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Answer set programming is a declarative problem solving paradigm suitable for
searching solutions to combinatorial search problems. Propositional answer set pro-
grams, studied in this thesis, consist of rules that state logical connections between
atomic propositions, or atoms. A program represents the problem of finding truth as-
signments, called answer sets, that satisfy the rules in the program, under the condition
that by default atoms are false. Answer set programming can be used as a general pur-
pose problem solving mechanism, by writing programs whose answer sets correspond
to solutions of a chosen search problem, and then using automated tools to find them.

In this work, we focus on normalizing a particular type of rules, weight rules, into
so called normal rules. We develop normalization strategies that extend existing trans-
lations applied in answer set programming and propositional satisfiability checking. In
particular, we propose to incorporate a base selection heuristic and a structure sharing
algorithm into a weight rule translation that decomposes the rule in a mixed-radix base.
Both the previous and novel techniques have been implemented in a normalization tool,
and we experimentally evaluate the effect of our methods on search performance. The
proposed techniques improve on the compared normalization methods in terms of con-
ciseness, the number of conflicts encountered during search, and the amount of time
needed to find answer sets using a state-of-the-art solving back-end. On certain bench-
mark classes, the normalization techniques improve even on native weight-handling
capabilities of the solver.
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Vastausjoukko-ohjelmointi on kombinatoristen hakuongelmien ratkontaan soveltu-
va ongelmanratkontamenetelmä, jossa ohjelmointi koostuu loogisten yhteyksien
deklaratiivisesta määrittelemisestä. Työssä käsitellyt vastausjoukko-ohjelmat koostu-
vat säännöistä, jotka määräävät atomisten lauseiden, tai atomien, väliset yhteydet.
Tämänmuotoiseen ohjelmaan kytkeytyy formaali ongelma, jonka ratkaisemiseksi on
löydettävä yksi tai useampi totuusjakelu näille atomeille, eli vastausjoukko, joka
täyttää ohjelmaan kirjatut säännöt. Jokainen atomi on lisäksi asetettava epätodeksi pa-
remman tiedon puutteessa. Vastausjoukko-ohjelmointi muodostaa yleiskäyttöisen on-
gelmanratkontamekanismin, sillä on mahdollista kirjoittaa ohjelma jonka vastausjou-
koista on luettavissa kiinnostuksen kohteena olevan hakuongelman ratkaisut ja näiden
vastausjoukkojen etsintää varten löytyy automatisoituja työkaluja.

Tässä diplomityössä keskitytään erilaisten sääntötyyppien välisiin muunnoksiin
ja erityisesti niin kutsutuiden painosääntöjen uudelleenkirjoittamiseen vain normaa-
lisääntöjä käyttäen. Työn tavoitteena on kehittää tähän soveltuvia normalisointimene-
telmiä olemassaolevien tekniikoiden pohjalta. Diplomityössä esitellään uusi heuris-
tiikka sekakannan hakemiseksi sekä rakenteenjakoalgoritmi erään normalisointimene-
telmän vaatiman atomi- ja sääntömäärän karsimiseksi. Näiden ja muiden tekniikoiden
käyttöä varten on kirjoitettu tietokoneohjelma, jonka avulla tehtyjä kokeellisia tuloksia
esitellään lopuksi. Saatujen tuloksien perusteella työssä kehitetyt tekniikat tuovat pa-
rannuksia muunnoksien tiiviyteen, haussa kohdattujen umpikujien määriin sekä erään
johtavan ratkaisinohjelman aikavaatimuksiin. Tiettyjen testiongelmien kohdalla työssä
esistetyt tekniikat auttavat ylittämään jopa ratkaisinohjelmaan sisäänrakennettujen pai-
nosääntömenetelmien tehokkuuden.
Asiasanat: kardinaliteettisääntö, käännös, normalisointi, painosääntö,

vastausjoukko-ohjelmointi
Kieli: Englanti
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Chapter 1

Introduction

Answer set programming (ASP) [11] is a declarative problem solving paradigm.
As such, the focus of programming answer sets lies on describing search prob-
lems to the extent that subsequently carried out automated reasoning techniques
can implement the actual search. In this way ASP relates to integer linear pro-
gramming [40], constraint satisfaction [44], propositional satisfiability [9], and
numerous other formalisms in deviating from the traditional programming set-
ting, in which the programmer is responsible for determining both what is to be
computed and how. The syntax of ASP inherits its basic elements from logic pro-
gramming with negation [37]. Thus, for one, an answer set program consists of a
set of rules. Each rule intuitively contributes to a definition of how the truth value
of a specific primitive, atomic proposition is determined. A typical rule states
that on a specified condition, written in terms of such atoms, a given head atom
follows logically. When several of such rules are combined to form a program, a
nontrivial computational problem arises, which is to find truth values for all of the
atoms in the program that are consistent and justifiable in light of the rules. By
writing appropriate rules, the answers to a program can be made to parallel the
solutions to a selected search problem. This approach, combined with the use of
automated ASP solvers [28, 34, 36, 41] to find the answers, and thus the solutions,
constitutes a general purpose problem solving technique. Furthermore, answer
set programs admit useful language constructs that help in encoding application
problems. Most fundamentally, the conditions within rules generally rely on an
intrinsic property of answer set programs, which is the role of negation. Namely,
it is possible to express conditions on both the existence of a logical derivation for
an atom and the lack of such, and this expressivity shapes the characteristics of
encoding and solving problems via ASP.

The theoretical foundations of ASP began with the stable model semantics [29]
proposed as an approach to support the intuition of negation as failure [13] in logic
programs. This means that in programs, consisting of normal rules at the time, a
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CHAPTER 1. INTRODUCTION 8

negative reference to an atomic proposition is deemed to be satisfied when the
program does not support a derivation for the atom. On the other hand, an atom
is considered satisfied only once it has a derivation. This leads to asymmetry
between positive and negative references to atoms, or literals, in that atoms are
regarded false by default, and true only once proven to be so. In contrast, in clas-
sical propositional logic consistency suffices in either case, that is, if a literal does
not contradict any known facts, no further justification is needed to consider it a
fact as well. Consequently the solutions to an answer set program, which make
up its so called stable models, are more scarce than its plain, classical models.

Due to the above recounted properties, logic programs under the stable model
semantics are a form of nonmonotonic reasoning. Indeed, restricting concerns to
specific classes of models, as above to stable models, and the ensuing ability to
follow commonsense reasoning and to find conclusions under lack of evidence,
are aspects of nonmonotonic reasoning. In doing so, these nonstandard formal
systems model the phenomenon in commonsense reasoning that a larger set of
initial assumptions does not necessitate a larger set of conclusions [38].

1.1 Normal and Extended Rules
An answer set program is a set of rules. Generally the rules fall into a number of
classes, such as normal, choice, cardinality, and weight rules. The first of these
is the most fundamental. The other three constitute extended rule types, which
advance expressivity and conciseness [41]. For the benefit of answer set pro-
grammers, the input languages of systems such as LPARSE [43] and GRINGO [25]
include support for these extended rule types. This is one of the aspects behind
the success of ASP, and plays a part in providing rich modeling capabilities that
have resulted in a wide adoption of the paradigm. In this section, normal rules are
introduced, followed by, via examples, rules of the extended types. Thereafter, in
Chapter 2, we continue with a more formal consideration of specifically normal,
cardinality, and weight rules, which are the most central to this thesis.

Every type of rule considered in this work consists of a head and a body con-
dition. If the body of a rule holds, the head is implied. Both heads and bodies are
written in terms of atoms. Consequently, rules provide a way to determine truth
values for atoms, and encode dependencies between them. The different types of
rules vary in the form of the two components. A normal rule is of the most basic
type, and includes an atom for the head and a list of possibly negated atoms for
the body. These components are written as a normal rule in the form

a← b1, . . . , bn,∼c1, . . . ,∼cm. (1.1)

The head atom a is implied by the rule (1.1) if the atoms b1, . . . , bn are derivable
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but none of c1, . . . , cm is. Such rules form the foundation of ASP that is supple-
mented by extended rule types considered in the following.

A frequent concern of answer set programs is the need to express choices
between options. Whereas the stable model semantics necessitates the derivation
of any atom a to be justified by the program at hand, there still remain occasions
on which this behaviour is uncalled for. In other words, we may want to forego
the stipulation of a default value for chosen atoms, and give equal grounds for
choosing either true or false by default. A way of expressing this in a normal
logic program is to state that the lack of a derivation for either the true or false
value suffices to justify the choice of the opposite value. That is, for an atom a we
can introduce a new atom, say b, with the intuitive reading that a is false. Now,
we can express our intent with the rules

a← ∼b.
b← ∼a.

(1.2)

The consequence is that, given any consistent candidate set of atoms whose sta-
bility is to be verified, whichever is the truth value atom a takes, the above pair of
rules gives a derivation for it.

This construction effectively changes the intuitive interpretation of the default
negation operator ∼ applied to a chosen atom to the classical one. The choice to
either include or exclude a is accepted as long as it is consistent with everything
else. The effect of the rules in (1.2) can also be attained with an extended rule,
called a choice rule. In our example, we would write {a} to denote it. More
generally, for a set of atoms a1, . . . , an, we would write {a1, . . . , an} to express
the same for each ai. These two are examples of choice rule heads, which can be
combined with body conditions to obtain the general form

{a1, . . . , an} ← b1, . . . , bm,∼c1, . . . ,∼ck. (1.3)

The rule (1.3) shares the consequences of {a1}, . . . , {an} on the condition that
all of b1, . . . , bm can be derived while none of c1, . . . , ck can. In case the body is
omitted, its absence is understood as a satisfied condition.

Another frequently occurring pattern is one where a constraint is to be placed
on a number of literals, stating that the number of them that are derivable by the
rules of the program must stay within a given range. Alternatively, an atom is
sought to be derived when such a condition on the cardinality of a set of atoms
is met. As with choice rules, we first consider the prospects for imposing such
conditions via normal rules. Let us take the set of literals b, c, d, e,∼f,∼g for an
example, and an atom a to be the target of our derivation, which is to take place
whenever three or more of the input literals are satisfied. In this setting, we may
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write the following normal logic program to accomplish the task:

a← b, c, d. a← c, d, e. . . . a← e,∼f,∼g.
a← b, c, e. a← c, d,∼f.

...
...

a← b,∼f,∼g. a← c,∼f,∼g.

(1.4)

The above contains a normal rule for each triple of the input literals. Fully writ-
ten out, it would thus contain

(
6
3

)
= 20 normal rules, each with 3 body literals.

This is a clumsy way of declaring our intentions, and even much more so than
was the case with choice rules. For larger literal sets, this becomes infeasible
quickly. However, there exists support for concisely representing rules such as
those in (1.4). This comes in the form of another extended rule type, namely that
of cardinality rules. To express our chosen limit of three satisfied literals on the
same set in the body of a single rule, one would write a← 3 ≤ 〈b, c, d, e,∼f,∼g〉.
In general, a cardinality rule takes the form

a← k ≤ 〈b1, . . . , bn,∼c1, . . . ,∼cm〉. (1.5)

We intuitively interpret it to mean that if in total k or more of the literals b1, . . . , bn
and ∼c1, . . . ,∼cm are satisfied, then a is derived from the rule.

As a further extension in answer set programs, there are weight rules. They
generalize cardinality rules by allowing weights for body literals. Thus whereas a
cardinality rule’s condition is essentially dependent on the sum of binary variables,
the condition of a weight rule depends on a linear combination of such variables
and specified constants. Practical applications for weight rules are numerous. Let
us consider an example where we have a set of items, each with an associated
integer cost. Moreover, let us be asked to select a subset of those items, and infer
whether the total cost overflows a threshold value. An instance of such a problem
could contain the atoms b, c, d, and e, each denoting that a corresponding item is
selected. These atoms could cost 50, 90, 10, and 40 units, respectively. To derive a
marker atom, say a, whenever the total cost equals or exceeds, say 100, we could
now write

a← b, c.

a← b, d, e.

a← c, d.

a← c, e.

(1.6)

The rules in (1.6) have been chosen by enumerating all subsets of b, c, d, e whose
total cost is at least 100, and whose proper subsets’ costs are less. This encoding
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scheme is a straight-forward generalization of the one used in presenting cardinal-
ity rules. Consequently, the drawbacks are inherited and the number of required
rules can be exponential in the number of input literals. The behaviour of the
rules in (1.6) can again be obtained more concisely in ASP. Namely, we can in-
stead write a← 100 ≤ 〈b = 50, c = 90, d = 10, e = 40〉. The general form taken
by weight rules is the following:

a← k ≤ 〈b1 = w1, . . . , bn = wn,∼c1 = wn+1, . . . ,∼cm = wn+m〉. (1.7)

The associated interpretation is that if the limit k is matched or exceeded by the
sum of those weights wi for which the corresponding literal bi or ∼ci−n is de-
rived, then the head atom a is derived as well. Inequalities similar to these have
many names in the literature, including pseudo-Boolean constraints, knapsack
constraints and 0-1 linear integer inequalities [2].

1.2 Implementing Extended Rule Support
As outlined in Section 1.1, there are useful extensions to normal logic programs
that help a programmer to write down elaborate definitions. For such cases, we
considered the programmer’s point of view and the contrast between specifying
normal and extended logic programs. In particular, we presented a number of ex-
tended rules as concise substitutes for classes of normal logic programs. In this
section, we briefly consider the complementary task of handling extensions on the
solving side. The available approaches can be roughly categorized in two. First,
support for extended rules can be built in a solver, which then applies deduction
rules or any other suitable methods for handling the extended rules natively. As
the other approach, the extended rules can be fully translated into normal rules,
or simply normalized, in a preprocessing stage [33]. Afterward, a chosen ASP
solving technique can be applied to the resulting program, whether or not it sup-
ports the extensions natively. In the remainder of this section, we give a general
overview of both techniques.

An ASP solver with native extended rule support admits input containing ex-
tended rules encoded as is, rather than normalized. Internally, the systems vary
in the way they process normal and extended rules. In the following, we refer
to a number of solving systems with extended rule support, and summarize their
relevant solving techniques.

1. The SMODELS program looks for inevitable and possible consequences for
each type of extended rule during its operation, in addition to performing
stability checks on candidate answer sets [41]. The consequences are cap-
tured by a variation of an algorithm of Dowling and Gallier for computing
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deductive closures of sets of positive normal rules [20]. For weight rules,
the extended algorithm used in SMODELS keeps track of the sum of body
weights for each weight rule as computation progresses.

2. The DLV system [34] for ASP supports aggregates [23]. These aggregates
are set-oriented functions that intuitively map multisets to constants such as
counts, sums, products, minimas, maximas and averages. These aggregates
can be used in combination with lower and upper bounds to encode cardi-
nality and weight rules as well. The DLV system comprises a grounder of
its own in addition to a propositional solver. An interesting optimization
employed within the grounder and the solver performs duplicate set recog-
nition, in order to internally handle a single set appearing in several aggre-
gates compactly without duplication. This feature is not found in other ASP
systems to our knowledge.

3. The Conflict-Driven Nogood Learning ASP solver CLASP [28] carries out a
bounding technique known as unit propagation on a pair of pseudo-Boolean
constraints for each weight rule [26]. Each constraint pair defines the im-
mediate circumstances required to satisfy the body of a weight rule. This
dedicated treatment of weight rules is conceptually carried out on a logi-
cal specification that is formalized by an exponential number of nogoods
capturing the pseudo-Boolean constraints. Instead of explicitly generating
these sets of nogoods, the solver operates directly on the pseudo-Boolean
constraints to deduce the outcomes of unit propagation on them. In addi-
tion, the solver implements dedicated unfouded set checking for ruling out
unwanted self-justifying loops passing through weight rules.

4. The PBMODELS system incrementally translates an input program into a
growing propositional formula extended with weight constraints [36]. The
formulas are processed repeatedly by invoking a pseudo-Boolean solver
having native support for the extension. After each such call, the returned
model is checked for stability. In the negative case the formula is aug-
mented with appropriate loop formulas, which rule out the particular model
from further consideration, and the search continues.

As mentioned earlier, native solving methods tailored for extended rules are
complemented by translation-based techniques. The idea is to replace each ex-
tended rule with a set of normal rules that serve the same purpose. The approach
thus essentially reverses the steps taken in Section 1.1, by expanding concise dec-
larations into significantly larger sets of simple rules. The kind of naı̈ve encodings
of cardinality and weight rules used therein, however, can quickly cause trouble
as the operated literal sets grow in size. As a remedy, are other known encodings



CHAPTER 1. INTRODUCTION 13

that are more concise, although more elaborate as well. For example, the ASP
solver CMODELS [30] employs built-in cardinality and weight rule translations
based on [24] prior to running a solving procedure. In the following, we discuss
such improved encodings introduced for use in either ASP or Boolean satisfiabil-
ity (SAT), but which have encodings in both formalisms. We call the following
translations monotone, because they are modeled after monotone circuits. In the
setting of ASP, this entails that the encodings do not introduce negation. Restricted
use of negation is beneficial from a correctness point of view that is considered in
Section 2.2.

For cardinality rules with in total n body literals and a lower bound of k,
there is a counting grid-based translation with O(k × n) auxiliary atoms and
rules [33, 41, 42]. The idea in the translation is to count satisfied body liter-
als one by one, or sequentially, until the cardinality test against k can be de-
duced directly. Another translation synthesizes a merge-sorter inO(n× (log n)2)
orO(n× (log k)2) gates, clauses, or rules [5, 8, 10], which orders the truth values
of body literals, such that the comparison with k can again be done directly. For
weight rules, there are pseudo-polynomial translations requiring O(k × n) new
atoms and rules [2, 31]. Furthermore, there are polynomial watchdog translations
based on networks of totalizers [7] that are related with networks of sorters [21].
All of the mentioned methods provide significantly improved translation sizes in
terms of required rules, in comparison to straightforward encodings that, for ex-
ample, do not make use of auxiliary atoms.

Despite the intersection between ASP and SAT translations, there are caveats
concerning the use of translations in ASP that have been adapted from transla-
tions into SAT. In particular, in ASP, a substitute for a weight rule must preserve
any positive, cyclic dependencies in the program that pass throught the rule. Such
dependencies arise between head atoms and positive body atoms, and these de-
pendencies propagate transitively. If the translation does not equally reflect the
dependencies, the answer sets of the program can be affected even when its classi-
cal models are not. This potential shortfall, exemplified in the following, warrants
careful studying of the correctness of translations in ASP, and in Section 2.2, we
review and develop techniques for ensuring correctness in this light.

Example 1 Consider the program P = {a← 1 ≤ 〈a,∼a〉. } and a hypothetical
translation Q = {a. }. The program P has no answer sets whereas Q has one,
which consists of a. In Section 2.1 we familiarize with how to find answer sets, but
for now we can informally explain the discrepancy as follows. In P , the truth of
atom a follows once it is already derived or underivable. The former case is ruled
out because a is to be false by default and the latter because the underivability
of a leads to a contradiction. For Q, the former obstacle does not exist, and a is
true. Thus the substitution of P with Q is generally unsound in ASP.



CHAPTER 1. INTRODUCTION 14

In summary, techniques for implementing extended rule support can be di-
vided into two categories: native and translation-based methods. The former is
built-in, whereas the latter can be carried out in a preprocessing stage. The purpose
of this thesis, is to explore the feasibility and performance of the translation-based
approach, particularly for weight rules. Motivation to this end lies in several fac-
tors. First, translations have been extensively researched in the pseudo-Boolean
and SAT community, but less so in ASP. This presents an opportunity to transfer
the result of that research into the area of ASP. Furthermore, the ability to im-
plement translations in preprocessing stages gives versatility in allowing to easily
combine translation techniques with selected solving methods, which may or may
not support extended rules. Moreover, translations have potential for improving
the performance of subsequently carried out search procedures, even in compari-
son to native techniques.

1.3 Thesis Objectives and Content
In this section, we give the primary goals, contributions, and structure of the thesis.

The general purpose in this work is to explore the feasibility of the translation-
based approach to handling cardinality and weight rules. To this end, our strategy
is to identify and refine promising existing techniques, and to develop new transla-
tion schemes in order to witness improvements in terms of conciseness and search
performance. In particular, the focus is on weight rules of substantial size, which
thus benefit from well scaling normalization techniques. A specific objective is
to utilize compact translation techniques, originating from circuit design and SAT
research, as building blocks of more elaborate constructions. The correctness of
the resulting, novel constructions is to be studied both formally and experimen-
tally, and the goal in this regard is to achieve results sufficient in generality even
in the context of ASP. Taking another approach, we aim to also simplify weight
rules prior to normalization or further processing. Our final objective within the
scope of this work is to gain an understanding of the performance implications of
the various considered simplification and normalization techniques.

The main contributions of this work consist of novel enhancements of the
(global) polynomial watchdog translation [7] adapted in this thesis from SAT to
ASP. The enhancements are obtained by utilizing mixed-radix bases in decom-
posing weight rules, and by analyzing, manipulating, and eliminating parts of
the translation by the use of an algorithm for structural sharing. Moreover, tech-
niques proposed for use with ASP transformations in [33] are applied in proving
the correctness of the translation, and, in this process, the methods are tailored
to a class of almost positive translations. Regarding practical contributions, we
have implemented several cardinality and weight rule translations in a normaliza-
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tion tool, LP2NORMAL2, which is used in experimentally assessing the size and
performance implications of the translation techniques.

The structure of this thesis is the following. In Chapter 2, the syntactic and
semantic concepts of ASP relevant to this work, together with formal tools for
correctness considerations, are described. Moreover, representational issues con-
cerning finite domain integers are discussed, and a unary notation is defined for
encoding them. Building on these preliminaries, a number of existing normaliza-
tions of cardinality and weight rules are presented in Chapter 3. In Chapter 4,
novel schemes for weight rule normalization are proposed. Then, we consider
prospects for simplifying weight rules in Chapter 5, where a number of con-
ditionally applicable simplification steps are defined. In Chapter 6, the perfor-
mance ramifications of the discussed normalization and simplification techniques
are evaluated, in terms of conciseness and solving time. Furthermore, the compu-
tational effort required to perform verification checks for normalizations is studied
therein. Finally, we discuss related work and present the conclusions in Chapter 7.



Chapter 2

Preliminaries

In this chapter, we specify the formal concepts of ASP relevant to this work. Sec-
tion 2.1 covers basic notions of ASP, including language constructs used in the
thesis. Equivalence notions for answer set programs are considered in Section 2.2,
where we describe and develop formal tools for comparing programs and verify-
ing the correctness of translations. Finally, a unary notation for expressing finite
domain integers in terms of Boolean values, or literals, is discussed in Section 2.3.

2.1 Answer Set Programs
In the following, we describe weight constraint programs (WCPs) and normal
logic programs (NLPs), which are the respective source and target languages of
our normalizations. The scope of this thesis involves only the propositional case,
and thus only ground programs, which are typically obtained using grounders
operating on first-order languages.

Weight constraint programs are written in terms of propositional atoms a, their
default negations ∼a, integer bounds k, and nonnegative integer weights w. A
propositional atom a is also known as a positive literal and simply as an atom.
The default negation ∼a of a is also called a negative literal, and in this work,
moreover as the negation of a. Both are types of literals l. An atom a is said to
appear in a literal l if either l = a or l = ∼a. Intuitively, an atom is the most prim-
itive object bearing a truth value, and an occurrence of an atom is interpreted as
the condition that the atom can be proven true, and an occurrence of its negation,
that it is not.

A weighted literal l = w combines a literal l with a weight w. Given sequences
of literals L = 〈l1, . . . , ln〉 and weights W = 〈w1, . . . , wn〉, we write L = W to
abbreviate the weighted literals, or the weighted expression, l1 = w1, . . . , ln = wn.
In certain contexts, a weighted expression is also denoted as a list 〈L = W 〉. We

16
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mix abbreviations and single weighted literals freely within weighted expressions.

Example 2 Given sequences L1 = 〈a, b〉, L2 = 〈c,∼d〉, and W = 〈2, 3〉, we
write 〈L1 = W,L2 = W, e = 1〉 to denote 〈a = 2, b = 3, c = 2,∼d = 3, e = 1〉 .

A single literal l is allowed to appear in a weighted expression multiple times
in part of several weighted literals, and further, a single weighted literal l = w
to have multiple occurrences as well. For example, we consider the following
expressions all legal and distinct: 〈a = 7〉, 〈a = 4, a = 3〉, 〈a = 2, a = 2, a = 3〉.

A weight rule constitutes a head atom a, an integer bound k, and a weighted
expression L = W , written in the form

a← k ≤ 〈L = W 〉. (2.1)

The right-hand side of (2.1), consisting of k and L = W , is called the body of the
rule, and the contained literals L and weights W are respectively identified as body
literals and body weights. The interpretation of a weight rule is that if the sum of
body weights associated with derivable atoms and negations of underivable atoms
matches or exceeds the bound k, then the head a is derived. A special case of
weight rules is obtained when W = 〈1, . . . , 1〉, and rules of such form are called
cardinality rules. If it further holds that L = 〈l1, . . . , lk〉, the rule is a normal rule
and is written in the simplified form

a← l1, . . . , lk. (2.2)

Intuitively, a normal rule implies the head a once every body literal li is satisfied.
The body of (2.2) is thus interpreted as a conjunction, which in the case of k = 0
is considered to be true and to invariably imply the head a. For this special case
we use the shorthand ‘a.’, and call the rule a fact. A WCP, or simply a program,
is a finite set P of weight rules. An NLP is a finite set P of normal rules. The
signature, denoted by At(·), of an object containing atoms, is some fixed superset
of those atoms 1. Namely, for a positive literal l = a and for a negative literal l =
∼a, we require that At(l) ⊇ {a}, for a sequence of literals L = 〈l1, . . . , ln〉, that
At(L) ⊇

⋃n
i=1 At(li), for a weight rule r = (a← k ≤ 〈L = W 〉), that At(r) ⊇

{a} ∪ At(L), and for a WCP P = {r1, . . . , rn}, that At(P ) ⊇
⋃n

i=1 At(ri).
We further identify the part of a signature At(·) that consists of atoms appearing
in negative literals, and denote it with At∼(·). Using this notation, we define a
positive rule to be a rule r with At∼(r) = ∅, and likewise, a positive program to
be a program P with At∼(P ) = ∅.

1Typically At(·) gives only the atoms that occur in the argument. However, it is convenient to
allow At({a← b.}) = At(∅) = {a, b} when comparing programs {a← b.} and ∅, for example.
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In order to formalize the stable model semantics of WCPs, and thus also that
of NLPs, we first define their classical semantics. An interpretation I ⊆ At(P )
of P is said to satisfy a positive literal a ∈ At(P ) iff a ∈ I and this is expressed
by writing I |= a. Conversely, I satisfies a negative literal ∼a ∈ At(P ) iff a /∈ I ,
again denoted by I |= ∼a. With respect to an interpretation I , the satisfied weight
sum of the weighted literals 〈L = W 〉 is given by

vI(L = W ) =
∑

1≤i≤n
M |=li

wi (2.3)

In the special case of cardinality rule bodies, we use the term satisfied cardinality
for (2.3) and abbreviate it with vI(L). With the help of (2.3), we now define the
body k ≤ 〈L = W 〉 of (2.1) to be satisfied in I iff k ≤ vI(L = W ). Furthermore,
if in an interpretation I for a rule r of the form (2.1), the satisfaction of the body
implies the satisfaction of the head then r is satisfied in I and we write I |= r.
That is, we have I |= r unless both I 6|= a and I |= k ≤ 〈L = W 〉. Finally,
an interpretation M ⊆ At(P ) of a program P is also a model of the program
iff it satisfies all the rules in the program. In notation, M |= P iff M |= r for
every r ∈ P . A model M |= P is further specified to be subset minimal, or
simply minimal, iff no other model of P is a subset of it. In general a program can
have several minimal models, but every positive program P has a unique minimal
model which is called the least model and denoted LM(P ).

The stable models of a program P form a restricted class of models described
in terms of reducts. The reduct of a WCP P with respect to an interpretation M ⊆
At(P ) is a positive program, denoted by PM , constructed as follows. For each
weight rule in P the reduct PM contains the positive weight rule obtained by
(i) removing the negative literals from the body and (ii) subtracting the bound
by the weight of each removed literal satisfied in M [41]. For a weight rule of
the form (1.7) this gives rise to a reduced rule a ← k′ ≤ 〈b1 = w1, . . . , bn = wn〉
where k′ = k−vM(∼c1 = wn+1, . . . ,∼cm = wn+m). Finally, an interpretation M
is a stable model of a WCP P iff M is the least model of the reduct, that is,
iff M = LM(PM). This forms a generalization of the original stable model
semantics defined for NLPs in [29]. Generally a program P may have any number
of stable models and the set of all of them is denoted by SM(P ). A stable model
is also called an answer set.

Example 3 Consider a WCP P consisting of the rules

a← 4 ≤ 〈b = 3, c = 3, d = 4〉. b← 1 ≤ 〈∼d = 1〉.
c← 2 ≤ 〈a = 2〉. d← 1 ≤ 〈∼b = 1〉.
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The interpretations M1 = {a, c, d} and M2 = {a, b, c} are both models of P . The
reduct PM1 consists of the rules

a← 4 ≤ 〈b = 3, c = 3, d = 4〉. b← 1 ≤ 〈〉.
c← 2 ≤ 〈a = 2〉. d← 0 ≤ 〈〉.

and PM2 of the rules

a← 4 ≤ 〈b = 3, c = 3, d = 4〉. b← 0 ≤ 〈〉.
c← 2 ≤ 〈a = 2〉. d← 1 ≤ 〈〉.

It follows that LM(PM1) = {a, c, d} = M1, and LM(PM2) = {b} 6= M2. Conse-
quently, M1 ∈ SM(P ) whereas M2 6∈ SM(P ).

2.2 Visible Strong Equivalence
Several aspects of correctness arise when translations or simplification techniques
for altering pieces of programs are developed. To begin with, potential differences
between the stable models of the swapped parts are of interest. In this respect we
want the original program part P and the substitute Q to be semantically the same,
at least in the sense of weak equivalence which requires that SM(P ) = SM(Q).
It turns out that this is on the one hand too weak and on the other hand too strong
for our purposes. Due to the nonmonotonicity of ASP, the addition of the same
rules to weakly equivalent programs may lead to programs that are no longer
so [22]. Thus, when parts of a program are substituted with others, the remaining
program gives a context corresponding to such added rules. For a sufficiently
strengthened relation, strong equivalence was introduced [35]. To be strongly
equivalent, two programs P and Q need to have the same answer sets when each is
combined with an arbitrary context program R, that is, SM(P ∪R) = SM(Q∪R).
This directly rules out the aforementioned difficulty caused by nonmonotonicity.
However, both weak and strong equivalence are too strict to allow for auxiliary
atoms to be used. In the following we consider visible strong equivalence [33],
a generalization of strong equivalence developed to allow for the use of auxiliary
atoms, typically hidden from answer sets presented to the user.

In order to compare the visible behaviour of programs, we distinguish between
different parts of the signature At(P ) of a program P , by partitioning it into visible
and hidden atoms, denoted by Atv(P ) and Ath(P ). In general they are freely
chosen subsets of At(P ) satisfying both Atv(P ) ∩ Ath(P ) = ∅ and Atv(P ) ∪
Ath(P ) = At(P ). As a convention, the complete, visible, and hidden signatures
of a program P are assumed to carry over to the reduct P Y for any Y . The
purpose of this partition is the same as for the typical public and private visibility
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specifiers for, e.g., variables in traditional programming languages. We use this
concept in hiding auxiliary atoms introduced in translations. Only the visible parts
of such translations are of interest when their correctness is evaluated. Namely,
for programs P and Q with A = Atv(P ) = Atv(Q), we say they are visibly
equivalent iff their sets of stable models SM(P ) and SM(Q) are visibly equal, as
defined in the following.

Definition 1 Given programs P and Q with A = Atv(P ) = Atv(Q), and sets of
interpretations S1 ⊆ 2At(P ) and S2 ⊆ 2At(Q), the sets S1 and S2 are visibly equal,
denoted by S1 =v S2, if and only if there is a bijection f : S1 → S2 such that for
every Y ∈ S1,

Y ∩ A = f(Y ) ∩ A. (2.4)

Visible equivalence is generalized to visible strong equivalence as follows.

Definition 2 (Visible Strong Equivalence [33]) Programs P and Q are visibly
strongly equivalent, denoted P ≡vs Q, if and only if Atv(P ) = Atv(Q) and
SM(P ∪ R) =v SM(Q ∪ R) for any context program R such that (At(P ) ∪
At(Q)) ∩ Ath(R) = (Ath(P ) ∪ Ath(Q)) ∩ At(R) = ∅.

The visible strong equivalence relation ≡vs admits a model-theoretic charac-
terization. The characterization relies on models that are minimal with respect to
a set of atoms, defined as follows.

Definition 3 A model M |= P of a program P is H-minimal for H ⊆ At(P ) iff
there is no other model N |= P such that N \H = M \H and N ∩H ⊂M ∩H .

For a program P we write MMH(P ) for the set of all H-minimal models of P .
Intuitively, when H-minimal models are concerned, an interpretation over At(P )\
H uniquely fixes truth values for H , if the combination can possibly result in a
model. The above gives rise to visible strong equivalence models.

Definition 4 ([33]) A VSE-model of a program P is a pair 〈X, Y 〉 of interpreta-
tions where X ⊆ Y ⊆ At(P ) and X, Y ∈ MMAth(P )(P

Y ).

We write VSE(P ) to denote the set of all VSE-models of P , which together cap-
ture the semantics of P subject to substitutions. The intuition behind a VSE-
model 〈X, Y 〉 is that Y takes the role of the program R giving the context in
which P is reduced, and X relates to the behaviour of the reduced program P Y .
We also define the second projection of a set of VSE-models S to be [S]2 =
{Y | 〈X, Y 〉 ∈ S}. Using these notations, the strong equivalence of programs can
be studied by comparing their VSE-models.
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Definition 5 Given programs P and Q with A = Atv(P ) = Atv(Q), the respec-
tive sets VSE(P ) and VSE(Q) visibly match, denoted VSE(P )

v
= VSE(Q), if and

only if [VSE(P )]2 =v [VSE(P )]2 via a bijection f : [VSE(P )]2 → [VSE(Q)]2
such that for every Y ∈ [VSE(P )]2,

{X ∩ A | 〈X, Y 〉 ∈ VSE(P )} = {X ∩ A | 〈X, f(Y )〉 ∈ VSE(Q)}. (2.5)

The above definition is illustrated by an example.

Example 4 For programs

P = {a← 3 ≤ 〈b = 1, c = 2, d = 2〉. } and
Q = {a← c, d. a← b, x. x← c. x← d.},

there is a bijection between [VSE(P )]2 and [VSE(Q)]2 that proves VSE(P )
v
=

VSE(Q), when Atv(P ) = Atv(Q) = {a, b, c, d} and x is subject to minimization,
as shown below.

X Y Y ′ X ′

∅ ∅ ∅ ∅
∅, {a} {a} {a} ∅, {a}
∅, {a}, {b}, {a, b} {a, b} {a, b} ∅, {a}, {b}, {a, b}
∅, {a}, {c}, {a, c} {a, c} {a, c, x} ∅, {a}, {c, x}, {a, c, x}
∅, {a}, {d}, {a, d} {a, d} {a, d, x} ∅, {a}, {d, x}, {a, d, x}
∅, {b} {b} {b} ∅, {b}
∅, {c} {c} {c, x} ∅, {c, x}
∅, {d} {d} {d, x} ∅, {d, x}
∅, {a}, {b}, {c}, {a, b}, {a, b, c} {a, b, c, x} ∅, {a}, {b}, {c, x}, {a, b},
{a, c}, {a, b, c} {a, c, x}, {a, b, c, x}

∅, {a}, {b}, {d}, {a, b}, {a, b, d} {a, b, d, x} ∅, {a}, {b}, {d, x}, {a, b},
{a, d}, {a, b, d} {a, d, x}, {a, b, d, x}

∅, {a}, {c}, {d}, {a, c}, {a, c, d} {a, c, d, x} ∅, {a}, {c, x}, {d, x}, {a, c, x},
{a, d}, {a, c, d} {a, d, x}, {a, c, d, x}

∅, {a}, {b}, {c}, {d}, {a, b, c, d} {a, b, c, d, x} ∅, {a}, {b}, {c, x}, {d, x},
{a, b}, {a, c}, {a, d}, {a, b}, {a, c, x}, {a, d, x},
{a, b, c}, {a, b, d}, {a, b, c, x}, {a, b, d, x},
{a, c, d}, {a, b, c, d} {a, c, d, x}, {a, b, c, d, x}

The relation v
= in Definition 5 is particularly meaningful due to the following

result.

Proposition 1 (Characterization of Visible Strong Equivalence [33])
For programs P and Q with Atv(P ) = Atv(Q), VSE(P )

v
= VSE(Q) implies

P ≡vs Q.
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In consequence, the behaviour of programs, under any context allowed by Defini-
tion 2, can be compared on the basis of their VSE-models. This provides a tool
for arguing about the correctness of translations. For the purposes of this thesis,
we develop further methods applicable to restricted classes of programs. First, a
more lenient matching criterion is defined for positive programs, for which sets of
hidden minimal models contain sufficient information for the purpose of demon-
strating visible strong equivalence.

Proposition 2 For positive programs P and Q with Atv(P ) = Atv(Q), it holds
that VSE(P )

v
= VSE(Q) if and only if MMAth(P )(P ) =v MMAth(Q)(Q).

Proof The domains and ranges of the bijections for proving v
= and =v coincide,

such that [VSE(P )]2 = MMAth(P )(P ) and [VSE(Q)]2 = MMAth(Q)(Q). More-
over, the “only if” part follows from Definition 5. Let us thus consider the other
direction, take a bjiection f as in Definition 1, and prove the condition (2.5) to
hold for f . For simplicity, let us denote A = Atv(P ) = Atv(Q). For every
Y ∈ MMAth(P )(P ), Y ∩ A = f(Y ) ∩ A and thus

{X ∩ A | X ⊆ Y } = {X ∩ A | X ⊆ f(Y )}.

Moreover,

{X ∩ A | X ∈ MMAth(P )(P )} = {f(X) ∩ A | X ∈ MMAth(P )(P )}, and
{X ∩ A | X ∈ MMAth(P )(P )} = {X ∩ A | X ∈ MMAth(Q)(Q)}.

Thus in combination,

{X ∩ A | X ⊆ Y, X ∈ MMAth(P )(P )} =

{X ∩ A | X ⊆ f(Y ), X ∈ MMAth(Q)(Q)}.

Given that P and Q are positive, (2.5) follows.
In conclusion, there is a bijection proving VSE(P )

v
= VSE(Q) if and only if

there is a bijection to prove MMAth(P )(P ) =v MMAth(Q)(Q). �

In order to apply Proposition 2 more widely, and not only for purely positive
programs, we make use of a lemma in the following. To this end, we first present
notation for substituting literals in programs. For a program P and a substitution
pair l/l′ composed of literals l and l′, we write P [l/l′] to denote the program
obtained from P by substituting every non-negated occurrence of l in P with l′.
For example,

{a← 1 ≤ 〈a,∼a〉.}[∼a/b] = {a← 1 ≤ 〈a, b〉.}.
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We extend this notation to a set of substitution pairs A = {l1/l′1, . . . , ln/l′n}
by writing P [A] for the program P [l1/l

′
1] · · · [ln/l′n], under the conditions that

At(li)∩At(l′j) = ∅ for i, j ∈ {1, . . . , n} and At(li)∩At(lj) = At(l′i)∩At(l′j) = ∅
when i 6= j. The preconditions assure that the outcome is invariant to the order of
the substitutions. In certain settings, the effect of a substitution can be counterbal-
anced by the addition of an appropriate rule.

Lemma 1 For a program P including atom a ∈ At∼(P ) ∩ Atv(P ), an atom
a /∈ At(P ), and the program Q = P [∼a/a]∪{a← ∼a.} with Atv(P ) = Atv(Q),
it holds that P ≡vs Q.

Proof Let f : [VSE(P )]2 → [VSE(Q)]2 be the bijection f(Y ) = Y ∪{a | a /∈ Y }.
For every Y ∈ [VSE(P )]2, it holds that f(Y ) ∩ Atv(P ) = (Y ∩ Atv(P )) ∪
({a | a /∈ Y } ∩ Atv(P )) = Y ∩ Atv(P ). Thus f satisfies (2.4).

Now if a ∈ Y , then a /∈ f(Y ) = Y , Qf(Y ) = P [∼a/a]Y , and specifically,
since Ath(Q) = Ath(P ) ∪ {a}, and a ∈ Atv(P ) is not subject to minimization,

MMAth(Q)(Q
f(Y )) = MMAth(P )(P

Y ). (2.6)

Also, if a /∈ Y then a ∈ f(Y ) = Y ∪ {a}, Qf(Y ) = P [∼a/a]Y ∪ {a.}, and in
particular

{X ∩ Atv(P ) | X ∈ MMAth(Q)(Q
f(Y ))} =

{X ∩ Atv(P ) | X ∈ MMAth(P )(P
Y )}.

(2.7)

Thus for every Y , either (2.6) or (2.7) holds. Consequently,

{X ∩ Atv(A) | 〈X, f(Y )〉 ∈ VSE(Q)} =

{X ∩ Atv(A) | X ⊆ Y, X, Y ∈ MMAth(Q)(Q
f(Y ))} =

{X ∩ Atv(A) | 〈X, Y 〉 ∈ VSE(P )}.

Thus f satisfies (2.5). �

An example substitution and its correctness are demonstrated in the following.

Example 5 Given programs P = {a← ∼b.} and Q = P [∼b/b] ∪ {b← ∼b.} =
{a← b. b← ∼b.}, if we select Atv(P ) = Atv(Q) = {b}, then b /∈ Atv(P ) and
by Lemma 1 we have that P ≡vs Q. To verify this, observe that the VSE-models
of P and Q visibly match via the mapping of Y ∈ [VSE(P )]2 to Y ′ ∈ [VSE(Q)]2
shown below.

X Y Y ′ X ′

{a} {a} {a, b} {a, b}
∅, {b} {b} {b} ∅, {b}
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If we on the other hand select Atv(P ) = Atv(Q) = {a}, then MMAth(P )(P ) =

{{a}, {b}} and MMAth(Q)(Q) = {{a, b}, {a, b}, {b}}, implying that VSE(P ) 6 v=
VSE(Q). Therefore P 6≡vs Q [33]. This kind of visible duplication of models is
avoided in Lemma 1 by requiring the substituted atom to be visible. �

Different partitions of the signature of a program to visible and hidden parts
are possible. With an abuse of notation, we write P = P ′ for two programs
consisting of the same set of rules, but having potentially different signatures.
The visible strong equivalence of programs generally depends on those partitions
but is however invariant to some changes in signatures. In particular, visible atoms
common to both programs can be hidden safely as follows.

Lemma 2 Given programs P = P ′ and Q = Q′ with At(P ) = At(P ′), At(Q) =
At(Q′), and Atv(P ′) = Atv(Q′) ⊆ Atv(P ) = Atv(Q), P ≡vs Q implies P ′ ≡vs

Q′.

Proof Let R be any applicable context for P ′ and Q′ as in Definition 2, such that

(At(P ′) ∪ At(Q′)) ∩ Ath(R) = (Ath(P ′) ∪ Ath(Q′)) ∩ At(R) = ∅

and thus

(At(P ) ∪ At(Q)) ∩ Ath(R) = (Ath(P ) ∪ Ath(Q)) ∩ At(R) = ∅.

Therefore R is also applicable for P and Q. Now let SM(P ∪R) =v SM(Q ∪R)
via a bijection f . For every Y ∈ SM(P ∪R),

Y ∩ Atv(P ) = f(Y ) ∩ Atv(P ).

and also

Y ∩ Atv(P ′) = f(Y ) ∩ Atv(P ′).

Therefore P ≡vs Q implies P ′ ≡vs Q
′. �

Now if we have programs P and Q that agree on both N = At∼(P ) = At∼(Q)
and A = Atv(P ) = Atv(Q), while satisfying N ⊆ A, then we may use the
following strategy for checking whether P ≡vs Q.

1. For each atom a ∈ N , we substitute ∼a in both P and Q with a new atom,
say a. In notation, we form the substitution pairs S = {∼a/a | a ∈ N},
and then the programs P [S] and Q[S].

2. The set of rules R = {a← ∼a. | a ∈ N} is formed to compensate for the
substitutions.
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3. By repeated application of Lemma 1, it can be shown that P ≡vs P [S] ∪ R
and Q ≡vs Q[S] ∪R.

4. Now showing that P [S] ≡vs Q[S] also proves that P ∪R ≡vs Q∪R, when
all new atoms a are visible in each program.

5. By Lemma 2, it follows as well that P ∪ R ≡vs Q ∪ R when every a is
hidden.

6. The above finally entails that P ≡vs Q, by Proposition 1.

The benefit of this approach lies on the fact that P [S] and Q[S] are positive, and
thus Proposition 2 can be applied in proving P [S] ≡vs Q[S]. The strategy is
summarized as follows.

Proposition 3 For programs P and Q with N = At∼(P ) = At∼(Q), and
A = Atv(P ) = Atv(Q) such that N ⊆ A, and for the substitution pairs
S = {∼a/a | a ∈ N}, it holds that MMAth(P )(P [S]) =v MMAth(Q)(Q[S]) im-
plies VSE(P )

v
= VSE(Q).

2.3 Literal Number Representations
Answer set programs support literals in the two-valued Boolean domain. Addi-
tionally, integers are used for weights of such literals within weighted expressions.
In assisting different normalizations of weight rules, we will further make use of
two extended representations of literals in programs, which, in their separate ways,
allow us to operate on literal numbers in larger finite domains as well. The first
of these representations is covered in this section and is that of unary numbers,
and more specifically unary numbers encoded in terms of literals. In the other
representation, numbers are decomposed in a mixed-radix base and their digits
are expressed in unary notation. Mixed-radix numbers will be discussed in Sec-
tion 4.1. Either representation of finite domain variables is naturally founded on
the two-valued literals natively available in ASP. The range of available literal do-
mains in a program is then, in a way, expanded, to ease the encoding of different
rules using auxiliary variables.

We deal with unary numbers as follows. Given an interpretation M , a se-
quence of literals L = 〈l1, . . . , ln〉 is associated with the number k ∈ {0, . . . , n}
if li is satisfied for each i ≤ k but for no i > k. If this holds for every interpre-
tation M under consideration, such as every stable model of a program at hand,
we call L a unary literal number with value k, and each li is identified as its ith

digit. In other terms, a unary literal number is a sequence of literals in descending
order of truth values, with a value given by the satisfied cardinality vM(L). We
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denote the set of atoms underlying a unary literal number L = 〈l1, . . . , ln〉 with
At(L) = {a | ∃i ∈ {1, . . . , n} : li = a or li = ∼a}. Literal numbers of this form
can be produced by means of sorting and merging discussed in Chapter 3. In the
rest of this section we define simple operations on unary numbers.

A constant multiple of a unary number can be obtained, and used, for exam-
ple, to represent numbers in domains of the form {0, n}. Indeed, for the k-fold
multiple of a literal l, we write

lk = l, . . . , l︸ ︷︷ ︸
k times

.

For example, the unary literal number 〈a3〉 = 〈a, a, a〉 for some atom a repre-
sents a variable in {0, 3}. More generally, for an arbitrary unary literal num-
ber 〈l1, . . . , ln〉 and a constant integer k we define multiplication according to

〈l1, . . . , ln〉 × k = 〈lk1 , . . . , lkn〉.

A unary literal number can likewise be easily incremented by a constant. We
denote an arbitrary fact by > and write that

L + k = 〈>k, l1, . . . , ln〉.

Furthermore, a division operation with a constant can be resolved without aux-
iliary rules. Given a unary literal number L as before and a constant k, their
division involves picking every kth literal of L, such that

L/k = 〈lk, l2k, . . . , lk×bn/kc〉.

Unlike the presented operations between a unary literal number and a constant,
the calculation of the residue A mod k of a unary literal number A = 〈a1, . . . , an〉
consisting of atoms only and a divisor k, involves rules. We assume that k ≤ n,
let m = k × bn/k c, and encode the residue in R = 〈r1, . . . , rd−1〉 = A mod k,
by using the program

Modulok(A,R) =

{ri ← aj×k+i, ∼ak×d j/k e. | 1 ≤ i < k, 1 ≤ j ≤ m} ∪
{ri−m×k ← ai. | m× k < i ≤ n}.

Finally, a unary number can be trivially compared with a constant. This fol-
lows directly from their definition and the consequent interpretation of the ith

digit li of a unary literal number. Namely, the digit li determines whether the
number is greater than or equal to i.



Chapter 3

Existing Weight Rule Normalizations

In this chapter we review a variety of translations of cardinality and weight rules.
We begin by inspecting the former case here, and then broaden our view by look-
ing into different translations as well as weight rules in the following sections. In
the translation of a cardinality rule, we seek to substitute it with a set of normal
rules. The resulting normal logic program has to share the semantic properties
of the original rule. To aid the understanding and engineering of such operations
the resulting sets of primitives can be conceptually and recursively partitioned
into larger building blocks. For example, a substituting program can represent a
counting circuit consisting of several smaller subcircuits that build up the number
of satisfied body literals in some number system.

Intuitively, the set of body literals in a cardinality rule encodes the number
of satisfied literals among them, say s. To perform a cardinality check, that is,
to see whether k ≤ s, we can directly extract the required information from the
body literals by enumerating all of their k-subsets, as discussed in Section 1.1.
If at least one body consists of satisfied literals only, the check succeeds. All
cardinality rule translations in general answer this question by extracting the same
information. In place of direct enumeration, however, they construct more suitable
representations of the number s, to the extent required to check whether k ≤ s.
This is common to other extended rule translations as well. In such, information
concerning a property, here s, is preserved through operations that mold it into
a more suitable form. The eventual representation then either reveals the sought
answer immediately, or lessens the burden of doing so.

In view of the above, there are a number of relevant and noteworthy repre-
sentations to be mentioned here. First we consider, in Section 3.1, the use of a
unary encoding in representing the number of satisfied body literals s. Such a
representation is indeed applicable to cardinality checking, for if we have a unary
literal representation 〈l1, . . . , ln〉 of s, we may derive the head of the cardinality
rule from lk. This follows directly from our interpretation of such literals given in

27
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Section 2.3. Second, counting in unary, as above, coincides with sorting binary
values. Indeed, if we have variables whose values fall in two classes, one less
than the other, then the result of sorting them gives a vector representing a unary
number. In our case with literals, sorting in the suitable order reveals, again, the
cardinality of those literals. In Section 3.3 we give an overview of merge-sorting
based techniques to this end. In addition to these two views on unary numbers,
the binary number system has been utilized in cardinality constraint translations.
Such translations are out of the scope of this thesis. In the case where Boolean
satisfiability is the target language, they have been found to be outperformed by
synthetizations of monotone circuits, despite the latters’ greater sizes.

The semantics we pursue in the case of counting and sorting is derived from
that of cardinality rules. We require that a sorter of n literals must be interchange-
able with a set of n appropriately selected cardinality rules. Relying on the notion
of visible strong equivalence [33], we capture this goal by asserting that, for input
literals {l1, . . . , ln} and output atoms 〈h1, . . . , hn〉,

Sortern({l1, . . . , ln}, 〈h1, . . . , hn〉) ≡vs
h1 ← 1 ≤ 〈l1, . . . , ln〉.
h2 ← 2 ≤ 〈l1, . . . , ln〉.

...
hn ← n ≤ 〈l1, . . . , ln〉.

 .
(3.1)

The formulation of the above equivalence reveals a favourable property of this
type of an approach. That is, given a sorter abiding to (3.1), we can not only
substitute an encountered cardinality rule hi ← i ≤ 〈l1, . . . , ln〉 on the right-hand
side with the sorter on the left-hand side, but also a whole set of cardinality rules
differing only in their bounds.

In the rest of this chapter, we first cover a technique of sequential counting
for cardinality and weight rules in Sections 3.1 and 3.2. Then we review a more
concise, merge-sorting based translations for cardinality rules in Section 3.3. We
finish this chapter by discussing a straightforward but naı̈ve generalization of sort-
ing techniques from cardinality to weight rules.

3.1 Sequential Counting
In this section we follow [42] in encoding sequential counters, but where clauses
were used for the original SAT encoding, we use the appropriate, corresponding
rules for ASP. We first describe the design in increasing granularity, after which
we formally define it bottom-up. The result closely resembles an ASP translation
in a grid formation studied in [41] and [33].
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The sequential counter program is constructed to take n input literals l1, . . . , ln,
and to count the number of true literals among them up to a specified thresh-
old k. The resulting number is specified in unary notation using output liter-
als sn,1, . . . , sn,k. The program is built from a sequence of layers, one for each
input literal li. The layer corresponding to li determines a partial count, encoded
in Si = 〈si,1, . . . , si,k〉, in terms of li and the previous layer’s output Si−1. The pur-
pose of the layer is to incorporate li to the total count, which is higher by one if li
is satisfied than if not. By equating false with 0 and true with 1, we can express
the ith partial count as

∑i
j=1 lj . The corresponding literal sequence Si encodes

this value in unary notation, such that, for a stable model M , the said count is
vM(Si). Thus the last, or nth, layer ends up representing the sum

∑n
j=1 lj , that is,

the cardinality of the set of input signals. This sum can then be compared with any
limit k′ ≤ k, or limits, in order to obtain the wanted output; and usually k′ = k.

As the sequential counter can be split into the above described layers, the
layers can in turn be divided further. We express them in terms of small if-then-
else (ITE) programs. These ITEs can be viewed as circuits of AND and OR gates,
for example, or straight away as clauses or rules. Hence, the sequential counter
can be regarded as a hierarchical specification of a normal logic program. An ITE
program has for input a control literal and two other literals. Its output is an atom
that takes the value of one of the two other literals. When the control signal is true,
the output is determined by the first of the two, and when false, by the second. In
Figure 3.1, two designs for an ITE are displayed on the left and right sides of
an abstract symbol denoting the ITE. The designs are given in terms of logical
AND and OR gates, which are easily expressible in ASP. The larger of the two is
a generally applicable version, whereas the more succint one is not. Namely, the
latter has a prerequisite, by which, out of the two input literals under selection, the
second one must imply the first. This condition is satisfied in our use case, and
thus the smaller, simplified ITE is applicable.

The rules encoding a simplified ITE are provided in the following definition.

Definition 6 The if-then-else program for an input literal l, atoms a1 and a2, of
which a2 implies a1, and an output atom s, is

Ite(l, a1, a2, s) =

{
s← a1, l.

s← a2.

}
. (3.2)

We can now use (3.2) to build the layers of a sequential counter. In each,
the associated input signal li is used as the control variable for a series of ITE
programs. When it is false, the unary representation of the count from layer i− 1
is only copied to the output, and when it is true, the count is also incremented by
shifting the representation to the ”right” by one. Two example layers are shown on



CHAPTER 3. EXISTING WEIGHT RULE NORMALIZATIONS 30

s s

≥1

l a1 a2

&

l a1 a2

s

Ite=
a2→a1=

& &

l a1 a2

≥1

Figure 3.1: An if-then-else circuit in terms of logical gates on the left, displayed
abstractly in the middle, and in a simplified form on the right. The circle arrow
head stands for negation. The equality on the right holds only on the condition
that l2 implies l1.

≥1 Ite Ite Ite Ite

≥1 Ite Ite Ite Ite

Figure 3.2: Literal values for a sequential counter on the left and the ITE-based
designs for two of its layers on the right. Filled circles denote derived literals.
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the right of Figure 3.2. The copying and incrementing behaviour are seen in the
lower and upper examples, respectively. We define the rules of a layer as follows.

Definition 7 The layer of a sequential counter program for an input literal l
and atoms a1, . . . , ak, of which each ai with i > 1 implies ai−1, and output
atoms s1, . . . , sk, is

SeqLayerk(l, 〈a1, . . . , ak〉, 〈s1, . . . , sk〉) =

{s1 ← l. s1 ← a1.} ∪
k⋃

i=2

Ite(l, ai−1, ai, si).
(3.3)

Except for the first, each output si above is defined by an ITE program, which
forces the value of either the lesser input ai−1 to be shifted to the output or the de-
fault input ai to be carried on to the output. The final construction of a sequential
counter is a matter of joining appropriate layers together. Figure 3.2 gives an ex-
ample of a combination of layers comprising a sequential counter of n = 6 inputs
that counts up to k = 5. This process is formalized in the following definition.

Definition 8 The sequential counter program for input literals l1, . . . , ln and out-
put atoms sn,1, . . . , sn,k is

Seqn,k(〈l1, . . . , ln〉, 〈sn,i, . . . , sn,k〉) =
n⋃

i=1

SeqLayerk(li, 〈si−1,1, . . . , si−1,k〉, 〈si,1, . . . , si,k〉).
(3.4)

In (3.4), for i ∈ {1, . . . , n− 1}, the symbols si,1, . . . , si,k reference auxiliary
atoms used to capture intermediary inputs to layers. We demonstrate the pre-
sented definitions by an example, which we also use to introduce partial symbolic
evaluation in this context.

Example 6 The sequential counter Seq4,3(〈b1, b2, b3,∼c1〉, 〈s4,1, s4,2, s4,3〉) con-
sists of the following rules:

s4,1 ← ∼c1.
s4,1 ← s3,1.

s4,2 ← s3,1,∼c1.
s4,2 ← s3,2.

s4,3 ← s3,2,∼c1.
s4,3 ← s3,3.

s3,1 ← b3.
s3,1 ← s2,1.

s3,2 ← s2,1, b3.
s3,2 ← s2,2.

s3,3 ← s2,2, b3.
s3,3 ← s2,3.

s2,1 ← b2.
s2,1 ← s1,1.

s2,2 ← s1,1, b2.
s2,2 ← s1,2.

s2,3 ← s1,2, b2.
s2,3 ← s1,3.

s1,1 ← b1.
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The rules on the top left, outside the dashed diagonal are unnecessary in the
case that only the last output s4,3 is of interest, and can be dropped in that case.
The rules outside on the bottom right can be likewise omitted, since the auxiliary
atoms defined by them can never be proven true. Simplification steps such as
these constitute forms of partial symbolic evaluation that can often be used to
prune redundant or unnecessary parts of a program. �

Due to the used unary representation, a sequential counter essentially sorts its
inputs up to some number k, and thus is applicable for translating cardinality rules.
Thus if we have a rule (2.1) with only unit weights, that is, a ← k ≤ 〈L = W 〉
with W = 〈1, . . . , 1〉, and an auxiliary sequence of atoms S = 〈s1, . . . , sk〉 up to
the bound k, we can substitute the original rule with the program Seqn,k(L, S) ∪
{a← sk.}. This amounts to normalizing the rule into an NLP. Regarding trans-
lation size, the counter consists of n layers, each containing k head atoms. A
constant number of rules are used to define each head atom. Thus the total num-
ber of both atoms and rules required by the translation are O(k × n).

3.2 Weighted Sequential Counting
The sequential counter translation of [42], covered in Section 3.1, deals with ex-
pressing cardinality constraints. The translation lends itself to weight rules as
well, in the form of a generalization used both in ASP [24] and SAT [31]. In this
section, we first describe the generalized translation via dynamic programming,
and then formally define the translation similarly to the weightless case.

The dynamic programming approach behind sequential weight counters stems
from the following observation: in order for the satisfied weight sum to be no
less than a given bound, it must either hold that the satisfied sum of all except
any chosen input literal already satisfies the condition, or the excluded literal is
satisfied and its weight added to the satisfied weight sum of the rest overcomes
the bound. In both cases a smaller subproblem is left to be checked, and we may
consider them and further subproblems recursively. In the worst case such binary
branching leads to an exponential number of subproblems on a branching depth, of
which there is a linear number. The combinatorial explosion is, however, bounded
by the number of distinct sums no greater than the bound that can be formed from
the weights. Consequently, many of the otherwise exponential number of cases
tend to coincide, and the total number of subproblems is in O(k × n).

Sequential weight counters can be viewed similarly to sequential counters
when we relate a level in the discussed branching tree with a layer of the counter.
Consequently, we encode them similarly, beginning with the layers.
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≥1 ≥1 ≥1 ≥1 Ite Ite Ite Ite Ite Ite

Figure 3.3: The layer WSeqLayer10,4(l, 〈a1, . . . , a10〉, 〈s1, . . . , s10〉) of a sequential
weight counter. In this case, the control literal on the left is derived, and causes
the encoded output value to exceed the input by the specified weight 4.

Definition 9 The layer of a sequential weight counter program for an input lit-
eral l and atoms a1, . . . , ak, of which each ai with i > 1 implies ai−1, and output
atoms s1, . . . , sk, is

WSeqLayerk,w(l, 〈a1, . . . , ak〉, 〈s1, . . . , sk〉) =

w⋃
i=1

{si ← l. si ← ai.} ∪
k⋃

i=w+1

Ite(l, ai−w, ai, si).
(3.5)

In comparison to Definition 3.3, the effect of the control literal l is effectively
magnified by w due to the use of ai−w in place of ai−1. This change is also
reflected in Figure 3.3, in contrast with Figure 3.2. Also note that, in case w =
1, Definitions 3.5 and 3.3 coincide. The layers are joined together to form the
complete counter as follows.

Definition 10 The sequential weight counter program for weighted input literals
l1 = w1, . . . , ln = wn and output atoms sn,1, . . . , sn,k is

WSeqn,k(〈l1, . . . , ln〉, 〈sn,i, . . . , sn,k〉) =
n⋃

i=1

WSeqLayerk,wi
(li, 〈si−1,1, . . . , si−1,k〉, 〈si,1, . . . , si,k〉).

(3.6)

In (3.6), for i ∈ {1, . . . , n− 1}, the symbols si,1, . . . , si,k reference auxiliary
atoms as in (3.4). The analysis and use of the sequential weight coounter follow
those of the weightless case, and again, the translation size is O(k × n).

3.3 Merge Sorting
In this section we introduce merge-sorting in the context of logic programs and
cardinality rule normalizations. The result of the normalization is a logic program
designed after a circuit that conceptually sorts binary signals. This coincides with
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the input-output contract of a sequential counter, which counts the true inputs in
unary notation. Suitable choices for the underlying circuit include sorters based
on odd-even mergers [8], pairwise mergers [39], and totalizers [7].

Merging is a process involving three sorted sequences, two of which are com-
bined into the third output sequence. The result gives the concatenation of the two
inputs in sorted order. A sequence of numbers can be arranged to be sorted by
recursively merging parts of it together. Given a list of numbers, one may split it
in two, sort both halves and then merge the halves together. In this manner the
original problem is divided into smaller sub-problems which can in turn be solved
recursively. Thus, sorting can be implemented by the way of merging. Specif-
ically, we may construct circuits to perform merging and, by extension, sorting.
These circuits can then be encoded into normal logic programs. In what follows,
a few different types of mergers are discussed.

Batcher [8] introduced odd-even mergers built of comparators. Already on
its own, an odd-even merger is a recursive construction. It consists of a logarith-
mic number of levels in terms of its input length. On each level there are two
input sequences to be merged together. First, their elements are split into four
sequences by separating elements with odd and even indices from each other. The
process keeps the order of elements within the new sequences consistent with
their original order. Thus we obtain a left-odd sequence, a right-odd sequence, a
left-even sequence and a right-even sequence. Afterward, the two odd sequences
are merged together as are the even ones. Finally, the two resulting sequences are
combined with what can be characterized as a balanced merger [15]: a vector of
comparators, each producing two consecutive output values.

The balanced merger is another construction that produces sorted sequences.
Whereas a merger can be thought of as a sorter with preconditions, a balanced
merger can in turn be described as a merger with additional preconditions. Their
inputs must be balanced: the left sequence can contain at most two 1’s more than
the right one, and the right sequence can contain at most as many 1’s as the left
one. With these preconditions satisfied, the balanced merger can be kept flat and of
linear size in its combined input length. In summary then, a merge-sorter consists
of a merger and two smaller sorters, and a merger consists of a balanced merger
and two smaller mergers. The total number of comparators required to construct
a merge-sorter for n inputs is in O(n × (log n)2). When only the kth output is to
be derived, O(n × (log k)2) comparators suffice [14]. Examples of a merger and
a sorter are given in Figure 3.4.

We define odd-even sorters in terms of comparators.

Definition 11 The comparator from the input literals l1 and l2 to the output atoms
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Figure 3.4: A merge-sorter on the left and an odd-even merger on the right.

s1 and s2 is the program

Cmp(l1, l2, s1, s2) =


s1 ← l1.

s1 ← l2.

s2 ← l1, l2.

 . (3.7)

The purpose of a comparator is to permute the truth values of the inputs l1 and l2
such that the “greater” of the two is placed in s1 and the “lesser” in s2. Thus if
neither input is satisfied, the outputs are false. If precisely one input is true, then
s1 is implied while s2 is not. Only if both inputs are satisfied, both outputs are
assigned to true. The rules in (3.7) are used to achieve this by essentially defining
s1 and s2 to be the logical OR and AND of the inputs, respectively.

We say that a pair of numbers n and m are balanced if m ≤ n ≤ m +
2. Similarly, if the numbers of satisfied literals in a pair of sequences of literals
are balanced, we say that the sequences are balanced. Two sorted and balanced
sequences of literals can be merged using a linear number of comparators.

Definition 12 The balanced merger from the sequences of literals D = 〈d1, . . . , dn〉
and E = 〈e1, . . . , em〉 into the atoms S = 〈s1, . . . , sn+m〉 is the program

BalancedMerger(D,E, S) =

{s1 ← d1.}
∪ {sn+m ← dn . | n = m + 2}
∪ {sn+m ← em. | n = m}
∪
⋃min{n−1,m}

i=1 Cmp(di+1, ei, s2i, s2i+1)

(3.8)
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The values of the output atoms S in (3.8) are guaranteed to be ordered from true
to false under any model M of the program if the inputs D and E are sorted and
balanced. In addition, the total number of true and false values are preserved, such
that vM(S) = vM(D) + vM(E). The problem of merging two sequences, which
are not necessarily balanced, is solvable by balanced merging. The approach relies
on slicing two given input sequences into four, which are all sorted. Furthermore,
two pairs formed out of them are guaranteed to be balanced. The slices can then
be merged together as follows.

Definition 13 The odd-even merger from the sequences of literals L = 〈l1, . . . , ln〉
and L′ = 〈l′1, . . . , l′m〉 into the atoms S = 〈s1, . . . , sn+m〉 is the program given,
for n = 0, m = 0 or n = m = 1, by

Merger(L,L′, S) =
⋃n

i=1{si ← li.} if m = 0,⋃m
i=1{si ← l′i.} if n = 0,

Cmp(l1, l
′
1, s1, s2) if n = m = 1,

and for n ≥ 1,m ≥ 1, and n + m ≥ 3, by

Merger(L,L′, S) =

Merger((L + 1)/2, (L′ + 1)/2, D)

∪Merger(L/2, L′/2, E)

∪ BalancedMerger(D,E, S).

(3.9)

In (3.9) the symbols D and E refer to sequences of auxiliary atoms of length
d|L|/2e + d|L′|/2e and b|L|/2c + b|L′|/2c, respectively. The result S satisfies
vM(S) = vM(L) + vM(L′) under any model M of the program. The used arith-
metic notation on sequences of literals is detailed in Section 2.3. Consequently,
the expression (L + 1)/2 denotes the odd-indexed elements 〈l1, l3, . . .〉, and L/2
the even-indexed elements 〈l2, l4, . . .〉. The odd-even merger works due to the fact
that, under any interpretation M of the program’s atoms, the total of the values
encoded in the inputs are preserved under the performed arithmetic operations,
and then correctly added up by the different mergers. In the following we omit
M from the vM(·) notation for simplicity. For any unary literal number N , and in
particular L and L′, it holds that

v((N + 1)/2) = dv(N)/2e ,
v(N/2) = bv(N)/2c ,
v(N) = v((N + 1)/2) + v(N/2).
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Therefore
v(D) = v((L + 1)/2) + v((L′ + 1)/2)

= dv(L)/2e+ dv(L′)/2e , (3.10)
v(E) = v(L/2) + v(L′/2)

= bv(L)/2c+ bv(L′)/2c , (3.11)
and

v(S) = v(D) + v(E) (3.12)
= dv(L)/2e+ dv(L′)/2e+ bv(L)/2c+ bv(L′)/2c
= v(L) + v(L′).

In order for the balanced merger to function as intended, such that S is indeed
sorted, we need to further establish that D and E are balanced. For any nonnega-
tive rational number x, we have that bxc ≤ dxe ≤ bxc+ 1. For any two nonnega-
tive rational numbers x and y, it follows that bxc+byc ≤ dxe+dye ≤ bxc+byc+2.
By comparing (3.10) and (3.11) to this, we conclude that D and E are indeed bal-
anced. A merge-sorter is easily constructed using mergers.

Definition 14 The odd-even merge-sorter from the sequence of literals L into the
atoms S, with |S| = |L| and with L partitioned into L1 and L2 such that L1 6= ∅
and L2 6= ∅ unless |L| = 1, is the program given, for |L| ≤ 2, by

Sorter(L, S) = Merger(L1, L2, S),

and for |L| ≥ 3, by

Sorter(L, S) =

Sorter(L1, H1)

∪ Sorter(L2, H2)

∪Merger(H1, H2, S).

(3.13)

In (3.13) the symbols H1 and H2 denote sequences of auxiliary atoms of length
equal to those of L1 and L2, respectively. The partition of L into L1 and L2 can
be freely selected under the stated conditions. Choosing L1 and L2 such that
|L1| = d|L|/2e and |L2| = b|L|/2c leads to a sorter with a logarithmic number
of recursion levels, and a total of O(n× (log n)2) atoms and rules. Finally, if we
denote a sorter program with P , and hide all of its auxiliary atoms, then under any
hidden and output minimal model model M ∈ MMAth(P )∪At(S)(P ), it holds that
vM(L) = vM(S) and that the values of S are guaranteed to be in sorted order.

There are alternatives to the odd-even merger. In one of them, each output
is specified without any auxiliary variables using a linear number of clauses or



CHAPTER 3. EXISTING WEIGHT RULE NORMALIZATIONS 38

rules. A merge-sorter built of such primitives is called a totalizer [7]. The total
number of used clauses is O(n2 × log n), and the one of atoms is O(n × log n).
Another alternative is that of pairwise (odd-even) mergers presented in [39], and
taken to use in translating pseudo-Boolean constraints to SAT in [14], where it
was also demonstrated to be highly related to the odd-even merger. Such mergers
are of the same size as regular odd-even mergers on the condition that the whole
output is to be produced. In practice, when parts of a merger can be left out,
there are differences, however [14]. Different mergers have also been combined
to produce new kinds of sorters, by using an appropriate type of merger for each
input size. In [3] this approach was introduced by defining a sorter constructed to
minimize a user-given function on the number of produced variables and clauses.
The algorithm therein makes choices between, among others, odd-even mergers
and the “direct” mergers used in totalizers.

Mergers have also been used to form selection networks [14], or cardinality
networks [5]. Such a network, say a selector, differs from a sorter in that it only
produces a “leading” subset of the output of a sorter. The said subset consists of
only a specified number of the least significant outputs. Such a relaxation can be
taken into account in the structure of the network. A way to accomplish this is to
partially evaluate any sorter, in a similar way as in which sequential counters were
pruned in Section 3.1.

3.4 Weighted Sorting
In this section, we generalize the concept of sorting in ASP to that of weight
sorting. We assert that a weight sorter with a total body literal weight of k must
be interchangeable with a set of k appropriate weight rules. More precisely, for
weighted literals l1 = w1, . . . , ln = lk, we let k =

∑n
i=1 wi, and require that

WSortern,k(〈l1 = w1, . . . , ln = wn〉, 〈h1, . . . , hk〉) ≡vs
h1 ← 1 ≤ 〈l1 = w1, . . . , ln = wn〉.
h2 ← 2 ≤ 〈l1 = w1, . . . , ln = wn〉.

...
hk ← k ≤ 〈l1 = w1, . . . , ln = wn〉.

 .
(3.14)

Thus, as before, the result is a unary number. In this case it gives the satisfied
weight of the input literals. For use in practice and in later sections, we define the
following naı̈ve weight sorter implementation

WSortern,k(〈l1 = w1, . . . , ln = wn〉, 〈h1, . . . , hk〉) =

Sorterk(〈lw1
1 , . . . , lwn

n 〉, 〈h1, . . . , hk〉).
(3.15)
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a

· · · h19h1 · · ·

edb fc

Sorter19

Figure 3.5: A WSorter6,19 program implemented by wiring the input 〈a = 2, b =
4, c = 3, d = 3, e = 1, f = 6〉 to a unary sorter with output 〈h1, . . . , h19〉. Filled
markers denote atoms derived from the satisfied inputs a, c, and f .

Given any implementation of a sorter, the above gives one for a weight sorter.
In general the size of such sorters is prohibitive, because the sum of weights k
may be large, that is, k � n. On the other hand, the value k may be close
to n, in which case a naı̈ve implementation may prove to be preferrable to more
involved encoding schemes. A circuit representation with marked truth values for
an example expression is given in Figure 3.5. Our primary use for this method is,
however, to use it as a base case for some more advanced techniques, which work
by reducing the literal weights down to the point where this naı̈ve weight sorter
becomes viable. We will explore such a translation in Chapter 4.

Both of the sorting concepts dealt with here are respectively applicable
to the encoding and normalization of cardinality and weight rules. A car-
dinality rule hk ← k ≤ 〈l1, . . . , ln〉 can be substituted with the rules of
Sortern(〈l1, . . . , ln〉, 〈h1, . . . , hn〉), as suggested by (3.1), when each hi with i 6= k
is hidden together with any introduced auxiliary atoms. Likewise, by (3.14), a
weight rule hi ← k ≤ 〈l1 = w1, . . . , ln = wn〉 can be substituted with the program
WSortern,k(〈l1 = w1, . . . , ln = wn〉, 〈h1, . . . , hk〉) when the appropriate atoms are
hidden.



Chapter 4

Novel Weight Rule Normalizations

In 2006, Eén and Sörensson proposed translations from pseudo-Boolean con-
straints into SAT, of which one used sorting networks [21]. Inspired by Bailleux
and Boufkhad’s use of a unary encoding in translating cardinality constraints [6],
Eén and Sörensson equipped a counting circuit with unary sorters for the transla-
tion of pseudo-Boolean constraints. The resulting weight sorting network, as we
identify it here, derives a mixed-radix number encoded in propositional variables
that captures the satisfied weight sum of the input expression. This number is then
conveniently comparable with the bound of the constraint, and is so used to infer
the satisfiability of the constraint.

In 2009, Bailleux et al. provided a refined translation, the (global) polynomial
watchdog [7]. The modified translation is arguably simpler, and the circuit it syn-
thesizes is monotone. In the context of circuits, this entails that every intermediary
signal output by any of its subcircuits can only either remain or become true when-
ever an input signal is flipped from false to true. Equivalently, the circuit consists
of only logical OR and AND gates. In practice, whereas monotone circuits tend to
be larger than the most consice non-monotone circuits for the same task, they have
also been found on many occasions to inhibit more favourable propagation proper-
ties when encoded for SAT solvers relying on unit propagation. In the translation,
the monotonicity property is attained by offsetting both the left and the right-hand
sides of the involved inequality by an additional tare. This is due to the fact that,
with a careful choice of the tare, the final comparison part of the circuit becomes
trivial and furthermore, depends only on the most significant digit of the mixed-
radix number to be calculated. In the original translation of Eén and Sörensson, it
is the production of the digits of lower significance that breaks the monotonicity.

In terms of asymptotical complexity the sorting networks and global poly-
nomial watchdog are of equal size when the same sorters and mergers are used.
Namely, if we let b stand for the total number of bits in the binary representa-
tions of input weights, the number of atoms and rules in a weight sorting network

40
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is O(b× (log b)2) [21].
In the following sections we first explore how to encode mixed-radix num-

bers in logic programs. Then we provide the counting and comparing parts of the
translation, respectively. Finally, we look into opportunities to optimize the trans-
lation, first by choosing a suitable mixed-radix base, and then by reusing identical
merging constructions within and between sorters.

4.1 Mixed-Radix Numbers
In this section we briefly discuss the uses of mixed-radices and introduce no-
tation for dealing with them. A mixed-radix base is a possibly infinite vector
B = 〈b1, b2, . . .〉 of positive integers. Special cases of such include the binary and
decimal bases 〈2, 2, . . .〉 and 〈10, 10, . . .〉, respectively. In this work we solely deal
with finite mixed-radix bases B = 〈b1, . . . , bk〉, and refer to them as bases when
clear from the context. The radices b1, . . . , bk of a base B are listed from the least
significant b1 to the most significant bk, and the ith radix is accessed with Bi = bi.
The length of a base is denoted with |B|.

For a nonnegative integer x in base B, we write xi for the ith least significant
digit of x in B. In order to conveniently reconstruct the value of a number when
given its representation in a base, we define the cumulative product of all radices
preceding the ith position to be the ith place value of the base and denote it with
BΠ

i =
∏i−1

j=1 Bj . Now the value v of a mixed-radix number x in base B can be
calculated as

v =

|B|∑
i=1

(
xi ×BΠ

i

)
. (4.1)

Example 7 For the base B = 〈4, 2, 5, 9〉 and number x = 326 = 7352B,

B1 = 4, BΠ
1 = 1, x1 = 2, x1 ×BΠ

1 = 2,

B2 = 2, BΠ
2 = 4, x2 = 5, x2 ×BΠ

2 = 20,

B3 = 5, BΠ
3 = 8, x3 = 3, x3 ×BΠ

3 = 24,

B4 = 9, BΠ
4 = 40, x4 = 7, x4 ×BΠ

4 = 280.

Observe that 2 + 20 + 24 + 280 = 326. �

Traditionally it is imposed that every digit of a number x is less than the cor-
responding radix, that is, xi < Bi. Under this constraint, there are two aspects
to note. First, a number expressed in a finite base is restricted by the above to
a finite domain, namely the set {0, . . . ,

∏|B|
i=1 Bi − 1}. Second, every number

x expressible in B then has a unique representation in which the digits of x in
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B are uniquely determined by the value of x. In this work we deal with mixed-
radix numbers both under, and free from this constraint, and call them respectively
unique and non-unique mixed-radix numbers.

As in Section 2.3, we aim to encode numbers using literals. Therefore we
hierarchically refine the discussed mixed-radix notation by encoding the individ-
ual digits expressed using such notation as unary literals. In particular, for a base
B = 〈b1, . . . , bk〉, a mixed-radix literal number L is encoded with

L = 〈〈l1,1, . . . , l1,b1−1〉,
〈l2,1, . . . , l2,b2−1〉,

...
〈lk,1, . . . , lk,bk−1〉〉,

(4.2)

where for each i ∈ {1, . . . , k} the sequence 〈li,1, . . . , li,bi−1〉 stands for the ith

unary literal digit in the domain {0, . . . , bi − 1}. Thus, denoting each such digit
with Li, we can access the value of the ith digit under an interpretation M with
vM(Li). Now, if we write x = 〈vM(L1), . . . , vM(Lk)〉, then the value of L under
M is given by equation (4.1) and we denote it as well with vM(L). Furthermore,
we refer to the set of atoms occurring in L with At(L) =

⋃k
i=1 At(Li).

Example 8 A variable in the domain {0, . . . , 359} can be represented in the base
B = 〈4, 2, 5, 9〉 with the following mixed-radix literal

〈〈a1,1, a1,2, a1,3〉,
〈a2,1〉,
〈a3,1, a3,2, a3,3, a3,4〉,
〈a4,1, a4,2, a4,3, a4,4, a4,5, a4,6, a4,7, a4,8〉〉.

A particular value for the variable, such as 153 = 3401B, is expressed by the
interpretation {a1,1, a3,1, a3,2, a3,3, a3,4, a4,1, a4,2, a4,3}.

As a final note, we let the subscript-base notation distribute over weighted
expressions, such that an expression of the form

(k ≤ 〈l1 = w1, . . . , ln = wn〉)B (4.3)

is recognized as a shorthand for

kB ≤ 〈l1 = (w1)B, . . . , ln = (wn)B〉. (4.4)
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4.2 Digit-wise Sums
The weight sorting network translation begins by a selection of a suitable base
B. For now we will not concentrate on the selection, but simply assume that one
has been chosen. However, in practice, the binary base tends to work well. The
next step after selecting a base is to collect the literals of the weight rule under
consideration into buckets, of which there is at most one for each radix. Sup-
pose the weight rule has the set of weighted literals L = W . Each bucket can
be presented as a weighted expression. For the ith digit of base B, we denote the
corresponding bucket expression with L = Wi standing for the weighted literals
l1 = (w1)i, . . . , ln = (wn)i. For illustration purposes let us first consider the bi-
nary base B = 〈2, . . .〉 and the weighted expression L = W . Now each bucket
L = Wi contains the weighted literal lj = 1 for exactly those j for which the ith

bit of wj is 1. The bucket expression formula L = Wi also works for non-binary
bases, in the way that a literal is ”collected” into a bucket possibly many times
by using non-unit weights. The precise number of such multiples is given by the
appropriate digit (wj)i for bucket i and weighted literal lj = wj . In the following
we give an example of collecting weights to buckets.

Example 9 In base B = 〈3, 4, 2, 6〉 the weights W = 〈137, 34, 27〉 are repre-
sented as 5112B, 1031B, and 1010B. Their digits are gathered to buckets as fol-
lows:

W1 = 〈2, 1, 0〉,
W2 = 〈1, 3, 1〉,
W3 = 〈1, 0, 0〉,
W4 = 〈5, 1, 1〉.

�

The buckets are collected in order to add up the numbers on a per-position
basis, or digit-wise. Whereas more traditionally, a set of numbers would be added
up two at a time, here we first add their digits together within the buckets, in paral-
lel. This approach, orthogonal to such tradition, allows us to leave carry digits for
later consideration and lends itself to convenient, circuit-based implementations.

In our notation, a program that sorts a bucket L = Wi into a sequence Hi =
〈hi,1, . . . , hi,k〉 is given by WSortern,k(L = Wi, H), where n stands for the num-
ber of literals in L, and k for the sum of weights in Wi. The combined outcome of
sorting every bucket is a mixed-radix literal that represents the sum of the numbers
in base B, although not uniquely. That is, a particular satisfied weight sum may
be expressed by several different interpretations of the output. This complicates
efforts to compare the sum with a given bound and therefore, in the following
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section, issues arising from the lack of uniqueness are considered. A formula for
the rules deriving the digit-wise sum is given in the following definition.

Definition 15 The digit-wise sorter program from the set of weighted literals L =
W into the non-unique mixed-radix literal H in base B is the set of rules

WDigitwiseSorterB(L = W,H) =

|B|⋃
i=1

WSorter(L = Wi, Hi). (4.5)

The value encoded in the digit-wise sum captures the satisfied sum of the weighted
input expression. This relation is formalized in the following proposition, in the
setting that all input literals are positive. In this particular case, the digit-wise
sorter forms an NLP and the existence of a unique minimal model is guaranteed.

Proposition 4 For a weighted expression L = W with At∼(L) = ∅, a non-unique
mixed-radix literal H in base B, an interpretation X ⊆ At(L), and

M = LM(WDigitwiseSorterB(L = W,H) ∪ {a. | a ∈ X}),

it holds that vX(L = W ) = vM(H).

Continuing from the previous example, and demonstrating the program (4.5),
we present two examples.

Example 10 The digit-wise sum of W = 〈137, 34, 27〉 in base B = 〈3, 4, 2, 6〉 is

〈2 + 1 + 0,

1 + 3 + 1,

1 + 0 + 0,

5 + 1 + 1〉,

which evaluates to 〈3, 5, 1, 7〉, and represents 7153B = 198 = 137 + 34 + 27. �

Example 11 Given the weighted expression 〈L = W 〉 standing for the list of
weighted literals 〈a = 137, b = 34, c = 27〉, the digit-wise sum of L = W in base
B is encoded in H = 〈〈h1,1, . . . , h1,3〉, 〈h2,1, . . . , h2,5〉, 〈h3,1〉, 〈h4,1, . . . , h4,7〉〉 as
defined by WDigitwiseSorterB(L = W,H) =

WSorter3,3(〈a = 2, b = 1, c = 0〉, 〈h1,1, . . . , h1,3〉) ∪
WSorter3,5(〈a = 1, b = 3, c = 1〉, 〈h2,1, . . . , h2,5〉) ∪
WSorter3,1(〈a = 1, b = 0, c = 0〉, 〈h3,1〉) ∪
WSorter3,7(〈a = 5, b = 1, c = 1〉, 〈h4,1, . . . , h4,7〉)
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which can be implemented with

Sorter3(〈a, a, b〉, 〈h1,1, h1,2, h1,3〉) ∪
Sorter5(〈a, b, b, b, c〉, 〈h2,1, h2,2, h2,3, h2,4, h2,5〉) ∪
Sorter1(〈a〉, 〈h3,1〉) ∪
Sorter7(〈a, a, a, a, a, b, c〉, 〈h4,1, h4,2, h4,3, h4,4, h4,5, h4,6, h4,7〉).

�

A graphical representation of a digit-wise sorting program is given in Fig-
ure 4.1. The displayed construction is used as the first step to translate, for a
chosen bound k, the rule

a← k ≤ 〈b = 13, c = 7, d = 1, e = 11, f = 19, g = 19, h = 10,

∼i = 13,∼j = 6,∼k = 13,∼l = 3,∼m = 4〉.
(4.6)

4.3 Unique Mixed-Radix Sums
The outcome of the digit-wise sum described so far is a non-unique mixed-radix
representation of the sum of all satisfied weight rule body literals. Furthermore,
the digits in the representation are encoded in unary. The lack of uniqueness in the
representation is unwelcome because it complicates the comparison with a bound.
Therefore the next step is to transform the sum into a proper, unique representation
of itself. This is conducted by merging the sorted output of each bucket, except for
the first one, with carry-digits extracted from less significant output. The process
begins by merging carries extracted from the least-significant bucket 1 with the
output of bucket 2. The output of the above step is then used as the source of
carries to be merged with the output of bucket 3, which is then likewise combined
with the output of bucket 4 and so on. Each of these steps produces a unary literal
number with significance corresponding to that of the used input bucket. There
are two things to consider here: how the extraction of carries takes place, and
what is left for output. The first of these points is straightforward. Computing the
carries corresponds to dividing the unary input number with the significance ratio
of the input and output digits. In the case of levels i and i + 1, the ratio is Bi.
The division, as described in Section 4.1 can be implemented by picking, in this
case, every Bi

th digit of the unary input literal in question. The second point is
implemented similarly, but with the modulo operation in place of division. This
requires negation and unfortunately complicates correctness considerations. The
output of the modulo operations, combined with the output of the most significant
merger, make up a unique mixed-radix representation of the sum. The part of a
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Figure 4.1: A WDigitwiseSorterB program composed of naı̈ve unary sorters for
accumulating the digit-wise sum of the weighted expression on the left in base
B = 〈3, 2, 2, b4〉 with b4 > |H4|. Derivations stemming from a model M of the
program, which satisfies the literals c, d, e,∼j,∼l, and ∼m, are designated with
filled markers. From right to left, the sorters count in multiples of BΠ

1 = 1, BΠ
2 =

3, BΠ
3 = 6, and BΠ

4 = 12. The mixed-radix literal H produced as the outcome
encodes the sum vM(H) = 0×12+6×3+3×3+5×1 = 7+1+11+6+3+4 = 32.
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Figure 4.2: A WCarryB program for deriving a unique mixed-radix literal S from
the digit-wise sum H in Figure 4.1, with the added requirement that B4 > |S4|.
As part of a WCarryMergerB, each merger for 1 < i ≤ |B| produces Ri by
combining Hi with carries, extracted from an intermediate literal digit Ri−1 via
the division Ri−1/Bi−1. For example, since B1 = 1, every third literal of R1 = H1

is used in deriving R2. For 1 ≤ i < |B|, the intermediary Ri is also processed into
the unique output literal digit Si by a modulo program, as part of WCarryModuloB.
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sorting network used to form the unique mixed-radix representation is shown in
Figure 4.2, for four input buckets.

A program for extracting carries as described above is defined in the following.

Definition 16 The carry merger program from the mixed-radix literal H to the
mixed-radix literal R in base B, for which we set R1 = H1, is the set of rules

WCarryMergerB(H,R) =

|B|⋃
i=2

Merger(Ri−1/Bi−1, Hi, Ri). (4.7)

The carry merger program only concerns with propagating carries upwards. The
most significant digit of the resulting mixed-radix literal R is unique to the satis-
fied sum encoded in the input H . The less significant digits of R are not deducted
for the carries extracted from them. To remedy this, we define the program.

Definition 17 The carry modulo program from the mixed-radix literal R with
At∼(R) = ∅ to the unique mixed-radix literal S in base B, for which we set S|B| =
R|B|, is the set of rules

WCarryModuloB(R, S) =

|B|−1⋃
i=1

ModuloBi
(Ri, Si). (4.8)

The programs (4.7) and (4.8) can together be used to turn a non-unique mixed-
radix literal into a unique one as follows.

Definition 18 The carry program from the mixed-radix literal H to the unique
mixed-radix literal S in base B is the set of rules

WCarryB(H,S) = WCarryMergerB(H,R) ∪WCarryModuloB(R, S) (4.9)

The mixed-radix literal S defined as the outcome of Definition 17, and thus also 18,
is guaranteed to be unique in the sense described in Section 4.1. That is, every
value expressible in S corresponds to a unique interpretation of At(S). Further-
more, the leap from the input H to the output S preserves the encoded value as
determined by vM(·) of (4.1).

We may now combine Definitions 15 and 18 to construct a program that forms
the unique mixed-radix sum of a given weighted expression.

Definition 19 The counting weight sorting network program from the weighted
expression L = W to the mixed-radix literal S in base B is the set of rules

WSortingNetworkcountB (L = W,S) =

WDigitwiseSorterB(L = W,H) ∪WCarryB(H,S).
(4.10)
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In Definition 19, the symbol H refers to an auxiliary (non-unique) mixed-radix
literal that captures the digit-wise sum. Now we have defined the counting part
of the translation. An example of the underlying circuit is given in Figure 4.3,
for a base with 4 digits. The figure contains components responsible for all of the
phases described so far from first to last in order from bottom to top.

4.4 Bound Checking via Comparing
A mixed-radix literal number as produced in the previous section can be compared
with a constant. The following program checks whether a given mixed-radix lit-
eral number is greater than or equal to a specified constant.

Definition 20 The lexicographical comparison program between a mixed-radix
literal S in base B and a constant k, with an output atom h, is the set of rules

WCompareB,k(S, h) =

{
c0.

h← c|B|.

}
∪
|B|⋃
i=1


Si,0.

ci ← Si,ki+1.

ci ← Si,ki , ci−1.

 . (4.11)

The symbols c1, . . . , c|B| in (4.11) denote hidden auxiliary atoms with the follow-
ing behaviour. If out of the numbers encoded in the first i digits of S and k, the
one extracted from S is no less than that from k, the atom ci is derived. The last
of these atoms, c|B|, and likewise the visible output atom h, thus tells whether the
value of S is greater than or equal to k. This is guaranteed by the logical conse-
quences of the program. In a context where only positive, fixed literals are given
for input, the program moreover has a unique minimal model that captures the
intended output in the following way.

Proposition 5 For a mixed-radix literal S with At∼(S) = ∅ in base B, a literal
h, an interpretation X ⊆ At(S), and

M = LM(WCompareB,k(S, h) ∪ {a. | a ∈ X}),

it holds that h ∈M if and only if k ≤ vX(S).

Joining together the parts for counting and comparing, from Definitions 19
and 20, respectively, gives the full translation program as follows.

Definition 21 The full weight sorting network program of a weight rule h← k ≤
〈L = W 〉 is the set of rules

WSortingNetworkfullB,k(L = W,h) =

WSortingNetworkcountB (L = W,S) ∪WCompareB,k(S, h).
(4.12)
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Figure 4.3: The combined counting part of a sorting network, composed of the
programs in Figures 4.1 and 4.2.

Due to the use of negation in (4.12), it is not immediately clear whether visible
strong equivalence between the input rule and the output program holds, even if
only positive literals are given for input. This issue is, however, averted in the
following section where a modified and simplified translation is considered.

4.5 Tares for Simplification
There are special cases of input parameters for which the comparison program
of the previous section can be simplified away almost completely, leaving behind
only a single rule. This is possibly when all but the most significant digit of the
bound k is non-zero. The reasoning is that, in such a case, all but one of the
auxiliary atoms in the lexicographical comparison program (4.11) are true under
any model. Consequently, the program is indifferent to all but the most significant
digit of the mixed-radix input literal. Most importantly, this nullifies the need for
computing residues when a sorting network is constructed solely for comparing
with k. In other words, no WCarryModulo and therefore no Modulo program
needs to be included. Moreover, any weight rule is transformable to a form which
satisfies these premises. A translation resulting from these simplifications has
been given in [7] in the context of pseudo-Boolean constraints and SAT. In this
section, we identify the required special case of weight rules, the simplifications
applicable for them, and a transformation into them.
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In the special case, in base B we prefer a bound k such that k′i = 0 for all
i ∈ {1, . . . , |B| − 1}. In other words, we seek a bound represented in B in the
form k = 〈0, . . . , 0,m〉 = BΠ

|B| ×m, where m is a nonnegative integer. That is,
k must be divisible by BΠ

|B|. With such a bound, the auxiliary atoms c1, . . . , c|B|−1

in the lexicographical comparison program (4.11) can be turned into facts. The
remaining auxiliary atom c|B|, can be defined with c|B| ← S|B|,k|B| . Additionally,
the output h can be defined directly with h ← S|B|,k|B| . Consequently, only the
most significant digit S|B| of the mixed-radix input literal S is required for the
comparison. Thus, the weight sorting network program (4.10), when constructed
for such a comparison, can be simplified by substituting the contained carry pro-
gram (4.9) with only its first component, the carry merger program (4.7). That is,
the other component, the carry modulo program (4.8), can be dropped.

Regarding the criteria of the special case, we can transform any given weight
rule a ← k ≤ 〈L = W 〉 into a form satisfying them. Namely, into a ← k + t ≤
〈L = W,> = t〉, where > is a fact and t is an appropriately chosen nonnegative
integer. We call t a tare and choose it to be the least nonnegative integer causing
k + t to be divisible by BΠ

|B|. That is, t = (BΠ
|B| × dk/BΠ

|B|e) − k. In the trans-
formation, both sides of the involved inequality are adjusted by an equal amount,
and thus the adjustment is sound. The changes described in this section are sum-
marized in the following definition.

Definition 22 The simplified weight sorting network program of the weighted ex-
pression L = W in base B for testing the bound k into h using the tare t is the
program

WSortingNetworktareB,k,t(L = W,h) =

WDigitwiseSorterB(〈L = W,> = t〉, H)

∪WCarryMergerB(H,S)

∪ {h← S|B|,(k+t)|B| .}.

(4.13)

If L consists of only atoms and no negative literals, then the rules of (4.13)
form a positive NLP, in contrast to the “full” translation scheme (4.12), in which
negation is in use. This makes it easier to prove the correctness of the translation,
even in the case that L contains negative literals as well.

Proposition 6 For a base B, a weight rule h← k ≤ 〈L = W 〉 with At∼(L) = ∅,
an interpretation X ⊆ At(L), and

M = LM(WSortingNetworktareB,k(L = W,h) ∪ {a. | a ∈ X}),

it holds that h ∈M if and only if k ≤ vX(L = W ).
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Theorem 1 For a base B, a weight rule h← k ≤ 〈L = W 〉, and a tare t, it holds
that WSortingNetworktareB,k,t(L = W,h) ≡vs {h← k ≤ 〈L = W 〉.}.

Proof Let P = {h← k ≤ 〈L = W 〉.} and Q = WSortingNetworktareB,k,t(L =
W,h) with A = Atv(P ) = Atv(Q) = {h} ∪ At(L). First assume that At∼(L) =
∅. Now P and Q are positive and one needs to show that MMAth(P )(P ) =v

MMAth(Q)(Q). The program P has no hidden atoms, that is, Ath(P ) = ∅, and
thus the classical models of P give MMAth(P )(P ) =

{X ⊆ At(P ) | X |= h if X |= k ≤ 〈L = W 〉 } =

{X ∪ {h | k ≤ vX(L = W )} | X ⊆ At(L)}. (4.14)

For every interpretation X over the input literals At(L), by Proposition 6 there is
a minimal model M of Q agreeing with X that is unique to X . In notation, M =
LM(Q ∪ {a. | a ∈ X}). Furthermore, h ∈ M if and only if k ≤ vX(L = W ).
Consequently, the hidden minimal models of Q can be written as MMAth(Q)(Q) =

{M,M ∪ {h} | X ⊆ At(L),M = LM(Q ∪ {a. | a ∈ X})},

and their projections onto the visible signature A as

{M,M ∪ {h} | X ⊆ At(L),M = LM(Q ∪ {a. | a ∈ X}) ∩ A} =

{M,M ∪ {h} | X ⊆ At(L),M = X ∪ {h | k ≤ vX(L = W )}}. (4.15)

The sets (4.14) and (4.15) are equal. Now define a bijection f with f(X) =
LM(Q ∪ {a. | a ∈ X}) and f−1(X) = X ∩ A. The hidden minimal models
of P and Q are visibly equal via f , that is, MMAth(P )(P ) =v MMAth(Q)(Q). By
Proposition 2, it follows that P ≡vs Q.

Now let N = At∼(L) and assume that N 6= ∅. All atoms occurring negatively
in either P or Q are in L and consequently N = At∼(P ) = At∼(Q). Now
construct the set of substitution pairs S = {ba ← ∼a. | a ∈ N} and apply it to
obtain P [S] and Q[S]. Since N ⊆ A, by Proposition 3, it is sufficient to show that
MMAth(P )(P [S]) =v MMAth(Q)(Q[S]). The programs P [S] and Q[S] are positive,
and thus =v follows as shown for any positive programs. In conclusion, P ≡vs Q.

�

This theorem entails that all weight rules in any program can be substituted
with their translations defined in (4.13), and the answer sets of the combined trans-
lated program are guaranteed to visibly match those of the original.
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4.6 Base Heuristic
The sorting network translation is parametrized by a mixed-radix base, and in this
section we consider the selection of that base. The translation works with any
base capable of expressing numbers up to the sum of body weights and a tare.
The choice between different bases affects the magnitude and number of digits
required to represent the intermediary and final outputs of the normalization. The
larger the digits, the larger sorters and mergers are produced. Thus an optimization
problem is presented, and finding a base that leads to small translation sizes is of
interest. Previously, this problem has been approached by using a binary base [7],
or by exhaustively enumerating primes less than 20 for use as radices [21]. More-
over, in [16] this optimal base problem, as it is formalized therein, is solved with
exhaustive search algorithms capable of optimizing given measures of the base.

In contrast to previous work, we use a greedy heuristic in constructing the
mixed-radix base. The radices are chosen one by one from the least to the most
significant based on estimates of the consequential translation size. In the follow-
ing it is assumed, for simplicity, that max{w1, . . . , wn} ≤ k ≤

∑n
j=1 wj . More-

over, the order of the size of sorters and mergers used as primitives is denoted
by z(n) = n× (log n)2. When selecting the ith radix bi, we form an intermediary
base B = 〈b1, . . . , bi−1,∞〉, and calculate s =

∑n
j=1 ((wj)i mod b). Then, in

terms of Wi = (w1)i, . . . , (wn)i, we pick

bi = arg max
b is prime, b≤max
{2,(w1)i,...,(wn)i}

(
z(s) + z (n/2 + min {ds/be , bki/bc}+ 1)

+ z (3/4× n)× log2(1/(2× n× b)×
∑n

j=1(wj)i)

)
.

The idea of the three added terms is to generously estimate the size of the prim-
itives entailed by the choice of a prime b. The first reflects the size of the sorter,
and the corresponding merger, of the ith bucket expression. Similarly the second
addend corresponds to the immediately following components, and the third to the
entire remaining structure. Radices are picked until

∏i
j=1 bj > max{w1, . . . , wn}.

At this point, any tare is assigned either to t = 0, if none is used, or to t =
(dk/

∏i−1
j=1 bje ×

∏i−1
j=1 bj)− k. To be able to express the sum of all body weights,

combined with the tare, the most recently picked, and most significant radix is
adjusted to bi = b(

∑n
j=1 wj + t)/

∏i−1
j=1 bjc + 1. Then the selection finishes and

returns the base B = 〈b1, . . . , bi〉. In Chapter 6, we compare the effect of heuris-
tically chosen mixed-radix bases with binary bases having bj = 2 for 1 ≤ j < i.
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Figure 4.4: Two merge-sorter structures for the same sorting task.

4.7 Structure Sharing
The digit-wise sorter in (4.5) consists of a number of sorters. When implemented
via merge-sorting, discussed in Section 3.3, the sorters are recursively composed
of mergers. Each sorter is responsible for ordering the contents of a bucket expres-
sion into a sorted sequence, and each merger for ordering a subsequence. When
sorters are taken for trees of mergers, the combined construction forms a forest of
mergers containing the input literals as a common set of leaves. Such a graph rep-
resentation of a weight sorting network for the rule (4.6) with the bound k = 24
is given in Figure 4.5. In this section, a novel structure sharing algorithm is in-
troduced to exploit this view into the structure of the digit-wise sorter, and to
compress the forest, and thereby to compress the corresponding normal logic pro-
gram as well. Compactness is gained by reshaping the forest and eliminating
duplicated subtrees. The role of reshaping is to expand opportunities for duplicate
elimination. The latter is for instance achievable by structural hashing [21].

To illustrate the idea of the algorithm, we begin by considering an abstract set-
ting. To this end, observe that merging unary numbers, or simply adding numbers
up, is a commutative and associative operation. Let us denote any operator with
these properties by ⊕. For operands a, b, and c, due to commutativity, the expres-
sion a⊕ b equals b⊕ a, and due to associativity, the expression (a⊕ b)⊕ c equals
a⊕ (b⊕c). These identities for reordering expressions can be used analogously in
reshaping merge-sorter structures as shown in Figure 4.4. Furthermore, reorder-
ing generally helps to reveal common subexpressions. With the help of auxiliary
variables, or auxiliary atoms in case of logic programs, such common structure
can be captured and reused. In the following, we demonstrate this idea behind the
algorithm in the abstract setting with ⊕.
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Figure 4.5: A regular weight sorting network built from mergers. The mergers denoted with thick outlines form a digit-wise
sorter together with the mergers below them. Those above them belong to a carry program. The division markings give the
radices of the base B = 〈3, 2, 2, b4〉, which are used to derive carry digits by division. The number 2 at the top indicates that
the second output digit of the top merger gives the final result.
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Algorithm 1 Plan Structure Sharing
1: function PLAN(L = W,B)
2: let C := {[l(w1)i

1 , . . . , l
(wn)i
n ] | 1 ≤ i ≤ |B|}

3: while ∃S ∈ C : ∃x, y ∈ S : x 6= y

4: let (x, y) := arg max
x,y∈

⊎
C

∑
S∈C

{
#S(x)×#S(y) if x 6= y

(#S(x)× (#S(x)− 1))/2 if x = y

5: let z := [x, y]
6: for each S ∈ C
7: let j := min{#S(x),#S(y)}

8: set S :=

{
(S \ [xj, yj]) ] [zj] if x 6= y

(S \ [x2bj/2c]) ] [zbj/2c] if x = y

9: return C

Example 12 Consider some x, y, z, produced from operands a, b, c, d, e, f using

x = ((a⊕ b)⊕ c)⊕ e, y = (b⊕ c)⊕ d, z = ((a⊕ c)⊕ e)⊕ f.

By commutativity and associativity, the right-hand sides can be reordered as

x = (a⊕ e)⊕ (b⊕ c), y = (b⊕ c)⊕ d, z = ((a⊕ e)⊕ c)⊕ f.

Due to the reordering, we may capture two common subexpressions in auxiliary
variables u = a⊕e and v = b⊕c, and reduce the number of required applications
of ⊕ in total from eight to six by further writing

x = u⊕ v, y = v ⊕ d, z = (u⊕ c)⊕ f.

�

To carry out structure sharing, we propose Algorithm 1. Thereby, we denote
a multiset S on a set X = {x1, . . . , xn} of ground elements with respective mul-
tiplicities i1, . . . , in by [xi1

1 , . . . , x
in
n ]. The superscript ij can be omitted from x

ij
j

if ij = 1. The multiplicity ij of xj ∈ X is referred to by #S(xj), and xj is said
to have ij occurrences in S. For any x /∈ X , #S(x) = 0. Furthermore, we write
x ∈ S iff x ∈ X and #S(x) > 0. We denote the multiset sum of two multisets
S1 and S2 by S1 ] S2, defined such that x ∈ S1 ] S2 iff x ∈ S1 or x ∈ S2, and
that for x ∈ S1 ] S2, #S1]S2

(x) = #S1
(x) + #S2

(x). At the beginning of the
algorithm, the bucket expressions L = Wi are gathered into a collection C of mul-
tisets, where the literals L = 〈l1, . . . , ln〉 form the common ground elements and
the digits Wi = 〈(w1)i, . . . , (wn)i〉 give the multiplicities for 1 ≤ i ≤ |B|. Then,
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Figure 4.6: A structure-shared weight sorting network.

iteratively, pairs (x, y) of elements with heuristically maximal joint occurrences
in C are selected to form new multisets z replacing common occurrences of (x, y)
in each S ∈ C. The introduced multisets z are in the sequel handled like regu-
lar ground elements, and the algorithm proceeds until every S ∈ C consists of a
single multiset. The resulting collection C generally comprises nested multisets,
which we interpret as a directed acyclic graph, intuitively consisting of a number
of overlaid trees with the literals l1, . . . , ln as leaves, multisets z as roots, and in-
ner nodes giving rise to mergers. A structure-shared version of the construction
shown in Figure 4.5 is displayed in Figure 4.6.

Example 13 Considering the weighted literals a = 9, b = 3, c = 7, d = 2, e =
5, f = 4 and the base B = 2, 2, 9, Algorithm 1 yields the following merge-sorter
structure:

C := {[a, b, c, e], [b, c, d], [a2, c, e, f ]},
C := {[[a, e], b, c], [b, c, d], [a, [a, e], c, f ]},
C := {[[a, e], [b, c]], [[b, c], d], [a, [a, e], c, f ]},

...
C := {[[[a, e], [b, c]]], [[[b, c], d]], [[[a, [a, e]], [c, f ]]]}. �

Intuitively, Algorithm 1 begins with a specification C of which multisets to
sort and terminates with a modified specification C that gives the structure of
shared merge-sorters for doing so. In order to ensure that the initial multisets are
reflected correctly in the final result, we define canonical multisets c(·) associ-
ated with occurrences of tree nodes. For an m-fold occurrence lm of a literal l, we
let c(lm) = [lm]. For an m-fold occurrence Sm of a multiset S = [xi1

1 , . . . , x
in
n ], we

let c(Sm) =
⊎n

j=1 c(x
m×ij
j ). The algorithm can now be shown to maintain the fol-

lowing invariant: for every root multiset S ∈ C, the canonical subset c(S) is fixed.
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Intuitively, the invariant states that the leaves of the trees stay unaltered. To see
this, consider two literals or multisets x and y, and their combination z = [x, y], as
in the algorithm. Furthermore, take any S ∈ C, and let j = min{#S(x),#S(y)}.
Assuming x 6= y, it needs to be shown that

c(S) = c((S \ [xj, yj]) ] [zj]).

Due to the conservative choice of j, the above follows if

c([xj, yj]) = c([zj]).

This holds since

c([zj]) = c(zj) = c([x, y]j) = c(xj) ∪ c(yj) = c([xj, yj]).

The case for x = y holds as well because then

c(zbj/2c) = c([x2]bj/2c) = c(x2bj/2c).

The canonical multisets of tree nodes consequently capture and preserve the
bucket expressions, as multisets, throughout the execution of Algorithm 1. Fur-
thermore, each iteration replaces at least one common occurrence of a pair of
elements with a multiset, which then forms an internal node. Given finite input,
the algorithm thus always terminates. If the internal nodes are viewed, not only
as multisets, but as blueprints of mergers, the resulting collection of merge-sorters
will not only preserve the canonical multisets, but also sort the corresponding
bucket expressions. In summary, the outcome can be interpreted as a structurally
shared digit-wise sorter.

Algorithm 1 can be modified to initialize the collection C differently, in order
to decrease the runtime of the algorithm without significantly affecting the quality
of the results. We call the modified structures head-started digit-wise sorters and
weight sorting networks. Let G = {l1, . . . , ln}. For the modification, we first
make use of an equivalence relation, say R, defined for literals li, lj ∈ G such that
li R lj iff wi = wj . We denote the partition of G into equivalence classes by

F = {{l′ ∈ G | l R l′} | l ∈ G}.

Intuitively, F consists of subsets of the initial ground elements of C, which can
be used to reconstruct C, and which are in a sense maximal. The modification
is completed by replacing C on line 2 of Algorithm 1, denoted here by C =
{S1, . . . , S|B|}, with any collection C ′ = {S ′1, . . . , S ′|B|} of multisets having F for
ground elements such that c(S ′i) = c(Si) for 1 ≤ i ≤ |B|. This can be achieved
by repeatedly performing, for any S ∈ C and subset A ⊆ S such that A ∈ F , the
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Figure 4.7: A head-started, structure-shared weight sorting network.

step S := (S \A)] [A], until no such A exists. The intention is to add a sorter for
each equivalence class A ∈ F to the translation. Moreover, each substitution step
above indicates a reference to the output of the sorter of a class A. The effect of
head start to the weight sorting network in Figure 4.6 is displayed in Figure 4.7.
The initialization steps used to obtain the sorters in the latter figure are illustrated
in the following.

Example 14 Given the rule (4.6), the corresponding partition to equivalence
classes is

F = {{b,∼i,∼k}, {c}, {d}, {e}, {f, g}, {h}, {∼j}, {∼l}, {∼m}}

and therefore, by performing head start, the initial collection{
[b, f, g,∼i,∼k], [c, e, f, g, h,∼j],
[e, h,∼l,∼m], [b, c, d, e2, f, g, h,∼i,∼k,∼m]

}

is replaced with{
[[b,∼i,∼k], [f, g]], [c, e, [f, g], h,∼j],
[e, h,∼l,∼m], [[b,∼i,∼k], c, d, e2, [f, g], h,∼m]

}
.

�



Chapter 5

Weight Rule Simplification

In this chapter we aim to simplify weight rules before or even without translating
them. Simplification opportunities provide for smaller weight rules to translate,
which in turn lead to potentially more compact normalizations. In Section 5.1 we
consider possibilities for dropping body literals from a rule as well as substituting
several literals. Aside from the simplest cases, the used techniques require the
addition of auxiliary atoms and rules and careful checking for the correctness
of the performed steps. In Section 5.2 we analyze the quotients and residues of
weights obtained when dividing them with a selected divisor. Such an operation
reveals a number of opportunities for reducing the magnitudes of body weights.
This operation can be useful especially in combination with translation techniques
that depend on these magnitudes, such as those developed in Chapter 4.

5.1 Removal of Literals
In this section, we describe simplification techniques that aim to reduce the num-
ber of body literals in a given weight rule. The first of these techniques is designed
to simply drop literals from a weight rule without any compensation steps. The
approach proceeds by checking literals one by one in order from literals with small
weights to literals with large weights. Let us assume we have a weighted expres-
sion 〈L = W, l = w〉 where L = W stands for l1 = w1, . . . , ln = wn, in which
w ≤ wi for 1 ≤ i ≤ n, and which appears in a rule of the form

a← k ≤ 〈L = W, l = w〉. (5.1)

The goal is now to identify whether the weighted literal l = w can be dropped
from the rule (5.1) without any effect. This is done as follows. If there is no
subset X ⊆ At(L), such that vX(L = W ) < k ≤ vX(L = W )+w, then (5.1) can
be safely substituted with (2.1). Under this condition, the weighted literal l = w

60
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never holds a pivotal role in surpassing the bound. In particular, if

w < k −max
{∑

i∈I

wi

∣∣∣ I ⊆ {1, . . . , n},∑
i∈I

wi < k
}
,

then the substitution can proceed.

Example 15 The rule

a← 50 ≤ 〈b1 = 30, b2 = 20, b3 = 15,∼c1 = 10,∼c2 = 3〉.

can be substituted with

a← 50 ≤ 〈b1 = 30, b2 = 20, b3 = 15,∼c1 = 10〉.

Indeed, the subset sum of 30, 20, 15, and 10 that is greatest among those less than
50 is 45. It holds that 45 + 3 < 50, and thus ∼c2 = 3 can be excluded.

A second technique, described in the following, similarly relies on a special
case. Suppose we again have a rule of the form (5.1), with the exception that
now k ≤ w. Such a large weight w dominates the bound k in the sense that it is
sufficient alone in satisfying the body. In this case, the weighted literal l = w can
be dropped, and its effect compensated by an added normal rule. Specifically, if
k ≤ w, then (5.1) can be substituted with

a← k ≤ 〈L = W 〉.
a← l.

(5.2)

The above simplification step generalizes to pairs of literals as follows. Suppose
we have a pair of weighted literals l = w and l′ = w′, such that w ≤ w′, and a
rule of the form

a← k ≤ 〈L = W, l = w, l′ = w′〉. (5.3)

Assume further that k ≤ w + w′. In preparation for the actual simplification step,
observe that, under the stated assumptions, the rule (5.3) can be substituted with

{a← k ≤ 〈L = W, q = w, l′ = w′ − w〉.} ∪ Cmp(l, l′, q, a). (5.4)

In (5.4), an auxiliary atom q is introduced to capture the disjunction of l and l′. The
program Cmp is given as Section 3.3. The transformation from (5.3) to (5.4) leads
to a weight rule with a lowered weight for a single body literal. This presents an
opportunity to apply the previously described literal removal simplification, now
targeted at l′ = w′ − w. The combination leads to the following new simplifica-
tion method. Assume still that w ≤ w′ and k ≤ w + w′. Now if

w′ − w < k −max
{∑

i∈I

wi + v
∣∣∣ I ⊆ {1, . . . , n}, v ∈ {0, w},∑

i∈I

wi + v < k
}
,



CHAPTER 5. WEIGHT RULE SIMPLIFICATION 62

then (5.3) can be substituted with

{a← k ≤ 〈L = W, q = w〉.} ∪ Cmp(l, l′, q, a). (5.5)

When applicable, this simplification technique thus reduces the number of body
literals in a weight rule at the cost of introducing normal rules. If applied repeat-
edly, the number of added rules is linear in the number of removed body literals.
In light of the superlinearity of the weight rule translations presented so far, in
Chapters 3 and 4, the simplification technique can be regarded favourable.

Example 16 Consider the rule

a← 50 ≤ 〈b1 = 30, b2 = 20, b3 = 15,∼c1 = 10,∼c2 = 33〉. (5.6)

By letting l = b1 and l′ = ∼c2, it can be substituted with the program

a← 50 ≤ 〈q = 30, b2 = 20, b3 = 15,∼c1 = 10〉.
a← b1,∼c2.

q ← b1.

q ← ∼c2.

The justification follows from Example 15, given that 33− 30 = 3.

A final technique presented in this section is designed to extract a normal
part from a weight rule. Suppose we have a weight rule of the form (2.1) with
〈L = W 〉 defined as before with the addition that w1 ≥ w2 ≥ · · · ≥ wn. Now, let
us split 〈L = W 〉 in two parts after the greatest index p, for which∑

1≤i≤n
i 6=p

wi < k.

The induced prefix l1, . . . , lp forms what we call the normal part of the rule, con-
stituting all literals invariably required for the body to be satisfied. If even one of
them is unsatisfied, the remaining literals and weights are insufficient to meet the
bound. In the case that 0 < p, the normal part can be extracted from the weight
rule (2.1) by creating a substitute program, using a new bound k′ = k−

∑p
i=1 wi,

as follows.

q ← k′ ≤ 〈li+1 = wi+1, . . . , ln = wn〉.
a← l1, . . . , li, q.

(5.7)

In (5.7), the symbol q denotes a new auxiliary atom. In the corner case that p = n,
the outcome can be written plainly as

a← l1, . . . , ln. (5.8)
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Example 17 Consider the simplified weight rule from Example 16

a← 50 ≤ 〈q = 30, b2 = 20, b3 = 15,∼c1 = 10〉.

The atom q forms a normal part since 20 + 15 + 10 < 50, and the rule can be
simplified into

q′ ← 20 ≤ 〈b2 = 20, b3 = 15,∼c1 = 10〉.
a← q, q′.

By combining Examples 16 and 17, and applying further simplifications re-
cursively, the rule (5.6) fully translates into the program

a← b1,∼c2. a← q, q′.

q ← b1. q′ ← b2.

q ← ∼c2. q′ ← b3,∼c1.

The rules on the left are from Example 16. Out of the rules on the right, the first
is from Example 17, the second is derived as (5.2) and the third as (5.8).

5.2 Residue Analyzis
In this section the goal is to reduce the weights of literals in the body of a weight
rule, instead of the number of such literals. The motivation for reducing weights
stems from the fact that lower weights provide for more concise translations, for
example, when using weight sorting networks of Chapter 4.

Consider a weight rule (2.1) containing a weighted expression 〈L = W 〉 =
〈l1 = w1, . . . , ln = wn〉 and a bound k > 2. Let us suppose that we have chosen
a positive integer d < k. The choice of d determines weight quotients Q and
residues R as follows

Q = 〈q1, . . . , qn〉 = 〈bw1/dc, . . . , bwn/dc〉,
R = 〈r1, . . . , rn〉 = 〈w1 mod d, . . . , wn mod d〉.

Assuming that
∑

R < d, the above decomposition reveals four conditions on
which the rule can be simplified.

Case 1 If bk/dc 6∈ {vI(L = Q) | I ⊆ At(L)}, then substitute (2.1) with a ←
bk/dc ≤ 〈L = Q〉. The idea is that if the sum of the residues of the weights
is small enough, then the residues matter only if the quotients can result in
a “tie”.
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Example 18 Consider the rule

a← 72 ≤ 〈b1 = 22, b2 = 40, b3 = 20, b4 = 63, b5 = 22〉.

Using the divisor d = 10, it holds that bk/dc = 7, Q = 〈2, 4, 2, 6, 2〉, and
{vI(L = Q) | I ⊆ At(L)} = {2, 4, 6, 8, 10, 12, 14, 16}, implying that the
rule can be substituted with

a← 7 ≤ 〈b1 = 2, b2 = 4, b3 = 2, b4 = 6, b5 = 2〉.

Case 2 If
∑

R < (k mod d) then substitute (2.1) with a ← bk/dc+ 1 ≤
〈L = Q〉.

Example 19 For the rule

a← 39 ≤ 〈b1 = 11, b2 = 20, b3 = 10, b3 = 30, b3 = 12〉,

using the divisor d = 5, it holds that k mod d = 4, R = 〈1, 0, 0, 0, 2〉, and∑
R = 3, implying that the rule can be substituted with

a← 8 ≤ 〈b1 = 2, b2 = 4, b3 = 2, b4 = 6, b5 = 2〉.

Case 3 If for some i ∈ {1, . . . , n}, it holds that k mod d ≤ ri and ri =
∑

R, then
set qi := qi+1 and substitute (2.1) with a← bk/dc+ 1 ≤ 〈L = Q〉. In this
setting, there is one non-zero residue and it is meaningful on its own. Since
there is only one, it can be accounted for by incrementing the respective
quotient.

Example 20 For the rule

a← 72 ≤ 〈b1 = 20, b2 = 40, b3 = 27, b4 = 60, b5 = 20〉,

using the divisor d = 10, it holds that k mod d = 2, R = 〈0, 0, 7, 0, 0〉, and
for i = 3 that ri =

∑
R, implying that the rule can be substituted with

a← 8 ≤ 〈b1 = 2, b2 = 4, b3 = 3, b4 = 6, b5 = 2〉.

Case 4 If k mod d ≤ minR then substitute (2.1) with a ← bk/dc ≤ 〈L = Q〉.
Intuitively, the requirement here is for the residues of the weights to always
overcome the residue of the bound unless all literals in L are false. Under
this condition, the impact of the residues is fixed. In the case that all of the
literals are false, given that 1 < d < k, both the original and new bodies are
unsatisfied and no discrepancy arises.
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Example 21 For the rule

a← 71 ≤ 〈b1 = 21, b2 = 42, b3 = 21, b4 = 63, b5 = 21〉,

using the divisor d = 10, it holds that k mod d = 1, R = 〈1, 2, 1, 3, 1〉, and
minR = 1, implying that the rule can be substituted with

a← 7 ≤ 〈b1 = 2, b2 = 4, b3 = 2, b4 = 6, b5 = 2〉.

It is nontrivial to choose a suitable divisor d that leads to satisfied premises for
any of the simplification steps. However, a plausible approach is to try a selected
number of divisors 1 < d < k to see if any of them yields success.



Chapter 6

Experiments

In this chapter, we describe a tool implementing several of the normalizations
presented and discussed in this thesis. The implemented normalizations are eval-
uated experimentally, in terms of the number of produced rules, as well as several
performance metrics reported by the state-of-the-art ASP solver CLASP. To this
end, a group of benchmark classes have been selected and solved, both before
and after the normalization of extended rules. These experiments have been re-
peated with various normalization techniques in order to compare their effect on
the search performance. The relevant tool is discussed briefly in Section 6.1, the
size experiments are presented in Section 6.2, and the performance experiments
in Section 6.3. Moreover, the implementations have been subject to automated
equivalence checks, in order to ensure their correctness for sampled cardinality
and weight rules. A further performance evaluation of the computational effort
involved is presented in Section 6.4.

6.1 LP2NORMAL2
The techniques presented in this thesis are implemented in the tool LP2NORMAL2
(v. 1.10).1 The program reads and writes logic programs in the output format of
the grounders LPARSE and GRINGO and the input format of solvers like SMOD-
ELS and CLASP. Given such input, the tool normalizes any included extended
rules, and in particular cardinality and weight rules, into normal rules. The out-
come is a normal logic program that is visibly strongly equivalent to the original
program. An example command line for using the tool is shown in Figure 6.1.
In this section, we briefly describe how the relevant methods are implemented in
LP2NORMAL2, and how they differ from their formal definitions.

1Available at http://research.ics.aalto.fi/software/asp.
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gringo logic-program.lp | lp2normal2 | clasp

Figure 6.1: An example command line for grounding, normalizing, and finding
an answer set for a logic program.

The behaviour of LP2NORMAL2 is controlled through command line options,
which can be used to prohibit the normalization of given types of rules, or deter-
mine the applied normalization techniques. A list of all options and their effects
is printed in response to --help and --help=2 arguments, in a short and long
format, respectively. Regarding cardinality rules, there are options for the tech-
niques presented in Chapter 3, in addition to a number of other methods. Among
them, there is an automatic cardinality rule translation that, at the moment of writ-
ing this thesis, constructs a merge-sorter built from primitives chosen automat-
ically from odd-even mergers and totalizer components. The choices are made
in order to reduce the sum of the numbers of used auxiliary atoms and rules, in
comparison to either technique used alone. This is also used as a default setting
for cardinality rule normalization.

Options for weight rules cover translations based on sequential weight coun-
ters and weight sorting networks. The latter are implemented using tares, and by
default, heuristically chosen mixed-radices and structure sharing, as described in
Sections 4.5, 4.6, and 4.7. Furthermore, the merging and sorting primitives used
in building weight sorting networks are determined by options used to specify car-
dinality rule normalizations. For example, if odd-even merge-sorters are chosen,
then they are used for normalizing cardinality rules and constructing weight sort-
ing networks. In the experiments following in this chapter, the default, automatic
mode is used for weight sorting networks.

Moreover, all of the cardinality and weight rule normalizations described in
this thesis have been enhanced with a form of symbolic evaluation. The construc-
tions underlying the normalizations generally produce more information than nec-
essary to perform a single bound check. Therefore, the constructions are symbol-
ically evalated to include only required rules. In terms of implementation, this is
a matter of tracing a cone of influence that originates from a wanted portion of the
output and propagates deeper into the constructions. In the process, required aux-
iliary atoms are identified, and afterward, the rules needed to define the remaining
necessary atoms are generated. The pruning can result in noticeably more con-
cise normalizations. Finally, the weight rule simplification techniques presented
in Chapter 5 are implemented mostly as described, with the addition that the in-
cluded residue analysis technique is carried out by considering prime numbers
less than the bound and the greatest body weight for divisors. Moreover, all po-
tentially demanding subset-sum-type calculations involved in the simplifications
are aborted if results are not obtained quickly. The effect of symbolic evaluation
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is discussed in Section 6.2, where the size of translations is under experimenta-
tion, and the significance of the weight rule simplifications in Section 6.3, where
solving performance is being considered.

6.2 Compactness of Normalizations
In this section, we study the compactness of the normalization techniques covered
in this thesis experimentally. Despite knowning asymptotic limits for the size of
normalizations, including the ones discussed in this section, the witnessed size
of translations in practice is of interest. The normalization techniques covered in
this thesis can all be improved by pruning, or symbolic evaluation, bringing in
a factor that is not conveyed in the known theoretical limits. For the purpose of
these experiments, the size of a translation is measured as the number of produced
normal rules. The number relates to the amount of memory required by tools used
to process the results, and thus may further affect the performance of such tools.
Actual performance experiments will, however, follow in Section 6.3.

The cardinality rule normalization techniques, discussed in Chapter 3, were
evaluated for conciseness, and the results are given in Figure 6.2. For each lit-
eral count 1 ≤ n ≤ 300 and a bound 1 ≤ k ≤ n, a weight rule (2.1) with
W = 〈1, . . . , 1〉 was normalized using four techniques. The numbers of pro-
duced normal rules are displayed using level curves, such that each gap between
two curves represents a difference of 1,000 normal rules. For each normalization,
parameters with k close to n/2 gave rise to the largest translations. The concis-
est normalization scheme out of the four turned out to be the automatic trans-
lation choosing between odd-even mergers and totalizer components, resulting in
slightly above 10,000 normal rules at maximum within the chosen range of param-
eters. The automated translation scheme was a slight improvement over odd-even
merge-sorters, described in Section 3.3, which were encoded in over 11,000 rules
at worst. In contrast to the asymptotic upper bound ofO(k× (log n)2) for the size
of odd-even merge-sorters, the results indicate an almost symmetric benefit from
bounds k close to n as well as to 1. In turn, totalizers, from Section 3.3, required
well over 20,000 rules. Finally, sequential counters, discussed in Section 3.1, ex-
ceeded 40,000 in the number of rules in the worst case. In light of these results,
the odd-even merge-sorting technique is significantly more concise compared to
the totalizer and sequential counter based techniques. Despite this, the incorpo-
ration of totalizer components within odd-even merge-sorting structures leads to
size benefits, as witnessed by the conciseness of the automatic technique.

In Figure 6.3, similar size measurements for weight rule normalizations are
shown. We drew 5 weight rules at random for every combination of a bound per-
centage p between 1 % and 100 %, and a number of bits b between 1 and 1,000.
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Figure 6.2: Level curves of numbers of rules in (a) sorters using automatically se-
lected mergers, (b) odd-even merge-sorters, (c) totalizers and (d) sequential coun-
ters.
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Figure 6.3: Level curves of numbers of rules in (a) weight sorting networks
with sharing and mixed-radices, (b) weight sorting networks without sharing nor
mixed-radices, and (c) sequential weight counters. The curves are set 10,000 nor-
mal rules apart for (a) as well as (b), and 500,000 normal rules apart for (c).
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The random sampling was carried out, by first placing b bits at random into a bi-
nary m × n-matrix of m = 2 × b/(1 + blog2(b)c) rows and n = 1 + blog2(b)c
columns. Every column 1 ≤ i ≤ n was then interpreted as the binary repre-
sentation of a body weight wi, and the bound of the rule was chosen to be k =
(p/100 %) ×

∑n
i=1 wi. Each drawn weight rule was normalized separately, and

the median number of normal rules for every set of 5 weight rules was recorded
for display in the figures. These experiments were repeated using three normal-
ization techniques: weight sorting networks with and without mixed-radices and
structure sharing, as described in Chapter 4, and sequential weight counters, as
described in Section 3.2.

The effect of the proposed mixed-radix and structure sharing techniques in
the results is positive, and the effect strengthens as the number of bits in weights
increases. Interestingly, significant reductions in the number of rules due to the
bound take place only for markedly low and high percentages. Regarding the
sequential weight counter, the produced normal programs are far less concise for
most of the chosen range of parameters. Moreover, the sampling technique brings
about dramatic jumps in the results around powers of two for values of b. At these
barriers the number of literals, n, increases, and evidently leads to more complex
sequential weight counters, whereas the weight sorting network based techniques
do not show such visible behaviour. Instead, the latter appear to depend on the
number of bits more directly, as suggested by the order of their size, b× (log2 b)

2.
As with the results for cardinality normalizations, presented in Figure 6.2, the
effect of the bound is positive for both low and high values, and for all of the tried
translations. This holds despite the fact that, as far as we know, no asymptotic limit
given for the techniques reflects this. We attribute this behaviour to the applied
symbolic evaluation, discussed in Section 6.1.

6.3 Effect on Solver Performance
In this section we assess the effects of different normalization techniques on solver
performance. We begin by looking into benchmark problems with cardinality
rules and then more general weight rules. For performance evaluation, instances
are first preprocessed by performing simplification and normalization after which
they are passed on to the ASP solver CLASP (v. 3.0.4) [27]. All of the benchmarks
are run sequentially on a Linux machine with Intel Xeon E5-3650 CPUs. Each
run is allowed a maximum of 3GB of memory and 20 minutes of CPU time.

Table 6.1 displays sums of runtimes in seconds, numbers of constraints and
conflicts reported by the back-end solver CLASP on listed benchmark classes us-
ing different normalization options. The “Native” column lists results obtained
using CLASP without normalizations, and instead relying on the native weight
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handling built into CLASP [26]. For these and all other results, internal transla-
tions of CLASP were turned off as well. The following three columns correspond
to merge-sorting based normalizations of Section 3.3, which were applied prior
to running the back-end solver. The merge-sorting columns vary by the used
mergers from an “Automatic” selection of mergers, to “Odd-even” mergers of
Section 3.3, to “Totalizers” [7]. The automatic mode chooses between the latter
two options, for each encoded merger, and aims to minimize the sum of output
atoms and rules as described in Section 6.1. The “Sequential” column stands for
the sequential counting based normalization from Section 3.1. The problem in-
stances belong to classes of NP-complete problems from the second answer set
programming competition [19]. Only benchmark problems containing significant
cardinality rules are included and only cardinality rules are normalized. The first
two benchmark classes, ConnectedDominatingSet and WeightBoundedDominat-
ingSet, involve graph theoretical search problems in which the size of a solu-
tion is constrained by a cardinality rule. The latter of these contains many small
weight rules in addition, which are left as is. The following benchmark problem,
WireRouting, includes several cardinality rules with bounds of 1, 2, and 3. The
remaining three problems contain small cardinality rules with bounds of 1 and
2. On the last three problems, all of the cardinality rules belong to special cases
handled in a simplification stage of LP2NORMAL2. In particular, a cardinality
rule with n body literals and a bound of 1 is replaced with n normal rules, and a
cardinality rule with a bound of 2 and a limited number of body literals n ≤ 6 is
replaced with (n× (n− 1))/2 rules.

Regarding the results in Table 6.1, all of the employed normalization tech-
niques show significant improvements in terms of solving time on the Connected-
DominatingSet benchmark class. The increase in constraints due to normaliza-
tion is modest on these instances, while the number of conflicts is reduced by an
order of magnitude. On the WeightBoundedDominatingSet instances, normaliza-
tions lead to significant numbers of added constraints, and even deteriorate search
in terms of conflicts. The native configuration terminates faster in consequence.
Concerning the WireRouting problem, the addition of rules generated via normal-
ization is balanced by a decrease in the number of conflicts encountered during
search. Measured in runtime, the effect of these changes is neutral when using
the automated encoding selection, and negative when using the other normaliza-
tion methods. For the GraphColoring instances, the effect of normalization is
less significant. Both constraints and conflicts increase in numbers leading to in-
creased runtimes as well, although the net effect is insignificant. Similarly on the
Labyrinth instances, normalizations yield an adverse outcome on all three mea-
sures: time, constraints and conflicts are increased due to normalizations. On the
Solitaire benchmark, normalizations appear to be mildly beneficial. As for the dif-
ferent normalization strategies, there is a clear division between the merge-sorting
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# Instances
↓ Benchmark Native Automatic Odd-even Totalizer Sequential
21 C-DominatingSet 937 22 33 15 62

# Constraints 116,512 142,834 150,217 160,169 171,297
# Conflicts 50,412,862 317,198 451,457 268,140 753,748

29 WB-DominatingSet 47 225 261 758 3,455
# Constraints 21,943 287,563 265,921 679,025 941,592
# Conflicts 1,622,922 2,325,754 2,147,653 5,581,009 18,012,508

23 WireRouting 585 548 747 769 876
# Constraints 702,514 1,365,094 1,378,994 1,360,296 1,402,470
# Conflicts 2,092,700 1,564,975 1,607,154 1,873,924 1,714,031

29 GraphColouring 21,117 21,480 21,625 21,407 21,435
# Constraints 143,400 179,130 179,130 179,130 179,130
# Conflicts 148,988,685 155,723,398 160,301,493 167,312,140 155,370,861

29 Labyrinth 2,910 5,557 5,105 4,844 4,827
# Constraints 26,041,106 28,987,293 28,987,293 28,987,293 28,987,293
# Conflicts 1,681,467 2,025,191 2,025,137 2,025,200 2,024,988

27 Solitaire 7,875 6,400 6,372 6,341 6,365
# Constraints 480,249 690,228 690,228 690,228 690,228
# Conflicts 24,809,684 21,482,729 20,254,937 17,101,669 20,859,466

150 Summary 33,471 34,232 34,143 34,134 37,020
# Constraints 27,505,724 31,652,142 31,651,783 32,056,141 32,372,010
# Conflicts 229,608,320 183,439,245 186,787,831 194,162,082 198,735,602

Table 6.1: Sums of runtimes in seconds, numbers of constraints, and conflicts
encountered by CLASP on instances with cardinality rules.

based techniques and the sequential counter. On the last three benchmark classes,
the normalization results are indifferent to the used normalization scheme due
to the performed simplifications. Between the different mergers, the most pro-
nounced difference is realized on the WeightBoundedDominatingSet instances,
on which the use of totalizers leads to over twice the constraints in comparison to
odd-even mergers. On the first three benchmark classes, automatic merger selec-
tion brings gains on average in comparison to both odd-even merge-sorters and
totalizers.

Table 6.2 contains sums of runtimes, constraints and conflicts obtained on
another set of benchmarks and normalization schemes. For this set of results,
cardinality rules are left as is, and only weight rules are normalized. Prior to nor-
malization, the simplification strategies of Chapter 5 are applied until a fixpoint is
reached. The “Native” column is as before. The following four columns indicate
normalizations utilizing four configurations of techniques presented in Chapter 4.
The “Mixed” header indicates the use of a heuristically chosen mixed-radix base,
described in Section 4.6, in contrast to a binary base indicated by the “Binary”
header. Likewise, the “Shared” headers indicate that structural sharing of Sec-
tion 4.7 is enabled, while “Independent” headers indicate that it is not. The re-
maining two normalizations indicated by “SWC” and “ROBDD” are included for
reference, and are based on Sequential Weight Counting described in Chapter 3
and Reduced Ordered Binary Decision Diagrams (ROBDDs) [2]. The benchmark
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# Instances Mixed Binary
↓ Benchmark Native Shared Independent Shared Independent SWC ROBDD
11 Bayes-Find 202 30 164 246 165 1,721 2,290

# Constraints 34,165 347,450 417,768 325,033 353,381 4,948,058 4,976,930
# Conflicts 12,277,288 181,957 822,390 1,056,764 868,056 616,930 713,076

11 Bayes-Prove 1,391 492 1,316 631 890 2,587 2,682
# Constraints 34,165 344,637 414,967 322,212 350,596 4,947,717 4,976,746
# Conflicts 52,773,713 1,393,935 3,293,955 1,933,103 3,165,312 1,459,105 1,113,222

11 Markov-Find 2,426 2,770 1,845 2,682 2,966 5,224 5,276
# Constraints 1,580,164 2,176,067 2,296,063 2,309,147 2,436,769 36,699,300 3,693,6376
# Conflicts 1,771,663 1,276,599 1,092,467 1,130,776 1,178,797 318,771 374,477

11 Markov-Prove 2,251 3,294 3,428 3,255 3,229 5,402 5,370
# Constraints 1,580,164 2,182,157 2,302,171 2,307,991 2,435,603 36,694,525 36,931,627
# Conflicts 1,806,525 1,788,800 1,720,270 1,521,272 1,452,042 317,555 388,755

38 Fastfood 10,277 12,843 14,156 13,756 13,479 17,867 18,268
# Constraints 928,390 2,880,725 3,640,856 2,826,606 3,667,538 11,860,656 12,893,886
# Conflicts 122,423,130 47,566,08 42,794,938 44,148,615 49,035,512 8,940,612 5,975,006

12 Inc-Scheduling 257 1,340 1,330 1,481 1,581
# Constraints 2,304,166 7,161,226 8,166,527 7,274,513 8,570,210
# Conflicts 82,790 127,628 134,987 218,224 173,849

15 Nomystery 4,907 4,236 3,332 4,290 3,512 4,739 5,311
# Constraints 845,321 1,678,580 2,330,329 1,725,458 2,459,603 5,115,156 5,124,634
# Conflicts 10,765,572 3,216,072 2,161,566 3,207,353 2,092,378 2,047,501 1,834,677

109 Summary 21,715 25,009 25,576 26,345 25,827
# Constraints 7,306,535 16,770,842 19,568,681 17,090,960 20,273,700
# Conflicts 201,900,681 55,551,076 52,020,573 53,216,107 57,965,946

109 Summary 21,715 24,758 26,611 26,524 26,063
without 7,306,535 17,279,805 21,632,440 17,665,922 22,358,451
simplification 201,900,681 52,264,536 46,809,044 56,247,153 51,814,629

Table 6.2: Sums of runtimes in seconds, numbers of constraints, and conflicts
encountered by CLASP on instances with weight rules.

classes are selected from five application areas, dealing with Bayesian network
structure learning [18, 32], Markov network structure learning [17], the Fastfood
logistics problem [10] as well as the Incremental scheduling and Nomystery plan-
ning tasks from the fourth answer set programming competition [4]. Each instance
from the first two classes originally contained an optimization statement, which
was converted into a weight rule. More specifically, we created two variants of
each original problem, indicated by the suffixes “Find” and “Prove” in the table:
the first using the tightest bound possible while keeping the problem satisfiable,
and the second by adding the most generous bound possible while keeping the
problem unsatisfiable. The other instances already were decision problems. The
last six rows display summaries, and for the last three, simplification techniques
of Chapter 5 are turned off.

From Table 6.2, we find that the proposed normalizations lead to mostly re-
duced number of conflicts and solving time on both Bayesian problem variations.
At best, the number of constraints increases by roughly an order of magnitude,
whereas conflicts reduce by two orders of magnitude. There is, however, high
variance between the different option combinations, which in this case appear to
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favor both the use of mixed-radix bases and structure sharing. The reference nor-
malizations lead to reduced conflicts as well, but the translation sizes in terms
of constraints refrain the total solving time from decreasing. On the Markov in-
stances, solving times fluctuate only slightly from one technique to the other. For
the Fastfood benchmark, normalizations vastly decrease the number of encoun-
tered conflicts during the search, and the SWC and ROBDD based techniques
more than the others. Despite this, the negative effect of the number of introduced
constraints leads to higher total runtimes for all normalization schemes. Interest-
ingly, on the Incremental scheduling instances, both constraint and conflict counts
increase due to normalizations, and together amount to significantly higher run-
times. The problem size resulting from the SWC and ROBDD translation schemes
is even prohibitive here, and in view of missing entries, caused by surpassed mem-
ory limits, they are also omitted in summaries. The normalizations yield runtime
improvements on the Nomystery planning problem, although the proposed struc-
ture sharing appears to hurt performance in this case. Regarding simplifications,
the summaries indicate that they amount to noticeable reductions in translation
size, but do not lead to apparent, consistent runtime improvements.

Overall, we conclude that both cardinality and weight rule normalizations are
mostly beneficial for the subsequent search in terms of numbers of conflicts. For
certain benchmark classes the reductions lead to decreased solving time, whereas
for other classes the increased translation sizes counterweigh the benefits and lead
to increased solving time. Out of the inspected normalization techniques, the
proposed ones proved to be more succint and lead to better runtimes than the
reference techniques. The novel structure sharing algorithm decreased translation
sizes noticeably with both mixed-radix and binary bases.

The LP2NORMAL2 (v. 1.7) preprocessing tool was submitted to the fifth an-
swer set programming competition [12] as part of several translation-based solv-
ing systems. One of the submitted systems, LP2NORMAL2+CLASP, relates with
the approach followed in this section by first normalizing instances and then using
CLASP as a solving back-end. However, for the submission normalizations were
configured to apply only conditionally such that very large cardinality and weight
rules were left unnormalized. Regarding benchmarks, the competition bench-
mark suite consisted of four tracks classified according to language features. The
LP2NORMAL2+CLASP system came in first place in the “Advanced” track of the
competition, which specifically involved cardinality and weight rules.2The suc-
cess gives an indication of the feasibility of the translation-based approach even
in a truly competitive setting.

2The results are available at https://www.mat.unical.it/aspcomp2014.

https://www.mat.unical.it/aspcomp2014
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Figure 6.4: Level curves of logarithmic runtimes of CLASP for verifying that all
VSE-models of a weight rule map to VSE-models of its normalization, when using
weight sorting networks with mixed-radices and sharing. Contour lines are drawn
at doubling time intervals and annotated with runtimes in seconds.

6.4 Correctness Testing
In the developement of the normalization tool LP2NORMAL2, we have performed
automated equivalence checking as a quality control procedure. Using the tools
CLASSIC, LPEQ, and CLASP, we have verified that normalizations of selected car-
dinality and weight rules remain visibly strongly equivalent to the original rules.
These tools allow, given enough computational resources, to prove the existence or
lack of a counterexample to the visible matching of the VSE-models of a weight
rule and its normalization. Namely, by a search of a VSE-model of one pro-
gram P , which does not visibly correspond to a VSE-model of the other pro-
gram Q, the tools either prove or disprove the visible strong equivalence P ≡vs Q,
discussed in Section 2.2. In this section, we present experimental results on the
computational effort required to perform such equivalence checks.

Similarly to the size experiments in Section 6.2, we sampled weight rules from
those having a bound set to a ratio between 1 % and 100 % of their total body
weight, and the number of bits in their weights ranging between 1 and 80. For
each pair of these parameters, 5 weight rules were drawn again, and the median
verification time taken to prove that VSE-models of the weight rule have corre-
spondents within the VSE-models of the normalization was recorded. The timing
results for weight sorting networks with mixed-radices and sharing are given in
Figure 6.4. We carried out such tests also without mixed-radices and sharing,
as well as using sequential weight counters. Furthermore, we checked the other
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direction as well, to ensure that VSE-models of the normalizations mapped to
VSE-models of the original weight rules. Intriguingly, these other results were,
by visual inspection, identical to the shown ones to such an extent that they are
not displayed. In contrast to the earlier size measurements, the level curves here
are set apart logarithmically, such that each gap corresponds to a doubling of ver-
ification time. Taking the changed range of the x-axis into account, Figure 6.4
indicates a primarily exponential relation between verification time and transla-
tion size displayed in Figure 6.3(a).



Chapter 7

Discussion

This chapter provides a discussion of related work and conclusions.

7.1 Related Work
Translations for cardinality rules include schemes in which satisfied literals are
counted one by one. One of such translations is structured in a grid formation that
consists ofO(k×n) atoms and rules, and which has been previously used in ASP
in [33, 41]. In this work, we followed an almost identical sequential counter-based
translation proposed for SAT in [42]. A number of other cardinality translations
rely on merge-sorting, in which input is split and added up recursively in halves,
and intermediate results are expressed in unary notation. The strategy used for
adding up the numbers varies between translations. For one, odd-even merge-
sorters of size O(n × (log n)2) were introduced as circuits in [8] and have since
been used to encode cardinality constraints into SAT [5, 21] and ASP [10]. Sim-
ilarly, pairwise sorters introduced in [39], which are of the same asymptotic size,
have been used in SAT encodings [14, 15]. Another type of a merger gives rise to
totalizers [7] consisting of onlyO(n×log n) atoms at the expense ofO(n2×log n)
clauses or rules. In [3], the choice of different sorting and merging primitives is
exploited by picking the most suitable primitive individually for each input size.
We implemented a similar automated mode in LP2NORMAL2 for making choices
between odd-even and totalizer-based components. Designed for especially small
bounds k, an asymmetric, cascading structure resulting in cardinality networks
is proposed in [5] as an alternative to merge-sorters, while still relying on merg-
ing primitives. The so far mentioned cardinality translations are monotone in the
sense that they can be viewed as circuits constructed solely of AND and OR gates.

A more concise, linear sized SAT encoding that lacks this property is given
by Warners in [45], where partial sums of satisfied literals are added up in binary
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representation. The encoding of Warners is applicable to weight rules in general,
and in terms of size is of the order of O(n × logwmax), where wmax denotes the
largest weight. Regarding monotone translations, the sequential counters in [42]
generalize to weight rules as shown in [31] and as described in this thesis. In
the generalized translation, satisfied literals are again counted one by one, and
only the domain of the added numbers increases. The size of the translation re-
mains O(k × n). A very similar translation is presented in the context of ASP
in [24], where weight rules are studied in terms of nested expressions. The trans-
lation therein relies on a dynamic programming approach. Moreover, Abı́o et al.
[2] encode pseudo-Boolean constraints, which are similar to weight rules, as Re-
duced Ordered Binary Decision Diagrams, and further encode them in SAT. These
three translations, given in [24], [31], and [2], relate closely to each other, and our
experimental results on the latter two gave similar results for both.

A completely different approach to the above, introduced in [21] and followed
in [7], relies on performing arithmetic in a mixed-radix or binary base using merg-
ers and sorters for adding numbers. Furthermore, in [7] the arithmetic calculations
are offset by the use of a tare. The resulting translation is consequently simpler
and monotone. For this work, we adapted the latter, (global) polynomial watch-
dog translation of [7], originally used in SAT, for use in ASP by making use
of sorting and merging primitives encoded in ASP. We developed the translation
further by using heuristically chosen mixed-radix bases and a structure sharing
algorithm to compress the translation. Regarding mixed-radix bases, a more ex-
haustive method for finding such is used in [21] and complete search algorithms
are presented in [16]. The order of the size of these translations, in [21], [7], and
this thesis, is the same as that of a sorter with as many inputs as there are bits in
the binary representation of all input weights. Given the different sorters used in
each work, this makes respective orders of b× (log b)2, b2× log b, and b× (log b)2,
where b stands for the number of bits.

7.2 Conclusions
Cardinality and weight rules are important primitives in ASP. They allow a con-
cise representation of statements about the cardinality of sets of literals, and more
generally, of weighted sums of literals. Similar concepts exist in other research
areas, and weight rules can be closely equated with, for example, 0-1 linear in-
teger inequalities and pseudo-Boolean constraints. In this thesis, we explored a
translation-based approach to implementing support for these extended rule types
in ASP. Several strategies for substituting cardinality and weight rules with sets
of normal rules were studied. In this way, weighted expressions found within the
bodies of weight rules were encoded using normal logic programs.
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A number of existing translations from the areas of SAT and ASP were de-
scribed and defined. They were used both for reference, and for use as building
blocks of novel translation schemes for weight rules. The existing and proposed
techniques were compared with each other, as well as native weight rule solving
techniques, by carrying out experimental studies on the conciseness of the trans-
lations and subsequent solving performance. In order to realize the experiments, a
normalization tool was developed and implemented. By both measures, concise-
ness and performance, the novel methods led to improvements compared to earlier
translation-based techniques. Using any of the translations generally reduced the
number of encountered conflicts during search, which was, however, counterbal-
anced by the size of the encodings. On certain benchmark classes, the net effect on
solving time was in clear favour of the novel translations. Furthermore, we simi-
larly assessed the effect of weight rule simplification methods, and found them to
slightly improve the compactness of subsequently executed translations, at no sig-
nificant impact on the efficiency of search, however. The developed normalization
tool LP2NORMAL2 was submitted to the fifth answer set programming competi-
tion, where it won the first place in the “Advanced” track of the competition as
part of a selectively normalizing system with CLASP as back-end. The results em-
phasize the feasibility and promise of the translation-based approach, as well as
the studied and developed translation schemes in particular.

The proposed translations were further studied in terms of correctness. To this
end, equivalence notions for judging program transformations were used to prove
that the proposed weight rule translations are correct particularly in the context
of ASP, and within any sensible context program. In this process, a proof tech-
nique for showing the visible strong equivalence of programs from a wider class
of programs with limited use of negation was devised. In addition to these for-
mal considerations, we also studied correctness aspects experimentally, by using
automated tools to prove the correctness of our implementations of translations
for randomly drawn instances of weight rules. The time requirements to perform
these checks were noted, and found especially feasible for small weight rules.
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