
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Polina Rozenshtein

Discovering dynamic communities
in interaction networks

Master’s Thesis
Espoo, August 11, 2013

Supervisor: Professor Aristides Gionis, Aalto University

Advisors: Prof. Aristides Gionis
Nikolaj Tatti, D.Sc.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80712815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Polina Rozenshtein

Title:
Discovering dynamic communities
in interaction networks

Date: August 11, 2013 Pages: 64

Major: Information and Computer Science Code: T-110

Supervisor: Professor Aristides Gionis

Advisors: Prof. Aristides Gionis
Nikolaj Tatti, D.Sc.

Very often online social networks are defined by aggregating information regarding
the interaction between the nodes of the network. For example, a call graph is
defined by considering an edge for each pair of individuals who have called each
other at least once — or at least k times. Similarly, an implicit social network in
a social-media site is defined by considering an edge for each pair of users who
have interacted in some way, e.g., have made a conversation, commented to each
other’s content, etc. Despite the fact that this type of definitions have been used
to obtain a lot of insights regarding the structure of social networks, it is obvious
that they suffer from a severe limitation: they neglect the precise time that the
interaction between network nodes occurs.

In this thesis we propose to study interaction networks, where one considers
not only the underlying topology of the social network, but also the exact time
instances that nodes interact. In an interaction network an edge is associated
with a time stamp, and multiple edges may occur for the same pair of nodes.
Consequently, interaction networks offer a more fine-grained representation that
can be used to reveal otherwise hidden dynamic phenomena in the network.

In the context of interaction networks, we study the problem of discovering com-
munities, which are dense in terms of the underlying network structure, and
whose edges occur in short time intervals. Such communities represent groups
of individuals who interact with each other in some specific time instances, for
example, a group of employees who work on a project and whose interaction in-
tensifies before certain project milestones. We prove that the problem we define
is NP-hard, and we provide effective algorithms by adapting techniques used to
find dense subgraphs. We perform extensive evaluation of the proposed methods
on synthetic and real datasets, which demonstrates the validity of our concepts
and the good performance of our algorithms.

Keywords: community detection, graph mining, social-network analysis,
dynamic graphs, time-evolving networks, interaction networks

Language: English

2

Acknowledgements

Working on my thesis I had a great opportunity to be a part of Data Mining
group at ICS department. It was my pleasure to work in that outstanding
research team of bright people.

I highly appreciate the opportunity to be supervised by the head of Data
Mining Group Prof. Aristides Gionis. This thesis was made possible only by
his supportive guiding and effective discussions.

I am also truly thankful to my advisor Dr. Nikolaj Tatti for his enormous
help and patience. The work in this thesis could not be that smooth and
exciting without his high interest and participation.

I would like to thank my friends from Macadamia program, and my
friends, who did not forget me even staying at a long distance. Thank you
Ilya, Anya and Lena. I especially appreciate priceless and endless chats with
my best friend Roman. Being full of joy and fun these conversations lightened
up long nights of my hard studies. All the best to you, aniue.

Finally, I would like to express my deep gratitude to my parents Inna
and Yuriy, grandparents Olga and Nikolay, brother Egor, and, of course, to
my beloved husband Boris and cat Yuki for their love, support, and patience.

Espoo, August 11, 2014

Polina Rozenshtein

3

Contents

1 Introduction 8
1.1 Introduction to community detection 8
1.2 Community detection in interaction networks 9
1.3 Focus of this thesis . 11
1.4 Acknowledgments and additional references 12

2 Related work 13
2.1 Static community detection 13
2.2 Dynamic community detection 13
2.3 Snapshot-based community detection 14
2.4 Interaction-based community detection 15

3 Dense community in interaction network 17
3.1 Preliminaries and notation . 17
3.2 Densest subgraph problem . 20
3.3 Problem formulation . 20
3.4 Complexity . 21

4 Algorithms for discovering communities 23
4.1 Finding an optimal set of nodes 24
4.2 Finding an optimal set of time intervals 25

4.2.1 Greedy approach . 26
4.2.2 Binary search approach 26
4.2.3 Dynamic programming approach 27

4.3 Initialization . 30

5 Experimental evaluation 31
5.1 Datasets . 31

5.1.1 Synthetic data . 31
5.1.2 Real-world data . 33

5.2 Discovering hidden structure 34

4

5.2.1 Planted communities 34
5.2.2 Effect of random seeds 37
5.2.3 Discovered communities 38
5.2.4 Effect of parameter selection 41
5.2.5 Retrieved intervals . 42
5.2.6 Several communities 48
5.2.7 Twitter community example 53

6 Conclusions 55

A Main results extended table 62

5

List of Tables

5.1 Characteristics of the synthetic dataset families 32
5.2 Basic characteristics of the real-world datasets 34
5.3 Densities of discovered subgraphs on the real-world datasets . 39
5.4 Densities of discovered subgraphs on the small real-world datasets 41
5.5 Time span of the found communities 44
5.6 Time length characteristics of the retrieved intervals 45
5.7 Density of the sub-communities in the retrieved intervals . . . 46
5.8 Length characteristics of the time gaps between the retrieved

intervals . 47
5.9 Frequency of the community nodes in the retrieved time intervals 48
5.10 Frequency of the community edges in the retrieved time intervals 49

A.1 Extended version of Table 5.3 62

6

List of Figures

3.1 A toy example of interaction dynamic network 18
3.2 Examples of communities in toy dataset 19

5.1 Precision, recall and F -measure on Synthetic1 35
5.2 Precision, recall and F -measure on Synthetic2 35
5.3 Precision, recall and F -measure on SmallSynthetic1 36
5.4 Precision, recall and F -measure on SmallSynthetic2 36
5.5 Precision, recall and F -measure on MultiSynthetic1 37
5.6 Precision, recall and F -measure on MultiSynthetic2 37
5.7 Effect of random initializations on the real-world datasets. . . 38
5.8 Effect of parameter K . 42
5.9 Effect of parameter B . 43
5.10 Example of community found by GH 50
5.11 Example of community found by BS 50
5.12 Density of multiple discovered communities. 51
5.13 Size of multiple discovered communities. 51
5.14 Time span of multiple communities discovered on the under-

lying network. 52
5.15 Relations between multiple output communities and dense

subgraphs of topology network. 52

7

Chapter 1

Introduction

1.1 Introduction to community detection

Modern computer science contributes significantly to the process of reveal-
ing and understanding hidden structures and dependencies in the complex
systems that compound the world. One fundamental model to represent and
analyze structural dependences and interactions between objects is a graph
or a network. Graph representation can naturally be applied to systems of
objects that share some type of dyadic relationships, dependencies, correla-
tions, or interactions: the objects are mapped to the nodes and the relation-
ships between the objects – to the edges between the corresponding nodes of
the graph. Although sometimes the terms graph and network have distinct
meaning, and define undirected and directed graph models respectively, in
this work, we use these terms as synonyms. If needed, the directionality is
specified explicitly.

Well-known examples of graph models come from various social networks,
where the nodes correspond to people, while the edges represent established
relationships, such as friendship, kinship, collaboration, employment, or a
club or party membership, etc. Other straightforward examples can be found
in traffic networks, such as electric power grids, road systems, or the Internet.
Chemical and biological systems with various complicated dependencies, such
as food chains or protein-protein interactions, are additional instances of real-
world networks.

One of the most important structural features of the graph model is a
community or a cluster — a group of nodes that induces a dense subgraph,
and has only a few edges that connect the group members to other nodes of
the graph. This phenomenon is common in real-world networks: roads are
dense in cities and sparse in the countryside; people form groups by interests,

8

CHAPTER 1. INTRODUCTION 9

age, place of residence, or work, and they are unlikely to communicate with
people that have other interests and living in distant regions.

Originally, community detection problem was formulated to be applied to
social networks; even the word community refers to the social context. So-
cial networks tend to have multiple overlapping communities. Understanding
these hidden structures and dependencies has applications in sociology, psy-
chology, marketing, and resource management [23, 33, 45].

Another important domain of applications of community detection can
be found in a biological setting. A typical example of biological networks is
a protein-protein interaction network. Community detection methods group
proteins that have similar functions, and those that are involved in the same
processes. This grouping leads to classification of the proteins, and an under-
standing of their roles [59]. The role of genes in a gene-expression network,
or enzymes in a metabolic network can be studied in a similar way [11, 55].

Additionally, community detection provides a compact hierarchical rep-
resentation of a graph that can be visualized and compressed [20, 53]. This
application is important for real-world networks, such as the World Wide
Web or virtual Facebook-like social networks that contain millions of nodes.

The list of applications of community detection is not limited by these
examples, and a more extensive overview can be found in a survey on com-
munity detection by S. Fortunato [23].

1.2 Community detection in interaction net-

works

While networks emerge in different areas of science, and in general have sim-
ilar structures and properties, in this work, we focus on a specific type of
networks – the social networks. Social networks represent people as nodes,
and various social interactions as edges. The interaction (e.g. personal com-
munication, phone call, e-mail) can occur multiple times, and at different
moments in the recorded network history. In order to enhance the analysis,
the dynamic nature of the interaction network should be incorporated into
the graph model, for example, by multiple time-annotated edges. Model-
ing and analysis of the temporal component of networks is the focus of this
thesis.

Searching for communities in social networks is one of the most well-
studied problems in graph mining. A large number of different methods have
been proposed, employing a diverse set of algorithmic tools, such as agglom-
erative approaches, min-cut formulations, random walks, spectral methods,

CHAPTER 1. INTRODUCTION 10

and more. On the other hand, it has been observed that large networks
are characterized by a lack of clear and well-defined communities at a large
scale [26, 41].

The lack of well-defined communities can be attributed to the high degree
of interconnectivity in social and communication networks, as reported by
numerous studies on small-world phenomena [18, 35]: individuals are con-
nected to each other via short chains, and as the size of a community grows,
it is very likely to have a large number of links going out of the community.
Let us consider an example:

Example 1: The employees of a large company are interconnected. Besides
professional interests, they may have diverse hobbies, and belong to some
clubs. As the company is large, a large number of employees may have the
same hobbies. Consequently, the border between the club community and the
company community vanishes. Moreover, the social aspect and information
propagation may lead to further integration of these communities. Through
members that belong to both communities, people learn about the other
community, and may join. The probability of that action increases with the
number of cross-border edges [30, 58].

As we are becoming proficient in storing and analyzing data of increasing
volume and richness, it is feasible to consider network data at fine granular-
ity, and to analyze not only the underlying topology, but also the exact time
instances of interactions. Analysis of such interaction events can reveal much
more information about the structure and dynamics of the communities in
the network. In Example 1, the company and the club communities can be
distinguished based on the fact that interaction within the company commu-
nity happens during work days, while free-time activities are concentrated
on weekends.

The example of two strongly overlapping company and club communities
is very straightforward. In practice, semantic communities in communication
networks can be hidden by numerous unrelated communications, which are
active at various time points.

To be more concrete, consider the following examples:

Example 2: A group of researchers across many different European institu-
tions are working on a European project. The members of the group go
about their everyday lives and other tasks, often unrelated to the European
project. However, once every few weeks or months, say, before deadlines of
deliverables or project meetings, there is a lot of interaction among the group
members, and interactions may occur in various combinations that depend
on the sub-project composition and the roles of the people in the project.

Example 3: A group of twitter users is interested in technology products,

CHAPTER 1. INTRODUCTION 11

in particular smartphones, and they are very active in blogging reviews and
commenting the posts of each other. Their interaction is sparse, but it sus-
tains over a long time, and it intensifies significantly after the release of a
new product.

The main point of these examples is that the communities we describe
are not isolated. Their members interact with each other, but they also in-
teract with many other people outside those communities. If one ignores the
interaction dynamics and considers only the static topology of the underly-
ing social network, the communities will be hidden and it will be virtually
impossible to discover them. It is only when considering the exact time in-
stances of the interactions among the community members that it becomes
possible to identify them. In both of the examples above, many interactions
occur among the community members, but in a number of relatively short
time intervals.

1.3 Focus of this thesis

In this work we formalize the idea exemplified in the previous section. We
consider interaction networks, for which we assume that all interaction events
between the network nodes are known. Examples of such interaction net-
works include call graphs of telecommunications, email communication net-
works, mention and commenting networks in social media, collaboration net-
works, and more. Thus, interaction-network datasets are already abundant in
many application domains. In the context of interaction networks, we study
the problem of discovering communities that are dense, and whose edges oc-
cur in short time intervals. We prove that the problem we define is NP-hard,
even though the corresponding problem on static graphs is polynomially-time
solvable. For the dynamic density problem we define, we provide effective
algorithms inspired by the literature on finding dense subgraphs. Our exper-
iments demonstrate the effectiveness of the proposed algorithms, as well as
the validity of our hypothesis. Namely, that it is possible to find communities
that satisfy the requirements we set: dense interactions that occur within a
number of short time intervals.

The thesis is organized as follows: First, in Section 2 we discuss the re-
lated work, briefly covering the evolution of dynamic community detection
problem, starting from the case of pure static graph models, and moving to-
wards extensive use of the time component of interaction network models. In
Section 3.1 we present our notation and some preliminaries, which we need
to formally define the problem. The problem definition is provided in Sec-
tion 3.3. Next, Section 3.4 contains a complexity analysis of the formulated

CHAPTER 1. INTRODUCTION 12

problem. In Section 4 we present our algorithms, which we evaluate using
synthetic and real-world datasets in Section 5. Finally, Section 6 consists of
conclusions, and lists directions for future work.

1.4 Acknowledgments and additional refer-

ences

Part of this thesis will appear as a paper in The European Conference on
Machine Learning and Principles of Knowledge Discovery in Databases, 2014
[52]. The algorithms were developed jointly with Nikolaj Tatti and Aristides
Gionis, while the proof of NP-hardness in Proposition 1 was given by Nikolaj
Tatti. We would like to thank Kiran Garimella, who has kindly provided us
with his collection of Twitter users activity in Helsinki area (Twitter dataset
in experiments Section 5). The implementations of the proposed algorithms
used for testing and evaluation can be found on ICS Data Mining Group
page1.

1http://research.ics.aalto.fi/dmg/software.shtml

http://research.ics.aalto.fi/dmg/software.shtml

Chapter 2

Related work

A comprehensive survey on different aspects of dynamic network analysis
has been recently done by Aggarwal and Subbian [2]. In this work we focus
on community detection problem in dynamic network, and here we briefly
cover the models and methods that were proposed for community detection
in different settings. We start with static community detection, as it is the
most basic and well-studies problem formulation, and then cover existing
dynamic models with increase of complexity.

2.1 Static community detection

Community detection is one of the most studied problems in social-network
analysis. A lot of research has been devoted to the case of static graphs, and
the typical setting is to partition a graph into disjoint communities [22, 25,
49, 57]; a thorough survey on such methods has been compiled by S. Fortu-
nato [23].

2.2 Dynamic community detection

Typically the term “dynamic graphs” refers to the model where edges are
added or deleted. In this setting, once an edge is inserted in the graph it
stays “alive” until the current time or until it is deleted. For example, this
setting is used to model the process in which individuals establish friendship
connections in a social network. In the dynamic-graph setting, researchers
have studied how networks evolve with respect to the arrival of new nodes
and edges.

For instance, Kumar et al. [38] have studied evolution of certain types
of frequent structures in a social network: singletons, small isolated commu-

13

CHAPTER 2. RELATED WORK 14

nities, and giant connected components. They examined and modeled how
these structures grow, merge, and exchange the nodes. Another work in that
direction [40] studied evolution of dynamic network at “microscopic level”
through modeling the process of node arriving and edge establishing. They
showed that studying of billions of individual nodes provides a comprehensive
understanding of global network structure evolution.

A work by Backstrom et al. [8] addressed the questions of how groups
and communities are formed. They thoroughly explored the influence of var-
ious structural features on community evolution. Another work [9] proposed
to derive graph-evolution rules from frequent patterns adopting a classical
association rules framework.

2.3 Snapshot-based community detection

With respect to community detection in time-evolving graphs, a prominent
line of work is to consider different graph snapshots, find communities in each
snapshot separately (or/and incorporate information from previous snap-
shots), and then establish correspondences among the communities in con-
secutive snapshots. This approach makes it possible to study how the com-
munities appear, disappear, split, merge, or evolve. From a high-level point
of view, these typical methods first detect the communities in static graphs
induced by one/each time stamp, and then adjust solutions on consequent
time stamps to provide consistency. A number of research papers follows this
framework [7, 28, 42, 47, 56]. An illustrative example is evolving clustering,
proposed by Chakrabarti et al. [15]. This approach provides clustering on
adjacent time stamps with respect to consistency and smoothness. In order
to ensure smoothness, the clustering on each next time stamp should be as
close as possible to the clustering on the previous time stamp. However,
the clustering should reflect the data structure accurately to provide consis-
tency. Thus, the result clustering is a trade-off between accuracy of structure
detection and consistency with historical records.

Similar recent works apply concepts of Laplacian dynamics [46] and fre-
quent pattern mining [10] to ensure coherence and sufficiency of communities
found in a sequence of graph snapshots. Another example of snapshot-based
approach is based on state-of-the-art spectral clustering extended by consis-
tency constraints [17] or adaptive forgetting factor [62]. A comprehensive
study of evolutionary clustering can be found in a survey by M. Spiliopoulou
[54].

Many dynamic graph studies are dedicated to event-detection problem,
which is intrinsically related to community detection: a common approach of

CHAPTER 2. RELATED WORK 15

event detection is identification of graph sub-structure (e.g. communities),
tracking, and change detection of some key substructures. An extensive tu-
torial by Akoglu and Faloutsos covers recent research on this topic.1 The
majority of the works focuses on how to compare different graph snapshots,
and aims to detect those snapshots where the graph structure changes sig-
nificantly. The research tools developed in this area include novel metrics for
graph similarity [48] and graph distance, (see the survey of Gao et al. [24]),
as well as extending scan-statistics methods for graphs [50], while a number
of papers relies on matrix-decomposition methods [5, 32].

2.4 Interaction-based community detection

Evolution of the network can be fast and highly dynamic (e.g., Twitter or
Facebook). In that case, a snapshot-based model leads to significant loss of
information. The interaction-based model works with a stream of communi-
cation, and is more informative, but challenging. An interaction stream can
be viewed as a sequence of time stamps, where each snapshot has zero time
length, and contains only one edge. Not many problems were formulated and
addressed under of that model.

Several recent works are dedicated to the clustering problem in interaction-
based model. Due to a large volume of data to be processed, the devised
algorithms need to be memory- and time-efficient. To address the problem
of scalability a range of sampling, sketching, and approximation techniques
were proposed [4, 64]. Another natural direction is sliding window and other
approaches inherited from snapshot-based model [61]. Furthermore, the clus-
tering problem in fast-evolving networks is similar to dense pattern mining,
as cluster is a dense structure. A min-hash method can be used to detect
tightly-connected groups of nodes in the stream [3].

To our knowledge, the approach that is best aligned with interaction-
based community detection problem setting, is presented by Bogdanov et al.,
for the problem of mining heavy subgraphs in time-evolving networks [13].
The approach of Bogdanov et al. is still based on network snapshots, and
forming snapshots from edge time stamps is sensitive to boundary quantiza-
tion effects. Their concept of heavy subgraphs is based on edge weights, and
their discovery problem maps to prize collecting Steiner tree.

In a similar direction as the previous paper, Hu et al. propose a framework
for mining frequent coherent dense subgraphs across a sequence of biological
networks [31]. Their core concept is to construct a second-order graph, which

1http://www.cs.stonybrook.edu/~leman/icdm12/

http://www.cs.stonybrook.edu/~leman/icdm12/

CHAPTER 2. RELATED WORK 16

represents co-activity of edges in the initial graph. As with the previous
papers, Hu et al. work with network snapshots, which is quite a different
model than the one we consider in this work.

In contrast to the existing research, in this work we introduce a new point
of view in the area of dynamic graphs, namely, we incorporate in our analysis
point-wise interactions between the network nodes. In this new setting we
study the problem of finding dense subgraphs with short time support.

Chapter 3

Dense community in interaction
network

3.1 Preliminaries and notation

An interaction network G = (V,E) consists of a set of n nodes V and a set
of m time stamped interactions E between pairs of nodes

E = {(ui, vi, ti)} , with i = 1, . . . ,m, such that ui, vi ∈ V and ti ∈ R.

A small example of such network can be found on Figure 3.1. The
set of nodes consists of n = 5 vertices V = {A,B,C,D,E}. Their activ-
ity is contained in m = 7 time stamps, and depicted by solid lines E =
{(B,D, 1), (B,C, 2), (A,C, 4), (C,D, 5), (D,E, 7), (A,C, 7), (C,E, 10)}. We
will illustrate the model properties and definitions hereinafter by that toy
example.

We consider that interactions are undirected. More than one interaction
may take place between a pair of nodes, with different time stamps. (E.g.
interaction between nodes A and C occurs twice: as t = 4 and t = 7.) Con-
versely, more than one interaction may take place at the same time, between
different nodes. (Interactions (D,E) and (A,C) occur simultaneously at the
time moment t = 7.)

For an interaction network G = (V,E) we associate the set of edges π(E)
to be the pairs of nodes for which there is at least one interaction in the time
period of monitoring (one may think of π as “projecting” the edges of the
interaction network along the time axis).

π(E) = {(u, v) ∈ V × V | (u, v, t) ∈ E for some t} .

Given an interaction network G = (V,E), the network π(G) = (V, π(E))
is a standard graph with no time stamps on its edges. We refer to π(G) as

17

CHAPTER 3. DENSE COMMUNITY IN INTERACTION NETWORK 18

B

D E

C

A

B

D E

C

A

B

D E

C

A

B

D E

C

A

B

D E

C

A

B

D E

C

A

t = 1 t = 2 t = 4

B

D E

C

A

t = 5 t = 7 t = 7 t = 10

Figure 3.1: A toy example of interaction dynamic network, consisted of n = 5
nodes, m = 7 time stamps, and spanning T = 9 time units.

the topology network of G or as the underlying network of G. In the dataset
on Figure 3.1 π(G) is a graph depicted by dotted lines.

Given an interaction network G = (V,E) and a subset of nodes W ⊆ V ,
we define the induced interaction network G(W) = (W,E(W)), such that
E(W) consists of the interactions whose both end-points are contained in
W ,

E(W) = {(u, v, t) ∈ E | u, v ∈ W} .
We also consider time intervals [s, f], where s ∈ R is the start point, and

f ∈ R is the end-point of the interval. We define the span of an interval to
be its time duration, i.e., span(T) = f − s.

For example of induced interaction network let us considerW = {A,B,C}.
E(W) is a subset of E, which contains only interactions between these nodes
and has a form of: E(W) = {(B,C, 2), (A,C, 4), (A,C, 7)}. E(W) belongs
to the interval which starts at t = 2, ends at f = 7, and spans 6 time units.
Note that E(W) does not induce a continuous subset of time stamps in E,
and contains activity of the same edge as many times, as it occurs in E.

We define a time-interval set T to be a collection of non-overlapping time
intervals, T = (T1, . . . , TK). The span of T is the sum of individual spans,

span(T) =
K∑
i=1

span(Ti) .

Given an interaction network G = (V,E) and a time interval T = [s, f]
we define the spliced interaction network G(T) = (V,E(T)), where E(T) are
the interactions that occur in T ,

E(T) = {(u, v, t) ∈ E | s ≤ t ≤ f} .

The above notion can be extended in a straightforward manner, so as to
define the spliced interaction network with respect to a set of time intervals

CHAPTER 3. DENSE COMMUNITY IN INTERACTION NETWORK 19

B

D E

C

A

T = {[1,2],[5,5]}

B

D E

C

A

T = {[5,7],[10,10]}

B

D E

C

A

T = {[1,2],[5,10]}

a) b) c)

Figure 3.2: Examples of communities in the toy dataset from Figure 3.1.

T = (T1, . . . , TK). This is achieved by collecting edges from individual time
intervals, that is, G(T) = (V,E(T)), where E(T) =

⋃K
i=1E(Ti).

An example of spliced interaction network can be constructed as a subset
of time stamps in Figure 3.1. Let T = {[4, 7]}. Then E(T) = {(A,C, 4),
(C,D, 5), (D,E, 7), (A,C, 7)}. Note that activity of an edge (A,C) is in-
cluded twice, as these nodes interacted twice during T .

The concepts of induced interaction network and spliced interaction net-
work provide two different ways to select subsets of interaction networks;
one is based on subsets of nodes and the other is based on time intervals.
The definition of dynamic communities, which is the central concept of this
work, relies on these two subset-selection strategies. In particular, for an
interaction network G = (V,E), a subset of nodes W , and a set of time
intervals T , we define a dynamic community G(W, T) as the subgraph that
consists of the nodes in W , and the set of interactions among the nodes in
W that occur within T . In more formal terms, G(W, T) is defined to be
the spliced interaction network H(T), where H is the induced interaction
network G(W).

A “projection” π(G(W, T)) of dynamic community G(W, T) along time
axis results in a static subgraph of the underlying network. Three examples
of projected dynamic communities for the toy dataset from Figure 3.1 can
be found in Figure 3.2. The community Ca shown in Figure 3.2(a) is de-
fined by G({B,C,D}, {[1, 2], [5, 5]}), the community Cb from Figure 3.2(b) –
by G({C,D,E}, {[5, 7], [10, 10]}), the community Cc from Figure 3.2(c) –
by G({B,C,D,E}, {[1, 2], [5, 10]}).

CHAPTER 3. DENSE COMMUNITY IN INTERACTION NETWORK 20

3.2 Densest subgraph problem

To measure the quality of a dynamic community we rely on the notion of
density. We recall the definition of density as defined for static graphs,
e.g., for the topology network π(G) = (V, π(E)) of an interaction network
G = (V,E). We also review the densest-subgraph problem for static graphs.

Given a static graph H = (V, F), i.e., the edges F do not have time
stamps, the density of the graph d(H) is its average degree calculated as
twice the ratio of edges and the vertices,

d(H) =
2 |F |
|V |

.

Problem 1 (Densest subgraph). Given a static graph H = (V, F), find a
subset of vertices W that maximizes the density d(H(W)).

Unlike the problem of finding the largest clique, which is NP-hard, finding
the densest subgraph is polynomially-time solvable [27]. Furthermore, there
is a linear-time factor-2 approximation algorithm [6, 16]. The algorithm
deletes iteratively a vertex with the lowest degree, obtaining a sequence of
subgraphs. Among those subgraphs the algorithm selects the one with the
highest density.

Let us measure density for communities in Figure 3.2. Communities Ca

and Cb are 3-cliques and have average degree of 2, while d(Cc) = 2.4. How-
ever, if we restrict |T | = K = 2 for every community, then span(Ta) ≤ 1,
span(Tb) ≤ 2 and span(Tc) ≤ 6. Community Ca is strictly preferable to com-
munity Cb in the sense of time span minimization and density maximization.
In general, these two objectives are in contradiction, and it is intuitively
clear that a denser subgraph (such as Cc) is scattered over a longer time
period. Furthermore, the densest subgraph can be always found in the net-
work, spliced by the whole time interval [0, T]. On the other hand, if we
increase the allowed size of |T | to K = 3, then we can cover community Cc

with nodes Wc = {B,C,D,E} by time intervals Tc = {[1, 2], [5, 7], [10, 10]},
and span(Tc) ≤ 3, which is reasonably small in the scale of our toy example.
Thus, by introducing and varying constraints values we may obtain more
meaningful results. The observations, made on that small example, lead to
the problem formulated in the next section.

3.3 Problem formulation

Our goal is to discover communities that are dense and whose interactions
occur in several relatively short time intervals. Given an interaction network

CHAPTER 3. DENSE COMMUNITY IN INTERACTION NETWORK 21

G = (V,E) we aim to find a set of nodes W and a set of time intervals T , such
that the subgraph G(W) is relatively dense within T . To ensure that the time
span of the subgraph G(W) is short, we impose two types of constraints on
the time-interval set T : (i) constraints on the number of intervals of T , and
(ii) constraints on the total length of T . We discuss these two constraints
shortly. For the problem of finding dense dynamic communities, which we
provide below, we also assume a quality score q(W, T ;G) that measures the
density of the community G(W, T) of the interaction network G.

Problem 2. Assume that we are given a quality score q(W, T ;G) that mea-
sures the quality of the community defined by nodes W and time interval span
T on the interaction network G. Assume also we are given a budget K on
the number of time intervals, and a budget B on the total time span. Our
goal is to find a set of nodes W and a set of time intervals T that maximize

q(W, T ;G) , such that |T | ≤ K and span(T) ≤ B.

The first constraint states that we can have at most K intervals while
the second constraint requires that the total duration is at most B. Both
constraints are required: assuming that the quality score increases with the
time span, if we drop the second constraint, then we can always choose the
whole time span. Such a solution, however, does not capture the intuition
of dynamic communities that we aim to discover. On the other hand, if we
drop the first constraint, then we can pick individual edges by setting a time
interval of duration 0 around each individual edge. Namely, the constraint
on the number of intervals is necessary to impose time-continuity on the
solutions found.

Regarding the score function used to assess the quality of a community,
our proposed measure is the density of the topology network, after restricting
to node set W and time-interval set T

q(W, T ;G) = d(π(G(W, T))) ,

that is, we count twice the number of interactions that occur between nodes
of W within time intervals T , and divide this number by |W |.

3.4 Complexity

We proceed to establish the complexity of the problem of finding a dense
dynamic community in interaction networks (Problem 2).

Proposition 1. The decision version of Problem 2 is NP-complete.

CHAPTER 3. DENSE COMMUNITY IN INTERACTION NETWORK 22

Proof. We are given an interaction network G, budgets K, B, and a thresh-
old σ, and we need to answer whether there is a node set W and a time-
interval set T , which satisfy the two budget constraints, and for which
q(W, T ;G) ≥ σ.

The problem is clearly in NP. To prove the hardness, we obtain a reduc-
tion from VertexCover. An instance of VertexCover specifies a graph
H and budget `, and asks whether there is a set V ′ ⊆ V , such that |V ′| ≤ `
and each edge of the graph is adjacent to at least one of the nodes of V ′.

Consider graph H = (U, F) with n nodes and m edges, and budget `.
Let us define an interaction network G = (V,E). The node set V consists
of U and n+ 1 additional auxiliary nodes, and the set of edges E is defined
as follows: First we consider n + 1 distinct time points t0, . . . , tn. At t0 we
consider interactions between all the auxiliary nodes, and between auxiliary
nodes and each v ∈ U . We arbitrarily order the nodes in U and let vi be the
i-th node. At time ti we connect vi with all its neighbors in H.

Assume that there exists a solution W and T , for Problem 2, with budgets
K = ` + 1 and B = 0. We claim that W will contain all nodes and T will
contain t0 and the time points corresponding to the vertex cover of H.

Let us first prove that W = V and (t0, t0) ∈ T . Assume otherwise. Then,
since the remaining time intervals have only edges between U , there must
be at most n(n− 1)/2 edges, yielding density at most n− 1. Let us replace
one of the selected time intervals with t0 and reset W to be auxiliary nodes.
This solution gives us a density of n, which is a contradiction.

Now we have established that t0 is a part of T . A straightforward cal-
culation shows that it is always beneficial to add auxiliary nodes to W , if
they are not part of a solution. Once this is shown, we can show further that
adding any missing nodes from U also improves the density. Consequently,
W = V .

Set σ = 2(n(n + 1)/2 + n(n + 1) + m)/(2n + 1). The first two terms in
the numerator correspond to the edges at t0. The remaining m edges must
come from the remaining time intervals. This is only possible if and only if
the time intervals contain all edges from H, that is, the corresponding nodes
cover every edge, which completes the reduction.

Chapter 4

Algorithms for discovering com-
munities

In this section we present the algorithm we propose for Problem 2. Since the
problem is NP-hard, we propose an iterative method, which improves the
solution by optimizing each one of the two components, the node set W and
the time interval set T , in an alternating fashion, while keeping the other
fixed.

Both of the objectives of our alternating optimization method give rise
to interesting computational problems. One problem reduces to finding the
densest subgraph, and the other is related to coverage, and it is even NP-
hard. Next we formalize the two problems of our alternating optimization
method.

Problem 3. Consider an interactive network G = (V,E). Consider the
problem of finding a dense dynamic community, with budgets K and B, and
quality score q. Assume that a set of nodes W is provided as input. Find a
time interval set T that maximizes

q(W, T ;G) , such that |T | ≤ K and span(T) ≤ B.

Problem 4. Consider the problem of finding a dense dynamic community
on an interactive network G = (V,E) with quality score q. Assume that a
time interval set T is given as input. Find a set of nodes W that maximizes
q(W, T ;G).

The proposed algorithm starts from an initial time interval set T0, and
obtains a solution (W, T) by iteratively solving the two problems defined
above until convergence. Pseudocode of the method is given in Algorithm 1.
As one may expect the iterative algorithm does not provide a guarantee for

23

CHAPTER 4. ALGORITHMS FOR DISCOVERING COMMUNITIES 24

Algorithm 1: Iterative algorithm for finding a dense dynamic commu-
nity

1 T0 ← initial sets of time intervals;
2 i← 0;
3 while (convergence; i++) do
4 Wi+1 ← solution to Problem 4 given Ti;
5 Ti+1 ← solution to Problem 3 given Wi+1;

6 return (Wi, Ti);

the quality of the solution that it returns. However, as it is stated by the fol-
lowing proposition, it has the desirable property that both of the alternating
optimization problems return the correct component of the solution if they
obtain as input the other component correctly.

Proposition 2. Let (W, T) be an optimal solution to Problem 2 for a given
interaction network G. Then (i) T is an optimal solution to Problem 3 given
G and W , and (ii) W is an optimal solution to Problem 4 given G and T .

Proof. (i) The proof comes straightforward as Problems 2 and 3 have the
same (up to fixed component W) objective functions and sets of constraints.

Let (W, T) be an optimal solution to Problem 2 for a given interaction
network G. Suppose T is not an optimal solution to Problem 3 given G and
W . That means that there exits T ∗, such that q(W, T ∗;G) > q(W, T ;G)
with |T | ≤ K and span(T) ≤ B. That contradicts to our assumption that
(W, T) is an optimal solution to Problem 2. Consequently, T is an optimal
solution for Problem 3 given W and G.

(ii) Analogous to (i).

In the next two sections, 4.1 and 4.2, we present in detail our solution for
the two subproblems of the iterative algorithm. In Section 4.3 we discuss the
initialization of the algorithm.

4.1 Finding an optimal set of nodes

We start with Problem 4 where the goal is to find an optimal set of nodes W
given a set of time intervals T . Assume that we are given a set of time inter-
vals T , and let H = π(G(T)) be the topology network for the interactions
that occur within T (i.e., the topology network of the interaction network
spliced by T). Note that

q(W, T ;G) = d(H(W)) .

CHAPTER 4. ALGORITHMS FOR DISCOVERING COMMUNITIES 25

Consequently, finding the optimal set of nodes is equivalent to the densest-
subgraph problem (Problem 1) on the (static) graph H. It follows that
finding the optimal set of nodes W , given time interval set T , can be done
in polynomial time. In our implementation, we use the linear-time algo-
rithm of Charikar [16], which, as outlined in Section 3.1, offers a factor-2
approximation guarantee.

4.2 Finding an optimal set of time intervals

We now present our solutions for the second subproblem of the iterative
algorithm, namely, finding an optimal set of time intervals for a given set of
nodes. Unfortunately, even if this is a subproblem of the general community-
discovery problem, it remains NP-hard. The proof of this claim is a simplified
version of the proof of Proposition 1.

We view the problem of finding optimal time intervals as an instance of
a maximum-coverage with multiple budgets (mcmb) problem.

Problem 5 (mcmb). Given a ground set U = {u1, . . . , um} with weighted
elements w(ui), a collection of subsets S = {S1, . . . , Sk}, p cost functions ci
mapping each subset of S to a positive number, and n budget parameters Bi,
find a subset P ⊆ S maximizing∑

u∈X

w(u), such that X =
⋃
S∈P

S, and
∑
S∈P

ci(S) ≤ Bi, for all i = 1, . . . , p.

When p = 1, the problem is the standard budgeted maximum coverage.
The problem is still NP-hard but there exists an approximation algorithm by
Khuller et al. that achieves (1− 1/e) approximation ratio [34]. However this
algorithm requires to enumerate all 3-subset collections, making it infeasible
in practice.

The optimization problem can be also viewed as an instance of maxi-
mizing submodular function under multiple linear constraints. Kulik et al.
presented a polynomial algorithm that achieves (1−ε)(1−1/e) approximation
ratio [37]. Unfortunately, this algorithm is not practical even for modest ε.

To see how finding a set of time intervals is related to maximum coverage,
consider as ground set the set of edges π(E(T)) (interactions that occur in T
without the time stamps), and for each time interval T ∈ T create a subset
ST containing all edges whose corresponding interactions occur in T . There
are two cost functions c1(T) = 1 and c2(T) = span(T). The first budget
constraint enforces the number of allowed time intervals to stay below K,
while the second budget enforces the time-span constraint.

CHAPTER 4. ALGORITHMS FOR DISCOVERING COMMUNITIES 26

Thus, we need to solve the mcmb problem, defined above, with two budget
constraints. We propose two solutions, both of which are inspired by the
standard greedy approach for maximum coverage. The difference between the
two proposed approaches is on how they try to satisfy the budget constraints.
The first approach incorporates both budget constraints on the greedy step,
while the second approach sets a parameter that controls the amount of
violation of one constraint, and optimizes this parameter with binary search.

4.2.1 Greedy approach

The standard greedy approach for maximum coverage is to select the set
that has the best ratio of newly covered elements with respect to its cost.
Motivated by this idea, suggest the following greedy approach. Given a
currently selected set of time intervals, say T , we find the interval R that
has the best ratio

q(W, T ∪R,G)− q(W, T , G)

max(x, y)
, where x =

1

K − |T |
and y =

span(R)

B − span(T)
.

The numerator in the ratio is the number of new edges that can be covered
with the new interval R. The denumerator is the maximum of two quantities,
x and y, representing the two constraints on number of time intervals and
time span, respectively. Both x and y are normalized so that they are equal
to 1 if adding R will cap the corresponding constraint. By taking the maxi-
mum of the ratios we consider the constraint that is closer to be capped and
penalize the ratio accordingly. The algorithm stops when one of the two con-
straints gets violated. We will refer to this greedy heuristic approach as GH.
Time complexity of GH is O(Kn2) (where n is number of time stamps) as
we perform brute-force to find each next interval, and can retrieve maximum
K intervals.

4.2.2 Binary search approach

Our second approach is based on the following observation. Assume that we
are given a number α and consider optimizing

q(W, T , G)− α · span(T) , such that |T | ≤ K. (4.1)

Note that we do not enforce any budget on the time span. If we set α = 0,
then the solution will contain the whole time. On the other hand, if we set
α to be large, T will be just singular points. In fact, as it is shown in the
following proposition, the time span of the optimal solution decreases as α
increases.

CHAPTER 4. ALGORITHMS FOR DISCOVERING COMMUNITIES 27

Proposition 3. Consider α1 and α2 with α1 < α2. Let T1 and T2 be the
solutions of Equation (4.1) for α1 and α2, respectively. Then span(T1) ≥
span(T2).

Proof. Define βi = span(Ti) and di = q(W, Ti, G). Due to optimality, we
have

d1 − α1β1 ≥ d2 − α1β2 and d2 − α2β2 ≥ d1 − α2β1.

By rearranging the terms we obtain α1β2 − α1β1 ≥ d2 − d1 ≥ α2β2 − α2β1.
Rearranging the left and the right side gives us (α1−α2)(β2−β1) ≥ 0. Since
α1 < α2, we must have β1 ≥ β2, which proves the proposition.

Ideally, if we can solve Equation (4.1) optimally, we can use binary search
to find the smallest α such that the time span of the solution does not exceed
the budget. As we do not have an exact solver for Equation (4.1), we apply
a greedy approach where in each step we find a single time interval that
maximizes the score function. We then apply a binary search to find α that
produces a feasible solution. We refer to this algorithm as BS. Note that time
complexity of BS equals to O(Kn2) as well as GH (n stands for number of
time stamps), while constant factor depends on number of iteration in binary
search.

4.2.3 Dynamic programming approach

Another approach to solution of Problem 3 is based on dynamic program-
ming. As it was shown above, we cannot solve Problem 3 optimally in poly-
nomial time, as it is instance of mcmb. However, we can approximate the
cost function of Problem 3, and devise an exact polynomial algorithm for
the modified problem. Based on definitions from Chapter 3.1 and proper-
ties of set union cardinality we can construct the following upper bound for
coverage cost function q(W, T ;G):

q(W, T , G) = d(π(G(W, T))) =
2 |π(G(W, T))|

|W |
=

2
∣∣∪Ki=1π(G(W,Ti))

∣∣
|W |

≤

2
∑K

i=1 |π(G(W,Ti))|
|W |

=
K∑
i=1

d(π(G(W,Ti))) =
K∑
i=1

q(W,Ti, G) = q̃(W, T , G)

(4.2)

The corresponding modified problem has a shape:

CHAPTER 4. ALGORITHMS FOR DISCOVERING COMMUNITIES 28

Problem 6. Given budgets K and B, and quality score q̃. With fixed set of
nodes W find a time interval set T that maximizes

q̃(W, T ;G) , such that |T | ≤ K and span(T) ≤ B.

Proposition 4. Optimal solution of Problem 6 is a K-factor approximation
of solution of Problem 3.

Proof. First, note that any feasible solution for Problem 3 is feasible for
Problem 6 and vise versa.

Given optimal solution T ∗ for Problem 3. Due to Equation 4.2 q(W, T ∗;G) ≤
q̃(W, T ∗;G) and q̃(W, T ∗;G) ≤ q̃

(
W, T̃ ∗;G

)
, where T̃ ∗ is optimal interval

set for Problem 6.
By construction q̃(W, T , G) counts each edge of π(G(W, T)) at most K

times, while in the original cost function q(W, T , G) each edge entries exactly
once. Namely,

q(W, T , G) ≤ q̃(W, T , G) =
K∑
i=1

q(W,Ti, G) ≤ Kq(W, T , G)

Thus, q̃
(
W, T̃ ∗;G

)
≤ Kq

(
W, T̃ ∗;G

)
.

Considering the inequalities altogether, we obtain:

q(W, T ∗;G) ≤ q̃(W, T ∗;G) ≤ q̃
(
W, T̃ ∗;G

)
≤ Kq

(
W, T̃ ∗;G

)
In addition, T ∗ is an optimal solution for Problem 3:

1

K
q(W, T ∗;G) ≤ q

(
W, T̃ ∗;G

)
≤ q(W, T ∗;G)

Therefore, optimal solution of Problem 6 is K-factor approximation for Prob-
lem 6.

The Problem 6 can be solved optimally by dynamic programming de-
signed as follows.

With fixed W the edges E(W) can be viewed as n = |E(W)| points (tu-
ples) (ui, vi) in 1-dimensional space, ordered by time component ti in non-
descending order. Given budgets K and B, we cover points by K intervals
of total length of B. In the frames of Problem 3 we aim on coverage as many
distinct points as possible, and maximize the cost q(W, T ;G). In the setting
of Problem 6, we maximize cost function q̃(W, T ;G) =

∑
Ti∈T q(W,Ti, G).

The modified cost function can be calculated for each interval independently.

CHAPTER 4. ALGORITHMS FOR DISCOVERING COMMUNITIES 29

That property makes it possible to construct a subproblem of dynamic pro-
gramming.

We define a sub-problem as finding the maximal cost coverage of the
first i edges by m intervals in budget b. Note that time budget b should
be discretized in order to ensure optimal coverage by dynamic program-
ming. By the nature of Problem 3 time can be discretized in respect of
the smallest reasonable time unit, based on granularity of time stamps.
Thus, we can record the corresponding maximal cost element D[i,m, b] into
D ∈ R(n+1)×(K+1)×(B+1) tensor.

Consider coverage of i points by m intervals in budget b. The optimal cost
coverage will contain optimal coverage of some first points js < i by m − 1
intervals in some budget rs ≤ b, and coverage of points jt, .., i (js < jt) by one
interval in budget r ∈ [b− jt, b]. The points with indexes j : js < j < jt will
be uncovered. That is, to find an optimal coverage cost D(i,m, b) we need to
try all possible splits of the budget B ≥ rs + rt, and all possible end js and
start jt points for intervals m − 1 and m. We do not need to explore splits
into more intervals as D(is,mt − 1, rs) contains the optimal cost coverage of
is points by m− 1 interval, thus we cannot obtain better results.

These observations define the subproblem for dynamic programming op-
timization, and lead to the recurrence equation:

D(i,m, b) = max
js,jt,rs,rt

D(js,m− 1, rs) + q(W, [jt, i], G)

where max is over js ∈ [m−1, i−1], jt ∈ [m−1, i−1], rs ∈ [0, b], rt ∈ [0, b−jt]
and span([jt, i]) ≤ rt with i ∈ [1, n],m ∈ [1, K], b ∈ [0, B]. The initial values
of D are set to 0, if i = 0 or m = 0. As points can be covered in zero budget,
the other D entries for b = 0 should be calculated using recurrence equation.

To backtrack and find the optimal coverage we need an axillary matrix
B ∈ R(n+1)×(K+1)×(B+1). An entry of B is a triple: the values of js – the end
point of the interval m − 1, jt – the start point of the interval m, and the
budget bs that was spent on js points.

Proposition 5. Dynamic programming for Problem 6 can be done in time
O(n4B2K) and space O(nKB).

Proof. The size of tensor D is O(nKB). For each entry D(i,m, b) we need to
explore submatrix D(0 : i−1,m−1, 0 : b), which is of the size O(nB) and find
a start of a new interval. Overall it takes O(n2B). The cost q(W, [jt, i], G)
and span([jt, i]) can be calculated in O(n) and O(1) respectively. Thus, we
need O(n4B2K) to fill the cost tensor D. As we store indexes js, jt and
budgets rs in B, backtracking and recovering the coverage can be done in
O(K). Overall complexity of dynamic programming is O(n4B2K).

CHAPTER 4. ALGORITHMS FOR DISCOVERING COMMUNITIES 30

As for space complexity, we need to maintain tensor D of a size O(nKB)
and tensor B of a size O(3nKB). The space complexity is O(nKB).

Below we refer to dynamic programing approach as DP.

4.3 Initialization

The quality of the solution discovered by the iterative algorithm depends on
the set of time intervals T0 used as initial seed. Consider an optimal solution
(W, T), with T = (T1, . . . , TK), which achieves density d∗. It follows that
there is one single time interval T ∈ T , for which the optimal set of nodes
W has density at least d∗/K on π(G(T)). This observation motivates us to
limit ourselves to consider only time interval sets of size 1. Assuming large
computational power, one could test every possible time interval as a seed,
consequently run the iterative algorithm, and return the best solution found
out of all runs. There are O(m2) such intervals, which is polynomial.

If running the algorithm O(m2) times is expensive, we can select J ran-
dom intervals, run the iterative algorithm for each of those random intervals,
and return the best solution found out of all runs. In our experiments we
evaluate the effect of the number of random seeds J to the quality of the
solution found.

Chapter 5

Experimental evaluation

5.1 Datasets

To evaluate the proposed methods we use several datasets: synthetic and
real-world social communication networks. We describe our datasets in detail
below.

5.1.1 Synthetic data

We simulate activity on a network with a planted dense dynamic community.
Different parameters for the planted community and the background noise
are used, and the objective is to measure how the algorithms behave with
respect to those parameters. The background network G is an Erdős-Rényi
random graph, with expected degree being one of the model parameters. We
plant a dense subgraph G′, whose expected degree is a second model parame-
ter. For every edge in G, we choose uniformly randomly a time stamp, when
the edge is active. Whole time interval of the simulation T . The interactions
for the edges of G′ occur in some short time period T ′, with |T ′| � |T |.
We set T ′ to be 10 times shorter than |T |. Some basic characteristics of the
artificial datasets can be found in Table 5.1. Below we describe the synthetic
datasets in details.

Basic Synthetic datasets
We start by testing the ability of our algorithms to discover the planted com-
munities with two families of artificial datasets Synthetic1 and Synthetic2.
These datasets span time interval T of |T | = 1000 time units. The interac-
tions of the edges of G′ are arbitrary planted to be covered by K = 3 time
intervals with total length of |T ′| = 100 time units. We assign edges of G

31

CHAPTER 5. EXPERIMENTAL EVALUATION 32

Table 5.1: Characteristics of the synthetic dataset families. Planted commu-
nity in the datasets of type 1 (Synthetic1, SmallSynthetic1, MultiSynthetic1) is
a 5-clique. Planted community in the datasets of type 2 (Synthetic2, Small-
Synthetic2, MultiSynthetic2) is an 8-node subgraph. |V | – number of nodes in
the dataset; |π(E)| – expected number of edges in the underlying network;
d(H) – expected density of the planted community; d(G) – expected density
of the background network; |T | – length of the whole time interval (in time
units); B – time budget required to cover the community activity (in time
units); K – number of continuous time intervals that contain community
activity; |C| – number of planted communities.

Name |V | |π(E)| d(H) d(G) |T | B K |C|

Synthetic1 100 200 4 1 – 6 1000 100 3 1
Synthetic2 100 200 2 – 7 4 1000 100 3 1

SmallSynthetic1 50 100 4 1 – 6 100 10 3 1
SmallSynthetic2 50 100 2 – 7 4 100 10 3 1

MultiSynthetic1 100 200 4 1 – 6 1000 100 3 3
MultiSynthetic2 100 200 2 – 7 4 1000 100 3 3

uniformly randomly to time instances in T , and edges of G′ to time instances
in T ′.

In the first setting (dataset family Synthetic1) we fix the planted subgraph
(a clique) and vary the average degree of the background network. The ob-
jective is to test the robustness against background noise. In the second case
(dataset family Synthetic2) the average degree of the background network is
fixed, while the density of the planted subgraph changes.

Small Synthetic datasets
Being limited by the high time complexity of the DP approach, we generated
smaller versions of the dataset families Synthetic1 and Synthetic2 to test and
compare performance of all three algorithms. SmallSynthetic1 and SmallSyn-
thetic2 have whole interval T equal to |T | = 100 time units, and planted
community is constructed to be covered by one time interval with |T ′| = 10
time units. Similarly to Synthetic1 and Synthetic2, family SmallSynthetic1
is designed to test robustness of clique discovery with varying noise in the
background network, while in SmallSynthetic2 we fix background noise and
change density of the planted community.

CHAPTER 5. EXPERIMENTAL EVALUATION 33

Synthetic datasets with several planted communities
The last two artificial datasets are constructed to examine if the proposed ap-
proaches can detect several communities. MultiSynthetic1 and MultiSynthetic2
have the same characteristics as Synthetic1 and Synthetic2, but contain n = 3
non-overlapping planted communities of the same expected density. The ac-
tivity of each community is scattered arbitrary among K = 3 intervals T ′

(individual for each community) and |T ′| = 100.

5.1.2 Real-world data

We use five datasets of real-world Internet communication. The characteris-
tics of these datasets are summarized in Table 5.2.

Facebook [60]: That dataset is a 3-month-long subset of activity in a New
Orleans regional community on Facebook. The data contain anonymized list
of wall posts (interactions) with recorded time stamps. The subset covers
time period from 9.05.06 to 20.08.06.

Twitter: The dataset tracks activity of Twitter users in the Helsinki re-
gion. We consider records that contain mentions of other users as interac-
tions. The span of the used subset is 08.2010 – 10.2010.

Tumblr: This is a subset of the Memetracker dataset1, which contains only
quoting between Tumblr users. The subset covers three months: 02.2009 –
04.2009.

Students:2 This dataset logs the activity in a student online community at
University of California, Irvine. Nodes represent students and edges represent
messages with ignored directions. We used a subset of the dataset that covers
four months of communication from 2004-06-27 to 2004-10-26.

Enron:3 This is the well-known dataset that contains the email communi-
cation of the senior management in a large company. It spans over 20 years
from 1980.

To test the performance of DP on the real-world networks we created a
smaller subsets of the Facebook, Students and Enron datasets. Their charac-
teristics also can be found in Table 5.2.

1http://snap.stanford.edu/data/memetracker9.html
2http://toreopsahl.com/datasets/#online_social_network
3http://www.cs.cmu.edu/~./enron/

http://snap.stanford.edu/data/memetracker9.html
http://toreopsahl.com/datasets/#online_social_network
http://www.cs.cmu.edu/~./enron/

CHAPTER 5. EXPERIMENTAL EVALUATION 34

Table 5.2: Basic characteristics of the real-world datasets. |V |: number of
nodes; |π(E)|: number of edges of the topology network; |E|: number of
interactions; |T |: time span of the dataset (in days); d(π(G)): density of the
whole topology network. Denote the densest found by Charikar subgraph of
the topology network as H. d(H): density of the densest subgraph of the
topology network; |V (H)|: number of nodes in the densest subgraph of the
topology network.

Name |V | |π(E)| |E| |T | d(π(G)) d(H) |V (H)|

Facebook 4117 5143 10000 104 2.498 5.292 198
Twitter 4605 6006 11868 93 2.608 10.119 67
Tumblr 1980 2454 7645 89 2.479 7.0 18
Students 889 2267 9837 120 5.100 11.292 99
Enron 1143 2019 6245 8080 3.533 14.387 31

FacebookSmall 198 114 150 2 1.151 2.0 3
StudentsSmall 105 83 150 6 1.580 1.809 21
EnronSmall 105 120 150 95 2.285 3.354 31

5.2 Discovering hidden structure

5.2.1 Planted communities

We test the ability of our algorithms to detect the planted communities
for different levels of background noise and community average degrees. We
quantify the quality of our algorithms by measuring precision and recall, with
respect to the ground-truth communities. We also report the F -measure, the
harmonic mean of precision and recall. Results reported below are averages
over J = 1000 independent runs.

One planted community
Precision, recall and F -measure results for the two basic families of syn-
thetic datasets Synthetic1 and Synthetic2 are shown in Figures 5.1 and 5.2,
respectively. Recall that datasets Synthetic1 contain a community based on
a 5-clique. Both algorithms are able to discover this community correctly
when the average degree of the underlying graph is smaller than the aver-
age degree of the planted community. Even when the community density is
equal to the background network density (around 4), the algorithms tend to

CHAPTER 5. EXPERIMENTAL EVALUATION 35

2 3 4 5
0.2

0.4

0.6

0.8

1

background network density

Precision

BS
GH

2 3 4 5
0.2

0.4

0.6

0.8

1

background network density

Recall

BS
GH

2 3 4 5
0.2

0.4

0.6

0.8

1

background network density

F−measure

BS
GH

Figure 5.1: Precision, recall and F -measure on Synthetic1, as a function of the
background network density. The planted community is a 5-clique scattered
over K = 3 intervals.

3 4 5 6 7
0

0.5

1

planted community density

Precision

BS
GH

3 4 5 6 7
0

0.5

1

planted community density

Recall

BS
GH

3 4 5 6 7
0

0.5

1

planted community density

F−measure

BS
GH

Figure 5.2: Precision, recall and F -measure on Synthetic2, as a function of
the density of a planted community of 8 nodes scattered over K = 3 intervals.
The background network density is set to 4.

keep high precision and recall. Precision and recall regrade at the same rate,
indicating that with increase of background network density the algorithms
retrieve less nodes of planted community and more noisy nodes. Nevertheless,
the measures do not drop very low, implying that the 5-clique spread over
K = 3 short time intervals is distinguishable even within a dense background
network.

The results on the second family of datasets (Synthetic2), shown in Fig-
ure 5.2, are similar: both algorithms perform well when the background
network density is smaller than the planted-community density.

The results of all three approaches on the small datasets SmallSynthetic1
and SmallSynthetic2 are presented in Figures 5.3 and 5.4. We generate arti-
ficial datasets such that every edge of the planted community appears once.
In that case the objective function for DP is equal to the objective that
GH and BS optimize. Recall that DP considers the same edges, covered by
different time intervals as duplicates, while GH and BS count every covered
edge exactly once. Thus, in the case when edges appear with low frequency

CHAPTER 5. EXPERIMENTAL EVALUATION 36

1 2 3 4 5
0.4

0.6

0.8

1

background network density

Precision

BS
GH
DP

1 2 3 4 5
0.4

0.6

0.8

1

background network density

Recall

BS
GH
DP

1 2 3 4 5
0.4

0.6

0.8

1

background network density

F−measure

binary
greedy
dynamic

Figure 5.3: Precision, recall and F -measure on SmallSynthetic1, as a function
of the background network density. The planted community is a 5-clique
scattered over K = 3 intervals.

3 4 5 6 7
0.2

0.4

0.6

0.8

1

planted community density

Precision

BS
GH
DP

3 4 5 6 7
0.2

0.4

0.6

0.8

1

planted community density

Recall

BS
GH
DP

3 4 5 6 7
0.2

0.4

0.6

0.8

1

planted community density

F−measure

BS
GH
DP

Figure 5.4: Precision, recall and F -measure on SmallSynthetic2, as a function
of the density of a planted community of 8 nodes scattered over K = 3
intervals. The background network density is set to 4.

DP is expected to perform similar to the other approaches. According to
Figures 5.3 and 5.4 DP tends to outperform GH and BS on our synthetic
datasets SmallSynthetic1 and SmallSynthetic2. Nevertheless, the difference in
the measured performance is not significant.

Several planted communities
Usually the real-world interactive networks contain more than one commu-
nity. To test the behavior of our approaches in that setting we utilize Mul-
tiSynthetic1 and MultiSynthetic2 families of datasets. These datasets contain
|C| = 3 planted non-overlapping in members communities. Aimed to retrieve
all of them we run the algorithms 3 times. After each run we removed edges
of the found community from the dataset. The results of that experiments
obtained by GH and BS are shown in Figures 5.5 and 5.6. To calculate
precision, recall and corresponding F -measure we found the best F -measure
match for each of three retrieved communities among the ground-truth com-
munities, and calculate precision and recall with respect to that match. We
chose a median (among three retrieved communities) F -measure value to

CHAPTER 5. EXPERIMENTAL EVALUATION 37

2 4 6
0.2

0.4

0.6

0.8

1

background network density

Precision

BS
GH

2 4 6
0.4

0.6

0.8

1

background network density

Recall

BS
GH

2 4 6
0.4

0.6

0.8

1

background network density

F−measure

BS
GH

Figure 5.5: Precision, recall and F -measure on MultiSynthetic1, as a function
of the background network density. The planted community is a 5-clique
scattered over K = 3 intervals. Number of planted communities |C| = 3.

2 3 4 5 6 7
0.2

0.4

0.6

0.8

1

planted community density

Precision

BS
GH

2 3 4 5 6 7
0.2

0.4

0.6

0.8

1

planted community density

Recall

BS
GH

2 3 4 5 6 7
0.2

0.4

0.6

0.8

1

planted community density

F−measure

BS
GH

Figure 5.6: Precision, recall and F -measure on MultiSynthetic2, as a function
of the density of a planted community of 8 nodes scattered over K = 3
intervals. Number of planted communities |C| = 3. The background network
density is set to 4.

show on the plots.
The resulting Figures 5.5 and 5.6 demonstrate that in the realistic several

communities setting the GH and BS approaches have the same tendencies
as in the case of one planted community datasets. The performance stays
high until the noise level becomes significant, and the average degree of the
planted community is close to the average degree of the underlying network.

5.2.2 Effect of random seeds

Both of our algorithms are instances of Algorithm 1. In the experiments
shown above we initialize the interval seed T0 with the whole time interval T
spanned by the dataset. Starting from T0 = {T} ensures that the subgraph
we discover belongs to some dense structure in the topology network. How-
ever, if such a dense structure occurs in a scattered manner, the initialization
T0 = {T} may mislead. To overcome this problem and avoid dense structures
that cannot be covered in the given time budget, we initialize Algorithm 1

CHAPTER 5. EXPERIMENTAL EVALUATION 38

100 200 300 400 500 600 700
4

4.5

5

5.5

number of random initializations

co
m

m
un

ity
 d

en
si

ty

density of topology network: 5.087

BS
GH
whole interval start: BS
whole interval start: GH
baseline

(a) Students, B = 7 days, K = 3

100 200 300 400 500 600 700

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

number of random initializations

co
m

m
un

ity
 d

en
si

ty

density of topology network: 5.087

BS
GH
whole interval start: BS
whole interval start: GH
baseline

(b) Students, B = 7 days, K = 7

100 200 300 400 500 600 700
4.4

4.6

4.8

5

5.2

5.4

number of random initializations

co
m

m
un

ity
 d

en
si

ty

density of topology network: 2.479

BS
GH
whole interval start: BS
whole interval start: GH
baseline

(c) Tumblr, B = 7 days, K = 3

100 200 300 400 500 600 700

4.5

5

5.5

6

6.5

number of random initializations

co
m

m
un

ity
 d

en
si

ty
density of topology network: 2.479

BS
GH
whole interval start: BS
whole interval start: GH
baseline

(d) Tumblr, B = 7 days, K = 7

Figure 5.7: Effect of random initializations on the real-world datasets.

with many random time intervals, and return the best solution found.
The improvement of performing random initializations is shown in Fig-

ure 5.7. The experiments are shown for Tumblr and Students. The figures
show the best density discovered by our algorithms, when J independent
random runs are performed. As expected, random initializations improve
the performance of the algorithms. The most significant improvement is ob-
tained for the Student dataset. We also experiment with a baseline that finds
the densest subgraph over all possible intervals that satisfy the time budget
B (no iterative process is followed). We see that our algorithms perform
significantly better than this baseline.

5.2.3 Discovered communities

Table 5.3 reports the densities of the communities discovered by our algo-
rithms in the real-world datasets (for results on larger range of parameters K
and B please see Table A.1 in Appendix A). We use J = 200 random initial-

CHAPTER 5. EXPERIMENTAL EVALUATION 39

Table 5.3: Densities of discovered subgraphs. B – time budget in days.

Community density Community size

Dataset B K GH BS Base GH BS Base

Facebook 1 1 2.4 2.4 2.4 5 5 5
5 3.666 3.666 2.4 6 6 5
10 3.75 3.75 2.4 8 8 5

7 1 3 3 3 6 6 6
5 3.875 4 3 16 9 6
10 4.285 4.47 3 14 17 6

Twitter 1 1 4 4 4 6 6 6
5 5.111 5.333 4 9 9 6
10 6.4 6.4 4 10 10 6

7 1 4.666 4.666 4.666 9 9 9
5 6 6.222 4.666 14 9 9
10 6.923 7.2 4.666 13 15 9

Tumblr 1 1 3.866 3.866 3.866 30 30 30
5 5.111 5.25 3.866 9 8 30
10 5.818 6.181 3.866 11 11 30

7 1 4.5 4.5 4.5 8 8 8
5 5.888 6 4.5 18 11 8
10 6.714 6.8 4.5 14 15 8

Students 1 1 3.411 3.333 3.428 17 15 21
5 4.666 4.625 3.428 9 16 21
10 5.5 5.625 3.428 16 16 21

7 1 4.755 4.697 4.755 45 43 45
5 5.826 6 4.755 46 25 45
10 6.764 7.121 4.755 34 41 45

Enron 1 1 6.181 6.181 6.181 11 11 11
5 10 10.37 6.181 17 16 11
10 12.2 12.38 6.181 20 21 11

7 1 6.363 6.363 6.363 11 11 11
5 11.26 11.23 6.363 19 26 11
10 13.07 13.07 6.363 28 28 11

CHAPTER 5. EXPERIMENTAL EVALUATION 40

izations. Here and in later experiments we compare our algorithms with the
same baseline as before: the densest subgraph over all intervals that satisfy
the time budget B.

Overall, we observe that GH and BS perform equally well, while in some
settings BS yields denser communities than GH.

For fixed value of the time budget B, the density of the discovered com-
munity increases with K. For small values of K (1 to 3), the density of the
communities discovered by our algorithm is equal or close to the density of
the communities discovered by the baseline. This behavior is expected, as
the brute-force baseline tests all possible intervals, while our algorithms use
only some random intervals for initialization. However, as the value of K
increases, the algorithms take advantage of the provided flexibility to use
many intervals effectively; for K > 3 both algorithms always outperform the
baseline.

Furthermore, as we can see by contrasting Tables 5.2 and 5.3, the dis-
covered communities are almost as dense as the densest subgraphs on the
whole topology network, even though the time budget is significantly smaller
than the time span of the dataset. For example, the densest subgraph of
the over 20-year-long Enron dataset has average degree 14.387, while we were
able to discover a subgraph with average degree 13.07 in a budget of 7 days,
spanning 10 time intervals.

A typical retrieved dense community has a size of about 10 to 20 nodes,
which is reasonably small for dense social communities, such as friends,
group-mates or co-workers. Moreover, this value is independent from the
parameter selection in the tested range, and is similar for all the datasets.
We believe that a small size is a general property of the dynamic commu-
nities, successfully captured by the considered problem formulation. On the
contrary, the communities found as the densest subgraphs of the underlying
network (Table 5.2) have large size (up to 200 nodes) and large variance.

Community discovery by DP approach
The characteristic of communities, found by all three considered algorithms
on small subsets of real datasets can be found in Table 5.4. As we remem-
ber from the tests on artificial datasets SmallSynthetic1 and SmallSynthetic2
(Figures 5.3 and 5.4), DP was able to outperform GH and BS. However,
in the synthetic dataset the expected number of each edge occurrence was
equal to one, which does not hold for real datasets. That should lead to
poor performance of the DP in comparison to the two other approaches.
Nonetheless, Table 5.4 reports that the results of DP are close to densities
obtained by GH and BS, although DP never outperforms them. In spite
of promising results on the artificial and real datasets, DP is impractical for

CHAPTER 5. EXPERIMENTAL EVALUATION 41

Table 5.4: Densities of discovered subgraphs on the small real-world datasets.
B – time budget in hours.

Community density Community size

Dataset B K GH BS DP Base GH BS DP Base

EnronSmall 1 1 3.4 3.4 3.4 3.4 10 10 10 10
3 3.4 3.4 3.3 3.4 10 10 20 10

3 1 3.4 3.4 3.4 3.4 10 10 10 10
3 3.4 3.4 3.3 3.4 10 10 20 10

StudentsSmall 1 1 1.857 1.857 1.857 1.866 14 14 14 15
3 1.866 1.857 1.6 1.866 15 14 5 15

3 1 1.9 1.9 1.9 1.857 20 20 20 14
3 1.857 1.882 1.333 1.857 14 17 3 14

FacebookSmall 1 1 1.5 1.5 1.142 1.5 4 4 14 4
3 2 2 1 1.5 3 3 2 4

3 1 1.5 1.5 1.333 1.5 4 4 3 4
3 2 2 1 1.5 3 3 2 4

analysis of large social networks due to its high complexity. Thus, we limit
the experimental analysis of DP performance by Table 5.4, and further focus
on the GH and BS.

5.2.4 Effect of parameter selection

Effect on the number of intervals K
We tested how the choice of number of intervals K affects the density of dis-
covered communities. The resulting densities for all datasets with fixed time
budget B and K ranges from 1 to 50 are shown in Figure 5.8. We run GH and
BS starting from the whole time interval T (without random initialization),
and compare the resulting density with the density of the subgraph obtained
by the brute-force baseline, and the density of the densest subgraph of the
underling network. As expected, the density of the discovered community
grows with increasing of the number of intervals K. With significantly large
critical K the algorithms are able to cover the densest subgraph of the under-
lying network (which is an upper bound for dynamic community density in
the considered problem formulation). The critical value of K depends on the
dataset and is related to the number of edges in the densest subgraph. For

CHAPTER 5. EXPERIMENTAL EVALUATION 42

10 20 30 40 50
1

2

3

4

5

6

number of intervals K

co
m

m
un

ity
 d

en
si

ty

BS
GH
densest subgraph
baseline

(a) Facebook

10 20 30 40 50
4

6

8

10

12

number of intervals K

co
m

m
un

ity
 d

en
si

ty

BS
GH
densest subgraph
baseline

(b) Twitter

10 20 30 40 50
4.5

5

5.5

6

6.5

7

number of intervals K

co
m

m
un

ity
 d

en
si

ty

BS
GH
densest subgraph
baseline

(c) Tumblr

10 20 30 40 50
4

6

8

10

12

number of intervals K

co
m

m
un

ity
 d

en
si

ty

BS
GH
densest subgraph
baseline

(d) Students

10 20 30 40 50
6

8

10

12

14

16

number of intervals K

co
m

m
un

ity
 d

en
si

ty

BS
GH
densest subgraph
baseline

(e) Enron

Figure 5.8: Effect of parameter K. Time budget B fixed to B = 7 days. The
initial interval equals to the whole interval T (no random initialization).

example, for Tumblr dataset the densest subgraph consists of 18 nodes with
density 7 (Table 5.2), hence, it contains 63 edges. For Enron, the number
of edges in the densest subgraph is 223, while for Twitter it is 339. None of
these communities cannot be guaranteed to be covered by K = 50 intervals,
however, for Tumblr and Enron it was possible to cover the whole densest
subgraph in significantly smaller number of time intervals. Additionally, the
density retrieved by our algorithm is significantly higher than the baseline.

Effect of time budget B
The impact of different time budget B is shown in Figures 5.9. We fixed
K = 7 and started from initial interval T0 = T . The density of the retrieved
community grows with increasing of the time budget. The rate of increase is
rather slow and tends to saturation, which illustrates the importance of the
parameter K.

5.2.5 Retrieved intervals

In this section we present various experimental results, related to the time
intervals that cover found communities. All the results in that section were
obtained without use of random initialization.

CHAPTER 5. EXPERIMENTAL EVALUATION 43

5 10 15 20 25 30
1

2

3

4

5

6

budget B (days)

co
m

m
un

ity
 d

en
si

ty

BS
GH
densest subgraph

(a) Facebook

5 10 15 20 25 30
4

6

8

10

12

budget B (days)

co
m

m
un

ity
 d

en
si

ty

BS
GH
densest subgraph

(b) Twitter

5 10 15 20 25 30
5

5.5

6

6.5

7

7.5

budget B (days)

co
m

m
un

ity
 d

en
si

ty

BS
GH
densest subgraph

(c) Tumblr

5 10 15 20 25 30
4

6

8

10

12

budget B (days)

co
m

m
un

ity
 d

en
si

ty

BS
GH
densest subgraph

(d) Students

5 10 15 20 25 30
10

11

12

13

14

15

budget B (days)

co
m

m
un

ity
 d

en
si

ty

BS
GH
densest subgraph

(e) Enron

Figure 5.9: Effect of parameter B. Number of intervals K fixed to K = 7.
The initial interval equals to the whole interval T (no random initialization).

Role of using multiple intervals
As it is shown in Table 5.3, GH and BS are able to find community of signifi-
cant density, comparable to the densest subgraph of the underlying network.
Table 5.5 illustrates that the found communities fit the time budget only
in virtue of concept of several intervals K. Column spent B reports total
length of the retrieved time intervals. Column span indicates minimal length
of some single time interval that covers all the edges of the retrieved com-
munity subgraph. According to Table 5.5, the coverage of a retrieved dense
community by one time interval requires a large time budget (up to several
months) that is comparable to the whole time span of the dataset. Moreover,
span is typically much larger than the time budget we spent constructing the
K intervals.

Characteristics of the intervals
Table 5.5 presents characteristics of the captured time intervals for different
datasets, K ∈ {3, 5, 10} and B = 3 days. The first observation is that both
GH and BS use the time budget quite tightly, however, GH typically tends
to utilize B more extensive than BS. Nonetheless, BS achieves slightly higher
densities than GH (see Table 5.3). From the columns median |Ti|,min |Ti|
and max |Ti| one can see that budget B is spread rather evenly between

CHAPTER 5. EXPERIMENTAL EVALUATION 44

Table 5.5: Total time span of the found communities. B – time budget (days);
spent B – actually utilized time budget (days); span – length (in days) of
the minimal length time interval, needed to cover the retrieved community
in one time interval.

GH BS

Dataset B K density spent B span density used B span

Facebook 1 3 3 0.39 9.09 3.11 0.79 18.1
7 3.77 0.72 20.2 3.71 0.72 29.5

7 3 3.75 4.44 20.2 3.75 3.57 20.2
7 4.23 5.61 73 4.28 4.9 90.1

Twitter 1 3 3.66 0.41 32.3 4.57 0.46 51.7
7 5.6 0.69 32.7 6 0.92 72.4

7 3 5.33 6.99 32.7 5.63 5.84 79.3
7 6.53 6.49 79.5 6.66 5.09 79.3

Tumblr 1 3 4.33 0.87 33.4 4.66 0.77 56.8
7 5.45 0.82 49.4 5.63 0.9 49.4

7 3 5.45 6.76 44.9 5.5 5.92 37.3
7 6.3 6.99 82.1 6.36 5.92 60.4

Students 1 3 4 0.75 8.51 4.25 0.54 8.61
7 5.33 0.99 29.5 5.2 0.92 55.3

7 3 5.42 6.91 25.3 5.42 6.66 32.2
7 6.13 6.56 76.1 6.57 6.96 73.4

Enron 1 3 8.76 0.83 69.4 8.76 0.83 69.4
7 11.2 0.98 320 11.2 0.88 158

7 3 9.6 4.32 69.4 9.89 6.45 158
7 12 6.64 320 12.3 5.35 320

the intervals. However, BS outputs intervals with more diverse time length
than GH: its maximum is typically higher, and minimum is lower. With
increasing of K the maximal length time interval, found by GH, shrinks,
while the maximal length interval output by BS remains the same. GH is
designed to spread the time budget among the intervals in balance. On the
contrary, BS greedily maximizes the gain of each new interval, and checks
budget constraints on B only a posteriori in the loop of binary search. Thus,
on selecting the next interval BS tends to spent a large fraction of the time
budget B, and the last retrieved intervals have length that is close to zero.

CHAPTER 5. EXPERIMENTAL EVALUATION 45

Table 5.6: Time length characteristics of the retrieved intervals. Time budget
B fixed to 3 days; K – number of intervals; spent B – actually used time
budget (days); median |Ti| – median length of the retried K intervals; min |Ti|
and max |Ti| – minimal and maximal time length of the found K intervals.

spent B median |Ti| min |Ti| max |Ti|
Dataset K GH BS GH BS GH BS GH BS

Facebook 3 2.99 2.1 0.96 0.82 0.71 0.01 1.32 1.26
5 2.85 2.26 0.61 0.15 0.01 0 1.23 1.26
10 2.95 2.84 0.13 0.08 0 0 1.67 1.42

Twitter 3 2.88 0.46 1.09 0 0.45 0 1.32 0.45
5 2.52 2.11 0.45 0.07 0.07 0 1.19 1.7
10 2.91 1.25 0.24 0 0 0 0.85 0.45

Tumblr 3 2.94 2.78 0.99 0.99 0.79 0.79 1.15 0.99
5 2.88 2.81 0.62 0.79 0.3 0 0.7 0.99
10 2.8 2.97 0.23 0.08 0.06 0 0.53 0.99

Students 3 2.99 2.69 1.02 0.08 0.68 2.31 1.28 2.61
5 2.51 2.81 0.5 0.1 0.03 0.03 1.08 2.04
10 2.96 2.81 0.3 0.12 0.18 0 0.4 1.24

Enron 3 2.28 2.26 0.69 0.69 0.64 0.64 0.94 0.92
5 2.97 2.96 0.64 0.69 0.11 0 0.92 0.92
10 2.56 2.6 0.11 0.09 0 0 0.82 0.7

The next Table 5.7 reflects how the density of the resulting community
is spread among the intervals. Each time interval on average covers a sub-
community of a small density, while the union of the intervals results in a
denser structure. The sparsest sub-community has degree close to 1, the
densest sub-community is neither comparable to the union of all K intervals.
However, due to the uneven time length of the retrieved intervals (Table 5.6),
the densest sub-community constructed by BS is generally denser than the
one constructed by GH.

To show how scattered the retrieved time intervals are, we collected ex-
perimental results related to the length of the time gaps between K found
intervals. According to Table 5.8, the solutions for all datasets with different
parameters contain significant gaps between the output time intervals. The
change of gaps size with incrementing of K is dataset specific, and, as we
believe, reflects the structure and behavior of the dynamic communities. In

CHAPTER 5. EXPERIMENTAL EVALUATION 46

Table 5.7: Density of the sub-communities of the retrieved intervals. Time
budget B fixed to 3 days; K – number of intervals; total density – density of
the found community in the union of K intervals; avg d(Ti) – average density
of the sub-community, covered by one of K time intervals; min d(Ti) and max
d(Ti) – minimal and maximal density of the sub-community, covered by one
of K retrieved intervals.

total density avg d(Ti) min d(Ti) max d(Ti)

Dataset K GH BS GH BS GH BS GH BS

Facebook 3 3.33 3.66 1.53 1.74 1 1.33 2 2.4
5 3.75 3.75 1.45 1.52 1 1 2 2.33
10 4 4.15 1.27 1.29 1 1 1.5 1.71

Twitter 3 4.66 4.57 2.66 2.16 2 1 4 4
5 5.8 5.77 2.11 1.92 1.6 1 3.71 4
10 6.4 6.4 1.61 1.6 1.2 1 3.71 3.71

Tumblr 3 5.27 5.23 2.41 2.52 1.8 2 3.2 3.33
5 5.63 5.71 2.05 2.06 1.42 1.33 3 3.38
10 6.18 6.57 1.85 1.83 1 1 2.88 3.33

Students 3 4.43 4.72 2.52 2.14 2.23 1.33 3.04 3.4
5 5 5.4 1.6 1.7 1.14 1 2 2.66
10 6.08 6.13 1.7 1.63 1.53 1.11 2 2.42

Enron 3 9.6 9.6 4.14 4.14 3.5 3.5 5.09 5.09
5 10.8 10.8 3.44 3.47 2 1.77 4.6 5.09
10 12.7 12.7 2.62 2.9 1.6 1.71 4.54 5.16

some cases, such as in Facebook, the gaps grow when more time intervals are
allowed. Maximal time gap increases, and the retrieved communities become
more scattered in time. In the case of Twitter and Tubmlr the average gap
size decreases, along with the maximal and minimal gap sizes, thus we can
conclude that the community activity in these datasets is spread more evenly.

Each node of the discovered community appears on average in a small
number of time intervals, as it can be seen from Table 5.9. Thus, each of
these time intervals contributes equally, and there is no redundancy. More-
over, there are typically some nodes that are covered by exactly one interval.
Similar properties are illustrated by Table 5.10, which shows how often the
same community edge appears in the output intervals. That table emphasizes
the role of each interval, as on average the community edges (the interactions)

CHAPTER 5. EXPERIMENTAL EVALUATION 47

Table 5.8: Length characteristics of the time gaps between the retrieved
intervals. Time budget B fixed to 3 days; K – number of the intervals; avg
T̄i – average length of the time gaps between K retried intervals; min T̄i and
max T̄i – minimal and maximal length of the time gaps between K found
intervals.

avg T̄i min T̄i max T̄i

Dataset K GH BS GH BS GH BS

Facebook 3 5.1 5.17 1.17 1.3 9.04 9.04
5 4.35 4.5 1.3 0.23 9.04 9.04
10 9.68 9.7 0.56 0.86 44.6 44.3

Twitter 3 38.7 43.8 3.69 36.3 73.7 51.3
5 19.4 21.4 1.24 7.27 42.4 42.4
10 9.48 9.66 0.72 0.16 34.6 42.4

Tumblr 3 31.6 31.7 20.7 20.9 42.5 42.6
5 17.2 17.1 5.22 5.19 43.3 37.3
10 8.86 8.83 1.86 0.55 16.4 34.1

Students 3 3.46 5.76 1.51 4.82 5.4 6.71
5 6.96 6.68 1.7 5.17 14.6 9.23
10 6.7 8.1 1.86 0.81 14.1 21.4

Enron 3 33.5 33.5 20.5 20.5 46.6 46.6
5 39 38.8 4.82 20.5 83.7 61
10 35.3 35.3 5.01 6.77 161 74.4

occur in not more than 1.5 time intervals. The maximal number of intervals
that contain the same edge is usually smaller than the number of intervals.

The examples of captured community and covering time intervals can
be found of Figures 5.10 and 5.11. Each subplot corresponds to one time
interval with start and end points written in its title. The active edges of the
time interval are marked red. These figures illustrate the properties discussed
above: dense community is composed by small components scattered among
the time intervals of various time length.

CHAPTER 5. EXPERIMENTAL EVALUATION 48

Table 5.9: Frequency of the community nodes in the retrieved time intervals.
Time budget B fixed to 3 days; K – number of the intervals; avg Frn –
average number of the retrieved intervals K where the same community node
appears; min Frn and max Frn – minimal and maximal number of retrieved
intervals K where the same community node appears.

avg Frn min Frn max Frn

Dataset K GH BS GH BS GH BS

Facebook 3 2 2 1 1 3 3
5 2.37 2.37 1 2 3 3
10 3.27 3.15 2 2 4 4

Twitter 3 1.77 1.71 1 1 3 2
5 3 2.55 2 1 4 4
10 4.6 3.9 2 2 7 6

Tumblr 3 2.54 2.38 2 1 3 3
5 3.54 2.78 2 2 5 5
10 5.45 4.21 1 2 9 8

Students 3 1.96 2.09 1 1 3 3
5 3.5 3 3 2 5 4
10 4.44 3.66 1 2 7 7

Enron 3 2.46 2.46 1 1 3 3
5 3.58 3.38 1 1 5 5
10 5.5 5.03 1 1 10 9

5.2.6 Several communities

The social networks contain more than one community. Our algorithms were
able to discover several communities on the synthetic dataset (recall Figures
5.5 and 5.6). On the real datasets we used the same strategy, as on the
synthetic datasets: with fixed parameters K and B we run our algorithms
n times to obtain n communities. Before every next run we removed the
edges of all previously found communities from the dataset. The results can
be found in Figures 5.12,5.13,5.14 and 5.15. We compare properties of the
discovered communities with corresponding properties of the densest sub-
graphs, found in the underlying network, using similar strategy: we remove
edges of once detected the densest subgraph from the networks, and iterate

CHAPTER 5. EXPERIMENTAL EVALUATION 49

Table 5.10: Frequency of the community edges in the retrieved time inter-
vals. Time budget B fixed to 3 days; K – number of the intervals; avg Fre –
average number of the retrieved intervals K where the same community edge
appears; min Fre and max Fre – minimal and maximal number of the re-
trieved intervals K where the same community edge appears.

avg Fre min Fre max Fre

Dataset K GH BS GH BS GH BS

Facebook 3 1 1 1 1 1 1
5 1 1.06 1 1 1 2
10 1.09 1.11 1 1 3 3

Twitter 3 1.04 1 1 1 2 1
5 1.13 1.03 1 1 2 2
10 1.25 1.12 1 1 3 3

Tumblr 3 1.17 1.17 1 1 3 3
5 1.32 1.17 1 1 4 3
10 1.7 1.34 1 1 5 6

Students 3 1.14 1.03 1 1 3 2
5 1.12 1.03 1 1 3 2
10 1.25 1.05 1 1 4 2

Enron 3 1.05 1.05 1 1 2 2
5 1.13 1.1 1 1 2 2
10 1.17 1.16 1 1 3 3

finding the densest subgraphs. We stop when the set of the remaining edges
is empty.

As it is shown in Figure 5.12, retrieving communities based on the topol-
ogy network without time component results in several highly dense com-
munities. However, the density of each new found community decreases (es-
pecially dramatically for Facebook dataset). On the contrary,the proposed
algorithms produce more communities of significant density. Moreover, the
size of the communities (Figure 5.13), found in the topology network is unrea-
sonably large, while our algorithms keep output communities of size around
10–20 nodes (we have to use lin-log scale to visualize the resulting community
sizes on the same figure with output of GH and BS). Furthermore, Figure
5.14 depicts that the time span of a single interval needed to cover the under-

CHAPTER 5. EXPERIMENTAL EVALUATION 50

start: 2006-06-04 03:08:20
end: 2006-06-04 07:16:49

interval 1

start: 2006-07-15 01:36:03
end: 2006-07-17 04:08:46

interval 2

start: 2006-07-18 16:31:22
end: 2006-07-19 06:24:52

interval 3

start: 2006-07-31 03:31:25
end: 2006-07-31 09:02:07

interval 4
start: 2006-08-04 04:54:49
end: 2006-08-04 22:51:17

interval 5

start: 2006-08-06 08:13:09
end: 2006-08-07 05:52:12

interval 6

start: 2006-08-15 10:47:59
end: 2006-08-16 07:52:12

interval 7

density: 4.2352

resulting graph

Figure 5.10: Example of community found by GH. Facebook dataset, K = 7
and B = 7 days.

start: 2006-05-17 15:31:09
end: 2006-05-17 15:31:09

interval 1

start: 2006-06-04 03:08:20
end: 2006-06-04 07:16:49

interval 2

start: 2006-07-17 04:08:46
end: 2006-07-17 04:08:46

interval 3

start: 2006-07-18 16:31:22
end: 2006-07-19 06:24:52

interval 4
start: 2006-07-31 08:58:27
end: 2006-07-31 09:02:07

interval 5

start: 2006-08-03 09:57:28
end: 2006-08-07 05:52:12

interval 6

start: 2006-08-15 10:47:59
end: 2006-08-15 18:25:41

interval 7

density: 4.2857

resulting graph

Figure 5.11: Example of community found by BS. Facebook dataset, K = 7
and B = 7 days.

lying network densest subgraphs is large (is comparable to the time span of
the whole dataset.) Thus, to find exact intervals, where the discovered com-
munity is active, one needs further processing, which is incorporated into our
algorithms.

CHAPTER 5. EXPERIMENTAL EVALUATION 51

5 10 15 20
1

2

3

4

5

6

number of communities

co
m

m
un

ity
 d

en
si

ty

BS
GH
densest subgraph

(a) Facebook.

5 10 15 20
0

2

4

6

8

10

12

number of communities

co
m

m
un

ity
 d

en
si

ty

BS
GH
densest subgraph

(b) Twitter

5 10 15 20
1

2

3

4

5

6

7

number of communities

co
m

m
un

ity
 d

en
si

ty

BS
GH
densest subgraph

(c) Tumblr

5 10 15 20
0

2

4

6

8

10

12

number of communities

co
m

m
un

ity
 d

en
si

ty

BS
GH
densest subgraph

(d) Students

5 10 15 20
0

5

10

15

number of communities

co
m

m
un

ity
 d

en
si

ty

BS
GH
densest subgraph

(e) Enron

Figure 5.12: Density of multiple discovered communities. Comparison of
several found communities with dense subgraphs of topology network. K =
7, B = 3 days.

5 10 15 20
10

0

10
1

10
2

10
3

10
4

number of communities

co
m

m
un

ity
 s

iz
e

BS
GH
densest subgraph

(a) Facebook

5 10 15 20
10

0

10
1

10
2

10
3

10
4

number of communities

co
m

m
un

ity
 s

iz
e

BS
GH
densest subgraph

(b) Twitter

5 10 15 20
10

0

10
1

10
2

10
3

number of communities

co
m

m
un

ity
 s

iz
e

BS
GH
densest subgraph

(c) Tumblr

5 10 15 20
10

0

10
1

10
2

10
3

number of communities

co
m

m
un

ity
 s

iz
e

BS
GH
densest subgraph

(d) Students

5 10 15 20
10

0

10
1

10
2

10
3

number of communities

co
m

m
un

ity
 s

iz
e

BS
GH
densest subgraph

(e) Enron

Figure 5.13: Size of multiple discovered communities. Comparison of several
found communities with dense subgraphs of topology network. K = 7, B = 3
days.

CHAPTER 5. EXPERIMENTAL EVALUATION 52

5 10 15 20
0

20

40

60

80

100

120

number of communities

tim
e

sp
an

 (
da

ys
)

densest subgraph

(a) Facebook

5 10 15 20
0

20

40

60

80

100

number of communities

tim
e

sp
an

 (
da

ys
)

densest subgraph

(b) Twitter

5 10 15 20
0

20

40

60

80

100

number of communities

tim
e

sp
an

 (
da

ys
)

densest subgraph

(c) Tumblr

5 10 15 20
0

50

100

150

number of communities

tim
e

sp
an

 (
da

ys
)

densest subgraph

(d) Students

5 10 15 20
0

2000

4000

6000

8000

10000

number of communities

tim
e

sp
an

 (
da

ys
)

densest subgraph

(e) Enron

Figure 5.14: Time span of multiple communities discovered on the underlying
network.

5 10 15 20
0

0.2

0.4

0.6

0.8

1

number of communities

GH precision
BS precision
GH recall
BS recall

(a) Facebook

5 10 15 20
0

0.2

0.4

0.6

0.8

1

number of communities

GH precision
BS precision
GH recall
BS recall

(b) Twitter

5 10 15 20
0

0.2

0.4

0.6

0.8

1

number of communities

GH precision
BS precision
GH recall
BS recall

(c) Tumblr

5 10 15 20
0

0.2

0.4

0.6

0.8

1

number of communities

GH precision
BS precision
GH recall
BS recall

(d) Students

5 10 15 20
0

0.2

0.4

0.6

0.8

1

number of communities

GH precision
BS precision
GH recall
BS recall

(e) Enron

Figure 5.15: Relations between multiple output communities and dense sub-
graphs of topology network. K = 7, B = 3 days.

CHAPTER 5. EXPERIMENTAL EVALUATION 53

It would be expected that communities found by GH and BS are subsets
of communities, captured on the underlying network. To test this hypothesis,
we compare every retrieved community Ci, i ∈ {1, .., n} to every underlying
network densest subgraph U and find the best match. For a retrieved com-
munity Ci we define the best match community U(Ci) ∈ U = {U1, .., Un}
as U(Ci) = arg maxUj∈U P (Ci, Uj). Where set function P has a meaning of
precision with Uj as a ground-truth set. Using the best matching underlying
network community U(Ci) we calculate precision IP (Ci) = P (Ci, U(Ci)) and
recall IR(Ci) = R(Ci, U(Ci)) for each retrieved community. The resulting
plots are shown in Figures 5.15. In these plots we refer to IP as precision
and to IR as recall. High precision IP and low recall IR for all n = 20 found
communities show that the underlying network densest subgraphs are super-
sets of the communities, obtained by GH and BS. That observation confirm
our hypothesis that dynamic communities are hidden in the dense subgraphs
of underlying network.

5.2.7 Twitter community example

The Twitter dataset contains texts of the tweets. To illustrate the retrieved
community we use a set of hash-tags that appear in the community communi-
cation. First of all, we note that hash-tags from the retrieved interactions are
typically the most frequent tags in the found community during the recorded
history. That means that our algorithms are able to capture the most im-
portant activity of the community. For example, using GH algorithm with
K = 7 intervals, B = 3 days we found community of 8 Twitter users with
density = 6.0. There are some organizations such as aaltoes4 and AaltoGarage5

among them. Thus, there is no surprise that retrieved intervals contain the
following hash-tags: summerofstartups, startup, entrepreneur, slush10, aaltoes,
me310, vc, churchillclub. Considering all activity in that 8-nodes community
we can see that all of these tags are on the top of frequent tags, and represent
the community interests well. The list of top frequent hash-tags (with corre-
sponding number of occurrence) in the community: aaltoes: 52, startup: 12,
vc: 11, summerofstartups: 11, entrepreneur: 7, startups: 4, web: 3, slush10: 2,
skype: 2, funrank: 2, africa: 2, mobile: 2, demoday: 2, design: 2, linkedin: 2,
aalto: 2.

On the other hand, a community found as the densest subgraph of the
underlying network consists of 67 nodes with density of 10.119. That is a
rather large community. The list of hash-tags used in their communication

4http://aaltoes.com/
5http://www.aaltovg.com/

http://aaltoes.com/
http://www.aaltovg.com/

CHAPTER 5. EXPERIMENTAL EVALUATION 54

is of size 112, and contains a less focused set of hash-tags on the top: aal-
toes: 80, summerofstartups: 28, startup: 18, vc: 13, ff: 11, fb: 8, elonmerkki: 7,
entrepreneur: 7, slush10: 6, newtwitter: 5, 2010mvv: 4, garage48: 4, facebook: 4,
web: 4, startups: 4, smss2010: 4, mvv2010: 3, angrybirds: 3, fail: 3, spotonloc: 3,
fif2010: 3, baltic: 3, africa: 3, mobile: 3, demoday: 3, helsinki: 3, gov20: 3, e20: 3,
failcon: 2, bacon: 2, mindtrek: 2, skype: 2, funrank: 2, nxcfi: 2, blog: 2, yc: 2,
hankenes: 2, design: 2, education: 2, linkedin: 2, nokia: 2, n8: 2, aalto: 2.

From that list we can see that tags with the highest frequency are covered
by communication of communities retrieved by our algorithm. Coupling that
observation with Figure 5.15, we can conclude that the community found by
our algorithm is a subset of the densest subgraph of the underlying network,
and can be viewed as its semantic dynamic core.

Chapter 6

Conclusions

In this work we considered the problem of finding dense dynamic communi-
ties in interaction networks, which are networks that contain time-stamped
information regarding all the interactions among the network nodes. We
formulated the community-discovery problem by asking to find a dense sub-
graph whose edges occur in short time intervals. We proved that the problem
is NP-hard, and we provided effective algorithms inspired by methods for
finding dense subgraphs.

Our work is a step towards a more refined analysis of social networks,
in which interaction information is taken into account, and it is used to
provide a more accurate description of communities and their dynamics in
the network.

This work opens many possibilities for future research. First, we would
like to incorporate additional information in our approach. As an example,
think that the “smartphone community” discussed in the introduction, may
use certain specialized vocabulary, brand names, or hash-tags, which can
provide additional clues for discovering the community. Our framework uses
only time stamps of interactions; complementing our methods with additional
information can potentially improve the quality of the results greatly.

Second, we would like to improve scalability of the proposed algorithms
to process the big data datasets that come from Twitter or Facebook.

Furthermore, it would be interesting to compare empirically performance
of our approaches with snapshot based techniques on different granularity.

In addition, the proposed approaches may be modified to find ego-centric
dynamic communities, and used for node classification and role-discovery in
the communication network.

Other directions of feature work are related to utilizing other concepts
of dense structure, considering frequency and statistical properties of the
interactions.

55

Bibliography

[1] Adomavicius, G., and Tuzhilin, A. Toward the next generation
of recommender systems: A survey of the state-of-the-art and possible
extensions. Knowledge and Data Engineering, IEEE Transactions on
17, 6 (2005), 734–749.

[2] Aggarwal, C., and Subbian, K. Evolutionary network analysis: A
survey.

[3] Aggarwal, C. C., Li, Y., Yu, P. S., and Jin, R. On dense pattern
mining in graph streams. Proceedings of the VLDB Endowment 3, 1-2
(2010), 975–984.

[4] Aggarwal, C. C., Zhao, Y., and Philip, S. Y. On clustering
graph streams. In SDM (2010), SIAM, pp. 478–489.

[5] Akoglu, L., and Faloutsos, C. Event detection in time series of
mobile communication graphs. In Army Science Conference (2010).

[6] Asahiro, Y., Iwama, K., Tamaki, H., and Tokuyama, T. Greed-
ily finding a dense subgraph. Journal of Algorithms 34, 2 (2000).

[7] Asur, S., Parthasarathy, S., and Ucar, D. An event-based
framework for characterizing the evolutionary behavior of interaction
graphs. TKDD 3, 4 (2009).

[8] Backstrom, L., Huttenlocher, D. P., Kleinberg, J. M., and
Lan, X. Group formation in large social networks: membership,
growth, and evolution. In KDD (2006).

[9] Berlingerio, M., Bonchi, F., Bringmann, B., and Gionis, A.
Mining graph evolution rules. In ECML PKDD (2009).

[10] Berlingerio, M., Pinelli, F., and Calabrese, F. Abacus: fre-
quent pattern mining-based community discovery in multidimensional

56

BIBLIOGRAPHY 57

networks. Data Mining and Knowledge Discovery 27, 3 (2013), 294–
320.

[11] Beyer, A., Thomason, P., Li, X., Scott, J., and Fisher, J.
Mechanistic insights into metabolic disturbance during type-2 diabetes
and obesity using qualitative networks. In Transactions on Computa-
tional Systems Biology XII. Springer, 2010, pp. 146–162.

[12] Bilgin, C. C., and Yener, B. Dynamic network evolution: Models,
clustering, anomaly detection. IEEE Networks (2006).

[13] Bogdanov, P., Mongiov̀ı, M., and Singh, A. K. Mining heavy
subgraphs in time-evolving networks. In ICDM (2011).

[14] Chakrabarti, D., Faloutsos, C., and McGlohon, M. Graph
mining: Laws and generators. In Managing and Mining Graph Data.
Springer, 2010, pp. 69–123.

[15] Chakrabarti, D., Kumar, R., and Tomkins, A. Evolutionary
clustering. In Proceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining (2006), ACM, pp. 554–
560.

[16] Charikar, M. Greedy approximation algorithms for finding dense
components in a graph. In APPROX (2000).

[17] Chi, Y., Song, X., Zhou, D., Hino, K., and Tseng, B. L. On
evolutionary spectral clustering. ACM Transactions on Knowledge Dis-
covery from Data (TKDD) 3, 4 (2009), 17.

[18] Collins, J. J., and Chow, C. C. It’s a small world. Nature 393,
6684 (1998).

[19] Csermely, P. Creative elements: network-based predictions of active
centres in proteins and cellular and social networks. Trends in biochem-
ical sciences 33, 12 (2008), 569–576.

[20] Cui, W., Zhou, H., Qu, H., Wong, P. C., and Li, X. Geometry-
based edge clustering for graph visualization. Visualization and Com-
puter Graphics, IEEE Transactions on 14, 6 (2008), 1277–1284.

[21] Dhillon, I. S. Co-clustering documents and words using bipar-
tite spectral graph partitioning. In Proceedings of the seventh ACM
SIGKDD international conference on Knowledge discovery and data
mining (2001), ACM, pp. 269–274.

BIBLIOGRAPHY 58

[22] Flake, G. W., Lawrence, S., and Giles, C. L. Efficient identifi-
cation of web communities. In KDD (2000).

[23] Fortunato, S. Community detection in graphs. Physics Reports 486
(2010).

[24] Gao, X., Xiao, B., Tao, D., and Li, X. A survey of graph edit
distance. Pattern Analysis and applications 13, 1 (2010).

[25] Girvan, M., and Newman, M. E. J. Community structure in social
and biological networks. PNAS 99 (2002).

[26] Gleich, D. F., and Seshadhri, C. Vertex neighborhoods, low con-
ductance cuts, and good seeds for local community methods. In KDD
(2012).

[27] Goldberg, A. V. Finding a maximum density subgraph. University
of California Berkeley, CA, 1984.

[28] Greene, D., Doyle, D., and Cunningham, P. Tracking the evolu-
tion of communities in dynamic social networks. In ASONAM (2010).

[29] Guimera, R., and Amaral, L. A. N. Functional cartography of
complex metabolic networks. Nature 433, 7028 (2005), 895–900.

[30] Hopcroft, J., Khan, O., Kulis, B., and Selman, B. Tracking
evolving communities in large linked networks. Proceedings of the na-
tional academy of sciences of the United States of America 101, Suppl
1 (2004), 5249–5253.

[31] Hu, H., Yan, X., Huang, Y., Han, J., and Zhou, X. J. Mining co-
herent dense subgraphs across massive biological networks for functional
discovery. Bioinformatics (2005).

[32] Ide, T., and Kashima, H. Eigenspace-based anomaly detection in
computer systems. In KDD (2004).

[33] Java, A., Song, X., Finin, T., and Tseng, B. Why we twitter:
understanding microblogging usage and communities. In Proceedings of
the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and
social network analysis (2007), ACM, pp. 56–65.

[34] Khuller, S., Moss, A., and Naor, J. S. The budgeted maximum
coverage problem. Information Processing Letters 70, 1 (1999).

BIBLIOGRAPHY 59

[35] Kleinberg, J. Navigation in a small world. Nature 406 (2000).

[36] Krishnamurthy, B., and Wang, J. On network-aware clustering
of web clients. In ACM SIGCOMM Computer Communication Review
(2000), vol. 30, ACM, pp. 97–110.

[37] Kulik, A., Shachnai, H., and Tamir, T. Maximizing submodular
set functions subject to multiple linear constraints. In SODA (2009).

[38] Kumar, R., Novak, J., and Tomkins, A. Structure and evolution
of online social networks. In KDD (2006).

[39] Leicht, E. A., and Newman, M. E. Community structure in di-
rected networks. Physical review letters 100, 11 (2008), 118703.

[40] Leskovec, J., Backstrom, L., Kumar, R., and Tomkins, A.
Microscopic evolution of social networks. In KDD (2008).

[41] Leskovec, J., Lang, K. J., and Mahoney, M. W. Empirical
comparison of algorithms for network community detection. In WWW
(2010).

[42] Lin, Y., Chi, Y., Zhu, S., Sundaram, H., and Tseng, B. Facetnet:
A framework for analyzing communities and their evolutions in dynamic
networks. In WWW (2008).

[43] Linden, G., Smith, B., and York, J. Amazon. com recommenda-
tions: Item-to-item collaborative filtering. Internet Computing, IEEE
7, 1 (2003), 76–80.

[44] McGlohon, M., Akoglu, L., and Faloutsos, C. Statistical prop-
erties of social networks. In Social Network Data Analytics. Springer,
2011, pp. 17–42.

[45] Mislove, A., Viswanath, B., Gummadi, K. P., and Druschel,
P. You are who you know: inferring user profiles in online social net-
works. In Proceedings of the third ACM international conference on Web
search and data mining (2010), ACM, pp. 251–260.

[46] Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., and
Onnela, J.-P. Community structure in time-dependent, multiscale,
and multiplex networks. Science 328, 5980 (2010), 876–878.

[47] Palla, G., Barabási, A., and Vicsek, T. Quantifying social group
evolution. Nature 446 (2007).

BIBLIOGRAPHY 60

[48] Papadimitriou, P., Dasdan, A., and Garcia-Molina, H. Web
graph similarity for anomaly detection. Journal of Internet Services and
Applications 1, 1 (2010).

[49] Pons, P., and Latapy, M. Computing communities in large networks
using random walks. Journal of Graph Algorithms Applications 10, 2
(2006).

[50] Priebe, C. E., Conroy, J. M., Marchette, D. J., and Park,
Y. Scan statistics on enron graphs. Computational & Mathematical
Organization Theory 11, 3 (2005).

[51] Reddy, P. K., Kitsuregawa, M., Sreekanth, P., and Rao, S. S.
A graph based approach to extract a neighborhood customer commu-
nity for collaborative filtering. In Databases in Networked Information
Systems. Springer, 2002, pp. 188–200.

[52] Rozenshtein, P., Tatti, N., and Gionis, A. Discovering dynamic
communities in interaction networks. In ECML PKDD (2014).

[53] Schaeffer, S. E. Graph clustering. Computer Science Review 1, 1
(2007), 27–64.

[54] Spiliopoulou, M. Evolution in social networks: A survey. In Social
network data analytics. Springer, 2011, pp. 149–175.

[55] Stuart, J. M., Segal, E., Koller, D., and Kim, S. K. A gene-
coexpression network for global discovery of conserved genetic modules.
science 302, 5643 (2003), 249–255.

[56] Sun, J., Faloutsos, C., Papadimitriou, S., and Yu, P. S. Graph-
scope: parameter-free mining of large time-evolving graphs. In KDD
(2007).

[57] van Dongen, S. Graph Clustering by Flow Simulation. PhD thesis,
University of Utrecht, 2000.

[58] Van Vlaenderen, H. Community development research: Merging
communities of practice. Community Development Journal 39, 2 (2004),
135–143.

[59] Vázquez, A., Flammini, A., Maritan, A., and Vespignani, A.
Modeling of protein interaction networks. Complexus 1, 1 (2002), 38–44.

BIBLIOGRAPHY 61

[60] Viswanath, B., Mislove, A., Cha, M., and Gummadi, K. P. On
the evolution of user interaction in facebook. In Proceedings of the 2nd
ACM SIGCOMM Workshop on Social Networks (WOSN’09) (August
2009).

[61] Wang, C.-D., Lai, J.-H., and Yu, P. Dynamic community detection
in weighted graph streams. In Proc. of SDM (2013), SIAM, pp. 151–161.

[62] Xu, K. S., Kliger, M., and Hero, A. Evolutionary spectral clus-
tering with adaptive forgetting factor. In Acoustics Speech and Signal
Processing (ICASSP), 2010 IEEE International Conference on (2010),
IEEE, pp. 2174–2177.

[63] Zachary, W. W. A survey of approaches and issues in machine-aided
translation systems. Computers and the Humanities 13, 1 (1979), 17–28.

[64] Zhao, Y., and Philip, S. Y. On graph stream clustering with side in-
formation. In Proceedings of the seventh SIAM International Conference
on Data Mining (2013), SIAM, pp. 139–150.

Appendix A

Main results extended table

Table A.1: Extended version of Table 5.3. Densities of discovered subgraphs.
B – time budget in days.

Community density Community size

Dataset B K GH BS Base GH BS Base

Facebook 1 1 2.4 2.4 2.4 5 5 5
3 3 3.111 2.4 6 9 5
5 3.666 3.666 2.4 6 6 5
7 3.777 3.714 2.4 9 7 5
10 3.75 3.75 2.4 8 8 5

3 1 2.75 2.75 2.75 8 8 8
3 3.333 3.666 2.75 6 6 8
5 3.75 3.75 2.75 8 8 8
7 3.866 3.875 2.75 15 16 8
10 4 4.153 2.75 11 13 8

7 1 3 3 3 6 6 6
3 3.75 3.75 3 8 8 6
5 3.875 4 3 16 9 6
7 4.235 4.285 3 17 14 6
10 4.285 4.47 3 14 17 6

Twitter 1 1 4 4 4 6 6 6
3 3.666 4.571 4 6 7 6
5 5.111 5.333 4 9 9 6
7 5.6 6 4 10 8 6
10 6.4 6.4 4 10 10 6

62

APPENDIX A. MAIN RESULTS EXTENDED TABLE 63

3 1 4.444 4.444 4.444 9 9 9
3 4.666 4.571 4.444 9 7 9
5 5.8 5.777 4.444 10 9 9
7 6 5.818 4.444 8 11 9
10 6.4 6.4 4.444 10 10 9

7 1 4.666 4.666 4.666 9 9 9
3 5.333 5.636 4.666 9 11 9
5 6 6.222 4.666 14 9 9
7 6.533 6.666 4.666 15 12 9
10 6.923 7.2 4.666 13 15 9

Tumblr 1 1 3.866 3.866 3.866 30 30 30
3 4.333 4.666 3.866 6 9 30
5 5.111 5.25 3.866 9 8 30
7 5.454 5.636 3.866 11 11 30
10 5.818 6.181 3.866 11 11 30

3 1 4 4 4 8 8 8
3 5.272 5.23 4 11 13 8
5 5.636 5.714 4 11 14 8
7 5.818 6.133 4 11 15 8
10 6.181 6.571 4 11 14 8

7 1 4.5 4.5 4.5 8 8 8
3 5.454 5.5 4.5 11 12 8
5 5.888 6 4.5 18 11 8
7 6.307 6.363 4.5 13 11 8
10 6.714 6.8 4.5 14 15 8

Students 1 1 3.411 3.333 3.428 17 15 21
3 4 4.25 3.428 14 8 21
5 4.666 4.625 3.428 9 16 21
7 5.333 5.2 3.428 9 15 21
10 5.5 5.625 3.428 16 16 21

3 1 3.84 3.8 3.84 25 30 25
3 4.437 4.727 3.84 32 11 25
5 5 5.4 3.84 10 10 25
7 5.333 5.47 3.84 9 34 25
10 6.08 6.133 3.84 25 30 25

7 1 4.755 4.697 4.755 45 43 45
3 5.428 5.428 4.755 28 42 45
5 5.826 6 4.755 46 25 45

APPENDIX A. MAIN RESULTS EXTENDED TABLE 64

7 6.137 6.578 4.755 29 38 45
10 6.764 7.121 4.755 34 41 45

Enron 1 1 6.181 6.181 6.181 11 11 11
3 8.769 8.769 6.181 13 13 11
5 10 10.37 6.181 17 16 11
7 11.2 11.2 6.181 20 20 11
10 12.2 12.38 6.181 20 21 11

3 1 6.181 6.181 6.181 11 11 11
3 9.6 9.6 6.181 15 15 11
5 10.82 10.88 6.181 17 18 11
7 11.68 11.71 6.181 19 28 11
10 12.72 12.76 6.181 22 26 11

7 1 6.363 6.363 6.363 11 11 11
3 9.6 9.894 6.363 15 19 11
5 11.26 11.23 6.363 19 26 11
7 12.08 12.3 6.363 25 26 11
10 13.07 13.07 6.363 28 28 11

	Cover page
	Contents
	1 Introduction
	1.1 Introduction to community detection
	1.2 Community detection in interaction networks
	1.3 Focus of this thesis
	1.4 Acknowledgments and additional references

	2 Related work
	2.1 Static community detection
	2.2 Dynamic community detection
	2.3 Snapshot-based community detection
	2.4 Interaction-based community detection

	3 Dense community in interaction network
	3.1 Preliminaries and notation
	3.2 Densest subgraph problem
	3.3 Problem formulation
	3.4 Complexity

	4 Algorithms for discovering communities
	4.1 Finding an optimal set of nodes
	4.2 Finding an optimal set of time intervals
	4.2.1 Greedy approach
	4.2.2 Binary search approach
	4.2.3 Dynamic programming approach

	4.3 Initialization

	5 Experimental evaluation
	5.1 Datasets
	5.1.1 Synthetic data
	5.1.2 Real-world data

	5.2 Discovering hidden structure
	5.2.1 Planted communities
	5.2.2 Effect of random seeds
	5.2.3 Discovered communities
	5.2.4 Effect of parameter selection
	5.2.5 Retrieved intervals
	5.2.6 Several communities
	5.2.7 Twitter community example

	6 Conclusions
	A Main results extended table

