
Michael Strohmeier

Development and Evaluation of a
Human-Robot Interface for an Autonomous
All-Terrain Transportation Vehicle in order
to Localize, Track and Follow a Human.

School of Electrical Engineering

Thesis submitted in partial ful�lment of the requirements for
the degree of Master of Science in Technology.

Espoo, 18.08.2014

Thesis supervisors:

Prof. em. Aarne Halme

Prof. Thomas Gustafsson

Thesis instructor:

Dr. Sami Terho

aalto university

school of electrical engineering

abstract of the

master's thesis

Author: Michael Strohmeier

Title: Development and Evaluation of a Human-Robot Interface for an
Autonomous All-Terrain Transportation Vehicle in order to Localize,
Track and Follow a Human.

Date: 18.08.2014 Language: English Number of pages: 11+82

Department of Electrical Engineering and Automation

Professorship: Automation Technology Code: AUT-84

Supervisors: Prof. em. Aarne Halme, Prof. Thomas Gustafsson

Instructor: Dr. Sami Terho

Full solutions for automatic transportation vehicles in unstructured environments
are restricted to military applications, although possible mission scenarios exist for
civil and space applications. In this thesis, a user-friendly, human-robot interface
is implemented for an all-terrain electric vehicle. The interface allows the vehicle
to follow a moving user autonomously by combining 3D LIDAR measurements with
intensity images. The method detects clusters within the LIDAR scan that match
the human appearance and resolves potential ambiguities based on image tracking
results. The interface can be controlled using di�erent input devices. A detailed
evaluation compares the input devices, analyzes the implemented algorithms, and
validates the overall system behavior outdoor under real-world conditions. The
developed system is able to follow its user as long as he is completely visible.

Keywords: Automatic Transportation, Human Detection and Tracking, Human
Following, Car-like Steering, 3D Perception, Image Perception

iii

Preface

In 2009, I �rst heard about the international Master's degree in Space Science and
Technology, SpaceMaster. At that time, I started my studies in Würzburg, Germany.
During my Bachelor, all my e�orts focused on becoming a part of the SpaceMaster
program. Being part of this program, I was able to study in three di�erent countries
together with fellow students from all around the world. This Master's thesis is the
result of the journey that I started �ve years ago.

First of all, I wish to express my gratitude to my supervisor Prof. em. Aarne
Halme for his guidance throughout my work.

I would also like to thank the ESA Directorate of Human Space�ight and Oper-
ations for the awarded scholarship and their great �nancial support.

Special thanks go to my instructor Dr. Sami Terho for numerous, fruitful dis-
cussions and continuous feedback, and to Lic.Sc. Tomi Ylikorpi for all the help he
provided during my stay at Aalto University.

I sincerely thank Alex Battiston and Ville Toiviainen for their work on the vehicle
as well as my fellow SpaceMaster colleagues for their suggestions and tips.

Finally, I would like to thank my family and my girlfriend Rebecca, for all their
love and support, especially during the last year.

Otaniemi, 08.08.2014

Michael Strohmeier

iv

Contents

Abstract ii

Preface iii

Contents iv

List of Symbols vii

List of Abbreviations viii

List of Figures ix

List of Tables xi

1 Introduction 1

2 Autonomous All-Terrain Transportation Vehicles 3

2.1 Military AATTVs . 3
2.1.1 R-Gator . 3
2.1.2 Squad Mission Support System 4
2.1.3 LS3 - AlphaDog . 5

2.2 Civil AATTVs . 6
2.2.1 Research Platforms . 6
2.2.2 Possible Mission Scenario . 8

2.3 Space . 8
2.3.1 Current Research . 8
2.3.2 Possible Mission Scenarios . 9

3 Human Robot Interaction 10

3.1 HRI Problem . 10
3.2 HRI for AATTVs . 10
3.3 Human-Following Interface . 12

3.3.1 User Identi�cation . 12
3.3.2 User Localization and Tracking 13
3.3.3 User-Following . 13

4 Human Detection and Tracking 14

4.1 Theoretical Background . 14
4.1.1 Feature Selection . 14
4.1.2 Object Classi�cation . 17
4.1.3 Object Tracking . 18

4.2 Vision-Based Approaches . 21
4.3 Laser-Based Approaches . 22

4.3.1 2D LIDAR Approaches . 22
4.3.2 3D LIDAR Approaches . 23

v

4.4 Hybrid Approaches . 24

5 System Concept 25

5.1 System Requirements . 25
5.2 System Overview . 26
5.3 Hardware . 27

5.3.1 Velodyne HDL-32E . 27
5.3.2 Bumblebee XB3 . 27
5.3.3 Polaris Ranger EV . 28
5.3.4 Additional Periphery . 28

5.4 Software . 29
5.4.1 Robot Operating System . 29
5.4.2 Point Cloud Library . 30
5.4.3 Open Computer Vision . 30

6 Implementation 31

6.1 User Interface . 32
6.1.1 Controller Interface . 32
6.1.2 Headset Interface . 33
6.1.3 Smart Phone Interface . 33

6.2 LIDAR Processing . 34
6.2.1 Preprocessing . 34
6.2.2 Segmentation . 35
6.2.3 Clustering . 41

6.3 Camera Processing . 42
6.3.1 Decoding and Recti�cation . 42

6.4 Sensor Fusion . 43
6.4.1 External Calibration . 43
6.4.2 Shutter Adjustment . 44
6.4.3 Hybrid Tracking . 45

6.5 Speed and Steering Control . 47

7 Evaluation 49

7.1 User interfaces . 49
7.2 Segmentation Algorithms . 50

7.2.1 Uneven Environment . 50
7.2.2 Highly-cluttered Environment 51

7.3 Hybrid Tracking . 53
7.3.1 Image Tracker Comparison . 53
7.3.2 Tracking In�uences . 56
7.3.3 Tracking with Crossing People 58
7.3.4 Tracking in a Group of People 60

7.4 Control Behavior . 61
7.5 System Performance . 63

vi

8 Conclusions 64

8.1 System Development . 64
8.2 System Limitations . 65
8.3 Future Work . 65

References 66

Appendices 74

A Hardware Setup 74

B ROS Communication Graph 75

B.1 Custom Messages . 75
B.2 Topics . 75
B.3 Nodes . 75

C Launch Instructions 79

C.1 Core Functionality . 79
C.1.1 ASUS PC . 79
C.1.2 Acrosser Embedded PC . 80

C.2 User Interface Devices . 81
C.2.1 PS3 Controller . 81
C.2.2 Bluetooth Headset . 81
C.2.3 Android Smart Phone . 82

vii

List of Symbols

α Hyper-parameter for GPB ground segmentation
B Minimum distance for initial seeds
bmn Bin n in segment m
d Maximum size along the car x-axis for a valid person cluster
dmax Maximum distance between adjacent points in a valid person cluster
δ(t) Calculated control steering angle applied to vehicle
δij Kronecker delta
e(t) Distance error for the vehicle speed control
F LIDAR�Camera projection matrix
h Maximum size along the car z-axis for a valid person cluster
hc Maximum height of the center of gravity for a valid person cluster
Hm

n Set of all points p′i in segment m and bin n
K Matrix describing the ground model estimated by GPB segmentation
K(ri, rj) Covariance between pairs of seeds ri and rj based on Gaussian process
KXB3 Intrinsic parameters of the Bumblebee XB3
li Length-scale parameter for point pi
Nmax Maximum number of points for a valid person cluster
Nmin Minimum number of points for a valid person cluster
pi 2D coordinates of point i: (ri, zi)

T

p′i 3D coordinates of point i: (xi, yi, zi)
T

PGm Set of points with minimum height zi in each bin n for segment m
Pbmn All points in bin n in segment m
ri Radial distance of point i in the x-y plane
Rmax Maximum distance for GPB segmentation
Sm Segment m
σ2
f Hyper-parameter for GPB ground segmentation
σ2
n Hyper-parameter for GPB ground segmentation
Ts Maximum height for initial seeds
v(t) Calculated control speed
vk Kalman Filter measurement noise
vlim(t) Limited control speed applied to vehicle
w Maximum size along the car y-axis for a valid person cluster
wk Kalman Filter process noise
xi Distance of point i along car x-axis, origin in LIDAR

x(t) Distance of human user along car x-axis, origin in LIDAR

Xk Kalman Filter state
yi Distance of point i along car y-axis, origin in LIDAR

y(t) Distance of human user along car y-axis, origin in LIDAR

zi Distance of point i along car z-axis, origin in LIDAR

z̄∗ GPB estimation of mean height for tested bin distance r∗
Zk Kalman Filter measurement

viii

List of Abbreviations

AATTV Autonomous All-Terrain Transport Vehicle
AdaBoost Adaptive Boost
ATV All-Terrain Vehicle
CAN Controller Area Network
CMU Carnegie Mellon University
CMT Consensus-based Matching and Tracking
C-HOG Circular Histograms of Oriented Gradients
DARPA Defense Advanced Research Projects Agency
DRATS Desert Research and Technology Studies
EVA Extra-Vehicular Activities
fps frames per second
FOV Field of View
GPB Gaussian-Process-Based
GPS Global Positioning System
GPU Graphics Processing Unit
HOD Histograms of Oriented Depth
HOG Histograms of Oriented Gradients
HRI Human Robot Interaction
HSV Hue Saturation Value
ICR Instantaneous Center of Rotation
IMU Inertial Measurement Unit
LIDAR Light Detection and Ranging
LRV Lunar Roving Vehicle
LS3 Legged Squad Support System
NDVI Normalized Di�erence Vegetation Index
NN Nearest Neighbour
OpenCV Open Source Computer Vision Library
PCL Point Cloud Library
PS3 PlayStation 3
PTZ Pan-Tilt-Zoom
RANSAC Random Sample Consensus
R-HOG Rectangular Histograms of Oriented Gradients
RGB Red Green Blue
RFID Radio Frequency Identi�cation
ROS Robot Operating System
SEV Space Exploration Vehicle
SMSS Squad Mission Support System
SOI Sector of Interest
SVM Support Vector Machine
TLD Tracking Learning Detection
TOF Time of Flight
UDP User Datagram Protocol
UGV Unmanned Ground Vehicle

ix

List of Figures

1.1 The Lunar Roving Vehicle during the Apollo 17 mission 1
2.1 The R-Gator based on the John Deere XUV utility vehicle 4
2.2 The Squad Mission Support System 5
2.3 The Legged Squad Support System 6
2.4 The autonomous all-terrain vehicle research platform Grizzly 7
2.5 The autonomous all-terrain vehicle research platform Seekur Jr. . . . 7
2.6 The Space Exploration Vehicle . 9
3.1 Human-robot interaction with a human-following AATTV 11
3.2 User identi�cation Workpartner . 12
4.1 Comparsion of di�erent color spaces 15
4.2 Canny edge detection . 15
4.3 Di�erent Haar wavelets . 16
4.4 Averaged Haar-like feature descriptors 16
4.5 HOG block forms . 17
4.6 The HOG feature descriptor . 17
4.7 Classi�cation based on Support Vector Machines 18
4.8 Classi�cation based on Boosting . 18
4.9 The Tracking Learning Detection algorithm 19
4.10 The CMT tracker voting and consensus �nding 20
4.11 Depth templates and human detection result in depth images 21
4.12 2D LIDAR human detection based on a multi-layer approach 22
4.13 3D LIDAR human detection based on a multi-layer approach 23
4.14 3D LIDAR human detection based on leg modeling 23
4.15 Hybrid approach for human detection 24
5.1 System overview . 26
5.2 The Velodyne HDL-32E LIDAR scanner 27
5.3 The Point Grey Bumblebee XB3 . 27
5.4 The Polaris Ranger ATV . 28
5.5 Additional input devices . 29
6.1 Software implementation overview . 31
6.2 Communication �ow from periphery to interpreter and system 32
6.3 The PS3 controller user interface . 32
6.4 Graphical user interface of the Android application 33
6.5 A full 360 ◦ scan from the Velodyne HDL-32E 34
6.6 The selected sector of interest . 35
6.7 The ground segmentation result . 35
6.8 2D RANSAC ground estimation result 36
6.9 The polar grid map . 37
6.10 Line �tting results for one segment 38
6.11 Seed estimation based on Gaussian process regression 40
6.12 Gaussian-process-based ground segmentation result 40
6.13 Scan of a human in 5m distance . 41
6.14 Image decoding and recti�cation result. 42

x

6.15 The Graphical user interface for external calibration 43
6.16 Relation between number of extracted features and object contrast . 44
6.17 Automatic adjustment of the shutter time 44
6.18 Finite state machine for the hybrid tracker 45
6.19 The di�erent results for each state of the hybrid tracker 45
6.20 Vehicle control approach . 47
6.21 Speed and steering angle control for Ackermann steering 48
7.1 Data set Slope: Bird's-eye view and LIDAR scan 50
7.2 Data set Slope: Result for RANSAC and GPB segmentation 51
7.3 Data set Forest: Bird's-eye view and LIDAR scan 52
7.4 Data set Forest: Result for RANSAC and GPB segmentation 52
7.5 The False Crossing maneuver . 53
7.6 False Crossing: TLD and CMT . 55
7.7 False Crossing with CMT in di�erent situations 57
7.8 CMT tracking result on the person crossing sequence. 58
7.9 Two di�erent crossings with CMT . 59
7.10 Tracking in a group of people . 60
7.11 GPS based ATV trajectory and estimated user position 61
7.12 Input and measured result of the speed control 62
7.13 Input and measured result of the steering control 62
7.14 Trajectory of the AATTV during a 400 s test run 63
7.15 The test environment . 63
A1 Detailed high-level hardware and network setup 74
B1 The complete ROS communication graph 76
C1 Connecting to the ROS master with the Android application 82

xi

List of Tables

2 Available voice commands for the headset user interface. 33
3 PCL SACSegmentation con�guration parameters 36
4 PCL clustering parameters . 41
5 Comparison between di�erent user interfaces 49
B1 Important high-level topics. 77
B2 High-level ROS node functionality. 78

1

1 Introduction

Since the last Apollo mission in 1972, no human has set foot on the lunar surface
again [1]. During that last mission, a Lunar Roving Vehicle (LRV) was used to trans-
port the astronauts, their tools and communication equipment as well as collected
samples [2]. Figure 1.1 shows the LRV.

Figure 1.1: Gene Cernan aboard the Lunar Roving Vehicle during the Apollo 17 mission
[3].

The rovers used in the Apollo missions were operated manually by the astronauts.
Therefore, the LRVs could only provide limited storage space, since two astronauts
had to have space aboard the vehicle, too. This storage problem could have been
solved by a vehicle that was able to drive on its own or follow an astronaut. Un-
fortunately, vehicles were not able to drive autonomously 40 years ago. However,
this has drastically changed within the last decade and the increasing interest in
Unmanned Ground Vehicles (UGVs).

The announcement of the �rst DARPA Grand Challenge1 in 2004 triggered a re-
search boom in the �eld of fully autonomous UGVs. While none of the competitors
managed to drive more than 12 km of the rural track in the �rst challenge [4], only
three years later, a fully autonomous 96 km drive through an urban environment was
completed as part of the DARPA Urban Challenge [5]. In 2011, Google published de-
tails about its hitherto secret project, the Google car, creating a new state of the art
for autonomous cars [6]. By that time, the Google car had already managed to drive
more than 225.000 km completely autonomous in real-world tra�c situations [7]. In
March 2014, Google introduced the �rst car that operates completely autonomous.
The �rst prototype was built from scratch without steering wheel, accelerator pedal
or brake pedal [8].

However, UGVs are not only able to operate in urban environments. Porting the
sensors and intelligence of cars to All-Terrain Vehicles (ATVs) creates a new range of
applications for UGVs. They may, for example, be used for transportation tasks in

1The US Defense Advanced Research Projects Agency (DARPA) has sponsored three challenges
for autonomous car since 2004.

unstructured environment. UGVs that are used for transportation in unstructured
and rough environment will be referred to as Autonomous All-Terrain Transport
Vehicles (AATTVs) within this thesis report. Although, AATTVs are not used in con-
crete civil or space applications yet, multiple scenarios are conceivable. Conversely,
AATTVs are already frequently supporting military squads and often combined with
a human-following interface. In order to follow a human user, three subproblems
have to be solved: The identi�cation of the user, the localization and tracking of the
user and �nally the user-following itself. Especially, the localization and tracking of
the user is immensely important for the system's reliability in real-world applica-
tions.

The goal of this thesis project is the development, implementation and evaluation
of a human-robot interface that allows an AATTV to identify, track, and follow a
human user autonomously.

Chapter 2 reviews existing AATTVs and interface solutions that are currently
available for military, civil and space applications. Furthermore, current mission
scenarios and possible applications are described.

Chapter 3 gives an introduction to the Human Robot Interaction (HRI) problem
in general and describes HRI demands for an AATTV in particular. Additionally, the
challenges and bene�ts of a human-following interface are described.

Chapter 4 states the background of di�erent localization and tracking approaches.
Furthermore, several state-of-the-art examples for human detection and tracking
based on the utilized sensor types are explained.

After summarizing the major system requirements from the current state-of-the-
art, Chapter 5 introduces the overall system concept and describes the available
hardware and the software that are used in this project.

Subsequently, Chapter 6 gives a detailed description of the system implementa-
tion. Thereby, each implemented subsystem is presented and put into context with
respect to the overall system.

Chapter 7 extensively evaluates each implemented subsystem on its own. Fur-
thermore, the performance of the overall system is assessed.

Finally, the achievements of this thesis project are summarized in Chapter 8.
Furthermore, the development stages of the system are reviewed and system lim-
itations are discussed. Possible solutions to overcome the system limitations are
outlined as part of possible future work.

3

2 Autonomous All-Terrain Transportation Vehicles

Depending on the �eld of application, AATTVs can be divided into di�erent cate-
gories. Therefore, this chapter reviews state-of-the-art AATTVs within three di�er-
ent scopes. The �rst scope focuses on military applications and illustrates modern
systems based on three examples: The R-Gator, the Squad Mission Support Sys-
tem (SMSS) and the Legged Squad Support System (LS3) AlphaDog. Although
AlphaDog's locomotion is not wheel based, it is nevertheless an excellent example
of autonomous transportation. In the second scope, civil AATTVs are described and
exempli�ed by two state of the art research platforms: Grizzly and Seekur. The last
scope outlines AATTVs in space applications and describes the Space Exploration
Vehicle (SEV), a current research project for manned surface explorations in space.

2.1 Military AATTVs

Logistics are a central aspect in modern warfare. Weapons, ammunition as well
as necessary supplies have to be moved to where they are needed the most. This
commonly means to transport critical goods over long distances through hostile
environments. However, AATTVs are able to complete these dangerous and dirty
tasks, without setting human life at risk. Furthermore, soldiers accompanied by an
autonomous transport vehicle are able to carry more supplies, thus increasing their
e�ciency and time of march. Additionally to the provided transportation support,
an AATTV can also o�er protection during combat.

Military AATTVs can not a�ord high error rates. Consequently, strict require-
ments have to be met, even in very hazardous settings. Besides a very high reliability,
the vehicles have to master rough terrain and di�erent weather conditions. They
have to provide su�cient armor, while being agile at the same time. Furthermore,
they have to o�er enough storage space. Finally, they have to provide a very easy
and safe-to-use human interface, especially if operated during combat.

The following subsections give each an example of state-of-the-art transportation
vehicles in military applications.

2.1.1 R-Gator

The R-Gator is a UGV based on the John Deere XUV utility vehicle [9]. Figure 2.1
shows the vehicle. The R-Gator has a 4 wheel drive and Ackermann steering. It
reaches a maximum speed of 50 km/h, carrying a payload of at most 500 kg. With a
ground clearance of 28 cm, the R-Gator is suitable for rough terrain. The vehicle is
equipped with two color cameras, one infrared camera, one PTZ camera, one NDVI

camera, two tilting SICK laser scanners and an automotive radar unit. A GPS

receiver, an IMU and wheel encoders are mounted, too.

4

Figure 2.1: The R-Gator based on the John Deere XUV utility vehicle [9].

Human-Robot Interaction The R-Gator can be operated in six di�erent modes:
Manual operation, teleoperation, waypoint driving, direction driving, playback and
silent sentry.

Using the R-Gator's steering wheel and pedals, it can be controlled like a regular
car in the manual operation mode. In the teleoperation mode, the vehicle can be
driven using a commercial game controller. Hereby, the obstacle avoidance system
is limiting the maximum speed in order to avoid collisions. The waypoint driving
mode allows the user to send waypoints to the vehicle. Once a waypoint is received,
the vehicle navigates autonomously to the desired location. The waypoints can be
selected using a map user interface or any camera view. In the direction driving
mode, the user speci�es a certain heading. Subsequently, the robot drives into the
given direction until the user interacts with the robot again. Directions are given in
the same way as waypoints. The playback mode allows to record a certain path in
any of the previously described modes. Once a track is recorded, it can be replayed
in this mode. Conversely, the silent sentry mode implements a surveillance mode.
Upon mode entry everything is turned o� except for the cameras. Thus, the vehicle
can be used as a static surveillance platform.

2.1.2 Squad Mission Support System

The SMSS is a multi-mission UGV produced by Lockheed Martin [10,11]. In 2011, it
was successfully evaluated in combat for various transportation tasks during a �ve
month test period in Afghanistan [10]. Di�erent vehicle versions are available, each
optimized for a speci�c task. Figure 2.2 shows the transport and logistics vehicle
version. It is able to transport a payload of up to 682 kg. Its wheels are con�gured
as a 6×6 drive with skid steering, allowing in place rotations. Since the vehicle has
a vertical step of 41 cm and overcomes gaps of 80 cm, it can easily handle o�-road
and rough terrain.

In order to interact with a user and to perceive its environment, di�erent sensors
are equipped to the vehicle2. A 3D 360◦ LIDAR, a 2D laser scanner, and a camera

2The list of sensors is based on observations made from videos on the developers web page [11].

5

system are mounted in the front. In the back of the vehicle, there is another camera
system installed. Additionally, a GPS receiver is attached.

Figure 2.2: The Squad Mission Support System [12].

Human-Robot Interaction The user can interact with the SMSS using a hand-
held device with a touchscreen, several buttons, and a joystick. The device allows
the user to switch between three modes. The vehicle can be commanded using simple
voice commands in the Voice Control mode. In the Plan mode, the vehicle can be
steered by giving GPS goals. The goals are sent using a map that is displayed on the
hand-held device. The position of the user relative to the vehicle is also displayed
on the device [11]. In addition to that, the vehicle is able to follow a person in the
Follow Me mode.

2.1.3 LS3 - AlphaDog

The Legged Squad Support System (LS3), also known as AlphaDog, is a quadruped
robot manufactured by Boston Dynamics [13]. It is mainly based on its predecessor,
the BigDog. Thus, AlphaDog is not a vehicle in the traditional sense. Nevertheless,
AlphaDog is an excellent example of automated transportation. The leg based
locomotion allows the robot not only to perform in place rotations, but also to
master very rough and step terrain. Furthermore, the robot is able to walk through
high grass, on snow, as well as on icy and wet terrain. Moreover, the robot is able
to recover from a loss of balance, even if it falls over completely.

The LS3 utilizes a tilting laser scanner and two stereo vision systems, in order to
obtain a model of its environment. One of the stereo vision systems is mounted on a
rotating platform, while the second system has a �xed orientation pointing towards
the �oor. Additionally, an integrated GPS receiver allows a precise localization [14].
In its latest version, a sensor is attached to the user, which allows the robot to
localize and follow him [15].

6

In contrast to other solutions like the SMSS, the LS3 was not designed to o�er
protection during combat. The robot's only purpose is to work as a transportation
system in very rough and step terrain, which is not suitable for wheeled solutions.
Figure 2.3 shows the robot in such a di�cult environment. The LS3 is able to carry
a payload of 180 kg during a 24 hour mission time. The maximum distance that can
be covered without refueling is about 32 km.

Figure 2.3: The Legged Squad Support System during military tests on Hawaii in 2014
[16].

Human-Robot Interaction Using voice commands, the LS3 can be commanded
to follow a leader either in the Follow Tight or the Follow Corridor mode [13]. While
the user is responsible to choose a suitable path in the follow tight mode, the LS3

is able to navigate completely on its own in the corridor mode. Additionally, the
robot can be controlled by sending GPS positions. It is also possible to command
the robot using a game controller.

2.2 Civil AATTVs

Although, driver-less transport systems are commonly used for various logistic tasks
in indoor applications, they are mostly restricted to structured environments, like
warehouses [17, 18]. An autonomous forklift for a semi-structured environment is
described in [19]. However, AATTVs are very rare with concrete civil applications.
In fact, there are only commercial research platforms available without a speci�c
application. The two most recent platforms are described in Subsection 2.2.1. Both
platforms support the open-source Robot Operating System (ROS), o�ering an easy
way to implement complex autonomous tasks [20,21].

Di�erent applications range from support in agriculture and mining to hunting
and forestry. A possible mission scenario is described in Subsection 2.2.2.

2.2.1 Research Platforms

Grizzly The Grizzly is an autonomous all-terrain vehicle research platform devel-
oped by Clearpath Robotics [22]. Figure 2.4 shows the vehicle. It can transport a

7

payload of up to 600 kg with a maximum speed of 19 km/h. Grizzly has 4×4 skid
steering drive with a ground clearance of 20 cm. An internal GPS, an IMU and high
precision wheel encoders allow a precise localization [23]. Additionally, the Grizzly
can be interfaced with a SICK laser scanner, a Velodyne 3D LIDAR, and a stereo
camera for more detailed perception of its environment.

Figure 2.4: The autonomous all-terrain vehicle research platform Grizzly [22].

Human-Robot Interaction In the standard version, a PlayStation 3 (PS3) game
controller can be used to navigate the robot. However, based on ROS, plenty of
di�erent solution can be developed.

Seekur Jr. The Seekur Jr. is developed by Adept MobileRobots [24] and based on
its predecessor Seekur. Seekur Jr. is available in three di�erent con�gurations: Laser
Mapping and Navigation, Outdoor, and Outdoor Manipulator. Figure 2.5 shows the
Seekur Jr. in the outdoor con�guration. The maximum payload is 50 kg. Similar to
Grizzly, Seekur Jr. has also a 4×4 skid steered drive. However, its maximum speed
is limited to 1.2m/s. Optional sensors include a SICK laser scanner, an IMU, stereo
vision and a PTZ camera.

Figure 2.5: The autonomous all-terrain vehicle research platform Seekur Jr. [21].

Human-Robot Interaction The Seekur Jr. can be controlled via joystick. Fur-
thermore, the robot can be teleoperated using a graphical user interface. Again,
similar to Grizzly, other solutions can be easily implemented using ROS.

8

2.2.2 Possible Mission Scenario

A possible mission scenario for AATTVs at the size of Grizzly is the use in hunting and
forestry. Since forests are naturally highly unstructured, and cluttered environments,
they are di�cult to cross, especially for big vehicles like o�-road cars or trucks. This
is aggravated by di�erent soil conditions like sand, mud, branches, rocks and scree.
However, AATTVs are designed to cope with this kind of terrain. Thus, a hunter
could be supported in carrying his hunting kit or prey. The AATTV could also be
used to transport equipment that is needed for cutting down and chopping a tree. A
user friendly interface could utilize voice recognition to receive and execute simple
voice commands. If the robot is able to follow the user autonomously, the user is
free to focus on his path and his environment instead of the robot control.

The requirements for civil AATTVs di�er slightly from military requirements,
since there is no need for heavy armor. However, similar to military, civil AATTVs
should be able to handle rough terrain, di�erent soils as well as changing weather
conditions. Moreover, human safety plays a very important role in designing a
system for any civil application. Since civilians are usually untrained users, an easy
to use human-robot interface is required, too.

2.3 Space

Robots have been used extensively in space exploration. Yutu, the most recent
moon-exploration robot, launched in December 2013 [1], while NASA's most pop-
ular rover, Curiosity, is exploring the martian surface for more than 2 years [25].
Since, the last manned Apollo mission to moon was in 1972 [1], there are currently
no human-supporting space-exploration vehicles in use. However, this topic is in-
tensively researched.

This chapter outlines the current research on extra-terrestrial vehicles in Sub-
section 2.3.1 and describes two possible mission scenarios in Subsection 2.3.2.

2.3.1 Current Research

NASA's Space Exploration Vehicle (SEV) is a concept vehicle for future in-space and
surface missions [26, 27]. The pressurized SEV cabin is designed to hold a crew of
two for 14 days. However, it provides enough space to host four people in case of
emergencies. Furthermore, the cabin o�ers a suit-port that allows the crew to get
into their spacesuit and out of the vehicle easily. Figure 2.6 shows the SEV surface
concept during the Desert Research and Technology Studies (DRATS) in 2009. The
concept vehicle has a maximum payload capability of 1000 kg. It can travel with a
speed of up to 10 km/h using six pivoting wheels, which allow the vehicle to move
in any direction.

Human-Robot Interaction The SEV can be controlled using a joystick. Since
joysticks are located in the cockpit of the cabin and at the suit-port, the vehicle can
be driven from the in- and outside of the SEV. Displays provide information about
the current heading, the SEV's internal state and from external cameras.

9

Figure 2.6: The Space Exploration Vehicle during DRATS in 2009.

2.3.2 Possible Mission Scenarios

An AATTV in space could accompany astronauts during Extra-Vehicular Activities
(EVA) on lunar or planetary surface missions. In one scenario, an AATTV could
be utilized to transport di�erent mineral and soil sampling equipment needed for
geological explorations. Furthermore, storage space for collected samples could be
provided easily. In this scenario, the AATTV could also supply energy for drilling
tools.

In another scenario, AATTVs could replace the large spacesuit backpacks that are
currently needed to supply astronauts with oxygen. Oxygen tanks or bottles could
be transported with an AATTV, which is autonomously following an astronaut on
his exploration. In that way, empty oxygen bottles on the astronauts back could
just be �lled up with the tank or replaced by a full bottle at any time. Currently,
the MIT and the NASA are working on BioSuit, a spacesuit designed for EVAs on
other planets with the goal to provide increased mobility and the possibility for
quick bottle changes [28].

The requirements for an AATTV in space are similar to military requirements.
The vehicle has to provide a very high reliability, while operating in extremely haz-
ardous environments. Additionally, all components have to be radiation hardened.

10

3 Human Robot Interaction

In order to develop such a system, di�erent possibilities and requirements for the
Human Robot Interaction (HRI) with an AATTV have to be analyzed. Therefore,
Section 3.1 gives an introduction to the HRI problem in general. Section 3.2 outlines
the speci�c requirements interfacing a human with an AATTV and emphasizes the
importance of solutions that allow an AATTV to follow a human autonomously. In
Section 3.3, subproblems that have to be solved in the implementation of a human-
following interface are outlined.

3.1 HRI Problem

The goal of the HRI is "the design, understanding, and evaluation of robotic systems,
which involve humans and robots interacting through communication" [29]. Accord-
ing to [30], the HRI problem can be divided into �ve constituents, which can be each
in�uenced at a certain level by the system designer.

Firstly, there is the robots level of autonomy. It de�nes primarily the frequency
of human robot interaction that is required to accomplish a task.

The second component is the nature of information exchange, which includes
the choice of a mission suitable information medium. Common media types are
categorized into visual displays, movement-based signaling, natural language, non-
speech audio, as well as physical interactions and haptics.

Another part tackles possible team structures and considers one or more users
interacting with one or more robots.

A fourth part that needs to be considered is the adaption, learning and train-
ing capability of the robot and the user. Easy to use interfaces come with high
demands towards the robot's intelligence, while complex interfaces might require
highly trained operators.

The last part to be considered is the shape of the task itself and how it should
be executed.

3.2 HRI for AATTVs

Interacting with �eld robots in unstructured environment, traditional HRI approaches
consider humans to be spectators or bystanders and restrict the collocation of hu-
mans and robots to service robots in structured environments [31].

Nevertheless, the combination of �eld robots, which are designed to operate in
a rough environment, and service robots, whose purpose it is to provide support
and assistance for humans, interdicts to treat the operator merely as a spectator.
Consequently, speci�c requirements result towards the HRI for AATTVs. Especially,
HRI awareness has to be considered for AATTVs, since they are operated in the
vicinity of humans [32]. Above all, this includes plausibility checks of received
commands in order to avoid humans getting harmed by the robots.

Since AATTVs are both, �eld and service robots, two operational modes are
considered to be advantageous: A manually operated and semi-autonomous mode.

11

Manually Operated Mode In the manually operated mode, the robot is fully
controlled by the user. This operation mode requires the user's complete attention,
while the autonomy demands towards the robot are rather low. A manually operated
mode enables the AATTV to perform maneuvers with high speed and accuracy. In
this mode, a HRI could be realized using direct physical interaction with the AATTV.
The use of joysticks or other game controllers is conceivable, too.

Semi-autonomous Mode The semi-autonomous mode allows the user to focus
on other tasks, while still having full control over the robot. Consequently, a higher
level of autonomy is required compared to the manually operated mode. As can be
seen from the previous examples in Subsection 2.1.2 and 2.1.3, interfaces utilizing
movement-based signaling and natural language provide a preferable solution. Ad-
ditionally, touchscreen devices are used to send GPS goals. State of the art interfaces
are based on simple voice commands and gestures, as well as solutions that allow a
vehicle to follow a user autonomously.

Comparison Comparing both modes, the semi-autonomous mode seems to o�er
more advantages, especially under rough circumstances. All interfaces described
for this mode o�er an easy and intuitive control of the vehicle. Nevertheless, not
all interface solutions are suitable for military or space missions. During combat,
it is unfavorable for a soldier to use a touchscreen device in order to navigate a
vehicle. The same applies for astronauts, who might be limited in their mobility
by their spacesuit. Therefore, solutions based on voice, gesture or the ability to
follow a human should be preferred. Gesture and voice based interfaces provide an
optimal solution for commanding a vehicle. In contrast, a human-following ability
o�ers full navigation control, while the user can still focus on other task. Thus,
an ideal solution can be achieved by combining an easy-to-use interface with a
human-following ability (see Figure 3.1). In this case, gestures, voice commands,
touchscreen devices as well as other simple button-based input devices can be used
to turn the human-following interface on or o�.

Figure 3.1: Human-robot interaction with a human-following AATTV: The human-
following mode can be enabled using voice or gesture commands. In order to implement
the human-following ability, a detection and tracking interface is required.

12

3.3 Human-Following Interface

The robot has to solve at least three subproblems when implementing a human-
following interface as shown in Figure 3.1: It has to be able to identify the user,
continuously localize and track him, and control the vehicle in a way that allows the
robot to follow the user.

3.3.1 User Identi�cation

First, the user has to be identi�ed by the system. This can be done by either creating
a unique user characteristic that allows an identi�cation at any time or by de�ning
an initial user position.

Approaches using unique characteristics are usually based on the user's appear-
ance or beacons. Special color coded clothes or patterns are popular solutions to
create a unique appearance [33�35]. Conversely, beacons are implemented by trans-
mitting light [36] or radio signals. Radio Frequency Identi�cation (RFID) tags are
often used in this context [37, 38].

Approaches that require an initial user position can be implemented in many
di�erent ways. The simplest way to obtain an initial position is to start the human-
following interface only if the user is located at a �xed position relative to the
robot. Another approach determines the user's positions by calculating the sound
source direction of voice commands [39]. In [40], the user and therefore the initial
position is identi�ed through speci�c gestures that are used to start the human-robot
interaction. Face recognition can be used in a similar way, too [37, 41]. However,
other solutions like GPS-based localization are also possible.

Figure 3.2: User identi�cation Workpartner: The robot Workpartner identi�es the human
user based on color coded clothes.

Comparing both approaches, unique user characteristics allow a continuous user
identi�cation, while approaches based on an initial position require some other kind
of user tracking in order to localize the user at any time.

As long as the user appearance stays unique, the �rst approach is by far more
robust towards occlusion. In space, for example, dust and dirt could cover or dis-
tort unique characteristics, such as color or speci�c patterns. In addition to that,

13

solutions that depend on added user characteristics are not feasible within all ap-
plications. In military applications for example, color coded clothes and striking
patterns make soldiers easy targets for the enemy. Similar, transmitted light or
radio signals could be located by enemy troops.

The second approach, however, allows a great �exibility with respect to the user
appearance. Thus, there is no need to change clothes in order to use the interface.
Furthermore, no additional devices for locating the user are required.

3.3.2 User Localization and Tracking

Once the user is identi�ed, the robot has to be able to localize and track the user
continuously. If the user identi�cation is based on an initial position and there-
fore does not require augmented human tags, independent tracking and localization
methods are needed. Since the detection and tracking of humans is a very complex
problem, a detailed description of possible solutions is given in Chapter 4.

3.3.3 User-Following

Once the user's position is known, the robot has to calculate a suitable path in order
to follow the human. Main di�culties result from the robot's locomotion, its size
and environment. For example, a small holonomic robot can use an approach that
is a lot simpler than the one needed for a car-sized robot with Ackermann steering.
Similarly, a robot in an unstructured but static environment has to consider less
obstacles than the same robot in an unstructured and highly dynamic environment.
In [42], Gockley et al. suggest two ways of user-following: Direct path-following
and direction-following. While the direct path-following allows the robot to follow
his user directly, the robot chooses its own path based on the user's direction in
the direction-following approach. A similar behavior was outlined for the LS3 in
Subsection 2.1.3.

Depending on the available level of autonomy, either solution proposed by Gock-
ley et al. might be more suitable.

14

4 Human Detection and Tracking

Object tracking in general and people tracking in particular are elementary chal-
lenges within machine perception and therefore in mobile robotics. Traditionally,
object tracking describes the process of determining an object trajectory within a
sequence of two-dimensional intensity images. However, in order to obtain three-
dimensional information about the object of interest, range information has to be
utilized during the tracking. Depth data can be gathered using Time of Flight (TOF)
cameras, cameras in a stereo setup and 2D or 3D Light Detection and Rang-
ing (LIDAR) scanners. Depending on the acquired data, di�erent object recognition
and tracking methods are bene�cial. As a complete review on the variety of methods
presented in di�erent surveys [43�46] is beyond the scope of this work, this chap-
ter focuses on the most common used methods and principles. Therefore, di�erent
approaches are classi�ed into vision-based, laser-based, and hybrid approaches and
are presented in the subsequent sections.

4.1 Theoretical Background

In order to �nd and track a person, at least the following three steps have to be
performed: Feature selection (4.1.1), object classi�cation (4.1.2), and the tracking
itself (4.1.3). In the �rst step, characteristic features that describe the object are
extracted from the image. Subsequently, the classi�cation step tries to identify
objects based on the selected features. Usually, the selected features are therefore
compared to templates using supervised learning algorithms. In the tracking step,
useful information about the object movement is extracted. This information can
be used to improve the object detection. Other important steps include image
preprocessing, foreground segmentation, and the veri�cation of detected objects [43].

4.1.1 Feature Selection

Selecting unique features from intensity images is crucial for successfully detect-
ing people. Traditional features are color, edges, texture, and optical �ow [45].
Very popular feature descriptors for human detection are Haar-like features and
Histograms of Oriented Gradients (HOG) descriptors [47]. While traditional fea-
tures are mostly limited to intensity images, feature descriptors can theoretically be
applied to both, intensity and range images.

Color Since color is directly encoded in images, it is one of the simplest features
to detect. Di�erent color spaces, like Red Green Blue (RGB) and Hue Saturation
Value (HSV) can be utilized (see Figure 4.1).

15

Figure 4.1: Comparsion of di�erent color spaces: RGB and HSV

In contrast to RGB, HSV is approximately a perceptual uniform color space [45].
This allows a simple selection of color regions of interest in the HSV space. Neverthe-
less, features based on color are light sensitive and thus not robust against changes
in illumination.

Edges In contrast to color, edges are features that are relatively robust against
illumination changes. An edge detection algorithm, which is still very popular today,
was introduced by Canny in 1986 [48]. His algorithm is based on the detection of
image gradients with a large magnitude. Figure 4.2 shows the output of the Canny
Edge Detector.

(a) Input Image (b) Canny edges

Figure 4.2: Canny edge detection.

Optical Flow A third feature is the observed motion in a sequence of intensity
images. The object motion in a picture can be estimated using optical �ow, a
vector �eld which describes the apparent velocity of brightness patterns in images
[49]. Therefore, this feature is especially useful for detecting moving objects in
otherwise static scenes. Early, but still popular approaches were described by Horn
and Schunck [49], and Lucas and Kanade [50].

Texture The texture of an object is another feature that can be extracted from
images. It characterizes the objects intensity surface. Thus it can describe di�erent
patterns and structures on the surface. However, it can not be extracted as simple as
image intensities. Special feature descriptors are required in this case [51]. Texture-
based features are bene�cial if characteristic a priori information about the objects
surface is available.

16

Haar-like features Haar-like features are based on Haar wavelets and were �rst
introduced by Papageorgiou and Poggio [52]. The authors proposed to describe
an object class by a new representation based on orientated intensity di�erences
between adjacent image regions. Three 2-dimensional Haar wavelets are outlined in
their work and shown in Figure 4.3.

Figure 4.3: Three di�erent Haar wavelets: Vertical, horizontal and diagonal.

In order to use Haar-like features for object detection, for each wavelet an object
descriptor has to be obtained and a classi�cation algorithm has to be trained. The
descriptors are usually based on a large database containing both, images of the
desired object and images of other scenes without the object. Figure 4.4 shows the
averaged human descriptors for the three wavelets.

Figure 4.4: Averaged Haar-like feature descriptors [52].

Histograms of Oriented Gradients Histograms of Oriented Gradients (HOG)
are another set of feature descriptors. In [53], Dalal and Triggs introduced a feature
descriptor based on normalized, local histograms of image gradient orientations in
a dense grid. Similar to the Haar-like features, �rst, a descriptor has to be formed
and, subsequently, a classi�er to be trained.

The HOG descriptor is formed in three steps. First, the image gradients are cal-
culated using a gradient �lter. In the second step, the image is divided into cells
and an orientation histogram is computed for each cell. Subsequently, the previously
calculated histograms are contrast-normalized in the third step. This increases the
invariance to illumination changes and shadowing. The image is therefore tiled into
overlapping blocks. Depending on the block geometry, one can distinguish between
rectangular (R-HOG) and circular (C-HOG) Histograms of Oriented Gradients. For
rectangular blocks, the cells are also divided into rectangles, while for circular blocks
each cell has a polar log fashion. Furthermore, the C-HOG center cell can be consid-
ered as one or be split up into four segments. The possible block con�gurations are
shown in Figure 4.5.

For a reliable descriptor, these steps have to be applied to a large number of
training images and the calculated descriptors have to be averaged. Once the �nal

17

Figure 4.5: HOG block forms: C-HOG, C-HOG with one center cell, R-HOG.

descriptor is obtained, a classi�er can be trained. In the original publication, a
Support Vector Machine (SVM) classi�er is utilized.

Figure 4.6 shows the averaged gradients of a training set, positive and negative
SVM weights, a sample picture, the R-HOG descriptor for the sample picture, and
R-HOG descriptor weighted with the positive and negative SVM weight.

Figure 4.6: From left to right: Averaged gradients of a training set, positive and negative
SVM weights, a sample picture, the R-HOG descriptor for the sample picture, and positive
and negative weighted descriptor [53].

4.1.2 Object Classi�cation

Object classi�ers are based on supervised learning methods. Their task is to deter-
mine whether a certain subset of extracted features matches an object description
or not. Depending on their error rate, classi�ers can be categorized into weak and
strong. A one-level decision tree is a simple example for a weak classi�er. How-
ever, classifying a set of image features is a very complex and challenging task,
especially for nonrigid objects. Therefore, strong classi�ers like Support Vector Ma-
chines (SVMs) are needed. Additionally, it is also possible to combine several weak
classi�ers.

Support Vector Machines Support Vector Machines (SVMs) are a class of al-
gorithms used for data analyzing. The most popular implementation was published
by Cortes and Vapnik in 1995 [54].

The goal of SVMs is to categorize a labeled dataset into two groups: One group
that �ts a certain description and one that doesn't. Therefore, SVM �ts a hyperplane
in such a way that new, unlabeled data can be categorized correctly. Figure 4.7
shows a labeled dataset of squares and circles as well as possible hyperplanes. For
each hyperplane, a margin can be de�ned as the minimum distance towards a data
sample. Thus, the best-choice hyperplane provides a maximum margin towards both
categories.

18

(a) Possible hyperplanes for
classi�cation.

(b) Best �tting hyperplane
with maximum margin.

Figure 4.7: Classi�cation based on Support Vector Machines: Dataset consisting of
squares and circles separated by di�erent hyperplanes.

Boosting Boosting allows to combine several weak classi�ers in order to generate
a strong one. The idea was �rst introduced in 1989 by Schapire [55]. Figure 4.8
exempli�es how two weak decision tree stumps are combined into a stronger classi�er.
Adaptive Boost (AdaBoost), the most popular boosting method, was described by
Freund and Schapire [56]. AdaBoost, assigns weights to classi�ed data based on an
initial classi�cation. Thus, depending on the previous classi�cation, weights for data
points are either in- or decreased depending on whether they were misclassi�ed or
correctly classi�ed, respectively. The adapted weights are then considered during
the next classi�cation step.

Figure 4.8: Classi�cation based on Boosting: Combination of two weak classi�ers into a
strong classi�er.

4.1.3 Object Tracking

Object tracking allows to predict the future position of a tracked objects. Therefore,
it can simplify the detection process and correct detection errors. Furthermore,
object tracking can resolve occlusion problems. Di�erent approaches can be divided
into three categories depending on the object representation: Point tracking, Kernel
tracking and Silhouette tracking [45]. The most popular approach is point tracking
and often realized using Kalman and Particle Filters [43].

Another common approach to realize point trackers is based on optical �ow.
Today, various tracking algorithms are based on optical �ow trackers such as the
one described by Lucas and Kanade [50] or the Median Flow tracker [57]. Two very

19

recent trackers that are based on this principle will be described in this section: The
Tracking Learning Detection (TLD) algorithm and the Consensus-based Matching
and Tracking (CMT) approach.

Tracking Learning Detection Tracking Learning Detection (TLD) is a real-time
tracking algorithm that is able to track any object within an image sequence based
on a single bounding box in the �rst frame. The algorithm was originally developed
for MATLAB by Kalal [58]. With OpenTLD, a C++ implementation was published by
Nebehay [59]. The strong performance of the TLD tracker results from the feedback
loop used for online training. Figure 4.9 gives an overview of the TLD framework.

Tracking Detection

Learning

redetections

Figure 4.9: The Tracking Learning Detection algorithm [58].

As the name TLD indicates, the algorithm consists of three main parts: The
tracking, learning and detection of an object.

The tracking part is based on a median-�ow tracker which utilizes a Lucas-
Kanade optical �ow tracker. Additionally, the tracker is able to detect tracking
failures if the object of interest is not visible in the processed frame. The information
obtained from the tracker is forwarded to and utilized by the learning component.

The learning component consists of two major parts: A P- and an N-expert.
The P-expert gathers positive object descriptors, allowing to obtain a more general
model of the tracked object. Conversely, the N-expert creates negative descriptors
based on the image background. The information of both experts is then provided
to the object detector.

The object detector is based on the learned model. It is initialized by the learning
component. The detection itself is realized using a sliding window approach and
cascaded classi�ers. The cascade consists of three stages: A patch variance classi�er,
an ensemble classi�er and a 1-NN classi�er. The detection results are fed into the
tracker if an object had been lost and re-detected, or detected for the �rst time.

20

Consensus-based Matching and Tracking The CMT tracker is a real-time
tracking algorithm that allows long-term and model-free tracking. The approach was
presented by Nebehay and P�ugfelder in 2014 [60]. Open-source implementations
are available for Python and C++. The main idea of the tracker is to detect keypoints,
which each vote for the center of the object. Based on the votes, outliers can be
detected and the 2D pose of the object in the image estimated.

The CMT tracking algorithm consists of three major steps. The �rst step is
responsible for the matching and tracking of keypoints. Therefore, BRISK keypoints
are extracted in each frame. The extracted keypoints are then matched with the
keypoints extracted from the �rst frame. The matching is based on the distances of
each keypoint towards its neighbors. In order to keep track of the matched keypoints,
a Lucas-Kanade optical �ow tracker is used.

In the second step, each keypoint casts a vote towards the object center. This
step can take translational and rotational changes as well as possible changes in
scale into account.

In the �nal step, the object's pose is determined by removing outliers and �nding
a consensus for the cast votes. Therefore, keypoints with similar votes are clustered
together using a hierarchical agglomerative clustering. The biggest subset of key-
points is de�ned as the new consensus.

The voting and consensus �nding process are illustrated in Figure 4.10.

Figure 4.10: The CMT tracker voting and consensus �nding: Each point casts a vote
towards the object's center. The cluster with the biggest number of keypoints is de�ned
as consensus [60].

21

4.2 Vision-Based Approaches

Vision-based approaches utilize intensity images for the detection and tracking of
people. Di�culties in these approaches result from object occlusion, illumination
changes, nonrigid and articulated objects, complex object motions, real time re-
quirements, ego motion, and measurement noise [45]. Depth information can be
obtained using stereo vision or TOF cameras. Vision-based approaches are widely
used among di�erent authors.

In [61], Sataka and Miura present a person following robot utilizing stereo vision.
The human detection is based on depth templates generated from person shapes. A
SVM-based veri�er is used in order to eliminate false detections. The person tracking
is realized with an Extended Kalman Filter.

Figure 4.11: Depth templates and human detection result in depth images [61].

Spinello and Arras [62] describe a human detection system based on HOGs and
stereo vision. Therefore, the authors introduce the concept of Histograms of Ori-
ented Depths (HODs). The HOD concept is similar to HOG, except that it is applied
to depth instead of intensity gradients. Furthermore, they evaluate a combined ap-
proach using HOG and HOD feature descriptors for RGB-D data. The algorithm is
able to detect humans with a correct classi�cation rate of 85% at a distance of more
than 8m. However, in order to detect people at 30 frames per second (fps), the
algorithm has to be implemented on a Graphics Processing Unit (GPU).

Conversely, Munaro et al. [63] present a RGB-D based solution that runs at 26
fps without the need of a GPU. After removing the ground and 3D-clustering the
data, a HOG-based people detection is performed on the remaining clusters. A SVM

classi�er is trained in the same way as described by Dalal and Triggs in [53]. Their
tracking approach is based on an Unscented Kalman Filter.

22

4.3 Laser-Based Approaches

Laser-based approaches utilize range data for the detection and tracking of people.
In contrast to vision-based approaches, laser-based approaches provide very accurate
range information, while lacking intensity information. Resulting di�culties are
similar to vision based approaches: Object occlusion, articulated nature of objects,
complex object motions, real time requirements and ego motion. This is aggravated
by the so called LIDAR shadowing. However, laser measurements are not in�uenced
by illumination changes.

4.3.1 2D LIDAR Approaches

2D LIDAR approaches utilize one or multiple line scanners. Therefore, common
features as described in Section 4.1 can not be extracted. Instead, depending on the
sensor con�guration, other features have to be found.

Taipalus and Ahtiainen [64] use a knee-high mounted 270◦ Field of View (FOV)
LIDAR on a mobile robot in order to detect and track a human. After clustering the
received laser scans, a heuristic is used to identify human legs within the clusters.
A similar approach was described by Arras et al. in [65].

Another approach described by Carballo et al. [66] uses two layers of laser line
scanners covering a 360◦ FOV. The lower layer detects legs, while the upper layer is
used to detect the human chest (see Figure 4.12). Thus a more reliable detection is
possible by combining both layers.

Figure 4.12: Two humans in multi-layered approach and corresponding detection result
from [67].

Furthermore, Carballo et al. introduced a novel feature for laser based detection
in [67]. Utilizing laser intensities as features, they improved their multi-layered
approach signi�cantly.

23

4.3.2 3D LIDAR Approaches

3D LIDAR approaches are based on 3-dimensional range measurements. The mea-
surements can be collected with 3D LIDARs or moving 2D LIDARs. Again, not all of
the features described in Section 4.1 can be extracted. Nevertheless, similar princi-
ples are applied in di�erent publications.

Spinello et al. introduce a novel person detection method for 3D point clouds
in [68]. The point clouds are collected with a Velodyne HDL-64E S2 laser scanner.
Their detection approach is based on several highly speci�ed AdaBoost classi�ers
based on multiple co-planar layers that are subdividing a human at di�erent heights.
Figure 4.13 illustrates the approach. The authors claim to achieve a classi�cation
rate of up to 96% based on a single 3D scan.

Figure 4.13: A 3D scan of a person is divided into K layers. For each layer an AdaBoost
classi�er is trained [68].

Teichman et al. suggest to identify objects in dense 3D data based on previously
recorded and labelled object tracks [69]. Again, the data set is obtained by a Velo-
dyne HDL-64E S2 laser scanner. For classi�cation, a boosting framework is utilized.
The suggested method runs in real-time with an accuracy of 98,5%. Furthermore,
the system is able to classify between di�erent objects: Pedestrians, bicyclists and
cars.

In [70], Bohlman et al. implement a mobile robot platform that is able to track
and follow a walking person. The authors utilize a 3D LIDAR with a resolution
of 59x29 points. The human detection is based on ground segmentation and the
extraction of human leg features based on cylindrical models. A Particle Filter is
utilized for the tracking task.

Figure 4.14: 3D LIDAR scan and detected human legs [70].

24

4.4 Hybrid Approaches

Hybrid approaches combine vision- and LIDAR-based approaches. The most popular
setup is to use 2-dimensional laser scanners in combination with cameras.

In [47], Schiele et al. implement and evaluate a system based on a 2D SICK laser
scanner and a camera. The camera is calibrated and used for human detection based
on HOGs. For classi�cation, a SVM classi�er is used. The laser scanner is mounted
about 30 cm above the �oor and used for leg detection. Fusing both detection
methods improves the overall correct classi�cation rate. Figure 4.15 shows a typical
false classi�cation by the visual system and the corrected classi�cation.

Figure 4.15: Hybrid approach for human detection: Misclassi�cation by the visual system
and the corrected classi�cation by sensor fusion [47].

Bellotto and Hu combine a 2D SICK laser scanner with a Pan-Tilt-Zoom (PTZ)
camera in order to follow a human with a mobile robot [41]. Similar to [47], the
laser is used for leg detection. The camera, however, is mounted on the robot at
approximately 1.5m above the �oor and used to detect human faces based on a set
of Haar-like features. Both detection results are then combined using a sequential
implementation of an unscented Kalman Filter.

Premebida et al. [71] combine a 2D SICK laser with a camera, too. Their goal is
to detect and track pedestrians and vehicles. Therefore, entities of interest are ex-
tracted from the laser scan and classi�ed using a Gaussian Mixture Model classi�er.
In addition to that, the position of each extracted entity is used to de�ne a region
of interest within the image. Subsequently, each region of interest is classi�ed using
an AdaBoost classi�er based on Haar-like features. The classi�cation results of both,
the lidar and the camera classi�er, are then combined using an Bayesian Classi�er.

25

5 System Concept

The purpose of this chapter is to introduce the conceptional ideas of the developed
system and its components. Therefore, �rst, principle system requirements which
result from current state-of-the-art vehicles are described. Subsequently, the overall
system design is presented. Finally, the individual hardware components of the sys-
tem and their tasks, as well as important software frameworks that were frequently
used for implementing the system are explained.

5.1 System Requirements

Comparing state of the art vehicles for di�erent applications shows that full solu-
tions for AATTVs are restricted to military applications. Nevertheless, various civil
and space application scenarios could also bene�t from AATTVs. This applies in
particular to vehicles that provide easy-to-use interfaces.

A popular, user-friendly approach allows the robot to follow a human user au-
tonomously. A major challenge implementing such an interface is to detect and
track the user continuously using the robots perception. The perception can be
based on visual information or laser measurements. A combination of both infor-
mation sources is also possible.

However, most of the existing detection and tracking solutions are not suitable
for the operation in rough terrain. Pure vision-based approaches su�er from illumi-
nation changes, while 2D laser-based approaches are not advisable in steep terrain
due to their limited the vertical FOV. Consequently, 3D laser-based approaches seem
to be most promising. They are independent of illumination changes and provide
usually a vertical FOV of at least 30◦. Furthermore, they have a large horizontal
FOV.

Nevertheless, 3D LIDAR approaches lack the possibility of a reliable user identi-
�cation. To overcome this problem, LIDAR data should be combined with a vision-
based information. Combining various information sources is usually linked to a
high computational e�ort. However, in order to follow a human, the robot's per-
ception and control has to operate at a speed that is reasonable compared to the
moving speed of the user. Consequently, the system has to operate in real-time.

All in all, the system that is going to be developed has to meet the following
requirements:

1. Identify and track the human user

2. Follow the human user

3. Operate in a real-world environment

4. Operate in real-time

26

5.2 System Overview

Figure 5.1 gives an overview of the complete AATTV system.

Motor control

Steering
control

PC Embedded PCCamera

LiDar

Input Device

UDP

IEEE 1394 CAN

OdometryCAN

Periphery High- and intermediate level Low-level

Router

TCP/IP

Bluetooth/WiFi

Figure 5.1: System overview and used communication protocols between periphery, high-,
intermediate-, and low-level components.

In order to implement a human tracking and following robot, a camera, a 3D
LIDAR, and other input devices like a game controller, a Bluetooth headset or a
smart phone are required.

Thereby, the camera and the 3D LIDAR are utilized to determine the user location
relative to the robot, while the other input devices can be used to activate the
tracking and following behavior of the robot. The information provided by the
peripheral devices is gathered and subsequently processed by both PCs, increasing
the overall computation time. Once the perceived data is processed and the user
location is determined, speed and steering commands are computed and sent to
the according control units of the vehicle using the embedded PC's Controller Area
Network (CAN) interface.

Both computers, as well as the user input devices communicate over an internal
network. A standard network setup based on a router allows to connect additional
hardware to monitor the system.

Both, the low-level components as well as the CAN interface between high- and
low-level components were developed in other projects. The focus of this thesis
project is therefore on the high-level system implementation. This includes to in-
terface all peripheral devices, the setup of network structures as well as the imple-
mentation and evaluation of a suitable tracking and control algorithms.

27

5.3 Hardware

This section describes the hardware components used to implement the system: The
Velodyne HDL-32E LIDAR scanner, the Bumblebee XB3 stereo camera, the ATV, and
additional hardware used to create an interface between the robot and the user.

5.3.1 Velodyne HDL-32E

As 3D LIDAR scanner, the Velodyne HDL-32E shown in Figure 5.2 is used [72]. The
HDL-32E emits 32 laser beams providing a vertical coverage from +10◦ to -30◦ with a
horizontal FOV of 360◦. The operating frequency can be selected by the user sampling
up to 10 scans per second. Hereby, each scan consists of approximately 70.000 points
with an error of less than 2 cm per measurement. The scans are transmitted using
User Datagram Protocol (UDP) packets over a 100Mbit/s Ethernet connection . The
sensor additionally provides a Global Positioning System (GPS) receiver interface
and an integrated Inertial Measurement Unit (IMU). The information of both can
be collected using a separate UDP port.

Within this system, the Velodyne sensor is used to determine the 3D location of
the user.

Figure 5.2: The Velodyne HDL-32E LIDAR scanner.

5.3.2 Bumblebee XB3

The camera used is the Bumblebee XB3 from Point Grey [73] as shown in Figure 5.3.
The Bumblebee XB3 is a stereo camera with two di�erent base lines. It operates
at a frequency of up to 16Hz and a maximum data rate of 800 Mbit/s using the
IEEE-1394b interface (Firewire). It can capture and transfer three Bayer pattern
encoded images simultaneously with a resolution of 1280×960 pixels.

Although the camera was originally intended to compute 3D images, only 2D
images from one lens are used to distinguish the user from other persons. This
is mainly because of the high computational e�ort required to calculate 3D depth
images. Furthermore, the Velodyne LIDAR provides more accurate depth data.

Figure 5.3: The Point Grey Bumblebee XB3 with two di�erent base lines.

28

5.3.3 Polaris Ranger EV

The ATV platform is based on the Polaris Ranger EV � an electric vehicle with
Ackermann steering and 4 wheel drive. It has a vertical step of 25 cm and can
transport a payload of up to 450 kg. Currently, the ATV can be operated in manual
and automated mode. While the manual mode allows the ATV to be driven in the
same manner as a regular car, it can be controlled in the automated mode using speed
and steering angle commands. In order to control the electric vehicle in automated
mode, two control units can be interfaced using CAN. One unit is responsible for
controlling the steering motor as well as for reading the steering encoder and the
four wheel encoders. The other control unit is used to command the four wheel
motors. Additionally, a standard WiFi router, an embedded computer as well as a
regular computer for high-level tasks are mounted. Figure 5.4 shows the ATV with
attached sensors.

Figure 5.4: The Polaris Ranger ATV with mounted Velodyne HDL-32E, Bumblebee XB3
and perception computer.

5.3.4 Additional Periphery

An additional peripheral device is required for two reasons. First, an additional
input device provide another level of control when activating and using the human-
robot interface. Therefore, it is above all a security feature. Second, the device can
be used to assure that only the user activates the interface, since only he has access
to this hardware. Thus, it is also a way of identifying the user.

A PS3 controller, a standard Bluetooth headset and an Android OS smart phone
were used as additional periphery as shown in Figure 5.5. The devices can be
combined or used separately. All devices provide a full interface solution. However,
it is also possible to use them in any user desired combination.

29

(a) PS3 Controller (b) Samsung HM1100 (c) HTC One

Figure 5.5: Additional input devices.

5.4 Software

Di�erent software frameworks and libraries were used to implement the system. The
three main contributors are the Robot Operating System (ROS), the Point Cloud
Library (PCL), and the Open Source Computer Vision Library (OpenCV).

5.4.1 Robot Operating System

The developed software system is based on the open-source Robot Operating Sys-
tem (ROS), which is currently developed by Willow Garage [74]. ROS is not an oper-
ating system in the traditional sense, but rather a meta-operating system that im-
plements a communication layer which allows collaboration within a heterogeneous
computer cluster. Nevertheless, ROS also provides typical operating system services
such as hardware abstraction, low-level device control and inter-process messaging.
Furthermore, ROS contributes a great number of software frameworks implementing
commonly used functionality for robots such as path planning, obstacle avoidance,
machine perception, localization and mapping, and data visualization.

ROS is language- and platform independent. It incorporates three main and var-
ious experimental client libraries. The main client libraries provide C++, Python,
and Lisp support and are targeted to UNIX-like systems. The most spread, exper-
imental library provides a pure JAVA implementation with Android OS support.

In order to use and work with ROS, it is important to understand how the
communication layer is designed. Therefore, the ROS concepts of nodes, master,
messages, topics and services are explained in more detail.

Nodes Within ROS, nodes are processes that perform some kind of computation.
The main idea is to increase the software modularity and to distribute the com-
putational burden on di�erent threads, each performing a speci�c task. The tasks
range from collecting and processing sensor data to the control of actuators and
the execution of planning algorithms. A computational graph allows the nodes to
communicate with each other.

30

Master The computational graph is set up by the ROS master. It allows nodes to
connect to each other by registering new and looking up existing nodes. Further-
more, the master manages the so called parameter server, which is used to update
and con�gure node parameters during run time.

Messages The communication itself is based on messages between the nodes.
Messages are a typed data structures. Primitive data types such as integer, �oating
point, and Boolean as well as arrays of primitive types are supported. A previously
de�ned message can also be used as a type within another message.

Topics In order to identify messages they are sent under a certain name, the so
called topic. Topics are implemented based on the publish and subscribe paradigm.
In order to send a message, it has to be published by a node to a certain topic. If
another node wants to receive this speci�c message, it has to subscribe itself to the
according topic. Multiple nodes can publish and subscribe to the same topic, while
a single node can also publish and subscribe to multiple topics.

Services While topics provide a one-way interaction only, services expand the
same concept to a request and reply interaction. Thus, a node can send a request
message to another node which is o�ering a service. Once the request is received
and processed by the service o�ering node, a reply message is sent back in return.
Therefore, services can be thought of as a remote procedure call.

5.4.2 Point Cloud Library

The Point Cloud Library (PCL) is an open source software framework implementing a
set of C++ libraries for processing multi-dimensional point clouds [75]. In this context,
a point cloud is a group of points, each encoding a certain set of information such
as its three dimensional position, its RGB color or laser intensity. They are usually
obtained using depth cameras, stereo vision or three dimensional LIDARs.

The PCL framework provides a numerous collection of state-of-the art algorithms
and can be, for example, used to solve segmentation, noise �ltering, model �tting
and registration problems.

5.4.3 Open Computer Vision

The Open Source Computer Vision Library (OpenCV) is also an open source software
framework. It is a cross-platform framework supporting C++, C, Python, JAVA and
MATLAB interfaces [76]. OpenCV provides speed optimized algorithms for computer
vision and machine learning tasks. The algorithms include simple image manipu-
lations as well as more complex operations such as face recognition, object identi-
�cation and automatic feature extraction. Furthermore, it provides algorithms for
camera calibration, image recti�cation and the computation of depth images from
a stereo camera setup.

31

6 Implementation

Figure 6.1 gives an overview of the implemented software system.

Velodyne

BumbleBee

interpreter

control

raw image

360° scan

locations

SOI

image

enable

goal

Input device

command

Motorcommand

velodyne_proc

camera_proc

tracker

Perception

command

Figure 6.1: Software implementation overview: The purple and blue boxes indicate
interfaces to the hardware and processing nodes, respectively.

The tracking behavior can be commanded using the interpreter node described
in Section 6.1. This node implements a common interface for all input devices. As
input device, a PS3 controller, a Bluetooth headset or a smart phone can be utilized.

The 3D data collected by the Velodyne, as well as the images captured by the
Bumblebee are processed in parallel. Full 360◦ scans are collected from the Velodyne
using the Velodyne ROS driver. Subsequently, each scan is processed in the velo-
dyne_proc node. First, a Sector of Interest (SOI) is selected during the preprocessing
step (see Subsection 6.2.1). Once the SOI is extracted, the ground is estimated and
removed in the segmentation step, explained in Subsection 6.2.2. Finally, the re-
maining point cloud is clustered in order to �nd the groups of points that match
the geometric characteristics of a human. This last step is described in Subsection
6.2.3.

Simultaneously, the Bayer encoded images, which are received from the Bum-
blebee, are decoded and recti�ed using the camera_proc node. A more detailed
description of this node is given in Subsection 6.3.1.

The goal of the tracker node is to determine the current SOI based on the true
user location. Therefore, the tracker combines the information obtained from the
Bumblebee with the information from the Velodyne. The recti�ed images are used
to track the user based on a single frame and the initial user position. Subsequently,
the obtained tracking results are combined with the cluster information that was
extracted from the Velodyne data. A detailed explanation of the tracking algorithm
and sensor fusion process is given in Section 6.4.

The control node computes suitable speed and steering commands to follow the
human user. The applied control algorithm is described in Section 6.5.

32

6.1 User Interface

In order to manage the tracking behavior of the AATTV, a communication link has
to be established between the user and the vehicle. For each of the three di�erent
devices listed in Subsection 5.3.4, an individual interface was implemented. Thereby,
each interface communicates with a common message interpreter, allowing to use
multiple input devices simultaneously. Thus, for example, it is possible to use the
PS3 controller in combination with the Bluetooth headset. Furthermore, any ROS

supporting system can be used as input device. Figure 6.2 shows the command �ow
through the interpreter. Depending on the peripheral device, feedback from other
nodes can be directly used or has to be processed by the interpreter �rst.

PS3
controller

BT headset

Android
phone

PC

Interpretercmd
start

stop

direct control

Figure 6.2: Communication �ow from periphery to interpreter and system.

6.1.1 Controller Interface

Utilizing the ROS package ps3joy and a commercial Bluetooth 2.0 USB dongle, the
PS3 controller could be easily integrated into the overall system. All necessary driver
functionality is provided by ps3joy. In addition to the tracking management, the
controller allows the user also to control the robot's speed and steering angle directly.
A ROS node was implemented to publish according steering commands as well as
ROS messages for the interpreter. Figure 6.3 shows the di�erent functions assigned
to the controller. The PS3 controller does not provide feedback.

Steering control Speed control

Enable tracking interface

Disable tracking interface

Figure 6.3: The PS3 controller user interface: The X-button activates the tracking in-
terface, the O-button deactivates the tracking interface, the right analog-stick controls the
speed and the left analog-stick controls the steering angle.

33

6.1.2 Headset Interface

The headset interface allows the user to control the tracking interface based on voice
commands. For speech recognition the ROS package pocketsphinx was used, a Python
wrapper of the eponymous library developed at Carnegie Mellon University (CMU).
The speech recognizer has to be con�gured to identify speci�c words and phrases
using a so called knowledge base. The knowledge base can be easily created using
CMU's Sphinx knowledge base tool [77]. Table 2 lists all supported commands.

Voice command Action

Car, follow me. activate interface
Car, stop. deactivate interface
Car, halt. deactivate interface

Table 2: Available voice commands for the headset user interface.

As an additional safety feature, the headset's button for call acceptance imple-
ments an emergency stop button. A Python script listens to the operating system's
D-Bus and publishes a stop message to the interpreter.

In addition, the headset interface provides direct audio feedback that indicates
whether a command has been correctly interpreted and executed. Therefore, the
interpreter implements a text-to-speech synthesizing sound interface based on the
ROS package sound_play.

6.1.3 Smart Phone Interface

As a third option, an application for Android smart phones and tablets was im-
plemented. The app allows the user to start and stop the tracking interface of the
ATV. Furthermore, it provides audiovisual feedback information from the robot and
displays an image of the current tracking result. For audiovisual feedback, feedback
messages are displayed and synthesized into speech. Figure 6.4 shows the graphical
user interface. The application uses the rosjava client for Android.

Figure 6.4: Graphical user interface of the Android application.

34

6.2 LIDAR Processing

The LIDAR data is retrieved using the ROS package velodyne. A full scan is shown
in Figure 6.5. The collected data is processed in three steps. First, the Sector of
Interest (SOI) is extracted based on the previous estimation of the user location. In
the second step, the remaining data is segmented and the ground removed. Two
di�erent approaches for the ground segmentation were implemented in order to
handle di�erent terrain more e�ciently. Finally, the remaining points are clustered.

Figure 6.5: A full 360 ◦ scan from the Velodyne HDL-32E.

6.2.1 Preprocessing

In the preprocessing step, the SOI is extracted from the incoming scans. The SOI is
based on the angle of the last known user position or straight in front of the AATTV

if the user interface is initialized. The sector covers approximately one eighth of
a full scan. This preprocessing step is necessary in order to execute the following
processing steps at a rate of 10Hz. Figure 6.6 shows the result of the preprocessing
step.

A di�culty within this step is that the point clouds provided from the ROS

Velodyne driver cover more than 360◦. Consequently, the angle of the �rst element
within each point cloud changes over time with respect to the car's reference frame.
However, the index of the point that is corresponding to the user's direction can be
quickly found using a simple binary search. Once that index is found, the sector can
be constructed around that center point.

35

Figure 6.6: The selected sector of interest.

6.2.2 Segmentation

The goal of the segmentation step is to extract the ground �oor within the SOI as
shown in Figure 6.7. This step is essential in order to be able to distinguish between
di�erent objects based on their connectivity within the point cloud. Two di�erent
algorithms were implemented. The �rst algorithm assumes a planar ground model
and is therefore limited to a certain kind of environment. The second approach
constructs a more general ground model at the cost of a higher computation time.

Figure 6.7: the ground segmentation result.

36

Random Sample Consensus The Random Sample Consensus (RANSAC) based
ground segmentation tries to �t a plane model into the received LIDAR data. Once
an appropriate model is found, all points matching the plane model within a given
threshold will be removed. This is repeated until the original point cloud size is
halved or the estimation of the plane model fails.

In order to �t a model to the received data, points are randomly picked to
construct a plane. Based on this model a so called consensus set is identi�ed. The
consensus set is de�ned by the number of points that match the constructed model
within a given threshold. If the set is su�ciently large enough or the maximum
of allowed iterations is exceeded the algorithm terminates. If, however, the found
consensus set is too small, the algorithm starts over again by selecting new points
in order to construct the model. Figure 6.8 illustrates the result for a single slice
within a 3D scan.

Figure 6.8: RANSAC ground estimation result for a slice of the 3D scan. The dots
represent the LIDAR measurements, while the estimated plane is indicated by the blue
line.

The RANSAC algorithm was realized using PCL's SACSegmentation class. The
class allows to con�gure various parameters shown in Table 3.

Parameter Value Description

Method type RANSAC random sample consensus
Axis [0, 0, 1] z-axis
Model type perpendicular plane extract a plane perpendicular to axis
EpsAngle 10◦ max. plane inclination
Max. iterations 100 max. number of iterations
Distance threshold 0.10m model threshold

Table 3: PCL's SACSegmentation con�guration parameters.

37

Gaussian-Process-Based The second approach implements a Gaussian-Process-
Based (GPB) real-time ground segmentation introduced by Tongtong et al. [78]. The
proposed algorithm reduces the complexity of the complicated 2D ground segmenta-
tion to many simple 1D Gaussian process regression problems and allows therefore
to be used in real-time applications.

The algorithm itself consists out of six major steps, which will be explained in
the following sub-paragraphs.

1. Polar Grid Map In the �rst step, a polar grid map representation of the
incoming scan is created. Points that exceed a de�ned maximum distance Rmax =
20m are ignored. Figure 6.9 shows a polar grid map consisting ofM = 180 segments
which are each separated into N = 100 bins.

Figure 6.9: A polar grid map consisting of M segments with N bins in each segment
(adapted from [78]).

Each point pi of the incoming 360
◦ scan is assigned to one bin in one of the polar

grid map's segments. The segment number m for an incoming point is de�ned by:

m(pi) =

⌈
M · atan2(yi, xi)

2 · π

⌉
(1)

The according bin n for a point is given by:

n(pi) =

⌈
N ·

√
x2i + y2i

Rmax

⌉
=

⌈
N · ri
Rmax

⌉
(2)

Additionally, a new subset of points PGm is de�ned for each segment m, con-
taining the 2D points p′i which have the minimum height zi within all points Pbmn in
bin n:

PGm =
{
p′i = (ri, zi)

T |zi = min(Hm
n), n = 1...N

}
(3)

where Hm
n is de�ned as:

Hm
n =

{
zi|pi ∈ Pbmn

}
(4)

38

2. Line �tting In the second step, the set PGm is utilized to calculate the
length-scale parameters li which are later used to construct a model of the ground
for each segment. Therefore, for every segment m lines are extracted based on
the points in PGm using the incremental line �tting algorithm presented in [79].
Lines with a gradient bigger than 10◦ are omitted. Subsequently, each input ri is
associated with the gradient g(ri) of the closest line. The closest line is de�ned by
that line with the minimum distance between the input point and the endpoints of
the line. Finally, based on g(ri) the length-scale parameter li can be computed for
each input using the following equation:

li =

a · lg
(

1
|g(ri)|

)
if |g(ri)| > gdef

a · lg
(

1
|gdef |

)
otherwise,

(5)

where a is a scaling parameter that can be trained, and gdef is a boundary to
prevent �at ground causing in�nite length-scales. Figure 6.10 shows the line �tting
result as well as the calculated length-scale parameters within one segment m.

Figure 6.10: Line �tting results for one segment with scale parameter a = 6.2978. Red
stars show the length-scales, blue circles represent the set PGm and green lines indicate
the incremental line �tting results.

3. Seed Estimation In the third step, initial seeds are estimated. All points
within a certain distance B = 10m that have an absolute height lower than the
threshold Ts = 0.30 cm are selected as initial seeds.

39

4. Gaussian Process Regression The goal of the Gaussian process regres-
sion is to obtain a ground model. Therefore, the following equation is used to
calculate the covariance matrix K between pairs of seeds (ri, rj):

K(ri, rj) = σ2
f ·
√

2 · li · lj
l2i + l2j

· exp

(
−2(ri − rj)2

l2i + l2j

)
+ σ2

n · δij, (6)

where σ2
f and σ2

n are hyper-parameters that have to be trained and δij is a
Kronecker delta.

5. New Seed Evaluation Based on the obtained model, all remaining points
in the set PGm that are no seeds yet are tested whether they �t into the previously
obtained model or not. If the evaluated point is likely to be part of the ground,
it becomes a new seed for the next model evaluation. Depending on the predicted
mean height z̄∗ and the covariance V [z∗] a new point r∗ can be classi�ed as seed.
The calculation of z̄∗ and V [z∗] is based on the predictive step of the Gaussian
process regression:

z̄∗ = K(r∗, R)K−1Z

V [z∗] = K(r∗, r∗)−K(r∗, R)K−1K(R, r)′,
(7)

where K ∈ Rs×s is the model matrix, K(r∗, R) ∈ R1×s is a vector for the tested
point and R = [r1, ..., rs]

T , Z = [z1, ..., zs]
T are the old seeds s.

A new point is classi�ed as seed if the following two evaluation criteria are
ful�lled:

V [z∗] ≤ tmodel

|z∗ − z̄∗|√
σ2
n + V [z∗]

≤ tdata,
(8)

where tmodel and tdata are threshold parameters. Figure 6.11 shows the seed
selection and evaluation process for a single segment.

6. Point-wise Segmentation In the last step all points of the scan are
classi�ed depending on the estimated model ground height in each bin. The mean
height for each bin can be estimated using Equation 7 and the mean radial distance
of the bin. A point in the bin is classi�ed as ground if its height is within a threshold
T around the estimated height.

Training of hyper-parameters The performance of the algorithm depends
mainly on the values of the hyper-parameters a, σn and σf . The authors of the
original paper present a way to train those parameters based on labeled data sets.
However, because this implementation sets up the polar grid map in the same fashion
as in the original approach and because the ATV is supposed to work in a similar
environment, the hyper-parameters suggested in the original paper show already
good results. Therefore, a training of the hyper-parameters is not necessary. The
output of the algorithm on a typical scan is shown in Figure 6.12.

40

(a) Initial seeds (b) 1st iteration

(c) 2nd iteration (d) 3rd iteration

Figure 6.11: Seed estimation based on Gaussian process regression. Per iteration the
new seeds are selected until a good approximation of the ground is obtained.

Figure 6.12: Gaussian-process-based ground segmentation result with σ2f = 0.0528 and

σ2n = 0.0012.

41

6.2.3 Clustering

So far, a Sector of Interest (SOI) has been selected based on an initial guess of the
user's position. Furthermore, the ground has been removed within the SOI. The
goal of this third processing step is to divide the remaining points into groups and
calculate their center of gravity as well as a 3D bounding box. The determined
groups are than �ltered according to di�erent requirements. The requirements are
based on the geometric characteristics of a human in the point cloud. In total, �ve
requirements can be formulated:

1. The group consists of at least Nmin points.
2. The group consists of at most Nmax points.
3. The distance between adjacent points in the group is less than dmax.
4. The group can be enclosed by a box with �xed dimensions h, w and d.
5. The group's center of gravity is smaller than a threshold Th height hc.

The �rst three requirements are evaluated using the EuclideanClusterExtraction
class implemented in the Point Cloud Library. The algorithm is based on [80]. It
assumes a point cloud represented in a Kd-tree as input and extracts clusters that
ful�ll the �rst three requirements. The parameters Nmin, Nmax and dmax depend
on the mounting height and the vertical resolution of the Velodyne sensor. The
parameters can be determined from sample scans as shown in Figure 6.13.

4.8
5

5.2
5.4

−0.2

0

0.2

0.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

xy

z

Figure 6.13: Scan of a human in 5m dis-
tance consisting of 300 points. The average
over all points is marked with a red dot.

Parameter Value

Nmin 50
Nmax 1000
dmax 0.40 cm
h 2.00m
w 1.20m
d 1.20m
hc 1.50m

Table 4: Point Cloud Library clustering pa-
rameters for a Velodyne HDL-32E mounted
on the ATV in 2.30m height.

Each cluster is then tested for the requirements four, and �ve. In order to check
the bounding box requirement, PCL is used to �nd the minimum and maximum
values of each cluster in x, y and z direction. If the di�erence in each direction
between the maximum and the minimum value is smaller than the according box
dimensions, the requirement is ful�lled. For the last requirement the center of gravity
of all points is calculated and its height compared to the reference height hc. Table
4 summarizes all clustering conditions for the Velodyne mounted on the ATV.

42

6.3 Camera Processing

The images from the Bumblebee XB3 are captured using the ROS driver node cam-
era1394. The driver can be used to interface any camera supporting the IEEE-1394
interface. Although the camera is originally intended to provide depth information
based on stereo images, only the center camera is used to capture images. This is
simply because the computation time, which is needed to compute stereo images,
is too high and therefore in con�ict with the real-time requirement formulated in
Section 5.1. Furthermore, the measurements from the Velodyne are collected at a
higher frequency and are more accurate.

6.3.1 Decoding and Recti�cation

The camera calibration is based on the factory calibration which can be read from the
camera itself. The factory calibration data provides the intrinsic camera parameters
as well as two matrices to remap each pixel location in order to obtain an undistorted
image. The camera matrix is given by:

KXB3 =

997.8547 0 644.2970
0 997.8547 489.7782
0 0 1

 (9)

Both, the decoding as well as the recti�cation are realized using the OpenCV

library. The decoding is implemented using the cvtColor function, converting raw
Bayer GBRG encoded images into 3-channel RGB images. After the image is de-
coded, it is recti�ed using the remap function with the factory calibration matrices.
The results of this processing step are shown in Figure 6.14.

Figure 6.14: Image decoding and recti�cation result.

43

6.4 Sensor Fusion

The sensor fusion step combines the processed Velodyne information with the in-
formation obtained from the image processing. However, in order to fuse the 3D
locations with the 2D images, a precise calibration between the Velodyne and the
Bumblebee is necessary. The external calibration is described in Subsection 6.4.1.
Additionally, the e�ciency of the camera tracker depends strongly on the quality
and illumination characteristics of the image. Therefore, an automatic shutter ad-
justment as described in Subsection 6.4.2 is needed. The �nal fusion algorithm is
described in Subsection 6.4.3.

6.4.1 External Calibration

The external calibration between the Velodyne and the Bumblebee XB3 was deter-
mined manually. Therefore, a graphical user interface was implemented to display
and project the LIDAR data into the recti�ed image (Figure 6.15). The projected
scan is color coded in order to illustrate the measured depth in the 2D image. By
adjusting the Euler angles as well as the translational o�set between the camera and
the LIDAR frame a simple and fast calibration based on an initial guess is possible.
The �nal projection matrix used to transform homogenous LIDAR coordinates into
homogenous image coordinates was found to be:

F =

646.2073 −996.6125 −3.5120 −70.8727
488.3785 3.5500 −998.5342 −203.5538
1.0000 0.0019 −0.0014 −0.1100

 (10)

Figure 6.15: The Graphical user interface to determine parameters for external calibra-
tion. The �nal projection matrix can be saved as .yaml-�le. Additionally the user interface
allows to publish a colored point cloud.

44

6.4.2 Shutter Adjustment

Working with cameras, ubiquitous illumination changes are a major downside in
outside environments. Usually, this problem is tackled by varying the camera's
shutter time in order to increase or decrease the illumination time dynamically.
However, if the camera is used to track any kind of object, a constant illumination
is crucial to keep track of the object. In the case of feature tracking algorithms,
the illumination time has to be selected in such a way that at least a minimum
number of features can be extracted and tracked. Therefore, a simple proportional
controller is implemented to adjust the shutter and therefore the illumination time
automatically.

The goal of this controller is to change the illumination time by adjusting the
shutter time in such a way that a minimum number of features can be extracted
from the object of interest. It is therefore assumed that the number of features that
can be extracted from the object of interest is proportional to the contrast that is
provided by the object itself. This assumption is illustrated in Figure 6.16.

Figure 6.16: Relation between number of extracted features and the contrast of the
object for a certain object of interest. The number of features is increasing proportionally
to the image contrast.

The controller adjusts the shutter time until a certain minimum threshold of
extracted features is reached. The input of the proportional controller is based
on the di�erence between the average pixel intensity within the selected region of
interest and a constant value. This value can be set to half the maximum intensity,
under the assumption that the targeted object provides a high-contrast texture
with a di�erent intensity than its surrounding background. Figure 6.17 illustrates
the applied control algorithm.

Get ROI in
image

Image + 3D
Bounding Box

Enough
Features?

Start Tracking

Yes

No Adjust Shutter
Wait for

Next Image

Figure 6.17: Automatic adjustment of the shutter time.

45

6.4.3 Hybrid Tracking

In order to get a reliable tracker, both information sources are combined to overcome
the drawbacks of each source. While the detection of objects based on the LIDAR

data is robust against variations in rotation and shape of the detected object, it
fails if multiple targets are very close to each other and thus can not be identi�ed as
di�erent objects. In contrast to that, the suggested camera tracking algorithms are
capable of di�erentiating between objects that are close to each other. However, due
to environmental illumination changes, a long time, reliable tracking performance is
almost impossible to achieve, especially if non-rigid objects are considered.

Therefore, the proposed algorithm takes situation-dependent di�erent informa-
tion sources into account. Depending on the number of possible objects detected
in the LIDAR scan, either a tracker based on the LIDAR data and a Kalman Filter
is used solely or in combination with an additional image tracker. A state machine
within the tracker decides which kind of information should be utilized. The state
machine and tracking results for di�erent states are shown in Figure 6.18 and 6.19,
respectively.

Init

LIDAR
tracking

Init Cam
tracking

#BB > 1

Cam
tracking

#BB = 1 &
 cnt > TH

#BB = 1

#BB > 1

#BB = 1

cnt < TH

Figure 6.18: Finite state machine for the hybrid tracker: #BB describes the number
of bounding boxes received from the LIDAR processing, cnt is a counter that counts how
many single bounding boxes were received in a row and TH is a positive threshold.

(a) LIDAR tracking (b) Init Cam tracking (c) Cam tracking

Figure 6.19: The di�erent results for each state of the hybrid tracker.

46

Initialization After the tracking behavior of the robot is activated using any of the
input devices described in Section 6.1, the hybrid tracking algorithm is initialized.
Initially, the shutter time is adjusted as described in Subsection 6.4.2. Subsequently,
the x and y coordinate of the center of gravity of the detected object that closest to
the center in front of the car, are used to initialize the Kalman Filter. Therefore, the
user has to stand in the center in front of the vehicle when the interface is activated.
The �lter is de�ned by the following transition equation:

Xk+1 =

xk+1

yk+1

ẋk+1

ẏk+1

 =

1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

 ·Xk + wk, (11)

where x and y are the 2D position, ẋ and ẏ are the derivatives of x and y, dt
is the time interval between two state transitions and w is the process noise. The
measurement equation is given by:

Zk+1 =

[
1 0 0 0
0 1 0 0

]
·Xk + vk, (12)

with v as the measurement noise. Depending on the number of detected bounding
boxes, the person is either tracked using the LIDAR data and the Kalman Filter only
or by relying on the camera data and image tracking result. If no valid user location
can be found, the Kalman Filter propagates itself based on its last prediction. If,
however, the user can not be re-detected within 2 s, the vehicle is forced to stop.

LIDAR Tracking This state is active as long as only one object is detected in the
LIDAR data. The x and y coordinate of the center of gravity of the detected object
is compared to and veri�ed by the prediction of the Kalman Filter. If the prediction
and the actual measurement coincide within a certain threshold, the received 2D
position is used as input for the steering control, which is described in Section 6.5.

Init Camera Tracking If, however, more than one possible object is detected,
the prediction of the Kalman Filter is used to determine the current target. Subse-
quently, a region of interest is selected in the image by projecting the 3D bounding
box of the target into the image frame. This region of interest is then used to
initialize one of the image trackers described in Subsection 4.1.3. The center of
the corresponding bounding box is forwarded to the vehicle controller and used to
update the Kalman Filter.

Camera Tracking As long as the camera tracking is active, all results from the
LIDAR tracking are compared to the image tracking result. Therefore, all determined
3D bounding boxes are projected into the image and the overlapping area between
each projected bounding box and the image tracking result are computed. The
projected bounding box with the biggest, realtive overlap is assumed to be the
correct target. Again, the determined location is then forwarded to the vehicle

47

controller and used to propagate the Kalman Filter. Additionally, if only one object
is detected in the LIDAR data, a counter is incremented. This counter is set back
to zero if two objects are detected again. Once the value of this counter exceeds a
certain threshold, the tracker changes back into the LIDAR tracking state.

6.5 Speed and Steering Control

The goal of the speed and steering control is to calculate a suitable vehicle speed
and a valid steering angle in order to follow the user. It is assumed that the user
walks along a trajectory that can be followed by the vehicle. Therefore, complex
maneuvers do not have to be performed and the turning radius of the vehicle does
not have to be considered. Figure 6.20 de�nes the used coordinate system and
illustrates the applied approach.

ICR

User

Velodyne

ATV

y

x

vlim

atan2(y,x)

δ

Figure 6.20: Vehicle control approach: The ATV is shown in light grey, and the applied
bicycle model in dark grey. δ is the desired steering angle and de�ned as the angle between
the virtual steering wheel and the positive x-axis. Together with the rear axis, δ de�nes
the Instantaneous Center of Rotation (ICR). vlim is the desired vehicle speed. The user
position is obtained in the LIDAR frame that is aligned with the frame of the vehicle.

In this approach, the car-like vehicle is approximated using the bicycle model,
consisting of two virtual wheels � the �xed and the steering wheel. The commands
applied to the vehicle are calculated based on the 2D position of the user relative
to the car. By changing his position, the user is able to control the vehicle. Using
two simple controllers, the necessary steering angle δ as well as the required vehicle
speed vlim can easily be calculated.

48

The control loop for the ATV is shown in Figure 6.21. The Figure shows an
open loop system since the user's location is measured relatively to the car. The
algorithm is adapted from [81].

throttle

heading K

PI limit
2D position

speed

steering

Figure 6.21: Speed and steering angle control for Ackermann steering.

The speed is controlled using a PI controller. As input e(t) for speed control,
the throttle is given as follows:

e(t) =
√
x(t)2 + y(t)2 −∆, (13)

where [x(t), y(t)]T is the 2D position at time t and ∆ the minimum distance the
car should keep. Thus, the speed v is calculated by:

v(t) = P · e(t) + I ·
∫
e(t)dt (14)

The output is limited between 0m/s and 2m/s in order to prevent driving back-
wards or faster than step speed, respectively. Additionally, the speed drops to 0m/s
if the vehicle gets closer than a certain threshold ∆min. This is necessary since the
brakes of the vehicle are mechanically not implemented yet. Consequently, the speed
vlim(t) that is actually applied to the vehicle is given by.

vlim(t) =

0 if v(t) < 0 ∨

√
x(t)2 + y(t)2 < ∆min

2 if v(t) > 2

v(t) otherwise

(15)

The steering angle δ(t) is calculated based on the user's direction relative to the
vehicle orientation:

δ(t) = G · atan2(y(t), x(t)) (16)

49

7 Evaluation

The evaluation of the system can be divided into �ve parts. First, the three di�erent
user interfaces are compared. Second, both ground segmentation algorithms are
evaluated by comparing the segmentation result in di�erent scenarios. Next, the
tracking behavior of the system is assessed. Therefore, �rst both image trackers
are compared to each other and, subsequently, the one more suitable for the hybrid
tracker is tested within di�erent scenarios. In the fourth step of the evaluation, the
control behavior of the system is analyzed. Finally, the overall system performance
is veri�ed during a real world scenario test.

7.1 User interfaces

A very important aspect when comparing the user interfaces is their ease of use.
However, this is closely linked to the user's personal experience with each device
and consequently di�cult to evaluate. Therefore, the di�erent user interfaces are
compared to each other based on their versatility, their operating range, and relia-
bility. Table 5 gives an overview of di�erent characteristics for each interface.

Android App Headset PS3 controller

Button input 3 3 3

� count 2+ 1− 4 16
� labeled 3 7 7

Voice input 3 3 7

Interface WiFi Bluetooth Bluetooth
� Range > 20 m < 10 m < 10 m
� Reliability high low low
Feedback 3 3 3

� Audio 3 3 7

� Video 3 7 7

� Vibration 3 7 3

Manual control 3 7 3

Table 5: Comparison between di�erent user interfaces: The green check symbol indicates
that this feature is possible and implemented, while the yellow one indicates that it is
possible but not implemented. The red cross marks impossible features for each device.

This overview indicates that the Android application is the most versatile inter-
face, since it can provide all di�erent kinds of input and feedback functionality. On
the contrary, the headset is more or less limited to audio commands and feedback,
while the PS3 controller o�ers simple input possibilities but only limited feedback.

The Android application is also the interface with the highest communication
range, which directly in�uences the interface reliability. The short operating range of
the Bluetooth devices is linked to reappearing communication losses if the distance
increases between the user and the robot or if the Bluetooth receiver and the device
are not in a direct line of sight.

50

7.2 Segmentation Algorithms

In order to compare the RANSAC based segmentation with the GPB approach, LIDAR
data was collected in di�erent environments that provide di�erent surface structures
in order to simulate the possible operational environment of an AATTV.

As a �rst performance indicator, the computation time for a complete LIDAR

processing step, as described in Subsection 6.2.1, was determined by averaging the
computation time needed for each recorded LIDAR scan. The average computation
time using PCL's RANSAC ground segmentation was found to be 2.958 ms with
a standard deviation of the 2.265 ms. Using the Gaussian-Process-Based (GPB)
segmentation, the average computation time was 9.833 ms with a standard deviation
of 3.310 ms.

Although the RANSAC based solution is computational less expensive, both al-
gorithms are able to perform all necessary operations at a rate of at least 10 Hz and
are therefore both suitable for this application.

Comparing the segmentation result of both algorithms in �at environments, no
real performance di�erence was recognized. However, this changes in uneven, highly
cluttered, and unstructured environments. The next subsections will determine
the performance di�erences between both segmentation algorithms applied to those
environments.

7.2.1 Uneven Environment

Experiment The �rst data set was recorded in front a small slope with an incli-
nation of less than 10◦. Figure 7.1 shows a bird's-eye view of the location and a
single frame of the recorded LIDAR scan.

(a) Bird's-eye view (b) Raw scan

Figure 7.1: Data set Slope: Bird's-eye view and LIDAR scan.

51

Result The segmentation results of both algorithms for a full 360◦ scan are shown
in Figure 7.2. The RANSAC based ground segmentation fails to remove the entire
slope in front of the car, but identi�es the paths to its left, right, and back as well
as the meadow correctly as drivable terrain. In a sequence of 200 scans, the slope
was only removed in 31 cases by the RANSAC segmentation. On the contrary, the
GPB segmentation always identi�ed and removed the slope correctly. In the case
shown in Figure 7.2 however, slight segmentation mistakes can be recognized with
increasing distance.

(a) RANSAC result (b) GPB result

Figure 7.2: Data set Slope result: While the RANSAC segmentation fails to recognize
the slope, it is correctly removed by the GPB segmentation.

Discussion The di�erent results can be easily explained. While the GPB segmen-
tation builds a model of the ground, the RANSAC segmentation tries to �t a plane
by randomly selecting points. If the random starting points are within the plane of
the slope, this �rst plane can be segmented. Since this plane contains less than half
of the original point count, another plane is �t into the scan and the segmentation
algorithm continues. Conversely, if the starting points are not on the slope and
more than half of all points in the point cloud �t into the �rst estimated plane, the
algorithm determines and fails to segment the slope.

7.2.2 Highly-cluttered Environment

Experiment The second data set was recorded in a highly cluttered environment.
In this set, the ATV is surrounded by bushes and trees. Three paths are leading away
from the vehicle center as shown in Figure 7.3.

52

(a) Bird's-eye view (b) Raw scan

Figure 7.3: Data set Forest: Bird's-eye view and LIDAR scan.

Result Again 200 scans were visually analyzed. In 79%, all three paths were
correctly segmented using RANSAC. Conversely, the GPB segmentation identi�ed
the three paths as drivable terrain in 96.5%. Figure 7.4 illustrates the result of
the both segmentation algorithms for one scan. The path going in the positive y-
direction is missed by the RANSAC segmentation, while the GPB segmentation shows
minor mistakes on the path in negative x-direction.

(a) RANSAC result (b) GPB result

Figure 7.4: Data set Forest result: The RANSAC segmentation fails to remove the path
going upwards. The GPB segmentation shows minor mistakes removing the path going
into the negative x-direction.

53

Discussion The reason for the weaker performance of the RANSAC algorithm is
again the random selection of the initial points. Although a single plane that includes
all paths within a certain threshold exists, the random selection of the starting points
for the plane estimation does not guarantee to �nd this particular plane.

7.3 Hybrid Tracking

The tracking performance of the overall system is evaluated at three di�erent levels.
First, the performance of TLD tracker is compared o�ine to the CMT tracking result
based on common image sequences. Next, the in�uences of di�erent lighting condi-
tions as well as the user's appearance are analyzed using online data. Finally, the
tracking performance is evaluated for di�erent crossing situations and in a group of
people.

7.3.1 Image Tracker Comparison

Experiment In order to compare both image tracking algorithms that are suitable
for the hybrid tracker, the ATV was controlled manually and data was collected
during a false crossing between two people. During a false crossing, the user walks
straight ahead in front of the car until another person crosses his path. Instead of
crossing, the user continues on the other person's path and vice versa as shown in
Figure 7.5.

During this maneuver, the bounding boxes of the LIDAR data merge into a single
box. Since a single Kalman Filter is used, it assumes that the person continues
to walk straight forward. Consequently, the LIDAR tracker fails in this situation if
no additional information is utilized from the image tracker. The maneuver also
includes a change of the user's heading direction and, therefore, a change in the
user's orientation towards the vehicle.

user

Figure 7.5: The False Crossing maneuver in order to intentionally confuse the tracker.

54

The CMT tracker was integrated in the overall system as described in Subsection
6.4.3. In contrast to the CMT tracker, the TLD tracker is able to learn and obtain a
better model of the tracked object during run time. Therefore, in order to improve
the tracking performance of the TLD tracker, it was started at the very beginning of
the tracking and active throughout the whole experiment.

Figure 7.6 on the next page compares the hybrid tracker output.

Result The left image column shows the result of the hybrid tracker using CMT,
while the one on the right illustrates the result of the tracker based on TLD. The top
row shows the hybrid tracking result a few seconds after the initialization. At this
point, both trackers rely on the LIDAR data only, since only one person is detected
within the Sector of Interest (SOI) by the LIDAR tracker. The yellow box in the left
image indicates that the TLD tracker is active and that its tracking con�dence is
already below 60%.

In the second row, two people are identi�ed in each image based on the LIDAR

data: In both cases, the correct user is identi�ed with the help of the image tracker.
The tracker con�dence of the TLD tracker in this case is above 60%.

In the next row, the two clusters of the people merge into a single one, which is
just small enough to ful�ll the cluster requirements described in Subsection 6.2.3.
The CMT tracker keeps successfully track of the user, while the TLD tracker moves
in the middle of both people. The TLD tracker con�dence drops again below 60%.

The clusters are separated again in the last row. The user is correctly tracked
using the CMT tracker, while the TLD tracker follows the wrong person.

Discussion In order to exclude that this was a one-time failure, the TLD tracker
was initialized with di�erent bounding boxes and within di�erent frames. Further-
more, it was tested on other image sequences with false crossings maneuvers. The
TLD tracker was also integrated into the hybrid tracker in the same way as the CMT

tracker. Nevertheless, the TLD tracker was always outperformed by the CMT based
solution.

When the tracker was used in the same way as the CMT tracker, it stopped
tracking completely once the user changed his direction. The same observation is
reported in [82] for the tracking of non-rigid objects.

A reason for the weak performance of the TLD tracker is linked to the limited
time and small frame number that is available to create a reliable model. In addition
to that, the model of the user is created mainly based on the user's appearance from
behind. However, when the user changes his direction, his orientation towards the
camera changes, too. Consequently, the obtained model is no longer valid and the
tracker fails.

In contrast to the TLD tracker, the CMT tracker is based on a model-free ap-
proach. The CMT tracker is, therefore, independent of the number of analyzed
frames and more robust against quick changes in the user's appearance based on
his orientation. Although the �aws of the TLD tracker might be compensated using
pre-learned models, the CMT tracker was integrated into the �nal system due to its
better performance in this experiment.

55

Figure 7.6: False Crossing: CMT on the left, TLD on the right. A red box indicates the
position result based on fusion of the image tracking and the LIDAR tracking. A cyan box
indicates another person detected by the Velodyne, while a green box indicates a miss-
classi�ed user. A blue box in the left pictures indicates the tracking estimation of the CMT

tracker. The same applies for the right side if the TLD tracking con�dence is above 60%,
while a yellow box is displayed otherwise.

56

7.3.2 Tracking In�uences

Experiment Next, the in�uence of di�erent environment illumination and the
user appearance are evaluated. The data used for this analysis was collected while
driving autonomously under real-world conditions. In order to produce di�erent
lighting conditions, the shutter time was adjusted manually. Similarly, the user
appearance was changed by providing clothes with di�erent levels of contrast.

Result Figure 7.7 illustrates two extreme setups from this experiment. The image
sequence represented in the left column shows a false crossing maneuver during good
lighting conditions with a user wearing very high-contrast clothes. On the other
hand, the images in the right column show the same maneuver using a very short
illumination time, while the user wears very dark and low-contrast clothes.

The �rst image row shows the tracking result after initializing the hybrid tracker
in each sequence. Under good circumstances, 20 features are selected and tracked
by the CMT tracker. However, only 7 features are marked in the right image.

This low number of features is the reason for the bad tracking result in second
image row on the right side. About 3 seconds after the initialization, the tracker is
already o� by more than 60%. In contrast to that, the tracker performs very well
on the left side, showing only a slide rightward shift.

The actual false crossing is shown in the third row. The image tracker resolves
the con�ict correctly in the left column. In the right column, however, the user
is completely lost out of scope by the CMT tracker. As a consequence, the image
tracking result coincides now with the wrong person's bounding box.

In the last row, the result of the image tracker on the right side does not over-
lap with either of the two bounding boxes that were determined by processing the
LIDAR data. In this situation the car can either continue to drive and rely on the
information from the Kalman Filter or stop. Depending on the safety requirements,
either choice can be preferred.

Discussion The present results are signi�cant in two major respects. First of all,
the proposed system is able to follow a person completely autonomously. Moreover,
the system can resolve the con�ict resulting from a false crossing. Nevertheless, the
number of initially detected and tracked features is a criterion that solely decides
whether the tracking can succeed or not. Therefore, a su�ciently illuminated envi-
ronment as well as a user's appearance that provides a high contrast are essential.
The easiest way to arti�cially create a high contrast in the user's appearance is to
use clothes with a high contrast. The experiments indicate that reliable results are
achieved if at least 15 features can be detected.

57

Figure 7.7: False Crossing in di�erent situations. The scenes in the left column are well
illuminated and the user wears clothes with a high contrast. Conversely, the scenes in the
right column are badly illuminated and the user wears low-contrast clothes. The user is
marked with a red box, while other people that are detected by the LIDAR are indicated
with a cyan box. The blue box shows the CMT image tracking result. The green circles
show the tracked features.

58

7.3.3 Tracking with Crossing People

Experiment In this step, the tracking performance is evaluated in true crossing
situations. Two kinds of crossings were performed. First, another person crosses the
user's path in front of the user. Second, the crossing occurs between the user and
the vehicle in such a way that the user is almost fully occluded for a short time.

Result Figure 7.9 shows the result of this experiment. The left column shows the
crossing in front of the user. The right column shows the crossing between the user
and the car.

In the �rst row, both image trackers are initialized with a su�ciently high number
of features and the number of tracked feature remains constantly high, even if the
other person comes closer to the user, which is shown in the second row.

The system works as it is supposed to until the actual crossings starts in the
third row. In the left column, some of the tracked features are wiped away during
the crossing. However, the majority stays on the user, allowing to keep track of
him. Conversely, the second person wipes all features from the user while he is
partly occluded in the right image.

While the correct user is still tracked in the last image on the left side, the user
is confused with another person on the right side. The CMT tracker fails in this
situation.

Discussion Again, both situations were analyzed in several sequences in order
to exclude a one-time failure. The CMT tracker is capable to resolve ambiguities
resulting from multiple people in the scene, as long as the user is fully visible.
Conversely, the CMT tracker managed only occasionally to resolve crossing situations
with user occlusion. This observation contradicts the statement of the authors in
the original publication [60]. However, the person crossing sequence from [83] used
in the original publication indicates the same problem (see Figure 7.8).

Figure 7.8: CMT tracking result on the person crossing sequence.

The CMT tracker fails in this situation since the features that describe the user,
are wiped away by the crossing person. This feature displacement results in incorrect
votes for the object's center. However, the features stick to the crossing person, since
a similar consensus can be found. The initial feature displacement results from the
Lucas-Kanade optical �ow tracker that is used in the CMT algorithm to estimate
the object motion.

59

Figure 7.9: Two di�erent crossing situations: On the left side, the user's path is crossed by
another person in front of the user, while on the right side, the crossing happens between
the user and the car. The user is marked with a red box, while other people that are
detected by the LIDAR are indicated with a cyan box. The blue box shows the CMT image
tracking result. The green circles show the tracked features.

60

7.3.4 Tracking in a Group of People

Experiment Finally, the tracking performance in a group of people is evaluated.
The person who is the closest in front of the car is selected as user. First, the user
moves randomly within the group while he is fully visible. Next, he moves away from
the vehicle and three people cross between him and the vehicle after each other.

Result The user can be tracked in a group of people as long as he is fully visible like
in Figure 7.10 a). However, if the user is too close to another person, the resulting
point cloud can not be clustered correctly and the tracker fails as in Figure 7.10 b).
The tracker can recover from this situation if the user increases the distance to his
neighbors again. In contrast to that, the tracker can fail completely if the user is
occluded. Depending upon how much the user is occluded, a di�erent amount of
features is wiped away by the crossing person. The more features remain on the user,
the higher are the chances to keep track of him. While the crossing is successfully
resolved in Figure 7.10 c), it fails for the third crossing in Figure 7.10 d).

Discussion The observations from this experiment con�rm the previous results.

(a) Frame 32 (b) Frame 63

(c) Frame 111 (d) Frame 224

Figure 7.10: Tracking in a group of people: The user is marked with a red box, while
other people that are detected by the LIDAR are indicated with a cyan box. The yellow box
indicates a falsely classi�ed person. The blue box shows the CMT image tracking result.
The green circles show the tracked features. The person on the right in image b) and c) is
not within the Sector of Interest of the LIDAR processing.

61

7.4 Control Behavior

Experiment In order to evaluate the control behavior of the system, the user
walks along a �xed path, while the car follows according to the controller output.
The desired distance between the user and the vehicle was set to 7.5m. The user's
position relative to the vehicle, the GPS position of the vehicle, as well as its speed
and steering wheel position are recorded and analyzed o�ine.

In order to record all necessary information, a separate ROS driver had to be
implemented for collecting the GPS and IMU data from the Velodyne.

Result Figure 7.11 shows the raw GPS trajectory of the ATV as well as the esti-
mated path of the user. The path estimation is based on the relative user position
and corrected GPS heading data.

Figure 7.11: GPS based ATV trajectory and estimated user position.

This experiment shows that the ATV follows very close to the user's path as
long as the user moves straight ahead. However, as expected, the vehicle does not
always follow exactly the user's path. Once the user starts to walk a curve, the car
starts to steer in the according direction. Therefore, the curve described by the car's
trajectory appears to be long and �at compared to the user's immediate change in
direction. The average distance between the car and the user was measured to be
7.35m with a standard deviation of 0.15m.

Figure 7.12 shows the relative distance between the vehicle and the user, as well
as the measured speed of the vehicle. The speed measurements are based on the
ATV's odometry as well as the GPS data.

Figure 7.13 plots the user direction relative to the ATV. Additionally, the current
steering wheel position is shown.

62

Figure 7.12: Input and measured result of the speed control.

Discussion Comparing the user distance and the correspondingly measured speed,
two di�erent speed levels can be identi�ed, although the distance �uctuates more or
less around the average distance of 7.35m. In the curve (10 s � 35 s), the car moves
noticeably slower than when driving straight ahead. The reason for this is that the
applied control speed is only proportional to the user's distance. The actual speed,
however, depends also on the orientation of the steering wheels, since the friction of
the front wheels is higher if they are not aligned with the driving rear wheels.

Figure 7.13: Input and measured result of the steering control.

The proportional controller for the steering angle works as expected. The angle
in- and decreases depending on the user's direction relative to the vehicle.

63

7.5 System Performance

Experiment The overall system performance is evaluated based on a long test
run. In this test run, a total distance of 450m was covered in 400 s. Figure 7.14
shows the traveled trajectory. The trajectory was obtained by combining the GPS

data, the odometry and IMU data in an Extended Kalman Filter. The selected track
provides curves with di�erent radii, narrow corridors between bushes and parked cars
as well as randomly walking by pedestrians. The complete trajectory is shown in
Figure 7.15. In this experiment, the controller was set to follow the person in a
distance of 6.5m.

Figure 7.14: Trajectory of the AATTV during a 400 s test run.

Result The average distance between the user and the ATV was found to be 6.45m,
having a standard error of 0.66m. The average speed was measured to be 1.11m/s
with a standard deviation of 0.33m/s. During the complete run, the user was not
lost a single time. Consequently, the hybrid tracker did not have to be restarted
once.

Figure 7.15: The test environment: Tight turning during the test run with multiple
pedestrians and parked cars. A person sits in the car for safety and insurance reasons.

64

8 Conclusions

A human-robot interface that allows a human user to interact with an Autonomous
All-Terrain Transport Vehicle (AATTV) was designed from scratch, implemented
and extensively evaluated. The developed system combines 3D range data from a
Velodyne HDL-32E with intensity images from a Bumblebee XB3 camera. Thereby,
the sensors are combined in such a way that situation-dependent either only the laser
scan is used or both information sources are fused in order to resolve ambiguities.
This adaptive combination allows a reliable, long-term and real-time tracking of a
human user within a real world environment, particularly in the presence of frequent
illumination changes and multiple humans.

Subsequently, the major steps during the development of the system are sum-
marized, known system limitations discussed and solutions within a possible future
work outlined.

8.1 System Development

The system was developed in three phases: The design, the implementation and the
evaluation phase.

In the design phase, existing solutions were compared and evaluated. While full
solutions are completely restricted to military applications, potential applications
exist in civil and space scenarios, too. Important requirements for an easy-to-use
human-robot interface were identi�ed. Above all, the system must operate in real
time under real conditions. Furthermore, it must be able to identify, track, and
follow a human user.

In order to implement a system that ful�lls the given requirements, various sub-
tasks had to be solved. Those tasks included, among others, the implementation of
di�erent user interfaces, the readout of sensor data, the processing of the obtained
information, the external sensor calibration, the sensor fusion, and the actual vehicle
control. The software development was based on the Robot Operating System (ROS),
a meta-operating system.

The evaluation assessed di�erent, critical sub-systems as well as the total system
performance. It shows that a smart phone user interface impresses by its strong
reliability, high range capacity and its overall versatility. More over, the evaluation
proves that the implemented LIDAR segmentation algorithm can be used in uneven
and highly-cluttered environments. It also shows that the proposed hybrid tracker
is able to resolve ambiguities that result from the presence of multiple people in the
observed scene as long as the user is fully visible. However, a well illuminated envi-
ronment as well as a user appearance that provides a su�cient number of features
are required in order to guarantee a reliable and robust tracking. In addition to
that, the implemented control algorithm to drive the vehicle is suitable to perform
tight turnings and follow a human user precisely on straight tracks. Finally, the
evaluation shows that the developed system is able to identify, track and follow a
human user under real world conditions over a total distance of at least 450m.

65

8.2 System Limitations

Although the system performed overwhelmingly well during the system evaluation,
di�erent limitations could be identi�ed.

First of all, the performance of the hybrid tracker is limited to the performance
of the image tracker that is used to resolve ambiguities. Meaning that if the utilized
image tracker is unable to handle the complete occlusion of the user, the hybrid
tracker will fail as a direct consequence. Contrary to the assertion of the authors [60],
the CMT tracker failed to resolve full user occlusion correctly in the majority of the
conducted experiments. The system is therefore not able to handle people crossing
between the user and the vehicle reliably.

Another problem that could be observed is the limited horizontal Field of View
(FOV). Although a 360◦ LIDAR is used, the overall FOV is limited to the FOV of
the statically mounted camera. Nevertheless, as long as no ambiguities result from
the LIDAR tracking, the system is able to follow the user even if he is not visible in
the camera image. In this situation, the system fails immediately if more than one
person is detected.

The most immediate problem, however, is the vehicle's low level of autonomy.
Currently, there is neither an active path planning nor any kind of obstacle avoid-
ance. It is therefore within the user's responsibility to select suitable paths for the
vehicle in order to avoid potential collisions.

8.3 Future Work

Possible future work should aim to solve the mentioned problems and limitations.
Thus, a di�erent approach could be used to resolve LIDAR ambiguities. For exam-

ple, a multi-hypothesis Kalman Filter could be implemented to estimate the possible
paths of each user that is detected from the LIDAR data. Other solutions could try
to improve the occlusion handling of the utilized image tracker by evaluating other
features such as a user based color histogram.

The limited horizontal FOV could be improved by using a 360◦ camera like the
Ladybug 5 camera from Point Grey. Another solution could be a pivotable camera,
that can be turned in the user's direction in similar way as the Sector of Interest (SOI)
is selected from the LIDAR data.

The vehicle's level of autonomy could be raised by implementing standard ap-
proaches for obstacle avoidance and path planning. In this regard, ROS o�ers a
diverse selection of ready made algorithms and solutions such as the potential �eld
method or sliding window approaches, respectively. In ROS, however, those al-
gorithms are mainly designed for di�erential drive and holonomic robots. They
therefore have to be adapted in order to suit a car-like robot.

66

References

[1] NASA � National Aeronautics and Space Administration. Lunar Exploration
Timeline. Website, 2013. Accessed on 3.3.2014. URL: http://nssdc.gsfc.
nasa.gov/planetary/lunar/lunartimeline.html.

[2] NASA � National Aeronautics and Space Administration. Apollo 17 press
kit. Website, 1972. Archived from the original on 21.7.2011, accessed
on 3.3.2014. URL: https://mira.hq.nasa.gov/history/ws/hdmshrc/all/
main/DDD/17980.PDF.

[3] NASA � National Aeronautics and Space Administration. Lunar roving vehicle.
Website, 2014. Accessed on 10.3.2014. URL: http://www.nasa.gov/images/
content/199818main_rs_image_feature_774_946x710.jpg.

[4] CNN � Cable News Network. Robots fail to complete Grand Challenge. Web-
site, 2004. Accessed on 10.2.2014. URL: http://edition.cnn.com/2004/
TECH/ptech/03/14/darpa.race/index.html.

[5] DARPA � Defense Advanced Research Projects Agency. Urban Challenge.
Website, 2007. Accessed on 10.2.2014. URL: http://archive.darpa.mil/
grandchallenge/.

[6] E. Guizzo. How Google self-driving car works. Website, 2011. Accessed
on 10.2.2014. URL: http://spectrum.ieee.org/automaton/robotics/
artificial-intelligence/how-google-self-driving-car-works.

[7] S. Thrun. What we're driving at. Website, 2010. Accessed on 12.2.2014. URL:
http://googleblog.blogspot.fi/2010/10/what-were-driving-at.html.

[8] C. Urmson. Just press go: designing a self-driving vehicle. Website, 2014.
Accessed on 17.7.2014. URL: http://googleblog.blogspot.fi/2014/05/
just-press-go-designing-self-driving.html.

[9] S.J. Moorehead, C.K. Wellington, H. Paulino, and J.F. Reid. R-Gator: An
Unmanned Utility Vehicle. In Proceedings of the SPIE, page 769, 2010. doi:
10.1117/12.852483.

[10] Lockheed Martin. Squad Mission Support System speci�cations, 2013. Ac-
cessed on 10.2.2014. URL: http://www.lockheedmartin.com/content/dam/
lockheed/data/mfc/pc/smss/mfc-smss-pc.pdf.

[11] Lockheed Martin. Squad Mission Support System product page, 2013. Accessed
on 10.2.2014. URL: http://www.lockheedmartin.com/us/products/smss.
html.

[12] Lockheed Martin. Squad Mission Support System product page, 2013. Ac-
cessed on 10.2.2014. URL: http://www.lockheedmartin.com/content/dam/
lockheed/data/mfc/photo/smss/mfc-smss-photo-01-main-h.jpg.

http://nssdc.gsfc.nasa.gov/planetary/lunar/lunartimeline.html
http://nssdc.gsfc.nasa.gov/planetary/lunar/lunartimeline.html
https://mira.hq.nasa.gov/history/ws/hdmshrc/all/main/DDD/17980.PDF
https://mira.hq.nasa.gov/history/ws/hdmshrc/all/main/DDD/17980.PDF
http://www.nasa.gov/images/content/199818main_rs_image_feature_774_946x710.jpg
http://www.nasa.gov/images/content/199818main_rs_image_feature_774_946x710.jpg
http://edition.cnn.com/2004/TECH/ptech/03/14/darpa.race/index.html
http://edition.cnn.com/2004/TECH/ptech/03/14/darpa.race/index.html
http://archive.darpa.mil/grandchallenge/
http://archive.darpa.mil/grandchallenge/
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works
http://googleblog.blogspot.fi/2010/10/what-were-driving-at.html
http://googleblog.blogspot.fi/2014/05/just-press-go-designing-self-driving.html
http://googleblog.blogspot.fi/2014/05/just-press-go-designing-self-driving.html
http://dx.doi.org/10.1117/12.852483
http://dx.doi.org/10.1117/12.852483
http://www.lockheedmartin.com/content/dam/lockheed/data/mfc/pc/smss/mfc-smss-pc.pdf
http://www.lockheedmartin.com/content/dam/lockheed/data/mfc/pc/smss/mfc-smss-pc.pdf
http://www.lockheedmartin.com/us/products/smss.html
http://www.lockheedmartin.com/us/products/smss.html
http://www.lockheedmartin.com/content/dam/lockheed/data/mfc/photo/smss/mfc-smss-photo-01-main-h.jpg
http://www.lockheedmartin.com/content/dam/lockheed/data/mfc/photo/smss/mfc-smss-photo-01-main-h.jpg

67

[13] DARPA � Defense Advanced Research Projects Agency. Legged Squad Support
System. Website, 2013. Accessed on 10.2.2014. URL: http://www.darpa.mil/
Our_Work/TTO/Programs/Legged_Squad_Support_System_%28LS3%29.aspx.

[14] Boston Dynamics. LS3 - Legged Squad Support Systems. Website, 2014.
Accessed on 10.2.2014. URL: http://www.bostondynamics.com/robot_ls3.
html.

[15] BBC � British Broadcasting Corporation. US marines test robotic mule at
RIMPAC, Hawaii, 2014. Accessed on 20.7.2014. URL: http://www.bbc.com/
news/technology-28290945.

[16] E. Ackerman. Video Friday: RHex Pronking, LS3 Goes to Hawaii,
and RoboBoat 2014. Website, 2014. Accessed on 20.7.2014. URL:
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/
video-friday-rhex-pronking-ls3-goes-to-hawaii-and-roboboat-2014.

[17] M. Seelinger and J.-D. Yoder. Automatic Visual Guidance of a Forklift
Engaging a Pallet. Robot. Auton. Syst., 54(12):1026�1038, December 2006.
doi:10.1016/j.robot.2005.10.009.

[18] T.A. Tamba, B. Hong, and K.-S. Hong. A path following control of an un-
manned autonomous forklift. International Journal of Control, Automation
and Systems, 7(1):113�122, 2009. doi:10.1007/s12555-009-0114-y.

[19] S. Teller, M.R. Walter, M. Antone, A. Correa, R. Davis, L. Fletcher, E. Fraz-
zoli, J. Glass, J.P. How, A.S. Huang, J.H. Jeon, S. Karaman, B. Luders, N. Roy,
and T. Sainath. A voice-commandable robotic forklift working alongside hu-
mans in minimally-prepared outdoor environments. In Robotics and Automa-
tion (ICRA), 2010 IEEE International Conference on, pages 526�533, May
2010. doi:10.1109/ROBOT.2010.5509238.

[20] ROS � Robot Operating System. A new robot joins the ros community. Web-
site, 2014. Accessed on 10.2.2014. URL: http://www.ros.org/news/2013/04/
a-new-robot-joins-the-ros-community.html.

[21] Adept MobileRobots. Seekur Jr. Website, 2012. Accessed on 3.3.2014. URL:
http://www.mobilerobots.com/ResearchRobots/SeekurJr.aspx.

[22] Clearpath Robotics. Grizzly. Website, 2014. Accessed on 10.2.2014. URL:
http://www.clearpathrobotics.com/grizzly/features/.

[23] E. Ackerman. Clearpath Robotics Announces Grizzly Robotic
Utility Vehicle. Website, 2013. Accessed on 3.3.2014. URL:
http://spectrum.ieee.org/automaton/robotics/industrial-robots/
clearpath-robotics-announces-grizzly-robotic-utility-vehicle.

[24] MobileRobots. Seekur Jr. Website, 2013. Accessed 3 3.2.2014. URL: http:
//www.mobilerobots.com/ResearchRobots/SeekurJr.aspx.

http://www.darpa.mil/Our_Work/TTO/Programs/Legged_Squad_Support_System_%28LS3%29.aspx
http://www.darpa.mil/Our_Work/TTO/Programs/Legged_Squad_Support_System_%28LS3%29.aspx
http://www.bostondynamics.com/robot_ls3.html
http://www.bostondynamics.com/robot_ls3.html
http://www.bbc.com/news/technology-28290945
http://www.bbc.com/news/technology-28290945
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/video-friday-rhex-pronking-ls3-goes-to-hawaii-and-roboboat-2014
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/video-friday-rhex-pronking-ls3-goes-to-hawaii-and-roboboat-2014
http://dx.doi.org/10.1016/j.robot.2005.10.009
http://dx.doi.org/10.1007/s12555-009-0114-y
http://dx.doi.org/10.1109/ROBOT.2010.5509238
http://www.ros.org/news/2013/04/a-new-robot-joins-the-ros-community.html
http://www.ros.org/news/2013/04/a-new-robot-joins-the-ros-community.html
http://www.mobilerobots.com/ResearchRobots/SeekurJr.aspx
http://www.clearpathrobotics.com/grizzly/features/
http://spectrum.ieee.org/automaton/robotics/industrial-robots/clearpath-robotics-announces-grizzly-robotic-utility-vehicle
http://spectrum.ieee.org/automaton/robotics/industrial-robots/clearpath-robotics-announces-grizzly-robotic-utility-vehicle
http://www.mobilerobots.com/ResearchRobots/SeekurJr.aspx
http://www.mobilerobots.com/ResearchRobots/SeekurJr.aspx

68

[25] NASA � National Aeronautics and Space Administration. Chronology of Mars
Exploration. Website, 2013. Accessed on 3.3.2014. URL: http://nssdc.gsfc.
nasa.gov/planetary/chronology_mars.html.

[26] NASA � National Aeronautics and Space Administration. NASA's
Space Exploration Vehicle (SEV). Website, 2012. Accessed on
28.2.2014. URL: http://www.nasa.gov/exploration/technology/space_

exploration_vehicle/index.html.

[27] A.F.J. Abercromby, M.L. Gernhardt, and H. Litaker. Desert research and
technology studies (drats) 2009: a 14-day evaluation of the space explo-
ration vehicle prototype in a lunar analog environment. NASA Technical Re-
port, 2012. URL: http://ston.jsc.nasa.gov/collections/TRS/_techrep/
TP-2012-217360.pdf.

[28] NASA � National Aeronautics and Space Administration. Building
the Future Spacesuit. Website, 2012. Accessed on 3.3.2014. URL:
http://www.nasa.gov/offices/oce/appel/ask/issues/45/45s_building_

future_spacesuit.html.

[29] R.R. Murphy, T. Nomura, A. Billard, and J.L. Burke. Human-Robot In-
teraction. Robotics Automation Magazine, IEEE, 17(2):85�89, June 2010.
doi:10.1109/MRA.2010.936953.

[30] M. A. Goodrich and A. C. Schultz. Human-robot Interaction: A Survey. Found.
Trends Hum.-Comput. Interact., 1(3):203�275, January 2007. doi:10.1561/
1100000005.

[31] R.R. Murphy. Human-robot interaction in rescue robotics. Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,
34(2):138�153, May 2004. doi:10.1109/TSMCC.2004.826267.

[32] J.L. Drury, J. Scholtz, and H.A. Yanco. Awareness in human-robot interac-
tions. IEEE International Conference on Systems, Man and Cybernetics, 2003.,
1:912�918 vol.1, Oct 2003. doi:10.1109/ICSMC.2003.1243931.

[33] A. Halme, I. Leppänen, J. Suomela, Sami Ylönen, and I. Kettunen. Work-
Partner: interactive human-like service robot for outdoor applications. The in-
ternational journal of robotics Research, 22(7-8):627�640, 2003. doi:10.1177/
02783649030227011.

[34] X. Ma, C. Hu, X. Dai, and K. Qian. Sensor integration for person tracking and
following with mobile robot. In Intelligent Robots and Systems, 2008. IROS
2008. IEEE/RSJ International Conference on, pages 3254�3259, Sept 2008.
doi:10.1109/IROS.2008.4650644.

[35] Wu, B.-F. and Jen, C.-L. and Li, W.-F. and Tsou, T.-Y. and Tseng, P.-Y. and
Hsiao, K.-T. RGB-D sensor based SLAM and human tracking with Bayesian

http://nssdc.gsfc.nasa.gov/planetary/chronology_mars.html
http://nssdc.gsfc.nasa.gov/planetary/chronology_mars.html
http://www.nasa.gov/exploration/technology/space_exploration_vehicle/index.html
http://www.nasa.gov/exploration/technology/space_exploration_vehicle/index.html
http://ston.jsc.nasa.gov/collections/TRS/_techrep/TP-2012-217360.pdf
http://ston.jsc.nasa.gov/collections/TRS/_techrep/TP-2012-217360.pdf
http://www.nasa.gov/offices/oce/appel/ask/issues/45/45s_building_future_spacesuit.html
http://www.nasa.gov/offices/oce/appel/ask/issues/45/45s_building_future_spacesuit.html
http://dx.doi.org/10.1109/MRA.2010.936953
http://dx.doi.org/10.1561/1100000005
http://dx.doi.org/10.1561/1100000005
http://dx.doi.org/10.1109/TSMCC.2004.826267
http://dx.doi.org/10.1109/ICSMC.2003.1243931
http://dx.doi.org/10.1177/02783649030227011
http://dx.doi.org/10.1177/02783649030227011
http://dx.doi.org/10.1109/IROS.2008.4650644

69

framework for wheelchair robots. In Advanced Robotics and Intelligent Systems
(ARIS), 2013 International Conference on, pages 110�115, May 2013. doi:
10.1109/ARIS.2013.6573544.

[36] Y. Nagumo and A. Ohya. Human following behavior of an autonomous mobile
robot using light-emitting device. In Robot and Human Interactive Communica-
tion, 2001. Proceedings. 10th IEEE International Workshop on, pages 225�230,
2001. doi:10.1109/ROMAN.2001.981906.

[37] R. Gockley, A. Bruce, J. Forlizzi, M. Michalowski, A. Mundell, S. Rosenthal,
B. Sellner, R. Simmons, K. Snipes, A.C. Schultz, and Jue Wang. Designing
robots for long-term social interaction. In Intelligent Robots and Systems, 2005.
(IROS 2005). 2005 IEEE/RSJ International Conference on, pages 1338�1343,
Aug 2005. doi:10.1109/IROS.2005.1545303.

[38] K. Nohara, T. Tajika, M. Shiomi, T. Kanda, H. Ishiguro, and N. Hagita.
Integrating passive RFID tag and person tracking for social interaction in
daily life. In Robot and Human Interactive Communication, 2008. RO-MAN
2008. The 17th IEEE International Symposium on, pages 545�552, Aug 2008.
doi:10.1109/ROMAN.2008.4600723.

[39] R. C. Luo, C. H. Huang, and T. T. Lin. Human tracking and following us-
ing sound source localization for multisensor based mobile assistive companion
robot. In IECON 2010 - 36th Annual Conference on IEEE Industrial Elec-
tronics Society, pages 1552�1557, November 2010. doi:10.1109/IECON.2010.
5675451.

[40] M.M. Loper, N.P. Koenig, S.H. Chernova, C.V. Jones, and O.C. Jenkins. Mo-
bile human-robot teaming with environmental tolerance. In Proceedings of the
4th ACM/IEEE international conference on Human robot interaction, pages
157�164. ACM, 2009. URL: http://cs.brown.edu/~cjenkins/papers/matt_

hri2009.pdf.

[41] N. Bellotto and H. Hu. Multisensor-based Human Detection and Tracking
for Mobile Service Robots. Trans. Sys. Man Cyber. Part B, 39(1):167�181,
February 2009. doi:10.1109/TSMCB.2008.2004050.

[42] R. Gockley, J. Forlizzi, and R. Simmons. Natural Person-following Behavior
for Social Robots. In Proceedings of the ACM/IEEE International Conference
on Human-robot Interaction, HRI '07, pages 17�24, New York, NY, USA, 2007.
ACM. doi:10.1145/1228716.1228720.

[43] D. Geronimo, A.M. Lopez, A.D. Sappa, and T. Graf. Survey of Pedes-
trian Detection for Advanced Driver Assistance Systems. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 32(7):1239�1258, July 2010.
doi:10.1109/TPAMI.2009.122.

http://dx.doi.org/10.1109/ARIS.2013.6573544
http://dx.doi.org/10.1109/ARIS.2013.6573544
http://dx.doi.org/10.1109/ROMAN.2001.981906
http://dx.doi.org/10.1109/IROS.2005.1545303
http://dx.doi.org/10.1109/ROMAN.2008.4600723
http://dx.doi.org/10.1109/IECON.2010.5675451
http://dx.doi.org/10.1109/IECON.2010.5675451
http://cs.brown.edu/~cjenkins/papers/matt_hri2009.pdf
http://cs.brown.edu/~cjenkins/papers/matt_hri2009.pdf
http://dx.doi.org/10.1109/TSMCB.2008.2004050
http://dx.doi.org/10.1145/1228716.1228720
http://dx.doi.org/10.1109/TPAMI.2009.122

70

[44] T. Gandhi and M.M. Trivedi. Pedestrian Protection Systems: Issues, Survey,
and Challenges. Intelligent Transportation Systems, IEEE Transactions on,
8(3):413�430, Sept 2007. doi:10.1109/TITS.2007.903444.

[45] A. Yilmaz, O. Javed, and M. Shah. Object Tracking: A Survey. ACM Comput.
Surv., 38(4), December 2006. doi:10.1145/1177352.1177355.

[46] M. Enzweiler and D.M. Gavrila. Monocular Pedestrian Detection: Survey and
Experiments. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 31(12):2179�2195, Dec 2009. doi:10.1109/TPAMI.2008.260.

[47] B. Schiele, M. Andriluka, N. Majer, S. Roth, and C. Wojek. Visual
People Detection: Di�erent Models, Comparison and Discussion. In Pro-
ceedings of the IEEE ICRA Workshop on People Detection and Tracking,
May 2009. URL: http://www.d2.mpi-inf.mpg.de/sites/default/files/
schiele09icraws.pdf.

[48] J. Canny. A Computational Approach to Edge Detection. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, PAMI-8(6):679�698, Nov 1986.
doi:10.1109/TPAMI.1986.4767851.

[49] B.K.P. Horn and B.G. Schunck. Determining Optical Flow. Technical report,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1980. URL:
http://people.csail.mit.edu/bkph/papers/Optical_Flow_OPT.pdf.

[50] B.D. Lucas and T. Kanade. An Iterative Image Registration Technique with
an Application to Stereo Vision. In Proceedings of the 7th International Joint
Conference on Arti�cial Intelligence - Volume 2, IJCAI'81, pages 674�679, San
Francisco, CA, USA, 1981. Morgan Kaufmann Publishers Inc. URL: http:
//www.ces.clemson.edu/~stb/klt/lucas_bruce_d_1981_1.pdf.

[51] B.S. Manjunath, J.-R. Ohm, V.V. Vasudevan, and A. Yamada. Color and
texture descriptors. Circuits and Systems for Video Technology, IEEE Trans-
actions on, 11(6):703�715, Jun 2001. doi:10.1109/76.927424.

[52] C. Papageorgiou and T. Poggio. A Trainable System for Object Detection. Int.
J. Comput. Vision, 38(1):15�33, June 2000. doi:10.1023/A:1008162616689.

[53] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, volume 1, pages 886�893 vol. 1, June 2005. doi:10.
1109/CVPR.2005.177.

[54] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273�297, 1995. doi:10.1007/BF00994018.

[55] R.E. Schapire. The Strength of Weak Learnability. In Proceedings of the 30th
Annual Symposium on Foundations of Computer Science, SFCS '89, pages 28�
33, Washington, DC, USA, 1989. IEEE Computer Society. doi:10.1109/SFCS.
1989.63451.

http://dx.doi.org/10.1109/TITS.2007.903444
http://dx.doi.org/10.1145/1177352.1177355
http://dx.doi.org/10.1109/TPAMI.2008.260
http://www.d2.mpi-inf.mpg.de/sites/default/files/schiele09icraws.pdf
http://www.d2.mpi-inf.mpg.de/sites/default/files/schiele09icraws.pdf
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://people.csail.mit.edu/bkph/papers/Optical_Flow_OPT.pdf
http://www.ces.clemson.edu/~stb/klt/lucas_bruce_d_1981_1.pdf
http://www.ces.clemson.edu/~stb/klt/lucas_bruce_d_1981_1.pdf
http://dx.doi.org/10.1109/76.927424
http://dx.doi.org/10.1023/A:1008162616689
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1109/SFCS.1989.63451
http://dx.doi.org/10.1109/SFCS.1989.63451

71

[56] Y. Freund and R.E. Schapire. A Decision-theoretic Generalization of On-line
Learning and an Application to Boosting. J. Comput. Syst. Sci., 55(1):119�139,
August 1997. doi:10.1006/jcss.1997.1504.

[57] Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-Backward Error: Automatic
Detection of Tracking Failures. In Pattern Recognition (ICPR), 2010 20th In-
ternational Conference on, pages 2756�2759, Aug 2010. doi:10.1109/ICPR.
2010.675.

[58] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-Learning-Detection. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 34(7):1409�1422,
July 2012. doi:10.1109/TPAMI.2011.239.

[59] G. Nebehay. Robust Object Tracking Based on Tracking-Learning-Detection.
Master's thesis, Vienna University of Technology, Faculty of Informat-
ics, 2012. URL: http://www.gnebehay.com/publications/master_thesis/
master_thesis.pdf.

[60] G. Nebehay and R. P�ugfelder. Consensus-based Matching and Tracking of
Keypoints for Object Tracking. In Winter Conference on Applications of
Computer Vision. IEEE, March 2014. URL: http://www.epics-project.eu/
publications/2014_nebehay_wacv.pdf.

[61] J. Satake and J. Miura. Robust Stereo-Based Person Detection and Track-
ing for a Person Following Robot. Workshop on People Detection and Track-
ing IEEE ICRA, 2009. URL: http://srl.informatik.uni-freiburg.de/
conferences/icra09ws/papers/19P-Satake.pdf.

[62] L. Spinello and K.O. Arras. People Detection in RGB-D Data. In
Proc. of The International Conference on Intelligent Robots and Systems
(IROS), 2011. URL: http://www.informatik.uni-freiburg.de/~spinello/
spinelloIROS11.pdf.

[63] M. Munaro, F. Basso, and E. Menegatti. Tracking people within groups with
RGB-D data. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ In-
ternational Conference on, pages 2101�2107, Oct 2012. doi:10.1109/IROS.
2012.6385772.

[64] T. Taipalus and J. Ahtiainen. Human detection and tracking with knee-high
mobile 2D LIDAR. In Robotics and Biomimetics (ROBIO), 2011 IEEE In-
ternational Conference on, pages 1672�1677, Dec 2011. doi:10.1109/ROBIO.
2011.6181529.

[65] K.O. Arras, S. Grzonka, M. Luber, and W. Burgard. E�cient people tracking
in laser range data using a multi-hypothesis leg-tracker with adaptive occlusion
probabilities. In Robotics and Automation, 2008. ICRA 2008. IEEE Interna-
tional Conference on, pages 1710�1715, May 2008. doi:10.1109/ROBOT.2008.
4543447.

http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1109/ICPR.2010.675
http://dx.doi.org/10.1109/ICPR.2010.675
http://dx.doi.org/10.1109/TPAMI.2011.239
http://www.gnebehay.com/publications/master_thesis/master_thesis.pdf
http://www.gnebehay.com/publications/master_thesis/master_thesis.pdf
http://www.epics-project.eu/publications/2014_nebehay_wacv.pdf
http://www.epics-project.eu/publications/2014_nebehay_wacv.pdf
http://srl.informatik.uni-freiburg.de/conferences/icra09ws/papers/19P-Satake.pdf
http://srl.informatik.uni-freiburg.de/conferences/icra09ws/papers/19P-Satake.pdf
http://www.informatik.uni-freiburg.de/~spinello/spinelloIROS11.pdf
http://www.informatik.uni-freiburg.de/~spinello/spinelloIROS11.pdf
http://dx.doi.org/10.1109/IROS.2012.6385772
http://dx.doi.org/10.1109/IROS.2012.6385772
http://dx.doi.org/10.1109/ROBIO.2011.6181529
http://dx.doi.org/10.1109/ROBIO.2011.6181529
http://dx.doi.org/10.1109/ROBOT.2008.4543447
http://dx.doi.org/10.1109/ROBOT.2008.4543447

72

[66] A. Carballo, A. Ohya, and S. Yuta. Fusion of double layered multiple laser
range �nders for people detection from a mobile robot. In Multisensor Fusion
and Integration for Intelligent Systems, 2008. MFI 2008. IEEE International
Conference on, pages 677�682, Aug 2008. doi:10.1109/MFI.2008.4648023.

[67] A. Carballo, A. Ohya, and S. Yuta. People detection using range and intensity
data from multi-layered Laser Range Finders. In Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on, pages 5849�5854, Oct
2010. doi:10.1109/IROS.2010.5649769.

[68] L. Spinello, K.O. Arras, R. Triebel, and R. Siegwart. A Layered Approach to
People Detection in 3D Range Data. In AAAI, 2010. URL: http://www2.
informatik.uni-freiburg.de/~spinello/spinello10layered.pdf.

[69] A. Teichman, J. Levinson, and S. Thrun. Towards 3D object recognition via
classi�cation of arbitrary object tracks. In ICRA, pages 4034�4041. IEEE, 2011.
doi:10.1109/ICRA.2011.5979636.

[70] K. Bohlmann, A. Beck-Greinwald, S. Buck, H. Marks, and A. Zell. Au-
tonomous Person Following with 3D LIDAR in Outdoor Environments. In 1st
International Workshop on Perception for Mobile Robots Autonomy (PEMRA
2012), September 2012. URL: http://www.jamris.org/images/ISSUES/
ISSUE-2013-02/JAMRIS_No02_2013_P_24-29.pdf.

[71] C. Premebida, G. Monteiro, U. Nunes, and P. Peixoto. A lidar and vision-
based approach for pedestrian and vehicle detection and tracking. In Intelligent
Transportation Systems Conference, 2007. ITSC 2007. IEEE, pages 1044�1049,
2007. doi:10.1109/ITSC.2007.4357637.

[72] Velodyne. Velodyne HDL-32E data sheet. Website, 2014. Ac-
cessed on 22.4.2014. URL: http://velodynelidar.com/lidar/hdlproducts/
97-0038d%20HDL-32E_datasheet.pdf.

[73] Point Grey. Bumblebee XB3 data sheet. Website, 2014. Accessed
on 22.4.2014. URL: http://www.ptgrey.com/products/bbxb3/bumblebee2_

xb3_datasheet.pdf.

[74] ROS � Robot Operating System. Robot Operating System � Introduction, 2014.
Accessed on 13.7.2014. URL: http://wiki.ros.org/ROS/Introduction.

[75] PCL � Point Cloud Library. About Point Cloud Library, 2014. Accessed on
13.7.2014. URL: http://pointclouds.org/about/.

[76] OpenCV � Open Source Computer Vision Library. About Open Source Com-
puter Vision Library, 2014. Accessed on 13.7.2014. URL: http://opencv.org/
about.html.

[77] A. Rudnicky. Sphinx Knowledge Base Tool � VERSION 3, 2014. Accessed on
17.5.2014. URL: http://www.speech.cs.cmu.edu/tools/lmtool-new.html.

http://dx.doi.org/10.1109/MFI.2008.4648023
http://dx.doi.org/10.1109/IROS.2010.5649769
http://www2.informatik.uni-freiburg.de/~spinello/spinello10layered.pdf
http://www2.informatik.uni-freiburg.de/~spinello/spinello10layered.pdf
http://dx.doi.org/10.1109/ICRA.2011.5979636
http://www.jamris.org/images/ISSUES/ISSUE-2013-02/JAMRIS_No02_2013_P_24-29.pdf
http://www.jamris.org/images/ISSUES/ISSUE-2013-02/JAMRIS_No02_2013_P_24-29.pdf
http://dx.doi.org/10.1109/ITSC.2007.4357637
http://velodynelidar.com/lidar/hdlproducts/97-0038d%20HDL-32E_datasheet.pdf
http://velodynelidar.com/lidar/hdlproducts/97-0038d%20HDL-32E_datasheet.pdf
http://www.ptgrey.com/products/bbxb3/bumblebee2_xb3_datasheet.pdf
http://www.ptgrey.com/products/bbxb3/bumblebee2_xb3_datasheet.pdf
http://wiki.ros.org/ROS/Introduction
http://pointclouds.org/about/
http://opencv.org/about.html
http://opencv.org/about.html
http://www.speech.cs.cmu.edu/tools/lmtool-new.html

73

[78] T. Chen, B. Dai, R. Wang, and D. Liu. Gaussian-Process-Based Real-Time
Ground Segmentation for Autonomous Land Vehicles. Journal of Intelligent
and Robotic Systems, pages 1�20, 2013. doi:10.1007/s10846-013-9889-4.

[79] V. Nguyen, S. Gächter, A. Martinelli, N. Tomatis, and R. Siegwart. A
Comparison of Line Extraction Algorithms Using 2D Range Data for In-
door Mobile Robotics. Auton. Robots, 23(2):97�111, August 2007. doi:
10.1007/s10514-007-9034-y.

[80] R.B. Rusu. Semantic 3D Object Maps for Everyday Manipulation in Hu-
man Living Environments. PhD thesis, Computer Science department,
Technische Universität München, Germany, October 2009. doi:10.1007/
s13218-010-0059-6.

[81] P.I. Corke. Robotics, Vision & Control: Fundamental Algorithms in Matlab.
Springer, 2011. doi:10.1007/978-3-642-20144-8.

[82] S. Du�ner and C. Garcia. Pixeltrack: a fast adaptive algorithm for track-
ing non-rigid objects. In Computer Vision (ICCV), 2013 IEEE International
Conference on, pages 2480�2487. IEEE, 2013. URL: http://liris.cnrs.fr/
Documents/Liris-6293.pdf.

[83] D.A. Klein, D. Schulz, S. Frintrop, and A.B. Cremers. Adaptive Real-
Time Video-Tracking for Arbitrary Objects. In IEEE Int. Conf. on Intel-
ligent Robots and Systems (IROS), pages 772�777, Oct 2010. URL: http:
//www.iai.uni-bonn.de/~kleind/iros10_daklein.pdf.

http://dx.doi.org/10.1007/s10846-013-9889-4
http://dx.doi.org/10.1007/s10514-007-9034-y
http://dx.doi.org/10.1007/s10514-007-9034-y
http://dx.doi.org/10.1007/s13218-010-0059-6
http://dx.doi.org/10.1007/s13218-010-0059-6
http://dx.doi.org/10.1007/978-3-642-20144-8
http://liris.cnrs.fr/Documents/Liris-6293.pdf
http://liris.cnrs.fr/Documents/Liris-6293.pdf
http://www.iai.uni-bonn.de/~kleind/iros10_daklein.pdf
http://www.iai.uni-bonn.de/~kleind/iros10_daklein.pdf

74

A Hardware Setup

Figure A1 gives a detailed overview of the complete high-level hardware setup.
The Acrosser AIV-HM76V0FL is a fanless embedded PC running an Intel Core i7

3720QM processor with 16GB RAM. The Acrosser provides inter alia two Ethernet
ports as well as one integrated CAN interface.

The ASUS E45M1-M PRO is a motherboard with an integrated AMD Dual-
Core Processor E-450. The board is equipped with 8GB RAM and provides, among
others, one Ethernet port and one IEEE 1394 Firewire interface.

The EPEC 5050 control unit is a commercial CAN controller. It hosts a 32-bit
micro-controller running at 128 MHz.

The ZyXEL AC750 is a standard dual-band 12V wireless router.

Velodyne
HDL-32E

192.168.3.1.

Acrosser
AIV-HM76V0FL

192.168.3.3.
192.168.1.52

ZyXEL
AC750

192.168.1.1.

ASUS
E45M1-M PRO
192.168.1.40

Point Grey
Bumblebee XB3

Sony PS3
Controller

Bluetooth
Headset

EPEC 5050
control unit

Android phone
192.168.1.X

IEEE 1394

TCP/IP

TCP/IP

UDP
:8308 GPS IMU
:2368 Scan

CAN

TCP/IP

Bluetooth

Figure A1: Detailed high-level hardware and network setup: Sensors in purple, user
interface devices in blue, ROS Master in red.

75

B ROS Communication Graph

Figure B1 shows the complete ROS communication graph.

B.1 Custom Messages

Two new message types were de�ned in order to allow a customized information
exchange between di�erent nodes.

tracking_msgs::location The message type tracking_msgs::location is used
to describe detected objects. It contains the following �elds:

std_msgs/Header header

geometry_msgs/Point[] points

geometry_msgs/Point[] min

geometry_msgs/Point[] max

points is an array of 3D points describing the center of gravity for each object.
The arrays min and max de�ne a 3D bounding box for each object.

imu_msgs::velodyneIMU This message is used to publish the information collected
from the Velodyne IMU and GPS. It contains the following �elds:

std_msgs/Header header

float64 accel_x

float64 accel_y

float64 accel_z

float64 roll

float64 pitch

float64 yaw

string gps

The information of the accelerometer is stored in accel_x, accel_y and accel_z.
roll, pitch and yaw contain the gyroscope data. gps is a NMEA sentence.

B.2 Topics

The most important topics shown in Figure B1, as well as other important topics
for data logging and the vehicle control are explained in Table B1.

B.3 Nodes

The functionality of each node shown in Figure B1 is explained in Table B2.

76

F
ig
u
r
e
B
1
:
T
h
e
co
m
p
le
te

R
O
S
co
m
m
u
n
ic
at
io
n
gr
ap
h
:
O
va
ls
in
d
ic
at
e
n
o
d
es
,
b
ox
es

in
d
ic
at
e
to
p
ic
s.

N
o
d
es

w
it
h
re
d
te
x
t
ar
e
ru
n
n
in
g
on

th
e
A
S
U
S
m
ot
h
er
b
oa
rd
.
T
h
e
on
es

w
it
h
gr
ee
n
te
x
t
ru
n
on

th
e
em

b
ed
d
ed

P
C
A
cr
os
se
r,
w
h
il
e
n
o
d
es

w
it
h
b
lu
e
te
x
t
ru
n
on

an
A
n
d
ro
id

sm
ar
t

p
h
on
e.

77

T
o
p
ic

M
e
ss
a
g
e
ty
p
e

D
e
sc
r
ip
ti
o
n

/
c
a
m
e
r
a
/
i
m
a
g
e
_
r
a
w

s
e
n
s
o
r
_
m
s
g
s
:
:
i
m
a
g
e

ra
w
im
ag
e
gr
ab
b
ed

fr
om

th
e
B
u
m
b
le
b
ee

X
B
3

/
f
r
o
m
C
a
n
2
R
o
s

a
c
k
e
r
m
a
n
n
_
m
s
g
s
:
:
A
c
k
e
r
m
a
n
n
D
r
i
v
e

M
ea
su
re
d
st
ee
ri
n
g
an
gl
e
an
d
sp
ee
d
se
n
t
fr
om

C
A
N
co
n
tr
ol
le
r
to

R
O
S

/
f
r
o
m
R
o
s
2
C
a
n

a
c
k
e
r
m
a
n
n
_
m
s
g
s
:
:
A
c
k
e
r
m
a
n
n
D
r
i
v
e

S
te
er
in
g
an
d
sp
ee
d
co
n
tr
ol
se
n
t
fr
om

R
O
S
to

C
A
N
co
n
tr
ol
le
r

/
j
o
y

s
e
n
s
o
r
_
m
s
g
s
:
:
J
o
y

in
p
u
t
fr
om

th
e
P
S
3
co
n
tr
ol
le
r

/
t
r
a
c
k
i
n
g
/
c
m
d

s
t
d
_
m
s
g
s
:
:
S
t
r
i
n
g

C
om

m
an
d
s
p
u
b
li
sh
ed

b
y
u
se
r
in
te
rf
ac
e

/
t
r
a
c
k
i
n
g
/
i
m
a
g
e
/
c
o
m
p
r
e
s
s
e
d

s
e
n
s
o
r
_
m
s
g
s
:
:
i
m
a
g
e

Im
ag
e
tr
ac
k
in
g
re
su
lt

/
t
r
a
c
k
i
n
g
/
l
o
c
a
t
i
o
n
s

t
r
a
c
k
i
n
g
_
m
s
g
s
:
:
l
o
c
a
t
i
o
n
s

D
et
ec
te
d
ob
je
ct
s

/
t
r
a
c
k
i
n
g
/
m
s
g

s
t
d
_
m
s
g
s
:
:
S
t
r
i
n
g

D
eb
u
gg
in
g
m
es
sa
ge
s
an
d
u
se
r
fe
ed
b
ac
k

/
t
r
a
c
k
i
n
g
/
s
o
i

t
r
a
c
k
i
n
g
_
m
s
g
s
:
:
l
o
c
a
t
i
o
n
s

S
el
ec
te
d
T
ar
ge
t

/
v
e
l
o
d
y
n
e
_
I
M
U
_
G
P
S

i
m
u
_
m
s
g
s
:
:
v
e
l
o
d
y
n
e
I
M
U

IM
U
an
d
G
P
S
in
fo
rm

at
io
n
fr
om

V
el
o
d
y
n
e

/
v
e
l
o
d
y
n
e
_
p
a
c
k
e
t
s

v
e
l
o
d
y
n
e
_
m
s
g
s
:
:
V
e
l
o
d
y
n
e
S
c
a
n

ra
w
p
ac
ke
ts
fr
om

V
el
o
d
y
n
e
L
ID

A
R

/
v
e
l
o
d
y
n
e
_
p
o
i
n
t
s

s
e
n
s
o
r
_
m
s
g
s
:
:
P
o
i
n
t
C
l
o
u
d
2

36
0◦

p
oi
n
t
cl
ou
d
fr
om

V
el
o
d
y
n
e

T
a
b
le

B
1
:
Im

p
or
ta
n
t
h
ig
h
-l
ev
el
to
p
ic
s.

78

N
o
d
e

D
e
sc
r
ip
ti
o
n

/
a
n
d
r
o
i
d
_
g
i
n
g
e
r
b
r
e
a
/
r
o
s
_
t
e
x
t
_
v
i
e
w

F
ee
d
b
ac
k
d
is
p
la
y
on

A
n
d
ro
id

(S
ec
ti
on

6.
1.
3)
.

/
a
n
d
r
o
i
d
/
p
u
b
l
i
s
h
e
r

P
u
b
li
sh
er

fo
r
A
n
d
ro
id

u
se
r
co
m
m
an
d
s
(S
ec
ti
on

6.
1.
3)
.

/
b
u
m
b
l
e
b
e
e
X
B
3

C
a
m
e
r
a
1
3
9
4
R
O
S
d
ri
ve
r
fo
r
B
u
m
b
le
b
ee

X
B
3.

/
c
a
m
e
r
a
_
p
r
o
c

Im
ag
e
d
ec
o
d
in
g
an
d
re
ct
i�
ca
ti
on
.

/
c
o
n
t
r
o
l

S
p
ee
d
an
d
st
ee
ri
n
g
co
n
tr
ol
(S
ec
ti
on

6.
5)
.

/
d
r
i
v
e
r
_
n
o
d
e
l
e
t

R
O
S
d
ri
ve
r
n
o
d
el
et

fo
r
V
el
o
d
y
n
e
H
D
L
-3
2E

.
/
h
e
a
d
s
e
t
_
b
u
t
t
o
n
_
u
i

U
se
r
in
te
rf
ac
e
fo
r
h
ea
d
se
t
b
u
tt
on

(S
ec
ti
on

6.
1.
2)
.

/
h
e
a
d
s
e
t
_
u
i

U
se
r
in
te
rf
ac
e
fo
r
B
lu
et
o
ot
h
h
ea
d
se
t
(S
ec
ti
on

6.
1.
2)
.

/
h
y
b
r
i
d
_
t
r
a
c
k
e
r

H
y
b
ri
d
tr
ac
k
in
g
(S
ec
ti
on

6.
4)

an
d
im
ag
e
p
ro
ce
ss
in
g
(S
ec
ti
on

6.
3)
.

/
i
n
t
e
r
p
r
e
t
e
r

C
om

m
on

in
te
rp
re
te
r
fo
r
u
se
r
in
te
rf
ac
es

(S
ec
ti
on

6.
1)
.

/
p
s
3
_
j
o
y

R
O
S
d
ri
ve
r
fo
r
P
S
3
co
n
tr
ol
le
r.

/
p
s
3
_
u
i

P
S
3
u
se
r
in
te
rf
ac
e
(S
ec
ti
on

6.
1.
1)
.

/
r
o
s
_
i
m
a
g
e
_
v
i
e
w

Im
ag
e
d
is
p
la
y
on

A
n
d
ro
id

(S
ec
ti
on

6.
1.
3)
.

/
s
o
u
n
d
_
u
i

A
u
d
io
fe
ed
b
ac
k
u
se
r
in
te
rf
ac
e
(S
ec
ti
on

6.
1.
2)
.

/
t
r
a
n
s
f
o
r
m
_
n
o
d
e
l
e
t

V
el
o
d
y
n
e
p
oi
n
t
cl
ou
d
fr
am

e
tr
an
sf
or
m
at
io
n
n
o
d
el
et
.

/
v
e
l
o
d
y
n
e
_
i
m
u
_
g
p
s

D
ri
ve
r
fo
r
V
el
o
d
y
n
e
IM

U
an
d
G
P
S
.

/
v
e
l
o
d
y
n
e
_
n
o
d
e
l
e
t
_
m
a
n
a
g
e
r

/d
ri
ve
r_

n
o
d
el
et

an
d
/t
ra
n
sf
or
m
_
n
o
d
el
et

m
an
ag
er
.

/
v
e
l
o
d
y
n
e
_
p
r
o
c

V
el
o
d
y
n
e
d
at
a
p
ro
ce
ss
in
g
(S
ec
ti
on

6.
2)
.

T
a
b
le

B
2
:
H
ig
h
-l
ev
el

R
O
S
n
o
d
e
fu
n
ct
io
n
al
it
y.

79

C Launch Instructions

C.1 Core Functionality

In order to run the tracking interface, �rst, all necessary nodes have to be started,
since there is no automated start implemented yet. The most convenient way to start
all required programs is to connect via SSH to both computers using another laptop
in the same network. Therefore, the laptop has to establish a wireless connection
with the open ZyXEL network.

C.1.1 ASUS PC

On Linux, a SSH connection can be established the following way:

user@client:~$ ssh pioneer@192.168.1.40

pioneer@192.168.1.40’s password:$ pioneer

Once a connection is established, a ROS master has to be started with:

pioneer@192.168.1.40:~$ roscore

Next, another SSH connection has to be established. After the connection is estab-
lished, a ROS launch-�le can be used to bring up all necessary nodes on the ASUS
PC. The launch-�le can be started with:

pioneer@192.168.1.40:~$ roslaunch atv_ws/atv.launch

The content of the atv.launch �le is shown below. The launch �le starts the camera
driver for the Bumblebee XB3, the camera processing node, and the common user
interface interpreter.

1 <launch>

2 <!-- Bumblebee XB3 launch-->

3 <node pkg="camera1394" type="camera1394_node" name="bumblebeeXB3">

4 <param name="guid" value="00b09d0100b85670"/>

5 <param name="video_mode" value="1280x960_mono8"/>

6 <param name="iso_speed" value="400"/>

7 <param name="frame_rate" value="7.5"/>

8 <param name="bayer_pattern" value="gbrg"/>

9 <param name="bayer_method" value=""/>

10 <param name="pan" value="1"/>

11 <param name="camera_info_url"

12 value="file://$(find calib)/cal_center.yaml"/>

13 </node>

14

15 <node pkg="camera_proc" type="camera_proc" name="camera_proc"/>

16

17 <!-- user interface common interpreter-->

18 <include file="$(find user_interface)/launch/interpreter.launch"/>

19 </launch>

80

C.1.2 Acrosser Embedded PC

The procedure to launch all required nodes on the Acrosser Embedded PC is similar
to the one used on the ASUS PC. First, a connection has to be established using
SSH:

user@client:~$ ssh atv@192.168.1.52

atv@192.168.1.52’s password:$ atv

Subsequently, a ROS launch-�le can be used to start all nodes:

atv@192.168.1.52:~$ roslaunch catkin_ws/tracking.launch

The content of the tracking.launch �le is shown below. The launch �le starts the
Velodyne ROS driver nodelets, the Velodyne processing node, the steering angle and
speed control node, and the hybrid tracker.

1 <launch>

2 <!-- Velodyne IMU and GPS data-->

3 <node pkg="velodyne_imu" type="velodyne_imu" name="velodyne_imu"/>

4

5 <!-- Velodyne Pointcloud-->

6 <include file="$(find velodyne_driver)/launch/nodelet_manager.launch">

7 <arg name="model" value="32E"/>

8 </include>

9

10 <include file="$(find velodyne_pointcloud)/launch/transform_nodelet.launch">

11 <arg name="calibration" value="$(find calib)/32db.yaml"/>

12 <arg name="frame_id" value="velodyne"/>

13 </include>

14

15 <!-- Velodyne Processing-->

16 <node pkg="velodyne_proc" type="velodyne_proc" name="velodyne_proc"/>

17

18 <!-- Control node and PID parameters-->

19 <node pkg="control" type="control" name="control" output="screen">

20 <remap from="/tracking/target" to="/tracking/soi"/>

21 </node>

22 <param name="loco_type" value="ackermann"/>

23 <param name="P_v" value="1.0"/>

24 <param name="I_v" value="0.02"/>

25 <param name="D_v" value="0.0"/>

26 <param name="P_a" value="1.0"/>

27 <param name="nomDistAck" value="6.5"/>

28 <param name="minNomDistAck" value="4.5"/>

29

30 <!-- Hybrid Tracker -->

31 <node pkg="tracker" type="tracker" name="hybrid_tracker" output="screen"/>

32 </launch>

81

C.2 User Interface Devices

Each of the implemented user interface devices needs to be setup correctly before it
can be used. This section explains the easiest approach for each device.

C.2.1 PS3 Controller

In order to use the PS3 controller, it has to be connected to one of the PCs. Since the
ASUS PC is mounted on top of the car, the Bluetooth receiver and the controller can
be in a direct line of sight. It is therefore the preferred choice. First, the Bluetooth
receiver has to be paired with the PS3 controller. The controller is connected via
USB to the same PC as the receiver and the following command is used:

atv@192.168.1.52:~$ sudo bash

root@192.168.1.52:~$ rosrun ps3joy sixpair

If the setup is correct, the output will be something like this:

Current Bluetooth master: 00:21:17:ab:cd:09

Setting master bd_addr to 00:21:17:ab:cd:09

Once the receiver and the controller are successfully paired, the wired connection
can be removed. The controller can now be wirelessly connected using the following
command:

atv@192.168.1.52:~$ sudo bash

root@192.168.1.52:~$ rosrun ps3joy ps3joy.py

The PS3 controller can now communicate with the PC. However, in order to use the
controller as input device for the system, the following lines have to be added to the
corresponding launch �le described in Section C.1:

1 <!-- PS3 Controller-->

2 <include file="$(find user_interface)/launch/ps3.launch"/>

C.2.2 Bluetooth Headset

The Bluetooth Headset interface does not depend on a speci�c headset. However, the
device in use has to support the Headset Pro�le (HSP). First, the desired headset
has to be paired with the Bluetooth receiver and connected. This can easily be
achieved by using the user interface of the operating system. Once both devices are
paired and connected, some con�guration is necessary.

Next, the Headset Pro�le has to be activated in the /etc/bluetooth/audio.conf
con�guration �le. This can be done by deactivating the Hands-Free Pro�le in the
following lines:

user@client:~$ sudo nano /etc/bluetooth/audio.conf

...

Set to true to support HFP, false means only HSP is supported

Defaults to true

HFP=false

...

82

Subsequently, both, the MAC address of the used device and the device name
have to be con�gured in the headset.launch �le. The MAC address and the device
name can be determined using the following command:

user@client:~$ pacmd list | grep -E ’name.*input|name.*source’

The output should look similar to this:

Default source name: alsa_input.pci-0000_00_1b.0.analog-stereo

name: <alsa_input.pci-0000_00_1b.0.analog-stereo>

name: <bluez_source.9C_3A_AF_A5_82_07>

The changes applied to the headset.launch �le should look like this:

user@client:~$ nano catkin_ws/src/user_interface/launch/headset.launch

...

<param name="mic_name" value="bluez_source.9C_3A_AF_A5_82_07"/>

...

<param name="MAC" value="9C_3A_AF_A5_82_07"/>

...

Finally, the headset.launch �le has to be included in one of the launch �les
described in Section C.1. In order to get audio feedback, the soundplay.launch �le
should be included, too:

1 <!-- Bluetooth headset with sound feedback-->

2 <include file="$(find user_interface)/launch/headset.launch"/>

3 <include file="$(find user_interface)/launch/soundplay.launch"/>

C.2.3 Android Smart Phone

In order to use the Android Smart Phone, the application has to be installed �rst.
Therefore, the .apk-�le has to be copied on the smart phone. Once the �le is located
on the phone, it can be installed by simply opening the �le. It is important that
installations from unknown sources are enabled on the phone. After installing the
app, the user can connect to the ROS master by entering its address and pressing
connect as shown in Figure C1. Additionally, the user can connect using a QR-Code
that encodes the address. Once the connection is established, the smart phone can
be used to interact with the robot.

Figure C1: Connecting to the ROS master with the Android application.

	Abstract
	Preface
	Contents
	List of Symbols
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Autonomous All-Terrain Transportation Vehicles
	Military AATTVs
	R-Gator
	Squad Mission Support System
	LS3 - AlphaDog

	Civil AATTVs
	Research Platforms
	Possible Mission Scenario

	Space
	Current Research
	Possible Mission Scenarios

	Human Robot Interaction
	HRI Problem
	HRI for AATTVs
	Human-Following Interface
	User Identification
	User Localization and Tracking
	User-Following

	Human Detection and Tracking
	Theoretical Background
	Feature Selection
	Object Classification
	Object Tracking

	Vision-Based Approaches
	Laser-Based Approaches
	2D LIDAR Approaches
	3D LIDAR Approaches

	Hybrid Approaches

	System Concept
	System Requirements
	System Overview
	Hardware
	Velodyne HDL-32E
	Bumblebee XB3
	Polaris Ranger EV
	Additional Periphery

	Software
	Robot Operating System
	Point Cloud Library
	Open Computer Vision

	Implementation
	User Interface
	Controller Interface
	Headset Interface
	Smart Phone Interface

	LIDAR Processing
	Preprocessing
	Segmentation
	Clustering

	Camera Processing
	Decoding and Rectification

	Sensor Fusion
	External Calibration
	Shutter Adjustment
	Hybrid Tracking

	Speed and Steering Control

	Evaluation
	User interfaces
	Segmentation Algorithms
	Uneven Environment
	Highly-cluttered Environment

	Hybrid Tracking
	Image Tracker Comparison
	Tracking Influences
	Tracking with Crossing People
	Tracking in a Group of People

	Control Behavior
	System Performance

	Conclusions
	System Development
	System Limitations
	Future Work

	References
	Appendices
	Hardware Setup
	ROS Communication Graph
	Custom Messages
	Topics
	Nodes

	Launch Instructions
	Core Functionality
	ASUS PC
	Acrosser Embedded PC

	User Interface Devices
	PS3 Controller
	Bluetooth Headset
	Android Smart Phone

