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The Smart Grid constitutes a hot research topic, nowadays, due to the potential
that is has to further improve and optimize the power generation, delivery and
consumption. The set of components it is comprised of, such as the smart
meters, as well as the advanced communication technologies it incorporates,
renders it capable of bringing significant societal benefits and high reliability in
reference with its orderly operation.

An interesting technology in the context of the Smart Grid is the Demand
Response. This technology attempts to change the way that the electricity
customers used to perceive the power consumption by engaging them in an
interaction with the energy producer. Essentially, the customers are asked to
adapt their power needs based on the state of the power grid. In that way, the
energy capacity or resources could be shared more efficiently and unpleasant
incidents, such as power outages, could be prevented. In return, the utility
company offers monetary incentives, rewarding in this way the customers’ power
curtailment efforts.

Nevertheless, the fulfillment of the DR goals requires the exchange of information
between the utility company and the customers. From the customers’ point of
view this interaction might be privacy invasive. Consequently, DR programs could
not be widely accepted by the public before the privacy concerns are alleviated.
This thesis investigates the trade off between the privacy and the efficiency of a
DR mechanism by simulating the stakeholders and their interactions in a mock
DR environment.
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Abbreviations and Acronyms

SG
TOU
DR
RTP
DSB
TTP
DLC
ZKP
10U
CPP
EIP
PET
WAMS
RTO
AMI
EMCS
IIDM

Smart Grid

Time-of-Use

Demand Response

Real-Time Pricing

Demand-Side Bidding

Trusted Third Party

Direct Load Control
Zero-Knowledge Proof

Investor Owned Utility

Critical Peak Pricing

Emergency Incentive Program
Privacy Enhancing Technology

Wide Area Monitoring Systems
Regional Transmission Operator
Advanced Metering Infrastructure
Energy Management Control System
Improved Interfaces and Decision Making
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Chapter 1

Introduction

The Smart Grid (SG) constitutes the electrical grid of the 215 century. Many
countries around the world have initiated research projects [12], [33], with
the development and deployment of this electric delivery system being the
primary objectives. The SG is a modern, computerized electric grid that is
comprised of advanced data communication technologies and metering capa-
bilities, among others. By 2020, the European Commission requires that the
80% of consumers should have installed smart meters, in order to achieve its
SG implementation goals. The smart meters will drastically change the way
we, as users, conceive power consumption by integrating a set of technologies
that will allow for instant electricity consumption monitoring and track of
cost.

Demand Response (DR) technology is an integral part of the SG and
has a key role in it. It mainly concerns the bidirectional communication be-
tween the users and the utility company aiming to a stable power load and
a total demand that matches the production. In other words, DR paradigm
attempts to influence the electric power consumption pattern of the users.
As a consequence, it manages to handle disturbances and avoid blackouts.
In addition, it boosts the quality of supply and it offers high reliability of the
power grid.

Nevertheless, the frequent and highly granular communication of power
usage data, from the users to the utility company, is considered privacy
invasive [23]. Due to this reason, Privacy Enhancing Technologies (PETS)
are used to protect users, primarily, against activity and behavioral analysis.
On the other hand, the power consumption data, that flows towards the
utility, usually undergo a processing phase due to the application of PET
schemes. In fact, this processing might deprive the utility from important
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information based on which it designs and parameterizes SG services, such as
load forecasting. Therefore, as a matter of fact, the trade-off between privacy
and SG efficiency constitutes a critical factor towards the wide adoption of
the modern electrical grid.

1.1 Problem statement

There is a quite extended literature, [11], [22], [3], proposing privacy-enhancing
technologies for the Smart Grid. However, they do not sufficiently study the
implications that those mechanisms impose on the orderly operation of the
Demand Response paradigm. More specifically, they do not consider the ef-
fect of privacy on the DR programs performance. By setting up a simulated
DR environment we investigate the challenges that the application of a cer-
tain PET class causes. In particular, we investigate the accuracy of a DR
incentive allocation mechanism in the context of a homomorphic aggregation
protocol.

1.2 Structure of the Thesis

The rest of the thesis is organized as follows. Chapter 2 constitutes an
introduction to the world of Smart Grid. Its components and stakeholders
are reviewed whereas significant attention is paid on the DR paradigm and
the implications it causes on the users’ privacy. As for Chapter 3, we present
the requirements of a DR system from the perspective of both the users and
the utility company. Furthermore, we review the related work on the field by
evaluating the effect of some privacy enhancing mechanisms on the efficient
operation of DR programs. As far as the Chapter 4 is concerned, it describes
the methodology of the experiments as well as its components. Moreover, in
this chapter we also analyze the risks that are present in our system and we
finally suggest mitigation techniques. Last but not least, in Chapter 5, we
present the results and the evaluation of the experiments.



Chapter 2

Background

2.1 The Smart Grid

The Smart Grid refers to a modernized power delivery and monitoring system
that intends to substitute the deprecated electrical grid of the 20th century.
Technological breakthroughs during the past decades in the field of informa-
tion and communication technology have facilitated the development of the
SG. Fig.2.1 illustrates! the evolution of the electrical grid.

Traditional Grid Smart Grid

System g ‘\
Generation 5 operator \
\

Transmission
o

[ Destnbution N
Generation ~ control centre |\ ENEQy el
\  seniace
iches

control centre [

I
1 I
| prow )
] | | Ty |
Industrial | ) Industrial
Customes \ i h | e N customer
\ P 1 . 1 Electric : e,
o \ . ehide T
A \ ’/ ' P & - ! vehides ) ™
¢ \ &
— —— ’} II . =N L) ’l
Energy Subst H, " |
Substation Substation | Commercial storage Substation 1 [Substation |} Commercial
customer ! ' 1| customer
! . )
/ Hgh-tempenature | .
/ superconductor . \ [} ]
/ Starage ' 1 i ,1
1 / l X
/ J > L)
) /

J
Residential

Residential | /
customer

customer | /

Figure 2.1: The evolution of the power grid.

This sophisticated power grid utilizes computer-based remote control and
automation to collect the necessary information that allows serving its pur-
pose more efficiently. The devices that comprise the Smart Grid are equipped

! An illustration of the International Energy Agency -IEA
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with sensing capabilities and two-way communication technologies. The sen-
sors collect a range of data that is reported to the operational center of
the utility. As a consequence, the automation technology that is integrated
in the SG fosters the reliability, efficiency and sustainability of the power
infrastructure, whereas it offers new benefits to the stakeholders.

2.1.1 Smart Grid Key Components

The SG incorporates a collection of enabling technologies and components
that facilitate its orderly operation [2].

Integrated Communications

Integrated communication technologies are a critical component of the SG.
All the data produced during the SG operation has to be transmitted from
and to several other SG entities. However, different SG components use
different communication protocols. In fact, this non-uniformity is an imped-
iment towards an effective, fully-integrated communication infrastructure.
Integrated communications is believed to create a dynamic and interactive
grid where users and sophisticated devices, such as control centers and smart
meters, will interact efficiently.

Sensing and Measurement

Sensing and measurement technologies of the SG primarily focus on the eval-
uation of the equipment health and the integrity of the infrastructure. They
also help mitigate congestions and radically reduce emissions by engaging mo-
tivated customers into DR programs. Advanced sensing and measurement
technologies include, among others, smart meters, asset condition monitors
and wide area monitoring systems(WAMS). In particular, smart meters de-
scribe digital meters that record energy usage data and frequently report
their measurements both to the users and the utility company. The commu-
nication of the power usage information is backed by the advanced metering
infrastructure (AMI). In its turn, the AMI is an architecture that automates
and facilitates the bidirectional communication between the smart meters
and the aforementioned stakeholders.

Advanced Control Methods

Advanced Control Methods aspire to provide the appropriate technologies in
terms of hardware and software which will contribute in analyzing, diagnos-
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ing and predicting the conditions under which Smart Grid’s orderly operation
can fail. Moreover, advanced SG devices and algorithms assist in determin-
ing the appropriate actions to be taken when alert conditions are identified.
The ultimate objective is the avoidance of outages and power quality distur-
bances. Advanced control functions are supported by distributed intelligent
systems (control agents), analytical tools (statistical algorithms) and opera-
tional applications such as SCADA and substation automation.

Advanced Electric Components

The modern grid needs advanced electric components to meet the perfor-
mance requirements in power transmission and distribution. Consequently,
they determine the electrical behavior of the grid. Advanced components re-
alization has relied on the significant research and development efforts in the
areas of power electronics, superconductivity, materials and chemistry. Ex-
amples of such components are the distributed generation and energy storage,
the fault current limiters, the advanced switches and conductors, the solid
state transformers as well as the microgrids.

Improved Interfaces & Decision Support

Improved interfaces and decision making (IIDM) are essential enabling tech-
nologies for the SG. The focus of this Smart Grid component is the transfor-
mation of complex power-system data to comprehensible information. It is
achieved by virtual reality approaches and other sophisticated data-display
techniques. As an immediate consequence, the operators can identify poten-
tial problems faster and take the appropriate actions to prevent them. IIDS
technologies include, among others, visualization, decision support and sys-
tem operator training.

2.1.2 Smart Grid Stakeholders

Customers

Customers are the end users of the Smart Grid. They are divided into 3 cat-
egories, namely industrial, commercial and residential customers. No matter
which category they belong to, they all receive the power supply from the
electricity distribution network and based on their energy needs they produce
data reflecting their power consumption trends. Thus, hereafter we will also
refer to the customers as data producers. The energy consumption patterns
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of the data producers are used by other SG stakeholders such as utility com-
panies to monitor the state of the grid and ensure its orderly operation.

Utilities

Under the term “utilities” a broad range of bodies is represented. It includes
the investor owned utilities (IOU’s), the public utilities, the regional trans-
mission operators (RTO’s) and the power marketers. These entities supply
the Smart Grid with electricity and control the distribution and transporta-
tion infrastructure. An important aspect of their operation is the collection
and analysis of customers’ power consumption data. Hence, hereafter we
will also refer to the utilities as data consumers. Acting as the Smart Grid
facilitators, the utilities take advantage of technological advancements to bet-
ter control and optimize the grid functions. Ultimately, they aim to provide
advanced quality services including power load balancing, efficient power gen-
eration and distribution, as well as fraud detection.

Policy & Regulation Bodies

Policy makers and regulatory bodies have traditionally exercised their role
in the electricity grid by offering supervisory services and enforcing market
rules. Their contribution oversight the transparency in the power market
and ultimately ensures the public benefit. Smart Grid brings new challenges
to this particular class of stakeholders since the way that electricity is traded
and distributed has chanced. More stakeholders come into the scene, and
the electricity market adapts itself to the new developments. The regulators’
role in the SG is twofold. First, they need to update the current regulations
to live up to the emerging requirements. Second, they have to act as the
intermediary between different stakeholders in order to achieve consensus so
that the full potential of the new power grid paradigm can be realized.

Vendors & Technology Providers

Vendors and technology providers refer to a class of companies,organizations
and institutions that develop technological solutions and innovative products
to support the realization of the Smart Grid. The modern power grid incor-
porates a number of technological enhancements, among others, in the area
of control automation and monitoring, advanced electronics as well as reliable
hardware. Essentially, the evolution of technology constitutes the actuator
of the SG. With this said, vendors and technology providers have a first class
opportunity to actively participate and offer solutions that strengthen the
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SG potential and bring financial growth to them.
Other Stakeholders

Advocacy groups, such as environmental organizations as well as govern-
ments are, among others, SG stakeholders. The role of advocacy groups is
primarily to protect end users’ rights in the SG landscape where multiple
stakeholders with diverging priorities and interests exist. On the other hand,
local or state governments set the initial objectives and financially lead the
initiative as part of a national policy.

In conclusion, due to the fundamental need for energy consumption, several
stakeholders exist in the modern electrical grid. In spite of their different
objectives and expectations the Smart Grid offers benefits to everyone.

2.2 Demand Response Systems

Smart Grid (SG) intends to substitute the traditional electrical grid offering
new advancements in favor of both the utilities as well as the customers.
Due to the deprecated technology and the lack of appropriate infrastruc-
ture, some utilities have no flexibility to deal with severe power incidents
other than activating additional power plants or inevitably disconnecting
some customers from the distribution network. Such incidents usually in-
clude sudden power demand peaks or power plants failure. However, the
aforementioned approach to mitigate emergency power conditions is not ef-
ficient. Utility companies could face significant financial losses whereas the
customers would be frustrated by the low quality of services.

Demand Response paradigm, an integral component of the SG, aspires to
provide the utility companies with the appropriate tools to effectively tackle
serious power incidents. DR paradigm intends to motivate the customers to
play a more substantial role in the operation of the electric grid by shifting
or decreasing the power footprint during peak periods. The motivation usu-
ally takes the form of time-based tariffs or other monetary rewards. Fig. 2.2
illustrates? the operation of a DR system.

Similarly to DR, the Demand Side Management as well as the Price-
Responsive Demand are techniques that aim to balance the power demand

2 An illustration from the Wattalyst project - www.wattalyst.org
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Figure 2.2: An overview of a Demand Response system operation

in case of emergencies [32]. In other words, Demand Response actuates the
users to adjust their power needs based on the state of the grid, with the
goal of achieving fare distribution of available power resources and alleviating
peak loads.

2.2.1 Dynamic Pricing

Dynamic pricing is the first type of Demand Response programs. Under this
scheme the users are exposed to the ranging cost of electricity production,
transmission as well as other auxiliary functions, such as power distribution.
The motivation for the customers is clearly the power-bill cost reduction,
while at the same time the operator can manage to handle power distur-
bances, level the peak demand and then mitigate system overloads. This DR
approach is realized by prices signaling from the utility to the customers’
AMI infrastructure, almost in real time. Various implementations of the Dy-
namic Pricing scheme provide tariff information to the customers in variable
time intervals. Real-Time Pricing (RTP), Time-of-Use (TOU) and Critical
Peak Pricing (CPP) are examples of such price-based DR, implementations.
Nevertheless, dynamic pricing programs are not contract-binding for the cus-
tomers. Hence, it is not mandatory for them to respond to electricity tariff



CHAPTER 2. BACKGROUND 15
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Figure 2.3: Time-of-Use Pricing

TOU schemes divide certain time periods in blocks where the energy cost
rates vary, as in Fig3. 2.3. A day, a week or even a year can be considered
a time period. Usually, a day period is separated in three blocks, in terms
of the anticipated power peak load, the low, normal, and peak hours. Each
block price rate reflects the average cost of electricity production and deliv-
ery. As far as a week time period is concerned, in TOU is typically divided in
weekdays and weekends blocks, during which the power consumption trends
significantly change. Even in the year time period there are variations. For
instance, in the summer time or in public holidays the electricity production
cost changes.

The Time-of-Use schemes are considered the second most effective op-
tion for realizing a share of the DR potential. This can be achieved with
minimum information exchange cost, since the TOU price rates, although
time-varying, are fixed [32].

Real-Time Pricing - RTP

In RTP scenarios, as in Fig. 2.4, the DR customers are informed about tariff
changes on a-day-ahead or an-hour-ahead basis. In Real-Time Pricing the
energy price rates fluctuate hourly reflecting the actual market price. This
scheme is the most variable one since the electricity price changes very fre-
quently. It is considered the most appropriate approach for realizing the full

3Figures 2.3 to 2.5 are adopted from Fox-Penner (2009), p.41
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Figure 2.4: Real-Time Pricing

DR potential. Nevertheless, the adoption of RTP programs remains a chal-

lenge, especially for residential customers, due to the frequent price updates
[32].

Critical Peak Pricing - CPP

CPP Rate $1.10/kWh
(12 days)
Off-peak Rate
9%$/kWh
(Off peak weekday :
$/kWh hours and all weekends) , Original Flat Rate

"
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: L/

N

Midnight Noon Midnight

Figure 2.5: Critical Peak Pricing

CPP is a dynamic pricing program where a predefined high rate, as seen in
Fig. 2.5, is imposed on the DR participants under critical SG circumstances.
Such circumstances include excessive power demand or significant decrease
in production capacity. The ultimate objective of a CPP scenario is to dras-
tically reduce the power demand when system reliability is compromised or
threatened.
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Usually, CPP schemes are used in conjunction with TUO or RTP pro-
grams, where utilities inform the customers about the price changes at rela-
tively short intervals. CPP events, typically ,take place few times per year.
Moreover, the utility attempts to abet customers’ participation by offering
energy bill discounts out of the CPP periods. Nevertheless, a basic short-
coming in the broad adoption of such a DR scheme is the way that AMI
operates. They are mainly designed to record power on an interval basis
where the price is fixed. Sudden electricity rate fluctuation complicates the
billing procedure. In addition, another CPP deficiency is the allowed number
of peak periods and their duration. If that number has already been reached
before a new critical peak incident, the utility will have to activate additional
DR programs to alleviate the load [32].

2.2.2 Incentive Programs

In contrast to Dynamic Pricing, Incentive Programs entail an agreement be-
tween the service provider and the consumers. Based on the contract that
has been signed, the customer is obliged to respond to the utility request
for energy reduction. If not, then a penalty is imposed. On the other hand,
the power consumer who is engaged in such a power-load shedding scheme
enjoys some bill discount benefits. A significant number of incentive-based
DR approaches prioritize the power supply safety high in the requirements
list. That is the reason why they offer competitive and binding power-
consumption packages to the participants. Demand-side bidding (DSB),
emergency incentive program (EIP) and direct load control (DLC) are all,
among others, different flavors of the incentive programs paradigm.

Direct Load Control - DLC

In DLC programs, the utility directly disconnects electrical appliances or
equipment, on short notice, to achieve immediate customers load reduction.
All residential, commercial and industrial customers are candidates for such
a power curtailment program [1]. The incentive given by the utility, for the
possibility of disconnection, is a discount in the electricity bill. Furthermore,
the contract between the two parties defines the period of power interrup-
tion as well as the groups of appliances whose operation will be suspended.
By the deployment of direct load control programs, the utility assures the
system balancing and fosters its reliability.

Interruptible/Curtailable (I/C) Services
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Under the interruptible service, the contract between the utility and the cus-
tomer includes curtailment options which are reflected on the power retail
rates. These tariffs allow for rate discounts or bill credit for agreeing to
lessen the energy demand during critical periods, as in system contingencies.
Apart from this, in case a customer does not comply with the contract rules,
economic penalties might be imposed by the utility. Last but not least, I/C
services have been traditionally offered only to industrial or big commercial
customers.

Capacity Market Programs

Capacity market programs are planned on a months-ahead timescale and the
utility can activate them on a short notice, usually two or less hours before
the program initiation. This DR scheme intends to guarantee the power
reserve capacity above the reliability level and to comply with the utility re-
serve obligations. Incentives include up-front payments proportional to the
capacity-market prices.

Ancillary Services Market Programs

Under this program, the customers perform bidding on the load curtailment.
They are paid the market price and they agree to immediately reduce elec-
tricity consumption when asked. The utility requests load curtailment with
less than an hour’s notice.

Demand Bidding/Buyback Programs

In this demand side bidding scenario, the utility asks the customers to pro-
pose bids along with the amount of power load they intend to curtail. These
so called buyback programs are mainly offered to large customers with a
significant contribution to the system load [1]. The agreed electricity rate
can be either part of the bid or authority-posted, based on the wholesale
energy market prices. However, participants who fail to reduce their load are
penalized [32].

Emergency Demand Response Programs

Emergency programs are tightly connected to the SG reliability. They are
launched when power reserve shortfalls occur. Under such a scenario, the
customers are rewarded by incentive payments which are linked to real time
wholesale market prices or customer’s blackout cost. The time interval be-
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tween the emergency notice and the power delivery usually spans from 30
minutes to two hours. This DR scheme is typically enabled when capacity
response programs have failed to live up to the current power reserve require-
ments.

Critical Peak Rebate - CPR

The CPR operates counter to the critical peak pricing scheme. Participants
are rewarded for reducing their electricity footprint instead of paying a high
rate in case of peak loads. The reward is analogous to the amount of power
reduction compared to the predicted consumption during a CPP event. Cus-
tomers can be only benefit by their participation. This is the primary reason
that CPR programs enjoy high acceptance rates by both customers and reg-
ulators.

2.2.3 Demand Response Benefits

All Smart Grid stakeholders could enjoy DR programs advantages [34]. The
benefits could be grouped into direct and indirect ones, with customers par-
ticipating in the DR programs enjoying immediate, mainly monetary advan-
tages, whereas the whole society and other consumers could be benefited by
the indirect DR effects.

DR schemes participants should notice evident savings in their bills which
is highly correlated with their compliance and responsiveness to the particu-
lar DR scenario they are enrolled with. Due to the regulated nature of power
generation in the context of DR systems, overall electricity price reduction
could be expected. Furthermore, reliability of smooth power distribution
could be perceived as an immediate aftermath of the DR utilization. In-
deed, the DR deployments give the opportunity to the customers to assist in
decreasing the outages risk and also avoid their own risk to face a power dis-
ruption. Last but not least, the whole market benefits from price reduction
and reliability. This is due to the fact that small power demand reduction
brings significant decrease in generation cost and consequently in electricity
rates.

2.2.4 Demand Response Challenges

Baseline demand as well as response estimation are two quantities that play
a significant role in the success of the Demand Response systems. As far as
the former is concerned, it describes a demand profile prior its association
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with a DR program. Such a demand profile is usually calculated with statis-
tical methods over a set of customers. The accuracy of the baseline demand
is critical for the performance measurement of the incentive-based DR pro-
grams, since this metric is used for calculating incentive payments for the
customers as well as for estimating the load reduction. Two methodologies
exist for calculating baseline demand [32]. The contractual approach engages
the customer in the process of foreseeing the demand load. However, that
is not always feasible and some of the customers are reluctant to participate
in such a scenario. The alternative, is led by the utility and is known as
the administrative approach. In that case, the energy provider estimates the
baseline considering the average energy consumption rate of the previous pe-
riods.

Response estimation is another challenge in the DR environment. The
participants must respond to DR signals, sent by the utility, during a certain
time-frame. Otherwise, they will not serve their purpose. It becomes appar-
ent that the utility needs to assess the number of the DR-enrolled customers
who will be available on every control signal dispatch. Furthermore, it also
needs to estimate the percentage of those who will finally respond. In that
say, the utility can further refine the DR signals to achieve more effective
load shedding.

In addition, other challenges are present. The service provider must be
able to verify the customers’ response so as to be able to evaluate the service
quality as well as to remunerate the participants for their contribution. Other
than this, the DR programs efficiency heavily depends on the users’ engage-
ment to the DR service, since the more reactive they are, the better for the
operational state of the system. Finally, one could note that the inclusion
of response automation in DR signals would increase the users’ participation.

Last but not least, due to the amount of information exchanged between
the consumers and the utility, justified privacy concerns arise. Customers
would not like to leak personal information and interests through their inter-
action with the DR service provider. Such conditions are regarded unwelcome
by the consumers and consequently hinder DR programs adoption from the
electricity market.
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2.3 Privacy in the Smart Grid

Smart Grid intends to substitute the traditional electrical grid while offering,
at the same time, new opportunities for the utility companies. For instance,
load monitoring could assist the operators to foresee future power consump-
tion and to adjust their production and delivery approaches. AMI supports
advanced SG operations such as load monitoring, power generation planning
as well as demand response. These can be achieved by constantly sending
consumption data towards the utility facilities and more specifically to En-
ergy Management Control System (EMCS). Such a control system requires
a continuous flow of information in order to perform efficiently. Neverthe-
less, frequently sent, fine-grained data transmission introduces new challenges
that have to be addressed. Privacy related issues are of significant value since
there have been proofs that individuals’ privacy could be violated [25].

2.3.1 Non-Intrusive Load Monitoring

Non-intrusive load monitoring, usually abbreviated as NILM or NALM ,
refers to a set techniques that enable the identification of appliances usage
in the customers’ premises. The information that a NILM process can infer
refers to the type of appliances and their state (on or off) associated with the
respective time-frame. Much like an AMI records the power consumption, a
non-intrusive sensor is needed in order to provide the necessary aggregated
data for the identification procedure. The aggregated data corresponds to
house-wide or room-wide power consumption information. Even though AMI
and NILM sensors are technically similar, the NILM sensors record the power
trace in a higher frequency, usually at second or sub-seconds intervals. NILM
techniques are characterized as non-intrusive because they eliminate the need
for outlet or appliance-level meters or other laborious and intrusive sensors
in the household.

Non-intrusive load monitoring is used for a variety of reasons. First and
foremost, it assist in analyzing the power consumption patterns and designing
techniques to achieve energy demand reduction. Moreover, load forecasting
can be supported while NILM algorithms also contribute information for en-
ergy saving audits. Collecting load data, designers of appliances can develop
more environmental friendly apparatus whereas utilities can detect appliance
failure. Last but not least, NILM technology enables demand side load man-
agement and contributes in the implementation of incentive programs for
particular appliance usage patterns.
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Various appliances or classes of appliances have distinct power consump-
tion features which constitute their so-called power signatures. NILM mecha-
nisms try to uncover these signatures from the aggregated power information
in order to identify the appliances which have contributed to the power con-
sumption. However, several actors in the SG can repurpose power consump-
tion data and the extracted information might be used in ways other than
originally intended. G.Q Hart [15] was the first to express such concerns. He
claimed that NILM could be used as a surveillance technology. Furthermore,
information extracted from load monitoring systems could help organized
crime to better plan burglaries and marketers to conduct direct marketing
campaigns for the consumers. In conclusion, NILM can undoubtedly assist
towards a more efficient SG, but the privacy concerns are justified.

2.3.2 User mode detection

While NILMs identify the apparatus in use along with its schedule, use mode
detection attempts to deduce the activity being performed with a particular
device. Experiments have shown that TV channels and web browsing recog-
nition is possible with high accuracy.

For instance, Greveler et al. [14] employ a method to identify the dis-
played TV channels. They exploit smart meter measurements with sampling
rate of 0.5 hz to develop a function that predicts the power consumption
of a LCD monitor lighting system. The power consumption of the monitor
is analogous to the brightness of the displayed content. They have demon-
strated the effectiveness of their method by showing high correlation between
the viewed movie and the power consumption. The correlation is proved by
a Pearson coefficient with values 0.93/0.94/0.98 for the three movies they
have experimented with.

In a different setting, Clark et al. [7] attempt to detect the website that
a computer is rendering on the browser from a collection of 8 webpages. To
achieve this, they apply direct load monitoring on the computer with power
recording frequency of 1 khz. Utilizing a set of classification techniques and
coupling them together they managed good accuracy, of almost 60%, with
the absence of false positives.
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2.3.3 Behavior deduction

The behavior deduction of all classes of customers, namely residential, com-
mercial or industrial, is beneficial for the design of Demand Response pro-
grams as well as for the prediction of the electricity demand under certain
behavioral conditions. Nevertheless, NILM and activity detection method-
ologies reveal the appliances schedule and the associated activities that the
customers undertake. On a higher level, this information can be used to ex-
tract customers’ behavioral trends. Utilities can record behavioral patterns
and this fact could work as an impediment for the DR adoption because of
the privacy concerns it arises for the residential users, in particular.

Lisovich et al. [24] conducted an experiment in a students’ residence in
order to prove that repurposed energy consumption traces can reveal be-
havioral patterns and habits. The experiment lasted two weeks. They were
constantly collecting electrical data while, for verification purposes, they also
installed a video surveillance. After they undergone the behavior extraction
module a training phase, they were able to detect load events and predict be-
haviors. The behaviors were divided in several categories, such as presence,
sleep schedule, meal times. A degree of disclosure metric was then associated
to each of those behaviors. As they claim, their behavior extraction system
performed quite well indicating that privacy concerns are justifiable.

2.4 PETs Taxonomy

2.4.1 Anonymization

Anonymization attempts to decouple the consumption data from its producer.
In that scenario, the data consumer receives some energy usage information
which is not attributed to any particular identity. Thus, the data consumer
can statistically process the data and perform the calculations it needs, such
as inferring electric consumption trends. Nevertheless, these trends can not
be associated with any particular customer.

Jawurek et al. [17] show that anonymization techniques are not suffi-
cient to protect customers’ privacy, on the condition that an adversary has
access to some external indicators. In their paper, they demonstrate two
attacks on the unlinkability of smart metering consumption traces. The first
attack attempts to associate the identity of a household with pseudonymous



CHAPTER 2. BACKGROUND 24

consumption traces via anomaly correlation. They show that the attack is
feasible and it also permits deduction of the household behavior. In the sec-
ond attack they demonstrate that the tracking of a consumption trace origin,
hidden behind different pseudonyms, is also possible. The authors achieve
this by exploiting patterns in the electricity consumption.

In conclusion, anonymization techniques robustness seem to suffer when
an attacker has access to secondary data sources. Several aspects of the
data items nature, such as the sampling rate, might give an adversary the
opportunity to reveal data producer’s identity or distinguish among them.

2.4.2 Trusted Computation

In trusted computation scenarios the data consumer does not have access
to individual power consumption information. Instead, it only receives an
aggregation of the private data items. The aggregate is computed either by
the households themselves or an additional entity, the trusted third party
(TTP), is introduced in the protocol to perform the aggregation. Under this
setting, the threat model considers the individual power readings as the as-
set of the system. On the other hand, the disclosure of this individual data
to the data consumer constitutes the main threat. The disclosure can be
performed by the entities which are in charge of the aggregation. Due to
this fact, the different protocols usually need to make strong assumptions in
regards to the aggregator trustworthiness. If the assumptions fails, then the
privacy guarantees are instantly canceled.

In the trusted computation approaches, we try to deprive the data con-
sumer from accessing individual power readings. By publishing aggregate
information, the data consumer can not recover end users’ details. However,
at the same time the data consumer gets sufficiently accurate aggregate data.

Power data aggregates are mainly either temporal or spatial. Temporal
aggregates regard the power traces of a singe user over time, whereas spatial
one regards power traces of multiple users at a certain time interval.

2.4.3 Cryptographic Computation

Under cryptographic computation protocols two variants exist: encryption
schemes that rely on the homomorphic property, and protocols that use se-
cret sharing schemes. In both cases, the data consumer can not decrypt
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individual data items but only their aggregate.

In homomorphic encryption, the data producers encrypt their individual
power consumption items with the public key of the data consumer. The
encrypted data then undergoes a homomorphic operation before it is sent
to the data consumer. In the case of aggregation, the individual data items
usually undergo a homomorphic addition operation. The homomorphic ad-
dition is performed by the multiplication of the individual, homomorphically
encrypted data items which corresponds to the addition of these values as if
they were decrypted. In the end, the data consumer receives the aggregate
and gets the decrypted result using its private key.

As far as the secret sharing schemes are concerned, a secret is divided in
multiple parts and each part is given to a participant. In order to reconstruct
the secret, all or a subset of the participants have to contribute their share. In
the context of the SG, a share could be thought of as the private electricity
consumption reading of a smart meter. Rottondi et al. experiment with
Shamir’s secret sharing algorithm, a secret sharing variant, in [28].

2.4.4 Perturbation

Privacy enhancing protocols that use perturbation techniques add appropri-
ate noise to individual data items or to the final aggregate. In this way, the
data consumer might still be able to compute the statistics it needs but on
the other hand, the privacy of the data producer is preserved.

A special variant of the perturbation schemes is the differential privacy
technique. In differential privacy literature the presence of a trusted data
aggregator is assumed. The aggregator usually responds to users’ queries
or it publishes statistics in reference with a population. This technique as-
sures that a user of a particular privacy-preserving statistical database can
learn the properties of a population as a whole but it can not infer valuable
conclusions on the individuals’ properties.

Definition 1. e-Differential privacy [8]: A randomized function K gives
e-differential privacy if for all data sets D1 and Do differing on at most one
element, and all S C Range(K), the following holds:

Pr[K(Dy) € S] <€ x Pr[K(Ds) € S] (2.1)

where the probability Pr is taken over the coin tosses of K, and the S is
a singleton set, if the output of K is discrete random variable, or a small
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range of reals, if the output of K is a continues random variable. Finally,
Range(K) is the output range of K.

Every randomized function K that complies with the above definition
does not make any output significantly more or less likely in case an individual
adds or removes her personal information. In other words, the presence or
absence of an individual in the database does not significantly change the
distribution of the output. Consequently, this property assures the privacy
of the individual information. We note here that we go through a more
detailed analysis of the differential privacy against homomorphic aggregation
in section 3.3.

2.4.5 Verifiable Computation

In the verifiable computation paradigm, the aggregator, along with the aggre-
gation result, it also provides a proof of the aggregate calculation correctness
to the data consumer. Taking advantage of this property, the aggregation
protocols of this kind can assume untrusted aggregators, whereas at the same
time they can guarantee the integrity of the aggregation result. This partic-
ular PET scheme is well suited for protocols that aspire to provide billing
capabilities. In fact, this observation holds due to the integrity and accuracy
guarantees of the aggregate result that the verifiable computation protocols
can provide.

Such protocols are usually developed based on the zero-knowledge proof
(ZKP) principles [13]. Briefly, in zero-knowledge proof protocols, two parties,
namely the prover and the verifier, interact. The verifier gets knowledgeable
of a prover’s statement who attempts to prove the validity of that statement
without revealing additional information to the verifier, except for the actual
statement. In the context of a electricity aggregation protocol, the data
producer plays the role of the prover while the data consumer plays the role
of the verifier. The data producer, e.g. a household, calculates the total
energy consumption on a monthly or bimonthly basis. Then, it informs the
the data consumer, e.g. the utility company, about the result. At the same
time, the data producer can persuade the data consumer about the validity
of the result without disclosing individual smart meter readings.
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Fitting PETs to DR model

A set of PET classes were presented in Chapter 2 that provide privacy guar-
antees in the context of the Smart Grid. Nevertheless, some of them require
strong trustworthiness assumptions on third parties, whereas others reveal to
little information rendering DR, deployments rather infeasible. In this chap-
ter, we initially identify the requirements that a privacy preserving protocol
should live up in order enable DR schemes in the Smart Grid. Then, we
analyze the advantages and disadvantages of some of the featured solutions.

3.1 Requirements in a DR environment

A privacy-enhancing solution design should meet a set of requirements in
order to integrate effectively in a DR context. The effect of those require-
ments is twofold. First, they should protect consumers’ privacy. Second,
they should not hinder advanced SG operations, such as load monitoring
and demand forecasting.

3.1.1 User-side requirements

The user’s main concern is the potential leakage of privacy sensitive data
as a result of participating in a DR program with a utility company. Thus,
ideally a user would require the following.

Disclosure of consumption data collection

A DR participant should know when the utility company collects consump-
tion data and give his approval for this activity. An even more important
aspect of the data collection is the nature of data collected in terms of granu-
larity, location and frequency. Indeed, such characteristics either individually

27
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or collectively might pose severe threats in user’s privacy [15]. Moreover, a
DR subscriber should be informed about the duration of the data retention
and should ideally control the rightful application of the privacy policy under
which energy data was collected.

Control of reuse of consumption data

Control of data reuse assures that the data subject, in this case the electricity
user, gives or denies his permission to the utility to process the collected in-
formation for new purposes. Such purposes include individual data disclosure
to third parties or re-purposed data processing that was initially disallowed
by the privacy policy between the utility company and the user.

Minimum possible personal data collection

There is a quite extended literature [24], [21], [27] that indicates the pri-
vacy implications of smart meter readings collection. Under certain circum-
stances, such collected data can be coupled with other auxiliary information
that comes from other sources. As a consequence, the utility or any other
entity that might have access to personal information will be able to de-
rive meaningful conclusions regarding an individuals’ habits and behavioral
patterns. Thus, the amount of information collected by the utility has to
be the minimum possible which in this case is dictated by the functional
requirements of DR. Such functional requirements set the least amount of
information needed by the utility company to achieve the goals of DR, such
as cost savings and load shifting.

Authorized access to consumption data

The energy consumption data collector, in this case the utility company, has
to make sure that unauthorized access to individual data is not permitted.
That particular requirement concerns the storage of the information after
collection and before utilization. The utility company has to keep the con-
sumption readings encrypted and take all the appropriate measures to avoid
data breaches.

As of now, the users’ requirements presented were tightly connected to
privacy. However, the electricity consumers, except for privacy guarantees,
also expect power services reliability. In particular, consumers expect low
likelihood of blackout incidents owing to inaccurate power demand estima-
tion. As it has been noted in [32], users’ acceptance is of high importance
for the success of a DR program.
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Reliable SG services

Smart Grid operators acknowledge the value of users’ high participation rate
in DR schemes and they try to keep their interest high by providing benefits.
The users mainly expect orderly power flow as well as the financial gain as a
result of their enrollment. Potential inability of the utility to meet customers’
expectations will increase their discomfort and it will probably determine the
success of a DR program.

3.1.2 Operator-side requirements

On the other side of a Demand Response program, the operator also sets a
number of requirements that will allow it to run a DR scheme successfully.

Impactful baseline demand prediction

The baseline is the power demand profile that a user has in the absence of
any DR scheme. Baseline demand is very important for the utility since
in constitutes the metric that is used to calculate the users’ power demand
reduction. Intuitively, the demand reduction can be thought of as the baseline
consumption minus the realized consumption. There are different approaches
to calculate the baseline and all of them give varying results in terms of
accuracy. This leads to inexact estimation of the DR performance indicators.
As an immediate consequence, such inaccuracies affect the effectiveness of the
DR program. It becomes apparent that the more accurate power data the
utility has the better services it can provide.

Impactful DR response estimation

The DR participants’ response estimation determines the DR signal policy
that the utility company will follow to achieve the desired power reduction
or shift result. More specifically, the utility needs to assess the portion of the
DR participants that will respond to certain signal as well as the quantitative
aspects of their response. The accuracy of the estimation will significantly
affect the DR program performance. The estimation is mainly based on
historical data by means of power consumption traces and the context of
the power consumers. Once more, accurate historical data will significantly
foster better DR response assessment at the cost of privacy.
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User DR response verification

The Smart Grid operator needs to know with certainty if a particular DR
program participant has actually responded to the DR signal sent. This
becomes a necessity because of the contractual obligations between the two
entities of the program. The user will request to be remunerated for his
DR signal respond, while the utility needs to verify that the user has actu-
ally responded. Other than the monetary reasons, DR response verification
also assists in measuring the quality of the given service as well as to the
refinement of it to better meet the committed service objectives.

Fine-grained power consumption data

As explained in section 2.3, high resolution data poses a significant threat to
the users’” privacy. On the other hand, fine-grained energy readings gives to
the utility a clearer insight on the power profile of each user. In that sense,
the utility will be more successful in providing advanced Smart Grid services
with certain quality guarantees. This is because of the accurate statistics
that it can derive from the volume of consumption data that it has collected
for a particular user or a group of users. Last but not least, A.Cardenas et
al. in [4] claim that there are other legitimate reasons for utilities to require
fine-grained smart meter data, such as fraud detection and dispute resolution.

Billing capability

The Smart Grid operator needs to be able to charge the customers for their
actual power consumption. The billing data needs to be fine-grained for
the utility to be able to accurately calculate the energy cost. This is ow-
ing to some DR schemes being employed, such as the TOU program. As
explained earlier, in TOU paradigm the pricing fluctuates over time. Thus,
exact bills can only be derived if the consumption readings are available in
high-resolution. However, the billing data needs to be sent to the utility
only once per month or bimonthly. This is a basic difference compared to
the smart meter readings sent to the operator for power grid monitoring and
stabilization reasons. Last but not least, billing data needs to be attributable
to a unique household.



CHAPTER 3. FITTING PETS TO DR MODEL 31

3.2 Evaluation of featured PET mechanisms

Under this section we aspire to investigate the implications of featured pri-
vacy preserving techniques in the DR environment. We choose characteristic
implementations based on the PET taxonomy presented in section 2.4. Then,
analyze the privacy guarantees as well as the impact these mechanisms have
on a DR program operation.

3.2.1 Escrow-Based Anonymization

Efthymiou et al. in [11] propose an escrow mechanism which plays the role
of the mediator between households that participate in a DR program and
the utility company that collects the power consumption data. The role of
the escrow can be assigned either to the smart meter of each household or
to a T'TP. Every smart meter is equipped with two distinct IDs, namely the
high frequency identifier, HFID, and the low frequency identifier, LFID. The
former is used for communicating high sampling rate energy readings to the
power grid operator for demand side management activities, while the latter
is used for billing purposes. We note that the HFID is anonymous whereas
the LFID is attributed to the respective household. Moreover, the escrow
agent is the only entity that knows about the connection of a HFID/LFID
pair.

The escrow agent service privacy guarantees are heavily based on two fac-
tors. First, the escrow should comply with a strong data policy that will only
allow for keeping track of the HFID/LFID pairs. Hence, the escrow agent
must be honest and never reveal to third parties the LFID which correspond
to some particular HFID. Second, as the authors also point out, the privacy
level of this scheme is dependent on the size of the anonymity set, the set of
all subjects i.e. households. These somewhat strong assumptions lessen the
reliability of the protocol. The escrow service, a single point of privacy failure,
has to strictly follow the privacy policy, otherwise no anonymity is guaran-
teed. Furthermore, Jawurek et al. in [18] introduce de-pseudonymization
techniques that further weaken the privacy properties of the escrow mecha-
nism. Their attack vectors assume that the adversary has access to anony-
mous power consumption traces but, by taking advantage of secondary data
sources, they still manage to create linkability. The linkability regards the
connection between the power consumption traces and real household iden-
tities.
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As far as the DR effectiveness is concerned, the escrow mechanism allows
for transmission of ezact, non-aggregated power data in frequent time inter-
vals. It fosters advanced quality power grid services because of the original
consumption data that the utility has at its disposal. Due to the utilization of
the anonymous HFID, the operator could potentially offer personalized DR
signals to individual customers, industrial or residential, further enhancing
the DR program accuracy and users’ acceptance. Last but not least, all DR
schemes, such as TUO or CPP are feasible since no perturbation is imposed
on the data sent, thus rendering estimation and verification of the customers’
DR response possible. Nevertheless, all these advantages come at the cost of
high privacy risk as indicated in the previous paragraph.

3.2.2 Homomorphic Secure Aggregation

Li et al. have proposed in [22] an aggregation protocol over a group of smart
meters based on the Paillier cryptosystem [26]. The data consumer, the en-
tity that is interested in making statistical analysis on the aggregate power
consumption, publishes aggregation plans towards all participating smart
meters which are organized in a spanning tree topology. The aggregation
plans indicate the nature of the data to be collected, such as temperature
or power and the time interval of the selected data. The plan ultimately
controls the aggregation operation. At the root of a the spanning tree there
is a collector. The collector is in charge of producing the public Paillier key
that will be used by all the child nodes of the tree for encryption purposes.
This privacy preserving solution utilizes homomorphic encryption to perform
in-network aggregation in a bottom-up manner (Fig. 3.1), while it guarantees
the privacy of the intermediate results. Each smart meter Paillier-encrypts
its consumption traces with the collector’s public key and homomorphically
adds the result with the encrypted readings of its children in the spanning
tree. In the end, the collector homomorphically decrypts the final tree ag-
gregate and communicates the result to the data consumer. We note here
that the Paillier cryptosystem is explained in more detail in section 4.3.

The authors have assumed an honest-but-curious adversary model. Thus,
the smart meters will not tamper with the protocol execution process but
at the same time they might try to read other parties’ intermediate power
aggregation results. As of the latter, the Paillier encryption used in the proto-
col ensures that no intermediate node will ever be able to disclose individual
data, since none of the intermediate participants in the spanning tree has the
collectors’ private key. In the end, only the collector will be able to decrypt
the Paillier-encrypted aggregate and transmit it to the data consumer, such
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Bottom-up Aggregation—p-

Figure 3.1: The aggregation spanning tree

as the utility. Furthermore, from a privacy perspective the spanning tree
aggregate is well secured. The data consumer will not be able to distinguish
individual consumption for any of the participants, unless it uses auxiliary
information from secondary data sources, as noted in [3]. Conclusively, the
users’ privacy remains protected behind the electricity usage aggregate over
a whole group of smart meters in a building or in a neighborhood. Never-
theless, privacy concerns may arise if the adversary obtains access to other
auxiliary information.

Aggregation of power consumption information at multiple levels (build-
ing, neighborhood, town) is important for the orderly operation of the power
grid [29]. Spatial aggregation is considered less privacy invasive since the
information collected does not refer to a certain customer but to a group
of customers instead. Although the last observation mitigates the privacy
concerns that may arise in the smart grid, it also has an impact on the effec-
tiveness of the DR programs. The aggregates that a data consumer receives
characterize the consumption patterns of a number of participants and not
individual power consumers anymore. A first observation is that the DR
programs can now be offered on a neighborhood, district or town level. The
homomorphic secure aggregation suggested by Li et. al calculates exact ag-
gregates. Thus, the data consumer has an accurate picture of the power
consumption trends for a particular group of customers. Exact aggregates
increase the DR efficiency drastically since reliable statistics can be drawn at
a group level. On the other hand, the shortage of more fine-grained knowl-
edge on the energy consumption patterns per customer could downgrade the
value of a DR scheme. As a matter of fact, the statistical models that can
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be deduced from exact power aggregates describe an average energy user
profile. However, different customers in a group have different habits and
their response to DR signal might not follow the same patterns. In conclu-
sion, exact power aggregates allow for effective DR schemes on a group level
but challenges such as individual customers responsiveness and discomfort
impact should be addressed.

3.2.3 Differentially Private Perturbation

Acs et al. [3] propose a privacy enhancing technique that ensures differen-
tial privacy [8] by utilizing a novel way for adding appropriate noise to the
calculated aggregate. The distributed noise generation mechanism that they
use allows for not relying on a TTP to act as an aggregator. Its role can be
played by the grid operator or supplier. At the first step, the smart meters,
represented as nodes, are grouped in clusters and they create pairwise keys
K, ; with Diffie-Hellman key exchange. At a second phase, when the nodes
need to report their power measurements to the utility operator or supplier,
every node u; calculates the following value :

where X is the measurement of node u; at time ¢, N is the size of the cluster,
whereas G1 (N, \) and G5(N, \) are random values independently drawn from
the same gamma distribution. On the aggregate level, these random values
of each node will accumulate to some Laplacian noise which constitutes the
guarantee for the differential privacy of the aggregate. This feature is sup-
ported by a lemma which states that the Laplace distribution is divisible
as the sum of independent and identically distributed random variables fol-
lowing a gamma distribution [3]. Even though this step provides differential
privacy for the sum of the measurements of all nodes, the individual measure-
ments are still exposed to privacy threats. The authors propose a third phase
in the protocol to address this vulnerability. At the third phase, encryption
takes place. Each pair of nodes in a cluster issues a dummy encryption key
k using the pairwise key K ; of the first phase. In the encryption, which is
based on modulo addition, the first node of the pair adds k to its X} while
the other subtracts k from its own X,;j . As a result, the aggregator can not
decrypt the individual measurements. Nevertheless, at the last step, the ag-
gregator adds all the encrypted measurements. The dummy keys cancel each
other out and it retrieves the sum of the noisy measurements. The process
that we have described is depicted in Fig.3.2.
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Figure 3.2: Distributed noise generation. SN o, = L(\), where
o; = G1(N,\) — Go(N, A) and L(A) the Laplacian noise.

The first important observation in the operation of this protocol is the
absence of a TTP. The participants do not need to rely on a separate entity
to provide them with privacy assurance. The smart meters can one-by-one
communicate their measurements to the power supplier without threatening
the privacy of individual households. This is owing to the modulo addition-
based encryption of the raw measurements with a pairwise key k between
every two nodes of a cluster. Except for individual power readings, the ag-
gregate power consumption of a cluster is also secure in terms of privacy
because of the random noise that each node adds according to gamma dis-
tributions. In conclusion, the authors assert that their protocol guarantees
the differential privacy of both individual smart meter readings and the final
cluster aggregate.

As far as the impact of this protocol on Demand Response programs,
the authors observe that the bigger the size of the cluster the smaller the
error. Due to the differential privacy guarantees, the final cluster aggregate
is noisy, hence is not accurate. The differential privacy schemes are flexible
enough in terms of privacy-utility trade off. The global sensitivity of some
function f can be easily calibrated to assure the appropriate balance be-
tween privacy and utility. Nevertheless, in differential private scenarios the
noisy aggregate is expected to have some impact on the efficiency of DR pro-
grams. The perturbed data itself constitutes a challenge for the DR provider
since, based on that data, it will calculate the statistics needed for the effec-
tiveness evaluation of the program. For instance, in a demand and supply
setting, prediction is of significant importance to match power production
with demand. However, the prediction considers past consumption trends.
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In case that such trends are not communicated to the DR program designer
in an accurate way, the challenge that it faces to produce reliable power
statistics becomes apparent. In conclusion, differential privacy techniques
is a promising approach towards privacy preservation in the smart grid but
careful calibration is needed, since high privacy guarantees could hinder the
efficiency the employed DR schemes.

3.3 Homomorphic Aggregation vs Differen-
tial Privacy

Both privacy-enhancing techniques attempt to protect the individual infor-
mation by returning results that concern the whole population that some-
one examines. We assume here that an adversary can initiate queries to a
database where the individual information is stored. In homomorphic ag-
gregation protocols, the aggregation results are usually exact, no matter if
the computation is conducted on encrypted data, as we have pointed out in
sections 2.4.2 & 2.4.3. As a consequence, the addition or the removal of a
participant to or from the population is expected to affect the aggregation
result noticeably.

For instance, lets suppose that an adversary wants to learn if a particular
student is a member of some school S. In that case, the aggregate information
that a query of the adversary would return is the number of the students in
the school S. On the other hand, the membership or not, of a particular stu-
dent, is considered private information. An adversary could learn if a student
is a member of a certain school if he makes the two following queries:

1. Find the number of the students in school S

2. Find the number of the students in school S not named “Georgios
Liassas”

Hence, it is apparent that exact aggregates can leak individual informa-
tion. If the result of the first query differ from the second by 1, then the
student named “Georgios Liassas” is a member of school S. Moreover, as
E. Shi et al. point out [31], the individuals’ privacy is not protected if an
adversary has access to arbitrary auxiliary information about an individual
of the population.
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Briefly, the homomorphic exact aggregation can not guarantee the follow-
ing:

e [t can not promise that one’s data will not affect the aggregate result.
Every individual of a population should be expected to affect the aggre-
gate result, otherwise the result would not have any utility. Neverthe-
less, it would be preferable some individual’s data to affect the result
in a controlled way, so that it would not disclose, with high probability,
her contribution to the result.

e [t can not promise that the attacker will not be able to learn new in-
formation about an individual from looking at the result. For instance,
the queries responses might reveal a strong trend over the population.
Thus, no matter if an individual is in the database or not, her personal
information could be compromised. Moreover, an attacker might be
aware of some function of an individual in reference with the aggregate
result (e.g. an individual’s age is exactly twice the average age of the
population). This auxiliary information poses a threat on the individ-
uals’ privacy.

An individual would feel safe to submit her personal data to a database
if she knew that her contribution would not change much the distribution
of the query output. In other words, the query output should not change
significantly if an individual decides to share her information. In fact, this is
what differential privacy guarantees. It provides a rigorous guarantee about
the privacy of personal information. The released response from a database,
as a result of some query, gives minimal evidence about the possible contri-
bution of an individual in a data set. In addition, differential privacy remains
privacy-robust even in the case where an adversary has access to secondary
sources of information, whereas it is independent of the computational power
available to an adversary [10], [9].

In a differential privacy setting we have a trusted server which is simulated
by a randomized algorithm f. We claim that f is e-differentially private if
for all datasets D; and D,y ,that differ by only one record, the adversary
can not guess, with high probability, the contribution of an individual to
the result. To achieve this, the theory on differential privacy introduces the
notion of global sensitivity. Global sensitivity of some function f is defined
as the worse case difference or gap, in query responses, that is caused by
adding or removing an individual’s data from a dataset. We note that the
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sensitivity is a property of the function f alone and it is not related to any
database. Function f(D) = X is a deterministic, non-privatized function
over a dataset D which returns a vector X of k results.

Definition 2. Global Sensitivity [8]: For f: D — R¥, the sensitivity of
fis:

Af = max [| f(D1) = f(D2) [, (3-2)

D1,D2

for all Dy and D, differing in at most one element.

For a release mechanism K, in order to provide the privacy guarantees
and to be considered differential private, it needs to bridge the global sensi-
tivity gap. The sensitivity gap bridging is achieved by adding noise. Random
noise values are taken from a Laplacian distribution with standard deviation
large enough to cover the sensitivity gap. Laplacian noise is not the only
method to achieve differential privacy, though it considered the easiest one.

Hence, a differentially private release mechanism K will responds to
queries with:

f(D) + (Lap(Af/e)* (3.3)
where f(D) is the original answer and Lap(Af/e) is the distribution of the
noise added to the response. More specifically, the term Lap(Af/e) de-
scribes the scaled symmetric exponential distribution with standard devia-
tion v/2Af /e. The probability density function is:

e(=lzl/b) -
p) = (3.4

and the cumulative distribution function:
D(z) = (1/2)(1 + sgn(z)(1 — /7)) (3.5)

where b= Af /e.

We note that the parameter ¢ is a publicly known parameter which con-
trols the trade-off between the accuracy of the computation (utility) and the
robustness of the privacy guarantees (privacy). Lower ¢ indicates higher pri-
vacy but lower utility, and vice versa.

With the following proof [9] we aspire to show why a release mechanism
K satisfies differential privacy by covering the sensitivity gap of a function
f with Laplacian noise.
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Proof. Lets assume a non-privatized function f(D) = X, with & = 1. At any
R € Range(K), considering the formula 2.1, we have:

PriK(Dy) € S|

)

e
~ Pr[K(D,) € 5]
_ (R=f(Dp)le)
57 ¥ € af N ‘ ‘
= RUERESI) (probability density function)
< _xe Y
2Af
_UR=F(Dy)le)
e Af . . . .
= @ (simplifying the fraction)
e

7(\R*f(D1)IE)+(\R*f(Dz)IE)
e Af Af

S oA (D)=f(D2)

> 4 (with A < 1) 0



Chapter 4

Simulation Methodology

As mentioned in the previous sections, Demand Response programs have a
great potential in the modern electrical grid. They can help handling power
disturbances, mitigate blackouts and adapt load curves, among others. Nev-
ertheless, at the same time, they also pose privacy risks on the users. Recent
research efforts [19] have indicated that power consumption data can be
repurposed by the utility companies and used for disclosing users’ daily ac-
tivities. Consequently, users’ privacy protection is of significant importance
for the wide adoption of DR programs. Decreasing users’ discomfort, origi-
nating from privacy threats, is a key factor for the successful deployment of
the Smart Grid. Multiple PETSs have been proposed to equip DR solutions
with privacy guarantees. Interested readers can refer to section 2.4, where a
taxonomy of such privacy enhancing mechanisms is proposed.

4.1 Simulation Overview

This section intends to give an overview of the simulation, explain the pur-
poses it serves and to define the objectives that we try to achieve via this
process.

The Motivation

Although PETSs mitigate privacy leakages caused by energy consumption
data, they also cause other side-effects that could potentially hinder the util-
ity of the Smart Grid advanced services. For instance, power aggregates on
a neighborhood or building level might give an exact picture of the energy
consumption but on the same time they diminish the consumption patterns
accuracy per individual user. Furthermore, the utility has to address the

40
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challenging problem of accountability. In a DR context where power aggre-
gates are used, some users might underperform but still receive a notable
reward.

We have considered the challenges that emerge owing to the use of power
aggregates to protect users’ privacy. We have simulated a DR system where
users are grouped with variable group sizes. The main objective of the sim-
ulation is the evaluation of an incentive allocation mechanism used in the
context of a DR scenario. We have assumed that the utility has an accurate
baseline consumption for each household participating in the DR program.
The baseline consumption indicates the electricity usage of each household
before the initiation of any DR scenario. CER smart metering data has been
used as the baseline [5].

We have designed a simple DR mechanism where the utility sets a mon-
etary reward as an incentive for the participating households to take part
in the DR program. As far as the users are concerned, they undertake the
responsibility to reduce their energy consumption right after the reception
of a DR signal from the utility. However, not all of the users in the groups
respond the same dutiful way. Such a scenario introduces implications in the
accuracy of an incentive allocation mechanism and affects the fairness of the
process. We investigate those implications, try to identify the causes and
mitigate the problem.

The Evaluation

The evaluation is performed based on three performance indicators, namely
the homogeneity, the incentive allocation error and the privacy. As far as
the homogeneity is concerned, it indicates how effectively the utility can dis-
tinguish between users who constantly respond to DR signals and those who
cheat trying to hide their deed behind group’s overall power curtailment. In
regards to the incentive allocation error, it basically calculates the error in
allocating the deserved incentive to the DR users who are grouped. Last
but not least, privacy quantifies the uncertainty of an adversary, the utility
company in particular, in reference with the correlation of a user with an
observed action. In the context of the simulation the observed action, from
the utility point of view, is the power aggregate of a group of users after the
dispatch of a DR signal.

The Simulation Data



CHAPTER 4. SIMULATION METHODOLOGY 42

The simulation is trace-driven, meaning that the power usage information,
that has been used in the experiments, is originated from a real system [5].
In 2012, Ireland’s Commission for Energy Regulation (CER) published some
smart meter electricity trial data. The data regards smart meter power con-
sumption readings for 782 households on a basis of 30 minutes interval. The
power readings span from January 15 2009 till December 315 2010. Every
data point consists of three values. The first one denotes the smart meter
ID. The second is a five digit code where the three first represent the day
while the two last digits determine the time during a certain day. As for the
last value, it determines the electricity consumed during 30 minutes interval,
in kW.

4.2 System description

4.2.1 System Components
The Utility (U)

The utility company is the entity of the system which is interested in the
statistical processing of the households’ consumption data after the comple-
tion of a DR event. In the context of our simulation, a DR event is initiated
with the dispatch of a DR signal towards the participating households and it
is completed after 3 hours. More specifically, the utility sends to the house-
holds DR signals every day for a certain number of days. The DR event
lasts 3 hours from 18:00 in the evening to 21:00 in the night. During that
period the households taking part in the DR program have to shed their
energy load. As a consequence, the utility will reward the household with a
monetary incentive analogous to their power reduction effort.

The Household (H)

The households are those entities of the system that give feedback to the
utility in reference with their power curtailment after the completion of a
DR event. In order to alleviate their privacy concerns, the utility allows
those households to be organized in groups and send to it their power aggre-
gates instead of individual smart meter readings. However, the role of the
group organizer is assigned to the utility. The size of the groups is common
for all of them but variable. For instance, the utility can choose a number
of 2, 4 or 36 households per group. Then all groups should be of the same
size. In that setting, every household power consumption is encapsulated in
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the respective group power consumption. As an immediate aftermath, some
households might not comply with their obligation to reduce their power
load as expected, believing that they can not be found accountable for their
improper behavior. We have recognized this situation and we distinguish the
households in two categories, the free-riders and the legitimate users. We sup-
pose that in the former category the households do not reduce their energy
footprint at all, while in the latter they reduce by some reduction rate v # 0 .

The Collector (C)

Between the utility and the groups of households we introduce the last en-
tity of the system, the Collector. Every group is assigned a collector. The
collector is in charge of setting a secure environment for the households to
report their smart meter readings. Moreover, it also undertakes the task of
forwarding the group’s power aggregate to the utility. From the privacy point
of view, the collector is the weakest link in the system we have described.
In section 4.3 we elaborate on the privacy risks and we introduce a threat
model of the system.

4.2.2 System Functions

Each of the system components, namely the utility, the households and the
collector is equipped with a set of functions in order to serve its role in the
context of the DR program. The following paragraphs describe each compo-
nent functions in detail.

The Utility Functions

The utility has a twofold role. First, it is responsible to distinguish the free-
riders from the legitimate users and isolate them in order to find themselves
accountable for their behavior. Second and more importantly, the utility
has to ensure high accuracy in the allocation of the incentive. Nevertheless,
both tasks are challenging because of the privacy mechanism we employ. By
reporting the group’s aggregate power consumption to the utility company
instead of individual smart meter readings, the utility lose valuable infor-
mation granularity. To overcome these difficulties we have developed three
different functions for the utility and we evaluate them in Chapter 5.

Random. The random function constitutes the simplest method we have
developed and it is used as our baseline to compare the effectiveness of the
other two functions we present later. The utility starts by splitting 512 out
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of 782 households to groups of some group size. A subset of the households
is used in order to help us form the groups of different sizes. As we have
noted before, the DR program lasts for 535 days based on the available CER
data. After the initial creation of the groups, the utility randomly shuffles
the households in order to form the groups of the next DR round. At each
round it allocates the incentive to the participating households as it is thor-
oughly explained in Section 4.2.3.

Smart. The main problem of the random function is that we can not
control at any stage of the process the grouping of the households. More
specifically, some legitimate users might be grouped with some free-riders
and thus the group members will not receive a fair share of the incentive.
Ideally, we want to give the chance to the legitimate users to be grouped
together and not be mixed with the free-riders.

The smart function attempts to improve the incentive allocation of the
next round by considering the amount of incentive of the previous DR round,
for each of the households. Prior to the incentive allocation of the current
DR round, the utility sorts the households in decreasing order based on the
amount of incentive they received by the utility in the previous round. Here
the intuition is that those households that have been ranked high in the list
are probably legitimate, while those lower in the list are probably the free-
riders. However, as we have explained previously, legitimate users might also
be grouped with the free-riders. As a consequence, those households’ ranking
will be affected by free-riders infringing behavior. The utility needs a way to
give the chance to those underprivileged legitimate users to be grouped with
other legitimate users and finally receive the incentive they deserve. Further-
more, the utility wishes to discover the free-riders for accountability reasons.

Considering the aforementioned utility objectives we have designed a
smarter algorithm to form groups. The smart function does not randomly
pick group members among all households but from a certain range of house-
holds with some high probability and out of this range with some lower
probability. In more detail, after the utility has sorted the list of households
based on the incentive allocated from the previous DR round, it starts form-
ing the new groups for the next round. For every new group it randomly
picks a household from the sorted list. We refer to this first household as
the indexed household. Then, it completes the formation of the group using
a radius. The radius defines the neighboring households of the indexed one.
We set the radius length to be equal to the half of the group size. While the
group formation has not been completed, the utility picks one new household



CHAPTER 4. SIMULATION METHODOLOGY 45

a time from a certain range with high probability. The range is defined as
the set of households belonging in the [—radius, +radius] interval. Since we
have initially assumed that the neighbors of the indexed household belong to
the same category (legitimate or free-riders) we pick from inside the range
new group members with relatively high probability. In that manner we at-
tempt to keep legitimate and free-riders apart. To give the chance to the
legitimate households, which have been ranked low in the sorted list, to be
grouped with other legitimate, we pick outside from the range new group
members with relatively low probability. After the completion of a certain
group, a new indexed household is picked and the group formation continues
as described above, until all groups are created. Finally, the incentive alloca-
tion mechanism run again and the incentives it distributes serve as the basis
for the new DR round.

Fig. 4.1 illustrates a snapshot of the Smart algorithm state. There are
6 houses which must be grouped in groups of 2. There is one free-rider,
the household numbered 2 and five legitimate. The total incentive is €100
which is split among the users. The households have been sorted based on
the amount of the incentive received from the previous DR round. In the
current round, the index that points to the household 1 is randomly picked
and the radius has half the length of the size of the groups, thus the length of
1. The households 5, 1 and 3 belong inside the range, while the households
6,2 and 4 belong outside that range. The algorithm will choose the other
member(s) of the group inside or outside the range with some probability,
as explained earlier. We should note that the household which are already
picked to participate in a group can not be used again.

Incentive Sorted Households
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Figure 4.1: Group formation Smart algorithm for group size : 2

Mixed. Even though the Smart algorithm is characterized by a more
structured and controlled way of shuffling the households and forming the
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groups, it also shows some deficiencies. First and foremost, the utility might
manage after some DR rounds to sufficiently separate the legitimate users
from the free-riders. However, it has no indication that such a state has been
reached. Hence, it might continue shuffling the households after some rela-
tively optimal state has been reached. Such a tactic could once more pair
the legitimate users with the free-riders and cancel all the effort that has
been made, up to that point. As far as the incentive allocation mechanism is
concerned, so far the utility does not exploit any historical data. To integrate
the past knowledge in the allocation mechanism we have introduced a repu-
tation metric. Every household participating in the DR program has its own
reputation. The reputation is simply defined as the accumulated incentive
for each household over the past DR rounds. Here, the intuition is simple.
Due to the fact that we have assumed a consistent behavior for the users,
once they are characterized legitimate or free-riders, they act analogously
throughout the entire DR program lifecycle. Consequently, we expect that
after every DR round the reputation metric will assist to better distinguish
between the two users’ category.

In the mixed algorithm we have two different phases which are interleaved.
During the first phase the groups are formed based on the Smart algorithm
presented above. The second phase sorts and groups the households based
on their reputation. Those two phases run alternately throughout the DR
program duration. The first phase allows for a convenient and purposeful
shuffling of the DR participants. Thus legitimate users are grouped with
legitimate, free-riders with free-riders and legitimate with free-riders as well.
In the second phase we come to exploit the aftermath of shuffling of the first
phase. The reputation tends to get higher for the legitimate whereas lower
for the free-riders, in the long run. The more DR rounds the better for this
disunion. The second phase sorts the households based on their reputation
and forms the group picking households sequentially. Consequently, the legit-
imate are grouped with the legitimate and free-riders with free-riders. Last
but not least, now the utility does not need to have an indicator when to
stop shuffling the groups’ households. It can simply take advantage of the
fact that the separation between the two users’ category improves as the DR
program evolves.

The Household Functions

The household simulates the behavior of a user who is participating in a DR
program. For each of the 512 households that the system randomly picks
to participate in the DR program, we associate their consumption data with
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the respective household and then we calculate the realized energy based on
its 7, the reduction rate. We remind here that a free-riders has v == 0 while
the legitimate users have v > 0. The formula 4.1 describes the computation
of the amount of electricity that it is consumed by a certain household based
on its 7.

Realized;, = (1 — ) x Z Power(t) (4.1)
t

where Power(t) indicates the power consumption at some time point ¢. On
the other hand, formula 4.2 shows the amount of electricity reduction for
each household. Obviously, the reduction of a free-rider equals zero.

Reducedy, = v * Z Power(t) (4.2)
t

During the run of the incentive allocation, the household will forward the
Realized), value to the utility encrypted via the collector, as it is thoroughly
described in Section 4.2.3.

The Collector Functions

The collector undertakes all the operations of the group, as a group leader.
It is in charge of calculating and dispatching the group power aggregate to
the utility and allocate the incentive to the group members. As far as the
aggregate calculation is concerned, it is explained in detail in section 4.3. In
regards to the incentive allocation mechanism, the collector uses two meth-
ods which are described right below.

Naive Allocation. In the naive allocation, the collector does not use
any historical information to estimate the effort of each group member. Thus,
the group incentive (/) is split equally among the households of that group
as in formula 4.3.

[h =2 ) (43)

where [j, is the incentive of each household of the group g and S, is the
number of households participating in that group.

Advanced Allocation. Obviously, the naive allocation mechanism is
not very efficient since it assumes that all the participants reduce the same
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amount of energy. This is not true since we know that there are free-riders
who are not reducing at all. To tackle this problem, we introduce a new
method which takes advantage of the household’s reputation. We assume
that the higher the reputation of a certain participant, the higher the incen-
tive it should receive. This idea is depicted in the formula 4.4

Ih: —*[g , (44)

where P, is the household’s reputation and F; is the group’s reputation. The
group’s reputation is calculated as the sum of all households’ reputation be-
longing in that group.

4.2.3 Incentive allocation

The incentive allocation mechanism is the most important function of our
system. Its effectiveness has a significant impact on the orderly operation
of the DR program. Users’ discomfort from possible incentive misallocation
could threaten its success. Moreover, it could deprive the utility, the house-
holds and the whole society from such a program benefits as described in
Section 2.2.3. In the rest of this section we elaborate on the incentive allo-
cation process.

At time point ¢y the utility sends to all the households a DR signal. The
DR signal is to be applied by the households at the time point ¢; and will
last till the time point t3. Indeed, we have simulated the reception of the
DR signal from the households at 18:00 in the evening while the DR event
terminates at 21:00 in the night. At some later time point ¢, the households
are asked to report to the utility their power consumption recorded during
the DR event.

As we have seen earlier, each household calculates the amount of power
that it has consumed from ¢; to t3 based on the formula 4.1. At t, the utility
asks all the collectors to report the group’s total energy consumption. This
is the initiation of the incentive allocation. In their turn, the collectors ask
from all the households belonging to that group to report their individual
electricity consumption measurements. Every collector computes the group
power aggregate as explained in section 4.3, and reports back to the utility.

At this point the utility has collected the power aggregate information
that it has been realized from all the groups. As we have mentioned before, we
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have assumed that the utility company has a perfect electricity consumption
baseline. In fact, a perfect baseline constitutes an accurate prediction of the
amount of energy every household would consume in case none DR program
was deployed. Having the perfect baseline, the utility can now calculate the
amount of power that every group has reduced, as in the formula 4.5.

Reduced, = Baseline, — Realized, (4.5)

where Baseliney is the amount of energy that the group g would consume
from t¢; to t3. The utility then calculates the sum of these values as depicted
in formula 4.6.

Reducedr =  Reduced, (4.6)

g

where Reducedr is the total amount of energy that it has been curtailed due
to the deployment of the DR program for a single run. The last function
of the utility in reference with the incentive allocation is the distribution
of the incentive based on the effort of each group. For simplicity, we have
assumed that the utility incentive is constant and does not chance overtime.
The formula 4.7 shows the way that the utility splits the incentive among
the groups.

_ Reduced, §
9 Reducedry

where I, is the group incentive and Iy is the total incentive that the utility
intends to distribute.

Iy (4.7)

The incentive allocation terminates by distributing the incentive of each
group (I,) among the households of the group. The collector is the entity
in the system that has undertaken this responsibility. In the ideal case, the
group incentive should be analogous to each household’s effort. Nevertheless,
for privacy reasons the collector should never get access to individual power
measurements of the households. To overcome this obstacle, we have intro-
duced two methods, namely the naive and the advanced allocation which are
already described in Section 4.2.2.
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4.3 Threat Model

4.3.1 Assumptions

We start the threat analysis by making some fundamental assumptions. In a
real world deployment all the system components need to communicate via a
bi-directional communication channel. We assume that this channel is secure
with respect to confidentiality, integrity and availability. We also assume that
every component is secure enough to protect the data it stores or creates. In
more detail, as far as the household’s smart meter is concerned, we assume
that it utilizes a trusted platform module (TPM). The TPM assures the
integrity of power measurements as well as secure cryptographic operations
that any household needs to conduct while the DR protocol is running. The
same holds for the collector. We assume that the collector is also equipped
with a TPM which is used for reliable cryptographic operations. Last but
not least, we have assumed that the utility is capable to protect group power
measurements it receives from the collectors.

4.3.2 Risks Analysis

The main threat we address in this study is the disclosure of individual power
measurements to an adversary. The privacy of the users participating in the
DR program is of significant importance to us. That boils down to the pro-
tection of the households’ smart meter readings. In our DR scenario, the
collector and the utility are the adversaries. In case we reveal fine-grained,
individual power measurements to the utility, the users’ behavioral patterns
are exposed and this constitutes an apparent privacy risk [20].

To alleviate these concerns we have introduced the collector who is in
charge of aggregating the power readings of the households that belong to
the collector’s group. In that sense, the utility only receives an aggregate and
consequently can not infer with certainty the individual power footprints of
the users. In addition, we have assumed a honest-but-curious adversary
model for the collector. Essentially, the collector follows the protocol but
it might try to infer electricity usage information related to some household
taking advantage of the messages that are routed through it.

In order to protect against such a risk we utilize the Paillier cryptosystem.
Its homomorphic properties allows for the protection of individual smart me-
ter readings without affecting the accuracy of the final aggregate. The Fig-
ure 4.2 illustrates the aggregation tree for 10 households which are organized
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in groups of two under each collector. The Paillier cryptosystem uses a public
key (K,,) and a private key (K,,).

Figure 4.2: 10 households grouped by two under each collector

The K, is used by the households to encrypt their individual smart meter
power readings. On the contrary, the K, is used from the collector to de-
crypt the aggregate of the individual energy measurements. In our system
the collector is in charge of creating those keys and distributing the K, to
the households it controls. We demonstrate how the collector calculates the
power aggregate by the following concrete example.

The Homomorphic Aggregation Protocol

Let us suppose that participants 1 and 2 in the aggregation tree 4.2 want
to report their power readings to their collector C. We name their measure-
ments my and msy respectively. Both participants encrypt their data with a
public key K, that their collector has provided. Hence, C; = E,,(m;) and
Cy = Ek,,(m2). Now, in case every household attempts to report directly
to the collector, its power measurement privacy will be compromised. This
is owing to the fact that the collector owns the K, and consequently it can
decrypt any smart meter reading which is encrypted with its K,,.

To address the aforementioned issue, the household which is in charge
of reporting to the collector (household 1) will not report anything unless
it has received and Paillier-add the power reading of its adjacent household



CHAPTER 4. SIMULATION METHODOLOGY 52

(household 2). Thus, the aggregation protocol works in a bottom up manner.
The household at the bottom of the aggregation tree transmits its encrypted
power measurement to the household above. In its turn, the household above
will retrieve its smart meter power measurement, it will encrypt it with the

K

pu and it will Paillier add it with the encrypted measurement it received

from the household at the bottom. This procedure will repeatedly happen
until the protocol reaches the household which is in charge of reporting to
the collector.

In the Paillier cryptosystem the additions in plaintext are translated to
multiplication in the ciphertext. Thus, in our example, the household 1
before it reports to the collector will perform the following computation :
Cy, = Cy xCy, where C, is the group power consumption encrypted aggregate.
Once the collector receives the aggregate Cy, it decrypts it with its private
key K,, and it retrieves the exact group aggregate, as shown in formula 4.8.

Dk, (Cy) = m1 + my (4.8)

Paillier Homomorphic Encryption

Under this section we aspire to provide a concrete example of the way that
Paillier cryptosystem works based on the aggregation tree illustrated in Fig-

ure 4.2.

e The collector of each group generates a public key K, and a private
key K,

1.

the collector selects a number k& = 32, the length in bits of the
RSA modulus n

the collector selects two random and distinct prime numbers p =
59351, ¢ = 55219 of k/2 length each

3. it computes the the RSA modulus n = p x ¢ = 3277302869

it computes A = lem(p—1,q¢—1) = (p—1)*(q—1)/gcd(p—1,q—1) =
1638594150

the collector proceeds by selecting a random integer g = 8943306254069481040
in Zx,2, a set of integers coprime to n

it computes u = (L(g*modn?))"'modn = 1754157928, where
L(u) = (u=1)/n
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7. finally the K,,:(n,g) and the K,.:(\, p)

e Participants’ 1 and 2 current power consumption is m; = 2 and my = 3
respectively

1. participants 1 and 2 select a random integer r1=1904648907 and
ro=1035629130 in Zx,, one for every measurement they need to
encrypt

2. they compute their ciphertext as C' = Ex,,(m) = g™ * r"modn?,
thus Cy = Ex,, (my) = 4878868962385258562 and Cy = Efc (ms) =
4624922822985571729

e Household 2 sends to household 1 its encrypted smart meter reading
(5. Household 1 will then homomorphically add this value to its own
encrypted measurement.

1. Ciphertext sum : C} * Cymodn? = 2778590782834299795

e Household 2 then sends to the collector the sum of ciphertexts. The
collector decrypts the ciphertext sum and sends the aggregate to the
utility

1. Dk, (Cy * Comodn®) =5

Following the example of the power aggregate computation we can verify
that at every step the privacy of the individual measurements is guaranteed.
While the encrypted power readings are forwarded from one household to
the other they remain confidential due to the fact that none of the houses
holds the private key K,,. Last but not least, individual smart meter read-
ings are also protected from the honest but curious collectors. Even though
every collector possesses the private key K, of its group, it only receives the
aggregate power consumption of the group, encrypted. By decrypting this
chiphertext it only gets access to the exact group aggregate. Hence the col-
lector is not able, in the first place, to distinguish among atomic electricity
consumption patterns.



Chapter 5

Experimental Results

The experiments aim to evaluate the effectiveness of the incentive allocation
system. More specifically, the experiments differ on the size of the groups
formed whereas they share other common experiment characteristics such as
the total incentive offered by the utility company as well as the reduction
rate 7. More details on the parameters of the experiments are presented later
in this chapter.

The effectiveness of the proposed solution is measured in terms of privacy
and incentive allocation error. Due to the presence of the free-riders in the
population of the DR participants, we introduce a new metric, the homo-
geneity. This metric indicates how good our household shuffling methods
perform in separating the legitimate users from the free-riders. Based on the
group size, we calculate the homogeneity of the population for each DR day
and we try to correlate the incentive allocation accuracy with it.

5.1 Performance Indicators

In order to calculate the incentive allocation error we first define the deserved
incentive of a household. The deserved incentive is computed based on the
formula 5.1.

_ Reduced, .
"~ Reduced, ¢
where Reduced), is the amount of energy that the household h reduced be-

cause of the DR signal. Once we know the incentive that the household de-
served because of its effort to reduce its power consumption by some amount,

h (5.1)

o4
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we calculate the incentive error as shown in formula 5.2.

En=1I,—D, |, (5.2)

where [}, is the incentive the household h received from the incentive alloca-
tion mechanism. At this point, we note that the approach we use to calculate
the error does not change, no matter which of the two incentive allocation
mechanisms (naive or advanced) is used. It can be seen that the Ej, can be
either a positive or negative. It is positive when the utility overestimates the
effort of the households to curtail their power footprint, whereas it is negative
when it underestimates. We note here that the total allocation error that we
present later in this section regards the total absolute error.

As far as the homogeneity metric is concerned, it shows the percentage of
groups in the population which are free of free-riders. In order to calculate
the homogeneity per DR day, we first compute the maximum number of
groups needed to keep all the free-riders that lurk in the system.

Ny

S,
where Ny is the total number of the free-riders in the system and .S, is the
size of the group. Formula 5.3 presents the way we calculate the number of
groups we need in order to isolate the free-riders. Once we know the N4,
we then compute the number of groups in the system which actually consist
solely from free-riders after we have shuffled the households in the groups.
We name this value N,.. The homogeneity is given by the formula 5.4.

Niaz = (5.3)

N act

max

M = * 100 (5.4)

We have used the Shannon entropy [30] as the privacy metric of the
system. The entropy formula is described in formula 5.5. Shortly, this metric
measures the average unpredictability in a random variable in respect with
its information content.

N
H="Y " —p;*log(p;) , (5.5)

j=1
where N is the number of possible states of the system and p; is the prob-
ability of the state j to occur. We express the state of the system N as
a function of two parameters, namely the group consumption (@) and the
group size (S,). A state N(Q, S,) of the system represents the number of the
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weak integer compositions of () into Sy parts. In its turn, the weak integer
composition of an integer n is the number of ways that the n can be expressed
as the sum of non-negative integers. In our setting, the weak integer compo-
sitions indicate the number of ways that a certain group power consumption
@ could have been consumed among the S; members of the group.

Based on [16], the N can be computed with the formula 5.6. Nevertheless,
due to the use of factorials, the computation becomes hard for big @) and S,.
We overcome this problem using the binomial coefficients of the Colt library

[6].

(Q+S, -1\ (Q+S,—1)
N_< Sy —1 )_(59—1)!*@ (5.6)

With the proper parameters in the binomial coefficient function implemen-
tation we are able to compute the N. Moreover, we have assumed that the
weak integer compositions of () into S, have the same probability. Hence,
the formula 5.5 is transformed in the formula 5.7.

H:N*_Wl*log(l (5.7)

~)
5.2 Experimental Results and Discussion

In the context of the experiments 512 households participated in the DR
program for a duration of 535 days. 410 or 80% of the households acted
as legitimate while 102 or 20% of the households acted as free-riders. The
reduction rate was set to v == 0.2 for the legitimate users and v == 0 for
the free-riders.

As explained in section 4.1, a DR signal arrives at each home at 18:00 in
the evening every day and lasts until 21:00. During this period the house-
holds respond to the DR event by reducing their power demand. After the
DR event is completed, the households report their realized consumption to
the utility.

In the context of this experiment we test all the utility functions, as
described in section 4.2.2; for different group sizes and we evaluate their
performance. We also consider the effectiveness of the utility functions in
conjunction with the two incentive allocation methods that the utility is
equipped with.
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Figure 5.1: Total incentive allocation error for group size 2

The figure 5.1 illustrates the performance of the several shuffling meth-
ods of the utility in terms of the total incentive allocation error. This figure
corresponds to the performance results for group size equal to 2. As it can
be seen, for each shuffling method we run both naive and advanced incentive
allocation mechanisms.

Random shuffling of the groups coupled with the naive incentive allocation
have the worst performance in terms of allocation error. This combination is
the simplest possible and we use it as our baseline in order to be able to com-
pare other approaches against it. The bad performance is reasonable since
we do not manage to separate the legitimate users from the free-riders by
randomly shuffling the groups of households. Furthermore, we use naive in-
centive allocation which equally shares the group incentive among the group
members. In fact, with the naive allocation mechanism we are not able to
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fairly distribute the group incentive and the high allocation error is therefore
expected. By shuffling with the utility smart function we manage a more
impactful separation of the participants. This is depicted on the graph 5.1,
where the smart shuffling combined with the naive allocation shows better
performance than the baseline. The mixed function gives the best results
among those which use the naive allocation mechanism. This is due to the
way that the mixed method works. As it has been described in section 4.2.2,
the mixed method uses the reputation metric in order to create new groups
of households at each even DR day. In fact, it seems that this approach
further decreases the allocation error.

% Average Homogeneity (%) per Group Size
T T

T
I Randon

I snmart
T Mixed |

QQ, _

2

7]

c

S _

o

o

IS

o

T _

0]

)]

g

g

<

S . ! !
8 32 128

Group Size

Figure 5.2: Average homogeneity per group size for all utility functions

Despite the improvement, the total incentive error still remains high.
Surprisingly enough, the same utility functions follow the inverse trend when
they are combined with the advanced incentive allocation mechanism. Hence,
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the random function causes the lowest allocation error with the smart func-
tion coming second and the mixed one showing the poorest performance, as
it can be seen in figure 5.1.

In figure 5.2, the average homogeneity over the 535 days of the experiment
is plotted for every group size. As we have described earlier, the homogeneity
is an indicator of the impactful separation of the legitimate users from the
free-riders. The trend of the allocation error is inverse to the trend of the
homogeneity when we consider the naive incentive allocation approach. In
fact, for group size equal to 2, the higher the homogeneity, the lower the
incentive allocation error, as it is illustrated in figure 5.1.

However, the same observation does not hold when we consider the ad-
vanced incentive allocation mechanism. This particular mechanism works
based on the reputation of every household. The reputation is the accumu-
lated incentive of all previous DR days that a household received. Intuitively,
to get a reputation that accurately reflects the power consumption behav-
ior of a DR participant we need to meet two requirements. First, we need
to achieve high homogeneity. Second, we need as many group shuffles as
possible. With the first requirement we do not assign reputation credits to
the free-riders, whereas with the second requirement we further increase the
reputation of the legitimate users. Based on these observations, one would
argue that the combination of the mixed utility function with the advanced
allocation mechanism should perform better than what is shown in figure 5.1.
Nevertheless, the mixed function shuffles the groups of households half the
times as other utility functions ( random, smart). Even though mixed utility
function achieves high homogeneity score, as it is illustrated in figure 5.2, its
performance, in terms of total incentive allocation error, is worse compared
to the random and smart utility functions.

Figure 5.3 depicts the total incentive allocation error for group size 8 and
32. We can see that the allocation error significantly increases while the per-
formance of all the utility functions drops. Nevertheless, we can also note
that when the utility functions utilize the advanced allocation mechanism,
the error still remains less compared to the naive incentive allocation ap-
proach.

However, we can also observe that the incentive allocation error is tightly
correlated with the group size, since the bigger the group the higher the er-
ror. This is expected due to the inability of the utility to distinguish among
different DR participants’ behavior when a group consists of a big number of
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households. Moreover, as it is shown in figure 5.2, our shuffling methods do
not manage to totally separate the legitimate users from the free-riders for
group size 32 and 128. Indeed, the zero homogeneity for big groups indicates
that in every DR round every group has at least one free-rider. This fact
affects the performance of our system for big group sizes as it is depicted in
figures 5.3 & 5.4.

Last but not least, for all group sizes, the advanced allocation mechanism
outperforms the naive one, no matter which utility function they are com-
bined with, boosting in this way the performance of the system in terms of
incentive allocation error. Nevertheless, as the group size increases, all the
combinations of the shuffling methods with the utility functions gradually
converge to high error rates.
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Figure 5.4: Total incentive allocation error for group size 128

The average allocation error per group size for all the 535 days of the DR
program gives another view of our system performance. This is illustrated in
figure 5.5. More specifically, in the subfigure 5.5(b), we present the average
error as a consequence of the application of the naive allocation mechanism.
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As it can be seen, our smart and mixed utility functions outperform the ran-
dom function (baseline), even though the gain in performance drops while
the group size is getting bigger. As for the advanced allocation mechanism
(subfigure 5.5(a)), the total average allocation error is constantly lower when
compared to its naive counterpart (subfigure 5.5(b)).

As far as the privacy of our system is concerned, intuitively, the bigger the
size of a group the higher the privacy. In fact, this is verified by the figure 5.6.
We observe that as the group size gets bigger the entropy increases as well.
Consequently, the privacy increases as the group size gets bigger.

Entro er Group Size
3.4xE299 . Py P P ,

Entropy

4.6xE78 -

3.3xE16 -

2 8

Group Size
Figure 5.6: Total incentive allocation error for group size 128

The entropy values illustrated in figure 5.6 regard the average entropy
of a group of a certain size over the 535 days that the DR simulation lasts.
More specifically, for a certain group size we first calculate the entropy of
every group for each DR day. Then, for every particular DR day we compute
the average entropy over the groups, as shown in formula 5.8.
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2, H,

G
Hyay = 9ESG : (5.8)

where g is a group of the set of groups G and H,, is the entropy of that group
in reference with its power consumption. In addition, Sg is the number of
groups in the system. Finally, we compute the average entropy over the 535
days of the DR for a fixed group size, as shown in formula 5.9

T
Z H, day

day=1
Heypp = yT , (5.9)

where T is the number of the DR rounds in days.
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Conclusions and further work

Smart Grid and Demand Response paradigm are technologies that can bring
significant benefits, as we have described in Section 2.2.3. Nevertheless, im-
portant steps must be taken towards the improvement of DR programs before
its full potential can be realized. The improvement should regard both the
accuracy of the DR service as well as the valuable privacy of the individual
electricity users.

In this thesis, several aspects of the DR paradigm have been studied,
whereas a simulated DR system was developed with the goal of analyzing its
performance, mainly, in terms of utility and privacy. The main contributions
of the thesis are :

1. A background part setting the scene of the DR paradigm in the Smart
Grid.

2. A taxonomy of the proposed PETSs in the literature, mainly based on
their underlying cryptographic techniques.

3. Enumeration and analysis of the requirements in a DR environment
from the point of view of both the users and the utility company.

4. Evaluation of a set of proposed PET mechanisms in the DR context.

5. Analysis and comparison of homomorphic aggregation and differential
privacy.

6. Implementation and evaluation of a DR system.

The background part elaborates on the Smart Grid stakeholders as well
as the technological components and advancements that enable its deploy-
ment. Moreover, special attention has been given on the Demand Response

65
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paradigm. The benefits that it brings are discussed along with the most
significant challenges. In addition, various DR schemes are presented. In
the background section, the reader will also find an extended discussion in
reference with the privacy in the SG. Last but not least, several privacy-
enhancing technologies are categorized and an analysis takes place in terms
of their properties.

In chapter 3 we commence by presenting and discussing the requirements
that both the DR participants and the energy provider need to live up, in
order for a DR program to be successfully deployed. Then, we conduct an in
depth analysis of some featured PETSs that could be employed over a DR en-
vironment to protect individuals’ privacy. We investigate their implications
in terms of privacy as well as the impact they pose on the efficient oper-
ation of a DR scheme. This section concludes with a comparison between
two promising PET classes, namely the homomorphic aggregation and the
differential privacy. More specifically, we elaborate on the privacy guarantees
of each class identifying their strengths and weaknesses and analyzing their
operation.

In the last two chapters 4 and 5 we present the simulated DR system,
its functions and components as well as the experimental results. In more
detail, we describe the three functions that the DR system is equipped with
in order to distinguish the free-riders from the legitimate users. Moreover,
we elaborate on the two methods that the simulated utility company uses
in order to split the incentive among the DR program participants. Finally,
we evaluate the result in terms of the incentive allocation error, the DR
participants homogeneity and the system entropy that is tightly correlated
with the privacy.

6.1 Future work

Privacy enhancing mechanisms should be considered as an integral part of
every DR program since privacy concerns could hinder the Demand Response
wide adoption by the public. However, at the same time they pose challenges
in unraveling its full potential. For instance, in our study we have shown that
the accuracy of the incentive allocation mechanism is affected by the privacy
protection technology that we have deployed on top of the DR mechanism.

Based on our research, it would be interesting for someone to investi-
gate others methods that could possibly better separate the free-riders from
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the legitimate users. In that respect, the homogeneity would be improved
and a more fair incentive allocation could take place. Furthermore, another
research path could be the improvement and optimization of the incentive
allocation mechanisms itself. Needless to say that any mechanism proposed
should carefully consider the users’ privacy concerns.

Finally, along with the aforementioned ideas, it would also be interesting
for someone to investigate what the impact of another PET would be one the
system we have simulated in the context of this thesis. Then a comparison
between the two systems, in terms of the accuracy, homogeneity and entropy
indicators, could give useful insights and new ideas that could help to build
better incentive allocation mechanisms.
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