
9HSTFMG*afifgg+

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80712945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University publication series
DOCTORAL DISSERTATIONS 138/2014

Learning Methods for Variable
Selection and Time Series Prediction

Dušan Sovilj

A doctoral dissertation completed for the degree of Doctor of
Science (Technology) to be defended, with the permission of the
Aalto University School of Science, at a public examination held at
the lecture hall T2 of the school on 31 October 2014 at 12 noon.

Aalto University
School of Science
Department of Information and Computer Science

Supervising professor
Prof. Juha Karhunen

Thesis advisors
Dr. Amaury Lendasse
Dr. Federico Montesino Pouzols

Preliminary examiners
Prof. Michel Verleysen, Université catholique de Louvain, Belgium
Dr. Klaus Neumann, Bielefeld University, Germany

Opponent
Prof. Tommi Kärkkäinen, University of Jyväskylä, Finland

Aalto University publication series
DOCTORAL DISSERTATIONS 138/2014

© Dušan Sovilj

ISBN 978-952-60-5856-6
ISBN 978-952-60-5857-3 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934 (printed)
ISSN 1799-4942 (pdf)
http://urn.fi/URN:ISBN:978-952-60-5857-3

Unigrafia Oy
Helsinki 2014

Finland

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Dušan Sovilj
Name of the doctoral dissertation
Learning Methods for Variable Selection and Time Series Prediction
Publisher School of Science
Unit Department of Information and Computer Science

Series Aalto University publication series DOCTORAL DISSERTATIONS 138/2014

Field of research Information and Computer Science

Manuscript submitted 9 June 2014 Date of the defence 31 October 2014

Permission to publish granted (date) 28 August 2014 Language English

Monograph Article dissertation (summary + original articles)

Abstract

In the recent years, machine learning methods have become increasingly popular for
modelling many different phenomena: financial markets, spatio-temporal data sets,
pattern recognition, speech and image processing, recommender systems and many
others. This huge interest in machine learning comes from the great success of their
application and the increasingly easier acquisition, storage and access of data.

In this thesis, two general problems in machine learning are discussed and several
solutions are offered. The first problem is variable selection, an approach to automati-
cally select the most relevant features in the data. Two key phases of variable selection
are the search criterion and the search algorithm. The thesis focuses on the Delta test
as a search criterion, while several solutions are offered for the search algorithm, such
as the Genetic Algorithm and Tabu Search. Furthermore, the selection procedure is
extended for more general cases of scaling and projection, as well as their combination.
Finally, some of the above proposed solutions have been developed for parallel archi-
tectures which enable the whole variable selection procedure to be used for data sets
with a high number of features.

The second problem tackled in the thesis is time series prediction that arises in many
fields of science and industry. In simple words: time series prediction involves the
estimation of future values for a series of measurements of a/the phenomenon of inter-
est. The number of these estimations can be small, leading to short-term prediction, or
several hundreds which constitute long-term prediction. Two models have been devel-
oped for this particular task. One is based on a recently popular neural network type
called Extreme Learning Machine, while the other is a juxtaposition of Generative To-
pographic Mapping and Relevance Learning modified for regression tasks.

Finally, the above problems are tackled together for real-world time series coming
from a biological domain. The difficulty of making any kind of inference in biologi-
cal time series is due to really small amount of available samples, irregular sampling
frequency and spatial coverage of areas of interest. Nevertheless, more stable model
parameter estimation is possible with the combined use of global climate indicators
and regional measurements in the form of a multifactor approach.

1

Keywords variable selection/scaling/projection, time series prediction, environmental
modelling, model structure selection

ISBN (printed) 978-952-60-5856-6 ISBN (pdf) 978-952-60-5857-3

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942

Location of publisher Helsinki Location of printing Helsinki Year 2014

Pages 218 urn http://urn.fi/URN:ISBN:978-952-60-5857-3

Preface

This dissertation presents the research I have carried out at the Depart-

ment of Information and Computer Science, Aalto University School of

Science. My doctoral studies, conference trips and research visits could

not have been possible without the support of Helsinki Graduate School

in Science and Engineering (HECSE). I would also like to acknowledge

KAUTE Säätiö for their financial support to finalise my doctoral thesis

and Kaj-Mikael Björk at Arcada University of Applied Sciences for giving

me the opportunity to continue research before the defence.

I wish to thank my former supervisor Professor Olli Simula for his pa-

tience and never-ending support and also my current supervisor Profes-

sor Juha Karhunen for providing useful advice in the final stages of my

doctoral studies. Big thanks and enormous gratitude go to my instructor

and a dear friend Amaury Momo Lendasse who has accepted me in his

Time Series Prediction and Chemoinformatics group which is now Envi-

ronmental and Industrial Machine Learning (EIML) group. Momo is a

person who is always by your side no matter what and it was a pleasure

and fortune I had such a great instructor who is always finding something

positive in every situation. Federico Montesino Pouzols is thanked for pro-

viding wonderful discussions about modelling environmental data during

his short time as my second instructor.

I am thankful to the pre-examiners of the thesis, Professor Michel Ver-

leysen and Dr. Klaus Neumann for their valuable comments which sub-

stantially improved the final manuscript. Furthermore, I am grateful to

Professor Tommi Kärkkäinen who kindly accepted to be the opponent for

the occasion.

I wish to thank current members of the EIML group: Alexander Grig-

orievskiy, Anton Akusok, Emil Eirola, Yoan Miche, Francesco Corona and

Luiza Sayfullina; and also former members: Antti Sorjamaa, Yu Qi, Zhu

1

Preface

Zhanxing, Yao Li, and Elia Liitiäinen for sharing their stories and provid-

ing an enjoyable working environment. Colleague, flatmate and a friend

Mark van Heeswijk has been a great company for the past five years,

always willing to help and with a positive attitude in encountering any

challenge.

I am grateful to Dr. Joachim Dippner for giving me the opportunity to

work at the Leibniz Institute for Baltic Sea Research in Rostock and for

wonderful hospitality during both of my research visits. Both Joachim and

Karin Junker contributed to fruitful discussions about modelling, marine

biology and climate phenomena.

My life outside of academia during these long seven years in Finland

could not be possible without good friends who provided invaluable com-

pany, discussions and entertainment. It is my pleasure to have crossed

your paths: Bahram Dastmalchi, Ritabrata Dutta, Kyunghyun Cho, Igor

Mataić, Eric Halbach, Yu Bin, Paula Pekkarinen, Karoliina Kekko, Mari-

Sanna Paukkeri, André Schumacher, Shinnosuke Seki, Cathy Nangini,

Sanja Šćepanović, Magnus Westerlund, Chen Xi and Pekka Kuusela (in

no particular order).

I am happy to have parents who have always provided me with endless

love and support for all my endeavours.

Finally, my deepest thanks and respect go to Jenni, an amazing lady who

has captivated my heart with her wonderful mind and energy.

Helsinki, September 12, 2014,

Dušan Sovilj

2

Contents

Preface 1

Contents 3

List of Publications 5

1. Introduction 11

1.1 Scope of the Dissertation . 12

1.2 Scientific Contributions of the Dissertation 14

1.3 Author’s Contributions . 16

1.4 Structure of the Dissertation 19

2. Variable Selection 21

2.1 Description of the Variable Selection Problem 21

2.2 Search Algorithms . 25

2.2.1 Exhaustive Search . 26

2.2.2 Greedy Search Algorithms 26

2.2.3 Encoding the State Space 29

2.2.4 Tabu Search . 30

2.2.5 Genetic Algorithms . 32

2.3 Variable Scaling and Projection 40

2.3.1 Scaling . 40

2.3.2 Projection . 42

2.4 Delta Test . 43

2.4.1 Computation of Nearest Neighbours 44

2.5 Contributions and Results . 46

2.5.1 Fixed Scaling (Publication II) 46

2.5.2 Combining Scaling and Projection (Publication II) . . 47

3

Contents

2.5.3 Selecting Number of Projection Dimensions (Publi-

cation I) . 50

2.5.4 Optimisation in Large Sample Data (Publication IV) 51

2.5.5 Parallel Implementations (Publications VII and VIII) 52

3. Time Series Prediction 57

3.1 Basics of Time Series Prediction 57

3.2 Basics of Linear Models . 60

3.2.1 Linear Filter Models 61

3.2.2 Autoregressive Process 61

3.2.3 Moving Average Models 62

3.2.4 Autoregressive Moving Average 63

3.2.5 Autoregressive Integrated Moving Average 63

3.3 Nonlinear Approaches . 64

3.3.1 Neural Networks . 64

3.3.2 Extreme Learning Machine 69

3.3.3 Generative Topographic Mapping 73

3.3.4 Relevance Learning . 76

3.4 Contributions and Results . 78

3.4.1 Training in Small Sample Data (Publication III) . . . 78

3.4.2 Extreme Learning Machine as a Combination Model

(Publication VI) . 79

3.4.3 Relevance Learning for Time Series (Publication V) . 81

4. Application to Marine Systems 85

4.1 Teleconnection Patterns and Climate Indices 85

4.1.1 Arctic Oscillation . 86

4.1.2 North Atlantic Oscillation 86

4.1.3 Other Indices . 87

4.2 Marine Ecosystems . 87

4.3 Multifactor Approach (Publication III) 89

4.3.1 Data . 89

4.3.2 Method . 91

5. Conclusion 95

Bibliography 99

Publications 109

4

List of Publications

This thesis consists of an overview and of the following publications which

are referred to in the text by their Roman numerals.

I Dušan Sovilj, Antti Sorjamaa, Qi Yu, Yoan Miche, Eric Séverin. OP-

ELM and OP-KNN in Long-Term Prediction of Time Series using Pro-

jected Input Data. Neurocomputing, 73(10–12):1976–1986, June 2010.

II Fernando Mateo, Dušan Sovilj, Rafael Gadea. Approximate k-NN Delta

Test Minimization Method using Genetic Algorithms: Application to

Time Series. Neurocomputing, 73(10–12):2017–2029, June 2010.

III Karin Junker, Dušan Sovilj, Ingrid Kröncke, Joachim Dippner. Cli-

mate induced changes in benthic macrofauna – A non-linear model ap-

proach. Journal of Marine Systems, 96–97:90–94, August 2012.

IV Dušan Sovilj. Multistart Strategy Using Delta Test for Variable Selec-

tion. In International Conference on Artificial Neural Networks (ICANN

2011, Part II), pages 413–420, Lecture Notes in Computer Science vol-

ume 6792. Espoo, Finland, June 2011.

V Andrej Gisbrecht, Dušan Sovilj, Barbara Hammer, and Amaury Lendasse.

Relevance learning for time series inspection. In European Symposium

on Artificial Neural Networks (ESANN 2012), pages 489–494, Computa-

tional Intelligence and Machine Learning. Bruges, Belgium, April 2012.

VI Dušan Sovilj, Amaury Lendasse, Olli Simula. Extending Extreme

5

List of Publications

Learning Machine with Combination Layer. In International Work-Conference

on Artificial Neural Networks, pages 417—426, Lecture Notes in Com-

puter Science volume 7902. Tenerife, Spain, June 2013.

VII Alberto Guillén, Mark van Heeswijk, Dušan Sovilj, M. G. Arenas,

Héctor Pomares, and Ignacio Rojas. Variable Selection in a GPU Cluster

using Delta Test. In International Work-Conference on Artificial Neural

Networks, pages 393–400, Lecture Notes in Computer Science volume

6691. Málaga, Spain, June 2011.

VIII Alberto Guillén, Dušan Sovilj, Mark van Heeswijk, Luis Javier Her-

rera, Amaury Lendasse, Héctor Pomares, and Ignacio Rojas. Evolutive

Approaches for Variable Selection Using a Non-parametric Noise Esti-

mator. Parallel Architectures & Bioinspired Algorithms, Studies in Com-

putational Intelligence volume 415, pages 243–266, August 2012.

6

Notation

xi i-th sample in the data set

X input data matrix

Y output target vector

f modelling function

ε additive noise term

σ2 variance of the noise

N number of data points

d dimensionality of data (number of variables)

NN(i) nearest neighbour of sample xi in data space

Xj variable j in the data

S subset of variables and

a solution to an optimisation problem

Ij indicator variable for variable Xj

Ne(I) neighbouring solutions of I

F objective or cost function in optimisation

wi scaling weight for variable Xj

H set of discrete scaling weights

XP projected data

XS scaled data

P projection matrix

zt time series measurement at time step t

T length of the time series

h number of time lags

P number of parameters in AR model

Q number of parameters in MA model

β parameters of a feed-forward neural network

gm m-th neuron in the layer and

an activation function for the same neuron

7

Notation

T latent space

Mi i-th model in a pool of solutions

Mi number of neurons in the i-th hidden layer

M number of neurons for a network with one hidden layer

F (·;β) output of a network with parameters β

κ number of adjustable parameters for a model

W parameters of GTM model

K number of prototypes in GTM

Δ(·, ·) distance function between two samples

8

Acronyms

AIC Akaike’s Information Criterion

AO Arctic Oscillation

CV cross-validation

DT Delta test

ELM Extreme Learning Machine

FBS Forward-Backward Search

GA Genetic Algorithm

GPU Graphics Processing Unit

GTM Generative Topographic Mapping

JMA Jackknife Model Averaging

LOO Leave-one-out

MLP Multi-layer perceptron

NAO North Atlantic Oscillation

MO Multi-Objective (optimisation)

OPELM Optimally Pruned Extreme Learning Machine

OPKNN Optimally Pruned k-Nearest Neighbour

PCA Principal Component Analysis

RL Relevance learning

SOM Self-Organising Map

TS Tabu Search

9

1. Introduction

Machine learning [1–4] has become a popular field of research due to now

established and widely successful applications. Any problem involving

data gathering and acquisition can benefit from the methods developed in

the machine learning community, but also the ones coming from statistics.

The interest in these methods has grown over the past few years due to

the success of deep learning techniques [5–7] which have now established

new state-of-the-art results. Most of the deep learning methods deal with

large amounts of data in difficult tasks such as image processing (partic-

ularly face recognition), speech processing and video retrieval.

Briefly, machine learning can be described as a way of “learning informa-

tion” from the available data, where information has somewhat ambigu-

ous notion and can mean many different things which leads to various

types of algorithms: clustering [8], feature extraction [9], pattern recogni-

tion [1], dimensionality reduction [10], prediction of new samples not used

during the training stage, recommender systems [11], factor analysis [12],

and many others.

The need for machine learning methods stems from the recent techno-

logical advances that enable easier and quicker gathering, storage, trans-

port and access of data. Now it is possible to capture information on a very

short time frames since storage has become quite cheap, while small scale

monitoring stations and sensors are ubiquitous. The prime example may

be the World Wide Web, where millions of people interact and where it is

possible to gather the flow of the exchange on a time scale of milliseconds

leading to enormously large data sets.

11

Introduction

1.1 Scope of the Dissertation

The thesis is concerned with two problems in the machine learning do-

main. One of the problems is variable selection, an approach to automati-

cally determine relevant features for the data set at hand. The other task

is that of time series prediction, in which the prediction for future events

is solely based on the past observations. Some of the proposed solutions

are applied to biological time series: 1) investigating the connections with

climate factors; and 2) empirically validating variable selection methods.

These aspects are further discussed in the following paragraphs.

Variable selection. Available data come in the form of samples and fea-

tures. Features, also known as variables, predictors or inputs, are “in-

dependent” measurements that have direct influence on the variable of

interest (also called target or dependent variable). The usual assumption

in machine learning and statistics is that this connection can be repre-

sented as a function, either of known or unknown form. The former case

arises when enough prior information about the process is known before

the modelling phase, while the latter case is the more common one as most

of the time little to no prior knowledge is available. Without any other in-

formation besides the data, one cannot reasonably assume any functional

form beforehand. In the latter case, one way to study the data is to use

clustering techniques where the data points are separated into smaller

subregions, or to use, for example, neural networks for modelling any kind

of non-pathological (well-behaved containing some structure) data.

Most machine learning algorithms assume that all input variables have

direct influence on the target variable. However, in certain scenarios this

assumption cannot be defended, for example in a situation where such

dependence is not known in advance, while the input variables are simply

collected because it is easy to measure them. This scenario often arises

when the generating process is complex and there is much uncertainty

about exact causes and relationships between all involved variables. A

simple example is trying to predict a person’s shoe size based on their

height measurement, while information about their hair colour does not

contribute to the actual goal. Such variables (hair colour in this case) are

deemed irrelevant or unimportant, and the task of variable selection is

to find such features. The problem can be stated in the other direction

as well – finding variables which are most relevant for the target vari-

able. Moreover, this issue is even more significant in small sample data

12

Introduction

sets where making any kind of inference is quite a challenge. We use the

phrase “small sample data” to indicate a data set with small number of

samples and both phrases are used interchangeably throughout the the-

sis. Further complications arise when the number of features is large

which is the case in most data sets being collected today. For example,

the gene expression data has more than one thousand gene indicators

(or features) with only couple of tens of samples. The sheer number of all

possible subset combinations is exponential in the number of features and

the conventional search techniques are inappropriate for such data sets.

Time series prediction. Time series modelling can be described as having

a sequence of measurements coming from a particular source, where the

goal is to build a model that will enable prediction for future instances

or values coming from the same source. The sampling frequency between

two subsequent measurements is usually assumed to be the same leading

to regularly spaced data samples. This research domain has important

practical applications as many types of problems can be classified into

time series domain, such as financial markets, stock exchange fluctua-

tions, many physical phenomena such as global temperature, number of

sunspots, successive Earth’s revolutions around the Sun to name a few.

The key aspect here is “a model”, an object able to capture information

from the data and subsequently provide practitioners with the possible

outcomes. For example, a retail salesman might be interested in the in-

come for the next day, next two days, or maybe even several weeks in

advance, but using only information of the past income periods up to the

present time. This example shows that there are two possible goals in

time series prediction: short-term and long-term predictions. Short-term

approach refers to a situation where one is interested in predicting only

a few future values, while long-term means having a model(s) predicting

several tens and up to several hundreds of future values of the time series.

Besides prediction, time series can be also analysed for trends, varia-

tions, fluctuations, stationarity, interannual cycles and this area is still

growing. The task of analysis does not involve any future values which

makes it more attractive and less volatile than prediction, but only en-

ables inference about the time period from which the data originates.

Marine biology. Observations for local marine lifeforms only started from

1950’s while for some locations it is only a few years old if not couple of

months. The main reason behind this is financial, with researchers strug-

gling to find proper support to monitor their local ecosystems. In recent

13

Introduction

years, this trend has shifted and many more research institutes are re-

ceiving financial support, but the community has recognised the impor-

tance of preserving local habitats. Within the European Union there are

several projects which aim at monitoring and maintaining marine sys-

tems, such as Assessment and Modelling of Baltic Ecosystem Response

(AMBER) project1. The purpose of monitoring marine species is main-

taining the quality of ecosystems, especially their biodiversity. This pro-

vides the ecosystems with higher chances of resisting any unusual cir-

cumstances, such as abnormally high temperatures, high concentrations

of nutrients, low levels of oxygen or dangers coming from the polluted

waters.

The fluctuations in species abundance is tightly coupled with both lo-

cal and global climate changes, and a lot of research is done trying to

establish relations between the biological time series with both physical

measurements (temperature, salinity, nutrients level) and the climate in-

dicators. Machine learning methods provide a way to analyse these rela-

tions and enable a glimpse into the future scenarios about the variability

of marine ecosystems. This is basically a time series prediction problem,

but at the same time a variable selection problem, and having a suitable

model gives the opportunity to enforce preventive measures if any nega-

tive effects are predicted.

1.2 Scientific Contributions of the Dissertation

The dissertation contains the following scientific contributions:

• Variable or feature selection with different approaches using a specific

criterion, namely the Delta test. Delta test is a noise variance estimator

which provides the practitioner with an approximation as to how small

or large an error one can expect before doing any modelling on the data.

It is based on the nearest neighbours search and is a special case of the

Gamma test. As for the different goals, three thematic ones are selec-

tion, scaling and projection. Selection basically investigates whether a

feature should be included in the set of important features or not. Scal-

ing extends selection to weight all the features according to their rele-

vance, while projection deals with altered, that is, projected, data in a

new feature space. All of the publications are based on the Delta test as

1www.io-warnemuende.de/amber.html

14

Introduction

the main search criterion, while contributions contain different search

algorithms and different approaches to selection (including scaling and

projection). These contributions are summarised below:

– Combining scaling and projection into a single projection method (Pub-

lication I).

– Developing multistart strategy that does not require any advanced

search algorithm besides the basic greedy descent method (Publication

IV).

– Employment of the approximate nearest neighbour search to speed up

the computations for data sets with large number of features (Publica-

tion II).

– Parallel implementation incorporating both global level search (with

Genetic Algorithm) and local level refinement (with Tabu Search) for

fast feature selection (Publication VIII).

– Implementation on a heterogeneous cluster of computers using all

available processing power (both CPU and GPU) with an island model

of the Genetic Algorithm (Publication VII).

• Two enhancements to the Extreme Learning Machine (ELM) which is

a special type of a feedforward neural network. One contribution deals

with the small number of data samples where the basic and first vari-

ants of the ELM have problems of building the “optimal” model. Opti-

mality here refers to the appropriate number of neurons in the hidden

layer to capture all information in the data. Publication III proposes to

use a specific criterion – corrected Akaike’s Information Criterion – de-

veloped in statistics for the small number of samples. This model is used

for predicting the biomass, abundance and number of species for benthic

macrofauna in the North Sea. The other contribution (Publication VI) is

also tightly related to the model structure selection procedures and pro-

poses a model averaging solution for the hidden layer instead of choosing

a single structure from a pool of possibilities. This modification shows a

substantial improvement in the prediction task.

15

Introduction

• A method incorporating both the feature selection and time series in-

spection, where the selection is deemed as relevance for the task of pre-

diction. This method (Publication V) extends Generative Topographic

Mapping (GTM) and builds an additional layer in which features are

weighted for the task at hand. The work is based on the Relevance

Learning (RL) techniques and is adapted for the regression task, while

the RL method is used for classification tasks. The method enables

identification of important time lags, and at the same time provides

long-term predictions due to the topographic mapping that underlies

the GTM learning.

1.3 Author’s Contributions

Publication I: OP-ELM and OP-KNN in Long-Term Prediction of Time
Series using Projected Input Data

This journal paper proposes a modification to the variable selection prob-

lem, where a special projection matrix is used to project the data into a

new space where the model is able to reach lower training error. The cri-

terion to be optimised is the Delta test with the Genetic Algorithm acting

as a search method. The complete methodology is applied on two time

series competition data sets plus one bankruptcy prediction task. Both

time series tasks are cast into the long-term prediction mode where the

two models with fast training times are employed – Optimally Pruned

Extreme Learning Machine and Optimally Pruned k-Nearest Neighbour.

The author proposed the idea of the special projection matrix, performed

the experiments involving variable selection, i.e., projection, and wrote

the part related to that specific task, while the other authors contributed

in their respective domains.

Publication II: Approximate k-NN Delta Test Minimization Method using
Genetic Algorithms: Application to Time Series

In this journal paper, variable scaling and projection are further addressed

where the nearest neighbour calculation involved in the Delta test is re-

placed with the approximate version to improve the computation time,

while losing only small percentage of the accuracy compared to the exact

version. The methodology is applied to many well known time series, but

the approach is easily generalized to all regression problems. The idea

16

Introduction

in this joint work was proposed by Fernando Mateo, who wrote the ma-

jority of the paper, while the author performed most of the experiments

and wrote the part related to the complete setup of the algorithms and

parameters.

Publication III: Climate Induced Changes in Benthic Macrofauna – A
Non-linear Model Approach

This contribution is a joint work with the researchers working at the Leib-

niz Institute for Baltic Sea Research in Rostock, Germany. The publica-

tion is the result of interdisciplinary collaboration where the main goal is

to discover which combination of the external factors influence the benthic

species in the North Sea. This multifactor approach is an improvement

over single factor (climate index) that is mainly used in the marine bi-

ology domain. The relationship is modelled with the Extreme Learning

Machine neural network, and the author proposed a slight modification

for the model to suit the small sample data for the task, performed all the

experiments and wrote the part of the paper related to machine learning,

while preprocessing steps are jointly discussed between the authors.

Publication IV: Multistart Strategy Using Delta Test for Variable
Selection

This conference paper discusses how the optimisation landscape is formed

when using the Delta test as a search criterion in data sets with large

number of samples. That is, performing variable selection in large sam-

ple data produces a landscape where only few local minima exist, and as

such the greedy forward-backward procedures are sufficient for the task

if the algorithm is applied many times from random starting solutions.

The proposed multistart strategy enables to restart from more promising

solutions rather than random positions. The paper has a single author.

Publication V: Relevance Learning for Time Series Inspection

This publication deals with both variable scaling, or relevance learning,

and time series inspection. The common approach in time series predic-

tion is dividing the series with a sliding window, and the question re-

mains how many and which lags contribute most to the series dynamics.

The method proposed in this paper is an extension of relevance learn-

ing based on the Generative Topographic Mapping (GTM) adapted for the

regression task which in turn returns an interpretable relevance profile.

Another advantage of a GTM based approach is a prototype based learn-

ing which gives an easy and reliable way of making long-term predictions.

17

Introduction

The proposed method is a joint work with all other authors, where the au-

thor performed part of the experiments and wrote the part related to data

sets used in the experiments.

Publication VI: Extending Extreme Learning Machine with Combination
Layer

This conference paper introduces a different approach to model structure

selection for the Extreme Learning Machine neural network. One of the

themes in the neural network literature are the small improvements to

the basic single feed-forward model, either in the form of appropriate

selection of hidden neurons or making the input weight distribution or

the neuron output distribution more adaptable for the data. The pro-

posed solution is to completely replace the model structure selection pro-

cedure (choosing the suitable number of neurons) with a weighted aver-

age over all possible neural structures from the pool. This model com-

bining approach coupled with the Jackknife Model Averaging method and

the leave-one-out residuals provides in some cases substantial improve-

ment over a single model approach. The idea is discussed with Amaury

Lendasse, while everything else is done by the author.

Publication VII: Variable Selection in a GPU Cluster using Delta Test

This publication deals with the implementation for variable selection whe-

re the Delta test is the criterion of choice in the heterogeneous cluster

of computers. The concerns covered are the computation of the nearest

neighbours and the distribution of solutions between the nodes in the clus-

ter to achieve faster exploration of the solution space. An island model of

the Genetic Algorithm with redistribution policy is used to effectively ex-

ploit all available computing power with an efficient mechanism to enable

that both fast and slow machines are synchronised as much as possible.

The author contributed in discussions about the publication while most of

the work and writing was done by Alberto Guillén.

Publication VIII: Evolutive Approaches for Variable Selection Using a
Non-parametric Noise Estimator

This book chapter provides a summary of different parallel paradigms in

different hardware architectures. All paradigms use the Delta test for

variable selection. Issues about the optimisation and efficiency are dis-

cussed when the search is performed on a cluster of computers (hetero-

geneous or homogeneous). The other aspect is that of global search over

the solution space versus the small local improvements and how to bet-

18

Introduction

ter incorporate both of these two aspects of search. Genetic Algorithm is

used for the global search while the Tabu Search is employed for the local

refinements. The author is responsible for implementing and writing the

part related to Tabu Search refinement, while the part related to parallel

implementation and Genetic Algorithm is done by Alberto Guillén.

1.4 Structure of the Dissertation

The remainder of the dissertation is divided into four chapters. The topic

of variable selection is discussed in Chapter 2 along with proposed solu-

tions using the Delta test. These solutions include different search al-

gorithms, parallel implementations on clusters of homogeneous and het-

erogeneous architectures to speed up computation and further reductions

with the approximate nearest neighbours search. Chapter 3 describes

time series prediction problem with commonly used models and approach-

es to solve the problem. Novel models for time series prediction are also

discussed in this chapter. These include two models based on the Extreme

Learning Machine which can be applied to the standard regression data

sets as well, and one model based on the Generative Topographic Mapping

with a ranking layer for features. Applications to the real biological time

series and connections with the climate factors are discussed in Chapter

4. Finally, conclusions and discussion about the future directions are pre-

sented in Chapter 5.

19

2. Variable Selection

This chapter discusses the variable selection problem in machine learn-

ing, starting from the basic principles to several solutions proposed in the

publications. Two main aspects of the problem are explained: the crite-

rion of evaluation and the search algorithm to explore the search (state)

space. Both aspects are being developed independently where most of the

search algorithms are coming from the domain of function optimisation,

but can be readily applied to the problem of variable selection. From the

many available criteria for variable selection, special attention is devoted

to the Delta test [13, 14], a noise variance estimator that is useful before

the modelling stage.

Several approaches to variable selection are discussed, from the pure se-

lection method to the extension in the form of scaling and projection. The

extended versions offer more flexibility, but suffer from the large search

spaces taking considerably more time to find good solutions.

In the field of optimisation there are numerous algorithms for finding

solutions to a function minimisation (maximisation) problems, and here

we only discuss two among them. One is a meta-heuristic method Tabu

Search [15, 16], developed for numerical optimisation, while the other is

more widely known Genetic Algorithm [17,18] borrowing the idea of evolv-

ing a population of individuals or solutions. The latter one is particularly

flexible for the parallel architectures which are used for a pure variable

selection problem.

2.1 Description of the Variable Selection Problem

Machine learning methods and algorithms are applied to the data, which

come in the form of samples and features in a matrix representation. If

we denote with (xi, yi), i = 1, . . . , N , the data samples where

21

Variable Selection

xi = (x1i , x
2
i , . . . , x

d
i) (2.1)

are the input variables for the data vector (sample) i, the standard way to

model the relationship between the input vector x and the output y is to

assume a functional form, i.e.,

yi = f(x1i , x
2
i , . . . , x

d
i) + εi = f(xi) + εi (2.2)

where εi is the noise term. Both the input vector xi and the target yi are

assumed to contain real values, i.e., xi ∈ R
d and yi ∈ R. For further dis-

cussions we also use X to denote the complete input space or data space,

that is, a matrix where rows are data samples and columns are variables.

The data is said to have N samples and of dimensionality d, or with d vari-

ables. Similarly, Y indicates a column vector of outputs and its dimension

is N × 1. This can be written as follows:

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

x11 x21 . . . xd1

x12 x22 . . . xd2
...

...

x1N x2N . . . xdN

⎤
⎥⎥⎥⎥⎥⎥⎦ , Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1

y2
...

yN

⎤
⎥⎥⎥⎥⎥⎥⎦

and the Eq. (2.2) can be rewritten in matrix form as follows:

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1

y2
...

yN

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

f(x1)

f(x2)
...

f(xN)

⎤
⎥⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

ε1

ε2
...

εN

⎤
⎥⎥⎥⎥⎥⎥⎦

or more simply as Y = f(X) + ε. This setup is regarded as a supervised

learning approach since the labels, or in this case real values Y, of the

target variable are known in advance. When such information is lacking,

the problem is categorised as an unsupervised learning problem. For the

rest of the chapter we are only interested in the supervised version as

given by Eq. (2.2). Since Y is a vector of values, this is a univariate case

of regression and we are only concerned with this type of the problem

ignoring the multivariate case. In the multivariate case, the output for

each data vector xi is another (output) vector yi instead of a scalar yi.

Many machine learning methods assume that all d variables are rele-

vant to be able to predict y, but this is not always the case. For example,

both k-Nearest Neighbour and Support Vector Machine [19] models have

22

Variable Selection

inherent assumption that all features are important or relevant to estab-

lish a relationship between the inputs and the target variable. For Sup-

port Vector Machines this depends on the kernel function, but the most

widely used symmetric Gaussian kernel takes into consideration all in-

put features. First, there can be situations where certain variables are

redundant, that is, information contained in those variables is already

present in other variables. A simple example is having two highly corre-

lated variables in the data set, or the extreme case of identical features

where they are equal across all samples. These special cases exemplify

that certain precautions must be considered and that not all variables are

important just because they are included in the data. The second reason

for variable selection lies in the limited amount of data samples which has

significant impact on the learning algorithms. Many machine learning

methods contain what are called hyper-parameters, parameters govern-

ing other primary parameters, for example, the noise variance ε. In order

to have stable and reliable estimates of these hyper-parameters, a large

number of data vectors is needed. On the other hand, limited amount has

negative effect on the learning process in the form of overfitting. Overfit-

ting, or overtraining, is a situation where the model is able to fit the data

to a high degree of accuracy if not perfectly, that is, the prediction ŷi is

(almost) equal to the target yi. The downside of this case is poor general-

isation capability of the model where subsequent predictions for unseen

samples significantly deviate from their true values. Overfitting usually

occurs when the model has too many adjustable parameters which are fit-

ted not only to the data, but also to the random fluctuations (noise) [1,20].

The opposite case is underfitting – the model is too rigid with a few param-

eters and is not able to model any kind of nonlinear behaviour. One way

of combating this problem is to reduce the number of dimensions d. This

is closely related to the curse of dimensionality [10,21], where the number

of features d greatly outnumbers available samples N , and where build-

ing a model becomes a difficult challenge. The third issue is related to

the execution time, as with less features certain models can be trained

faster giving practitioners a quicker insight into the input–output con-

nections. The last issue is related to the complexity and interpretability,

where a simple model is much easier to understand (a model containing

only a couple of input variables) against a more complex model with many

variables included.

Another way of achieving a lower dimensional representations of data is

23

Variable Selection

via data compression. In this approach, data samples xi are transformed

into the vectors in the lower dimensional space x̄i ∈ R
p (p < d) either

with a linear or nonlinear transformation. One of the most popular tech-

niques in machine learning for reducing the dimensionality of the data

and eliminating certain levels of noise is the Principal Component Analy-

sis (PCA) [22]. Each new vector x̄i is a linear combination of the original

variables xji , j = 1, . . . , d. Main advantage of the PCA is that it requires

no additional parameters, except the decision to how many dimension p

one wishes to project to. Another important aspect of the PCA is that

the solution is unique, that is, it does not have any random elements or

initialisation issues as some other methods. The main drawback is its

linearity which is not suitable for most real-world problems and the inter-

pretation of the newly created feature space since the original variables

are lost with this transformation.

More formally the goal of variable selection can be described as follows.

Denoting with Xj the j-th variable in the data set, and with XS a sub-

space of X containing only S = {j1, j2, . . . , jk} variables, the goal is to find

a subset S ⊆ {1, 2, . . . , d} such that the model built using variables in S

provides us with the best possible generalisation ability out of all possi-

ble subsets with d features. Indices ji, i = 1, . . . , k, denote the variables

Xji in the data. The notion of “the best” subset is usually measured with

a specific criterion, called relevance or search criterion, while the traver-

sal over the possible subsets is done with a search algorithm. These two

distinct parts constitute the variable selection procedure and for the most

part are independent of each other. This enables different combinations of

criteria and solutions offered in the field of optimisation algorithms. The

problem of variable selection has been studied both in statistics [23, 24]

and in machine learning community [25,26].

In machine learning, the central part of any inference procedure is a

model, and this has further implications on the variable selection. On

a general level, variable selection strategies can be categorised in two

groups: filter and wrapper approaches [25].

Filter Strategy

Filter approach [27, 28] aims to find an optimal subset of features before

the learning phase of a model. The choice of a search criterion is even

more pronounced in this strategy since once the final choice is made it

cannot be revised. Many criteria can be applied here, from the basic cor-

24

Variable Selection

relation coefficient [29], mutual information [30–32] and data-driven ap-

proaches [33]. Filter methods provide a fast way of finding promising fea-

ture subsets, but their performance can be poor if the learning technique

has a different goal compared to the search criterion in the first phase.

This is often the case, as learning methods have some form of a training

error as a performance measure (usually least-squares or mean-square

error), while certain criteria have other measures. For example, mutual

information measures how much information is contained in one variable

to explain the other using the notion of entropy of a random variable.

Wrapper Strategy

Different from the filter approach, wrapper strategy [25, 34] uses some

form of the learning algorithm to assess how efficient is a specific subset

of variables. For each subset under evaluation, a model is build and is

compared to the currently best solution found up to that point. This is the

potential pitfall of the wrapper approach as it requires training a model

multiple times and can lead to substantial computational cost. Certain

models provide an extremely fast training times and reliable estimation

enabling wrapper approach to be a viable strategy even with moderately

large data sets. The advantage of the wrapper method is reliable estima-

tion of the underlying connection between the inputs and the output, since

the same learning method is used in both stages: finding a good subset

and the final training phase. Usually some form of a validation procedure

is used to guarantee good generalisation properties of the model.

2.2 Search Algorithms

The purpose of a search algorithm is to traverse the solution space in

order to find the optimal solution. Solution space is the set of all possi-

ble solutions to the problem, and is also know as state space, objective

function space, or optimisation landscape. Many different approaches are

possible and over the years many methods have been proposed, such as

Genetic Algorithms [25, 35, 36], Monte Carlo Markov Chain [37], greedy

local strategies [26,38], Greedy Randomised Adaptive Search Procedures

(GRASP) [39, 40], Differential Evolution [41], Evolutionary Algorithms

(EA) [42] which include many nature inspired techniques such as Ant

Colony Optimisation [43].

Formerly, many search algorithms could not be applied to the practical

25

Variable Selection

problems having many variables due to their long computational times.

This trend has shifted a bit since the advent of the parallel architectures

and the Graphics Processing Unit (GPU) computing. Unfortunately, the

size of data sets has grown substantially in the recent years in the form of

so called “big-data”, and the problem of traversing the search space comes

down to clever utilisation of visited regions of the space.

Several widely used approaches for the variable selection are discussed

in the following sections – exhaustive search approach based on enumer-

ation, greedy strategies in the form of Forward and Backward Searches,

and the advanced solutions based on the Tabu Search and the Genetic

Algorithms.

2.2.1 Exhaustive Search

The simplest approach is to examine all the possible subsets that can be

formed on the set {X1, X2, . . . , Xd}. This requires evaluating 2d − 1 so-

lutions in total and can be computationally too demanding even for the

moderately large data sets with d > 30. Even though this yields the op-

timal solution among all possible candidates, it is prohibitive to use this

approach for the cases where dimensionality exceeds several hundreds of

features. Image, text, video databases, chemometrics data that contains

information over a wide spectrum of frequencies, gene expression data in

bioinformatics all have several thousand variables which prevents using

any kind of an algorithm for finding the optimal solution since the state

space is enormous. Therefore, a more practical strategy is required in

order to find some feasible solution, i.e., a local optimum, which is not

necessarily globally optimal, but nevertheless is the best among its neigh-

bouring candidates. In certain scenarios, these locally best solutions are

sufficiently good and acceptable in practice.

2.2.2 Greedy Search Algorithms

Forward-Stagewise Linear Regression

The idea behind the greedy algorithms is again a simple one, and it in-

volves searching only a small subset of all the possible solutions. This ap-

proach has been used in statistics for a long time in the form of Forward-

Stagewise linear regression [44] where the inputs are added according to

the correlation coefficient of the candidate (remaining) features with the

current residual vector. The feature with the highest correlation is the one

26

Variable Selection

added to the set of the best features (previously included in the set). This

has been later extended into the Least Absolute Shrinkage and Selection

Operator (LASSO) [45] and the Least Angle Regression (LARS) [46]. The

main goal is to find an acceptable solution in a small amount of time, and

these procedures sacrifice optimality for the execution time.

Although intuitively appealing and fast, the downside is that only a

small portion of the state space is explored in some local region or neigh-

bourhood. For this reason these methods are sometimes called local search

procedures. This is the major problem of greedy strategies, since they stop

after finding the local optimum. In order to explore a wider area of the

state space, several initial solutions are generated, then from each solu-

tion the variable selection procedure is applied until a local optimum is

found, and finally the best solution among these local optima is chosen to

be the final solution to the variable selection problem. In the remainder

of this section, we describe several commonly used greedy strategies for

variable selection.

Forward Search

Forward Search follows the same principle as the Forward-Stagewise re-

gression. We start with an empty set S and keep adding one variable

at a time into S based on the search criterion, that is, we add the vari-

able which brings the most information (the most predictive power) to the

current solution S. This process is repeated until the relevance criterion

no longer improves over the previous solution. Following this procedure,

the total number of calls to the search criterion is at most d(d − 1)/2 and

this number is attained when the best solution has all d variables. Al-

ternatively, we can keep adding variables until all of them are included

in S which provides a ranking according to the selected relevance crite-

rion. Algorithm 1 gives the outline of the Forward Search strategy that

includes all variables, but returns the best solution found among the gen-

erated subsets. The strategy assumes that minimisation is taking place,

while the problem of maximisation can be easily modified to fit into the

same strategy.

In Algorithm 1, Criterion(S,Y) computes the relevance criterion between

the set of input variables S and the output vector Y. Even in the case

when all the variables are included in the set S, the procedure gives vastly

reduced number of evaluations compared to the exhaustive search.

27

Variable Selection

Algorithm 1 Outline of the Forward Search algorithm

1: set S0 = {} and U = {X1, . . . , Xd} {initialisation}

2: for k = 1 to d do

3: Xj = argminXi{Criterion(Sk−1 ∪ {Xi},Y) | Xi ∈ U}
4: Sk = Sk−1 ∪ {Xj} {inclusion step}

5: U = U \ {Xj}
6: end for

7: return S = argminSk
Criterion(Sk,Y)

Backward Search

Backward Search proceeds in the opposite directions compared to the For-

ward Search starting from the full set of variables {X1, X2, . . . , Xd} and

then removing one variable at a time. Both procedures share the same

properties: they return the local optimum and the total number of evalu-

ations is at most d(d− 1)/2. The computational times for these two proce-

dures can be quite different since the Forward Search can benefit greatly

from evaluations in much smaller subspaces with only couple of features

compared to the full data that the Backward Search starts with. For ex-

ample, any nearest neighbour approach needs to compute the differences

across all the features which consumes much more resources compared to

the calculations in subspaces with couple only of features.

Forward-Backward Search

Comparing both the Forward and the Backward Search procedures they

also share the following property – in the inclusion (exclusion) step, the

variable added (removed) only contributes toward the search criterion

with all other variables currently in the set S. If the variable Xj is in-

cluded in set S, then both procedures only test the combination {Xj} ∪ S

while combinations of Xj with the subsets of S are ignored. Forward-

Backward Search (FBS) tries to mediate this issue and explore a more

wider space compared to both Forward and Backward Searches. The idea

is to try both selecting variables that are not in S, and discarding those

that are already in S. In all the iterations in this approach, a total of

d − 1 solutions are checked before the best subset is chosen. In principle,

the algorithm can start from any solution, not just an empty or the full

set of variables. This implies that the number of evaluations is unknown

due to the unknown starting position in the solution space. The complete

algorithm is given as Algorithm 2.

28

Variable Selection

Algorithm 2 Outline of the Forward-Backward Search algorithm
1: set S0 = random non-empty subset

2: U = {X1, . . . , Xd} \ S0

3: for k = 1 to d do

4: Xj = argminXi

({Criterion(Sk−1 ∪ {Xi},Y) | X i ∈ U}∪
{Criterion(Sk−1 \ {Xk},Y) | Xk ∈ Sk−1}

)
5: Sk = update(Sk−1, {Xj}) {add or remove}

6: U = update(U, {Xj}) {remove or add}

7: end for

8: return S = argminSk
Criterion(Sk,Y)

The update operator in the Algorithm 2 modifies a variable set according

to either the removal or inclusion of a chosen variable Xj .

The advantage of the Forward-Backward approach is the ability to start

from any position of the solution space compared to a fixed initial position

used in both Forward and Backward Searches. If prior knowledge about

the important variables is available, this can be used to form a starting

position for the FBS. This enables Forward-Backward Search to find many

local optima provided that several initial positions are generated, and this

strategy can be quite powerful when the Delta test is used as a search

criterion, see Publication IV.

2.2.3 Encoding the State Space

In variable selection, the feature can only have two possible states: present

in or absent from a subset. This naturally leads to the binary encoding

of a solution using the indicator variables Ij ∈ [0, 1]. An indicator vector

I = [I1, I2, . . . , Id] represents one solution in the encoded form correspond-

ing to the actual solution S, i.e.,

Ij =

⎧⎨
⎩ 1 if Xj ∈ S

0 otherwise
. (2.3)

The encoded version is used when implementing aforementioned algo-

rithms, but it also plays an important role when defining the neighbour-

hood of a solution on which certain strategies rely. Neighbourhood struc-

ture can be defined in many ways, but the representation already de-

scribed suggests the following strategy. For a given indicator vector I, its

neighbouring solutions Ne(I) (subsets that are going to be examined next)

are the ones where each candidate has one feature inverted compared to

29

Variable Selection

I, i.e.,

Ne(I) = {Ijc | Ijc = [I1, . . . , Ij−1, |1− Ij |, Ij+1, . . . , Id], j = 1, . . . , d}. (2.4)

This structure and connections between the solution I and its neigh-

bours are known as the d-dimensional hypercube in graph theory. Neigh-

bourhood structure plays a crucial role in the following section which de-

scribes the Tabu Search.

2.2.4 Tabu Search

Tabu Search (TS) belongs to the family of meta-heuristic methods whose

main purpose is to employ other local search algorithms in order to avoid

local optima. Developed in the late 1980’s in the field of combinatorial

optimization by Glover [15, 16, 47], it has been extended to different do-

mains ranging from scheduling problems [48], routing [49,50] and general

optimisation problems [51,52].

In the field of optimisation, the main goal is to find a global optimum to

a specific cost or objective function, and here we assume that the problem

is defined with a function F and the goal is to minimise F , i.e.,

min F (S)

S∗ = argmin
S

F (S)

with S∗ being the global minimum to the problem F . While global optimal-

ity cannot be guaranteed, many methods try to explore the search space

as much as possible in order to find more promising regions and accord-

ingly refine the search to pinpoint the actual local optimum. For variable

selection, the objective function is just another term for a relevance cri-

terion, and these names are used interchangeably in this section. In this

thesis, we are using the same notation S for both the subset of variables

and a solution to the optimisation problem. The reason for this is that a

subset of variables is one solution to the variable selection problem, while

the problem itself falls into a broad class of optimisation problems.

The term meta-heuristic refers to the underlying idea of TS – it uses

other technique, denoted T, for the search through the solution space. Dur-

ing the search, TS uses internal memory structures to modify the way T

visits solutions. One of the main purposes of the memory is to prevent

30

Variable Selection

the reversal of the recently applied moves, but also to reinforce the ex-

ploration of promising areas of space. These two types of memory can be

broadly categorised as the short-term and long-term memory respectively.

The idea behind TS is to use the technique T until it reaches a local op-

timum, but contrary to the greedy procedures, it does not stop once the

optimum is reached and proceeds to visits solutions with the worse objec-

tive values. The memory structures keep track of the local optima and

the technique T is forbidden to revisit these in the upcoming iterations.

This concept of moving towards solutions which do not improve the objec-

tive function has roots in Simulated Annealing [53] where the acceptance

rate is based on a stochastic mechanism tightly connected with a cool-

ing scheme. This approach is also present in Markov Chain Monte Carlo

(see [37] or [1, Chapter 11]) techniques with a property that a move is

made towards new a solution if the acceptance step is fulfilled.

Next important issue is the definition of the neighbourhood of a solution.

The neighbourhood is defined as the set of solutions that are reachable

from the solution I. Reachability is defined through moves or local trans-

formations applied to I in order to produce solutions in Ne(I) as explained

in Section 2.2.3.

The short-term memory is responsible for preventing the cycling effects

and it keeps track of the recently applied moves. Sometimes it is referred

to as the tabu list. Once the (sub)optimal solution has been found, the

tabu list forbids the search to revisit this solution by restricting the use of

a move with the reversing effect. Moves stored in the tabu list are called

tabu, and thus forbidden to use for a fixed number of iterations. Storing

only moves does not guarantee the prevention of cyclic effects, as not all

information is kept when the optimum has been found. To stop revisiting,

one can store complete solutions in the memory. However, this approach

becomes impractical as the complexity of the problem increases, and the

substantial amount of execution time is spent on comparing new solutions

to the ones stored in memory. This is the reason for keeping smaller pieces

of information, such as moves, segments or other attributes of solutions,

for example, the binary encoding in a specific range of variables.

One important parameter of the TS is the tenure [54, Chapter 2.4],

which is defined as the number of iterations a single move is considered

tabu. In some implementations this corresponds to the length of the tabu

list, usually coded as a cyclic list. The tenure value is fixed throughout the

whole search for most of the problems, but other approaches are possible:

31

Variable Selection

varying tenure value or randomly choosing the value for each move.

During the search, the tabu list can prevent the moves to solutions

which have not been encountered before (assuming no storage of com-

plete solutions). This leads to a situation when the TS discards a move

to a solution with the better objective value than the currently best one.

To enable such moves, another level is added to the TS, which allows the

search to override the tabu list and aspire to the new solution. This is

known as the aspiration criterion. The simplest aspiration criterion is to

allow the move in the case just described, when the best solution so far

has been found. Other criteria can be defined to revoke the tabu status,

but they are seldom used. In the implementation of the TS in the publica-

tions, no aspiration criteria are used as they involve computing the actual

objective value of a solution. By dropping these criteria, more computa-

tional resources are devoted to new solutions allowing more exploration

of the search space in the same amount of time.

Like all searching algorithms, the TS does not guarantee global opti-

mality and thus it is impossible to define for how long it should explore

the solution space. Therefore, certain stopping condition must be defined

to prevent the methods from running indefinitely. Several choices that

are used throughout the literature include: amount of time spent for the

search, number of iterations, total number of calls to the objective func-

tion and other heuristic possibilities, out of which the first two conditions

are the most commonly employed ones.

There are other parts of the TS which make it a powerful method, such

as probabilistic TS (using stochastic acceptance rate to further help jump

out of local optima), candidate list generation, intensification and diversi-

fication strategies, and auxiliary objectives to name a few. These are not

considered here, but for a detailed explanation on the topics see [54].

2.2.5 Genetic Algorithms

Genetic Algorithm (GA) is one of the algorithms of the larger family of op-

timization techniques known as the Evolutionary Algorithms (EAs) [55].

Most of these algorithms are based on the concepts inspired by the na-

ture, such as GA being based on the evolutionary mechanisms, while the

Ant Colony Optimisation algorithm has foundation in the behaviour of

the ant colonies and their mutual underpinnings. Certain algorithms are

population based, that is, a pool of solutions exists at all stages of the exe-

cution. This pool is sometimes randomly initialised while other operators

32

Variable Selection

underlying the technique(s) also have a degree of randomness involved

which suggest that most of the EA algorithms are stochastic search pro-

cedures. Among the common operators among EA algorithms are: en-

coding of the solutions as chromosomes, initialising the first pool of solu-

tions – the initial population, selection operators, and reproduction oper-

ators. We briefly describe the basics of the Genetic Algorithm, alongside

the concepts developed for the parallel implementations and the multi-

objective optimisation problems. More formal treatment and theoretical

background can be found in [17,18,56].

Contrary to the classic optimisation techniques based on the first and

the second order derivatives where the idea is to make deterministic moves

to explore the solution space, evolutionary based algorithms (including

the GA) use the function values, also called fitness values, and probabilis-

tic rules to examine the optimisation landscape. Comparing the GA with

both the TS and the FBS, both the TS and the FBS do not need infor-

mation on the function shape, but they are neighbourhood based – FBS

explicitly, while the TS relies on some local search procedure that also

needs the neighbourhood structure. On the other hand, the GA uses a

population of solutions enabling the search of several areas of the objec-

tive space and can potentially find promising areas much quicker than TS

and FBS.

Genetic Algorithm Basics

Algorithm 3 shows the general idea of the GA while the description of

each of the operators is explained afterwords.

Algorithm 3 Outline of Simple Genetic Algorithm
1: select selection operators ν1 and ν2

2: select reproduction operators ρ

3: Π = create initial population

4: while not stopping condition do

5: e = fitness(Π) {evaluate population}

6: Π1 = ν1(e) {select parents}

7: Π2 = ρ(Π1) {reproduction – generate offspring}

8: Π = ν2(Π,Π2) {select new generation}

9: end while

10: return solution π with the best objective value from Π

33

Variable Selection

Representing solutions. Each solution to the optimisation problem rep-

resents one individual in the population. An individual in turn is given

as a chromosome which encodes all the characteristics of a solution. In

the domain of variable selection, these characteristics are simply indica-

tors of presence/absence of each variable, and they are called genes. A

chromosome is simply an indicator vector I of length d, and each gene

correspond to one variable in the data set. For the rest of the chapter,

we interchange the names of a solution, chromosome and individual since

indicators (genes) in a chromosome fully explain the individual, which is

the solution to the problem.

Initial population. As outlined in Algorithm 3, the GA is based on mod-

ifying its population Π of solutions. In most optimisation problems, this

population is initialised randomly with the idea of covering the search

space as evenly as possible. For this reason, the uniform initialisation is

suitable in most cases, although specific problems require more appropri-

ate creation in order to accommodate any prior knowledge. Covering most

of the solution space enables the GA to find more promising regions and

through reproduction create the combinations which should contain even

better solutions (this is the idea behind the schema based GA [57]). Popu-

lation size is the parameter that needs to be decided before the optimisa-

tion process. There is a trade-off between the size of the population and

the convergence speed of the algorithm. Larger populations enable bet-

ter spread of the solutions across the state space, and less iterations are

needed for the GA to converge. The other possibility is to reduce the pop-

ulation size, speeding the process and providing a good solution a within

reasonable time, but generating new promising regions is severely hin-

dered. Population size impacts the execution time, and the more individ-

uals there are, the more time is required to generate the new population

(the next generation). Convergence of the GA is considered as the situa-

tion where the whole population is dominated by just a few individuals.

Evaluation of the individuals. Evaluation is a simple step, which involves

computing the objective function value for each individual in the popula-

tion. These values are used in the first selection phase which is followed

by the reproduction step. Since different optimisation problems have dis-

tinct values of the objective function, the usual practice is to scale these

objective values to a more suitable range. This is the purpose of a fitness

function which returns fitness values for all individuals. Most of the time

the fitness values are confined to a [0, 1] range and treated as probabili-

34

Variable Selection

ties of selecting an individual for the reproduction phase. In this setting,

higher fitness value indicates an attractive solution which should be kept

for the reproduction, that is, selecting the same solution with a higher

probability.

Selection. The purpose of the selection operator is to emphasize more

promising solutions over the bad ones (in terms of the fitness value). Se-

lection takes place at two points during the execution of the algorithm:

• selection of individuals for the reproduction (operator ν1 in Algorithm 3)

• selection of new individuals for the next generation (operator ν2)

New individuals, also called the offspring, are created by applying the

crossover mechanism and/or mutation. Following that terminology, the

solutions from which the offspring are created are named parents. The

main point of the crossover is to recombine the genes of the individuals

for finding either more fit individuals or exploring new regions of the so-

lution space. On the other hand, mutation changes the genes without

considering the fitness value of the individual. This is to ensure that

small variations from the best solutions are always present in the pool to

avoid too fast convergence. Convergence in the GA domain is tied to the

diversity of the population, and when the population is dominated by rel-

atively small number of similar individuals, the algorithm is considered

to have converged. However, the mutation can also have negative effects

if the scheme and the frequency of mutations is set up inappropriately.

The search in this case can lead to a random walk behaviour.

The second selection operator functions after the creation of the off-

spring and the purpose is to choose the individuals based on both the par-

ent set and the offspring set. Selection can choose from solutions present

only in the offspring set or from both sets. The scheme when only the off-

spring set is taken into consideration is called the replacement strategy.

Selection operators are often characterised by their selective pressure,

which is defined as the speed at which the best solution will occupy the

entire population by repeated application of the selection operator alone.

If this pressure is too high, the algorithm produces similar, if not exactly

the same solutions, and loses diversity of the solution pool which hinders

the exploratory abilities. With low selective pressures, the diversity is

preserved but at the expense of the slower convergence.

Selection operator called elitism is one of the widely used selection oper-

35

Variable Selection

ators. The main idea of elitism is to simply copy the best individuals from

the parental set into the next generation. With this approach, during the

execution of the GA, the fitness value never deteriorates and prevents the

drift caused by the random mutations.

Reproduction. In the reproduction step, the new individuals (offspring)

are generated based on the current pool of solutions (parents). Crossover

operator is responsible for creating new solutions by recombining the genes

of the parents. The premise is that both parents contain “good” genes for

specific regions of the search space, and that their combination produces

a solution having all the good genes. Second stage in the reproduction is

the mutation step (although not mandatory). With mutation, small alter-

ations are performed on the genes to introduce more diversity and keep

the solution pool from stagnating.

Based on the encoding of the solutions, crossover operators can be cate-

gorised into two classes: binary and real-valued. Binary encoding is men-

tioned in Section 2.2.3, while real-valued approach is used when the vari-

able scaling approach is adopted, and this is explained in Section 2.3.1.

Important issue in the reproduction stage is the stochastic nature of the

crossover step, that is, recombination is performed with a certain proba-

bility. The probability is set to a high enough value to ensure that new

individuals are created, but this method also guards against quick drifts

from the best solutions caused by a weak version of the elitism selection

operator.

Stopping conditions. All of the previously mentioned operators are ap-

plied in each generation until a predefined stopping condition is met. The

simplest approach is to put a limit on the number of generations created

by the GA. Other conditions involve the time constraint, testing the con-

vergence of the algorithm, diversity measurements among the individu-

als [58], no change in the objective function value for a number of consec-

utive generations, and many others.

Parallel Implementations

Genetic Algorithm uses the operators on a population of independent so-

lutions, and this observation makes it easy to adapt and distribute the

workload on parallel architectures. The distribution of the population is

the first step in implementing the GA for a particular problem. Population

can still remain as a single set of solutions, or it can be divided into sev-

eral smaller groups which is also called the GA with multiple populations

36

Variable Selection

(depending on the point of view). In the multiple population approach,

another consideration must be taken into account – communication pol-

icy between populations. Populations can be completely separate, and this

approach is just a GA with different initial populations with the difference

that the algorithm is executed multiple times in parallel. If there is com-

munication between the populations, the adopted policy must specify the

pattern of communication: the number of individuals to exchange and the

rate of exchange, which incurs additional burden on available resources

in the network. The exchange should not overtake the computational re-

sources away from the core operators of the GA and must be kept at a

minimum.

Parallel GA allows dividing a larger problem into smaller ones, where

each small problem is tackled on a unique processor. Among the many

possibilities for this division, the most common classification of parallel

GA is the following: single-population master-slave GA [59], multiple-

population GA, fine-grained GA, and hierarchical GA. We briefly explain

the first two categories that are relevant for Publication VII and Publica-

tion VIII.

Master-slave single GA. In the master-slave topology, one master proces-

sor or node is responsible for the sequential part of the GA – selection

and reproduction, while all the other nodes or slaves are devoted for eval-

uating the fitness values of the individuals. Communication consists of

sending individuals from the master node to the slaves (first direction),

and after evaluation, the slaves send the computed fitness values back to

the master node to be used in the core part of the GA. This approach is

still a simple GA with only one population where the workload is spread

among the available resources. Two extra steps are added to Algorithm

3: one before (master to slave) and one after (slave to master) Line 5 that

involves evaluation of the individuals.

Multi-population GA. Contrary to the master-slave approach which still

retains a single population, in the multi-population GA the pool is divided

into groups, also called subpopulations. These subpopulations exchange

information by migrating some of the individuals between themselves.

This policy is controlled by several parameters: the rate of migration – at

which points of the algorithm the migration occurs, the number of migrat-

ing individuals, the pattern of migration – the source and destination of

one pair of nodes in the policy with multiple choices available, and the se-

lection of individuals for migration. The multiple-population parallel GA

37

Variable Selection

is also know as the island model, since small subpopulations resemble

separate islands and possible interconnections between them.

Synchronisation schemes. Another important aspect in the parallel im-

plementations is the synchronization scheme which can be classified into

two types: synchronous and asynchronous. Both of these types are appli-

cable to all parallel categories of the GA. In the synchronous approach,

all the processors have the same population at their disposal, while the

communication exists in order to synchronise the processes. This leads

to the scenario where faster machines have to wait for the slower ones to

finish their respective jobs. Once all the jobs are executed, the algorithm

continues onto the next generation. The asynchronous case is designed to

prevent such situations, that is, all the machines execute the code without

any delay resulting in much less idle time.

Genetic Algorithm for Multi-Objective Optimization

Multi-objective (MO) [60–62] optimisation is the case when at least two

conflicting or competing objective criteria are present in the problem and

all of them need to be optimised. In the case of two (minimisation) objec-

tives, this is expressed as

min
S

F(S) = {F1(S), F2(S)} (2.5)

with the possibility of both equality and inequality constraints.

Instead of finding the global optimum as in the single objective func-

tion problems, the goal in multi-objective optimisation is to find the global

pareto-optimal set. This set contains the solutions which are non-dominat-

ing with respect to each other in the objective function space, that is,

where one solutions Si1 has a better value for a particular objective func-

tion, say F1, than another solution Si2 , but solution Si2 has a better con-

tribution in a different objective F2. In this case, one solution cannot be

chosen over the other just based on the values F1 and F2, and the goal is

to return both Si1 and Si2 (and possibly many other solutions) which form

one of the pareto sets. The pareto-optimal front is a set of values in the

objective space which are non-dominating. If the solutions Si are members

of pareto-optimal set, then their corresponding objective function values

F(Si) lie on a pareto-optimal front.

Once the pareto set is returned, one can choose a solution based on

certain preferences. A simple example is that of quality to price ratio,

where one objective is to reduce the cost (minimise F1) and the other to

38

Variable Selection

have higher quality (maximise F2). Figure 2.1 shows this example with

two pareto fronts (one local and one global), and three solutions (A,B,C)

showcasing the concept of (non)dominance. Two solutions A and B lie on

a global pareto-optimal front (line l1) with A having better quality than

B (maximise F2), but suffering in price (minimise F1). Third solution C

belongs to a local pareto front, and is inferior to both A and B in both

objective functions.

price (F1)

q
u
a
li
ty

(F
2
)

C

B

A l1

l2

Figure 2.1. Global pareto-optimal front (line l1) and local pareto front (line l2). For fur-
ther details refer to the preceding text.

Finding the global pareto-optimal front cannot be guaranteed, but the

algorithms designed to tackle this problem must have two properties: gen-

erating solutions along the currently found pareto fronts and looking for

the new pareto fronts.

For a GA approach which involves the reproduction phase, there is a

possibility to construct the solutions which are dominated by other solu-

tions in the population. They are discarded since there is at least one

individual in the pool that dominates them, which leads to a problem how

to efficiently generate non-dominated ones. The most widely used ver-

sion for the GA based procedures is the Elitist Non-Dominated Sorting

Genetic Algorithm (NSGA-II) proposed in [63]. NSGA-II algorithm has

two basic steps: sorting solutions based on the dominance factor and the

elitism selection. The first stage is to ensure that the best individuals in

terms of all objective functions are kept for the recombination phase to

generate new solutions from the same pareto fronts. The second stage

uses elitism in order to keep the pareto fronts intact and passed to the

next generation. In the algorithm, the population size does not change,

and the current number of solutions in several pareto fronts might not

fully populate the next generation. For this reason, the least prominent

front (the last one to be included) needs to be split since the interest is

only in the set of diverse solutions to supplement the remaining positions

39

Variable Selection

for the next generation. This is accomplished by using the crowding dis-

tance, a metric measuring the distance between the individuals in the

objective function space, instead of the solution space. Most of the genetic

algorithms for the MO have a hyper-parameter controlling the population

diversity which needs to be chosen beforehand. NSGA-II does not have

such a hyper-parameter making it an attractive method for the MO. More-

over, the diversity measurement is mainly focused in the solution space.

The sorting in the NSGA-II is done by a careful book-keeping to speed up

the execution time, but both the current population and the offspring are

taken into account effectively doubling population size.

2.3 Variable Scaling and Projection

2.3.1 Scaling

Variable scaling tries to go beyond the pure selection problem. The indica-

tor variables Ij provide the information about whether the feature is im-

portant or not, and all of the selected variables are given an equal weight.

In the scaling approach, the goal is to provide a ranking with weights w

with the usual interpretation that wj1 > wj2 signifies that a variable Xj1

is more important than a variable Xj2 . This can be also seen in the case

of simple linear regression yi =
∑d

k=1w
kxki where the coefficients indicate

how much each variable contributes to the output yi. However, this means

that the coefficients are unbounded and the usual method is to constrain

them to the [0, 1] range where extreme values have the same interpreta-

tion as in the selection problem. In this setting, the scaling method is a

more general problem than the pure selection.

Although scaling offers greater flexibility than the selection, the main

drawback is the increased solution space to explore. Since the weights

take values from [0, 1] range, there are theoretically infinite number of so-

lutions, but due to the numerical representation of the real values on com-

puter hardware that number is finite albeit still massive. This fact alone

prevents neighbourhood based algorithms discussed in Sections 2.2.2-2.2.4

to be used for this problem. One solution is to split the [0, 1] interval into

equally sized segments or subintervals, that is, to form a discrete neigh-

bourhood structure. The newly created set of possible weights contains

values that are equidistant from each other. For example, the division

40

Variable Selection

can be done to form a set H = {0, 0.5, 1}. Usually, there is a parame-

ter h that controls the number of subintervals. For the given example of

H = {0, 0.5, 1} we have h = 2 and H = {0/h, 1/h, 2/h}. Given a parameter

h with a positive integer value, the set of weights is formed by forming

H = {i/h | i = 0, 1, . . . , h}. The set H will be referred to as a set of weights

or a set of scaling weights.

With effectively discrete set of weights H, the neighbourhood structure

can be defined in different ways according to the goal of the optimisation.

For example, the neighbourhood can be defined as a set of solutions where

the weight for a single variable Xj is modified to the closest value of wj ,

i.e.,

Ne(w) = {wc | |wj − wj
c | = 1/h ∧ wj

c ∈ H, j = 1, . . . , d}. (2.6)

Another solution is to allow all possible changes for a single feature as

Ne(w) = {wc | wj
c ∈ H \ {wj}, j = 1, . . . , d}. (2.7)

The difference between these two definitions is the trade-off between

exploration of the space and the execution time, as the size of the neigh-

bourhood in the first definition is at most 2d while in the seconds defini-

tion it is hd. Those numbers indicate how many solutions are examined

at each iteration during the descent/ascent phase. In the former case, the

moves are made quicker but the examination of the state space is slower,

while in the latter case each move takes more time while the exploration

is much faster.

In the case of scaling the data set, each dimension is modified according

to its weight factor

(xji)
S = wjxji , i = 1, . . . , N, j = 1, . . . , d . (2.8)

This way, a new data set is formed, which has at most d variables. The

dimensionality depends on the scaling weights, and when all wi �= 0 the

new data set XS has the same dimensionality as the original data set. On

the other hand, it is possible to transform the data set using a linear pro-

jection, with the explicit specification of the dimensionality of the newly

created data set.

41

Variable Selection

2.3.2 Projection

Projection approaches are a commonplace in machine learning. The idea

is to map (project) the data into a different transformed space which has

desirable properties. One of the properties that had a significant impact

on the learning algorithms is the linear separability for the classification

task – finding an embedding in which two classes can be separated by a

hyperplane. Different methods try to perform this specific task in a vari-

ety of ways, ranging from the Support Vector Machines and the closely re-

lated kernel methods, neural networks with transformations represented

in the hidden layers and interconnections [4, 64] and the linear models

with basis functions [1] to name a few. Many of these methods are based

on the nonlinear projections where the goal is to have low training (mis-

classification) errors on the available data. As mentioned in Section 2.1

many of the algorithms take all the inputs as equally important which

can lead to the overfitting issues.

While nonlinear approaches can provide flexibility and accuracy, linear

projection based methods offer speed for the reduced representational ca-

pabilities. The most well know linear projection based method is the Prin-

cipal Component Analysis (PCA) (see [22] or [1, Chapter 12]) where the

goal is to find a linear subspace where the data retains maximum vari-

ance. A different perspective which provides the exact same solution is

the minimisation of the mean-squared reconstruction error between the

original and the latent spaces.

On the other hand, it is possible to explicitly specify the projection ma-

trix P to linearly project the data and compute the optimisation criterion

of choice. Given the matrix P = [aij], i = 1, . . . , d, j = 1, . . . , k of size d × k

the data is first cast into the new space

XP
N×k = XN×dPd×k (2.9)

and then the relevance criterion is computed on this newly constructed

data set XP
N×k. In this setting, scaling is a special case since it can be

represented as a d× d matrix with the weights wi on the main diagonal of

the projection matrix, i.e.,

42

Variable Selection

PS =

⎡
⎢⎢⎢⎢⎢⎢⎣

w1 0 . . . 0

0 w2 . . . 0
...

...

0 0 . . . wd

⎤
⎥⎥⎥⎥⎥⎥⎦
d×d

. (2.10)

A good property of the projection method is the ability to linearly trans-

form the data set to a lower dimensional space when the matrix Pd×k has

less columns than rows k < d. However, the number of parameters in

Pd×k is dk, and all have real values from R, and thus the problem be-

comes even harder compared to the scaling problem with d parameters

in a limited range. Furthermore, the correct value of k, the number of

dimensions to project to, is an additional parameter that has to be opti-

mized. The advantage is the manual choice of k, enabling full control of

the dimensionality of the formed data set XP.

2.4 Delta Test

Delta Test (DT) is used as a relevance criterion in many publications in

this thesis. It is a noise variance estimator which tries to provide the in-

formation about the training error that can be achieved on the available

training samples. If the functional dependence between the inputs xi and

the output yi is given by Eq. (2.2), with the usual assumption of indepen-

dent and identical distribution for the noise term, i.e., ε ∼ N (0, σ2), then

the Delta test returns an estimate of σ2. This can be useful before build-

ing any model as it provides a priori estimate of the nonlinear correlation

between the inputs and the output. It is a nonparametric noise estima-

tor based on the nearest neighbour principle. The nearest neighbour of

a point is defined as the unique point which minimizes a distance met-

ric to that point. Distance metric is usually the Euclidean distance, but

other metrics can also be used. It is based on the hypothesis coming from

the continuity of the regression function. If two points x and x′ are close

in the input variable space, their corresponding outputs f(x) and f(x′)

should be close in the output space. If this is not the case, one possible

explanation is that this effect is due to the influence of the noise.

The use of the DT for variable selection is suggested in [13] with the idea

of finding the subset of input variables such that the DT is minimised,

that is, the subset of variables that represents the relationship in the

most deterministic way.

43

Variable Selection

DT is a special case of the Gamma test, another noise variance estimator

suggested in [65]. The difference is that the Gamma test contains a single

parameter p that controls the number of nearest neighbours needed to

compute the estimate. DT is based only on the first neighbour of a sample

in the input space, and thus removes this hyper-parameter completely

providing fully nonparametric approach. For the proof of convergence of

the DT to the true value of the noise variance see [14].

Let us denote the nearest neighbour of a point xi ∈ R
d as xNN(i). The

nearest neighbour formulation of the DT estimates the variance of the

noise ε by

E
[
ε2
] ≈ 1

2N

N∑
i=1

(yi − yNN(i))
2 , (2.11)

where yNN(i) is the output of xNN(i). For the variable selection problems,

the goal is to minimize the value of the criterion (2.11) as this value rep-

resents the MSE that can be reached without overfitting. Thus, a lower

value of the DT implies a better selection of variables [13].

2.4.1 Computation of Nearest Neighbours

Nearest neighbour search is an optimisation technique for finding the

closest points in metric spaces. Specifically, given a set R of N reference

points and a query point q (both the set and a point are in the same met-

ric space V), the goal is to find the closest or nearest point c ∈ R to q,

i.e., c = argminj{d(rj , q), rj ∈ R} where d(q, p) is the distance metric be-

tween two points q, p ∈ V . Usually, V is a d-dimensional space R
d and

the distances are measured using Minkowski metrics. The search is also

generalised for a set of query points Q, and the goal is to find either a

nearest neighbour or k nearest neighbours to all query points in Q. In

the DT computation, the sets R and Q are equal, and it is the data set

X that is taken as both the reference and the query set. In this setting,

when searching for the nearest neighbour of a sample q = xi, the search

actually finds the two closest points c1, c2 and discards the closest point c1
since that is the query point itself xi.

Naive Approach

To compute the DT value (2.11) for a certain solution S, the closest neigh-

bour for each sample needs to be found in the input space. The simplest

way, called the naive approach or brute force, is to find NN(i) for each

44

Variable Selection

sample independently of others. This method is computationally very de-

manding since the running time is of O(dN2) order. When coupled with

the variable selection, this further introduces additional burden as cer-

tain previous calculations are discarded completely. If Euclidean metric

is used to compute the nearest neighbours, i.e.,

‖ xi − xj ‖22=
d∑

l=1

(xli − xlj)
2 (2.12)

then the squared differences computed for one solution S1 are lost even

though they might be required for another solution S2 if the two solutions

have at least one common variable included S1 ∩S2 �= ∅. One possibility is

to store all the possible squared differences across all samples and all the

features, resulting in a large matrix of size N(N − 1)/2× d. For data sets

of moderate size this approach is feasible on today’s computer hardware,

but for large data sets with N > 1000 even this method requires a lot of

computational time.

Data Structures for Nearest Neighbours

To overcome the naive approach and its computational drawback, other

methods have been proposed [66,67] which use the data structures based

on the decomposition of the multi-dimensional spaces. The main advan-

tage of any decomposition based algorithm is the running time of the

query searches, reducing the run time from O(dN) to usually O(c logN)

with c a factor depending on dimensionality d of data. This is a huge im-

provement for a query time, although certain amount of time and space

are needed to construct the initial underlying data structure. Space re-

quirements also enable more compact representation of the data and these

vary depending on the algorithm being employed. One of the most well-

known algorithms for the nearest neighbour search is the kd-tree [68]. For

this algorithm and a reference set with N points and d attributes, the first

phase that builds the tree requires O(dN logN) time and O(N) space. For

a new query point q, the expected computation of the query search takes

O(logN) time. However, even this widely used decomposition suffers as

the dimensionality increases as constant factors hidden in the asymptotic

running time grow at least as fast as 2d.

45

Variable Selection

2.5 Contributions and Results

This section presents the contributions in the domain of variable selection

coupled with the Delta test as the main relevance criterion.

2.5.1 Fixed Scaling (Publication II)

In many real world data sets, the number of samples is sometimes so

large (N > 10000) that optimizing the scaling weights takes a considerable

amount of time. When the nearest neighbour based methods are used this

optimisation requires close to O(dN2) computations for a single iteration.

One approach to solve this would simply be to randomly discard some

portion of the samples in order to speed up the calculation time, but there

is a risk of losing valuable data and there is no clear method to select

important samples. Instead of removing the samples, a different strategy

involves drastically reducing the number of variables by forcing most of

the scaling weights to have zero value (wi = 0). To achieve this goal, an

additional constraint is added to the problem which requires that at most

df scaling weights have non-zero values. Therefore, df variables are fixed

to be included in the final scaling vector and the remaining d−df weights

are forced to zero, effectively changing the dimensionality of the data set.

For both scaling problems (the standard and with fixed df variables)

any search algorithm can be easily modified to include the additional con-

straint that simply excludes any solution with excess variables. A differ-

ent approach would be to consider this as a multi-objective (MO) optimiza-

tion problem [60], where one objective is the main relevance criterion, and

the other objective is the minimisation of the absolute difference between

the number of non-zero scaling weights and the desired value df , i.e.,

F1(w) = relevance criterion with the scaled data set

F2 (w) =
∣∣df − ∣∣{wj �= 0 | j = 1, . . . , d

}∣∣ ∣∣. (2.13)

This approach is suggested in Publication II with the value df fixed to

the half of the total number of variables in the data df = d/2. Table 2.1

shows the DT values obtained with the standard scaling approach and the

version with the fixed number of variables and their computational times

on several time series.

The underlying search algorithm is the Genetic Algorithm and the com-

plete setup is described in the Publication II. Results presented in Table

2.1 are average values of the Delta test over 10 repeated runs of the al-

46

Variable Selection

data set DT time (s)

standard fixed standard fixed

Santa Fe 0.0075 0.0081 46.3 74.1

Poland electricity 0.0347 0.0379 83.2 102.5

Housing 0.055 0.066 35.7 50.1

Tecator 0.0102 0.0107 31.1 55.3

Table 2.1. Performance of the standard and the fixed scaling in terms of the DT values
Eq. (2.11) and the execution times.

gorithm. Overall, having all variables included enables to explore wider

solution space and to reach smaller DT values compared to the fixed scal-

ing approach. On the other hand, DT values with half the number of vari-

ables provide reasonably good results which can benefit any modelling

method that follows variable scaling as the dimensionality is greatly re-

duced. The running time is increased for the fixed scaling even though the

nearest neighbour search is done in a reduced feature space. This is the

downside of the multi-objective approach using the NSGA-II algorithm

where it is necessary to sort which solutions should be kept for the next

generation. This extra effort comes at the additional computational cost

surpassing the execution time for the standard scaling method.

2.5.2 Combining Scaling and Projection (Publication II)

Consider the actual regression problem given by Eq. (2.2). One tries to

build one or more models on the available data in order to predict the

unseen samples. When it comes to the predictive power, the model com-

bining or model ensembling approach provides much better accuracy than

any model considered alone [69,70]. This issue is further discussed in Sec-

tion 3.3. In the model combining approach, some form of model averaging

is used to combine different behaviours of the models into a more powerful

method.

Variable selection can be considered as another form of combating the is-

sue between the model selection and the model combining. A single model

in this strategy is a model M1 = M(S1) trained on a solution S1, that is,

a subset of variables. A different model for the model combining is the

same model M but trained on a different solution S2, i.e., M2 = M(S2).

This way we obtain a set of models M = {M1,M2, . . . ,ML} trained on L

different solutions {S1, S2, . . . , SL}. The purpose is then to find the model

weights to obtain a final model Mf
∼= ∑L

i=1w
iMi where ∼= indicates the

47

Variable Selection

final model is an assembly of all other trained L models.

Similar principles can be applied to both variable scaling and variable

projection. Instead of just building a single scaling solution, or a single

projection solution, the problem can be attacked with both methods. This

combination aims to shape the data and has the following form:

XSP
N×(d+k) =

[
XS

N×d,X
P
N×k

]
, (2.14)

where XS is the scaled version of X (Eq. (2.8)), XP is the projected version

of X (Eq. (2.9)), and XSP is the new scaled and projected input matrix.

The new matrix that needs to be optimized has the form:

PSP =

⎡
⎢⎢⎢⎢⎢⎢⎣

w1 0 · · · 0

0 w2 · · · 0
...

...

0 0 · · · wd

a11 a12 · · · a1k

a21 a22 · · · a2k
...

...

ad1 ad2 · · · adk

⎤
⎥⎥⎥⎥⎥⎥⎦
d×(d+k)

, (2.15)

︸ ︷︷ ︸
PS

︸ ︷︷ ︸
PP

where PS is the same as in Eq. (2.10) and is responsible for scaling the

data, while PP is the “classic” projection given by Eq. (2.9).

With the combination of scaling and projection, the optimisation stage

should be able to reach a value F (relevance criterion) that is not worse

than the value obtained using scaling or projection alone. This observa-

tion can be seen from the following two special cases. In the first special

case, the projection columns are set to zero values, i.e., PP = 0, and we

have XSP =
[
XS,0N×k

]
. This special case is just a scaling problem with

the additional zero columns that do not influence the search process, but

only increase computational time. The second special case is similar, with

all the scaling weights set to zero PS = 0, and we have the new data set

XSP =
[
0N×d,X

P], which is a pure projection problem with the extra com-

putational cost. These two extreme cases suggest that by allowing both

the scaling weights in PS and the elements in PP to have real values, it

becomes possible to find solutions that are at least as good as the solutions

for either the scaling or the projection problem.

Optimisation of the combined scaling and projected approach has a total

of d + dk = d(k + 1) parameters, compared to the pure scaling with d and

the projection with dk parameters respectively. The difference between

the combined method and the projection alone is only d parameters, which

is also the difference between the two projection matrices of sizes d×k and

48

Variable Selection

data set DT time (s)

DTSP-1 DTFSP-d/2-1 DTSP-1 DTFSP-d/2-1

Santa Fe 0.0056 0.0061 49.8 81.2

Poland electricity 0.028 0.03 84.3 113.5

Housing 0.046 0.047 34.2 69.3

Tecator 0.0029 0.0038 32.8 58.8

Table 2.2. Performance of the combined scaling and projection method in terms of the DT
values Eq. (2.11) and the running times. DTSP-1 is the scaling and projection
with one dimension, while DTFSP-d/2-1 is the scaling with the fixed number
of variables (half the data set) plus the projection with one dimension.

d × (k + 1). Instead of projecting to more and more dimensions it might

be fruitful to include scaling to replace that extra dimension. Projection

is more difficult to optimise as it includes more local optima compared to

the scaling approach. By including scaling instead of an extra projection

dimension, the returned solution should in principle contain the good so-

lutions from the pure scaling. The extra dimensions from the projection

part are included to offer more flexibility compared to the scaling alone.

On the other hand, in terms of the computational speed, the combined

method takes much longer time since we are increasing the dimensional-

ity from k dimensions in the projection to k + d dimensions.

The combined approach can be extended to include the fixed version of

scaling explained in Section 2.5.1 if that approach is necessary for the

problem.

Table 2.2 shows the DT values with the same setup as in the previous

section. Two methods are presented: 1) scaling and projection using only

one extra dimension (labelled DTSP-1) and; 2) fixed scaling with half the

variables in the data set and the projection using one extra dimension

(labelled DTFSP-d/2-1).

The results in Table 2.2 are directly comparable to those given in Table

2.1. Out of all given methods, the scaling plus projection with one ex-

tra dimension produces the lowest DT values on all data sets. Including

the fixed scaling in this approach has the similar effect as it did in the

scaling method alone: the DT values are close to the version without it,

while there is a significant increase in execution time. Having one extra

projection dimension can help drastically when optimising the DT which

can improve the predictive performance of the models in the subsequent

stages.

One question that remains is whether one projection dimension is enough

49

Variable Selection

since using more than one can further decrease the DT value. However,

this introduces another hyper-parameter into the complete methodology

which can prove to be prohibitive if some form of the validation procedure

is used. Next section describes how to automatically choose the adequate

projection dimension for this type of a problem.

2.5.3 Selecting Number of Projection Dimensions (Publication
I)

For both the projection approach and the combined scaling plus projection

method one needs to choose the appropriate value for k in Eq. (2.9) and

Eq. (2.15). One method to automatically choose the suitable value for k

comes from the following observation. Consider the case when the projec-

tion matrix Pd×k has one column k = 1, and suppose that by optimizing a

relevance criterion we can obtain the value F (Pd×1). Same F (Pd×1) value

can be obtained with k = 2 by setting the second column of the matrix

Pd×2 to zero values. This setting does not have any influence during the

optimisation process, resulting in the same optimisation problem as with

the matrix Pd×1.

Since Pd×2 contains real values, optimising Pd×2 should be able to reach

the value F (Pd×2) that is at least as good as F (Pd×1). However, adding

new d parameters to Pd×1 increases the complexity of the problem, adds

new local optima and the optimisation of Pd×2 becomes more challenging.

This complexity is manifested through the value F (Pd×2), which can be

worse than F (Pd×1), if both optimisation problems are given the same

amount of resources.

The same reasoning applies to the higher values of k. Thus, as k is

increasing, the value of the relevance criterion F should always improve.

In practice, huge number of parameters prevents P matrices with large k

to reach the same results of those cases with the lower k. When optimising

F as a projection problem, there will be a value of k = kp after which

the search procedure is unable to return lower F values. Thus, we can

conclude that the matrix Pd×kp is our best estimate and considering k > kp

values means wasting resources. Assuming the same amount of resources

is spent at each step, at some point of the optimisation the criterion F will

no longer improve and the “optimal” value for kp can be established. On

the other hand, different amounts of effort at each step would quickly

lead to high waiting times even for the smaller values of k. Moreover, the

optimality of each solution Pd×k cannot be guaranteed, and it is difficult

50

Variable Selection

1 2 3 4 5 6 7 8 9
0

50

100

150

noisy variables

nu
m

be
r o

f
lo

ca
l m

in
im

a N= 256
N=8192

1 2 3 4 5 6 7 8 9
10%
20%
40%
60%
80%

100%

noisy variables

so
lu

tio
ns

 c
on

ve
rg

in
g

to
 g

lo
ba

l m
in

im
um

N= 256
N=8192

Figure 2.2. Number of local minima and the percentage of solutions from which the FBS
converges to global minimum.

to justify spending more resources on higher values for k.

The suggested approach is combined with the two fast models Optimally

Pruned Extreme Learning Machine (Section 3.3.2) and Optimally Pruned

k-Nearest Neighbours for two tasks: regular regression for one specific

financial data set and time series prediction.

2.5.4 Optimisation in Large Sample Data (Publication IV)

An interesting phenomenon in the variable selection with the Delta test is

the formation of the solution space when there is a large number of sam-

ples. As the number of samples increases, the DT should return a good

approximation of the noise variance. As suggested in [13], the DT can be

used as a variable selection criterion to discriminate between the impor-

tant variables and the irrelevant ones. The exhaustive search is used to

find the correct subset of variables that fully determine the target vari-

able. In the case of several tens of variables it is not possible to use the

exhaustive search to find out the optimal set of variables. On the other

hand, the transition between the solutions (considering the neighbour-

hood structure described in Section 2.2.3) enables the use of the simple

Forward-Backward Search to find the global minimum.

This comes from the following observation outlined in Figure 2.2 show-

ing a synthetic data set with 3 relevant variables and several irrelevant

ones. There are two cases of interest: small sample size (N = 256) and

large sample size (N = 8192). As the number of samples increases for

the same number of variables, the number of local minima decreases. The

other aspect is that from the most solutions a simple FBS procedure con-

verges to the global minimum.

To reach the global minimum, several or possibly about 20 starting so-

lutions must be generated. During these restarts, a lot of information

about the landscape is ignored. This information can be used to construct

51

Variable Selection

10 20 30 40 50
0

5

10

15

20
Santa Fe

iteration

nu
m

be
r o

f f
lip

s

10 20 30 40 50
5

10

15

20

25
Anthrokids

iteration

nu
m

be
r o

f f
lip

s

Figure 2.3. Number of transitions for two data sets as a function of number of iterations.

more promising starting solutions such that FBS requires less steps to

converge to the local minimum. The restarting idea is of interest in many

domains [71–73].

Long-term memory structures can be used to keep track of different as-

pects of the search process, which in turn are used to generate new start-

ing positions. The most commonly used aspects of variables are constancy

and strong determination. The former notion indicates how many times

a variable is present in the best solutions found, while the latter informs

how much the objective function is influenced by a change of that specific

variable. Other information can be used as well, but for variable selection

it suffices to use only those two. Both of these notions are used in the first

stage of the procedure – the construction phase. Each piece of information

contributes to the energy of a variable E(i), i = 1, . . . , d. The construction

is done by adding a single variable at a time, usually in a probabilistic set-

ting. The probabilities are obtained from the energies in the usual way,

i.e., p(i) = E(i)/
∑d

i=1E(i). After the construction phase, the greedy al-

gorithm (FBS) is used to find the local optimum. The construction phase

and the convergence (descent phase) constitute one iteration of the ap-

proach. This method provides quicker convergence times as the required

number of transitions is reduced compared to the purely random starting

positions. Figure 2.3 shows this effect for two data sets, Santa Fe time

series with 12 time lags as the input regressor and Anthrokids. For Santa

Fe, the restarting strategy reduces the number of transitions to about a

third, while for Anthrokids the improvement is less substantial but better

than the random during all 50 iterations.

2.5.5 Parallel Implementations (Publications VII and VIII)

Variable selection with the Delta test has one huge drawback – the com-

putation of the DT itself, which requires huge amount of time since it is

based on the nearest neighbour search. This issue is tied with both the

52

Variable Selection

number of samples and the number of variables. The computational re-

quirement scales linearly with the input dimension, while the number of

samples has quadratic influence on the running time. Several solutions

are possible to alleviate this problem: 1) better data structures for the

nearest neighbour searches; 2) approximate nearest neighbour computa-

tion to reduce the execution time at the expense of accuracy; and 3) taking

advantage of the high computing architectures available today.

In the domain of parallel GAs there is a trade-off between the execu-

tion time and the number of constructed generations. The performance of

the algorithms can be measured by keeping one of these values fixed and

monitoring the other. For example, the number of generations can be kept

fixed, while measuring the execution time among the tested algorithms.

The algorithm with the fastest execution time is deemed superior over the

other candidates. On the other hand, the maximum allowed computation

time can be set in advance, and in this setting, the algorithm with more

evaluated individuals/generations is favourable over the other variants.

Having more evaluated generations should in theory explore a wider area

of the search space, and thus, return a better solution. The reason for

keeping the execution time fixed is the applicability of this approach for

the time critical tasks.

Publication VIII showcases two possible approaches. One deals with

a network of homogeneous computers while the other is adapted for a

situation of heterogeneous computers with the GPU capabilities. Both

approaches use the GA as the main search algorithm.

Homogeneous cluster. The first approach is the case when several nodes

(computers) have more or less equal processing power. In this situation,

a simple master/slave approach is adopted where one node is devoted to

the computing operators of the GA (sequential part of the GA), while all

the nodes evaluate the individuals in the population. Since transferring

of individuals is a rather expensive step, the algorithm is made so that all

the nodes have one population at their disposal. When the communication

occurs, the master slave only needs to send the random number seed in or-

der for the slaves to find which individuals they should focus on. Another

important step is the computation of the distance tensor which stores all

the pairwise squared differences between the samples for all the features,

i.e., (xli − xlj)
2, i, j = 1, . . . , N , l = 1, . . . , d. This computation is distributed

among the nodes before the execution of the actual optimisation of the

DT. This way, when the actual squared distance is required for a subset of

53

Variable Selection

data set population RCGA pRCGA (np=2) pRCGA (np=8)

Anthrokids

50 0.01278 0.01269 0.01347

100 0.01351 0.01266 0.01115

150 0.01475 0.01318 0.01105

ESTSP’07

50 0.01422 0.01452 0.01403

100 0.01457 0.01419 0.01393

150 0.01464 0.01429 0.0141

Table 2.3. Delta test values Eq. (2.11) for variable selection for the sequential GA (RCGA)
and the parallel version (pRCGA) with different number of processors (np).

variables I among two samples, only the summation over those I tensor

entries is needed.

Table 2.3 summarises this parallel implementation with different popu-

lation sizes and the number of processors. The execution time is fixed to

600 seconds and the problem is pure variable selection. Two data sets are

considered: Anthrokids and a time series from the ESTSP’07 conference

competition.

As expected, with increased population size, as well as with more pro-

cessing power, it is possible to reach smaller DT values than with a se-

quential GA executed on a single CPU.

Heterogeneous cluster. The second approach suggested is when the clus-

ter of machines contains the GPU processing capabilities. Since the mem-

ory capacity of the GPUs is much smaller than the standard system mem-

ory, the approach with the precomputed distance tensor is not viable any-

more. In this situation, using the standard approach for finding the near-

est neighbours is still much faster using a GPU as has been shown in [74].

As the method is developed for the heterogeneous architectures, the nat-

ural way is to consider each node in this network as a separate process

which leads to the island model. Each CPU/GPU pair is considered to be

one island and responsible for one specific population of the individuals.

Since several populations are being evolved at the same time, the question

is how information should flow between the populations. A simple fixed

migration scheme where the best individuals are exchanged between the

populations is adopted. This migration is done after a predefined number

of generations has passed.

Since the migration scheme is fixed, there is a possibility that the faster

machines have to wait for the slower ones to finish their execution. This

can be solved by adjusting the number of individuals each cluster needs to

54

Variable Selection

evaluate. This is done dynamically depending on the performance of the

fastest machine Γf . The populations are adjusted as follows: if Πf is the

total number of individuals for the fastest machine, then each machine Γi

gets the following amount of individuals – Πf · time(Γi)/time(Γf). Thus,

each machine gets a fraction of individuals corresponding to the ratio of

the execution time between the machine in question and the fastest one.

This approach is suitable for situations where there are couple of tens of

thousand of samples and the execution time is of concern.

55

3. Time Series Prediction

This chapter explains the basics of time series prediction, from the start-

ing point to the advanced methods needed to solve one of the problems in

this domain. The prevalent and most important task is how to predict the

future values for a time series based solely on the available past samples.

This issue is addressed with several novel methods: one is designed to

tackle this issue for a small number of samples, while the other contains

implicit ranking of the time lags or previous values most relevant for the

accurate estimation of the future values.

3.1 Basics of Time Series Prediction

Time series prediction is needed in many fields of science and industry. It

is related to the single phenomenon measured over the course of time.

These subsequent measurements (samples) are indexed using integers

which results in a series of values – zt, t = 1, 2, The true time delay

(interval) between between these samples can be anything, for example,

one hour or 10 years, depending on the problem setting. The time indices

t usually form a discrete set ranging from 1 to T , with z1 being the first

measurement and zT the last. For further simplification, we use a vector

notation z to indicate the whole series z = [z1, z2, . . . , zT]. Almost all real-

world time series can be considered stochastic time series, that is, there

is an underlying process or mechanism that generates this series with an

added noise term. This assumption is very useful and also follows broader

class of regression problems represented by Eq. (2.2).

Several problems can be associated with the time series prediction [75,

76], but the most difficult and of great practical importance is the pre-

diction of future values ẑT+1. In this setting, we are interested to use

previous values of z to predict the next value in the sequence. This can be

57

Time Series Prediction

modelled as

ẑT+1 = f(zT , zT−1, . . . , zT−h+1, . . .) + ε . (3.1)

Usually, only certain amount of previous values is taken into consider-

ation, for example, h previous ones. Term h is called the time lag and is

closely related to the problem of model selection. In the ideal setting, the

subsequent measurements are taken at an equidistant sampling interval,

that is, they are equispaced appearing after a constant time frame, for

example, each day in a year, or every hour. This is possible if the measur-

ing instruments are precise and the acquisition is sufficiently easy. In the

environmental modelling community, where most of the data come from

either marine or riverine systems, such an approach is impossible. Most of

the time these series exhibit highly irregular sampling, where the time in-

terval between the successive values can be from couple of days to several

weeks. These and other issues related to the sampling in environmental

data are further discussed in Chapter 4.

Time series analysis is one approach to understand the underlying stoch-

astic mechanism. One of the ”easier“ aspects of the time series is the sea-

sonality. In that case, the time series has more or less recurring pattern

over some period of time. For example, temperature in a local area has

a yearly pattern which depends on the sampling interval. If the mea-

surements are taken every day, this pattern is shown over a range of 365

values. Another aspect is the global or the general trend of the series. A

simple example would be the total amount of the world wealth which can

be considered to be always increasing. This increasing is the global trend

of the series, and in certain situations, that is, certain time series, do not

have an evident global trend.

For over several decades, time series forecasting has only been focused

on providing an answer to the single future value ẑT+1. This approach is

called one-step ahead or short-term prediction. If the practitioner is inter-

ested in more general trend in the future, the same model that was build

to predict ẑT+1 is used to predict the values at time steps T + 2 and be-

yond. The difference here is that the value zT+1 is unknown, and the only

available information at this modelling stage is the predicted value ẑT+1.

This is then used to obtain ẑT+2, that is, the same model f is used where

the series z is extended to include ẑT+1, i.e., z′ = [z1, z2, . . . , zT , ẑT+1], and

the prediction is then done in the following way

58

Time Series Prediction

ẑT+1 = f(zT , zT−1, . . . , zT−h+1)

ẑT+2 = f(ẑT+1, zT , zT−1, . . . , zT−h+2) (3.2)

ẑT+3 = f(ẑT+2, ẑT+1, zT , . . . , zT−h+3)

...

where h is taken to be the maximum number of previous lags used for

prediction. This approach is known as the recursive method of time series

prediction since the same model is used repeatedly for all the successive

steps. The strategy is also known as iterative, one-step-ahead, or contin-

uous prediction strategy.

In the case when several tens or even hundreds of values need to be

predicted, we are talking about long-term prediction. The difficulty in

long-term prediction using a single model is the accumulation of errors

and uncertainties which makes the estimated values highly unreliable.

The solution that has been proposed is the use of the direct strategy [77].

In this setting, for each future value ẑT+k, a separate model fk is build

with the index k indicating the time step the model is built to predict.

This gives the following representation

ẑT+1 = f1(zT , zT−1, . . . , zT−h+1)

ẑT+2 = f2(zT , zT−1, . . . , zT−h+1) (3.3)

ẑT+3 = f3(zT , zT−1, . . . , zT−h+1)

...

The main advantage of this approach is that the prediction is done ex-

clusively on known or available data, and the modelling of the relation-

ship between the lags and the required time step is captured by a model

specifically trained for this task. In practice this provides more stable

and accurate predictions [77]. The disadvantage is the time requirement,

since each model has to be trained separately, and depending on the choice

of the model and required prediction steps k, the training stage can take

a considerable amount of time. The only case when the recursive strategy

provides better performance is when the time series is close to linear in

which case the linearity is captured by the first model f1 or just f .

Another aspect worth mentioning is the case when time series z is ac-

companied by the external or exogenous series zk. The presence of the

59

Time Series Prediction

extra information can be incorporated as part of the input to the model

f . This is especially useful when the number of samples is low, and any

extra addition is valuable for accurate predictions. This issue is discussed

more in Chapter 4 with the application to the benthic data from the North

Sea in the form of multi-factor analysis.

In order to train the model, a suitable data set is required where the

training data consists of known input-output pairs. With h previous val-

ues taken to be the input, a regressor is build by sliding a window of length

h over the complete series, and registering a range of h consecutive values

as a sample for the model. Given the series with T values, the i-th sample

in the regressor has the following values

(xi; yi) = (zi, zi+1, . . . , zi+h−1; zi+h), 1 ≤ i ≤ T − h. (3.4)

Once the data set has been formed, any kind of model can be used in a

supervised fashion. In this approach, the temporal dependency is broken

down into the time lags zt, zt−1, . . ., zt−h+1. The lags now act as features or

variables making the methods from the supervised domain readily avail-

able. Variable selection procedures discussed in Chapter 2 can easily be

applied to this new setting. A solution obtained from a variable selection

method provides an insight into the most important time lags for a specific

time series. For example, for a time series representing daily electricity

consumption, a reasonable lag to select would be the same day of the pre-

vious week, that is, a value zt−7. Another advantage of the representation

given by Eq. (3.4) is that newly developed supervised methods can be di-

rectly applied to the time series data. The one downside to this approach

is the lack of a sound theoretical basis.

A different approach would be to consider prediction as a missing value

problem [78,79] where many future values are considered to be “missing”

instead of being unknown. With this strategy, several future values can be

predicted at the same time with a single model that is taking into account

the dynamics of the time series.

3.2 Basics of Linear Models

In this section, we focus on a class of linear models based on the Box-

Jenkins methodology [75]. These models include auto-regressive (AR), in-

tegrated (I), moving average (MA) and their combination auto-regressive

moving average (ARMA), the auto-regressive integrated moving average

60

Time Series Prediction

(ARIMA), as well as seasonal version (SARIMA). The underlying assump-

tion behind these models is a linear relationship between measurements

themselves z and a linear relationship with random independent shocks

or noise ε. Although the assumption of linearity might be too restrictive

in most cases, these models can be useful as a baseline and are able to

describe homogeneous non-stationary behaviour.

We only give brief descriptions of these models, while their character-

istics, like variance, autocorrelation functions, spectra, stationarity con-

ditions for their parameters are not discussed. This information can be

found in the literature [75,80].

3.2.1 Linear Filter Models

Time series are regarded as the stochastic processes. The assumption

is that there is an underlying mechanism generating the series, but the

nature of this process is random due to the unknown influences which

are then considered as noise. One way to model this mechanism is to

assume that successive values are highly dependent and can be regarded

as generated from a series of independent shocks at. These shocks are

coming from a fixed probability distribution, usually Gaussian with zero

mean and constant variance σ2. This is represented as

zt = μ+ at + η1at−1 + η2at−2 + · · · (3.5)

and the result is a weighted sum around the level or mean of the process

μ. This is simply a linear transformation of shocks, or a linear filter model.

The model representation allows a range of patterns of dependence among

the values of the process zt expressed in terms of the unobservable random

alterations at. The sequence of coefficients η1, η2, . . ., can be either finite

and infinite. Depending on the properties of this sequence, the process zt

can be stationary or non-stationary. Stationary process is obtained when

the sequence is finite, or infinite and absolutely summable
∑∞

i=1 |ηi| < ∞.

Otherwise, the process is non-stationary.

3.2.2 Autoregressive Process

A useful model to represent the time series is an autoregressive process

(AR). In this model, the current value zt is expressed as a finite, linear

combination of the previous values of the process plus a random shock

61

Time Series Prediction

zt = γ1zt−1 + γ2zt−2 + · · ·+ γP zt−P + at . (3.6)

This representation is the autoregressive model of order P . The coef-

ficients γ1, . . . , γP are constants while at is the noise term driving the

process. Sometimes at is called the innovation term and without it, the

AR process is completely deterministic. Sometimes, the modelling is per-

formed on the differences from the mean level μ, z̃k = zk − μ for all values

of k and the Eq. (3.6) is reformulated to include the modified values z̃k

instead of original values zk. For clarity, we assume that μ = 0 and we

omit it from the equations.

Autoregressive process can be transformed into a linear filter model by

substituting each zk with its own representation. For example, with AR

process of order P = 1, zt = γ1zt−1 + at, after m substitutions of zt−j =

γ1zt−j−1 + at−j we have

zt = γm+1
1 zt−m−1 + at + γ1at−1 + · · ·+ γm1 at−m (3.7)

which in the limit m → ∞ leads to a convergent infinite series represen-

tation zt =
∑∞

j=0 γ
j
1at−j provided that |γ1| < 1. Autoregressive processes

can be both stationary and non-stationary, and this depends on the coeffi-

cients γj . Since the AR model can be represented as the infinite series of

shocks, the condition for stationarity is that the coefficients γj are abso-

lutely summable as already mentioned.

The total number of parameters in the AR model is P + 2, with P the

number of γj coefficients and the remaining two parameters are the noise

variance of the added shock term a, plus the mean μ of the time series.

Sometimes the mean is assumed to be zero (in order to simplify equa-

tions), in which case there is one less parameter to estimate. Autoregres-

sive models are popular because their coefficients can be solved from a set

of linear equations and they are good approximators for some practical

time series.

3.2.3 Moving Average Models

Another simple model of great importance is the moving average (MA)

model, where the dependence is made on the Q previous shocks them-

selves

zt = at − η1at−1 − η2at−2 − · · · − ηQat−Q . (3.8)

62

Time Series Prediction

The total number of parameters for this model is Q+1 if we assume zero

mean time series.

Both AR and MA models can be more economically described with the

forward and backward operators that are common in the literature, but

we are keeping the notation simple for the brevity and connections with

the previous chapter. Solving the coefficients of the MA model requires

nonlinear optimisation.

3.2.4 Autoregressive Moving Average

The linear filter model given by Eq. (3.5) where the process is a sum of

random shocks can have an alternative form as a sum of previous values

of the process zt−j [75] under suitable conditions. As a special case, MA(1)

process can be represented as an infinite sum of previous zt−j , j = 1, 2, . . .

values, that is, an infinite autoregressive process. Similarly, AR(1) does

not have a parsimonious representation as a moving average model. In

order to force parsimony and to achieve greater flexibility in fitting of

the actual time series, it is sometimes advantageous to include both the

autoregressive and the moving average terms in the model. This leads to

the mixed autoregressive moving average (ARMA) model:

zt = γ1zt−1+γ2zt−2+ · · ·+βP zt−P +at−η1at−1−η2at−2−· · ·−ηQat−Q (3.9)

The model contains P +Q + 1 unknown parameters that are estimated

from the data. This model is also possible to represent in the form of a

linear filter given by Eq. (3.5). In practice, most occurring stationary time

series can be obtained with the three mentioned models: autoregressive,

moving average, or mixed model, where the lags P and Q are not greater

than 2.

3.2.5 Autoregressive Integrated Moving Average

The majority of the real-world time series encountered in the industry ex-

hibit non-stationary behaviour and do not have a fixed mean μ. Even in

those cases, the broad behaviour of the whole series may be similar if dif-

ferences in the mean μ are allowed for. Such behaviour can be represented

with a more powerful model – autoregressive integrated moving average

(ARIMA) process of order (P,D,Q), where the D indicates the D-th differ-

ence in the series, i.e., z̄t = zt − zt−D, and this modified series is modelled

with an ARMA(P,Q). When D = 0 the model is the standard ARMA(P,Q)

63

Time Series Prediction

describing the stationary process. This model is described as follows

z̄t = γ1z̄t−1+γ2z̄t−2+· · ·+γP ẑt−P+at−η1at−1−η2at−2−· · ·−ηQat−Q . (3.10)

3.3 Nonlinear Approaches

In both machine learning and statistical community, many nonlinear mod-

els have been developed over the years. These vary depending on the task,

from function approximation, density estimation, clustering, visualisation

and dimensionality reduction. In all the approaches, the idea is to build a

single model that will capture the underlying mechanism generating the

data.

3.3.1 Neural Networks

Neural networks comprise of different types of models, such as feedfor-

ward networks, recurrent networks, networks for vector quantisation and

many others [4,64,81]. The basic idea has biological inspirations as early

as 1940’s with the works of McCulloch and Pitts [82] trying to provide a

mathematical representation of information processing in biological sys-

tems. The most dominant and widely used model is the multilayer percep-

tron (MLP) [4] developed from the early perceptron [83] model. The model

consists of at least one hidden layer in addition to the input layer coming

from the actual data. Each layer contains neurons that perform nonlinear

transformations on their respective inputs. These transformations are the

key concept of neural networks and they provide a framework that has the

universal approximation capabilities [84,85].

In this dissertation, we are interested in the feedforward networks and

the structure of such networks is depicted in Figures 3.1 and 3.2. Figure

3.1 shows the layout a of single neuron which constitutes the basic pro-

cessing unit in neural networks. Figure 3.2 presents a general structure

with two hidden layers and each hidden layer comprises of the neurons

depicted in Figure 3.1. The input variables x are the first layer of the net-

work, simply called the input layer. These inputs are then fed to the next

layer by multiplying them with the weights β
(1)
m = [β

(1)
m1, . . . , β

(1)
md] to each

neuron g
(1)
m , m = 1, . . . ,M1, where M1 is the number of neurons in the first

layer. Weight β
(1)
mi , i = 1, . . . , d is associated with the synaptic connection

between the i-th input variable and the m-th neuron in the hidden layer.

64

Time Series Prediction

Figure 3.1. Structure of a neuron (assumed to be m-th neuron in the layer). The neuron
processes information by multiplying the inputs xi with the synaptic weights
βki, after which the summed activation level

∑d
i=1 βkix

i is put through a
nonlinear transformation gm(·) to produce the output ym.

Considering a single sample xi, it is transformed by the first layer in two

steps:

1. Computing activations for each neuron in the hidden layer

Am(xi) =
d∑

j=1

β
(1)
mjx

j
i + bm, 1 ≤ m ≤ M1. (3.11)

2. Transforming the activations using a nonlinear function

g(1)m (xi) = g(1)m (Am(xi)), 1 ≤ m ≤ M1. (3.12)

The term g
(1)
m is used to indicate two things for clarity: the neuron m

in the first hidden layer and the activation function (transformation) for

the same neuron. The bias of that m-th neurons is defined by bm, m =

1, . . . ,M1.

If all the samples are processed in the same manner, the first layer pro-

duces transformed data, which can be written in more compact matrix

form as

H1 =

⎡
⎢⎢⎢⎣

g
(1)
1 (β

(1)
1 xT

1 + b1) · · · g
(1)
M1

(β
(1)
M1

xT
1 + bM1)

...

g
(1)
1 (β

(1)
1 xT

N + b1) · · · g
(1)
M1

(β
(1)
M1

xT
N + bM1)

⎤
⎥⎥⎥⎦ . (3.13)

The size of H1 matrix is N × M1 with N being the number of samples.

65

Time Series Prediction

Figure 3.2. Feedforward neural network with two hidden layers. In this structure, three
levels of synaptic weights are present – β(1) between the input and the first
hidden layer, β(2) between two hidden layers and β(3) between the second
hidden layer and the output layer.

The usual choices for the activation functions gm are the logistic sigmoid

and the hyperbolic tangent tanh

sigmoid(x) =
1

1 + e−x
, tanh(x) =

e2x−1

e2x+1
. (3.14)

When the network has more than one hidden layer, the transformation

process continues by inputting newly acquired H1 to the next layer with

the weights β(2) to obtain H2 and so on. The alternative way that is more

commonly used in the literature is to process one sample through the com-

plete network with the L hidden layers to the obtain output F (xi;β), that

is,

xi
β(1)

→

⎡
⎢⎢⎢⎣

g
(1)
1 (xi)

...

g
(1)
M1

(xi)

⎤
⎥⎥⎥⎦
T

β(2)

→

⎡
⎢⎢⎢⎣

g
(2)
1 (xi)

...

g
(2)
M2

(xi)

⎤
⎥⎥⎥⎦
T

β(3)

→ . . .
β(L)

→ F (xi;β) = ŷi . (3.15)

Here we use the matrix notation given by Eq. (3.13) since it will provide

a convenient representation for a specific type of a network discussed in

Section 3.3.2.

In the case of a single hidden layer networks, the outputs from the hid-

den layer (matrix H1) propagate to the output layer, this time with the

hidden layer output weights β(2) which can be written in the matrix form

H1β
(2). These are the input values for the output layer neuron(s). The

output layer can be linear or nonlinear depending on the problem at hand

or the network structure chosen. In the case of multi-output data, the

66

Time Series Prediction

output layer contains more than one neuron y, but in this thesis we are

only concerned with the univariate data sets. Given the structure of the

feedforward networks, they simply perform a nonlinear function from a

set of input variables to a set of output variables controlled by a vector

of adjustable parameters β. In these types of networks, the information

flows from the input layer to the output layer, and this process is called

forward propagation. Learning these models requires updating the vec-

tor of parameters β which is done by propagating information backwards

from the output layer to the input layer.

The complete flow of information can be generalised to more than one

hidden layer, but a from theoretical point of view, a neural network with

one hidden layer and a linear output can approximate any continuous

function on a compact domain to a desired level of accuracy [84,85]. This

property is noted the as universal approximation, and enables neural net-

works to represent a wide range of functions, although a good approxima-

tion may require a large number of neurons in the single hidden layer.

In recent years, there has been a lot of development in deep learning,

with structures comprising of several layers with a large number of neu-

rons and interconnecting weights and algorithms for their efficient learn-

ing [5, 6]. In this dissertation, all the networks are with a single hidden

layer since training these is much quicker and easier, and as we shall see

in Section 3.3.2, there is an interesting type of the network with incredibly

fast training stage, called Extreme Learning Machine.

Major advantages of the neural networks are their good generalisation

property, applicability to a wide range of regression and classification

problems. The downside is that such models are a black-box type of mod-

els, and interpretation of the adjustable parameters is extremely difficult.

Training. For regression problems, the training stage involves minimis-

ing the error function, usually sum of squared errors across the entire

data, with respect to the adjustable parameters β, i.e.,

E(β) =
N∑
i=1

‖F (xi;β)− yi‖2 (3.16)

with F (xi;β) being the output of the network for sample xi with weights

β = {β(1),β(2)}. This minimisation is highly nonlinear and there are

many local minima, so the optimisation technique is not guaranteed to

converge to the global minimum. Most of the times, this does not pose a

problem provided that several training cases starting from different ini-

67

Time Series Prediction

tial values are performed, and the one with the best generalisation perfor-

mance is chosen as the final model. Since no analytical solution exists to

find the minimum, iterative procedures are used where the parameters β

are updated at every iteration. Most techniques start at some initial point

of the parameters β0 and then move through the parameter space by ap-

plying the update rule of the form βτ+1 = βτ + Δβτ . The update rules

usually employ information of the gradient of the error function. Among

these methods, the stochastic gradient descent is the most well-know tech-

nique. In this approach, the update is performed by adjusting the parame-

ters in the direction of the negative gradient, that is, βτ+1 = βτ−η∇E(βτ)

where η is the learning rate. The updates are performed for a single data

point at a time or some portion of the data instead of the complete data

set. Thus, the gradient is replaced by a coarse instantaneous value, but

when performing many small updates the algorithm proceeds roughly to

the direction of the true gradient. In order to update the weights, the

derivatives ∂E/∂β
(k)
ij are required, and an efficient method to compute

these derivatives is done with the error backpropagation [86] where the

information of the errors is send backwards through the network.

The following five steps summarise the error-backpropagation algorithm:

1. Initialize all the weights of the network to small random values.

2. Select an input vector from the available training set and calculate the

output of the network for it.

3. Compare this output with the corresponding desired response, and cal-

culate all the local errors for the output layer and for the hidden layers.

4. Update the weights accordingly based on the local errors.

5. Repeat steps 2 through 4 until the backpropagation algorithm has con-

verged to a predetermined level of accuracy.

There exist more efficient methods, such as Levenberg-Marquardt and

conjugate gradient algorithm [4,81].

Complexity. Besides the adjustable parameters β optimised in the train-

ing phase, the number of neurons in the hidden layer M is a free pa-

rameter that needs fine tuning. This number must be chosen carefully

to balance between under-fitting and over-fitting which can be done with

the validation methods. Other methods involve regularising the network

weights (weight-decay) [87] or an early stopping approach [88].

68

Time Series Prediction

3.3.2 Extreme Learning Machine

Different from the standard error-propagating algorithms, a fairly new

neural network learning method has emerged in the form of Extreme

Learning Machine (ELM) [89]. The novelty is the complete removal of

any iterative training steps by random initialisation of the hidden layer

input weights β(1) and biases. This random initialisation removes the

weights β(1) in the first layer from the iterative updates in the backprop-

agation algorithm. Since these weights remain fixed during the learning

stage, we can propagate all the samples through the first layer to obtain

the transformed data (Eq. (3.13)). ELM also contains only one single hid-

den layer and with the assumed linear dependency between the hidden

layer and the output layer, we have the following system

⎡
⎢⎢⎢⎣

g1(β
(1)
1 xT

1 + b1) · · · gM (β
(1)
M xT

1 + bM)
...

g1(β
(1)
1 xT

N + b1) · · · gM (β
(1)
M xT

N + bM)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

β
(2)
1
...

β
(2)
M

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y1
...

yN

⎤
⎥⎥⎥⎦ (3.17)

where explicit layer indicator (as a superscript (k)) is dropped since we are

dealing with only one hidden layer having M neurons. The only param-

eters in this network are weights β(2) which can be obtained by solving

the linear system between hidden layer and the output layer, that is, solv-

ing the system Hβ(2) = y. This significantly decreases the training time,

while still retaining good generalisation capabilities. It is also shown that

this randomisation does not hinder the model from having the universal

approximation property [90].

The simple way to find the hidden layer output weights is to use the

Moore-Penrose inverse of a matrix, i.e., β(2) = H†y. The original paper

where the ELM is proposed uses sine and sigmoid activation function, but

the kernels need not be limited to these two only. In several publications

in this thesis, the choice has been among the linear, sigmoid and Gaussian

kernels. The Gaussian kernels are initialised to some random data points

among the samples in data, while inclusion of the linear neurons helps

tackle problems that are highly linear. This is particularly important as

complexity of the model (number of neurons) can be greatly reduced. In

the ELM, the number of data vectors should be higher than the number

of neurons in the hidden layer to avoid overfitting. The drawback of the

ELM is that the number of neurons must often be much larger than when

using backpropagation type algorithms since the input layer weights are

69

Time Series Prediction

assigned randomly and not learned from the data.

Two scenarios in which the ELM is of great importance are: 1) large

amount of data samples, but where the model needs to be trained in rea-

sonable amount of time in order to have a quick insight in the most rel-

evant features and the predictive capabilities based on some validation

set; 2) ensemble modelling where a large number of models needs to be

trained and later to form a weighted average. The second scenario also

arises in variable selection problems where the dimensionality d is high,

and in this situation the ELM offers massive improvements in computa-

tion time.

Extensions of ELM

After the publication of the seminal paper by Huang et al. [90], there

have been many suggestions on how to improve the basic model. These

extensions are focused on selecting the appropriate complexity, having

more reliable parameter estimation and adapting the ELM network for

sequential learning for online types of problems. Among these, the Opti-

mally Pruned ELM (OPELM) [91] provides the most robust results.

OPELM consists of three stages:

1. Construction of the hidden layer weights matrix (Eq. (3.13)) by ran-

domly initialising the weights β(1).

2. Ranking of the neurons in the hidden layer.

3. Selecting the appropriate number of neurons.

The first stage is the same as in the original ELM. This step provides

us with a random mapping to a (usually) higher dimensional space if the

number of neurons is larger than the dimensionality of data. This newly

transformed data is represented by the H matrix (Eq. (3.13)), sometimes

called the feature mapping or the feature space of the ELM. The second

stage consists of ranking these newly created features. For this task,

Least Angle Regression (LARS) algorithm is employed, a method used

to rank the variables in a linear setting. An important feature of LARS

is that the ranking is exact when the problem is linear, that is, the or-

dering of the variables based on their relevance is correctly identified by

the algorithm. The last stage validates how many neurons are needed

for the data at hand. This is accomplished via leave-one-out (LOO) cross-

validation method.

70

Time Series Prediction

Cross-validation [1, 4,20] is one of the most used strategies for evaluat-

ing regression models, and provides an immediate comparison between a

wide range of different model classes. With the cross-validation, the data

is split into folds, where each fold plays a part as a validation set once the

model is trained on the remaining folds. After the validation errors are

obtained across all the folds, the average is taken as a measurement of

generalisation ability for the model. The model with the smallest average

validation error is assumed to be the most appropriate for the given data

set.

When each data sample is taken to be a single instance in a separate

fold, we have what is known as the leave-one-out cross-validation. In the

case of least squares linear regression, the LOO error can be computed

with a single fit of the linear model using the PRESS statistic [92], which

removes the computational burden of training N separate models. If we

denote with P = H(HTH)−1HT, then the leave-one-out residuals for all

the samples are computed with the PRESS formula

ẽLOO =
y −Py

1− diag(P)
. (3.18)

where diag(P) denotes the main diagonal of P, 1 a vector of ones and

division is performed element by element.

Leave-one-out cross-validation is appealing to use as it provides an esti-

mate how the model is going to perform on the future data, that is, it gives

an estimate of the noise variance in the data and it is possible to com-

pare models from different modelling paradigms directly. Besides CV ap-

proach, there are many other model selection criteria developed in statis-

tics, with Akaike’s Information Criterion (AIC) [93] and the Bayesian In-

formation Criterion (BIC) [94] (also known as Schwarz’s criterion) being

the two widely used both in statistics and machine learning communi-

ties. Both of these criteria penalise the training error with an additional

complexity term, or

criterion = trainingerror + Pen(N, κ) (3.19)

where Pen(N, κ) is a function of the number of samples in the data and

the effective number of adjustable parameters in the model. For the ELM

type networks this corresponds to the length of β(2) vector or the number

of neurons in the hidden layer of the network, plus the bias parameter if it

is included. Other model selection criteria also have the similar form with

the penalty term in addition to the training error, such as the Hannan-

71

Time Series Prediction

Quinn criterion [95], Minimum Description Length [96] and many others

[97].

Akaike’s Information Criterion

Akaike developed a criterion based on the information loss when trying to

use an approximate model instead of a “true” model. This loss is computed

with the Kullback-Leibler (KL) divergence [98] between a model and an

imaginary true model. Akaike has shown that using maximum likelihood

approach is a biased estimate of the relative expected KL divergence, and

that this bias is asymptotically equal to the number of parameters κ of

the considered model. This gives the famous formula (multiplied with −2)

AIC = −2 log(L(θ̂|data)) + 2κ (3.20)

where L(θ̂|data) is the likelihood of the data given the parameters of the

model θ, and θ̂ is the maximum likelihood estimate of θ for the model.

When least-squares approach is adopted under the assumption of nor-

mally distributed errors, the AIC criterion can be easily transformed based

on the residual sum of squares (RSS) which is written as

AIC = N log

(
RSS

N

)
+ 2κ (3.21)

where RSS/N = σ̂2 is an estimate of the noise variance from Eq. (2.2). It

is shown that AIC is asymptotically efficient in the sense of selecting the

model which achieves the smallest average squared error over the can-

didate set which is useful when the underlying mechanism is of infinite

dimension [99]. However, the AIC tends to choose overly complex models

with too large model orders in the finite sample data sets. This issue is

addressed by several authors [100, 101] explaining the overfitting prob-

lem in the small sample scenarios. They suggested the second-order bias

correction term to give the corrected AIC or AICc computed as

AICc = N log

(
RSS

N

)
+ 2κ+

2κ(κ+ 1)

N − κ− 1
. (3.22)

The use of AICc is suggested for situations where not enough data is

available for stable estimation of the adjustable parameters. The rule of

thumb is that AICc should be used when the ratio N/κ < 40. On the

other hand, since the second correction term is quite small for the large

values of N it follows that AICc should be used regardless of the number

of available samples.

72

Time Series Prediction

Optimally Pruned kNN

Optimally Pruned k-Nearest Neighbour (OPKNN) shares a similar ap-

proach to the OPELM method. The main difference is in the choice of the

activation function of the network in the hidden layer, which is performed

using the nearest neighbour approach. The search for neighbours takes

place in the data space, i.e., considering original variables Xj . This in

turn completely removes random initialisation from the model, as com-

puting the neighbours is a deterministic step. k-NN is a simple approach

to both regression and classification, where the assumption is that similar

training samples have similar outputs. The notion of similarity between

the samples is usually based on some metric space, where the Euclidean

is the most commonly used.

The hidden matrix H is constructed in the following way. Denoting with

Δ(xi,xk) = ‖xi − xk‖2 the Euclidean distance between the two samples

xi and xk, these distances can be ordered from the smallest to the largest

by fixing one sample xi, i.e., Δ(xi,xk1) ≤ Δ(xi,xk2) ≤ Δ(xi,xkN). The

l-th nearest neighbour for the sample xi is NN(l, i) = kl, that is, it is the

index of the l-th element in the sorted array of distances. Finally, denoting

with yNN(l,i) the output component of the l-th neighbour, the hidden layer

matrix can be computed as

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

yNN(1,1) yNN(2,1) · · · yNN(M,1)

yNN(1,2) yNN(2,2) · · · yNN(M,2)

...
...

yNN(1,N) yNN(2,N) · · · yNN(M,N)

⎤
⎥⎥⎥⎥⎥⎥⎦ . (3.23)

The Euclidean metric can be in principle substituted with any other

measure of similarity between the patterns. OPKNN does not suffer from

the choice of the activations units, since all of them are based on the near-

est neighbours. The only remaining parameter is the number of neurons

in the hidden layer, i.e., the number of nearest neighbours. The upper

limit in this scenario is given by the number of available samples and

it is N − 1. In practice, computing the matrix H can take considerable

amount of time if M is chosen to high. Algorithms to speed up the nearest

neighbours calculations have already been discussed in Section 2.4.1.

3.3.3 Generative Topographic Mapping

The idea behind Generative Topographic Mapping (GTM) is that many

data sets exhibit correlations between the variables which can be cap-

73

Time Series Prediction

tured by the latent or hidden variables. The most well known method in

this domain is factor analysis [102] which is a linear projection from a

lower dimensional latent space to a higher dimensional data space. GTM

is proposed as a statistical counterpart for the Self-Organising Map [4,81,

103] method by means of a constrained mixture of Gaussians induced by

a low dimensional latent space. Although both methods have been devel-

oped for unsupervised learning, such as quantisation, clustering and visu-

alisation tasks, there have been several extensions to adapt both models

for the time series data and temporal information. In the GTM case, the

temporal aspect is captured with the Hidden Markov Model [104,105]. For

the SOM, different approaches have been proposed based on the concate-

nation of the input and the output vectors [106], associating individual

local AR models within each prototype of the SOM [107, 108], and recur-

rent processing [109–112]. Both the GTM and the SOM offer localised ap-

proximation of the data distribution leading to the natural segmentation

of the input patterns. This enables easy identification and clustering of

the dynamics residing in the series. Another advantage of these topology-

preserving models are the simple growing architectures which provide an

automatic selection of the appropriate number of prototypes [113].

The main advantage of the GTM over SOM is modelling of the distri-

bution of the data p(x) via the latent variables and a mapping from the

latent to the data space f : T → X where T is the data representation in

the latent space. This mapping is governed by a set of parameters W of a

model which can be in principle any model. The data from the latent space

of dimension dl is then transformed into an dl-dimensional non-Euclidean

manifold embedded in the data space. On the other hand, the SOM is a

somewhat heuristic method which is not based on any probabilistic latent

variable model.

GTM models the data x as a mixture distribution

p(x|W, α) =

K∑
k=1

p(tk)p(x|tk,W, α) (3.24)

where x is a sample in the data space, α the precision parameter for the

Gaussian distribution and K is the number of prototypes positioned in the

latent space.

The distribution for a point in the data space is modelled as a radially-

symmetric Gaussian centred on f(t,W) with variance α−1

74

Time Series Prediction

p(x|t,W, α) =
(α

2π

)d/2
exp

{
−α

2
‖f(t,W)− x‖2

}
. (3.25)

The distribution for the data itself p(x) can be obtained by integrating

over the latent variables distribution

p(x|W, α) =

∫
p(x|t,W, α)p(t)dt . (3.26)

The choice of the prior distribution for the latent space p(t) is chosen to

mimic the SOM, and it is a sum of delta functions centred on the nodes of

a regular grid:

p(t) =
1

K

K∑
i=1

δ(t− ti) (3.27)

which in turn gives simple representation of the marginal distribution for

the data

p(x|W, α) =
1

K

K∑
i=1

p(x|ti,W, α) . (3.28)

The parameters W and α are obtained using the maximum-likelihood

approach, which are based on optimising the data log-likelihood.

Since the model is a mixture model, an Expectation-Maximisation (EM)

algorithm is used to find the parameter values. The choice of the mapping

f is a generalised linear regression of the form f(t,W) = Wφ(t) where

the elements φ(t) consist of certain number of basis functions φj(t). With

this approach, the M -step in the EM algorithm corresponds to the solution

of a set of linear equations. GTM optimises the data log-likelihood

L(W, α) =

N∑
i=1

ln

(
1

K

K∑
k

p(xi|tk,W, α)

)
(3.29)

with respect to the parameters of a generalised linear regression W and

the precision of the noise α. In the E-step, the responsibility of a mixture

component k for a data point xn is determined as

rkn = p(tk|xn,W, α) =
p(xn|tk,W, α)p(tk)∑K
j=1 p(xn|tj ,W, α)p(tj)

. (3.30)

The M-step involves computing the new weights Wnew and a new value

for the precision αnew. The weights are computed by the solving linear

system

ΦTGoldΦ
TWnew = ΦTRoldX (3.31)

75

Time Series Prediction

where Φ is a matrix of basis functions evaluated at points tk, X the data

itself, R the responsibilities (K ×N matrix with elements rnk), and G is a

diagonal matrix K ×K with accumulated responsibilities Gkk =
∑N

i=1 r
ki.

The new value for the variance is then computed as

1

αnew
=

1

Nd

N∑
i=1

K∑
k=1

rki‖Wnewφ(tk)− xi‖2 . (3.32)

An important note is that the centres of Gaussians cannot move inde-

pendently but are related via the mapping f . If this mapping is smooth

and continuous, the projections of close points ti and tj in the latent space

will map onto points f(ti) and f(tj) which are close in the data space. This

way there exist a topographic ordering that maps the latent grid into the

embedding that preserves the grid structure in the data space.

3.3.4 Relevance Learning

In practice, the GTM method has not become as popular as the the SOM

since the SOM often provides good enough solutions even though it is

more heuristic in nature than the GTM. Another downside of the GTM

is the inherent representation of the noise, or to put it differently, the

data is displayed without regarding the intended goal of the user. This

additional information, or auxiliary data needs to be taken into account

and the model has to be modified accordingly. The user is free to specify

which information in data is relevant for the current situation in the form

of labelled data.

The method based on the GTM where this additional information is in-

cluded is with the relevance learning paradigm [114]. This approach has

been developed for the classification purposes with the idea of ranking or

finding the relevance profile for the features in the data [115]. This profile

is obtained via the appropriate metric learning build into the GTM model

as the extra learning steps after the EM steps.

Relevance learning is a simple technique to adapt the metric of the

prototype-based classifiers. The main idea is to replace the Euclidean

metric commonly used with a weighted form

Δλ(x1,x2) =

d∑
i=1

λi(x
i
1 − xi2)

2 = (x1 − x2)
TΛ(x1 − x2) (3.33)

which corresponds to using a diagonal covariance matrix Λ = diag(λ1, . . . , λd)

or with a completely new Mahalanobis distance matrix Ω

76

Time Series Prediction

ΔΩ(x1,x2) = (x1 − x2)
TΩTΩ(x1 − x2) . (3.34)

This scheme allows both global and local representations, that is, a sin-

gle matrix might describe the complete model (global approach), or each

prototype can have its own local representation given by a dedicated ma-

trix Ωk, k = 1, . . . ,K.

Relevance Learning in GTM

A relevance learning approach can be introduced into the GTM itself, by

substituting the Euclidean metric in Eq. (3.25) either with a weighted

Euclidean metric (Eq. (3.33)) or with a full covariance matrix ΩTΩ taking

into account the correlations between the dimensions (Eq. (3.34)).

Since the GTM is an unsupervised learning algorithm, a suitable way

of introducing label mapping from the latent variables or prototypes onto

the data points in required. Here we assume the problem is classification,

and that data points are labelled where the labels li are coming from a

finite set. GTM gives the probabilistic classification if the prototypes con-

tain labels themselves via the responsibilities rki. This implies that the

labelling can be performed backwards from the samples onto the proto-

types with the following formula

C(tk) = argmax
c

⎛
⎝ N∑

i|li=c

rki

⎞
⎠ (3.35)

that is, the prototype assumes the label of the highest class/label it is

responsible for among all data samples. During the optimisation steps

of the GTM, both E and M steps remain the same with the difference

that the new metric structure is used when computing the responsibilities

(Eq. (3.30)). The optimisation procedure for finding the metric weights is

done with a simple stochastic gradient descent of the cost function. For

the classification problem, the cost function depends on the distances be-

tween the sample xi and the two prototypes that are closest to xi with one

having the same label as xi (C(tk1) = li) while the other prototype has a

different label (C(tk1) �= li). For further details and motivations for the

specific forms of the cost functions see [115].

77

Time Series Prediction

3.4 Contributions and Results

In this section, we present some of the contributions of this thesis for the

Extreme Learning Machines and the Relevance Learning.

3.4.1 Training in Small Sample Data (Publication III)

Accurate estimation of the hyper-parameters of a model requires substan-

tial number of samples. In certain research domains, such as bioinformat-

ics, chemometrics, or biology connected to marine systems, the number of

samples is small, ranging from just a few to a couple of tens. Validation

of a model structure and parameters becomes a difficult task. OPELM

model relies on the leave-one-out estimates of the output and correspond-

ingly uses the LOO error as a criterion of model complexity. The LOO

error itself is a nuisance parameter measuring the noise level present in

the data, and due to the random nature of learning can be susceptible

to overfitting. Low number of samples poses problems for the LOO error

resulting in the estimates with a high variance.

LOO is just one of the model selection criteria introduced in the litera-

ture. Small sample data has been studied extensively in statistics, and

several solutions have been provided using some measure of complex-

ity, such as corrected AIC [101], corrected Kullback-Information Crite-

rion [116], corrected Hannan-Quinn criterion [97] and Mallow’s Cp [117]

to name a few.

Publication III deals with the application of the OPELM (OPKKN) to

the benthic data from the North Sea. The data consists of only 28 sam-

ples collected from the year 1978 to 2005. The benthic data is yearly

data measuring abundance, biomass and the number of species of the

benthic species in a specific region of the North Sea. The data and en-

vironmental modelling is described in more detail in Chapter 4. In this

section, we present some results relevant for the model selection for the

ELM. Table 3.1 shows the difference between two criteria: leave-one-out

cross-validation and Akaike’s Information Criterion (plus the corrected

version), in terms of the predictive capabilities.

Several data sets from the UCI machine learning repository1 are used,

and the setup is done as follows. Each data set is split into a training set

with the low number of samples (20 for all data sets), while the rest of

the data is used as a test set. The average of 500 runs of this procedure

1http://archive.ics.uci.edu/ml/

78

Time Series Prediction

is taken as an estimated risk under the squared error loss (average test

MSE). Both the LOO and the AIC exhibit overfitting in all data sets (the

selection of high number of neurons), while the AICc tends to choose less

complex models resulting in a more reliable predictive performance. This

indicates that a careful choice of the model selection criterion is crucial

in situations where the number of samples is low. Model selection is also

present when choosing the appropriate number of neurons for the neural

network with a single hidden layer, that is, it is tied to the model struc-

ture selection. Corrected Akaike Information Criterion is a good choice

for both of these scenarios which can significantly improve upon the re-

sults obtained with the original AIC and the widely used leave-one-out

selection.

Data set
Criterion

Error range
LOO AIC AICc

Auto price 3.95 4.80 2.45 e+07

Delta ailerons 2.33 3.10 0.91 e+00

Housing (Boston) 2.12 7.40 1.17 e+02

Machine CPU 0.51 1.12 0.29 e+05

Servo 6.12 7.51 2.28 e+00

Stocks 8.59 315 2.85 e+01

US Crime 6.74 8.49 2.99 e+05

Table 3.1. Estimated risk for the tested model selection criteria.

3.4.2 Extreme Learning Machine as a Combination Model
(Publication VI)

One drawback in the basic Extreme Learning Machine method is the

choice of the number of hidden neurons. This has been extensively stud-

ied and many solutions have been proposed based on the different model

selection criteria [118–120], adapting the output of the neurons making it

more stable for regression [121], and the ensemble approaches with many

ELMs trained [122]. The ensemble or combination approach tries to avoid

the problem by constructing a much larger candidate set, i.e., many mod-

els with different number of neurons in the hidden layer, and focusing on

finding the appropriate model weights. The aim is to assign low or zero

weights for the poor models, while better models (in terms of the general-

isation ability) should be given larger weights. Familiar examples of the

ensemble modelling are mixture of experts [1], Adaboost [123, 124] and

79

Time Series Prediction

Bayesian model averaging [125].

Many of the proposed solutions that are based on a specific selection

criterion where several architectures are considered (number of neurons

ranges from 1 to M) can be categorised into two classes: pruning – start-

ing from a large architecture and then removing unneeded neurons; and

constructive – building a large structure from a single or several neurons

and gradually adding more neurons. Both strategies are iterative where

the procedure is stopped once a condition (usually the validation error)

does not improve upon the previous iteration. The output of both strate-

gies is the same – a single model that is deemed “the best” for the data

at hand. The idea proposed in Publication VI is to consider all tested

architectures as the candidate models and then form a weighted aver-

age from all these models instead of picking a single model. The pro-

posed method Extreme Learning Machine-combination can be regarded as

a class of approaches where different combination methods can be paired

with different selection criteria. In the publication, the choice is to use

the commonly employed leave-one-out criterion and the Jackknife Model

Averaging (JMA) [126]. JMA has been recently proposed as a combination

method based on the leave-one-out residuals of the candidate models.

The core idea follows a similar approach as the pruning strategy of the

OPELM. The models start with a fixed number of neurons M . The first

phase is to construct M models where each model Mi, i = 1, . . . ,M con-

tains i neurons in the hidden layer. The difference is that each model

Mi is a submodel of a larger model Mj if i < j. Table 3.2 shows the

results of the predictive capability between the standard ELM model and

the proposed extended ELM model. It should be noted that the results are

shown for the ELM, where selection is done based on the LOO errors, that

is, the best model is selected based on the leave-one-out cross-validation

procedure. Results are computed for several data sets commonly used for

testing regression tasks, and the final outcome is that combining models

can provide substantial improvements over the selection strategy in most

cases.

These improvements do come at an extra computational load, but the

extra computation time is only of slight concern in the small sample data,

as the combination method based on the JMA is a quadratic optimisa-

tion problem depending only on the number of neurons M . It should be

emphasised that the proposed methodology Extreme Learning Machine-

combination is applicable to a broader class of regression tasks, and is not

80

Time Series Prediction

data set ELM∗ ELM(JMA) (%)

Abalone 12.1 9.14 24.77

Bank_8FM 1.085e−3 1.044e−3 3.79

Boston housing 18.0 15.2 15.92

Breast cancer 1.19e+3 1.43e+3 −20.59

Computer activity 35.8 31.1 12.97

Delta ailerons 2.81e−8 2.74e−8 2.57

Servo 0.729 0.614 15.76

Stocks 0.831 0.716 13.85

Table 3.2. Estimated risk (average mean-squared test error) for the selection and com-
bination in the pure ELM model. The last column indicates improvement in
percent.

restricted to the time series data only.

3.4.3 Relevance Learning for Time Series (Publication V)

Publication V extends the relevance learning from the GTM towards re-

gression tasks in time series inspection. The advantage of the approach

is two-fold: a versatile model providing long-term predictions and a rel-

evance profile for the time lags that contribute most to the temporal dy-

namics.

As the GTM is an unsupervised method, Eq. (3.35) gives a way to intro-

duce labelling for prototypes in the latent space. In time series inspection,

the labels li are replaced with the real values of the actual output yi, and

the posterior labelling is done as follows

c(tk) =

∑N
i=1 r

kiyi∑
i=1 r

ki
. (3.36)

This produces a smooth regression function for the samples xi → l(xi),

l(xi) =

K∑
k=1

rkic(tk) (3.37)

and enables computation of the error function (squared error loss)

MSE(λ) =
1

N

N∑
i=1

(
yi −

K∑
k=1

rkic(tk)

)2

− γ

2

d∑
i=1

exp(−λ2
d) . (3.38)

The GTM steps remain the same as explained in Section 3.3.4, where

the new metric computation involves the scaling coefficients for each di-

mension λd (Eq. (3.33)). The regularisation term γ
2

∑d
i=1 exp(−λ2

d) (γ ≥ 0)

is added to enforce sparsity in the relevance profile. The coefficients

81

Time Series Prediction

0 2 4 6 8 10 12 14 16
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.3. Selected time lags for herring time series.

λ = [λ1, . . . , λd] can be updated using simple a gradient approach with

the normalisation performed afterwards. The whole procedure is sum-

marised as Algorithm 4 which is applied to several time series with the

sliding window to produce the data.

Algorithm 4 Relevance learning with GTM for regression.
1: Initialise parameters of GTM

2: repeat

3: E-step: determine rki based on ‖x− t‖2λ (Eq. (3.30))

4: M-step: determine W (Eq. (3.31)) and α (Eq. (3.32))

5: label prototypes (Eq. (3.36))

6: adapt λd coefficients via gradient descent on MSE(λ)

7: normalise and regularise λ

8: until convergence

One of the time series tested is the Herring data set collected as the sea-

sonal spawning stock biomass of herring from the Baltic Sea main basin

measured during 1974-2007. A time window of 16 corresponding to a time

span of 4 years is chosen as a regressor size. The proposed method returns

several lags as more relevant when doing short-term prediction: previous

3 (Variables 4, 8, 12) seasons we want to predict, while lags 13, 14 and

15 have high value due to possible influx of new adults at the present

time, as the period of sexual maturity for herring is around 3 years. The

selected lags are displayed in Figure 3.3.

82

Time Series Prediction

Similar to the approach discussed in Section 3.4.2, the proposed rele-

vance learning method is applicable outside of time series prediction. It

can be employed to other regression data sets making the method more

general.

83

4. Application to Marine Systems

This chapter presents one approach to modelling marine ecosystem re-

sponse with respect to both the global and local climatological factors.

The impact of the climate change on local ecosystems has been studied for

over two decades, from impact of salinity, inflow of fresh water, nutrients,

rainfall and other factors on the local riverine and marine lifeforms.

4.1 Teleconnection Patterns and Climate Indices

Local and regional climates are affected by both the large-scale atmo-

spheric circulation and the surface features [127]. Since the spatial dis-

tribution of surface characteristics remains relatively unchanged, it is ex-

pected that large-scale climatological changes greatly influence changes

in the local climate. Changes in the local climate are often linked to vari-

ations in a more global atmospheric circulation. In order to better un-

derstand these variations, a suitable index or pattern can be developed

that explains the surface climate changes. The term pattern refers to the

teleconnection pattern that explains the recurring and persistent, large-

scale fluctuations of the pressure and circulation anomalies spanning vast

geographical areas. These patterns are usually modes having long time

scales, lasting from several days, weeks and sometimes even several con-

secutive years, thus constituting important part of both the interannual

and interdecadal variability of the atmospheric circulation. Some pat-

terns cover the whole continents and oceans and are thus planetary in

nature. One of the first developed indices is a “zonal index” proposed

by Rossby [128]. Due to the improved understanding of the atmosphere,

more useful indices have been established for the use in regional climate.

One such example is the Arctic Oscillation index responsible for the north-

ern hemisphere weather circulations.

85

Application to Marine Systems

4.1.1 Arctic Oscillation

The Arctic Oscillation (AO) [129, 130] refers to the opposing pattern of

pressure between the Arctic and the northern middle latitudes (around

37 − 45 ◦N). If the atmospheric pressure is high in the Arctic, it is gen-

erally low in the northern middle latitudes (northern Europe and North

America). This case corresponds to the negative phase of the AO. The pos-

itive phase happens when the pressures are reversed – low in the Arctic

and high in middle latitudes. Having an indicator helps explain certain

weather conditions across the northern hemisphere.

In the positive phase, the weather is wetter in Alaska and northern Eu-

rope while being drier in western United States and the Mediterranean.

During this phase, the weather in eastern US is warmer, but making

Greenland colder than normal. In the negative phase, the patterns are

reversed. Strong negative phase brings warm conditions to the high lati-

tudes, and colder weather in the middle latitudes.

During the 20th century, the Arctic Oscillation alternated between its

positive and negative phases. For a period during the 1970s to mid-1990s,

the Arctic Oscillation tended to stay in its positive phase.

4.1.2 North Atlantic Oscillation

The North Atlantic Oscillation (NAO) is one of the most prominent cli-

mate patterns in all season in the North Atlantic Ocean. This phenomenon

is associated with the fluctuation of differences of the atmospheric pres-

sure at sea level between the Icelandic low and Azores high. Similar to

the AO, it goes through the positive and negative phases. Both phases are

basin-wide in intensity and location of the North Atlantic jet stream and

storm track, resulting in the temperature and precipitation changes cov-

ering an area from the eastern North America to the western and central

Europe [131].

In the positive phase, above-average temperatures are expected in easter

US and across northern Europe. This phase is also associated with the

higher precipitation period over northern Europe in winter, and below-

average precipitation over southern and central Europe. The opposite

patterns of temperature and precipitation are experienced in the case

of the negative phase. During the prolonged periods of one dominating

phase, the anomalies can be carried over into the central Russia and

north-central Siberia.

86

Application to Marine Systems

An interesting feature of the NAO is its considerable interseasonal and

interannual variability, with possibly prolonged periods of either positive

or negative phase. For example, the negative phase was prominent be-

tween mid-1950’s through 1978/1979 in which the positive phase (as a

seasonal mean) was almost absent from the observations. After 1978/1979

years, an abrupt transition toward the dominating positive phase has oc-

curred which remained until mid 1990’s. During this period, a substantial

negative phase appeared only twice. Starting from the end of 1995, the

NAO has returned toward predominantly negative phase.

4.1.3 Other Indices

Besides the two mentioned indices, there are other indices [132] explain-

ing weather phenomena for the southern hemisphere, out of which the

most dominant is the Southern Oscillation which gives an indication of

the development and intensity of the El Niño and La Niña events in the

Pacific Ocean. It is calculated using the pressure differences between

Tahiti and Darwin. Some other indices include: Pacific North American

Index (PNA), Pacific/North Pacific Oscillation (EP/NP), North Pacific pat-

tern (NP), Pacific Decadal Oscillation (PDO), Antarctic Oscillation (AAO),

Atlantic multidecadal Oscillation (AMO). A comprehensive list is kept and

updated by the Earth System Research Laboratory1.

4.2 Marine Ecosystems

The impact of the climate patterns on regional conditions has been stud-

ied extensively. These include influence of rainfall [133, 134], ice-sheet

cover [135, 136], fresh water inflow [137, 138] and salinity [139] to name

a few. On the other hand, most of the faunal and floral biodiversity is

strongly dependent on the regional levels salinity, nutrients, oxygen, ni-

trogen among many others. For example, in the Baltic Sea, species compo-

sition of zooplankton generally follow changes in the salinity levels [140].

Salinity, in turn is directly affected by the climatological factors via river

run-off and the influx of saline water from the North Sea [141].

A lot of research has been devoted to understanding the connections be-

tween the climate variability and various levels of marine ecosystem. Sev-

eral publications have shown that major parts of the biological variability

1http://www.esrl.noaa.gov/psd/data/climateindices/list/

87

Application to Marine Systems

can be attributed to the physical fluctuations. Certain species show lin-

ear response to the climate variability in the northern hemisphere, such

as zooplankton in the Northeast Atlantic and the Baltic Sea [142] and

different species of fish [143]. Most notable is the use of NAO in the At-

lantic sector for predicting terrestrial [144], freshwater [145] and marine

ecosystems [146]. Previous results indicated that atmospheric winter cir-

culation is a reasonable indicator of variabilities in macrofauna for the

following spring in the southern North Sea [147]. The suspected media-

tor between the two is the sea surface temperature (SST) which is highly

correlated to the NAO index [148].

The main interest is relating the global climate pattern, such as the AO

or the NAO, to the time series of interest. This approach has been applied

to many marine systems, with the basic idea of correlating potential cli-

mate variables with the regional observations [147]. The basic procedure

is outlined below:

1. Let y be marine time series, such as fish, zooplankton or benthos.

2. Let zj indicate potential climate factors.

3. For all combinations of zj and y:

(a) Fit a model

(b) Validate

4. Two tests are done:

(a) Validation accuracy should be high enough.

(b) Ecological plausibility between two paired time series.

5. If both tests are satisfied, this indicates potential relationship between

the two tested series zj and y.

The standard practice in oceanography and biology is done with a single

factor zj since the goal is identification of the major driving force behind

y. This is Step 3. in the previously described procedure. However, certain

combinations are excluded from the consideration since the major clima-

tological factors, such as the AO and the NAO, are closely related and

usually only one is taken into account. In Section 4.3, a novel method

based on the multiple factors is proposed that improves upon the method-

ology based on a single factor.

88

Application to Marine Systems

Figure 4.1. Study area comprising of five stations of the island of Norderney.

4.3 Multifactor Approach (Publication III)

As mentioned, the NAO was thought to be a reliable indicator of variabil-

ities in macrofauna in the southern North Sea. This relationship breaks

after year 2000 due to the climate shift into a different mode of opera-

tion [149]. In this situation, it is no longer possible to predict the biolog-

ical variability with a linear model. To solve the issue, two possibilities

exist: creating a new index or employing a different model for the task.

Publication III proposes a modified OPELM and OPKNN model for this

problem. Another important issue is that a single global pattern is often

not sufficient to explain changes in the local ecosystem. For this reason,

several other measurements are used to improve the forecast.

4.3.1 Data

Benthic macrofaunal samples are collected in the 2nd quarter during the

period 1978-2005 in the sublitoral zone of the island of Norderney in the

North Sea at five different stations located in water depths between 12

meters and 20 meters. The location of these stations is indicated in Figure

4.1. Each measurement is taken to be yearly representation of the state

of the benthic species in the region. This gives a total of 28 measurements

for the period in question.

The standardized procedure is used to collect the samples from the sea:

a 0.2m2 van Veen grab is used for sampling. A single grab is taken at

each of the five stations. After that, the samples are sieved over 0.63mm

89

Application to Marine Systems

1980 1985 1990 1995 2000 2005

5000

10000

15000

biomass

1980 1985 1990 1995 2000 2005

2000

4000

6000

8000

10000

12000

abundance

1980 1985 1990 1995 2000 2005
5

10

15

20

25

30

35

40

species

Figure 4.2. Benthic time series (abundance, biomass and species number) in the south-
ern North Sea.

mesh size and fixed in 4% buffered in formaldehyde. After sorting, the

organisms are preserved in 70% alcohol. Biomass is determined as ash-

free dry weight per m2. Samples are dried for 24h at 85◦Cand burned for

6h at 485◦C. The species number, abundance and biomass from the five

stations are pooled and treated as replicates for the area. All three time

series are displayed in Figure 4.2. These three series are the focus of the

Publication III.

In addition to the global climate factors, several local or regional time

series are used to improve the forecast. As shown in [147], there is a

phase lag between the climate variability during the winter time and the

response in macrozoobenthos in the North Sea in spring. For this reason,

all the measurements are taken to be the winter averages over the period

of four months – December, January, February and March (DJFM). The

response during the summer and autumn is more unreliable due to the in-

creased predator-prey interactions making the system more chaotic. The

tested time series are summarised in Table 4.1.

The data is taken from two major bodies for scientific research. The

first one is the joint project between the National Centers for Environ-

mental Prediction (NCEP) and the National Center for Atmospheric Re-

search2 (NCAR) which continually updates gridded data set representing

the state of the Earth’s atmosphere covering the whole globe. The “Re-

analysis” data sets [150] are created by assimilating the climate obser-

vations using the same climate model throughout the entire reanalysis

period (1948-present). The observations are coming from many different

sources, such as ships, planes, satellites, ground stations, radar and many

more and the data is updated four times a day.

The second source of data comes from the International Council for the
2http://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml

90

Application to Marine Systems

Climate indices:

• Arctic Oscillation (AO)

• North Atlantic Oscillation (NAO)

• Atlantic Multidecadal Oscillation (AMO)

Regional observations:

• area averaged monthly meridional wind anomalies (1948–2010) in

the southern North Sea (53◦-56◦ N,2◦-9◦ E) from NCEP/NCAR re-

analysis

• monthly precipitation rate anomalies (1948–2010) averaged over

the area 50◦-57◦ N, 4◦ W-9◦ E from NCEP/NCAR reanalysis

• area averaged monthly sea surface temperatures anomalies

(1948–2009) in the southern North Sea (53-56◦ N, 2◦ W-9◦ E) from

NCEP/NCAR reanalysis

• salinity from ICES (Marsden square 96668)

• temperature from ICES (Marsden square 96668)

• weekly sea surface temperature data for the German Bight from

1968 to 2007 south of 55.5◦ N and east of 6.5◦ E

Table 4.1. Time series tested against benthic macrofauna species.

Exploration of the Sea3 (ICES), an intergovernmental organization with

the objective of advancing scientific knowledge of the marine environment

and its living resources. The main goal behind ICES considers how hu-

man activities affect the marine ecosystem and vice versa. ICES manages

a number of large data set collections related to the marine environment

which span areas of the North East Atlantic, the Baltic Sea, the Green-

land Sea and the Norwegian Sea. These data collections cover several

research domains: biological communities, contaminants and biological

effects, plankton data, ocean physics and ocean chemistry, and fish preda-

tion.

4.3.2 Method

The interdecadal variability of climate patterns is an important aspect

of atmospheric circulation, and for this reason a long time lag is used

when forming the regressor. Each time series is composed as the winter

averages over the available values from the databases and 12 values are

used as the input to the model. These include the winter prior to the

3www.ices.dk

91

Application to Marine Systems

1980 1985 1990 1995 2000 2005
5

10

15

20

25

30

35

40

sp
ec

ie
s

nu
m

be
r

data
loo validation (1f)
loo validation (4f)

Figure 4.3. Leave-one-out validation comparison between one factor approach (1f) and
four factor approach (4f). The latter method with additional information
(temperature, wind, precipitation) offers improved accuracy across the entire
period.

spring measurements of the benthos, plus 11 years before.

An important aspect of relating climate factors towards any ecological

measurements is the exogenous model, where the target variable is solely

regressed on the other inputs, i.e., yt = f(z1t , z
1
t−1, . . . , z

2
t , z

2
t−1, . . .) where

z1 and z2 are two exogenous time series. Although this might seem a dif-

ficult task, it is useful in specific cases where the number of samples is

quite low (which is case we are examining here). If a regressor is build

using Eq. (3.4) for each time lag introduced one less sample is available

for training the model. In certain cases, the periodicity of the series can

be large which would require several time lags to be used. This in turn

reduces the number of samples making the model fitting procedure very

difficult. Since many time series are at our disposal, the final data set

contains several tens of variables. For this reason, a wrapper approach

(Section 2.1) has been used to select the most important time lags. As the

number of possible solutions is quite large, the Forward-Backward Search

is used to find the local minimum, where the criterion used is the leave-

one-out validation error. Two models are used for this task – OPELM

and OPKNN. Since OPELM is inherently stochastic in nature, the ini-

tialisation for this model is done a 100 times. Thus for each selection of

variables, 100 models are trained and the average of the validation errors

is used as the final performance for that particular feature set. OPKNN

92

Application to Marine Systems

1980 1985 1990 1995 2000 2005

5

10

15

20

25

30

35

40
error=213.72

Figure 4.4. Species number times series (blue), LOO validation curve (black) and predic-
tion for the period 2000-2005 (red)

.

is deterministic and only needs to be run once. The whole procedure is re-

peated 1000 times to have somewhat stable set of relevant features (time

lags). A single model (either OPELM or OPKNN) uses different criterion

for the complexity (number of neurons) which is the corrected Akaike’s

Information Criterion (Section 3.3.2).

Figure 4.3 shows the comparison between using only a single factor

(climate index – Arctic Oscillation) and four factors (Arctic Oscillation,

meridional wind, precipitation over the region and temperature from the

ICES database) with respect to the species number time series. Other

time series indicated in Table 4.1 are not used since their influence did not

bring any improvement over the four mentioned. What is shown are the

leave-one-out predictions over the entire period of 28 years. As depicted,

using additional information from the local observation can greatly im-

prove the trained model. The graphs are for the OPKNN since the results

for the OPELM are more variable due to the random nature of the first

layer weights. Leave-one-out predictions are based on the chosen model

which uses the leave-one-out residuals to compute the validation error as

a measure of fit. The data is formatted according to the Eq. (3.4), that

is, a regressor matrix is formed based on the time series and the chosen

lag h. The temporality is embedded into this matrix, and any regres-

sion method can be applied to obtain the LOO predictions. OPKNN and

93

Application to Marine Systems

OPELM models are suitable since the LOO residuals can be easily com-

puted as explained in Section 3.3.2.

Finally, Figure 4.4 shows the results when the actual model is used for

short-term prediction. This is a one step-ahead setup for the period of

2000-2006 with a single model trained on the features selected from the

procedure described previously. Unfortunately, the model fails to provide

a reliable prediction for the next 6 years even in one-step ahead scenario

and quite accurate validation predictions. This can be attributed to the

heavy climate shifts, making the system inherently unstable and difficult

to predict with quite small number of samples.

94

5. Conclusion

In this dissertation, two problems in machine learning domain are tack-

led. One is that of variable selection, while the other falls broadly into the

time series prediction category.

Simply stated, variable selection is a procedure that tries to identify

relevant features or variables that contribute the most to the target or

output variable. The whole procedure can be viewed from different per-

spectives: pure selection, scaling and projection. Comparing to pure inclu-

sion/exclusion selection approach, in the scaling variant each variable is

weighted according to the importance level. This generalises the problem,

but at the same time increases the complexity by introducing the new so-

lution space. Going even further is the projection method, enabling the

user to completely transform or project the data into a new feature space.

All three perspectives are tackled in the thesis with the Delta test as the

main and only search criterion. Several solutions for variable selection

are proposed that are based on Genetic Algorithms and Tabu Search opti-

misation methods. One of interesting points is the combined scaling and

projection approach which extends or increases the dimensionality of the

data. This may sound counter intuitive as the goal is reduction of num-

ber of variables. On the other hand, if only a few variable are kept from

the scaling part, the additional feature(s) (projection part) that are linear

combinations do bring valuable information improving the learning stage.

One might think that having a projection requires specifying the number

of dimensions for the projection matrix which constitutes another param-

eter to be optimised. However, a simple procedure enables the automatic

selection of the projection dimension which removes the burden of either

cross-validation or the intervention from the user. Several methods are

proposed that enable faster execution of the variable selection with the

Delta test and these include: 1) parallel implementations on both clus-

95

Conclusion

ter of homogeneous and heterogeneous clusters of computers; 2) use of

approximate nearest neighbours when computing the distances between

the input samples and 3) multistart strategy in large sample data since

the optimisation landscape contains only small number of local minima.

Each of the proposed solutions try to cope with the situations where the

number of variables is high enough to prohibit any kind of exhaustive

search.

The second problem of time series prediction is of great practical impor-

tance. It has been studied substantively and the usual approach is to form

a regressor matrix which is subsequently used by a training model. In the

thesis, three methods are proposed that can be used for the purpose of pre-

diction. Two are based on the Extreme Learning Machine neural network

model. The first suggestion is the choice of a model selection criterion for

the complexity of the network when the number of samples is extremely

small. This situation arises in many areas of biology and poses great

difficulty for majority of machine learning techniques. The suggested cor-

rected Akaike’s Information Criterion is specifically designed for these

scenarios and it greatly improves the stability of both the OPELM and

OPKKN. The second improvement comes in the form of model averaging

directly in the ELM model itself. Most of the pruning or additive solu-

tions for the level of complexity of the network choose only a single “best”

model. The solution proposed in the thesis is the take into considera-

tion all the models and do the model weighting from all the constructed

substructures. This is accomplished with the use of Jackknife Model Av-

eraging method and leave-one-out cross-validation errors which provides

better results over the selection approach alone. For future research possi-

bilities, different weighting combination techniques and selection criteria

can be investigated and compared to the current setup. Finally, the exten-

sion of the Generative Topographic Mapping to include relevance learning

is introduced for time series inspection. Relevance learning replaces the

Euclidean metric in the GTM with a weighted distance computation. This

combination allows time lags inspection (variable scaling) and long-term

prediction at the same time.

The last contribution on the thesis touches upon environmental mod-

elling. Specific interest is devoted to modelling benthic data with re-

spect to both global climate factors and regional observations. The sug-

gested approach is to combine both types of information to form a multi-

factor index that provides improved function estimation over the usual

96

Conclusion

approach with one climate index. This multi-factor approach is attract-

ing researchers in the environmental community [151]. Future research

possibilities include relating marine ecosystem time series with other po-

tential predictors, such as nutrients or fresh-water inflow. Another diffi-

cult task worth investigating is the long-term prediction for these small

sample time series.

97

Bibliography

[1] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[2] E. Alpaydin, Introduction to Machine Learning. MIT Press, 2nd ed., 2010.

[3] K. P. Murphy, Machine Learning: A Probabilistic Perspective. Adaptive
Computation and Machine Learning, MIT Press, 2012.

[4] S. S. Haykin, Neural Networks and Learning Machines. Pearson Educa-
tion, 3rd ed., 2009.

[5] Y. Bengio, “Learning deep architectures for ai,” Foundations and Trends in
Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[6] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[7] R. Salakhutdinov and G. E. Hinton, “Deep boltzmann machines,” in In-
ternational Conference on Artificial Intelligence and Statistics (AISTATS
2009), vol. 5 of JMLR Proceesings, pp. 448–455, 2009.

[8] G. Gan, C. Ma, and J. Wu, Data Clustering: Theory, Algorithms, and Ap-
plications. Siam, 2007.

[9] I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, “Feature extraction,”
Foundations and applications, 2006.

[10] J. A. Lee and M. Verleysen, Nonlinear Dimensionality Reduction. Springer,
2007.

[11] F. Ricci, L. Rokach, and B. Shapira, Introduction to Recommender Systems
Handbook. Springer, 2011.

[12] A. C. Rencher and W. F. Christensen, Methods of Multivariate Analysis.
Wiley, 3rd ed., 2012.

[13] E. Eirola, E. Liitiäinen, A. Lendasse, F. Corona, and M. Verleysen, “Using
the delta test for variable selection,” in European Symposium on Artificial
Neural Networks (ESANN 2008), pp. 25–30, 2008.

[14] E. Liitiäinen, F. Corona, and A. Lendasse, “Nearest neighbor distributions
and noise variance estimation,” in European Symposium on Artificial Neu-
ral Networks (ESANN 2007), pp. 67–72, 2007.

99

Bibliography

[15] F. Glover, “Future paths for integer programming and links to artificial
intelligence,” Computers & Operations Research, vol. 13, no. 5, pp. 533–
549, 1986.

[16] F. Glover, “Tabu search part i,” ORSA Journal on Computing, vol. 1, no. 3,
pp. 190–206, 1989.

[17] M. D. Vose, The Simple Genetic Algorithm: Foundations and Theory. MIT
Press, 1999.

[18] M. Mitchell, An Introduction to Genetic Algorithms. MIT press, 1998.

[19] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, 1995.

[20] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. Springer Series in Statistics, Springer, 2001.

[21] M. Verleysen and D. François, The curse of dimensionality in data mining
and time series prediction, vol. 3512 of Lecture Notes in Computer Science,
pp. 758–770. Springer, 2005.

[22] I. Jolliffe, Principal Component Analysis. Wiley Online Library, 2005.

[23] E. I. George, “The variable selection problem,” Journal of the American
Statistical Association, vol. 95, no. 452, pp. 1304–1308, 2000.

[24] A. E. Raftery, “Bayesian model selection in social research,” Sociological
methodology, vol. 25, pp. 111–164, 1995.

[25] R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artifi-
cial Intelligence, vol. 97, pp. 273–324, 1997.

[26] I. Guyon and A. Elisseeff, “An introduction to variable and feature selec-
tion,” The Journal of Machine Learning Research, vol. 3, pp. 1157–1182,
2003.

[27] H. Liu, H. Motoda, and L. Yu, “A selective sampling approach to active
feature selection,” Artificial Intelligence, vol. 159, no. 1–2, pp. 49–74, 2004.

[28] L. Yu and H. Liu, “Feature selection for high-dimensional data: a fast
correlation-based filter solution,” in International Conference on Machine
Learning (ICML 2003), pp. 856–863, 2003.

[29] M. A. Hall, “Correlation-based feature selection for discrete and numeric
class machine learning,” in International Conference on Machine Learning
(ICML 2000), pp. 359–366, Morgan Kaufmann Publishers, 2000.

[30] B. Frénay, G. Doquire, and M. Verleysen, “Is mutual information adequate
for feature selection in regression?,” Neural Networks, vol. 48, pp. 1–7,
2013.

[31] M. Verleysen, F. Rossi, and D. François, “Advances in feature selection with
mutual information,” in Similarity-Based Clustering, vol. 5400 of Lecture
Notes in Computer Science, pp. 52–69, Springer, 2009.

[32] R. Battiti, “Using mutual information for selecting features in supervised
neural network learning,” IEEE Transactions on Neural Networks, vol. 5,
pp. 537–550, July 1994.

100

Bibliography

[33] S. Arlot and P. Massart, “Data-driven calibration of penalties for least-
squares regression,” Journal of Machine Learning Research, vol. 10,
pp. 245–279, 2009.

[34] Y. Kim, W. N. Street, and F. Menczer, “Feature selection in unsupervised
learning via evolutionary search,” in International Conference on Knowl-
edge Discovery and Data Mining (KDD 2000), pp. 365–369, 2000.

[35] J. Yang and V. Honavar, “Feature subset selection using a genetic al-
gorithm,” in Feature Extraction, Construction and Selection, vol. 453
of Springer International Series in Engineering and Computer Science,
pp. 117–136, 1998.

[36] I.-S. Oh, J.-S. Lee, and B.-R. Moon, “Hybrid genetic algorithms for feature
selection,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 26, no. 11, pp. 1424–1437, 2004.

[37] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan, “An introduction to
mcmc for machine learning,” Machine Learning, vol. 50, no. 1–2, pp. 5–43,
2003.

[38] H. Zhang and G. Sun, “Feature selection using tabu search method,” Pat-
tern Recognition, vol. 35, no. 3, pp. 701–711, 2002.

[39] T. A. Feo and M. G. Resende, “Greedy randomized adaptive search proce-
dures,” Journal of Global Optimization, vol. 6, no. 2, pp. 109–133, 1995.

[40] M. G. Resende, “Greedy randomized adaptive search procedures,” in Ency-
clopedia of Optimization (C. A. Floudas and P. M. Pardalos, eds.), pp. 913–
922, Springer, 2001.

[41] K. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Prac-
tical Approach to Global Optimization. Springer, 2006.

[42] A. A. Freitas, “A Survey of Evolutionary Algorithms for Data Mining and
Knowledge Discovery,” in Advances in Evolutionary Computing, pp. 819–
845, Springer, 2003.

[43] M. Dorigo and M. Birattari, “Ant Colony optimization,” in Encyclopedia of
Machine Learning, pp. 36–39, Springer, 2010.

[44] T. Hastie et al., “Forward stagewise regression and the monotone lasso,”
Electronic Journal of Statistics, vol. 1, pp. 1–29, 2007.

[45] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal
of the Royal Statistical Society: Series B (Methodological), pp. 267–288,
1996.

[46] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regres-
sion,” The Annals of statistics, vol. 32, no. 2, pp. 407–499, 2004.

[47] F. Glover, “Tabu search part ii,” ORSA Journal on Computing, vol. 2, pp. 4–
32, 1990.

[48] F. Xhafa, J. Carretero, B. Dorronsoro, and E. Alba, “A tabu search algo-
rithm for scheduling independent jobs in computational grids,” Computing
and Informatics, vol. 28, no. 2009, pp. 1001–1014, 2009.

101

Bibliography

[49] J. Brandao, “A tabu search algorithm for the open vehicle routing problem,”
European Journal of Operational Research, vol. 157, no. 3, pp. 552–564,
2004.

[50] S. Scheuerer, “A tabu search heuristic for the truck and trailer routing
problem,” Computers & Operations Research, vol. 33, no. 4, pp. 894–909,
2006.

[51] F. Glover, “Parametric tabu-search for mixed integer programs,” Comput-
ers & Operations Research, vol. 33, no. 9, pp. 2449–2494, 2006.

[52] K. S. Al-Sultan and M. A. Al-Fawzan, “A tabu search hooke and jeeves al-
gorithm for unconstrained optimization,” European Journal of Operational
Research, vol. 103, no. 1, pp. 198–208, 1997.

[53] S. Kirkpatrick, “Optimization by simulated annealing: quantitative stud-
ies,” Journal of Statistical Physics, vol. 34, no. 5–6, pp. 975–986, 1984.

[54] F. Glover and F. Laguna, Tabu Search. Kluwer Academic Publishers, 1997.

[55] A. P. Engelbrecht, Computational Intelligence: An Introduction. John Wi-
ley & Sons, 2nd ed., 2002.

[56] D. Goldberg and K. Sastry, Genetic Algorithms: The Design of Innovation.
Springer, 2007.

[57] D. Whitley, “A genetic algorithm tutorial,” Statistics and Computing, vol. 4,
no. 2, pp. 65–85, 1994.

[58] R. W. Morrison and K. A. De Jong, “Measurement of population diversity,”
in International Conference on Artificial Evolution, vol. 2310 of Lecture
Notes in Computer Science, (Le Creusot, France), pp. 31–41, 2001.

[59] J. J. Grefenstette, “Parallel adaptive algorithms for function optimization,”
Technical Report TCGA CS-81-19, Department of Engineering Mechanics,
University of Alabama, Vanderbilt University, 1981.

[60] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. Wi-
ley, 2001.

[61] K. Miettinen, Nonlinear Multiobjective Optimization, vol. 12 of Interna-
tional Series in Operations Research and Management Science. Kluwer
Academic Publishers, 1999.

[62] C.-K. Goh and K. C. Tan, Evolutionary Multi-Objective Optimization in
Uncertain Environments: Issues and Algorithms, vol. 186 of Studies in
Computational Intelligence. Springer, 2009.

[63] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist multi-
objective genetic algorithm: nsga-ii,” IEEE Transactions on Evolutionary
Computation, vol. 6, no. 2, pp. 182–197, 2002.

[64] K.-L. Du and M. N. S. Swamy, Neural Networks and Statistical Learning.
Springer, 2013.

[65] D. Evans and A. J. Jones, “A proof of the gamma test,” Proceedings of the
Royal Society of London. Series A: Mathematical, Physical and Engineer-
ing Sciences, vol. 458, no. 2027, pp. 2759–2799, 2002.

102

Bibliography

[66] S. Berchtold, D. A. Keim, and H.-P. Kriegel, “The x-tree: an index structure
for high-dimensional data,” in International Conference on Very Large Data
Bases (VLDB 1996), pp. 28–39, 1996.

[67] P. B. Callahan and S. R. Kosaraju, “A decomposition of multidimensional
point sets with applications to k-nearest-neighbors and n-body potential
fields,” Journal of the ACM, vol. 42, no. 1, pp. 67–90, 1995.

[68] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[69] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2,
pp. 123–140, 1996.

[70] D. Draper, “Assessment and propagation of model uncertainty (with dis-
cussion),” Journal of the Royal Statistical Society: Series B, vol. 57, no. 1,
pp. 45–97, 1995.

[71] E. L. R. Fernandes and C. C. Ribeiro, “Using an adaptive memory strat-
egy to improve a multistart heuristic for sequencing by hybridization,” in
International Workshop on Experimental and Efficient Algorithms (WEA
2005), vol. 3503 of Lecture Notes in Computer Science, pp. 4–15, 2005.

[72] T. Jansen, “On the analysis of dynamic restart strategies for evolution-
ary algorithms,” in International Conference on Parallel Problem Solving
from Nature (PPSN 2002), vol. 2439 of Lecture Notes in Computer Science,
pp. 33–43, 2002.

[73] T. L. James, C. Rego, and F. Glover, “Multistart tabu search and diversifica-
tion strategies for the quadratic assignment problem,” IEEE Transactions
on Systems, Man and Cybernetics (Part A), vol. 39, no. 3, pp. 579–596, 2009.

[74] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor search
using gpu,” in IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW 2008), pp. 1–6, 2008.

[75] G. E. Box, G. M. Jenkins, and G. C. Reinsel, Time series analysis: forecast-
ing and control. John Wiley & Sons, 2013.

[76] P. J. Brockwell and R. A. Davis, Introduction to Time Series and Forecast-
ing. Springer Texts in Statistics, Taylor & Francis, 2nd ed., 2002.

[77] A. Sorjamaa, J. Hao, N. Reyhani, Y. Ji, and A. Lendasse, “Methodology for
long-term prediction of time series,” Neurocomputing, vol. 70, no. 16–18,
pp. 2861–2869, 2007.

[78] A. Sorjamaa and A. Lendasse, “Time series prediction as a problem of
missing values: application to estsp2007 and nn3 competition bench-
marks,” in International Joint Conference on Neural Networks (IJCNN
2007), pp. 2948–2953, 2007.

[79] E. Eirola and A. Lendasse, “Gaussian mixture models for time series mod-
elling, forecasting, and interpolation,” in International Symposium on In-
telligent Data Analysis (IDA 2013), vol. 8207 of Lecture Notes in Computer
Science, pp. 162–173, 2013.

[80] C. Chatfield, Time-Series Forecasting. CRC Press, 2000.

103

Bibliography

[81] F. M. Ham and I. Kostanic, Principles of Neurocomputing for Science and
Engineering. McGraw Hilll, 2001.

[82] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4,
pp. 115–133, 1943.

[83] F. Rosenblatt, “The perceptron: a probabilistic model for information stor-
age and organization in the brain,” Psycological Review, vol. 65, no. 6,
pp. 386–408, 1958.

[84] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward net-
works are universal approximators,” Neural Networks, vol. 2, no. 5,
pp. 359–366, 1989.

[85] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of Control, Signals and Systems, vol. 2, no. 4, pp. 303–314,
1989.

[86] G. Hinton, D. Rumelhart, and R. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, pp. 533–536, 1986.

[87] J. Moody, S. Hanson, A. Krogh, and J. A. Hertz, “A simple weight decay
can improve generalization,” Advances in Neural Information Processing
Systems, vol. 4, pp. 950–957, 1995.

[88] L. Prechelt, “Automatic early stopping using cross validation: quantifying
the criteria,” Neural Networks, vol. 11, no. 4, pp. 761–767, 1998.

[89] G. bin Huang, Q. yu Zhu, and C. kheong Siew, “Extreme learning machine:
A new learning scheme of feedforward neural networks,” in International
Joint Conference on Neural Networks (IJCNN 2004), pp. 985–990, IEEE,
2004.

[90] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: the-
ory and applications,” Neurocomputing, vol. 70, no. 1–3, pp. 489–501, 2006.

[91] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse, “Op-
elm: optimally-pruned extreme learning machine,” IEEE Transactions on
Neural Networks, vol. 21, no. 1, pp. 158–162, 2010.

[92] D. M. Allen, “The relationship between variable selection and data aug-
mentation and a method for prediction,” Technometrics, vol. 16, no. 1,
pp. 125–127, 1974.

[93] H. Akaike, “A new look at the statistical model identification,” IEEE Trans-
actions on Automatic Control, vol. 19, no. 6, pp. 716–723, 1974.

[94] G. Schwarz, “Estimating the dimension of a model,” The Annals of Statis-
tics, vol. 6, no. 2, pp. 461–464, 1978.

[95] E. Hannan and B. Quinn, “The determination of the order of an autore-
gression,” Journal of the Royal Statistical Society: Series B, pp. 190–195.

[96] J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14,
no. 5, pp. 465–471, 1978.

104

Bibliography

[97] A. D. R. McQuarrie and C.-L. Tsai, Regression and Time Series Model Se-
lection. World Scientific, 1998.

[98] S. Kullback and R. A. Leibler, “On information and sufficiency,” The Annals
of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[99] J. Shao, “An asymptotic theory for linear model selection,” Statistica
Sinica, vol. 7, pp. 221–264, 1997.

[100] N. Sugiura, “Further analysis of the data by Akaike’s information crite-
rion and the finite corrections,” Communications in Statistics – Theory and
Methods, vol. 7, no. 1, pp. 13–26, 1978.

[101] C. M. Hurvich and C.-L. Tsai, “Bias of the corrected aic criterion for un-
derfitted regression and time series models,” Biometrika, vol. 78, no. 3,
pp. 499–509, 1991.

[102] A. L. Comrey and H. B. Lee, A First Course in Factor Analysis. Psychology
Press, 2013.

[103] T. Kohonen, Self-Organising Maps. Springer, 2001.

[104] C. Bishop, G. Hinton, and I. Strachan, “Gtm through time,” in Interna-
tional Conference on Artificial Neural Networks, pp. 111–116, IEE, 1997.

[105] I. Olier and A. Vellido, “A variational formulation for gtm through time,”
in International Joint Conference on Neural Networks (IJCNN 2008),
pp. 516–521, IEEE, 2008.

[106] G. A. Barreto and A. F. R. Araújo, “Identification and control of dynami-
cal systems using the self-organizing map,” IEEE Transactions on Neural
Networks, vol. 15, no. 5, pp. 1244–1259, 2004.

[107] J. Vesanto, “Using the som and local models in time-series prediction,” in
Workshop on Self-Organizing Maps (WSOM 1997), pp. 209–214, 1997.

[108] G. A. Barreto, J. C. Mota, L. G. Souza, and R. A. Frota, “Nonstation-
ary time series prediction using local models based on competitive neural
networks,” in Innovations in Applied Artificial Intelligence (B. Orchard,
C. Yang, and M. Ali, eds.), vol. 3029 of Lecture Notes in Computer Science,
pp. 1146–1155, Springer Berlin Heidelberg, 2004.

[109] G. Chappell and J. Taylor, “The temporal kohonen map,” Neural Networks,
vol. 6, pp. 441–445, 1993.

[110] M. Hagenbuchner, A. Sperduti, and A. Tsoi, “A self-organizing map for
adaptive processing of structured data,” IEEE Transactions on Neural Net-
works, vol. 14, pp. 191–505, 2003.

[111] M. Varsta, J. Heikkonen, J. Lampinen, , and J. Milán, “Temporal koho-
nen map and recurrent self-organizing map: analytical and experimental
comparison,” Neural Processing Letters, vol. 13, no. 3, pp. 237–251, 2001.

[112] M. Strickert and B. Hammer, “Merge som for temporal data,” Neurocom-
puting, vol. 64, pp. 39–71, 2005.

105

Bibliography

[113] G. A. Barreto, “Time series prediction with the self-organizing map: A
review,” in Perspectives of Neural-Symbolic Integration (B. Hammer and
P. Hitzler, eds.), vol. 77 of Studies in Computational Intelligence, pp. 135–
158, Springer Berlin Heidelberg, 2007.

[114] B. Hammer and T. Villmann, “Generalized relevance learning vector quan-
tization,” Neural Networks, vol. 15, no. 8, pp. 1059–1068, 2002.

[115] A. Gisbrecht and B. Hammer, “Relevance learning in generative topo-
graphic mapping,” Neurocomputing, vol. 74, no. 9, pp. 1351–1358, 2011.

[116] A.-K. Seghouane and M. Bekara, “A small sample model selection criterion
based on kullback’s symmetric divergence,” IEEE Transactions on Signal
Processing, vol. 52, no. 12, pp. 3314–3323, 2004.

[117] C. L. Mallows, “Some comments on cp,” Technometrics, vol. 15, no. 4,
pp. 661–675, 1973.

[118] Y. Lan, Y. C. Soh, and G.-B. Huang, “Two-stage extreme learning machine
for regression,” Neurocomputing, vol. 73, no. 16–18, pp. 3028–3038, 2010.

[119] Y. Lan, Y. C. Soh, and G.-B. Huang, “Constructive hidden nodes selec-
tion of extreme learning machine for regression,” Neurocomputing, vol. 73,
no. 16–18, pp. 3191–3199, 2010.

[120] Y. Miche and A. Lendasse, “A faster model selection criterion for op-elm
and op-knn: hannan-quinn criterion,” in European Symposium on Artifi-
cial Neural Networks (ESANN 2009), pp. 177–182, 2009.

[121] K. Neumann and J. J. Steil, “Batch intrinsic plasticity for extreme learn-
ing machines,” in International Conference on Artificial Neural Networks
(ICANN 2011), Part I, vol. 6791 of Lecture Notes in Computer Science,
pp. 339–346, 2011.

[122] M. van Heeswijk, Y. Miche, T. Lindh-Knuutila, P. Hilbers, T. Honkela,
E. Oja, and A. Lendasse, “Adaptive ensemble models of extreme learning
machines for time series prediction,” in International Conference on Artifi-
cial Neural Networks (ICANN 2009), Part II, vol. 5769 of Lecture Notes in
Computer Science, pp. 305–314, 2009.

[123] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” Journal of Computer and
System Sciences, vol. 55, pp. 119–139, Aug. 1997.

[124] S. Haykin, Neural Networks: A Comprehensive Foundation. Prentice Hall,
1998.

[125] J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky, “Bayesian
model averaging: a tutorial,” Statistical Science, vol. 14, no. 4, pp. 382–
417, 1999.

[126] B. E. Hansen and J. S. Racine, “Jackknife model averaging,” Journal of
Econometrics, vol. 167, no. 1, pp. 38–46, 2012.

[127] J. Kidson, “Relationship of new zealand daily and monthly weather pat-
terns to synoptic weather types,” International Journal of Climatology,
vol. 14, pp. 723–737, 1994.

106

Bibliography

[128] C. Rossby et al., “Relations between variations in the intensity of the zonal
circulation of the atmosphere and displacements of the semipermanent
centers of action,” Journal of Marine Research, vol. 2, pp. 38–55, 1939.

[129] E. N. Lorenz, “Seasonal and irregular variations of the northern hemi-
sphere seal-level pressure profile,” Journal of Meteorology, vol. 8, no. 1,
pp. 52–59, 1951.

[130] D. W. Thompson and J. M. Wallace, “The arctic oscillation signature in
the wintertime geopotential height and temperature fields,” Geophysical
Research Letters, vol. 25, no. 9, pp. 1297–1300, 1998.

[131] J. W. Hurrell, “Decadal trends in the north atlantic oscillation: regional
temperatures and precipitation,” Science, vol. 269, no. 5224, pp. 676–679,
1995.

[132] N. C. Stenseth, G. Ottersen, J. W. Hurrell, A. Mysterud, M. Lima, K. Chan,
N. G. Yoccoz, and B. Ådlandsvik, “Studying climate effects on ecology
through the use of climate indices: the north atlantic oscillation, el niño
southern oscillation and beyond,” Proceedings of the Royal Society of Lon-
don. Series B: Biological Sciences, vol. 270, no. 1529, pp. 2087–2096, 2003.

[133] A. Schepen, Q. Wang, and D. Robertson, “Evidence for using lagged cli-
mate indices to forecast australian seasonal rainfall,” Journal of Climate,
vol. 25, no. 4, pp. 1230–1246, 2012.

[134] H. von Storch, E. Zorita and U. Cubasch, “Downscaling of global climate
change estimates to regional scales: an application to iberian rainfall in
wintertime,” Journal of Climate, vol. 6, no. 6, pp. 1161–1171, 1993.

[135] K. Steffen and J. Box, “Surface climatology of the greenland ice sheet:
greenland climate network 1995–1999,” Journal of Geophysical Research:
Atmospheres, vol. 106, no. D24, pp. 33951–33964, 2001.

[136] O. M. Johannessen, K. Khvorostovsky, M. W. Miles, and L. P. Bobylev,
“Recent ice-sheet growth in the interior of greenland,” Science, vol. 310,
no. 5750, pp. 1013–1016, 2005.

[137] D. B. Enfield, A. M. Mestas-Nuñez, and P. J. Trimble, “The atlantic mul-
tidecadal oscillation and its relation to rainfall and river flows in the con-
tinental us,” Geophysical Research Letters, vol. 28, no. 10, pp. 2077–2080,
2001.

[138] P. Winsor, J. Rodhe, A. Omstedt, et al., “Baltic sea ocean climate: an anal-
ysis of 100 yr of hydrographic data with focus on the freshwater budget,”
Climate Research, vol. 18, no. 1/2, pp. 5–15, 2001.

[139] N. Schneider, E. Di Lorenzo, and P. P. Niiler, “Salinity variations in the
southern california current,” Journal of Physical Oceanography, vol. 35,
no. 8, pp. 1421–1436, 2005.

[140] M. Viitasalo, “Mesozooplankton of the gulf of finland and northern baltic
proper a review of monitoring data,” Ophelia, vol. 35, no. 2, pp. 147–168,
1992.

107

Bibliography

[141] W. Matthäus and H. Schinke, “Mean atmospheric circulation patterns as-
sociated with major baltic inflows,” Deutsche Hydrografische Zeitschrift,
vol. 46, no. 4, pp. 321–339, 1994.

[142] J. Dippner and A. Ikauniece, “Long-term zoobenthos variability in the
gulf of riga in relation to climate variability,” Journal of Marine Systems,
vol. 30, pp. 155–164, 2001.

[143] K. Mann and K. Drinkwater, “Environmental influences on fish and shell-
fish production in the northwest atlantic,” Environmental Reviews, vol. 2,
no. 1, pp. 16–32, 1994.

[144] A. Mysterud, N. C. Stenseth, N. G. Yoccoz, G. Ottersen, and R. Langvatn,
The Response of Terrestrial Ecosystems to Climate Variability Associated
with the North Atlantic Oscillation, pp. 235–262. American Geophysical
Union, 2013.

[145] D. Straile, D. M. Livingstone, G. A. Weyhenmeyer, and D. G. George, The
Response of Freshwater Ecosystems to Climate Variability Associated with
the North Atlantic Oscillation, pp. 263–279. American Geophysical Union,
2013.

[146] K. F. Drinkwater, A. Belgrano, A. Borja, A. Conversi, M. Edwards, C. H.
Greene, G. Ottersen, A. J. Pershing, and H. Walker, The Response of Ma-
rine Ecosystems to Climate Variability Associated with the North Atlantic
Oscillation, pp. 211–234. American Geophysical Union, 2013.

[147] I. Kröncke, J. W. Dippner, H. Heyen, and B. Zeiss, “Long-term changes in
macrofaunal communities off norderney (east frisia, germany) in relation
to climate variability,” 1998.

[148] G. A. Becker and M. Pauly, “Sea surface temperature changes in the north
sea and their causes,” ICES Journal of Marine Science, vol. 3, pp. 887–898,
1996.

[149] J. W. Dippner, K. Junker, and I. Kröncke, “Biological regime shifts and
changes in predictability,” Geophysical Research Letters, vol. 37, no. 24,
pp. n/a–n/a, 2010.

[150] E. Kalnay et al., “The ncep/ncar 40-year reanalysis project,” Bulletin of the
American Meteorological Society, vol. 77, no. 3, pp. 437–471, 1996.

[151] J. W. Dippner, G. Kornilovs, and K. Junker, “A multivariate baltic sea en-
vironmental index,” Ambio, vol. 41, no. 7, pp. 699–708, 2012.

108

9HSTFMG*afifgg+

	Aalto_DD_2014_138_Dusan_Sovilj_verkkoversio

