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Kirjallisuudessa on esitetty useita erilaisia menetelmiä bayesilaiseen mallin val-
intaan. Vaikka näiden menetelmien teoreettisia ominaisuuksia erityisesti mallin
suorituskyvyn mittaamiseen on tutkittu runsaasti, kattavaa tutkimusta eri
menetelmien eroista mallin valintaan äärelliselle aineistolle ei näytä olevan tehty.
Tässä työssä käsitellään yleisimmin käytettyjä mallinvalintamenetelmiä ja ver-
taillaan näiden käyttäytymistä käytännön muuttujavalintaongelmissa, erityisesti
tilanteissa joissa dataa on niukasti. Työn tarkoituksena on käsitellä myös valinta-
harhaksi kutsuttua ilmiötä ja korostaa sen merkitystä muuttujavalintaongelmissa.
Vaikka työ käsittelee pääosin muuttujavalintaa, työssä esitetyt johtopäätökset
ovat yleistettävissä myös muihin mallinvalintaongelmiin. Numeeriset esimerkit
koostuvat simuloiduista testeistä sekä yhdestä reaalimaailman ongelmasta. Tu-
losten perusteella näyttää siltä, että vaikka yksittäisten mallien suorituskykyä
voidaan arvioida harhattomasti, valintaharha voi vaikeuttaa mallinvalintaa huo-
mattavasti ja johtaa ylisovittuneen mallin valintaan. Näyttää myös siltä, että
referenssiprediktiiviset ja projektiomenetelmät ovat vähiten herkkiä valinnan ai-
heuttamalle harhalle ja kykenevät näin ollen löytämään parempia malleja kuin
vaihtoehtoiset menetelmät kuten ristiinvalidointi ja informaatiokriteerit. Valin-
taharhasta johtuen kuitenkin myös näille menetelmille estimoitu eroavuus refer-
enssimallin ja kandidaattimallien välillä voi antaa epäluotettavan kuvan valittujen
mallien suorituskyvystä. Tästä syystä lopullinen valittujen mallien suorituskyvyn
arviointi tulisi tehdä käyttäen esimerkiksi valintaprosessin ulkopuolista ristiinvali-
dointia.

Avainsanat: bayesilainen mallinvalinta, muuttujavalinta, valintaharha, ristiin-
validointi, informaatiokriteerit, referenssimalli, projektio
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To date, several methods for Bayesian model selection have been proposed. Al-
though there are many studies discussing the theoretical properties of these meth-
ods for model assessment, an extensive quantitative comparison between the meth-
ods for model selection for finite data seems to be lacking. This thesis reviews the
most commonly used methods in the literature and compares their performance
in practical variable selection problems, especially in situations where the data is
scarce. The study also discusses the selection induced bias in detail and underlines
its relevance for variable selection. Although the focus of the study is on variable
selection, the presented ideas are generalizable to other model selection problems
as well. The numerical results consist of simulated experiments and one real world
problem. The results suggest that even though there are nearly unbiased methods
for assessing the performance of a given model, the high variance in the perfor-
mance estimation may lead to considerable selection induced bias and selection of
an overfitted model. The results also suggest that the reference predictive and pro-
jection methods are least sensitive to the selection induced bias and are therefore
more robust for searching promising models than the alternative methods, such as
cross validation and information criteria. However, due to the selection bias, also
for these methods the estimated divergence between the reference and candidate
models may be an unreliable indicator of the performance of the selected models.
For this reason, the performance estimation of the found models should be done
for example using cross validation outside the selection process.
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Notation

General notation and symbols
a, b, c Scalars (lower case)
a,b, c Column vectors (bold lower case)
A,B,C Matrices (bold capitals)
AT Matrix transpose
A−1 Matrix inverse
w Weights of the input variables
x Input variables
x̃ Input variables for future observation
X Matrix of input variables at training observations
X̃ Matrix of input variables for several future observations
y Output or target variable
ỹ Future output variable
y Output variables at training observations
ỹ Future output variables
θ Vector of parameters
σ2 Noise variance
M Model structure and model assumptions
M∗ Reference model
{ts}Ss=1 Set {t1, t2, . . . , tS}
D Observed dataset of n observations D = (X,y) = {(xi, yi)}ni=1

Operators
E [·] Expected value
KL (p || q) Kullback-Leibler divergence between distributions p and q (from p to q)
Var [·] Variance

Abbreviations
AIC Akaike information criterion
BMA Bayesian model average
CV Cross validation
DIC Deviance information criterion
LOO-CV Leave-one-out cross validation
MAP Maximum a posteriori
MCMC Markov chain Monte Carlo
MLPD Mean log predictive density
RJMCMC Reversible jump Markov chain Monte Carlo
WAIC Widely applicable information criterion



1 Introduction
Model selection is one of the fundamental problems in statistical modeling and
machine learning. The generally accepted view for model selection is the famous
quote by G. E. Box saying that ”all models are wrong, but some are useful” (Box,
1979). Usefulness of a model is typically measured by its ability to make predictions
about the future (or yet unseen) observations. This does not necessarily mean that
the most important goal of modeling is to be able to predict the future as well
as possible. The modeling practitioner may not only be interested in what the
observations will be, but more importantly why they are like they appear. However,
comparing the model predictions with the observations is still the most important
tool of a statistician for figuring out whether the model makes sense or not. If
the model gives poor predictions, there is not much sense in trying to interpret the
model.

This thesis considers Bayesian statistical models and predictive model selection.
Predictive model selection refers to a problem where one is choosing a model from
a set of candidate models based on their estimated ability to predict unseen obser-
vations. The main focus will be on variable selection, even though most of the ideas
will be generalizable to other model selection problems as well. Roughly speaking,
in variable selection the goal is to select a minimal subset from a predefined set
of possible input variables for model construction while maximizing the predictive
ability of the model. Note, however, that there is typically a tradeoff between the
number of included variables and the predictive performance of the model. Thus it
depends on the situation whether the preference is the reduction of the variables or
the predictive performance of the model.

Variable selection (or feature selection) is an important and widely studied prob-
lem in statistics and machine learning. The usual assumption is that the set of can-
didate variables contains many irrelevant variables that have no predictive power on
the target variables. Some of the variables may also be highly dependent, in which
case some of them can be removed without a significant loss in the predictive ability.
A usual benefit from a successful variable selection is improved model interpretabil-
ity. If the predictive ability of the model does not suffer or even improves when
some of the variables are left out, it makes sense to believe that those variables have
little to do with the underlying process that generates the observations. Some other
advantages could be reduced computation time and measurement costs, if some of
the variables need not be measured and subsequent model construction can be done
with a smaller number of inputs.

There exists a number of proposed methods for Bayesian predictive model selec-
tion. Some of them are designed purely for variable selection, especially for linear
models, and some of them are applicable also to more general model selection prob-
lems. The focus of this thesis is not to review all the proposed methods because
an extensive qualitative review of the suggested methods to date is already done by
Vehtari and Ojanen (2012). Instead the contribution of this thesis is to compare
these methods quantitatively in practical model selection problems and discuss the
differences. Our point of view will be pragmatic; the goal is to answer the question
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how well the models selected by each method generalize on unseen data. This ques-
tion is tackled by performing various numerical experiments. As it turns out, there
are substantial differences between some of the approaches, and some of the methods
are not necessarily well suited for variable selection. That is, they select variable
combinations that have poor predictive ability. This is due to a phenomenon called
selection bias. One of the goals in this thesis is to understand how selection bias
affects model selection and why it is highly relevant to variable selection.

The thesis is structured as follows. Section 2 gives a brief introduction to
Bayesian statistics. The fundamentals of Bayesian inference are discussed, such
as how to update beliefs about the unknown quantities using Bayes’ theorem, and
how to make predictions with a Bayesian model. This section also discusses the
linear regression and binary classification models that are used in the numerical
experiments in section 5. Section 3 reviews many of the proposed approaches to
Bayesian model selection and discusses differences and connections between them.
This section also discusses the selection induced bias in detail and discusses its rel-
evance for variable selection. Section 4 discusses special topics related to variable
selection such as strategies for searching for variable combinations and sampling the
model space. Section 5 is devoted to the numerical experiments. The first part
of the section deals with numerical data and investigates the performance of the
different model selection methods for different datasets. The second part deals with
a challenging real world dataset further illustrating the key points. The discussion
in section 6 concludes the thesis.
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2 Bayesian modelling
This section gives a brief introduction to Bayesian modeling. The goal is to give a
short recap to the basic concepts that will aid the material in the later sections. The
section also briefly discusses the Bayesian linear regression and binary classification
models that are used in the numerical experiments in section 5.

2.1 Basic principles

In Bayesian statistics uncertain quantities are modeled as random variables, and in
essence the whole Bayesian statistics is about revising subjective beliefs about these
quantities on the basis of observations (see for example Gelman et al., 2013a). This
interpretation is fundamentally different from what is done in frequentist statistics,
where the quantities of interest are usually considered as fixed constants even though
they are unknown. For a parametric model, given all the model assumptionsM , the
belief updating about parameter or parameters θ on the basis of the observations y
is done according to the Bayes’ theorem

p(θ | y,M) =
p(y | θ,M)p(θ |M)

p(y |M)
=

p(y | θ,M)p(θ |M)∫
p(y | θ,M)p(θ |M)dθ

. (1)

The first term in the numerator p(y | θ,M) is the statistical observation model
describing the relation between the parameters and the observations. More precisely,
it defines the probability of the observations y given the parameters θ. Once the
observations are obtained, it becomes a function of θ and it is called the likelihood.
The likelihood describes which of the parameter values are more likely based on the
observations, but it is not a genuine probability distribution since in general it does
not integrate into 1. It is important to note the distinction between the observation
model and the likelihood, even though these terms are often used interchangeably.
A simple example of an observation model would be the Gaussian distribution for
univariate y, where the unknown parameters are the mean and the variance θ =
(µ, σ2). The likelihood would then be a bivariate function for µ and σ2.

The second term in the numerator is the prior distribution p(θ | M) which
describes modeler’s beliefs about θ before making the observations. The multipli-
cation of the prior and the likelihood gives a new unnormalized distribution which
combines the prior information and the information from the obtained data sample.
The normalization by the constant p(y | M) gives the left hand side p(θ | y,M),
which is called the posterior distribution. The posterior is the most central part
of Bayesian inference because it contains all the knowledge there is about θ after
the observations, and it will be in the key role when making the predictions. The
denominator p(y |M) has many names depending on the context, but is most often
referred to as the marginal likelihood. The marginal likelihood ensures that the right
hand side becomes a proper probability distribution but has no effect on its shape.

Bayesian treatment has a natural way of predicting new observations ỹ given the
old ones. The predictive distribution for future values is obtained by marginalizing
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the parameters θ out of the joint posterior p(ỹ,θ | y,M) as

p(ỹ | y,M) =

∫
p(ỹ,θ | y,M)dθ

=

∫
p(ỹ | θ,y,M)p(θ | y,M)dθ

=

∫
p(ỹ | θ,M)p(θ | y,M)dθ . (2)

The second line follows from the definition of the conditional probability p(A,B) =
p(A | B)p(B), and the third line from the assumption that for a parametric model
the future observations ỹ are conditionally independent of the observed y given the
parameters. The distribution p(ỹ | y,M) is called the posterior predictive distribu-
tion and according to its name, it gives the distribution for the future observations
given the previous ones and the model assumptions. As is seen from (2), the predic-
tive distribution is obtained by integrating the observation model over the posterior
of the parameters. The predictive distribution takes into account the uncertainty
about the model parameters as well as the stochastic randomness of the future ob-
servation. One may see the analogy between the marginal likelihood p(y |M) in (1)
and posterior predictive distribution in (2); in the first case the observation model
is integrated over the prior and in the latter over the posterior. For this reason, the
term p(y |M) is also called the prior predictive distribution.

So far all the terms have been conditioned on the model assumptions M . How-
ever, one can treat M as an unknown exactly the same way as the other parameters
θ. This is done by specifying a model space, that is a set of candidate models
{Mk}Kk=1, and writing using the Bayes’ theorem

p(M | y) =
p(y |M)p(M)

p(y)
=

p(y |M)p(M)∑K
k=1 p(y |Mk)p(Mk)

. (3)

Here p(M) and p(M | y) are discrete probability distributions determining the
prior and posterior probabilities, respectively, for each model M , and p(y | M)
is the marginal likelihood from equation (1), also called the model evidence. In
other words, after specifying prior probabilities for each model, p(M | y) indicates
which of the models are more likely and which of them are unlikely based on the
prior beliefs and the data. After calculating posterior probabilities and posterior
predictive distributions one can integrate or sum over the model space to get the
Bayesian model averaging (BMA) predictive distribution

p(ỹ | y) =
K∑
k=1

p(ỹ,Mk | y) =
K∑
k=1

p(ỹ | y,Mk)p(Mk | y) . (4)

BMA predictive distribution takes all the K models into account according to their
relative probabilities. However, it is important to note that setting prior probabil-
ities for a set {Mk}Kk=1 means stating a belief that the true data producing model
belongs to this group, that is, models outside this set are not possible. Usually this
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assumption is not taken literally as typically none of the models can be considered to
be ”true”. Model averaging may also lead to poor results if the set of the candidate
models is poorly specified. However, BMA has been shown to have a good predictive
performance both theoretically and empirically (Raftery and Zheng, 2003). From
a practical point of view what matters is whether one is able to come up with a
reasonably good set of candidate models that give good predictions. See review by
Hoeting et al. (1999) for thorough discussion of Bayesian model averaging.

2.2 Linear regression

This section discusses Bayesian linear regression. Section 2.2.1 deals with the model
with the conjugate prior for which the posterior and predictive distribution are
obtained analytically. Section 2.2.2 discusses non-conjugate priors that can be used
to promote sparsity in problems with possibly irrelevant variables.

2.2.1 Model with the conjugate prior

Consider a general regression problem where we want to predict a single real valued
output or target variable y with p input or predictor variables x = (x1, ..., xp).
Typically one fixes the first input variable to a constant x1 = 1. This is a very
general setting and many statistical models are of this form. In linear regression the
relationship between the output variable and the predictors is modeled as linear.
Given a training dataset D = (X,y) = {(xi, yi)}ni=1 the model is

yi = wTxi + εi, εi ∼ N
(
0, σ2

)
(5)

or equivalently

yi ∼ N
(
wTxi, σ

2
)
. (6)

Here w = (w1, . . . , wp) are the weights for each variable. The model can be written
in the matrix form

y = Xw + ε, (7)

where

y =

y1...
yn

 , X =

xT1
...

xTn

 , w =

w1
...
wp

 , ε =

ε1...
εn

 . (8)

In this case the unknown parameters are θ = (w, σ2) where w ∈ Rp and σ2 ∈ R+.
The posterior distribution is

p(w, σ2 | D) =
p(y | X,w, σ2)p(w, σ2)

p(y | X)
. (9)
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It is important to note here that the observations y are conditioned on the predictors
X, so these values are assumed to be known. Assuming that the observations are
conditionally independent, the joint likelihood for all the observations is

p(y | X,w, σ2) =
n∏
i=1

p(yi | xi,w, σ2) (10)

=
n∏
i=1

1√
2πσ2

exp

(
− 1

2σ2
(yi −wTxi)

2

)
. (11)

This can be shown to be proportional to multivariate normal-inverse-gamma distri-
bution for w and σ2

p(y | X,w, σ2) = exp

(
− 1

2σ2
(w − ŵ)TXTX(w − ŵ)

)
×
(
2πσ2

)−n
2 exp

(
− 1

2σ2
(yTy − ŵTXTXŵ)

)
∝ N (w | ·, ·)× Inv-Gamma

(
σ2 | ·, ·

)
, (12)

where
ŵ =

(
XTX

)−1
XTy . (13)

This is the familiar least squares estimate (LS) and also the maximum likelihood
solution for the parameters w. The conjugate prior is now given by a distribution
of the same form as the likelihood (12)

p(w, σ2) = p(w | σ2)p(σ2)

= N
(
w | µ0, σ

2A−10

)
× Inv-Gamma

(
σ2 | a0, b0

)
. (14)

Here the covariance of the weights is formulated via the precision matrix A0 because
this is more convenient when finding the parameters of the posterior distribution.
A typical prior for the weights is µ0 = 0 and A0 = τ−2I, where τ 2 adjusts the prior
variance for each weight determining the amount of regularization (that is, how
strongly each of the weights is driven towards zero). Now one can straightforwardly
multiply (12) and (14) to get the unnormalized joint posterior

p(w, σ2 | D) ∝ p(y | X,w, σ2)p(w, σ2)

∝ N(w | µn, σ2A−1n )× Inv-Gamma(σ2 | an, bn), (15)

where

An = A0 + XTX (16)
µn = A−1n (XTy + A0µ0) (17)

an = a0 +
n

2
(18)

bn = b0 +
1

2
(yTy + µT0 A0µ0 − µTnAnµn) . (19)
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Given that the unnormalized posterior is proportional to the normal-inverse-gamma
distribution (15), the posterior must be exactly this distribution. So the prior def-
inition (14) with parameters µ0,A0, a0, b0 indeed leads to a posterior of the same
form with parameters determined by the equations (16)–(19).

After solving the posterior, one can calculate the posterior predictive distribution
(2). Consider the joint predictive distribution for ñ future observations ỹ, assuming
that the input variables X̃ are known. Straight from the definition (2) one obtains

p(ỹ | X̃,D) =

∫ ∫
p(ỹ | X̃,w, σ2)p(w, σ2 | D)dσ2dw . (20)

This integral can be calculated analytically and the result is

p(ỹ | X̃,D) = (2π)−
ñ
2

Γ(ã)

Γ(an)

(
|An|
|Ã|

) 1
2 bann
b̃ã
, (21)

where

Ã = An + X̃T X̃ (22)

µ̃n = Ã−1(X̃T ỹ + Anµn) (23)

ã = an +
ñ

2
(24)

b̃ = bn +
1

2
(ỹT ỹ + µTnAnµn − µ̃T Ãµ̃) . (25)

Distribution (21) can be shown to be a multivariate t-distribution for ñ future ob-
servations ỹ, given the inputs X̃

p(ỹ | X̃,D) = tν̃

(
ỹ | X̃µn,

bn
an

(
I + X̃A−1n X̃T

))
, (26)

where the degrees of freedom is ν̃ = 2a0 + n. Thus for large n, the predictive
distribution is nearly Gaussian. Usually one is interested in predicting one point at
a time, and in this case one simply sets ỹ = ỹ and X̃ = x̃T .

For the conjugate prior, one can also calculate the marginal likelihood p(y | X),
even though it was not needed to derive the posterior. The marginal likelihood is
given by

p(y | X) =

∫ ∫
p(y | X,w, σ2)p(w, σ2)dσ2dw . (27)

Since the prior p(w, σ2) and the posterior p(w, σ2 | D) are of the same functional
form (because of the conjugacy), this integral is identical to the one encountered
when calculating the posterior predictive distribution (20), only the parameters are
changed. It is therefore easy to verify that the result for the marginal likelihood is
given by

p(y | X) = (2π)−
n
2

Γ(an)

Γ(a0)

(
|A0|
|An|

) 1
2 ba00
bann

. (28)
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The analytical result for the marginal likelihood is useful for example if one wants
to handle the hyperparameter τ 2 in the prior precision A0 = τ−2I as an unknown.
Given a prior p(τ 2), the predictions can be obtained by marginalizing over τ 2 as

p(ỹ | X̃,D) =

∫
p(ỹ, τ 2 | X̃,D)dỹ

=

∫
p(ỹ | X̃,D, τ 2)p(τ 2 | X̃,D)dỹ, (29)

where p(τ 2 | X̃,D) is the posterior of τ 2 and p(ỹ | X̃,D, τ 2) is the predictive
distribution (26) which is conditioned on τ 2 (even though τ 2 was left out from the
notation there). The integral (29) is not available analytically, but can be efficiently
approximated for example by introducing a grid of points {τ 2k}Nk=1 = {τ 21 , . . . , τ 2N}
and then writing

p(ỹ | X̃,D) ≈
∑

k vk p(ỹ | X̃,D, τ 2k )∑
k vk

, (30)

where the grid weights vk are proportional to the posterior density of τ 2

vk = p(y | X, τ 2k )p(τ 2k ), k = 1, . . . , N . (31)

Here p(y | X, τ 2k ) is the marginal likelihood (28) for a given τ 2k . The approximation
(30) is quick to compute and is reasonably accurate even for a relatively small
number of grid points as long as the grid covers the range where p(τ 2 | X̃,D) has
almost all of its mass.

2.2.2 Sparsity promoting priors

The conjugate normal-inverse-gamma prior has the advantage of being computa-
tionally appealing because all the calculations are obtained analytically (except the
integration over the hyperparameter τ 2). However, for problems where it is known
a priori that some of the variables are irrelevant and have almost a zero weight,
one would like to incorporate this information to the prior structure to improve the
model fitting. The conjugate prior for a single weight

p(wj | σ2) = N
(
wj | 0, τ 2σ2

)
(32)

has the drawback that it does not promote sparsity because all the variables have
a zero probability of being exactly zero. An alternative is to use the spike-and-slab
prior (Mitchell and Beauchamp, 1988)

p(wj) = πjN
(
wj | 0, τ 2

)
+ (1− πj)δ0(wj) (33)

where δ0 is Dirac’s delta function having mass only at zero. In other words, the
variable xj is included with probability πj and its weight has a noninformative
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Gaussian prior (”slab”), and with probability 1 − πj it is excluded by setting its
weight to zero (”spike”). Using the conjugate Gaussian in the slab-part

p(wj | σ2) = πjN
(
wj | 0, τ 2σ2

)
+ (1− πj)δ0(wj) (34)

is equivalent to forming the Bayesian model average from the individual models
with the conjugate priors (see section 4.2). The spike-and-slab is a widely used
prior and often considered as the ”golden standard” approach for sparse estimation
(see e.g. George and McCulloch, 1993, 1997; Raftery et al., 1997; Hoeting et al.,
1999; Carvalho et al., 2009; Titsias and Lázaro-Gredilla, 2011). This comes with
the cost that the predictions are no more analytically available, and one must use
approximative solutions instead. Typically this is done by drawing a posterior sam-
ple {(ws, σ

2
s)}Ss=1 with a suitable Markov chain Monte Carlo -method (MCMC) and

then approximating the predictive distribution (20) as

p(ỹ | X̃,D) ≈ 1

S

S∑
s=1

p(ỹ | X̃,ws, σ
2
s) . (35)

The sampling of the model parameters under the spike-and-slab prior is discussed
in section 4.2. Although the sampling scheme is used in this thesis, it is noted that
also analytic approximations based on the variational Bayes (VB) and expectation
propagation (EP) have been proposed by Titsias and Lázaro-Gredilla (2011) and
Hernández-Lobato et al. (2013), respectively.

The discrete mixing nature of different variable combinations makes the spike-
and-slab prior computationally rather challenging. To ease the computations, many
continuous so called shrinkage priors for weights wj have been proposed. These
include for example Student-t (Tipping, 2001), Laplace (Park and Casella, 2008)
and Horseshoe (Carvalho et al., 2009, 2010) distributions. Laplace prior is the
Bayesian version of the frequentist L1-regularizer, the Lasso (Tibshirani, 1996). All
these different priors are connected by the fact that they can be expressed as scale
mixtures of the Gaussian density

p(wj | λ2j) = N
(
wj | 0, λ2jτ 2

)
λ2j ∼ p(λ2j)

with mixing distributions

λ2j = 1 for Gaussian
λ2j ∼ Bernoulli for spike-and-slab
λ2j ∼ Inverse-Gamma for Student-t
λ2j ∼ Exponential for Laplace
λj ∼ Half-Cauchy for Horseshoe.

Note that for the Horseshoe, the mixing distribution is for for λj, not for λ2j . Ide-
ally, the mixing distribution would have mass both for small and large values of λ2j
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allowing wj = 0 for some weights and leaving the others unshrinked. Although none
of the continuous mixing distributions give a nonzero probability for a weight be-
ing exactly zero, the empirical results suggest that the Horseshoe is able to produce
behaviour close to the spike-and-slab outperforming the other shrinkage priors (Car-
valho et al., 2010). For a detailed comparison and nice illustration of the differences,
see the papers by Carvalho et al. (2009, 2010).

2.3 Linear binary classification

Section 2.2 discussed the linear regression model where the target variable y is real
valued. Other important problems are the classification problems, where y is one
of the C different class labels. In other words, one is interested in predicting the
outcome probabilities of each class given the associated input variables x. For the
relevance concerning this thesis, only the simplest case, the binary classification
y ∈ {0, 1} is considered here. The generalization of the following inference to the
multiclass problems is straightforward and is discussed for example by Bishop (2006).

For binary classification problems, the standard approach is to use a real valued
auxiliary latent variable η = η(x) and then feed this to a continuous response or
activation function h that maps it between 0 and 1. The probability of class y = 1
is then given by

p(y = 1 | x) = h(η(x)) . (36)

Note that many authors prefer to formulate the model using the link function g
which is the inverse of the response function g = h−1. A common choice for the
response function is the logistic sigmoid

s(η) =
1

1 + exp(−η)
. (37)

An alternative choice is the cumulative function of normal distribution

Φ(η) =

∫ η

−∞
N (t | 0, 1) dt, (38)

which is called the probit function. The two response functions are plotted in figure
1. The logistic function has slightly longer tails but apart from that, the two curves
are not markedly different.

If the response function is chosen to be the logistic sigmoid (37) and the latent
variable η is modeled as a linear function of the input variables η = wTx, the model
is called the linear logistic regression (or just logistic regression)

p(y = 1 | x,w) =
1

1 + exp(−wTx)
. (39)

Given a set of independent and identically distributed (i.i.d.) observations D =
(X,y) = {(xi, yi)}ni=1 and a prior p(w) for the weights, the unnormalized posterior
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Figure 1: Two response functions: logistic s(η) (equation (37)) and probit Φ(aη)
(equation (38)) where a =

√
π/8 . The scaling factor a is chosen so that the

derivatives of the two curves coincide at the origin. As can be seen, the logistic
function has slightly longer tails.

is then given by

p(w | D) ∝ p(w)p(y | X,w)

= p(w)
n∏
i=1

p(yi = 1 | xi,w)yip(yi = 0 | xi,w)1−yi

= p(w)
n∏
i=1

(
1

1 + exp(−wTxi)

)yi ( exp(−wTxi)

1 + exp(−wTxi)

)1−yi
. (40)

The simplest choice for the prior is the Gaussian p(w) = N (w | µ0,Σ0), typically
of form µ0 = 0, A0 = τ−2I. Also priors discussed in section 2.2.2 can be used to
promote sparsity. For the Gaussian and also to other priors, the posterior will be
non-Gaussian and the computations are not as straightforward as with the regres-
sion model in section 2.2. The posterior must be approximated somehow, that is, by
drawing samples using some MCMC method or by making an analytic approxima-
tion. There are a great number of different MCMC methods for drawing posterior
samples and they are not covered in this thesis. The implementation and use of
these techniques can be found in textbooks, such as the ones by Bishop (2006) and
Gelman et al. (2013a).

An alternative to sampling is to make an analytic approximation to the posterior
distribution, typically a Gaussian one. The simplest Gaussian approximation is
obtained using the Laplace method, which is discussed next briefly. It is noted that
also approximations based on variational Bayes and expectation propagation are
available (e.g. Bishop, 2006; Gelman et al., 2013a) but they are not discussed here.
Consider the Taylor series of the log posterior f(w) = log p(w | D) around w = w0

f(w) = f(w0) + (w −w0)
Tg(w0) +

1

2
(w −w0)

TH(w0)(w −w0) + . . . (41)
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where g(w0) and H(w0) are the gradient and Hessian of f(w) at w = w0

g(w0) =
∂f(w)

∂w

∣∣∣∣
w=w0

H(w0) =
∂2f(w)

∂w∂wT

∣∣∣∣
w=w0

. (42)

If the expansion is made at the posterior mode w = ŵ leaving out the third and
higher order terms, the approximation becomes

f(w) ≈ f(ŵ) +
1

2
(w − ŵ)TH(ŵ)(w − ŵ), (43)

because the gradient will be zero at the mode (note that the mode of the log posterior
coincides with the true posterior mode). This second order approximation for the
log posterior leads to a Gaussian approximation for the posterior

p(w | D) ∝ exp

(
1

2
(w − ŵ)TH(ŵ)(w − ŵ)

)
∝ N (w | µn,Σn) , (44)

where

µn = ŵ (45)
Σn = −H(ŵ)−1 . (46)

In other words, the Laplace approximation replaces the true posterior with a Gaus-
sian whose mean is set to the posterior mode and precision to the negative Hessian of
the log posterior at the mode (the covariance is the inverse of the precision matrix).
The theoretical justification for the Laplace approximation comes from the fact that
under some regularity conditions the posterior converges to a Gaussian distribution
as the number of observations n → ∞. This is due to the fact that the posterior
becomes increasingly peaked at the mode and the higher order terms can be ignored
in the expansion (41) (e.g. Gelman et al., 2013a). Therefore Laplace approximation
improves when the size of the dataset gets larger. However, for small sample sizes
and skewed distributions the approximation might be poor, and the approximation
should not be used recklessly.

Laplace approximation is appealing because the implementation requires only
the first two derivatives of the log posterior which are straightforwardly calculated
from (40). Note that one can work with the unnormalized posterior because any
normalization constant would cancel out in the differentiation of the log posterior.
The mode can be found, for example, by Newton’s iteration (e.g. Boyd and Van-
denberghe, 2004)

w(k+1) = w(k) −H(w(k))−1g(w(k)) (47)

with a suitable starting point w = w(0). Note also that when the prior p(w) is
Gaussian (or any other log-concave function), the log of the unnormalized posterior
(40) can be shown to be a strictly concave function of w. Thus for a moderate
dimensionality of w, the iteration (47) converges very fast to a unique maximum,
which is the main advantage of the analytic approximation over the MCMC solution.
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For priors that are not log-concave such as the spike-and-slab (33), the posterior is
not guaranteed to be unimodal and may indeed be multimodal. For such priors,
either sampling methods or more sophisticated analytical approximations should
be employed. The sampling under the spike-and-slab prior is discussed in section
4.2. For probit model, the inference with spike-and-slab prior can be carried out
efficiently using expectation propagation which has been suggested to give compara-
ble results to the MCMC solution but with significantly less computational burden
(Hernández-Lobato et al., 2010).

For the Gaussian posterior approximation (44), the predictions are obtained from

p(ỹ = 1 | x̃,D) =

∫
s(wT x̃)p(w | D)dw =

∫
s(η)p(η)dη, (48)

where η = wT x̃ and p(η) is its distribution. Now, if the posterior p(w | D) is
(approximated by) Gaussian N (w | µn,Σn), then also η = wT x̃ has a Gaussian
distribution because it is a linear combination of jointly Gaussian variables. The
mean and variance of p(η) can be shown to be (Bishop, 2006)

µη = µTn x̃ (49)
σ2
η = x̃TΣnx̃ . (50)

Thus the prediction has reduced to evaluating the integral

p(ỹ = 1 | x̃,D) =

∫
s(η)N

(
η | µη, σ2

η

)
dη . (51)

This is not analytically available, but as a one dimensional integral it poses no prob-
lem as it can be easily calculated using standard numerical integration techniques.
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3 Model selection
The term model selection in general can be considered as a decision problem where
one needs to select a model from a set of candidate models {Mk}Kk=1 on the ba-
sis of some criterion or criteria. As already discussed in the introduction, in the
context of statistical modeling, the best available model is usually the one giving
the most precise predictions about the future observations. Model selection that
is based on assessing the predictive performance of the candidate models is called
predictive model selection (Vehtari and Ojanen, 2012), and this thesis considers pre-
dictive model selection only. How the predictive performance of a model is defined
is discussed in section 3.1.

This section somewhat follows the ideas by Bernardo and Smith (1994) and Veh-
tari and Ojanen (2012) in how to categorize the model selection methods proposed
in the literature. Bernardo and Smith (1994) presented the idea of M-closed, M-
completed andM-open views. M-closed means assuming that one of the candidate
models is the true data generating model without explicit knowledge which one
it is. Under this assumption, one can set prior probabilities for each model and
form the Bayesian model average (4). In practical modeling situations adopting the
M-closed perspective is questionable in the literal sense. Other than in controlled
situations (such as in computer simulations) it is hard to justify the belief that one
of the models is the true model. A relaxed version is theM-completed view where
one abandons the idea of the true model, but still forms a reference model which is
believed to be the best available description of the future observations. InM-open
view one does not assume one of the models being true and also rejects the idea of
constructing the reference model.

From a practical point of view, the ideas of M-closed, M-completed and M-
open views should not be taken too strictly. In practice, the distinction between
M-closed and M-completed is somewhat hazy. In some cases, the construction
of the Bayesian model average may be reasonable even though it is theoretically
unjustified because it explicitly assumes that one of the models is the true model.
One such a situation is the sparse variable selection problem, where one has a set of
predefined variables with prior knowledge that many of the variables are irrelevant,
but it is just not known which. As discussed in section 2.2.2, in such a situation
the Bayesian model averaging over the variable combinations is often considered the
”golden standard” solution.

Throughout section 3, the notation assumes a model that predicts a single output
variable y given the input variables x. Both of these can be either continuous or
discrete. However, most of the time y is treated as continuous and the expectations
are written using integrals. If not explicitly stated, the treatment for discrete y
is analogous and readily obtained by replacing the integrals with summations. To
make the notation simpler, the training data is denoted by D = (X,y).

The section is organized as follows. Section 3.1 discusses how the predictive
ability of a model is defined in terms of an expected utility. Sections 3.2–3.4 review
methods for Bayesian model selection proposed in the literature. The methods are
categorized according to their type of approach and this division is sketched in table
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Section 3.2 Utility estimation with data reuse
(M-open view)

Cross validation
Information criteria
Other predictive criteria

Section 3.3 Reference methods
(M-completed view)

Reference predictive approach
Projection

Section 3.4 Estimation of model probabilities Maximum a posteriori model
Median model

Table 1: Categorization of the different model selection methods.

1. Section 3.5 discusses the concept of selection induced bias and motivates why it
is relevant in the variable selection context.

3.1 Predictive ability as an expected utility

The predictive performance of a model is typically defined in terms of a utility
function that describes the quality of the predictions. This means, that one defines
a utility function u that maps each prediction ak ∈ Ak of the candidate model Mk

to a scalar utility for each possible future observation ỹ ∈ Ỹ so that the utility
is higher for predictions that are closer to the possibly later observed state of the
world. In mathematical terms the utility function is u : Ak × Ỹ 7→ R. Note, that
many authors prefer to use loss functions instead of utilities. However, the two
approaches are equivalent, because any utility function can be made a loss function
by only changing its sign. Thus, it is merely a matter of taste or convenience which
one is preferred.

The prediction ak = a(Mk) may be either a scalar or a distribution depending
on the situation. Sometimes one might be interested in obtaining the best possible
point prediction for future observation ỹ, and in such a situation a common loss
function is the squared error

e(Mk, ỹ) = (ak − ỹ)2, (52)

which clearly obtains its minimum at ak = ỹ. The squared error is an often used
loss function especially in frequentist literature where the predictions are commonly
described via point estimates. Often the motivation for using the squared error loss
function is its mathematical convenience, because in addition to its simplicity, it
is also everywhere differentiable and strictly convex with respect to ak. However,
as discussed in section 2, in Bayesian modelling the predictions are described in
terms of the posterior predictive distributions a(Mk) = p(ỹ | y,Mk) instead of point
predictions. Here and in the subsequent notation the input variables x are left out
for simplicity. An often used utility function measuring the quality of a predictive
distribution is the logarithmic score (Good, 1952)

u(Mk, ỹ) = log p(ỹ | y,Mk) . (53)
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The logarithmic score will be used throughout this thesis and its connection to the
information theory will be discussed shortly. However, at this point it is stressed
that in principle any other utility functions could be considered as well, and the
choice of a suitable utility function might also be application specific.

Since the future observations ỹ are unknown, the utility function u(Mk, ỹ) can
not be evaluated beforehand. In other words, one does not know how well the
model will predict yet unseen observations. Because of this, one usually works with
expected utilities instead

ūt(Mk) = E [u(Mk, ỹ)] =

∫
pt(ỹ)u(Mk, ỹ)dỹ, (54)

where pt(ỹ) is the true distribution of the future observation ỹ. This expression
will be referred to as the generalization utility or more loosely as the generalization
performance of model Mk. With the logarithmic score, the generalization utility
becomes

ūt(Mk) =

∫
pt(ỹ) log p(ỹ | y,Mk)dỹ . (55)

Also the true data generating distribution pt(ỹ) is in practice unknown and exact
evaluation of (55) is impossible. This formula is still of central importance, because
it can be estimated in various ways, and some of the proposed methods for Bayesian
model selection are based on maximizing an estimate of it. The definition of the
generalization utility with the logarithmic score is related to the information theory
via the definition of Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951)

KL (p || q) =

∫
p(ỹ) log

(
p(ỹ)

q(ỹ)

)
dỹ . (56)

KL-divergence measures the similarity of distributions p and q and can be considered
as the information loss of using distribution q when the true distribution is p. In
this context the information means the Shannon information (Shannon, 1948). KL-
divergence satisfies two important properties, that is, for all distributions p and
q KL (p || q) ≥ 0 and KL (p || q) = 0 only if p = q. However, KL-divergence is
not a valid distance metric because it is directed, meaning that usually KL (p || q) 6=
KL (q || p). Applying the definition (56) one can decompose the generalization utility
(55) as

ūt(Mk) =

∫
pt(ỹ) log p(ỹ | y,Mk)dỹ

=

∫
pt(ỹ)

(
log pt(ỹ) + log

(
p(ỹ | y,Mk)

pt(ỹ)

))
dỹ

=

∫
pt(ỹ) log pt(ỹ)dỹ −

∫
pt(ỹ) log

(
pt(ỹ)

p(ỹ | y,Mk)

)
dỹ

= ūt(Mt)−KL (pt(ỹ) || p(ỹ | y,Mk)) , (57)
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where the constant ūt(Mt) is the expected utility of the true data generating model
Mt. Note that since the KL-divergence is always nonnegative, the maximization of
the generalization utility (55) is equivalent to minimizing the divergence between
the predictive distributions of the true data generating model Mt and the candidate
model Mk.

3.2 Utility estimation with sample reuse

This section reviews approaches for estimating the generalization utility (55) that
are based on sample reuse. These methods can be considered to reflect theM-open
view in the sense that none of the models is believed to be the true model but one
is interested in finding the best model available. The section begins with a short
discussion of estimating the model fit at training observations, and then proceeds
to methods that are designed to correct the bias in this approach, namely cross
validation (section 3.2.2) and information criteria (section 3.2.3). Also a few other
related predictive approaches are considered (section 3.2.4).

3.2.1 Posterior and hold-out predictive approach

A natural idea for estimating the generalization performance (55) would be to use
the already obtained sample D = (X,y) and approximate the integral with the
Monte Carlo method as

ūtr =
1

n

n∑
i=1

log p(yi | xi,D,Mk), (58)

which is called the training utility of model Mk. This, however, overestimates the
generalization utility, because the model is tested on the same data that was used
for training it. The model may fit to the training observations very well, but has
no predictive ability outside the training data. A better idea is to split the training
data into two D = {Dtr,Dts}, and use the first part for training and the second part
for testing. This gives the hold-out utility

ūhold-out =
1

nts

∑
i∈Its

log p(yi | xi,Dtr,Mk) . (59)

where Its denotes the indices of points in D that belong to the test set Dts, and nts
is the size of Dts. This approach is safer in the sense that it does not overestimate
the generalization performance but instead it typically underestimates it. This is
because the model is trained with only part of the data, and the predictions would
be better if all the data was used for training. Of course one could do the division
so that almost all of the points are used for training, but the small test set size leads
to inaccuracy and high variance in the utility estimate. Let us next discuss the idea
of cross validation which tackles this very issue.
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3.2.2 Cross validation

Cross validation (CV) is a widely used method for frequentist and Bayesian model
selection and assessment (from frequentist perspective see Stone (1974) and from
Bayesian perspective see Geisser and Eddy (1979)). It extends the idea of hold-out
(section 3.2.1) by dividing the original dataset of n points into k subsets I1, . . . , Ik
each of which is then used in turn for validation while the points in the remain-
ing k − 1 sets form the training set. This way the same part of the data is never
used simultaneously for model training and validation, but still a utility or an er-
ror estimate is obtained for the whole dataset. This is referred to as k-fold cross
validation

k-fold-CV =
1

n

n∑
i=1

log p(yi | xi,D\I(i),Mk), (60)

where I(i) denotes the validation set that contains the ith point and D\I(i) the
training data from which this subset has been removed. A natural idea would be
to set k = n, that is, the model is trained each time using all the points except the
one which is used for validation. This is referred to as leave-one-out cross validation
(LOO-CV). For LOO-CV the utility estimate is given by

LOO-CV =
1

n

n∑
i=1

log p(yi | xi,D\i,Mk), (61)

where D\i denotes the original training data excluding ith point. Watanabe (2010)
showed that LOO-CV with logarithmic utility function is asymptotically equal to
the expected true utility (55) and the error is o(1/n). Thus when n is not very
small, LOO-CV is a nearly unbiased estimate of the true generalization utility. The
obvious drawback in LOO-CV is that it requires training the model n times which
is computationally infeasible in many practical modeling situations. In some cases,
however, there might be computational shortcuts, which allow the computation
of LOO-CV with only small additional computations to a single model training.
Examples of such special cases are the linear and Gaussian process regression with
fixed hyperparameters (e.g. Orr, 1996; Sundararajan and Keerthi, 2001).

Gelfand et al. (1992) proposed a computationally convenient way of estimating
the LOO-CV, called importance sampling (IS) LOO-CV. IS-LOO-CV is based on
the general importance sampling formula, where the expectation of an arbitrary
function h(θ) over distribution f(θ) is approximated as∫

h(θ)f(θ)dθ =

∫
h(θ)f(θ)

g(θ)
g(θ)dθ ≈

∑
swsh(θs)∑

sws
, (62)

where {θs}Ss=1 is a sample from distribution g(θ) and

ws =
f(θs)

g(θs)
.
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Conditions under which the approximation (62) converges to the true value are
discussed by Geweke (1989). The leave-one-out predictions are approximated by a
straightforward application of the above formula by using the full model posterior
p(θ | D,Mk) as the importance sampling distribution g(θ). One gets

p(yi | xi,D\i,Mk) =

∫
p(yi | xi,θ,Mk)p(θ | D\i,Mk)dθ

≈
∑

swsp(yi | xi,θs,Mk)∑
sws

, (63)

where {θs}Ss=1 is a sample from p(θ | D,Mk) and

ws =
p(θs | D\i,Mk)

p(θs | D,Mk)
∝ 1

p(yi | xi,θs,Mk)
. (64)

Plugging this into (63) gives the IS-LOO-CV formula

IS-LOO-CV =
1

n

n∑
i=1

log

(
1

1
S

∑
s

1
p(yi|xi,θs,Mk)

)
. (65)

The reliability of IS-LOO-CV estimate can be studied by the variability in the
weights ws, for example by plotting the cumulative normalized weights. If for some
point i most of the mass of

∑
sws is concentrated on a few of the weights only,

this may indicate that the approximation is unreliable. The reliability estimation is
discussed in more detail by Vehtari and Lampinen (2002).

Another way of overcoming the computational cost of LOO-CV is simply setting
k � n, that is, using fewer validation sets. The computational ease comes with
the disadvantage that conditioning the predictions for less than n observations in-
troduces an extra bias in the utility estimate. However, this bias can be estimated
(Burman, 1989). A conventional choice is to set k = 10, that is, each time 90% of
the data is used for training and 10% for validation.

Usually LOO-CV is considered as a robust method for model assessment, but
in model selection it suffers from the selection induced bias (section 3.5) and this is
demonstrated in section 5.

3.2.3 Information criteria

Information criteria (IC) are a computationally convenient alternative for estimating
the model fit. Several methods falling into this category have been proposed and
all of them are not covered here. Instead this section discusses the general idea and
goes through a few of them which are best known.

AIC Information criteria are designed to estimate the fit of the candidate model,
and can often be written in the form

IC = training utility + bias correction .
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The very first information criterion by Akaike (1974) (AIC) estimates the expected
logarithmic score of the model at the training observations with maximum likelihood
estimate θML for the parameters

ED

[
1

n

n∑
i=1

∫
pt(ỹ | xi) log p(ỹ | xi,θML,Mk)dỹ

]
. (66)

The expectation is taken over all the possible training sets D, and pt(ỹ | xi) is
the true data generating distribution conditional on the input variables. In the
derivation of Akaike’s criterion it is assumed that pt(ỹ | x̃) is well approximated by
a parametric model p(ỹ | x̃,θt,Mk), and after using the Taylor expansion for θML

one gets the estimate

AIC =
1

n

n∑
i=1

log p(yi | xi,θML,Mk)−
p

n
, (67)

where p is the number of parameters in the model. The first part is the logarithmic
training utility of the model with the maximum likelihood estimate for the param-
eters, and the second part is the bias correction due to estimating the fit at the
training observations. AIC does not fit very well to the Bayesian paradigm since
it is based on estimating the goodness of the maximum likelihood parameters. In
Bayesian setting, one is generally interested in the goodness of the predictions ob-
tained by integrating over the parameters.

DIC Another well-known information criterion is the deviance information crite-
rion (DIC) proposed by Spiegelhalter et al. (2002). DIC estimates the generalization
performance of the model at the training inputs with parameters fixed to the pos-
terior mean θ̄ = E [θ | D]. DIC can be written as

DIC =
1

n

n∑
i=1

log p(yi | xi, θ̄,Mk)−
peff
n
, (68)

where peff is the effective number of parameters in the model. peff can be estimated
in two different ways the first one being

peff = 2
n∑
i=1

(
log p(yi | xi, θ̄,Mk)− E [log p(yi | xi,θ,Mk)]

)
, (69)

where the expectation in the latter term is taken over the posterior p(θ | D,Mk).
The alternative formula is

peff = 2Var [log p(yi | xi,θ,Mk)] , (70)

where the variance is also calculated over the posterior p(θ | D,Mk). The first one
(69) is argued to be numerically more stable (Gelman et al., 2013b), but due to
the use of a point estimate for θ the estimation becomes in general variant to the
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parametrization. The latter formula (70) on the other hand avoids the use of the
point estimate being therefore invariant to the parametrization.

Investigating the formulas (67) and (68) one observes that DIC bears a resem-
blance to AIC in the sense that it replaces the maximum likelihood estimate θML

with the posterior mean θ̄ and the number of parameters p by a data based bias
correction. Based on this connection Gelman et al. (2013b) stated that ”DIC is
a somewhat Bayesian version of AIC”. Even though the ML estimate of AIC is re-
placed by posterior mean in DIC, this does not make DIC a fully Bayesian approach,
because it is still based on a point estimate.

WAIC In contrast to AIC and DIC, a fully Bayesian criterion is the widely ap-
plicable information criterion (WAIC) by Watanabe (2009, 2010). WAIC can be
calculated as

WAIC =
1

n

n∑
i=1

log p(yi | xi,D,Mk)−
V

n
, (71)

where the first term is the training utility (58) and V is the functional variance given
by

V =
n∑
i=1

{
E
[
(log p(yi | xi,θ,Mk))

2
]
− E [log p(yi | xi,θ,Mk)]

2} (72)

Here both of the expectations are taken over the posterior p(θ | D,Mk). Watanabe
(2010) proved that WAIC is asymptotically equal to the leave-one-out cross vali-
dation (61) and to the generalization utility (55) and the error is o(1/n). In other
words, both LOO-CV and WAIC converge to the generalization utility as n → ∞,
and the error is bounded by o(1/n). Watanabe’s proof gives WAIC a solid theo-
retical justification in the sense that it measures the predictive ability of the model
including the uncertainty in the parameters, not just goodness of a point estimate as
DIC does. The use of a point estimate is questionable not only because of Bayesian
principles, but also from a practical point of view especially when the model is sin-
gular. For singular models the set of the ”true parameters” consists of more than one
point, and therefore the point estimate does not represent the posterior completely
even when n→∞. WAIC can also be used for singular models which is the reason
for the name ”widely applicable”.

3.2.4 Other posterior and CV-predictive approaches

L-criterion Laud and Ibrahim (1995) proposed a model selection criterion which
is derived by considering replicated measurements ỹ at training inputs X. The
criterion measures the expected squared error between the new observations and
the old ones y over the posterior predictive distribution of the candidate model Mk

L2(Mk) = E
[
(y − ỹ)T (y − ỹ) | X,D,Mk

]
. (73)
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The error can be decomposed as

L2(Mk) =
n∑
i=1

(yi − E [ỹ | xi,D,Mk])
2 +

n∑
i=1

Var [ỹ | xi,D,Mk] , (74)

that is, sum of the squared errors for mean predictions plus sum of the predictive
variances. For convenience, the authors defined the final criterion as the square root
of L2, so that the criterion has the same units as the target variable. This yields
the L-criterion

L(Mk) =
√
L2(Mk). (75)

The preferred model is then the one which minimizes (75). As is seen from (74),
L-criterion (or L2) is not the same as the squared error at the training inputs. It
also measures the predictive variance, and therefore favors models having a narrow
posterior predictive distribution and a good mean predictive fit to training data. As
complex models tend to have larger predictive variance, L-criterion penalizes com-
plex models more than just the squared training error. However, L-criterion is still
somewhat problematic because the same data is used both for the model training
and testing.

Lq-criterion Marriott et al. (2001) proposed a criterion which is a cross validated
version of the L2-criterion (74). The authors named their measure as Lq-criterion

Lq(Mk) =
n∑
i=1

(yi − E
[
ỹ | xi,D\i,Mk

]
)2 +

n∑
i=1

Var
[
ỹ | xi,D\i,Mk

]
. (76)

Lq-criterion sounds intuitively better than L-criterion, because it does not use the
same data for training and testing. However, as is demonstrated in section 5, also
Lq-criterion may perfom badly in variable selection due to the selection bias.

LGG-criterion Gelfand and Ghosh (1998) presented an approach that is based on
defining an optimal point prediction for a replicated measurement ỹ. The optimal
point prediction is defined to be close both to the observed y and to the future ỹ.
Given a loss function l(a, ỹ), the optimal point prediction at inputs xi is defined as

aopti = arg minE [l(ai, ỹi) + kl(ai, yi) | xi,D,Mk] , (77)

where the expectation is taken over the posterior predictive distribution of model
Mk, and k is a free parameter adjusting the relative importance of the future and
observed data. The criterion is then defined as

LGG(Mk) =
n∑
i=1

E
[
l(aopti , ỹi) + kl(aopti , yi) | xi,D,Mk

]
. (78)

The framework is quite general allowing in principle any loss function l(a, ỹ) to be
used. However, for arbitrary loss functions the optimal point prediction (77) may
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not be easily calculated. Gelfand and Ghosh (1998) discuss the squared error loss
l = (a− ỹ)2 for which aopti can be derived analytically. For squared error, the optimal
point prediction becomes

aopti =
E [ỹ | xi,D,Mk] + kyi

k + 1
. (79)

This result is obtained simply by plugging the loss function into (77), differentiating
with respect to ai and setting the derivative to zero. The criterion then becomes

LGG(Mk) =
k

k + 1

n∑
i=1

(yi − E [ỹ | xi,D,Mk])
2 +

n∑
i=1

Var [ỹ | xi,D,Mk] . (80)

When k →∞, LGG is the same as L2-criterion (74). On the other hand, when k = 0
the criterion reduces to the sum of the predictive variances, and the model with
the narrowest predictive distribution is chosen. In their experiment, the authors
reported that the results were not very sensitive to the choice of k.

3.3 Utility estimation with the reference model

Section 3.2 reviewed methods for utility estimation that are based on sample reuse
without any assumptions on the true model (M-open view). An alternative way
is to construct a reference model, which is believed to best describe our knowledge
about the future observations, and perform the utility estimation as if it was the
true data generating distribution (M-closed/M-completed view). In this thesis,
all the methods based on evaluating the predictive performance of the submodels
with respect to the reference model are referred to as reference methods. There are
basically two somewhat different but related approaches that fit into this category,
namely the reference predictive approach and the projection, which will be discussed
separately.

3.3.1 Reference predictive approach

In the reference predictive approach, one forms the reference model M∗ and uses it
almost as if it was the true data generating model Mt. Thus, the utilities of the
candidate models Mk can be estimated by replacing the true distribution pt(ỹ) in
(55) by the reference distribution p(ỹ | D,M∗)∫

p(ỹ | D,M∗) log p(ỹ | D,Mk)dỹ. (81)

By averaging this over the training inputs {xi}ni=1 one gets the reference utility

ūref(Mk) =
1

n

n∑
i=1

∫
p(ỹ | xi,D,M∗) log p(ỹ | xi,D,Mk)dỹ . (82)

As the reference model is in practice different from the true data generating model,
the reference utility is a biased estimate of the true performance of the candidate
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model. By equation (57), the maximization of the reference utility is equivalent to
minimizing the predictive KL-divergence between the reference model M∗ and the
candicate model Mk at the training inputs

δ(M∗ ||Mk) =
1

n

n∑
i=1

KL (p(ỹ | xi,D,M∗) || p(ỹ | xi,D,Mk)) . (83)

In other words, in this approach one seeks a candidate model whose predictive
distribution is as close as possible to the predictive distribution of the reference
model. The model choice can then be based on the strict minimization of the
discrepancy measure (83), or choosing the simplest model that has an acceptable
discrepancy. What is meant by ”acceptable” may be somewhat arbitrary and context
dependent (see the concept of relative explanatory power in the next section, eq.
(88)). In section 5 it is also demonstrated that due to the selection induced bias
the estimated discrepancy may be a poor estimate of the difference in the predictive
performance between the reference model and the selected submodels.

Formula (83) measures the predictive discrepancy at the training inputs. If the
future predictions will be conditioned on different inputs, one would be interested
in measuring the out-of-sample discrepancy. In this case the discrepancy from the
reference model could be calculated using cross validation densities as

δ(M∗ ||Mk) =
1

n

n∑
i=1

KL
(
p(ỹ | xi,D\i,M∗) || p(ỹ | xi,D\i,Mk)

)
. (84)

The above notation is for leave-one-out densities, but one could also use for example
10-fold cross validation to reduce the computations.

The reference predictive approach is inherently a less straightforward approach
to model selection than the methods presented in section 3.2 because it requires the
construction of the reference model. The quality of the model selected by minimizing
the reference discrepancy (either (83) or (84)) is naturally dependent on the quality
of the reference model M∗. This emphasizes the importance of the model criticism
when constructing the reference model. There is no automated way of coming
up with a good reference model (otherwise all the modelling problems would be
solved). San Martini and Spezzaferri (1984) proposed using the Bayesian model
average (4) as the reference model. This has been criticized because, as discussed
in the introduction of section 3, this means assuming that one of the candidate
models is the true data generating model, which is debatable. In principle, however,
averaging over the discrete model space (i.e. forming the model average) does not
differ in any sense from integrating over the continuous parameters which is the
standard procedure in Bayesian modeling. Moreover, especially in variable selection
problems the integration over the different variable combinations, that is, the use of
the spike-and-slab prior (section 2.2.2) is widely accepted. Thus, even if one did not
believe in one of the candidate models being true, forming the model average might
still be reasonable.

It is worth mentioning, however, that even though BMA is a natural choice for
the reference model, one can in principle let M∗ to be anything as long it is believed
that M∗ is the model presenting one’s beliefs the best possible way.
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3.3.2 Projection approach

A related method to the reference predictive approach (section 3.3.1) is the para-
metric projection proposed by Goutis and Robert (1998) and further discussed by
Dupuis and Robert (2003). The idea is to project the parameters of the reference
model to the parameter space of a candidate model such that the associated para-
metric KL-divergence is minimized. More specifically, given the parameter of the
reference model θ∗, the projected parameter θ⊥ in the parameter space of model
Mk is defined via

θ⊥ = arg min
θ

1

n

n∑
i=1

KL (p(ỹ | xi,θ∗,M∗) || p(ỹ | xi,θ,Mk)) . (85)

The discrepancy between the reference model M∗ and the candidate model Mk

is then defined to be the expectation of the divergence over the posterior of the
reference model

δ(M∗ ||Mk) =
1

n

n∑
i=1

Eθ∗|D,M∗
[
KL
(
p(ỹ | xi,θ∗,M∗) || p(ỹ | xi,θ⊥,Mk)

)]
. (86)

The posterior expectation in (86) is in general not available analytically. Dupuis and
Robert (2003) proposed calculating the discrepancy by drawing samples {θ∗s}Ss=1

from the posterior of the reference model, calculating the projected parameters
{θ⊥s }Ss=1 individually according to (85), and then approximating (86) as

δ(M∗ ||Mk) ≈
1

nS

n∑
i=1

S∑
s=1

KL
(
p(ỹ | xi,θ∗s,M∗) || p(ỹ | xi,θ⊥s ,Mk)

)
. (87)

Moreover, Dupuis and Robert (2003) introduced a measure called relative explana-
tory power

φ(Mk) = 1− δ(M∗ ||Mk)

δ(M∗ ||M0)
, (88)

where M0 denotes the empty model, that is, the model that has the largest discrep-
ancy to the reference model. In terms of variable selection, M0 is the variable free
model. By definition, the relative explanatory power obtains values between 0 and 1,
and Dupuis and Robert (2003) proposed choosing the simplest model with enough
explanatory power, for example 90%. The effect of this threshold is discussed in
section 5.

Even though the idea of the parametric projection is quite general, the method is
designed for variable selection for generalized linear models. In general, the projected
parameters (85) are not easily calculated (if at all). However, when the observation
model is in the exponential family

p(y | x,θ∗,M) = h(y) exp
(
η(x,θ∗)Tu(y)− a(x,θ∗)

)
, (89)
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the KL-divergence is conveniently minimized. Using the shorthand notation η∗i =
η(xi,θ

∗), η⊥i = η(xi,θ
⊥), a∗i = a(xi,θ

∗), a⊥i = a(xi,θ
⊥) one can write the KL-

divergence in (85) as

KL
(
p(ỹ | xi,θ∗,M∗) || p(ỹ | xi,θ⊥,Mk)

)
= (η∗i − η⊥i )T∇θ∗a

∗
i + a⊥i − a∗i . (90)

This follows from the fact that the expectation of the sufficient statistics u(y) over
the distribution (89) is ∇θ∗a

∗. By plugging (90) into (85) and setting the gradient
with respect to θ⊥ to zero, one obtains a system of equations

n∑
i=1

∇θ⊥
(
(η⊥i )T∇θ∗a

∗
i

)
=

n∑
i=1

∇θ⊥a
⊥
i . (91)

These are essentially the same equations as obtained when finding the maximum
likelihood solution for the parameters. This can be seen by considering the gradient
of the log-likelihood for the candidate model

∇θ⊥ logL(θ) = ∇θ⊥

(
n∑
i=1

(
log h(yi) + (η⊥i )Tu(yi)− a⊥i

))

=
n∑
i=1

(
∇θ⊥

(
(η⊥i )Tu(yi)

)
−∇θ⊥a

⊥
i

)
. (92)

By setting this to zero one obtains the same equations as (91) but u(yi) in place
of ∇θ∗a

∗
i . Thus projecting the parameters of the reference model to the parameter

space of the candidate model can be seen as ”fitting to fit”. If both θ∗ and θ⊥ belong
to the same subspace, then naturally the solution to the projection equations is
θ⊥ = θ∗. The idea is typically to restrict the projection space in some way. Dupuis
and Robert (2003) proposed to project the weights w of the full generalized linear
model by restricting wk = 0 for some components k. If some of the variables can
be set to have a zero weight without a significant increase in the discrepancy (86),
then these variables can be left out of the model.

For the normal linear model (section 2.2) the system (91) is linear and has an
analytical solution. For other models the equations are nonlinear and the solution is
not analytically available, but the equations can be efficiently solved using standard
numerical techniques such as Newton’s method. The projection has the advantage
that it allows the computation of the discrepancy between the reference model and
the submodels without having to place priors for each model separately; the prior
information of the reference model is contained in the projected samples. The projec-
tion is also typically much faster to calculate than having to sample the parameters
of each model separately. However, it is noted that the projected parameters are
determined only when the maximum likelihood equations have a unique solution.
For instance, for the normal linear model the projection is undetermined when there
are more variables in the candidate model than observations. Moreover, it could be
argued that the projection approach does not correspond to ”actual” model selection
because strictly speaking it does not compare the candidate models trained by the
data; it compares the candidate models trained by the fit of the reference model.
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3.4 Estimation of model probabilities

MAP / Marginal likelihood As discussed in section 2.1, Bayesian formalism
has a natural way of describing the uncertainty with respect to the used model
specification. Omitting the input variables in the notation, the distribution over the
model space is given by

p(M | y) =
p(y |M)p(M)

p(y)
∝ p(y |M)p(M) . (93)

One may then choose the model with the highest posterior probability which gives
the maximum a posteriori (MAP) model

MMAP = arg max
M

p(M | y) . (94)

This involves setting prior probabilities for each model p(M). If the models are given
equal prior probabilities p(M) ∝ 1, the posterior probabilities become proportional
to the marginal likelihood p(M | y) ∝ p(y |M). The maximization of the marginal
likelihood is a fairly popular model selection method in Bayesian modelling and is
sometimes also referred to as the type II maximum likelihood.

Figure 2 illustrates the marginal likelihood based model selection. The horizon-
tal axis describes all the possible measurements and the curves show the marginal
likelihoods (i.e. prior predictive distributions) of three different models. Under the
simplest model, only a small range of different datasets are possible, whereas the
most complex model allows a much wider range of measurements. However, because
the marginal likelihood is a normalized density function of y, the density value will
be higher for the simpler model for datasets y it can explain. If one obtained data
marked by the vertical dashed line, then the model with intermediate complexity
would be chosen, because it is the simplest model that can account for the observed
data. Thus model selection based on maximum marginal likelihood corresponds to
Occam’s razor : out of equally good explanations, choose the simplest.

While this sounds intuitively nice, marginal likelihood is in general sensitive to
prior assumptions. To see this, consider the factorized form

p(y |M) = p(y1, . . . , yn |M)

= p(y1 |M)p(y2 | y1,M) . . . p(yn | y1, . . . , yn−1,M) . (95)

The first term is the predictive distribution for the first observation and depends
on the prior only p(y1 | M) =

∫
p(y1 | θ,M)p(θ | M)dθ. If the prior is very

uninformative, the predictive distribution for the first observation will be very flat
and therefore p(y1 | M) ≈ 0 and also p(y | M) ≈ 0. The prior sensitivity of
marginal likelihood is sometimes referred to as Lindley’s paradox (Shafer, 1982;
Kass and Raftery, 1995).

Another difficulty is that the computation of the marginal likelihood is in general
nontrivial. The integral

p(y |M) =

∫
p(y | θ,M)p(θ |M)dθ (96)
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Figure 2: Schematic illustration of model selection based on maximum marginal
likelihood. The horizontal axis describes all the possible datasets and the curves
depict the marginal likelihoods of three different models. The maximum marginal
likelihood principle favors the simplest model that is is able to explain the data.
For the measurements marked by the dashed line the chosen model would be the
model with intermediate complexity. The figure is reproduced from Rasmussen and
Williams (2006).

is analytically available only for the simplest models and must usually be approx-
imated somehow. Some of the proposed methods for this purpose are Laplace ap-
proximation, Schwarz criterion (also known as Bayes information criterion, BIC)
and different MCMC methods. The first two are reviewed by Kass and Raftery
(1995) and the MCMC methods by Han and Carlin (2001). There are also gen-
eral methods for posterior approximation such as variational Bayes and expectation
propagation that give an estimate of the marginal likelihood as a ”by-product” (see
for example Bishop, 2006). Section 4.2 discusses a method called reversible jump
MCMC (RJMCMC) which can be used to sample parameters from different models
according to their posterior probabilities. The relative posterior odds

p(Mi | y)

p(Mj | y)
=
p(y |Mi)p(Mi)

p(y |Mj)p(Mj)
(97)

can then be calculated according to the number of visits in each model. When the
uniform prior p(M) ∝ 1 is used, the relative posterior odds reduce to the ratio of
the marginal likelihoods p(y | Mi)/p(y | Mj) which is referred to as the Bayes fac-
tor. With the uniform prior, the choice of the most frequently occurring model is
equivalent to maximizing marginal likelihood, even though the marginal likelihoods
are not calculated explicitly.

Median model Barbieri and Berger (2004) proposed a variable selection method
for normal linear model, and they called it the Median model. Median model is
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defined as the model containing all the variables with overall posterior probability
greater than 1

2
. Let binary vector γ = (γ1, . . . , γp) denote which of the variables are

included in the model (γj = 1 meaning that variable j is included). The posterior
inclusion probability of variable j is then

pj =
∑

Mk|γj=1

p(Mk | y) (98)

that is, the sum of the posterior probabilities of the models which include variable
j. Median model γmed is then defined componentwise as

γmed
j =

{
1, if pj ≥ 1

2

0, otherwise .
(99)

The authors showed that under some specific assumptions the median model is
optimal. By optimal the authors mean the model whose mean prediction for future
ỹ is closest to the mean of the Bayesian model averaging prediction in the squared
error sense. The key assumption is that the predictors are mutually uncorrelated,
that is Q = E

[
xxT

]
is diagonal, where the expectation is taken over the true data

generating distribution. This is a strong assumption, and the authors themselves
admit that it does not often apply. Median model is also built on the assumption that
the optimality is defined in terms of the mean predictions. More precisely, the theory
does take into account the uncertainty in the predictive distributions. It might be
that the median model has, for instance, much narrower predictive distribution than
BMA underestimating therefore the uncertainty in the future observation, which
might be undesirable.

3.5 Selection bias

As discussed in section 3.1, the performance of a model is usually defined in terms of
an expected utility (54), and often with the logarithmic score function (55). Many
of the proposed selection criteria rewieved in sections 3.2 and 3.3 are based on
estimating this quantity in one way or another, even though some of the methods
use different utility function than the logarithmic score. As discussed in section 3.4,
also the selection of maximum a posteriori model measures the predictive ability of
the candidate models, even though it can not be considered as a direct estimation
of (55).

Consider a hypothetical utility estimation method. For a fixed training dataset
D, its utility estimate gk = g(Mk,D) for model Mk can be decomposed as

gk = uk + εk, (100)

where uk = u(Mk,D) represents the true generalization utility of the model, and
εk = ε(Mk,D) is the error in the utility estimate. Note that also uk depends on the
observed datasetD; favourable datasets lead to better generalization performance. If
the utility estimate is correct on average over the different datasets ED [gk] = ED [uk]
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Figure 3: Schematic illustration of unbiased (top) and biased (bottom) utility esti-
mation methods. In this case, the biased method is likely to choose better models
due to smaller variance in the utility estimates. The figure mimics the ideas pre-
sented by Cawley and Talbot (2010).

or equivalently ED [εk] = 0, the estimate g is said to be unbiased. If ED [εk] 6= 0, the
estimate is biased. The unbiasedness of a utility estimate is typically considered as
beneficial for model selection. While this may sound intuitively sensible, it may not
be the case in reality. The unbiasedness of a utility estimate is intrinsically unim-
portant for model selection, and a successful model selection does not necessarily
require unbiased utility estimates (the unbiasedness can actually be disadvantageous
as we shall see in a moment). To see this, note that the only requirement for perfect
model selection criterion is that gk > gl implies uk > ul for all modelsMk andMl. In
other words, the higher utility estimate implies higher generalization performance.
This condition can be satisfied even if ED [gk] 6= ED [uk].

But why might the unbiasedness be a problem and biasedness a benefit? Take a
look at figure 3. The top plot shows an imaginary prototype of unbiased but high
variance utility estimates. The blue curves represent the estimated utilities for each
model M with different data realizations. On average (red dashed) these curves
coincide with the true expected utility over all datasets (green). However, due to
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the high variance, the maximization of the utility estimate may lead to choosing a
model with nonoptimal expected true utility (the maxima become more scattered
to the right). This phenomenon of choosing a nonoptimal model due to the variance
in the utility estimates is called the selection induced bias or just selection bias.
In other words, the selection procedure fits to the noise in the utility estimates,
and therefore it is expected that the chosen model has a nonoptimal true utility.
The lower plot then shows a biased utility estimation method that overestimates
the ability of models on the left and underestimates the ability of the models on
the right. However, due to smaller variance, the probability of choosing a model
with better true performance is increased (the maxima focus more to the left).
This example demonstrates that even though the unbiasedness is beneficial for the
performance evaluation of a particular model, it is not necessarily important for
model selection. For the selection, it is more important to have a right combination
of bias and variance.

The top plot in figure 3 also demonstrates that, even though the utility estimates
are unbiased for each model before the selection, the utility estimate for the selected
model is no longer unbiased and is typically optimistic (the maxima of each indi-
vidual curve tend to lie over the average curve). To get an intuitive idea how this
phenomenon arises, consider the following simple example. Ask a thousand people
to throw dice ten times and then choose the person who got the best total score.
Then ask him or her to throw again and record the score. It is likely that the result
for the second round is less than in the first round, because the result in the first
round was probably higher that it could be expected on average. The phenomenon
seems obvious when presented this way but may be easy to forget when put into
another context.

The selection bias is an important concept that has received relatively little
attention compared to the vast literature on the model selection in general. However,
the topic has been discussed for example by Reunanen (2003), Varma and Simon
(2006), and Cawley and Talbot (2010). These authors discuss mainly the model
selection using cross validation, but the ideas apply also to other utility estimation
methods. As discussed in section 3.2.2, cross validation gives a nearly unbiased
estimate of the generalization performance of a single model, but the selection based
on cross validation may become biased when the variance in the utility estimates is
high (as depicted in the top plot of figure 3). This will be demonstrated empirically
in section 5. The experiments will also demonstrate that the reference methods
(section 3.3) seem to be less vulnerable to selection induced bias, which is possibly
explained by smaller variance in the utility estimates. For this reason the reference
model based model selection may yield better results even though the reference
utilities are not unbiased estimates of the actual generalization performance (being
therefore closer to the case in the bottom plot of figure 3). The variance in the
utility estimate is different for different estimation methods, but generally the noise
is large when the data is scarce. The probability of fitting to noise increases also
with a large number of models being compared, which is the case for example in
variable selection.
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4 Variable selection
Variable selection is an important special case of the model selection problem dis-
cussed in section 3. As pointed out in the introduction, loosely speaking, the goal in
variable selection is to select a minimal subset from a set of possible input variables
x = (x1, . . . , xp) while maximizing the predictive ability of the model with respect
to the target variable y. It is assumed here that other aspects of the model than
the included variables are fixed. In other words, the model structure (for exam-
ple linear or Gaussian process model) is fixed and one is comparing only different
variable combinations within this model. Typically there is a tradeoff between the
number of included variables and the predictive performance of the model. Thus it
depends on the situation whether the preference is the reduction of the variables or
the predictive performance of the model. If one is simply interested in maximizing
the predictive ability of the model, the formally correct Bayesian approach is to
include all the variables in the model, place a prior that best reflects the beliefs
of the modelling task, and then integrate over the posterior uncertainty. However,
often the goal is to be able to learn something about the underlying process that
generates the data. In such a situation the identification of the relevant variables is
of central importance, because this improves the interpretability of the model. An
example would be the survival studies where it would be of interest to identify the
factors that increase the probability of one getting the disease. In some applications
the variable selection might also lead to reduced measurement costs if some of the
variables can be left unobserved in the subsequent measurements. This might be the
case for example in industrial or medical research. An additional benefit of variable
selection could also be the reduced computational costs in the subsequent model
fitting.

In principle the variable selection could be carried out in the same fashion as
any other model selection problem, that is, by choosing the model that has the
highest estimated expected utility (according to some criterion discussed in section
3). However, variable selection poses a few extra challenges. First, the number
of different variable combinations K = 2p grows exponentially with the number of
variables p. For instance, with p = 30 the number of different models is K ≈ 109.
Thus the exhaustive search through the model space becomes infeasible already
for a relatively small number of variables and heuristic search strategies must be
employed. A few of these approaches are discussed in section 4.1. Another difficulty
is the overfitting of the selection process due to the selection bias. As discussed
in section 3.5, the risk of overfitting due to the selection bias increases when the
number of models being compared is large. The selection process is vulnerable to
overfitting especially when the data is scarce, because the variance in the utility
estimates becomes then high. This is demonstrated in section 5.

4.1 Search strategies

Variable selection (or more generally the subset selection problem) can be stated
formally as follows. Given a set of variable indices S = {1, . . . , p} and a utility func-
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tion f that maps each subset Sk ⊂ S to a scalar value f : Sk 7→ R, find the subset
S∗ that maximizes f , that is f(S∗) ≥ f(Sk) for all Sk ⊂ S. As discussed already,
the exact solution would require going through all the possible subsets of S and
becomes therefore quickly infeasible as p gets larger. This section presents heuristic
search strategies that can be used for searching candidate models and finding an
approximate solution to the maximization problem.

Forward selection One simple but useful search strategy is the forward selection
(also known as forward search, greedy search and greedy algorithm). In forward
search one starts from the empty set (no variables) and adds variables one at a time
such that the objective function is maximized at each step. The forward search can
be stated as follows:

1. Initialize the sets of added and not added variable sets as Sin = ∅, Sout = S.

2. Repeat until all the variables have been added Sin = S, Sout = ∅:

(a) Choose variable j ∈ Sout so that f(Sin ∪ j) is maximized. Remove j from
Sout and add it to Sin.

The algorithm requires p objective function evaluations at the first round, p − 1
at the second round, then p − 2 and so on. Thus the algorithm goes through
1 + 2 + · · ·+ p = p(p+1)

2
= O(p2) objective function evaluations. In variable selection

terms, this is the number of compared models. Depending on how long one function
evaluation (or model training) takes, the full forward search might be feasible up
to a few hundred or thousand variables. As a benchmark, if one objective function
evaluation takes one second, then going through a full forward search for p = 1000
variables takes about 6 days. As the objective function evaluations are not typically
smaller than this by several orders of magnitude, one can conclude that this type of
searching is applicable to small and medium sized problems, but infeasible for very
large problems (tens of thousands of variables or more). However, one can always
stop the iteration when a predefined number of variables or a suitable stopping cri-
terion is satisfied, which may reduce the computational time considerably.

Backward selection A closely related search strategy to the forward search is
the backward selection, which does the search in the opposite direction. In backward
selection one starts from the full set of variables and reduces the variables one at a
time by optimizing the utility function. The backward selection proceeds as follows:

1. Initialize the sets of added and not added variables as Sin = S, Sout = ∅.

2. Repeat until all the variables have been removed Sin = ∅, Sout = S:

(a) Choose index j ∈ Sin so that f(Sin \ j) is maximized. Remove j from Sin

and add it to Sout.
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The computational complexity in backward selection is equivalent to the forward
selection, but the search paths are in general different. In section 5.1 the experi-
mental difference between the forward and backward search is briefly discussed.

Probability based search An alternative to the forward and backward searches
is to order the variables according to their probability, and then choose some suitable
number of variables. Recall that the Median model presented in section 3.4 is defined
to include all the variables that have marginal probability of 0.5 or more. However,
one can use marginal probabilities only for sorting the variables, and then decide the
number of variables by maximizing the utility estimate. One could expect that the
selection induced bias would be smaller with this type of approach compared to the
forward and backward searches, because the number of models under comparison is
smaller (only p models are compared). However, ordering the variables accoring to
their probabilities introduces selection bias because the order is already fitted to the
data. The experimental results for probability based sorting in relation to forward
and backward searches are briefly considered in section 5.

Typically the marginal probabilities of the different variables are estimated by
sampling from the model space and estimating the relative probabilities of the dif-
ferent models (that is, the different variable combinations). After this it is straight-
forward to estimate the marginal probability of a particular variable by summing up
the probabilities of the models that include this variable. Section 4.2 discusses how
the probabilities of the different models are estimated via sampling based methods.

4.2 Sampling the model space

Several methods for sampling between the different variable combinations have been
proposed, mainly for the linear and generalized linear model (George and McCulloch,
1993, 1997; Kuo and Mallick, 1998; Dellaportas et al., 2000). These methods sample
the different variable combinations by setting a spike-and-slab prior (section 2.2.2)
for each input weight. The spike-and-slab assumption is equivalent to formulating
the posterior using the different variable combinations

p(θ | D) =
∑
γ

p(θγ ,γ | D) =
∑
γ

p(θγ | D,γ)p(γ | D), (101)

where γ = (γ1, . . . , γp) denotes the variable combination so that γi = 1 if variable
i is in the model and γi = 0 otherwise. In the above formula the summation runs
over all the different variable combinations γ, and the notation θγ emphasizes that
the parameter values depend on the variable combination. From the latter form of
(101) one can see that the full posterior can be written as a mixture of the individual
model posteriors each weighted by the corresponding posterior probability p(γ | D).
The different proposed methods are designed to sample the distribution (101) in
various ways. All the different approaches are not discussed here, see instead the
study by O’Hara and Sillanpää (2009) for a review.

Let us, however, discuss a general method called reversible jump Markov Chain
Monte Carlo (RJMCMC) (Green, 1995) which can be used to sample from and
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arbitrary mixture of individual model posteriors

p(θ | D) =
∑
Mk

p(θk | D,Mk)p(Mk | D) . (102)

RJMCMC samples the parameters of the different models such that each model is
sampled according to its probability. In other words, the chain travels randomly
from model to another such that the more probable models are visited more often
and therefore also most of the samples are from these models. In practice, if there
are a huge number of different models, then only models with considerable posterior
probability are sampled and models with very small probability may not be visited
at all.

Since the different models have in general different number of parameters, one
must introduce an auxiliary variable u = (u1,u2) that does the dimension matching
between any two models. The algorithm can be summarized as follows:

1. Let the current state be (M1,θ1), that is, model M1 with parameters θ1. A
jump to another model M2 is proposed with probability J12 and with proba-
bility 1− J12 an MCMC jump within the current model is taken.

2. If a jump to model M2 is proposed, generate the associated auxiliary variable
from proposal density as u1 ∼ q(u1 | θ1,M1,M2) and calculate the parameters
of the proposed model as (θ2,u2) = h12(θ1,u1). Here h12 is an invertible
vector valued function that defines the transformation between the different
parameter spaces.

3. Define the ratio

r =
p(D | θ2,M2) p(θ2 |M2) p(M2) J12 q(u2 | θ2,M2,M1)

p(D | θ1,M1) p(θ1 |M1) p(M1) J21 q(u1 | θ1,M1,M2)

∣∣∣∣∂h12(θ1,u1)

∂(θ1,u1)

∣∣∣∣
and accept the new sample with probability α = min(1, r). The last factor in
r is the determinant of the Jacobian matrix of h12.

The above presents the algorithm in its general form. For sampling between the
different input variable combinations, one can simplify the above expression for the
acceptance probability. Let the current state be γ = (γ1, . . . , γp). Propose to change
the state of a randomly selected bit γk with some probability, for example 0.5. If a
new input k is being added, one can set the new parameters as θ2 = (θ1,u1), where
u1 is the parameter corresponding to the new input, for example the associated
weight u1 = wk in case of the linear model. In this case there is no variable u2,
the determinant of the Jacobian will be 1 (because the transformation is identity)
and J12 = J21. Moreover, using the conditional prior as the proposal distribution
q(u1 | θ1,M1,M2) = p(u1 | θ1,M2), the prior terms cancel out, and the acceptance
probability simplifies to

α =

(
1,
p(D | θ2,M2) p(M2)

p(D | θ1,M1) p(M1)

)
.
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On the hand, if an input is being removed, one sets (θ2,u2) = θ1 where u2 is the
parameter corresponding to the removed variable. In this case one does not have
u1 and hence there is no need to generate any sample. All the other things stay the
same, and the acceptance probability will be given by the above formula.

As presented above, the calculation of the jumping probability between the dif-
ferent variable combinations involves only the evaluation of the likelihood function
and the prior probabilities of the models. The sampling from the conditional priors
is also straightforward if the priors are of simple form such as Gaussian. The advan-
tages of RJMCMC are its applicability to different types of models and a relatively
easy implementation. It is also typically quite fast even for many variables. How-
ever, for a large number of input variables, one must typically run very long chains
for a good mixing between different combinations. This is true especially if only a
single input variable is being set on or off at a time. Discussion about the properties
of RJMCMC in relation to other sampling methods for linear models can be found
from the review by O’Hara and Sillanpää (2009).

4.3 Priors on the model space

The sampling of different variable combinations involves setting prior probabilities
for each of the combinations. The easiest approach would be to use the uninformative
prior p(γ) = 1/2p ∝ 1 giving equal weight for all the models. This approach has
the problem that, even though being uninformative with respect to the variable
combination, it is quite informative about the number of variables included in the
model. This can be seen by writing the prior in the form

p(γ | π) = πk(1− π)p−k, (103)

where k is the number of included variables (number of nonzeros in γ) and π = 0.5
denotes the probability of including a single variable. The total probability of having
k variables in the model is then the sum of all the models of size k

p(k | π) =

(
p

k

)
πk(1− π)p−k, (104)

which is a binomial distribution. Because the binomial distribution has most of
its mass around k = πp = 0.5p, this prior favors models having about half of the
variables. In other words, although all the models are equally probable, it is likely
that a randomly chosen model would have about 0.5p variables simply because there
are many more such combinations than any other. This prior is illustrated in figure
4 (black dots) when the number of variables is p = 100.

Typically in variable selection problems one would like to favor smaller models
to incorporate the prior knowledge of possibly irrelevant variables. This can be done
by adjusting π and fixing it to a smaller value. For example π = 0.2 would then
favor models having about 20% of the variables (figure 4, blue dots). However, this
requires a careful estimation of π because the prior is still quite informative about
the model size. An alternative and more flexible approach is to set a hyperprior for
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Figure 4: Different priors for the number of variables k when the prior for variable
combination γ is p(γ) = πk(1− π)p−k and the total number of variables is p = 100.
The ”uninformative” prior π = 0.5 is actually quite informative with respect to the
model size.

π and integrate over it. A convenient choice is the Beta distribution

p(π) = Beta (α, β) =
1

B(α, β)
πα−1(1− π)πβ−1, (105)

where B(α, β) is the normalization constant, called the Beta-function

B(α, β) =

∫ 1

0

πα−1(1− π)πβ−1dπ . (106)

This yields

p(γ) =

∫ 1

0

p(γ, π)dπ =

∫ 1

0

p(γ | π)p(π)dπ =
B(α + k, β + p− k)

B(α, β)
.

The prior for model size becomes then

p(k) =

(
p

k

)
B(α + k, β + p− k)

B(α, β)
, (107)

which is called the Beta-binomial distribution. One can choose the hyperparameters
α and β by plotting (107) for several values of α and β and then choosing the
combination that best reflects the prior beliefs of the model size. Figure 4 shows
this prior when (α, β) = (2, 4) and (α, β) = (2, 10). As can be seen, the Beta-
binomial allows much more flexible distribution for model size and this approach
can be useful when the information about the ”correct” model size is vague.



38

5 Numerical experiments
This section experiments with the model selection methods presented in section
3. The first example in section 5.1 consist of simulated data for linear regression.
Simulated data is convenient as it allows an arbitrary adjustment of the problem size
and especially the ratio between the number of variables and the training set size.
These experiments will illustrate the main points of this thesis. The other example
in section 5.2 considers a binary classification problem with a real world dataset.
This will serve as a realistic example of a challenging variable selection problem in
practice and will further confirm the conclusions from section 5.1.

5.1 Simulated data

To get an idea of how the different selection methods perform for different data
configurations, simulated datasets were generated for different training set sizes n,
total number of input variables p and level of correlations ρ between the variables.
The data is distributed as follows

x ∼ N (0,R) , R ∈ Rp×p

y | x ∼ N
(
wTx, σ2

)
, σ2 = 1

where the covariance matrix R is block diagonal consisting of blocks R1, . . . ,Rq ∈
R5×5. The elements in the blocks are defined as

[Rk]ij =

{
1, i = j

ρ, i 6= j .

In other words, the input variables are divided into q groups of 5 variables. Each
variable has a unit variance and is correlated with other variables in the same group
with coefficient ρ but uncorrelated with variables in the other groups. The number
of groups q depends on the total amount of variables p which is varied. The true
weights w = (w1, . . . , wp) for the inputs are defined as

wi =

{
w0, i = 1, . . . , 15

0, otherwise .

In other words, the variables in the first three groups have equal nonzero weight w0,
and the rest of the variables are irrelevant. Now the output variable has variance
Var [y] = wTRw + σ2 which depends on R and therefore on ρ. To get comparable
results with different values of ρ, the amount of variance in y explained by the
predictors is fixed as wTRw/Var [y] = 0.8. For ρ = 0, 0.5, 0.9 this is satisfied by
setting approximately w0 = 0.52, 0.30, 0.24 respectively.

For a fixed variable combination, the model specification is

y | x,w, σ2 ∼ N
(
wTx, σ2

)
w | σ2, τ 2 ∼ N

(
0, τ 2σ2I

)
σ2 ∼ Inv-Gamma

(
0.5, 0.52

)
τ 2 ∼ Gamma

(
0.25, 42

)
.
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Figure 5: Simulated data: Priors on the number of input variables when the total
number of variables varies p = 20, 50, 100. The true number of variables (15) in the
data generating distribution is marked by the grey line.

For a fixed prior variance for the weights τ 2 this is the normal linear model with
conjugate prior discussed in section 2.2.1. Now τ 2 is handled as an unknown and it
is given a relatively uninformative prior. For submodels the integration over τ 2 is
carried out using the grid approximation as explained in section 2.2.1. The intercept
term is handled by adding a vector of ones to the design matrix X and it is given
the same prior as the other weights. For notational convenience, the binary vector
γ = (γ1, . . . , γp) denoting which of the variables are included in the model is omitted
in the above formulas. The prior is the same for each submodel γ. The reference
model is constructed as the Bayesian model average from the submodels using the
reversible jump MCMC as discussed in section 4.2, which corresponds to setting the
spike-and-slab prior for the full model. In the RJMCMC algorithm, the samples
from the posteriors of the submodels (15) are easily drawn consecutively by first
sampling τ 2, then σ2 given τ 2, and finally w given σ2. The prior for the number
of variables is set to be a Beta-binomial distribution (section 4.3) with parameters
α and β varying according to the total number of variables. The exact values of α
and β will be discussed shortly.

The experiments were repeated varying the training set size n = 20, 50, 100, the
total number of variables p = 20, 50, 100 and the correlation coefficient ρ = 0, 0.5, 0.9.
Given that the true number of relevant variables is 15, the cases p = 20 and p = 100
correspond to relatively dense and sparse problems (ratio of completely irrelevant
variables is 25% and 85%, respectively). Some of the settings also have less training
points than variables corresponding to ”large p, small n” -problems. For different
problem sizes p = 20, 50, 100, the hyperparameters adjusting the prior on the number
of variables were set to (α, β) = (10, 5), (7, 20), (5, 35) respectively. These priors are
plotted in figure 5. For each combination of n, p and ρ, the variable selection was
performed 100 times for different data realizations with each method listed in table
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Abbreviation Method

LOO-CV Leave-one-out cross validation maximization (eq. (61))
WAIC WAIC maximization (eq. (71))
DIC DIC maximization (eq. (68))
L-CRIT L-criterion minimization (eq. (75))
LQ Lq-criterion minimization (eq. (76))
LGG LGG-criterion minimization with k = 1 (eq. (78))
MAP Maximum a posteriori model (estimated from RJMCMC) (eq. (94))
Median Median model (estimated from RJMCMC) (eq. (99))
Projection Projection of BMA to submodels, smallest model having 95% ex-

planatory power (eq. (87) and (88))
Ref-KL Posterior predictive discrepancy minimization from BMA (eq. (83))
Ref-KL-CV CV-predictive discrepancy minimization from BMA, 10-fold-CV

(eq. (84))

Table 2: Compared variable selection methods for simulated experiments. The
methods are discussed in section 3.

2, and then the performance of the selected models were tested on independent test
set of size nt = 1000. As a proxy of the generalization performance, the mean log
predictive density (MLPD) was used.

Figure 6 shows the average number of selected variables (6a) and the generaliza-
tion performance of the selected models in each data setting in comparison to the
BMA (6b). In 6b zero indicates the same predictive ability as the BMA and negative
values worse. A striking observation is that when n ≤ p many of the methods per-
form poorly and choose overfitted models with bad predictive performance, in some
settings clearly worse than the empty model (the colored dotted lines). This holds
especially for LOO-CV, WAIC, DIC, L-CRIT, LQ and LGG, and the conclusion
stays unchanged for all the levels of correlation between the variables (blue, red and
green circles), albeit the high dependency between the variables seems to reduce the
effect. These methods choose models with predictive performance close to BMA
only when p < n. The observed behaviour is caused by the selection induced bias,
which – due to scarce data and therefore high variance in the utility estimates –
leads to selecting overfitted models as discussed in section 3.5. MAP and Median
models perform better, but also these choose models with suboptimal predictive
performance in some of the settings, for instance when p = 50 and n = 50. Over-
all, the reference methods Ref-KL, Ref-KL-CV and the Projection seem to perform
best often choosing models with predictive performance close to BMA, but in some
cases they are also choosing more variables than the other methods. The Projection
seems the most effective in reducing the number of variables but still maintaining
the predictive ability. However, for all the reference methods (Ref-KL, Ref-KL-CV,
Projection) the number of chosen variables and performance of the chosen submod-
els are highly sensitive to the applied selection rule as will be discussed shortly (the
selection rules used in these experiments are listed in table 2).
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To get more insight to the problem let us now study the setting p = 100, ρ = 0.5
more closely. This should roughly correspond to a problem expected in reality; a
moderate number of predictors out of which many are irrelevant, and some of the
variables are moderately correlated with each other. Figure 7 shows the averaged
forward search paths for LOO-CV, Ref-KL, Ref-KL-CV and Projection for training
set sizes n = 20, 50, 100, 200. The solid black line shows the test utilities, red dashed
the CV-utilities within the data used for selection, and the horizontal dashed line
the test utility of the BMA. The search paths for LOO-CV (top row) demonstrate
the overfitting due to the selection induced bias; starting from the empty model and
adding variables one at a time one finds models that have high CV-utility but much
worse test utility. In other words, the performance of the models at the search path
is dramatically overestimated. Note, however, that for the empty model and model
with all the variables the CV-utility and test utility are the same. If one is choosing
the model based on the CV-maximum, this leads to choosing a model with a bad
predictive performance if the data is scarce. The selection induced bias decreases
when the size of the training set grows, but the effect is still visible for n = 200.
It is noted that the behaviour is very similar also for the other methods based on
sample reuse (WAIC, DIC, L-CRIT, LQ, LGG), but for convenience only results for
LOO-CV are shown here for demonstration.

The reference methods show better performance as can be seen from the more
desirable test utilities along the search paths. For the reference methods, the test
utility curves also converge faster to a sharp elbow at the true number of variables
(15). The projection works very well when n = 100 or n = 200, quite well for
n = 50, but breaks down when n = 20. However, when n = 20 none of the methods
is able to remove variables without significantly compromising the predictive ability.
Note that due to the technical issues discussed in section 3.3.2 the projection is
defined only when the number of parameters in the model is less than the number
of datapoints. Therefore the utility curves can be calculated only up to n variables.
The reason why both the CV-utility and the test utility decrease for Projection when
the number of variables k ≈ n is that the associated KL-divergence shrunks then to
(almost) zero regardless of the variable combination, and there is no guarantee of
any generalization of the projected samples. In other words, given enough variables,
one can project to completely irrelevant variables with no predictive ability but the
associated KL-divergence is equal to zero. Yet another important observation from
figure 7 is that the CV-utility is a biased estimate of the true predictive ability for
the chosen models also when the search is performed using the reference methods
or projection. Thus, this example demonstrates that even if one uses the reference
predictive approach or projection for searching promising candidate models, the
cross validation utility is in general an unreliable indicator about a suitable stopping
point at the search path.

Figure 8 shows the estimated relative explanatory powers (eq. (88)) and the
test utilities for the reference methods for the same problem. The test utilities
are shown with respect to the BMA because the BMA obtains different test utility
when the training set size is varied. The figure demonstrates that it may be very
difficult to decide the number of chosen variables based on the estimated explanatory
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power. This is because the correspondence between the explanatory power and the
predictive ability may be very different for different sizes of the dataset. For large
enough datasets (n = 100, 200) the correspondence may be good enough, and the
number of selected variables could be chosen based on, for example, finding the
elbow of the explanatory power curve. However, for smaller datasets this may
work poorly. For instance, for Ref-KL the explanatory power curves seem quite
similar for all the different training set sizes but the test utilities are markedly
different. Especially for n = 20 the estimated explanatory power is a bad indicator
of the predictive performance, and this holds also for Ref-KL-CV and Projection.
Thus in practice there is no guarantee for the submodel having a good predictive
performance even if the estimated explanatory power is close to one. The reason
for this behaviour is again due to the selection induced bias. When the models
are searched by minimizing the discrepancy-estimate, the obtained estimates are
no longer unbiased for the models on the search path, and therefore they may be
bad indicators of the performance of the submodels. Another difficulty with the
explanatory power for Ref-KL and Ref-KL-CV is that none of the submodels has
explanatory power equal to 100%, because for all the submodels the discrepancy
from the BMA is nonzero. It seems that especially for Ref-KL-CV the maximum
explanatory power might be as low as 80%, so it is problematic to decide whether
this corresponds to acceptable discrepancy from the reference model or not (and if
not, what should one then do?). Projection does not have this problem because the
zero discrepancy is always obtained by allowing enough variables, but as is seen, the
smaller discrepancy does not necessarily mean better predictions.

For completeness, also the effect of the used search strategy and the selection
of MAP or Median model was considered for this same problem. The forward
and backward searches were compared along with sorting the variables according
to their estimated marginal probabilities. Figure 9 shows the results for LOO-
CV and Ref-KL-CV. One can see that ordering the variables according to their
probabilities reduces the overfitting effect with LOO-CV markedly. This makes
sense; when the variables are sorted based on their probabilities one is comparing
only p models, whereas in forward and backward searches the number of compared
models is p(p+1)

2
. The fewer model comparisons give smaller chance for the selection

procedure to overfit to the noise in the utility estimates. However, sorting the
variables according to their probabilities introduces also selection bias which can
be seen from the drop in the test utility curve after a certain amount of variables
have been added. Minimizing the KL-divergence from the BMA gives even better
search paths when n = 50, 100, 200, although the performance is slightly inferior in
the case n = 20. The results also suggest that the backward search works somewhat
better in this example compared to the forward search. This seemed to be the
case also for other combinations of p and n even though the results are not shown.
Figure 9 also suggests that selecting the MAP or Median model may lead to inferior
selection. For instance, the Median model seems to choose too small models with
suboptimal predictive ability especially when n = 20 or n = 50. On the other hand
allowing the inclusion of variables with smaller probability would not necessarily
improve the selection because the predictive ability may even decrease when more
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variables are added (note the shape of the green curve). The MAP model seems
to have even worse predictive performance. It is also noted that for a moderate
number of variables the estimation of the MAP model from the RJMCMC samples
is problematic, because the number of visits in even the most probable models in
the MCMC chains is typically low, which may lead to highly varying and unreliable
results.

To shortly summarize these experiments, one can conclude that the ”blind” max-
imization of a utility estimate such as LOO-CV or WAIC may lead to bad results
due to the selection induced bias if the data is scarce and the number of models
being compared is large. The selection bias reduces when the size of the dataset
becomes larger and many of the methods are likely to choose models with good
predictive performance (figure 6). The reference predictive methods and the pro-
jection seem to be less sensitive to the selection bias being therefore able to find
better models. Especially the projection approach shows desirable behaviour even
for quite small datasets (figure 7). However, also for the reference methods the esti-
mated discrepancy from the reference model may be an unreliable indicator of the
submodel’s predictive performance. Thus the results may be highly sensitive to the
actual selection rule (e.g. 95% explanatory power or minimum discrepancy). In fact,
based on the figure 8, the obtained results may be more dependent on the selection
rule than to which of these methods (Ref-KL, Ref-KL-CV, Projection) is used for
searching the models.
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(a) Average number of selected variables. The true number of variables (15) is marked by the grey
line.

−0.8 −0.4 0

p = 20

n = 20

−3 −1.5 0

p = 50

−4 −2 0

LOO−CV
WAIC
DIC
L−CRIT
LQ
LGG
MAP
Median
Projection
Ref−KL
Ref−KL−CV

p = 100

−0.8 −0.4 0

n = 50

−0.8 −0.4 0 −4 −2 0

LOO−CV
WAIC
DIC
L−CRIT
LQ
LGG
MAP
Median
Projection
Ref−KL
Ref−KL−CV

−0.8 −0.4 0

n = 100

 

 

ρ = 0

ρ = 0.5

ρ = 0.9

−0.8 −0.4 0 −1.2 −0.6 0

LOO−CV
WAIC
DIC
L−CRIT
LQ
LGG
MAP
Median
Projection
Ref−KL
Ref−KL−CV

(b) Mean log predictive densities (MLPD) of the selected models in comparison to the BMA; zero
means the same performance as BMA, negative values worse than BMA. The dotted lines denote
the performance of the empty model (intercept term only) in comparison to BMA for different levels
of correlation (note that the high correlation between the variables improves the fitting of the BMA
and therefore the difference to the empty model increases).

Figure 6: Simulated data: Number of chosen variables (6a) and predictive perfor-
mance of the chosen models (6b) on average. The results are divided into subfigures
according to the total number of variables p = 20, 50, 100 and training set size
n = 20, 50, 100. Colours mark the correlations between the variables in the same
group ρ = 0 (blue), ρ = 0.5 (red), ρ = 0.9 (green). The search through model
space was done using forward selection and the results are averaged over 100 data
realizations. See the text for more precise description of the data.
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Figure 7: Simulated data: Average search paths for LOO-CV, Ref-KL, Ref-KL-
CV and Projection when the total number of variables is p = 100, within group
correlation ρ = 0.5 and size of the training dataset varies. Dashed red shows the
cross validation MLPD and solid black the test MLPD for the submodels along the
forward search path. Dashed black denotes the test MLPD of the BMA. Note that
the most extreme values are limited outside the figures for convenience (for instance
when n = 20). The true number of variables (15) is denoted by the grey vertical
line. The results are averaged over 100 data realizations.
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Figure 8: Simulated data: Estimated relative explanatory power (eq. (88)) of the
submodels with respect to the BMA (left column), and corresponding predictive
performances compared to the BMA (right column) along the forward search paths
with different training set sizes n = 20, 50, 100, 200. The circles denote the average
number of selected variables and obtained test utility with 95% credible interval for
the actually selected submodels. For Projection, the selection rule was to choose the
smallest model with 95% explanatory power, and model with maximum explanatory
power for Ref-KL and Ref-KL-CV (the maximum explanatory power means the same
as the minimum discrepancy). Total number of variables is p = 100, within group
correlation ρ = 0.5 and the true number of variables is 15 (the grey line). The
results are averaged over 100 data realizations.



47

0 25 50 75 100
−5.5

−4.5

−3.5

−2.5

LOO−CV

n = 20

 

 

forward

backward

probability based

Median

MAP

0 25 50 75 100
−2.6

−2.4

−2.2

−2

    Ref−KL−CV

0 25 50 75 100
−5

−4

−3

−2

n = 50

0 25 50 75 100
−2.4

−2.2

−2

−1.8

0 25 50 75 100
−3

−2.5

−2

−1.5

n = 100

0 25 50 75 100
−2.2

−2

−1.8

−1.6

0 25 50 75 100
−2.3

−2

−1.7

−1.4

n = 200

0 25 50 75 100
−2.3

−2

−1.7

−1.4

Figure 9: Simulated data: Comparison of different search strategies for LOO-CV
(left column) and Ref-KL-CV (right column); the curves show the test MLPD for
forward (blue) and backward searches (red), and for sorting the variables according
to their probabilities (green). Note the different scales on the vertical axes, and that
for each row the green curves are the same in both columns. The circles denote
the average number of selected variables and obtained test utility with 95% credible
interval for the actually selected models (LOO-CV-max for left and maximum ex-
planatory power with respect to the BMA for right column). The average size and
performance of the MAP and Median models are also shown for comparison. Total
number of variables is p = 100, within group correlation ρ = 0.5 and true number
of variables is 15 (grey line). The results are averaged over 100 data realizations.
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5.2 Ovarian cancer data

The second example deals with binary classification. The dataset is the ovarian
cancer microarray data by Schummer et al. (1999). The data covers measurements
of 54 patients out of whom 30 had an ovarian tumour and 24 were healthy. Each
patient is associated by an input vector of 1536 features derived from the patient’s
cDNA microarray. The dataset has been considered before at least by Li et al. (2002)
and Hernández-Lobato et al. (2010) and can be found at http://www.dcs.gla.ac.
uk/~srogers/lpd/lpd.html. The dataset did not require any further preprocessing
(Li et al., 2002).

The applied model was the logistic regression model (39) with a relatively vague
prior for the weights

p(w) = N
(
w | 0, τ 2I

)
τ 2 = 10 .

The intercept term was handled by adding a vector of ones to the original data
matrix X, and it was given the same prior as all the other weights. The reference
model was again constructed as a Bayesian model average using RJMCMC. Given
that the number of variables is much larger than the number of training instances,
an informative prior was placed for the number of variables. The used prior was
the Beta-binomial with parameters (α, β) = (1, 1200) which restricts the number
of variables to less or equal to 10 with probability 99.8%. The prior and posterior
probabilities for the number of variables are shown in figure 10. Also the marginal
posterior probabilities for each variable are shown. One can see that under this prior,
most likely the number of variables is around 1–4, but at least 6 of the variables
have nonnegligible inclusion probability.

The variable selection was then carried out by performing forward search up to
15 variables using the same methods as for the simulated experiments in section 5.1
(listed in table 2), except that the methods based on the squared error (L-, Lq and
LGG-criteria) were left out as unsuitable for the classification model. To estimate the
generalization performance of the selected models and the reference model, leave-
one-out cross validation was used. In other words, the selection and reference model
construction was repeated n = 54 times each time using 53 training observations
and then testing the performance of the models with the point outside the data used
for selection. The results obtained this way will be referred to as the out-of-sample
estimates. To reduce the computational burden, Laplace approximation was used
for the submodels (except for the projected submodels, which use the projected
posterior samples of the BMA model). For the reference methods (Ref-KL, Ref-
KL-CV, Projection), the selection rule was chosen to be the smallest model having
95% explanatory power. The sensitivity of the results with respect to this selection
rule will be discussed later on. MAP and Median models were estimated from the
RJMCMC-samples, and for the other methods (LOO-CV, WAIC, DIC) the model
with the highest utility estimate was chosen.

The performance of the BMA, and the chosen submodels are listed in table 3.
BMA obtains an estimated classification accuracy of about 94% which is quite sim-

http://www.dcs.gla.ac.uk/~srogers/lpd/lpd.html
http://www.dcs.gla.ac.uk/~srogers/lpd/lpd.html
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ilar to the MCMC result by Hernández-Lobato et al. (2010), although they used
the probit model and a slightly different prior. Roughly speaking, one can conclude
that Ref-KL and Projection work well choosing models with predictive performance
comparable to BMA. Ref-KL-CV and MAP perform the second best, and the other
methods work somewhat poorer. Median model breaks down in this example, be-
cause in all except one datasplit none of the variables had marginal probability of
0.5 or more, and thus Median model is practically the same as the empty model
(model having only the intercept term). According to these results it seems that
Ref-KL-CV performs poorer than Ref-KL and Projection, but the results are highly
dependent on the applied selection rule as will be discussed shortly.

To get more insight to the selection process, let us consider the forward search
paths for each of the methods. Figures 11 and 12 show the results for MLPD and
classification accuracies, respectively. The figures again demonstrate the effect of
the selection induced bias. LOO-CV, WAIC and DIC identify variable combinations
that fit very well to the training data in cross validation sense (dashed line) but have
suboptimal predictive performance on independent data (dots). More specifically,
these methods identify variable combinations that have cross validation classification
accuracy close or equal to 100% within the data used for selection, but out-of-sample
accuracy of about 80–90%. Note also the high variance in the estimated out-of-
sample performance of the selected models, which is caused by high variability in
the quality of the selected models in the different datasplits. Ref-KL, Ref-KL-
CV and Projection seem to perform somewhat better especially in terms of the
estimated out-of-sample MLPD. All these methods are able to find models of only
2 variables that have similar out-of-sample MLPD than the BMA. Note also that
these methods choose models that have quite similar within and out-of-sample fit
(the dashed line coincides with the dots) indicating that the chosen models are not
overfitted. Ref-KL seems to find even a bit better models than the BMA in terms
of the out-of-sample MLPD but also for these models the out-of-sample accuracies
are slightly worse or equal to the BMA. It must be noted, however, that the point
estimates for the classification accuracies may be somewhat misleading, because the
dataset consists of only 54 points and thus even a single misclassification reduces
the accuracy estimate by almost 2 percentage points. Furthermore, some of the
points correctly classified by the BMA and misclassified by the submodels had class
probabilities close to 50% describing the uncertainty in the classification. Thus
in terms of the classification accuracy the differences between the BMA and the
submodels may appear larger than they actually are.

Also this example demonstrates that the performance of the model actually se-
lected might be sensitive to the selection rule. Consider the relative explanatory
power curves for the reference methods plotted in figure 11. For instance, when
searching variables using Ref-KL the relative explanatory power increases mono-
tonically and reaches value close to one with 15 variables. However, the maximum
out-of-sample MLPD is obtained around 3 variables after which the performance
starts to decrease slowly. This indicates that more explanatory power (with respect
to the reference model) does not necessarily imply better predictions. Also for Ref-
KL-CV the submodels reach out-of-sample MLPD indistinguishable from the BMA
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with only 2 variables, but for this model size the estimated explanatory power is
clearly less than 1. These ideas are illustrated even better in figure 13. This figure
shows that for Ref-KL and Projection, a good stopping rule for this data would be
about 95% relative explanatory power with respect to the reference model, but for
Ref-KL-CV the optimal selection rule would be somewhere between 80–85%. For
Ref-KL-CV after this is reached, the predictive ability actually starts to decrease
when more variables are added. For this reason, the results in table 3 are mislead-
ing when they might suggest that Ref-KL-CV chooses larger and worse models than
Ref-KL and Projection; the optimal selection rules for the different reference meth-
ods are just different (at least for this dataset). Nevertheless, it is worth mentioning
that any of the threshold values over 80% for any of the reference methods would
lead to selecting a better model than the maximization of LOO-CV, WAIC or DIC.

To summarize, the maximization of the utility estimate based on LOO-CV,
WAIC or DIC leads to suboptimal results as could be expected given the results
in section 5.1. MAP model works better, but Median model fails. Even better
results than MAP model are obtained with the reference methods, although also
these are somewhat sensitive to the selection rule. In practice the suggested ap-
proach would be to perform the cross validation outside the selection process (as
was done here), and decide the selection rule based on those results (like figures 11–
13). It is relevant to point out that even though the actual selection decision would
be based on the outer cross validation, the results here suggest that it is advisable
to do the model searching using one of the reference methods (rather than LOO-
CV, WAIC or DIC), because these seem to find better models with less variability
in the predictive performance (figures 11–12). However, the results are not quite
conclusive for ranking between the different reference methods, and the results here
call for more research on this topic.
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Model MLPD Classification % # of variables on avg.

BMA −0.245 (−0.337 . . .−0.167) 94.4 (87.6 . . . 98.8) –
Ref-KL −0.206 (−0.332 . . .−0.120) 92.6 (84.9 . . . 98.1) 3.15
Ref-KL-CV −0.274 (−0.381 . . .−0.181) 87.0 (77.9 . . . 94.7) 6.70
Projection −0.240 (−0.354 . . .−0.158) 90.7 (82.4 . . . 97.0) 2.18
MAP −0.283 (−0.422 . . .−0.168) 88.9 (79.9 . . . 95.9) 1.00
Median −0.696 (−0.725 . . .−0.662) 57.4 (45.8 . . . 71.4) 0.019
LOO-CV −0.341 (−0.535 . . .−0.186) 83.3 (73.5 . . . 92.3) 4.13
WAIC −0.420 (−0.655 . . .−0.227) 81.5 (71.1 . . . 91.0) 3.37
DIC −0.377 (−0.614 . . .−0.195) 83.3 (73.0 . . . 92.2) 3.19

Table 3: Ovarian data: Estimated out-of-sample mean log predictive densities
(MLPD) and classification accuracies for the BMA and selected submodels. For
the selection methods also the average number of selected variables are shown. The
values in the parenthesis give the 95% credible intervals estimated using the Bayesian
bootstrap. The out-of-sample performances were estimated using leave-one-out cross
validation (the selection and BMA construction was repeated n = 54 times and the
performance was evaluated with the single point not in the training set).
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Figure 10: Ovarian data: Prior and posterior probabilities for different number
of variables (top) and marginal posterior probabilities for each variable (bottom).
Posterior probabilities for different number of variables are shown with 95%-credible
intervals, which are estimated from variability between different RJMCMC-chains
using Bayesian bootstrap. The results are calculated using the full dataset.
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Figure 11: Ovarian data: Estimated mean log predictive densities (MLPD) for
different number of variables on average along the forward search paths. The out-
of-sample MLPDs were estimated using leave-one-out cross validation so that the
search was repeated n = 54 times each time using 53 points and then measuring the
predictive ability of the models with the point that was not used for selection. The
results are given with 95% credible intervals calculated using Bayesian bootstrap.
CV-MLPD denotes the average cross validation MLPD within those 53 points that
were used for selection. The solid black denotes the out-of-sample performance of the
BMA. For reference methods and projection also the average relative explanatory
power (eq. (88)) for different number of variables over the n = 54 selections is shown
on the right y-axis.
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Figure 12: Ovarian data: The estimated CV and out-of-sample classification accu-
racies on average along the forward search paths calculated similarly as in figure
11. The solid black shows the estimated out-of-sample classification accuracy of the
BMA. Green lines show the relative explanatory power for the reference methods.
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Figure 13: Ovarian data: Out-of-sample MLPD, classification accuracy and average
number of selected variables for the reference methods as a function of the estimated
explanatory power. In other words, if the selection rule was to choose the smallest
model with the given explanatory power, the curves show what would be the corre-
sponding average number of selected variables and estimates for the out-of-sample
MLPD and classification accuracy. In the top and middle plots the dashed black
line denotes the out-of-sample performance of the BMA.
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6 Conclusions and discussion
This thesis has discussed Bayesian variable selection and model selection in general.
The thesis has reviewed many of the proposed model selection methods in the wide
literature and demonstrated their use in practical variable selection problems for lin-
ear regression and binary classification. The thesis has also discussed and illustrated
in detail the selection induced bias, which is an important concept concerning the
variable selection.

As discussed in section 3, there are methods that give an almost unbiased esti-
mate of the generalization performance for a given model, but due to the selection
induced bias, these methods may not necessarily work well for model selection. The
selection induced bias means choosing a model with a nonoptimal generalization
performance because its ability is overestimated just by chance. It is important to
note that this may happen even if the utility estimate for a single model is com-
pletely unbiased. The probability of selecting a nonoptimal model increases when
the number of considered models is large and the variance in the utility estimates
is high. The variance in the utility estimates is different for different methods, but
generally increases when the number of training observations becomes small.

The numerical experiments suggest that for small datasets the selection bias may
hinder the variable selection considerably. This happens because the variance in the
utility estimates is then high and the number of models under comparison becomes
quickly very large even for a relatively small number of variables. At worst, it may
happen that one is not only overestimating the ability of the chosen model but also
finding a variable combination with no predictive ability at all. According to the
experiments, it seems that the reference model based variable selection (reference
predictive approach and projection) is less sensitive to the selection bias than the
methods based on sample reuse, such as cross validation and information criteria.
This is most likely due to smaller variance in the utility estimates. The experiments
suggest also that assessing the marginal probabilities of the different variables and
variable combinations (MAP and Median models) is unreliable in general although
it may yield good results in some cases.

Although the reference predictive and projection approaches seem the most ro-
bust way of searching for good variable combinations, the estimated discrepancy
between the reference model and a submodel is in general an unreliable indicator of
the predictive performance of the submodel. The reason for this is again due to the
selection bias; when the models are searched based on their estimated discrepancy
from the reference model, this estimate is no longer an unbiased estimate of the true
discrepancy for the models on the searchpath. Especially for small datasets, the
estimate may underestimate the true discrepancy considerably. It is important to
note that also the cross validation utility within the data used for selection seems to
give a biased estimate of the true generalization performance even if the searching
is done using the reference methods. For this reason, a more reliable method for
assessing the performance of the models on the search path would be to use cross
validation outside the selection process. This gives a nearly unbiased estimate of
the true performance for the different number of selected variables, and the number
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of included variables could be done using this estimate, although for the ultimately
selected model the estimate would no longer be unbiased.

Finally, although the reference model approach appears the most promising ap-
proach to difficult variable selection problems, the results in this study are insuf-
ficient for making a clear distinction between the different reference approaches as
these methods seemed to behave differently with respect to the applied selection rule.
Therefore the results presented in this thesis call for more understanding about these
methods and their behaviour, preferably also for nonlinear models such as Gaussian
processes.
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