weighting the two adjacent cell center values by their distances to
the face

φf ≈ wφP + (1− w)φN (73)

so that the weight factor (w) is the ratio of the neighboring cell center distance to
the face and to the owner cell center [23]

w = fN/PN (74)

Central di�erencing is symmetrical and is used in the discretization of di�usion
terms. It is, however, unbounded which means that non-physical new minimum or
maximum values may arise due to interpolation. At the worst, this may lead to un-
stable computation which usually prevents its usage in conjunction with convective
terms.

Looking at the truncation error in a one-dimensional non-equally spaced mesh
(Figure 6), expressing φ in points P and N , and by developing it into a Taylor series

Figure 6: Set-up for studying truncation errors.

around the face f yields

φP = φf − d1
∂φ

∂x
+
d2

1

2

∂2φ

∂x2
− d3

1

6

∂3φ

∂x3
+
d4

1

24

∂4φ

∂x4
+O(d5

1) (75)

φN = φf + d2
∂φ

∂x
+
d2

2

2

∂2φ

∂x2
+
d3

2

6

∂3φ

∂x3
+
d4

2

24

∂4φ

∂x4
+O(d5

2) (76)
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Substituting φP and φN into Eq. (73) yields

φf ≈ wφP + (1− w)φN = φf + d1d2
1

2

∂2φ

∂x2
+O(d3

1) +O(d3
2)︸ ︷︷ ︸

Truncation error

(77)

The leading term in the truncation error is proportional to second spatial derivative
of φ (∂

2φ
∂x2 ) and to d1d2 which means that the method is second-order accurate in

space. If the cell size is halved the leading term of truncation error reduces to one
fourth of the initial magnitude.

3.2.2 Upwind Interpolation

Another simple interpolation scheme is the Upwind interpolation. It is used in the
discretization of the convection term and can be thought to represent the transport-
ing nature of the term. As the name implies it needs information on which side of
the face is on the upwind or upstream side. In the convection term, there is always
the convecting �ux (usually surface normal velocity) and the convected variable φ. It
is the convected variable that is interpolated with the upwind scheme. The upwind
interpolation of φ is written as

φf =

{
φP ,Uf · Sf ≥ 0

φN ,Uf · Sf < 0
(78)

Eq. (78) can be written in the same form as Eq. (73). Then the the weight factor is

wupwind =

{
1 ,Uf · Sf ≥ 0

0 ,Uf · Sf < 0
(79)

The upwind interpolation is bounded so that it can never produce oscillations [23].
In the case of a positive convective velocity one can use Eq. (75) to study the

truncation error of the upwind interpolation.

φf ≈ φP = φf −d1
∂φ

∂x
+
d2

1

2

∂2φ

∂x2
+O(d3

1)︸ ︷︷ ︸
Truncation error

(80)

The truncation error consists of a �rst-order term in addition to a similar sec-
ond -order term that was present in the truncation error of the linear interpolation
method. The �rst-order term is proportional to ∂φ

∂x
and is thus damping or di�usive

in its nature so that it tends to smooth out any local peaks in the values of φ. Being
a �rst-order term it is also larger than the truncation error of the linear interpola-
tion method which makes the upwind method usually too inaccurate to be used for
obtaining a reliable �nal result. Due to its robustness it can be used for starting
computations, however.
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3.2.3 Blended Interpolation

A combination of central- and upwind interpolations can be formulated as

φf = (1− γ)(φ)upwind + γ(φ)CD (81)

where γ is a blending coe�cient [23]. This formulation o�ers a possibility to improve
the accuracy from that of the upwind scheme but still maintain stability.

In the blended di�erencing the value of γ is a constant. There are, however,
methods that locally determine γ so that new extreme values are avoided with as high
an accuracy as possible. The local value for γ is calculated based on the �ow �eld
itself. There are a range of such limiters in OpenFOAM such as the limitedLinear

scheme and many more in literature (see for example Hirsch [24, Ch. 21.3]) such as
minmod and van Leer to mention a few.

The truncation error of the blended scheme consists of those of the upwind
and linear schemes. Thus it includes a �rst-order term that is scaled according to
the value of γ which makes the scheme more di�usive compared with the linear
interpolation, but also improves stability [23].

3.3 The SIMPLE-algorithm

The Semi-Implicit Method for Pressure Linked Equations (SIMPLE) is a common
method for �nding a solution to the continuity- and momentum equations in par-
ticular in incompressible cases. A traditional description of the algorithm is given
by Patankar [25] and the description in this chapter follows the implementation in
OpenFOAM. The solution algorithm is very similar in both steady-state and time-
accurate cases with moving meshes. In a time-dependent case, the algorithm is used
inside each time step while in a steady-state solution it can be used as such. The
solver used in the steady-state computations is simpleFoam and the time-accurate
solver is pimpleDyMFoam. The name of the time-accurate solver stands for a com-
bination of the PISO-algorithm, that is a common method for solving time-accurate
problems [26], and of the SIMPLE-algorithm. The code allows the use of dynamic
meshes, which is expressed by the part DyM in the name. The two codes have some
di�erencies that will be pointed out in the following derivation.

First, the momentum equation is formed. Each term in Eq. (16) is discretized
by integrating over a control volume (VP ) and applying the Gauss law, Eq. (69), to
transform the volume integrals into surface integrals.

time derivative︷ ︸︸ ︷
∂U

∂t
VP +

conv︷ ︸︸ ︷∑
f

φfUf −
∑
f

νfSf


1.diff︷ ︸︸ ︷

(∇U)f +

2.diff︷ ︸︸ ︷
(∇U)Tf −

1

3
tr(∇U)T I

 = Q−

R
VP

∇p dV︷ ︸︸ ︷∑
f

(Sfp)

(82)
where

φf = Uf · Sf (83)
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is the volume �ux through face f that is obtained at the end of the iteration process
or, if no previous loop has been conducted, by a linear interpolation of cell-center
velocities. If the MRF method is applied the volume �ux is expressed in the relative
coordinate system as discussed in Chapter 2.3. In the case of a moving mesh, φf is
relative to mesh motion

ω × r · Sf . (84)

The velocity gradient tensors are not yet in their discrete form nor is the time
derivative for the sake of a clearer presentation. In Eq. (82), only the surface area
vector Sf and the volume �ux φf are, by de�nition, known on cell faces. The
face values of other variables must somehow be approximated from their cell-center
values. The e�ective viscosity νeff was chosen to be linearly interpolated which
re�ects the symmetric nature of di�usion.

The calculation of the viscosity term is divided into two parts since the treatment
of the velocity gradient tensor di�ers between them in the code. In the �rst term,
denoted by 1. di�, a part of the gradient (the orthogonal part) is computed directly
from face adjacent cell-center values

(∇U)f =
Un −Uo

d
(85)

This is a good approximation if the vector d that connects the cell centers is parallel
to the surface area vector Sf . If the vectors are not aligned, however, velocity
gradients computed in the cell centers are used as a correction term. In order to
construct the correction term, the cell-center velocity gradients are computed using
the Gauss law

∇U =
1

VP

∑
f

SfUf (86)

where the velocities are interpolated onto the cell faces according to the linear in-
terpolation method. The velocity gradients in the second part of the di�usion term
(2. di� ) are �rst computed in cell centers according to Gauss law, Eq. (69), and
then linearly interpolated onto the faces. Also the pressure gradient is computed by
linearly interpolating the cell-center values onto the cell faces. The time derivative
is non-zero only in time accurate computations and can be approximated by using
any of the schemes presented in Chapter 3.2. The source term Q = qVP can contain
any volume force (per unit mass) such as gravity or electromagnetic forces. If the
moving reference frame (MRF) is activated, the additional source term

ω ×UIVP (87)

is also included in Q. Eq. (82) stands for force balance in one control volume
VP . Writing a similar equation for each cell leads to a set of equations with as
many equations as there are cells. The set of equation can be presented as a matrix
equation. Splitting the left-hand-side into diagonal and o�-diagonal contributions
and writing the equation for only one cell gives

APUP +
∑
n

AnUn = RHS (88)
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where AP stands for the diagonal term and An for the o�-diagonal terms in one
row of the (n × n) coe�cient matrix A. The diagonal term (AP ) multiplies the
velocity UP that the equation is written for. Accordingly, the o�-diagonal terms (An)
multiply the velocities of the neighboring cells Un which gives a more understandable
meaning to the matrix coe�cients: the diagonal term represents the contribution of
the cell itself on the new value to be solved, and the o�-diagonal terms contain the
contributions of the neighboring cells. The fact that usually only up to the second
neighbours are included in each equation (e.g. in ∇U-term) explains the fact that
the coe�cient matrix is quite sparse i.e. most of its terms are zero. The term RHS
contains all explicit terms in Eq. (82) which includes among others the second part
of the di�usion term and the pressure gradient as such.

Before solving the momentum equation the matrix equation is under-relaxed
in order to increase the diagonal dominance of the coe�cient matrix and improve
computational stability. If the coe�cient matrix is not diagonally dominant

AP <
∑
n

An

the diagonal term is �rst replaced by the sum of the o�-diagonal terms and a corre-
sponding term ∑

n

An − AP

is added onto the right-hand-side of the equation. The actual under-relaxation
means that the diagonal terms AP are divided by a relaxation factor 0 < αU ≤ 1. A
corresponding term is added to the right-hand-side to keep the equation valid, and
thus the momentum equation becomes

AP
αU

UP +
∑
n

AnUn = RHS +
(1− αU)

αU
APUP (89)

from which a new velocity can be solved.
In order to de�ne the pressure equation, new de�nitions are needed. Firstly,

the pressure dependent part is removed from the right-hand-side of the momentum
equation (RHS). The pressure gradient is not written in its discretized form for the
sake of clarity

RHS = rhs−∇p VP . (90)

Furthermore, a so called H-operator is de�ned as

H(U) =
rhs−

∑
nAnUn

VP
(91)

and the diagonal term is divided by the cell volume VP .

aP =
AP
VP

(92)

Dividing Eq. (88) and substituting de�nitions (90), (91) and (92) gives

aP UP = H(U)−∇p. (93)
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Dropping out the pressure gradient, a velocity-like term and a corresponding volume
�ux are obtained. They are denoted by an upper index ∗

U∗ =
H(U)

aP
(94)

φ∗f = U∗f · Sf (95)

The linear interpolation of U∗ is used to obtain the �ux φ∗f on each face. If the MRF
is active φ∗f is expressed in the relative coordinate system by subtracting the term

(ω × r) · Sf .

Substituting U∗ back into Eq. (93) and dividing by aP gives an expression for
velocity

UP = U∗ − ∇p
aP

(96)

The continuity equation, Eq. (9), states that the velocity �eld has no divergence.
Taking the divergence of Eq. (96) leads to an expression between the velocity and
pressure.

∇ ·UP = ∇ ·U∗ −∇ ·
(
∇p
aP

)
= 0

=⇒ ∇ ·
(
∇p
aP

)
= ∇ ·U∗

Both divergence terms are discretized using the Gauss law (Eq. 69)∑
f

(
(

1

aP
)f (∇p · Sf )f

)
=
∑
f

φ∗f (97)

The coe�cient
1

aP

that comes from the coe�cient matrix of the momentum equation and is stored for
each cell, is interpolated onto the faces using the linear interpolation. The surface
normal pressure gradient

∇p · Sf
is evaluated partly in an explicit and partly implicit manner like the �rst part of the
di�usion term in the momentum equation (see Eqs. (85) and (86)).

To account for the explicit non-orthogonality correction, the pressure equation
(97) is repeated several times. After solving the pressure equation, a new volume
�ux φf is obtained by subtracting a �ux term (Fp) obtained from the actual discrete
pressure equation based on Eq. (97) from φ∗f , so that φf has zero divergence i.e. the
convective �ux exactly ful�lls the continuity constraint.

φf = φ∗f − Fp (98)
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After obtaining �ux φf , the pressure is explicitly under-relaxed as

pn+1 = αpp+ (1− αp)pn (99)

Finally, a new velocity is obtained by correcting U∗ with the latest pressure gradient

Un+1 = U∗ − 1

aP
∇pn+1 (100)

3.4 Linear Solvers

The matrix equations arising from the governing equations are typically sparse in
CFD. In this Chapter, solution methods for a general matrix equation, written as

Aφ = Q (101)

are presented mainly by following the description by Ferziger and Peri¢ [20]. Since
the matrices are sparse, they are solved iteratively and for which there is a range of
di�erent algorithms available. Two solvers, the preconditioned biconjugate gradient
(PBiCG) and the generalized geometric-algebraic multi-grid (GAMG), are used in
the computations presented in this study. The PBiCG method is used for solving
the equations for velocity and turbulence quantities, and the GAMG for the pressure
equation.

The idea of conjugate gradient methods is that solving the matrix equation is
reformulated as a minimization problem of a function F .

F =
1

2
φTAφ− φTQ (102)

The minimum is searched for by �nding minima in one direction at a time. All
directions can be thought to be perpendicular to all preceeding directions and the
error is reduced on every iteration. In theory there are as many linearly indepen-
dent directions as there are equations (rows) in the matrix equation. The rate of
convergence depends on the condition number

κ =
λmax
λmin

(103)

of the coe�cient matrix A where λmax and λmin are the largest and the smallest
eigenvalues of the matrix. The condition number is often very large in CFD appli-
cations and manipulating it allows to improve convergence. The condition number
can be reduced by multiplying the original equation by some matrix so that the
solution of the equation is not changed but the eigenvalues of the matrix are. This
step is called preconditioning.

Conjugate gradient methods are only applicable for symmetric matrices which is
not the case if upwind biasing is used in the discretization procedure. To overcome
this problem, unsymmetric systems are turned into symmetric ones for example by
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creating a larger system of equations from the original coe�cient matrix A and its
transpose AT (

0 A
AT 0

)(
φ

φ̃

)
=

(
Q
0

)
(104)

where φ̃ plays no role. The size of the matrix is increased but symmetry is achieved.
Pressure equation is solved using GAMG. In GAMG the idea is that the solver

starts solving the matrix equation from the �nest grid level which corresponds to
the computational grid. The grid is �rst coarsened step by step and then re�ned
while the equations are solved on each grid level. There are also several possibilities
for how to do the mapping both from a �ner to a coarser grid level (restriction)
and the other way around (prolongation). The bene�t of using several grid levels is
that the solution is considerably faster on the coarser grid levels. Furthermore, the
solution on a coarser grid level e�ciently takes out large-scale errors. Provided that
the bene�ts due to an improved convergence are greater than what mapping the
solution between grid levels and creating grids costs in time, the use of the GAMG
method is justi�ed. Clearly, the bene�ts grow with a growing computational grid.

Before mapping any solution from one grid level to another, the solution should
be smooth. This is ensured by using an iterative method that produces smooth
solutions. According to Ref. [20, Ch. 5.3.8], it does not play a critical role which
methods are used, provided that the method ful�lls certain conditions. In particular,
with elliptic equations such as the pressure equation, using basic iterative methods
on the �nest level only is ine�ective due to properties related to the eigenvalues of
such problems. Thus GAMG is a good choise for solving the pressure equation and
also OpenFOAM documentation recommends to do so.
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4 Steady Computations with a Single Blade

The �rst computations are conducted in the simplest possible case. One propeller in
open-water conditions is analysed as a steady-state problem with periodic boundary
conditions so that only one of the �ve blades is included in the grid. There is mea-
sured data of thrust and torque coe�cients, KT and KQ, with 14 values of advance
coe�cient J for validation of the computed results. This case is extensively used to
evaluate the correctness of boundary conditions, solver settings and discretization
schemes. As a result, a computational set-up is �xed and subsequently throughly
tested. This chapter includes a documentation of the testing phase while initial
computations are omitted for the sake of a clearer presentation. The settings tested
will be used as a basis in the more demanding cases where trial and error would be
more expensive.

The computational domain consists of a volume around one blade. The complete
propeller with hub is shown in Figure 7. The part inside the periodic domain is

Figure 7: The complete propeller with the part included in the periodic grid colored
in blue.

colored in blue while the grey color represents the rest of the propeller. The case
set-up of the periodic computation is shown in Figure 8. The periodic boundaries,
shown in grey, are identical with each other. Inlet and outlet boundaries of the
mesh are de�ned as separate patches so that boundary conditions can be de�ned on
them. Furthermore, the hub and the surrounding boundary (cavitation tunnel wall)
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are de�ned as separate parts of the mesh boundary.
The surface grid on the propeller is shown in Figure 9. The grid is re�ned close to

the leading and trailing edges while the �atter parts of the blade surface are coarser.
In order to achieve a better mesh quality, there is a band that follows the leading and
trailing edges that allows the construction of a more regular structure of the surface
mesh in those regions. Figure 10 shows the volume mesh around the propeller. The
sub�gures illustrate the internal mesh at di�erent radial positions around the blade.
The mesh is mostly tetrahedral but, close to the propeller surface, there are twenty
prismatic layers that ensure a su�cient mesh density inside the boundary layer. The
boundary layer mesh is best shown in sub�gure d) but is present everywhere on the
blade surface.

4.1 Boundary Conditions

At the inlet, velocity is �xed to give a desired advance coe�cient J . As described in
Chapter 1.4.1, the advance coe�cient in measurements was evaluated from a velocity
measured 150 mm upstream from the propeller plane at a distance of 60 mm from
the tunnel wall. Thus reaching exactly the same J value as in measurements was
not possible which was, however, accounted for by evaluating an individual advance
coe�cient in each computation. As can be seen in Figure 11, the J values correspond
quite well to the measured ones.

The turbulence quantities were estimated at the inlet by setting turbulence in-
tensity between

0.5% < I =

√
2
3
k

|Uinlet|
< 1% (105)

and turbulence viscosity ratio approximately

νT
ν

=
k

νω
≈ 10 (106)

which gives the boundary conditions

k = 0.001 m2/s2 (107)

ω = 100 s−1. (108)

Turbulence handling near walls is as described in Chapter 2.4.
The surface normal gradient of pressure is set to zero (∇p · Sf = 0) at all

boundaries except for the outlet where pressure is �xed to be zero (p = 0 m2/s2).
Thus, it is the relative (or gauge) pressure that is solved for, which is additionally
scaled by density as discussed earlier. All other quantities have the numerical zero-
gradient condition at the outlet in order to keep the computation well de�ned.

The hub and the tunnel walls were de�ned as frictionless walls. The velocity
component normal to the wall is set to zero in order to prevent �ow through it.
The velocity component parallel to the surfaces and all other variables have the
zero-gradient condition.
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(a) Outer boundaries.

(b) A view with the foremost periodic boundaries hidden.

(c) A closer view on the propeller and hub.

Figure 8: The case set-up in the steady-state computations with one blade only.
Boundary names are given in part b).
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(a) The view from the upwind direction. (b) The view from the leading edge.

(c) The view from the trailing edge. (d) The view from the downwind direction.

Figure 9: Surface grid on the propeller surface.

4.2 Results

The case was computed with several discretizations. Most of the results are not
presented here, since they only served as initial tests to give understanding of how
di�erent settings a�ect the computation. With most settings, the force coe�cients
were within 2 % of each other which tentatively implies that the mesh is adequate
and the computation is also otherwise set up correctly.

4.2.1 Force Prediction

With a �xed computational set-up, the performance of the settings was evaluated by
comparing the thrust and torque coe�cients, KT and KQ, against the experimental
data over a range of operating points (see Figure 11). Since the correct advance co-
e�cient was di�cult to set precisely and the computational results are not in perfect
correspondence with the experimental data, an individual advance coe�cient was
calculated for each computation. The velocity was probed at the location where it
is measured with a Prandtl tube in the test facility. By eye, one can draw a con-
clusion that the results at lower J-values are often slightly overpredicted compared
to the experimental data. The evaluation of J , however, reduces the overprediction.
All forces lie within 3 percent of the experimental data except for the lowest value
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(a) Cells below 0.4 times the propeller ra-
dius.

(b) Cells below 0.7 times the propeller ra-
dius.

(c) Cells in the tip region. (d) Cells in the tip region. A closer view.

Figure 10: Volume mesh around the propeller.

J = 0.55. All torques are predicted within one percent from the measurements.
Looking at the relative di�erences between the computational results and mea-

surements also shown in Figure 11 shows that the torque di�ers by less than 0.5%
from the measurements over the entire range of advance coe�cients. Thrust behaves
somewhat di�erently. The di�erence is the smallest near the propeller design point
(0.9 < J < 1.0) and grows in other parts of the performance curve. A behaviour
like this could be expected since the �ow over the blade is relatively smooth near
the design point as compared to lower or higher J values. Farther from the design
point, the angle of attack of the incoming �ow changes which is expected to set more
requirements for the computation and increase uncertainties.

The fact that the results match so well with the measurements is a little bit sur-
prising due to several reasons. First of all, the computational and the measurement
set-ups are not identical. The hub in the computations has a cigar-like form while
in the measurements the hub continues further upstream. Thus, the incoming �ow
must be somewhat di�erent in the computations than in the measurements which
should a�ect the force prediction. Secondly, there are simpli�cations in the com-
putational model such as the MRF, frictionless walls and the turbulence model that
di�er from the real world physics.

Second International Symposium on Marine Propulsors held in Hamburg in 2011
comprised two cases where a propeller was analyzed in open-water conditions. The
�rst case was a propeller in a towing tank and the second case was based on mea-
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surements of the same propeller in a cavitation tunnel. More detailed descriptions of
the results are described in Ref. [27]. Apart from di�erent measuring equipment, the
hub geometries di�ered between the cases and the measured forces in the cavitation
tunnel case had no e�ects due to cavitation. The measured thrusts di�ered between
the two cases by only about 1%, so the e�ect of the experimental set-up seems not
to be very dominant. Thus, the force prediction presented in this chapter is credible
and shows that the computational model used reproduces propeller forces within an
accuracy of a few percent. Furthermore, it also predits the trends properly with a
varying advance coe�cient and is in line with results presented in literature that are
based on similar computational methods.

(a) Absolute values of KT and KQ as com-
pared against experimental data over a range
of advance coe�cient values J .

(b) Relative errors of the thrust- and torque
coe�cients relative to measurements over a
range of advance coe�cient values J .

Figure 11: Open-water performance.

4.2.2 Distributions on the Blade Surface

Three operating points, J = 0.65, J = 0.90 and J = 1.15, are inspected in more
detail. The pressure coe�cient (Cp) distributions on the pressure- and suction sides
with all three values of J are presented in Figure 12. Clearly, the loading is larger
at the lower J-values which is in line with general knowledge and the open-water
curve (Figure 11). The forces acting on propeller increase with a decreasing advance
coe�cient.

Turbulent viscosity (νT ) scaled by the molecular kinematic viscosity ν at a dis-
tance of 0.5% times the propeller diameters from the blade surface is given in Figure
13. In an incompressible �ow, the turbulent viscosity is the only turbulence variable
that shows up in the conservation equation for momentum (or continuity). It acts
through the di�usion term and increases the viscous forces. The turbulent viscosity
seems to increase with an increasing advance coe�cient J on the pressure side of the
blade and to decrease on the suction side of the blade. This is explained by the fact
that the stagnation point moves towards the pressure side when J decreases. Thus
at a low J , the �ow is smoother on the pressure side, but passes a tighter turn over
the leading edge before reaching the suction side which can be seen as an increased
tendence to turbulence. With an increasing J , the opposite happens.
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Figure 14 shows wall bounded streamlines on the propeller blade. The surfaces
are colored by the friction factor (Cf ), that is based on the magnitude of the wall
shear stress. The streamlines show that the �ow separates close to the trailing edge
with all of the three advance coe�cients. The separation is shown as a divide in the
streamlines and is present on both the suction and pressure side of the propeller.
With a decreasing advance coe�cient, the tendence for separation on the suction side
seems to increase which is expected due to the increased angle of attack of the blade.
Apart from areas close to the trailing edge, the �ow stays attached to the surface. It
could be that the separation should increase more with advance coe�ents far from
the design point of the propeller and that the current method fails to reproduce the
behaviour. It would explain the di�erences in the errors of the force coe�cients with
a varying J . A more detailed analysis would require experimental data on the �ow
�eld.



41

(a) J = 0.65, suction side. (b) J = 0.65, pressure side.

(c) J = 0.90, suction side. (d) J = 0.90, pressure side.

(e) J = 1.15, suction side. (f) J = 1.15, pressure side.

Figure 12: Pressure coe�cient Cp on the blade surface.
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(a) J = 0.65, suction side. (b) J = 0.65, pressure side.

(c) J = 0.90, suction side. (d) J = 0.90, pressure side.

(e) J = 1.15, suction side. (f) J = 1.15, pressure side.

Figure 13: Turbulent viscosity ratio νT/ν on the blade surface.
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(a) J = 0.65, suction side. (b) J = 0.65, pressure side.

(c) J = 0.90, suction side. (d) J = 0.90, pressure side.

(e) J = 1.15, suction side. (f) J = 1.15, pressure side.

Figure 14: Friction factor Cf and streamlines on the blade surface.
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4.3 Grid Convergence

The grid convergence was studied using four di�erent grid densities. Compared to
the base mesh described earlier, one coarser and two �ner meshes were created. The
modi�cations to the base mesh were made in the surface mesh and in the cell sizes
normal to the blade surface. Between two adjacent grid levels, there is a factor
of 4/3 in the �rst cell height and in the number of points along each edge on the
surface. The main parameters of each mesh are given in Table 1. The meshes are
numbered so that the coarsest mesh is indexed as mesh No. 1 and the �nest mesh
is mesh No. 4. Thus, the base mesh used earlier corresponds to mesh No. 2.

Table 1: Main parameters of the four meshes used in the grid convergence study.

1 2 3 4
total number of cells 2 728 626 3 095 947 3 704 111 4 652 284
surface mesh 24 226 33 605 50 552 74 767
1. cell height 1.6 · 10−5 1.18 · 10−5 9.0 · 10−6 6.75 · 10−6

The periodic case was computed at J = 0.90 with these four grids and the results
are given in Figure 15. Generally in grid convergence studies, the results are esti-
mated on an in�nitely �ne grid by means of extrapolation based on results obtained
from di�erent grid levels. One way is the Richardson extrapolation recommended
by ITTC [28]. In order to conduct the extrapolation, at least three grid levels need
to be concerned. Additionally, the behaviour of the values from one grid level to an-
other should monotonically approach some level so that the di�erence between two
adjacent grid levels always decreases when going towards the �ner grids. This is not
the case with the torque coe�cient, KQ, as can be seen in Figure 15. In such cases
one can estimate the uncertainties by simply bounding the expected value between
the smallest and the largest values [28]. It is, however, debatable if there could be
new extreme values with �ner grids than those used here.

Thrust coe�cient KT does behave monotonically but it does not show any
asymptotic behaviour over the entire range of the grid re�nement levels. In this
case, there are no statistical methods that would allow the estimation of the uncer-
tainties without conducting new computations with more grids. Thus, it is simply
stated that the grid-based error in the base grid (grid number 2) is probably in
the order of one or two percent. All of the four grids are relatively �ne as will
be seen from the y+ distributions and thus there is no reason to expect that the
results would change considerably from those obtained with these grids. With new
grids, least-squares based methods discussed by for example Eça and Hoekstra in
[29] could be applied to �nd a more reliable estimate for the grid-based uncertainty.

There are several possible reasons for the non-asymptotic behaviour. For exam-
ple, a change in the behaviour of the turbulence model may lead to noisy behavior
of the data. Furthermore, the fact that grid density is represented by only one value
assumes that all grids are geometrically similar i.e. that the skewness and orthogo-
nality properties of the cells are the same in all grids. In the case of an unstructured
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grid this is not the case, which re�ects on the results [29]. As an example, non-
orthogonalities in the grid directly a�ect the computation of laplacian terms that
play an important role in solving the pressure �eld. Pressure, on the other hand,
dominates propeller forces.

The results may also change due to geometrical di�erences between the grids.
Since the surface grid is di�erent on each grid level, also the surface area di�ers
between the grids and the surface integration is performed di�erently with each
grid. The di�erences in surface areas were found to be less than 0.2% between all
of the grids so the in�uence of the area is quite negligible.

(a) Thrust coe�cient, KT . (b) Torque coe�cient, KQ.

Figure 15: Force coe�cients computed with four di�erent grids.

The y+ values in the �rst cells next to the wall play an important role in the
quality of the results. In Figures 16 and 17, there are the distributions of the y+

values on the blade computed with all of the four grids on the suction and the
pressure sides, respectively. With the �nest grid, the y+ values are well below one
so the surface normal density of the grid is adequate. Up to the second coarsest grid
(grid number 3), y+ is mostly below 2, which is usually considered �ne enough. In
the coarsest mesh, there are signi�cant regions where y+ > 2. The contours present
the discrete distibutions of the values without any interpolation that would smooth
the �eld in order to emphasize the di�erences in the grids.

The grid dependence study shows that there is dependence on the grid in the
solutions, but it is relatively small. The order of magnitude of the errors is approx-
imately 1% and in the case of the torque coe�cient, it is even smaller. The error
being small, it can be expected that the base grid is adequate and similar meshes
can be used to study the e�ects caused by a hybrid mesh and time discretization.
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(a) Grid 1, suction side. (b) Grid 2, suction side.

(c) Grid 3, suction side. (d) Grid 4, suction side.

Figure 16: y+ on the suction side with four mesh densities at J = 0.90.

(a) Grid 1, suction side. (b) Grid 2, suction side.

(c) Grid 3, suction side. (d) Grid 4, suction side.

Figure 17: y+ on the pressure side with four mesh densities at J = 0.90.
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5 Steady Computations with the Hybrid Mesh

The second computed case is the same as that analysed previously but the mesh
consists of the two following parts:

• a cylidrical volume around the propeller with a mesh similar to that used
earlier (referred to as propeller mesh) and

• a hexahedral mesh around the propeller mesh (referred to as surroundings).

The propeller mesh was created with the same template as the mesh used earlier
and consists, for the most part, of tetrahedral cells, but has prismatic cells in the
boundary layer. The tetrahedral propeller mesh was cut close to the propeller so
that it con�nes a cylindrical volume. Both the MRF and the moving mesh require
that the boundary faces of the propeller mesh have no component in the direction
of the rotational movement so the cylindrical shape is adequate in that sense.

The surrounding mesh was created using snappyHexMesh that is part of the
OpenFOAM distribution. A hole for the propeller mesh was left inside the surrounding
part so that the two separate meshes could be merged with the mesh handling tools
available in OpenFOAM. The hybrid mesh is illustrated in Figure 18.

(a) Propeller mesh. (b) Surrounding mesh around the propeller mesh.

Figure 18: Hybrid mesh.

One main objective in the computations with the hybrid mesh is to inspect how
a discontinuity in the mesh with the Arbitrary Mesh Interface (AMI) between the
regions a�ects not only the thrust and torque coe�cients, but also the propagation
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of �ow structures downstream of the propeller. The correct propagation of the wake
is important when there are multiple propellers behind one another.

5.1 Stability

With the hybrid mesh, the computation was not as stable as earlier and di�erent
discretizations were needed. The instability was traced back to the solution of
the momentum equation. A stable computation was achieved by discretizing the
convection of momentum with the blended scheme with a ratio of 0.75 instead of
limitedLinear that was used earlier.The new method is more dissipative but also
considerably more robust. Probably the main reason for the additional robustness
is the fact that the limiter does not depend on the solution itself as in the case of
the limitedLinear scheme. Clearly, due to a greater contribution of the �rst-order
upwind, di�usivity is increased.

In order to evaluate the performance of the new settings, they were tested in
the periodic case and compared to earlier results and measurements. In Figure 19,
there are iso-volumes of vorticity (∇ × U = 300 1

s
) computed with the old and

the new settings. One can see that the new settings produce less vorticity. The
tip vortex is slightly thinner and also less vorticity emanates from the central parts
of the blade. No considerable di�erence can be seen in the distance that the tip
vortex is transported. The decrease in vorticity could be expected due to the higher
di�usivity of the new settings but these results imply that no dramatic losses are
caused in the prediction of propeller wake if the blended 0.75 scheme is used.

(a) Old settings (limitedLinear 0.33). (b) New settings (blended 0.75).

Figure 19: Iso-volumes of vorticity ω = 300 1
s
in the periodic case with the old and

the new settings. Colored by velocity magnitude.

In addition to the propagation of the tip vortex, also the force coe�cients were
evaluated with the new settings. They change from those computed with the
limitedLinear 0.33 scheme. The relative di�erences to both earlier results and to
measurements (relative error) of the thrust and torque coe�cients, KT and KQ, at
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J = 0.65, 0.90 and 1.15 are given in Tables 2 and 3, respectively. The force coe�-
cients change by less than 1% from the previous results which can still be considered
acceptable concerning the overall accuracy of the simulation. In summary, the new
settings yield larger errors in the force coe�cients but they are, on the other hand,
considerably more robust. Thus, they provide an adequate computational tool for
the purposes of this study.

Table 2: Comparison of thrust coe�cient, KT , computed with the blended 0.75

scheme (KT,BL) to that computed with the limitedLinear 0.33 scheme (KT,LL)
and to the measured values (KT,M). Computations conducted with the periodic grid.

J Relative di�erence
(

KT,BL−KT,LL

KT,LL

)
Relative di�erence

(
KT,BL−KT,M

KT,M

)
0.65 0.81 3.50
0.90 0.40 0.64
1.15 0.86 1.24

Table 3: Comparison of torque coe�cient, KQ, computed with the blended 0.75

scheme (KQ,BL) to that computed with the limitedLinear 0.33 scheme (KQ,LL)
and to the measured values (KQ,M). Computations conducted with the periodic grid.

J Relative di�erence
(

KQ,BL−KQ,LL

KQ,LL

)
Relative di�erence

(
KQ,BL−KQ,M

KQ,M

)
0.65 1.07 1.22
0.90 0.72 0.72
1.15 1.15 0.39

5.2 Comparison of MRF Domains

In order to further analyze how the MRF method is to be used, the hybrid mesh case
is computed using two di�erent MRF domains. In the �rst case, MRF is only applied
inside the propeller mesh, and, in the second case, it is active everywhere in the
mesh and thus similar to earlier computations. Figure 20 illustrates iso-volumes of
vorticity, ω = ∇×U = 300 1

s
in order to track the tip vortex emanating from the

propeller. In the case illustrated on the right-hand-side, MRF is only applied inside
the propeller mesh and, in that region, the two solutions are very close to each
other. In the left-hand-side case where MRF is applied in the entire mesh, the tip
vortex is transported through the mesh boundary. The mesh boundaries are shown
as the shaded grey surfaces on the upstream and downstream sides of the propeller.
A small change can be seen in the vortex when it penetrates the mesh boundary,
but it is nevertheless transported through the interface quite nicely. If the MRF is
deactivated outside the propeller mesh, however, the vortex immediately dies at the
boundary. It seems that the mesh interface itself does not a�ect the solution as
much as the MRF boundary. The reason for the vortex dying at the MRF boundary
is discussed later.
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(a) MRF method is applied in domain 2.
Outer disturbances are not shown.

(b) MRF method is applied inside the propeller
mesh.

Figure 20: Iso-volumes of vorticity with the MRF method applied in two di�erent
domains.

The thrust and torque coe�cients computed with the hybrid mesh are shown
in Figure 21. Applying the MRF only inside the propeller mesh yields lower thrust
and torque coe�cients which, compared to measurements, have errors of 0.5 % and
0.6 %, respectively. The results are also in line with the periodic computations with
the same settings. However, applying MRF everywhere with the hybrid mesh gives
di�erent results. The force coe�cients become larger and have errors of about 1.2 %
(KT ) and 1.3 % (KQ).

In either computation, there are no signi�cant di�erences between single blades
(approximately 0.1 %) which is expected and also an important implication of how
well the computational solution method works. The mesh introduces some asymme-
try to the computation but the case itself is symmetrical so that all blades should
yield the same results. Since the propeller mesh is identical around each blade, all
di�erences must be due to the numerical solution procedure and to the asymmetry
in the surrounding mesh and the mesh interface. The variation in the coe�cient
values between di�erent iterations is yet by an order of magnitude smaller.
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(a) MRF method is applied in the entire
mesh. Thrust coe�cient, KT .

(b) MRF method is applied inside the pro-
peller mesh. Thrust coe�cient, KT .

(c) MRF method is applied in the entire
mesh. Torque coe�cient, 10 KQ.

(d) MRF method is applied inside the pro-
peller mesh. Torque coe�cient, 10 KQ.

Figure 21: Force coe�cients (KT and KQ) with the MRF method applied in two
di�erent domains at advance coe�cient J = 0.90.

Contours of tangential velocities at adjacent cross-sections behind the propeller
are studied in order to see how the propeller wake propagates downstream. An
overall picture of the contours under focus and their locations are shown in Figure
22.

The cross-sections are shown separately in Figure 23. The �rst three contours at
z = 0.025 m, z = 0.030 m and z = 0.035 m are from inside the propeller mesh and
the three latter contours at z = 0.045 m, z = 0.050 m and z = 0.055 m from the
downstream side of the propeller mesh boundary. In the �rst contours, there are
small �ow structures near the blade tip that imply the existence of the tip vortex.
Further downstream they gradually become weaker. The same trend can be seen
in the overall �ow structure. Velocity peaks become smoother towards downstream
and thus the high velocity region grows and becomes more uniform. The results
shown here are from the computation with MRF applied inside the propeller mesh
only.
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Figure 22: Cross-sections behind the propeller. The position of the propeller mesh
boundary is shown in green.

Tangential velocities at di�erent radial positions behind one propeller blade are
plotted in Figure 24. The picture on the left-hand-side shows the velocities in the
case when the MRF is only applied inside the propeller mesh. In the right-hand-side
picture, the MRF has been applied in the entire mesh. The location of the propeller
mesh boundary (and the MRF boundary in the �rst case) is shown as a vertical line
(at z = 0.04 m). There is a slight notch in all of the velocity pro�les across the mesh
boundary but the overall form of the pro�les does not seem to be disturbed very
much. Clearly, an interpolation at the mesh discontinuity must have some kind of
an e�ect on the velocities in a general case but the results show that it is not very
large.
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(a) z = 0.025 m. (b) z = 0.030 m.

(c) z = 0.035 m. (d) z = 0.045 m.

(e) z = 0.050 m. (f) z = 0.055 m.

Figure 23: Tangential velocities behind the propeller. MRF applied in the propeller
mesh.
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(a) MRF applied in the propeller mesh. (b) MRF applied in the entire mesh.

Figure 24: Tangential velocities behind the propeller at several radial positions.

A much clearer trend can also be seen in the same �gure. When the MRF is
active the �ow �eld is convected by the relative velocity which is seen as a di�erent
behaviour of velocities at di�erent radial positions. In the case where MRF is only
applied inside the propeller mesh, it is the absolute velocity that convects �ow struc-
tures outside of the propeller mesh. In that case the �ow is transported downstream
more or less as it is on the MRF boundary, since the axial velocity dominates over
other components.

The same e�ect is seen in the velocity �elds at di�erent cross-sections. The
contours from Figure 23 and corresponding contours from the case of the MRF applied
everywhere are put together into Figure 25. The last three cross-sections in the two
cases show the di�erent behaviour of the overall �ows. If MRF is applied, the �ow
rotates against the propeller rotation (counter clock-wise) when going downstream
which is caused by the relative velocity being responsible for convection. In the part
where no MRF is applied, the rotation changes direction and is much weaker, hardly
visible in still pictures. An animation makes the behaviour more apparent.

At the last cross-sections in both cases, the velocity �elds di�er from each other.
In the case of MRF applied everywhere, the velocity di�erences are much smoother
than in the case of MRF applied only inside the propeller mesh. A possible reason
for this is grid based di�usion that is stronger if the �ow direction is not aligned
with the cells. The mesh created with snappyHexMesh is aligned with the coordinate
axes (x, y, z), so removing MRF at the mesh boundary makes the �ow more aligned
with the cells and thus reduces numerical di�usion. On the other hand, numerical
di�usion only di�ers between the cases outside of the propeller mesh so it is probably
not the main reason for the di�erent results near the propeller. Figure 26 shows that
the di�erence is present already inside the propeller mesh and upstream of it. The
tangential velocities are illustrated in both sides of the upstream side boundary of
the propeller mesh and the di�erence seems to be present already upstream of the
propeller mesh. The di�erences in the velocities before the propeller mesh imply
that the upstream side of the propeller mesh is probably not far enough from the
propeller which would cause the di�erences.
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(a) MRF applied in the propeller mesh. (b) MRF applied in the entire mesh.

Figure 25: The e�ect of the MRF method on the propagation of �ow structures.

The propagation of the �ow reveals one interesting feature of the MRF. Looking
at the velocities at, say, the propeller mesh boundary, the solution corresponds to
a situation where the propeller is in a di�erent position than what the modelled
geometry implies. The wake at the boundary looks like it is coming from a propeller
that has not rotated as much as the modelled propeller. Thus each cross-section,
or in fact each point, corresponds to a di�erent propeller position and that position
depends on the time that it takes for the �ow to come from the propeller to that
speci�c point. When applying the MRF stops, the physics change abruptly so it is
not surprising that something happens to �ow structures such as tip vortex across
the boundary.

As a conclusion, the propagation of the �ow across the mesh boundary seems
to work nicely. An e�ect of a spatial change in the MRF method (stopping it or
changing it abruptly) is, however, not that simple and implies problems in steady-
state CRP computations. Changes in the MRF source do a�ect the �ow downstream
of the propeller but also upstream of it. If possible, the upstream side of the MRF

domain should be as far as possible from the propeller to avoid any e�ects on the
�ow around the propeller. In the case of a CRP, however, it is not possible to take
the boundary far from both propellers.
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(a) MRF in the propeller mesh. z = 0.035 m. (b) MRF in the entire mesh. z = 0.035 m.

(c) MRF in the propeller mesh. z = 0.045 m. (d) MRF in the entire mesh. z = 0.045 m.

Figure 26: Comparison of velocities around the downstream side mesh boundary.
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(a) Location of cross-
sections. Upstream boundary
of the propeller mesh shown
in red.

(b) MRF in the propeller mesh. Upstream
side of the propeller mesh.

(c) MRF in the entire mesh. Upstream side
of the propeller mesh.

(d) MRF in the propeller mesh. Inside the
propeller mesh.

(e) MRF in the entire mesh. Inside the pro-
peller mesh.

Figure 27: Tangential velocities upstream of the propeller.
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6 Time-Accurate Computations with the Hybrid Mesh

In this chapter, the same hybrid mesh that was described in Chapter 5 is used with
the time-accurate code pimpleDyMFoam. The boundary conditions are the same as
earlier except for the propeller blades. They are de�ned as moving walls and the
movement is de�ned to be the rotating movement.

The main focus in the time-accurate computations is to learn about errors arising
from temporal discretizations and how they depend on chosen settings. Three main
parameters that are expected to in�uence the temporal discretization are

• time discretization,

• time step size and

• the number of iterations inside one time step.

Increasing the number of iterations a�ects not only the accuracy but also increases
the computational time. Therefore, it is important to �nd a number of iterations
that gives an acceptable accuracy without spending too much time on unnecessary
iterations.

The time step size clearly a�ects the computational time required for a simulation
over a certain time interval by a�ecting the number of taken time steps. On the
other hand, the longer the time step the more iterations are needed inside each time
step, since the two adjacent solutions di�er more from each other.

The type of the temporal discretization a�ects the accuracy of the computation
but its e�ect on the simulation time is probably not very important. It does, however
a�ect the memory requirements considerably. Both the Euler and the backward time
discretizations are used and the number of iterations inside a time step is varied over
a range from �ve to 40.

The open-water case is computed with three time steps corresponding to the
following propeller rotations:

• 0.5◦/∆t,

• 2◦/∆t and

• 5◦/∆t.

A clear motivation for the use of iterations inside a time step is given in Figure 28
that illustrates the iso-surface of a Courant number of Co = 2 on the left-hand-side
and the isosurface Co = 10 on the right-hand-side. The maximum Courant numbers
occur at the propeller blade tip where the mesh is dense and velocities are high but
there are also regions with Co > 2 between the blades. These regions are caused
by a denser region in the volume mesh that can be seen in the outer boundary of
the propeller mesh also illustrated in the �gures. The maximum Courant numbers
are approximately Co = 95 in the case of the smallest time step. With 2 degrees
of propeller rotation per time step it is Co ≈ 375. The use of inner iterations
allows the introduction of under-relaxation also in the transient computation, which
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considerably stabilizes the solution procedure. In order to use this kind of a grid
and, at the same time, take the Courant number down to approximately Co = 1,
the time step would need to be in the order of 0.005◦ propeller rotation per time
step, which would increase the number of time steps enormously.

(a) Courant number Co = 2. (b) Courant number Co = 10.

Figure 28: Isovolumes of Courant number.

The three parameters pose requirements to one another and they need to be
considered as a whole in order to choose resonable settings. In the following, each
parameter is varied separately and resulting changes in the force coe�cients and
in the wake �eld studied. Only one advance coe�cient, J = 0.90, is used in the
time-dependent case.

6.1 Force Prediction

The resulting force coe�cients are plotted against time in Figure 29. In each sub-
�gure, the measured value is given as a solid horizontal line and the steady-state
result from Chapter 5 is represented by the dashed horizontal line. The steady-state
results are those computed with MRF applied in the entire grid.

The �rst two sub�gures illustrate the results with the smallest time step corre-
sponding to 0.5◦ propeller rotation per time step. Both time discretizations yield
the same average results. The backward-scheme gives more oscillations which is
probably due to its lower dissipation compared to the Euler method. The number
of iterations inside a time step does not a�ect the average results either which means
that the error due to time discretization is not dominant compared to other factors.
A further implication of a su�ciently accurate temporal discretization is the fact
that the results are very close to the steady-state results computed with MRF applied
in the entire grid. These results are referred to as temporally converged results in
the following.
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(a) Thrust coe�cient KT . Mesh movement
per time step corresponds to 0.5◦.

(b) Torque coe�cient KQ. Mesh movement
per time step corresponds to 0.5◦.

(c) Thrust coe�cient KT . Mesh movement
per time step corresponds to 2◦.

(d) Torque coe�cient KQ. Mesh movement
per time step corresponds to 2◦.

(e) Thrust coe�cient KT . E�ect of the time
step size.

(f) Torque coe�cient KQ. E�ect of the time
step size.

Figure 29: Force coe�cients (KT and KQ) against time at J = 0.90.
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With a larger time step, 2◦ propeller rotation per time step, shown in the next two
sub�gures, the time discretization plays a clear role. With an increasing number of
iterations inside a time step, the results approach the level obtained with the smaller
time step (rotation of 0.5◦/∆t). Using ten iterations yields results that di�er from
the temporally converged results by approximately two percent. With 20 iterations,
the values are closer and with 40 iterations the results are the same as with the
smaller time step. Thus it seems that the numerical error due to time discretization
does not play a signi�cant role even with 2 degrees of rotation per time step but the
error due to insu�cient iteration (iterative error) does a�ect the solution.

If other parameters are kept constant the backward discretization predicts the
forces better than the Euler discretization. This could be expected since the error
of the backward scheme is theoretically lower than that of the Euler scheme. Ac-
cording to the conclusion that only the iterative error a�ects the forces with the
time step of 2◦ rotation per time step, not the numerical error, the di�erences in the
numerical errors should not explain the di�erence, however. Based on these results,
the backward scheme seems to reduce the iterative error, too, compared to the Euler
method. Thus, the results encourage to use the backward scheme whenever there is
enough memory available.

The lowest sub�gures illustrate results with the three used time step sizes. As
mentioned earlier, the two smallest time steps yield the same average values, if
enough iterations are used inside a time step. A time step corresponding to a
propeller rotation of 5◦ clearly underpredicts the forces with 40 inner iterations. A
larger amount of iterations might lead to better results but that was not tested. This
subject will be further analyzed later with the conclusion that even a considerably
larger amount of iterations might not yield correct results.

An interesting trend is seen in the temporal variation of the forces. The larger the
time step the less oscillations there are in the results. The time discretization (that
was just found not to a�ect solutions with su�ciently low time steps) �lters away
oscillations from the computations. This observation is in line with the theory. The
numerical error damps oscillations and with an increased time step the numerical
error grows. Based on these observations, it can be concluded that the numerical
error in the case of 2◦ rotation per time step is small enough not to a�ect the
average value of predicted forces but does still a�ect the temporal oscillations of the
forces. Even if the results are the same with di�erent time step sizes provided that a
su�cient amount of iterations are conducted within a time step, one thing needs to
be kept in mind. The case itself is probably not time-dependent, in particular in the
sense of global forces. The time step determines the time scale of reproducable �ow
phenomena, since the time scale of events one is interested in must, of course, be
larger than the time step used in order for the computation to be able to reproduce
them. If there are structures on a smaller time scale in other cases such as the
CRP-case the results should also have a stronger dependence on the time step size.
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Table 4: Comparison of force coe�cients, KT and KQ, computed with moving mesh
(0.5◦/∆t), backward discretization and ten inner iterations) and steady-state (MRF
applied everywhere).

KT 10KQ

steady-state 0.3005 0.6630
time-accurate 0.3000 0.6625

Relative difference (%) 0.17 0.08

Compared to the steady-state results obtained with MRF applied everywhere in
the mesh, the time-accurate results are very similar. This fact was already seen
qualitatively in Figure 29 but, for a quantitative comparison, the average values
computed with the smallest time step (0.5◦ rotation per time step), backward dis-
cretization and ten inner iterations and those given by the steady-state computation
are given in Table 4. The results di�er only by a fraction of a percent which is well
below the accuracy of the computations themselves. Thus the results are in line
with earlier computations and verify the correct usage and performance of the time-
accurate code.

6.2 Convergence Within a Time Step

In order to better understand the connection between the time step size and conver-
gence inside a time step, convergence histories of pressure inside one time step are
plotted in Figure 30. The computations that yielded results una�ected by the time
discretization (temporally converged results) are plotted in green, and the computa-
tions with errors in red. With a short time step, the residual level in the beginning
of a time step is lower than in the case of a longer time step, and that level is
independent on the number of iterations conducted inside the time step. A longer
time step seems not only to decrease the convergence rate but also the achievable
level of accuracy inside a time step. These results show that the computation where
propeller is rotated by 5◦ in a time step would probably not give good results even
with a very large number of inner iterations.

It is di�cult to see from the residual histories when the iterative error no more
impairs the solution. The residuals in cases of 0.5◦ rotation per time step with 5
iterations are higher than the residuals with 2◦ rotation and 20 iterations. However,
the results in the latter case have an error while the other results are good. There
does not seem to be any clear correlation between the residuals and the force predic-
tion. It is, however, interesting to see that the convergence �rst reaches a maximal
rate which then decreases with an increasing number of iterations. This implies
that it might be bene�cial to have such a short time step that the convergence level
required to remove the e�ect of iterative error is reached during the fastest conver-
gence, whatever the required level may be. A further optimisation of the solution
procedure is left for further studies. For example, the use of a PISO-loop at the end
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of a time step should decrease the iterative error but it was omitted in this study
due to stability reasons.

Figure 30: Residual histories of pressure.

6.3 Wake Prediction

The velocity �elds at 0.055 m behind the propeller (see the last cross-section in
Figure 22) is shown in Figure 31. The �rst two contours are from the cases with
0.5◦ rotation per time step that both reproduced the forces well. The �gure on
the left-hand-side should, with the smallest time step, backward time discretization
and 20 iterations per time step, theoretically be the most accurate out of all of the
six cases under consideration. There seem to be less velocity peaks in the wake,
however, than in the less accurate case with only �ve iterations per time step (top
right sub�gure).

The same trend can be seen in other sub�gures. The less iterations conducted
within a time step the sharper velocity peaks there are in the wake (see 'middle
left' and 'middle right' sub�gures). Similarly, the longer the time step the stronger
the peaks are (see 'middle left' and 'bottom right' sub�gures). The numerical error
related to the time discretizations is di�usive in its nature so theoretically, a longer
time step should yield a smoother velocity �eld. How the iterative error a�ects is
not that clear.

Comparing the cases with the Euler and backward schemes (see 'middle right'
and 'bottom left' sub�gures) shows that the Euler scheme gives a smoother wake
than the backward scheme. By theory, this is expected since the error related to the
Euler scheme should be more di�usive.
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The streamwise propagation of the propeller wake is illustrated in Figure 32.
The cases are the same as in Figure 31 and the same observations made based on
Figure 31 are con�rmed by looking at any streamwise position behind the propeller.
There is a possible explanation to the results that seemingly contradict with theory.
A less di�usive (more accurate) computation is able to reproduce smaller �ow struc-
tures that e�ectively smooth the �ow �eld. A numerical dissipation preventing such
�ow structures can thus reduce mixing processes in the �ow and thus give sharper
gradients in the propeller wake. The fact that there are less oscillations in the force
coe�cients with longer time steps is in line with this explanation.

Anyway, even if the propeller forces may be correctly predicted with less accurate
handling of temporal changes, the wake may not be correctly reproduced with the
same settings. In a case of two propellers, the di�erences in the wake �elds certainly
a�ect at least the distribution of forces at the aft propeller. Thus, they can also
a�ect the global force prediction. The sensitivity of forces on the wake prediction
needs to be treated more carefully in the CRP computations. At this point it is
only clear that the forces on the front propeller do not directly indicate anything of
the quality of the propeller wake.

In all cases in Figure 32, the mesh boundary can be seen in the �ow �eld,
in particular in the outer part of the wake. No clear di�erences can be pointed
out between di�erent numerical settings, however. Somehow the boundary isolates
structures on its opposite sides. Based on these �gures, the mesh boundary does
not seem to impair the solution too much but anyway attention must be paid on
the subject in the CRP computations.

The time-accurate code seems to work as expected. The force prediction is in
line with the steady-state results and, even if the case itself is more or less steady,
the e�ect of important parameters a�ecting the error of the temporal discretizations
can be seen. As a conclusion, the usage of the second-order backward scheme is
encouraged. Using a time step of 0.5◦ rotation per time step, should yield good
results quite e�ciently with even less than ten iterations per time step, provided
that it is enough to resolve the global �ow correctly. In a CRP-case, a rotation of
2◦ per time step is probably not enough to predict all transient e�ects between the
passing blades but can be used in initial computations where it is not necessary to
obtain accurate results.



65

(a) Rotation per time step is 0.5◦ with

the backward time discretization and 20

iterations.

(b) Rotation per time step is 0.5◦ with

the backward time discretization and 5

iterations.

(c) Rotation per time step is 2◦ with

the backward time discretization and 40

iterations.

(d) Rotation per time step is 2◦ with

the backward time discretization and 20

iterations.

(e) Rotation per time step is 2◦ with the

Euler time discretization and 20 iterations.

(f) Rotation per time step is 5◦ with

the backward time discretization and 40

iterations.

Figure 31: Tangential velocities at a distance of 0.055 m behind the propeller (see
the last cross-section in Figure 22).
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(a) Rotation per time step is 0.5◦ with

the backward time discretization and 20

iterations.

(b) Rotation per time step is 0.5◦ with

the backward time discretization and 5

iterations.

(c) Rotation per time step is 2◦ with

the backward time discretization and 40

iterations.

(d) Rotation per time step is 2◦ with

the backward time discretization and 20

iterations.

(e) Rotation per time step is 2◦ with the

Euler time discretization and 20 iterations.

(f) Rotation per time step is 5◦ with

the backward time discretization and 40

iterations.

Figure 32: Propagation of tangential velocities behind the propeller.
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7 CRP Computation

All computational methods, that were chosen for the computations in this work,
have been applied on the open-water case. The computational set-up has been
chosen, �xed and tested, and knowledge has been gained on how to use the relevant
methods. In this chapter, the methods are applied on the more complicated case
that has a thruster unit with two pushing propellers. Measurements have been
conducted with the same set-up in a towing tank as discussed in Chapter 1 [30].

The modelled geometry is shown in Figure 33. The yellow surfaces (outer walls,
hub and shaft) are modelled as symmetry planes which e�ectively means that noth-
ing can �ow through them and no friction is accounted for. Propeller blades are
handled in the same way as in the open-water case and the thruster surface is mod-
elled as a wall. The thruster is divided in two parts. The lower part is submerged
in water in the experimental set-up and the upper part is above the water line. The
computational domain spans approximately six propeller diameters upstream and
�ve diameters downstream of the front propeller. There are ten diameters free space
to both sides and downwards from the propeller axis and the space between the two
propellers is a quarter of the propeller diameter.

There are two propeller domains and a surrounding region in the computational
mesh that have all been meshed separately and afterwards merged together. The
surfaces with discontinuities are illustrated in the lowest sub�gure of Figure 33. The
boundaries of the front propeller mesh are colored in turquoise and the boundaries
of the aft propeller mesh in blue consistently with the propeller blades in other
sub�gures. Between the two propeller meshes, there is yet another meshing interface
(grey in the lowest sub�gure) where both sides move in the time-dependent case and
where the MRF source changes direction in the steady-state computation.

The upstream side of the front propeller mesh is perpendicular to the incom-
ing �ow direction (z-axis) and both outer boundaries are cylindrical surfaces. The
boundary between the two propeller meshes is divided in three parts. There is one
part perpendicular to the z-axis beginning from the hub and one limiting to the
cylindrical outer boundaries. Between them, there is an axisymmetric surface that
connects the other two parts. The reason for dividing the surface is to bring the
mesh interface su�ciently far from both propellers. Since the propeller tips are bent
towards the downstream direction, a straight surface would unavoidably be close to
either one or both of the propellers. The downstream side boundary of the aft pro-
peller mesh is a single axisymmetric surface that begins from the end of the hub and
is tilted towards the downstream direction in order to avoid having the boundary
too close to the aft propeller near the propeller tip.

The mesh has a total of 11.8 Mio. cells which is the largest number of cells that
can be computed with the 16GB of RAM available in the workstation that was used
for most of the computations. The propellers are meshed in exactly the same way as
the propeller in the open-water case. The blade surfaces are divided and the surface
mesh density is de�ned identically. Furthermore, the volume mesh in the surface
normal direction is also similar to the mesh in the open-water case. Referring to the
results in the previous chapters, such a mesh around the propellers is not expected
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to cause any considerable errors into the solution. The main parameters of the
propellers are approximately as given in Table 5.

Table 5: Main dimensions of the propellers.

Front propeller Aft propeller
D [mm] 213 203
Dhub [mm] 62 48

Number of blades 4 5

(a) Overall view of the modelled geometry.

(b) Closer view of the thruster unit.

(c) Propeller mesh boundaries (mesh discontinu-
ities).

Figure 33: Geometry in the CRP case.
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7.1 Results

As opposed to the open-water case, the CRP case is truly time-dependent which
is also seen in the global forces. No results were obtained with the MRF and it
was concluded that steady-state computations with multiple propellers are, if not
impossible, clearly involved with di�culties.

With the time-accurate code, thrust and torque coe�cients computed with the
Euler time discretization, 2◦ of propeller rotation per time step and 35 inner iter-
ations are shown in Figure 34. The contribution of each blade is shown separately
with di�erent colors and the total value of the propeller is illustrated in black. The
total contribution varies in time at the frequency of a single blade of the front pro-
peller passing the thruster unit. In the contributions of a single blade (colored lines
in Figure 34), an additional frequency of the front propeller blade passing an aft
propeller blade is observed.

(a) Thrust coe�cient, KT on the front pro-
peller.

(b) Torque coe�cient, KQ on the front pro-
peller.

(c) Thrust coe�cient, KT on the aft pro-
peller.

(d) Torque coe�cient, KQ on the aft pro-
peller.

Figure 34: Thrust and torque coe�cients of the front and aft propellers of the CRP
unit. Rotation per time step is 2◦ with the Euler time discretization and 35 iterations.
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The force coe�cients computed with a 0.5◦ propeller rotation per time step are
given in Figure 35. Additional variation of the coe�cients can be observed at the
aft propeller. The shorter time step seems to reproduce more details about the
interaction between the propellers than the longer time step which is in line with
the discussion in the open-water case. The change in average values was, however,
in the order of only half a percent.

(a) Thrust coe�cient, KT on the front pro-
peller.

(b) Torque coe�cient, KQ on the front pro-
peller.

(c) Thrust coe�cient, KT on the aft pro-
peller.

(d) Torque coe�cient, KQ on the aft pro-
peller.

Figure 35: Thrust and torque coe�cients of the front and aft propellers of the CRP
unit. Rotation per time step is 0.5◦ with the Euler time discretization and 17 itera-
tions.

The average levels of the force coe�cients are given in Table 6. The values are
given in relative di�erences to the measured values in percent. The thrust on the
front propeller is overpredicted in both cases as is the torque on the aft propeller.
The front propeller torque and the aft propeller thrust are underpredicted by two -
three percent. The errors are considerably larger than those observed in the open-
water case.

The results show that the time discretization with the parameters used clearly
a�ects the solution. It does, however, not explain the whole deviation from the
measured values. Despite �nding the backward scheme bene�cial compared to the
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Euler scheme, all the CRP results presented here are computed with the Euler
scheme. The reason for this is the larger memory requirements of the backward
scheme.

Table 6: Comparison of the aft and the front propeller force coe�cients to the mea-
sured values. Results are given in relative di�erences to measured values in percent.

KT , fore KQ, fore KT , aft KQ, aft
2◦/∆t, 16 iterations 5.2 -3.6 -2.5 8.2
2◦/∆t, 35 iterations 6.9 -2.3 -3.1 7.6

0.5◦/∆t, 17 iterations 7.4 -2.2 -2.3 8.0

The y+ values illustrated in Figure 36 reveal one source of uncertainty. The
front propeller mesh yields to y+ values of greater than four in large areas of the
blades. In the open-water case, the y+ values were smaller than 2 in most parts and
there was still a dependence on the grid in that case. There are also areas with high
y+ values on the thruster which may a�ect the boundary layer development on the
thruster and thus the thruster wake, too.

Figure 37 shows the velocity magnitude on a plane located behind the thruster.
The velocity �eld clearly shows that the mesh between the thruster and the front
propeller is too coarse. The non-conformal boundary between the surrounding part
and the propeller meshes is clearly visible which is re�ected in the results. Since the
in�ow to the front propeller is incorrect, it is di�cult to evaluate the correctness of
the force prediction on either of the propellers.

Figure 36: y+ values.
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(a) No mesh visible.

(b) Mesh visible.

Figure 37: Velocity �eld behind the thruster unit. The mesh boundary is clearly seen
due to too coarse a mesh.
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8 Conclusions and Discussion

Computational methods available in OpenFOAM were tested by applying them on the
analysis of marine propellers. The methods included the Moving Reference Frame
(MRF) used to reduce the analysis of a rotating propeller into a steady-state problem.
Furthermore, time-accurate computations were conducted using moving meshes and
an iterative solution process inside each time step.

All methods were found to work well when applied on the analysis of a single
propeller in open-water conditions. The �nal computational set-up is stable and
predicts propeller forces within approximately two percent of the measured values
at moderate values of advance coe�cient. The methods have not been tested in
bollard pull conditions.

When applied on a case with two propellers and a thruster unit in front of them,
no steady-state results could be obtained. Even with the time-accurate code, force
prediction was no longer as good as in the case of a single propeller in open-water
conditions. There are several possible reasons for this. As discussed in Chapter
7, the mesh was found to be too coarse both on the front propeller and in the
space between the front propeller and the thruster. With the current set-up and
mesh, forces were predicted within eight percent of the measured values. According
to the literature review in Chapter 1, an accuracy of approximately �ve percent
could be expected in CRP computations in open-water conditions and additional
uncertainties are caused by the propellers operating in the thruster wake. In this
respect, the results are acceptable but, since it was shown that the prediction of
the thruster wake clearly poses uncertainties due to a coarse grid in this study, the
evaluation of the reliablility of the code requires further studies.

The simulation must be continued with a re�ned mesh in order to reach reli-
able estimates on the best possible accuracy of the computational method. It can
be stated here that such computations were made later and the e�ect of the grid
discontinuities on the results was solved. Further results will not be given in this
work. In order to make further studies, a su�cient amount of computer resources
should be available. Most of the computations presented here were conducted with
a workstation with six cores and 16GB of RAM. For further studies, the amount
of RAM needs to be increased in order to allow the use of denser meshes and more
accurate time discretizations. Doubling the RAM to 32GB would enable much more
accurate studies. Furthermore, the number of cores should be increased. Adopting
a workstation with 16 cores would probably decrease the computation time even if
�ner meshes were used. That would enable tests with a reasonable response time
which is essential for e�cient working. The most demanding computations in this
study were conducted with 128 cores at CSC - IT Center for Science, that can pro-
vide su�cient computer capacity. A more extensive use of the capacity o�ered by
them would provide a good basis for e�cient further studies.

An interesting path for additional studies is the evaluation of ways to reduce the
cost of the computations. In this study, no wall functions were applied to reduce
the number of cells near solid structures, since the main focus was on the evaluation
of the other methods. Since the methods have now been found to work reliably, the
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introduction of wall functions is an obvious topic for further studies. Even without
the wall functions, it could be expected that also multi-propeller applications can
be analysed in a feasible way with OpenFOAM. With the help of a few workstations,
comparisons can be conducted in the time span of some weeks. Keeping in mind the
possibility of clusters and the advances in the computer technology, the duration
of the computations does not seem to be a problem. The lack of licence costs in
OpenFOAM further contributes to its feasibility. All in all, it seems probable that, after
the proposed further studies, OpenFOAM will provide a reliable tool for the analysis
of multi-propeller marine applications in R&D purposes.
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