
Mohammad Hovaidi Ardestani

Congestion Control in Information
Centric Networking using Neural
Networks

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo, July 2014

Thesis supervisor:

Prof. Jörg Ott

Thesis instructor:

Ph.D. Pasi Sarolahti

A’’ Aalto University
School of Electrical
Engineering

aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Mohammad Hovaidi Ardestani

Title: Congestion Control in Information Centric Networking using Neural
Networks

Date: July 2014 Language: English Number of pages:11+77

Department of Communications and Networking

Professorship: Networking Technology Code: S-38

Supervisor: Prof. Jörg Ott

Instructor: Ph.D. Pasi Sarolahti

Nowadays, the Internet suffers from several problems that are driving computer
experts to develop the architect of innovative computer networks in the near fu-
ture. Information Centric Networking(ICN) has been designed to address the
Internet issues by replacing the current communication model, which is based on
host names, with a communication model based on content names.
Content Centric Networking (CCN) is a clean slate future network architecture,
and an exemplary model of ICN in shifting the current Internet transport paradigm
by addressing content instead of host locations. In contrast to TCP that applies
a flow-based end-to-end communication model between a pair of hosts, CCN con-
tent distribution session may involve multiple sources and multiple destinations
not identified in advance, making traditional end-to-end approach to congestion
control impossible. Thus, CCN nodes need to apply local measures to detect con-
gestion in advance that can lead to relieve congestion. In IP, the efficiency of
TCP relies on the rapid detection of packet loss through out-of-sequence packet
delivery, however in CCN the packet sequence is not respected and an analogy of
”triple duplicate ACK” to detect loss is not possible therefore, loss of data chunks
because of buffer overflow is considered as a main indicator for congestion.
This thesis proposes a congestion control algorithm based on early detection of
congested links in content-centric networks. The approach accelerates congestion
recovery and can make dramatic decrease in the rate of packet drops and possible
retransmissions. A neural network technique is used to realize this goal to avoid de-
terioration of network throughput. In various network scenarios, we demonstrate
the advantage of early detection of congested links and provide a performance
analysis using ndnSIM simulation environment. Our simulation results show that
the proposed method is efficient and effective in controlling congestion in terms of
applied performance metrics.

Keywords: Information-Centric Networking, Content-Centric Networking,
Congestion Control Algorithms, Neural Networks

iii

Acknowledgments

I would like to convey my sincere appreciation to my supervisor, Professor Jörg Ott,
for his great support and encouragement throughout my master’s thesis research.
I have been amazingly fortunate to have an advisor who gave me the freedom to
explore on my own, and at the same time the wisdom to finish this thesis.

I am also truly grateful and privileged to my instructor Pasi Sarolahti whose en-
couragement, supervision and support from the preliminary to the concluding level
enabled me to develop an understanding of the subject.

I wish to express my gratitude to my family in my motherland, who encouraged me
to continue my education; without them this thesis would not have been possible to
finish.

And to my wife Behnaz, who has given me her unequivocal support for which my
mere expression of thanks likewise does not suffice.

Mohammad Hovaidi Ardestani
Espoo, 01.07.2014

iv

Contents

Abstract ii

Acknowledgments iii

Contents iv

Abbreviations and Acronyms vii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Objectives and Scope . 3
1.3 Contribution of the Thesis . 3
1.4 Outline . 3

2 Internet and CCN overview 5
2.1 Internet overview . 5

2.1.1 Internet Hosts . 5
2.1.2 Routers . 5
2.1.3 Internet Protocol suite . 6

2.2 Content-Centric Networking . 8
2.3 CCN Node Model . 9

2.3.1 Content Store(CS) . 9
2.3.2 Pending Interest Table(PIT) 10
2.3.3 Forwarding Information Base(FIB) 10
2.3.4 Face . 10

2.4 CCN Transport Model . 11
2.4.1 Interest and Data processing 11

2.5 Summary . 12

3 Congestion Control Algorithms 13
3.1 A taxonomy for Congestion Control algorithms 14

3.1.1 Open Loop Control . 14
3.1.2 Closed Loop Control . 15

3.2 Standard TCP Congestion Control Algorithms 16
3.2.1 Slow Start . 16
3.2.2 Congestion Avoidance . 17
3.2.3 Fast Recovery . 17

3.3 Congestion Control in CCN . 18
3.4 Related work . 19
3.5 Summary . 20

v

4 Neural Networks 22
4.1 Artificial and Biological Neural Network 22
4.2 Models of Neurons . 23
4.3 Network Architecture . 26
4.4 Learning Paradigms . 28

4.4.1 Supervised Learning . 28
4.4.2 Unsupervised Learning . 29
4.4.3 Reinforcement learning . 29

4.5 Summary . 30

5 Experimental studies 31
5.1 Neural Network motivation . 31
5.2 Neural network design and environment 32

5.2.1 Training and Testing . 32
5.2.2 Data division . 33

5.3 Simulation Environment . 33
5.3.1 NS-3 based Named Data Networking (NDN) simulator 34
5.3.2 Simulation settings . 34

5.4 Simulation Scenarios . 34
5.5 The dumbbell topology . 35
5.6 Input Parameters . 36

5.6.1 Traffic load . 37
5.6.2 Bandwidth . 39
5.6.3 Latency . 40
5.6.4 Queue length . 41
5.6.5 Content Store size and Caching policies 42
5.6.6 Data popularity . 43
5.6.7 PIT size PIT entry pruning timeout 44
5.6.8 Other settings . 46

5.7 Neural Network results . 46
5.7.1 Back Propagation algorithm 47
5.7.2 Performance Validation . 47
5.7.3 Error histogram . 49
5.7.4 Predictor accuracy . 50
5.7.5 Correlation between Target and Output data 50

5.8 Summary . 54

6 Evaluation 55
6.1 Congestion control algorithm . 55
6.2 Neural Network validation . 57

6.2.1 Validation scenarios . 58
6.2.2 Validation results . 59

6.3 Simulation results . 63
6.3.1 Interest transmission rate . 63
6.3.2 Packet loss rate . 65

vi

6.3.3 Throughput . 67
6.4 Summary . 69

7 Conclusions and Future work 70
7.1 Concluding remarks . 70
7.2 Future work . 70

vii

Abbreviations and Acronyms

ACK Acknowledgement
AIMD Additive Increase Multiplicative Decrease
ANN Artificial Neural Networks
CCN Content-Centric Networking
COMET COntent Mediator architecture for contentaware nET-

works
CS Content Store
DTN Delay Tolerant Networking
DONA A Data-Oriented Network Architecture
ICMP Internet Control Message Protocol
ICP Interest Control Protocol
ICN Information-Centric Networking
IP Internet Protocol
LAN Local Area Network
LMS Least mean square
MAC Media Access Control
MSS Maximum Segment Size
NACK Negative Acknowledgement
NDN Named-Data Networking
NN Neural Networks
PSIRP Publish-Subscribe Internet Routing Paradigm
PURSUIT Publish-Subscribe Internet Technology
RTT Round Trip Time
SAIL Scalable and Adaptive Internet soLutions
TCP Transmission Control Protocol
TRIAD Translating Relaying Internet Architecture integrating Ac-

tive Directories
UDP User Datagram Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator
VoIP Voice over IP
WLAN Wireless Local Area Network
WPAN Wireless Personal Area Network
WSN Wireless Sensor Network

viii

List of Figures

1 Communication between a service requester(Client) and the provider
of a resource or service(Server) via Internet. 6

2 This figure projects data flow in the client-server model. 7
3 Protocol Stack,TCP/IP Vs. CCN. Adopted from [1]. 8
4 CCN packet types [1]. 9
5 Forwarding State in PIT [12]. 10
6 Interest and Data processing in CCN [12]. 11
7 Low-space memory in intermediate nodes is as disadvantageous as

High-Space memory [30]. 13
8 Bottleneck problem in balanced network 14
9 Finite-State machine description of TCP congestion control 18
10 Outline of congestion issue in CCN 19
11 The Connection between Neurons [39]. 22
12 Nonlinear model of a neuron [40] . 24
13 Activation Functions [40] . 24
14 Affine Transformation produced by the presence of a bias [40]. 25
15 A single layer feedforward network with one-way direction of infor-

mation flow [40]. 26
16 A multilayer feedforward network. This is the most common structure

for neural networks [40]. 27
17 Supervised Learning Model [53] . 28
18 Unsupervised Learning Model [53] . 29
19 Reinforcement Learning process [49]. 30
20 The dumbbell topology . 36
21 Number of transmitted Interest packets per second in consumers . . . 38
22 Number of transmitted Interest packets per second in Routers 38
23 Left: Number of Incoming Interests Vs. the number Dropped Inter-

ests of Router 2, Right: Cache Hit ratio of the same router 39
24 Comparing the number of outgoing data packets with the number of

dropped data packets on the bottleneck with constant link capacity . 40
25 Comparing the number of outgoing data packets with the number of

dropped data packets on the bottleneck with variable link capacity . 40
26 Comparing the number of outgoing data packets with the number of

dropped data packets on the bottleneck with variable link delay . . . 41
27 Comparing the number of outgoing data packets with the number of

dropped data packets on the bottleneck with Queue length = 1000
packets . 42

28 Content Store with 1000, 100 and 10 packets size 43
29 Cache Tracer of the scenario with different Interest packets 44
30 Cache Tracer of the scenario with popular data packet 44
31 Comparison between the number of dropped data packets while PIT

size becomes 10 times larger . 45

ix

32 Error development of a training, test, and a validation set. Note
that the Y axis ranges are different; This figure compares MSE of
train, validation, and test data sets of different algorithms separately,
and shows the epoch number at which each particular algorithm has
terminated the learning process. 48

33 Error Histogram . 49
34 Train and Validation . 51
35 Test and All data . 52
36 Regression . 53
37 Shaping Interest rate signalling . 56
38 The Baseline topology . 58
39 The dumbbell topology with three flows on the two ends of bottleneck

link . 58
40 The dumbbell topology with nine flows on the two ends of bottleneck

links . 59
41 measured Error at top, normalized target and output between -1 and

1 at the middle , and error histogram at the bottom when the test
data is gathered from the baseline topology 60

42 measured Error at top, normalized target and output between -1 and
1 at the middle , and error histogram at the bottom when the test
data is gathered from the dumbbell topology with three flows 60

43 measured Error at top, normalized target and output between -1 and
1 at the middle , and error histogram at the bottom when the test
data is gathered from the dumbbell topology with nine flows 61

44 Correlation between target and output values when the test data is
gathered from the baseline topology 62

45 Correlation between target and output values when the test data is
gathered from the dumbbell topology with three flows 62

46 Correlation between target and output values when the test data is
gathered from the dumbbell topology with nine flows 63

47 Outgoing Interest transmission rate comparison of the baseline topol-
ogy with and without congestion control algorithm 64

48 Outgoing Interest transmission rate of the dumbbell topology with
three flows with and without congestion control algorithm 64

49 Outgoing Interest transmission rate of the dumbbell topology with
nine flows with and without congestion control algorithm 65

50 Drop rate Bottleneck comparison of the baseline topology with and
without congestion control algorithm 66

51 Drop rate Bottleneck comparison of the dumbbell topology with three
with and without congestion control algorithm 66

52 Drop rate Bottleneck comparison of the dumbbell topology with nine
with and without congestion control algorithm 67

53 Bottleneck throughput comparison of the baseline topology with and
without congestion control algorithm 68

x

54 Bottleneck throughput comparison of the dumbbell topology with
three flows with and without congestion control algorithm 68

55 Bottleneck throughput comparison of the dumbbell topology with
nine flows with and without congestion control algorithm 69

56 Data packet drop rate on each face of NDN router predicted by the
neural network. The face with 95 percent and the one with 10 percent
probability of data packet drops show in order the worst and the best
possible route for forwarding Interest packets. 71

57 Variable link capacity scenario with four bottlenecks 72

xi

List of Tables

1 Design range for the simulation parameters 35
2 Variable parameters values vs Default values 37
3 Transmission rate for Router 1 . 57

1

1 Introduction

Today’s Internet was designed and created to make connection to scarce and valu-
able mainframe computers in the 1960s and 70s. In this networking architecture,
machines are uniquely located and identified with an Internet protocol address in
order to establish a session between any pair of devices.
In the 50 years since the creation of packet switched networking, computers and
their peripherals have become cheap and pervasive. Moreover, networks users are
more willing to share information rather than their resources and are oblivious to
locations of data providers [1]. In fact, although the focus of computer networking
was resource sharing at the very beginning, the pressure of massive content delivery
has changed data communication over the past decade.
Consequently, network use has dramatically evolved to be dominated by content
distribution and retrieval, whilst the underlying infrastructure is still based on in-
terconnection of hosts by means of their IP addresses. Accessing content and services
requires naming methods including URL and URI, which tie the content to the In-
ternet hosts.
Nowadays, the Internet suffers from several problems that are driving researchers
to develop the innovative computer networks architecture for the future. Security
issues are among the biggest imminent problems facing the Internet. Denial of ser-
vice attack and spam are the most common threats which have tilted the balance
of power in favour of attackers [2]. On the other hand, the current Internet was
designed to make connections between fixed nodes. Thus, locating roaming mo-
bile terminals for call delivery and maintaining their connections regardless of their
points of attachment is another important issue to be solved. Besides, the number
of IP addresses is limited and while IPv6 deployment is still under investigation,
some parts of the world have already exhausted their IPv4 allocations [14]. In gen-
eral, there has not been remarkable evolution in the Internet architecture for almost
twenty years, in spite of a revolution in the use of Internet and it has been leading
toward ossification [2].
The aforementioned problems are some of the main Internet issues that raise the
question about reconsidering the design of this networking architecture. In order to
address these problems and many other immediate issues, there is no clear consen-
sus in the Internet research community. One side believes that the current Internet
infrastructure should be improved gradually and defends an evolutionary approach
which is backwards-compatible. The other side argues a clean-slate approach and in-
vestigates a revolutionary transformation to a next-generation Internet architecture.
Among the revolutionary approaches, there has been considerable amount of carried
out research in recent years to replace the current communication model, which is
based on host names, with a communication model based on content names.
Information Centric Networking(ICN) [15] proposals have recently emerged to re-
think Internet foundations and design a natively data-oriented networking environ-
ment. The main rationale behind the design of ICN is to focus on the network’s
main mechanisms on content(”what”)names instead of content locations(”where”).
Shifting from IP addresses to named data will tackle naturally most of the issues

2

faced by the current IP infrastructure in terms of mobility management, security,
scalability, and content delivery. [3]
In the seminal paper of Gritter and Cheriton [16], the very first ideas about transition
from location-based network paradigm to information-centric design were introduced
about a decade ago in the context of TRIAD project at the Stanford University [15].
Since then, various ICN projects which focus on replacing the current communica-
tion model by a type of Content-centric network have been proposed.
ICN is currently being investigated by a number of research projects mainly in the
US and Europe. Research projects conducted in the US are the DONA project, A
Data-Oriented Network Architecture [17] at UC Berkeley, Named Data Networking
(NDN) [24] and its predecessor Content Centric Networking (CCN) [25], and Mo-
bilityFirst [26]. Hereafter in this thesis the terms Named Data Networking(NDN)
and Content Centric Networking(CCN) will be used interchangeably.
European projects include the EU funded projects like the PSIRP project Publish-
Subscribe Internet Routing Paradigm [18] and its successor Publish-Subscribe
Internet Technology (PURSUIT) [19], Scalable and Adaptive Internet soLutions
(SAIL) [20] and its predecessor 4WARD [21], COMET [22], and CONVERGENCE [23],
as well as the French funded project ANR Connect [24] which adopts the NDN ar-
chitecture. At the same time, the Delay Tolerant Networking(DTN) [28] commu-
nity has developed a message-oriented architecture that has been used along with
information-centric addressing and routing concepts.
Amongst current plans in ICN, Content-Centric Networking (CCN) is a promising
architecture proposed by PARC [1]. This approach is designed to deal with today’s
trend and proposes a new paradigm to address the aforementioned problems. It
follows a receiver-based communication model, and introduces generalised caching
in potentially every network device. In CCN, Data Packets is sent in reply to re-
quest called Interest Packet and Data chunks gets cached along the route back to
the original requester. In simple words, its communication model is based on the
idea of Publish/Subscribe [19] paradigm and focuses on content dissemination and
retrieval.

1.1 Problem Statement

In [1] Jacobson outlined the layout of the overall CCN architecture. Nevertheless,
many functionalities are still in the early stage and need to trigger an enormous
amount of research. Traffic control mechanism is one of the most important design
specifics that has not been studied in the context of ICN to significant extent. CCN
as a networking architecture need to define concise methods to control traffic when
multiple users contend for access to the same resources (bandwidth, buffers, and
queues).
There are some similarities between traffic model in CCN and Publish/Subscribe
paradigm [8] in which senders publish what they want to send and receivers inter-
ested in specific data subscribe to their desired publication. In CCN receivers send
their requests for particular data content regardless of where senders are located.
Although by decoupling senders from receivers in this model CCN has alleviated

3

problems with unsolicited traffic, engineering and shaping traffic have not been ad-
dressed effectively [7].
In [1] flow balance, one Interest packets retrieves at most one data packet, has been
barely suggested to avoid congestion, while there is no further technique to manage
congested traffic flow and saturated transmission buffers. Therefore, The definition
of a suite of traffic control mechanisms adapted to CCN still lacks in the literature.

1.2 Objectives and Scope

Content-centric networking is still a very young research area and, as such, there are
a number of weaknesses in existing designs. The approach discussed in this thesis is
to focus on congestion issue in Information Centric Networking in a broader sense
and propose a novel idea to tackle this problem. The main objective is to provide
an intelligent algorithm to detect congestion in early phase of occurrence and to
propose possible response decisions to realize congestion recovery. This approach is
suggested for Content Centric Networking as a great representation of Information
Centric Networking.

1.3 Contribution of the Thesis

This Thesis proposes a novel approach to control congestion in CCNs by early de-
tection of congested links based on computed probability of data packet drops for
next time instances. A Neural Network technique is used to realize this goal to avoid
deterioration of network throughput.
In various network scenarios, we demonstrate the advantage of early detection of
congested links and provide a performance analysis using ndnSIM simulation en-
vironment. Our simulation results show that the proposed method is efficient and
effective in early congestion detection in terms of applied performance metrics. The
technique also provides multiple options for CCN-routers to decide in respond to
the impending congestion in advance. Moreover, the proposed technique can be
considered as a general solution for congestion problem of ICNs in a more broad
sense.

1.4 Outline

Chapter 2, provides a background overview of the Internet and CCN architecture
as two packet-switched networks from two different generations of computer net-
works. chapter 3, presents a detailed description of taxonomy of congestion control
algorithms and highlights the most appreciated one implemented in the current net-
works. It also provides recent related researches on congestion control algorithm in
CCNs. Neural Networks overview and the rationale behind the proposed technique
used in this thesis is described in the next chapter. This is followed by Chapter
5 which starts the solution part where the system that has been developed and a
new congestion control algorithm using Neural Network are described elaborately.
After the solutions part, testing and evaluation is explored in Chapter 6. Moreover,

4

this section compares the suggested solution with related researches discussed in the
third chapter. Finally, in the last chapter, conclusions about the work are made and
observations on possible future challenges are projected.

5

2 Internet and CCN overview

This chapter serves as an introduction to the principles of the Internet architecture
as the most prevalent Packet-switched network and Content-Centric Networking as
a prospective candidate of Information-Centric Networking.
The first section presents an introductory description about the Internet architecture
and begins with a brief overview of the Internet protocol suite layers as it relates to
hosts. The next and more detailed part of this chapter describes CCN principles,
compares its protocol stack with the TCP/IP, and highlights the main similarities
and discrepancies between these networking structure. The rest of this chapter
describes CCN communication model elaborately and discusses its related issues.

2.1 Internet overview

The name of Internet stems from its purpose of the ”interconnection of computer
networks”. It is a connectionless universal system of packet-switched communica-
tion networks. An enormous number of services are implemented over the Internet,
including e-mail, file transfer, remote computer control, web browsing, and video
streaming.
The communications infrastructure of the Internet consists of its hardware com-
ponents both in end systems (Internet hosts), and intermediate systems including,
LAN switches, and routers. Moreover, the Internet runs a system of software lay-
ers called protocol stack that control various aspects of the architecture [44]. All
hardware components in the Internet need to use the same communication protocol
called standard Internet protocol suite (TCP/IP) and its main goal is to facilitate
data transmission and exchange among several billion users worldwide.

2.1.1 Internet Hosts

A network host, or simply ”host” is the ultimate consumer of communication services
and it is called Internet host if it participates in the Internet. In networking jargon
Internet hosts are also referred to as end systems and they span a wide range of size,
speed, and function. An internet host has one or more network layer host address
called IP address assigned to its network interfaces. It generally executes application
programs on behalf of user(s) by applying Internet communication services for its
support [46].

2.1.2 Routers

Internet hosts are usually connected to each other using switching devices known
as routers rather than using single communication link. A router is a device that
uses the address information (IP address) to forward data packets along networks.
Figure 1 shows two end systems that communicate over the Internet via routers.
The client-server communication model depicted in this figure is a prevalent model
in which one host called client requests a service or resource and the other end
system called server shares the requested information with its client.

6

Router Router

Internet

Client Server

Figure 1: Communication between a service requester(Client) and the provider of a
resource or service(Server) via Internet.

2.1.3 Internet Protocol suite

The communications process between end systems and intermediate systems is de-
fined in terms of the TCP/IP. It creates heterogeneous network of communication
nodes with various types of operating systems and hardware architecture. It pro-
vides end-to-end connectivity and defines how data should be formatted, addressed,
transmitted, routed and received at the destination.
The TCP/IP functionality has been organized into four abstraction layers which are
applied to characterize all related protocols according to the scope of networking
involved. A layer does not define a single protocol, but it clusters several data com-
munication functions which are performed by any number of protocols [47]. The idea
behind layering is that each layer is responsible for providing a service to the layer
above by using the services of the layer below. It is worth mentioning that, when
Internet nodes send and receive data, the individual layers do not need to know how
the layers above and beneath function; they only need to know how to pass data to
them. The protocol stack layers used in the TCP/IP suite are as follows:

Application Layer

The application layer is the top layer of the Internet protocol suite. It consists
of protocols that focus on process-to-process communication across an IP network
and provides a firm communication interface and end-user services. All application
processes use the service elements provided by the application layer. This is where
the most common Internet user protocols such as SMTP, FTP, SSH, and HTTP
operate [44] [46].

7

Transport Layer

The transport layer provides end-to-end communication services for applications.
It is responsible for delivering data to the appropriate application process on the
host computers and provides convenient services such as connection-oriented data
stream support, reliability, flow control, and multiplexing [46]. The most well-
known transport protocol is the Transmission Control Protocol(TCP) which is used
for connection-oriented transmissions [44].

Figure 2: This figure projects data flow in the client-server model.

Network Layer

The network layer provides the functional and procedural means of transferring
variable length data sequences from a source to a destination host via one or more
networks, while maintaining the quality of service functions [46]. This layer defines
the addressing and routing structures used for the TCP/IP protocol suite. All
Internet transport protocols use the Internet Protocol(IP) which defines IP addresses
to carry data from source host to destination host [44].

Link Layer

As it can be observed in the figure 2 the link layer is the lowest layer in the Inter-
net Protocol Suite and it provides communication on its directly-connected network.
This is a descriptive realm of networking protocols that operate only on the local

8

network segment(link) which provides communication among hosts without inter-
vening routers.

2.2 Content-Centric Networking

Content-Centric Networking [1] is a clean slate future network infrastructure that
introduces a new Internet architecture. The main idea in CCN is to change the
current internet transport paradigm by addressing content instead of host locations.
In stark contrast to TCP/IP in which communication session is established based on
host addresses, sessions in CCN are concerned with content names. In other words,
location addresses are not integrated with a CCN packet and it merely addresses
hierarchical human readable names of data packet over the standard form of URI.

Figure 3: Protocol Stack,TCP/IP Vs. CCN. Adopted from [1].

Figure 3 shows similarities and discrepancies between the IP and CCN protocol
stacks. [1] It can be observed that most layers of the TCP/IP stack imply mutual
agreements; e.g., link layer framing protocol is designed for reliable and efficient
communication between two adjacent machines; transport layer handle communica-
tion between data requester and provider. The network layer is the only one that
requires universal agreement. CCN’s network layer struggles to take advantages of
IP layer attractive properties and in the meanwhile, alleviate number of demands
on layer two.
On the other hand, there are number of substantial discrepancies to discriminate
CCN from TCP/IP stack. CCN shifts the main focus from IP addresses to con-
tent names, and introduces the strategy and security layers which deal with data
dissemination and securing data itself rather than the connection path respectively.

9

Strategy layer can make multi-homing more feasible and security layer makes net-
work more immune to host-based vulnerabilities.

2.3 CCN Node Model

CCN communication is driven by the consumers of data. There are two type of mes-
sages exchanged between network nodes: Interest and Data. A consumer asks for
a content by disseminating an Interest packet to the network over the all available
interfaces. Any node receiving the Interest and having the desired data replies with
a Data packet. The data packet is transmitted only in response to an Interest and
consumes that Interest and nodes which are not either consumer or provider just
forward the Interest message on the overlay network [1].

Figure 4: CCN packet types [1].

In order to have content centric concept realized each node needs to be equipped
with three main data structures and generalized concept of interface as follows.

2.3.1 Content Store(CS)

Content Store plays the same role in CCN node as a buffer memory in IP routers,
pursuing the goal of avoiding the need to repeatedly fetch popular contents. The
main difference between CCN router and IP router is that, the latter aims to discard
packets upon forwarding them to the next hop router, but the former keeps the most
popular data for the longest possible time. Within a Content Store data chunks are
stored and replaced according to a specific policy e.g, Least Recently Used (LRU) or
Least Frequently Used (LFU). Since in CCN each packet does not belong to point
to point conversation and is potentially useful to many hosts, arriving data need to
be conserved in content store as long as possible [1].

10

2.3.2 Pending Interest Table(PIT)

PIT maintains a track of forwarded Interest packets so that the returned Data packet
can be sent to its requester(s). As Figure 4 [12] shows it contains a list of incoming
interfaces from which the Interest packets for that name have been received, and a
list of outgoing interfaces to which the Interest has been forwarded as well. In con-
trast to IP network in which packets are routed in both directions toward server(s)
and client(s), in CCN only Interest packets need to be routed. When a requester
diffuses its Interest packets toward potential data provider(s), a trail of nodes foot-
print for a desired data will be left in the propagation path in order to define the
reverse path to that requester.

Figure 5: Forwarding State in PIT [12].

It is obvious that by applying ”bread crumb” technique data cannot loop in
CCN, however Interest packets are susceptible to loop and duplication. Therefore,
in order to prevent this a list of random nonce value has been added to PIT to detect
and discard duplicates received over different paths [1].

2.3.3 Forwarding Information Base(FIB)

In IP networks the information necessary to forward IP Datagrams should contain
at least the interface identifier and the next hop information for each reachable
destination network. This information is gathered in an IP FIB table and differs from
routing table which stores all routing information received from routing peers [48].
The CCN FIB is virtually similar to the IP FIB and is a table of outbound faces
for Interest packets toward potential data provider(s) of matching data. The only
difference between the CCN FIB and the IP FIB is the fact that each prefix entry
in the CCN FIB may point to a list of faces rather than only one [38].

2.3.4 Face

A connection to a network or directly to an application party in CCN is called Face.
In case of connecting to a network, it is similar to Interface of IP networks . All
messages in CCN node are received through a face and will be disseminate through
a face. A face can be arranged to send and receive broadcast or multicast packets on

11

a particular network interface, or to send and receive packets using point-to-point
addressing in the underlying transport, or even it can be the connection to a single
application process running on the same machine [38].

2.4 CCN Transport Model

One of the most important weaknesses points in the IP network is that a host is
empowered to send any packet and network is responsible of delivering it to the des-
tination. It simply means that when a node sends out a data packet, network tries
its best to deliver that data to its receiver(s) regardless of the fact that receiver(s)
might not interested to that particular data. (D)DOS attack and spam are two of
the side effects of this issue.
CCN is a receiver-driven data centric network. Its Receiver-driven feature is similar
to the Publish/Subscribe model in which every node interested in a specific data
needs to subscribe and publisher sends back the requested data to the subscribers.
It simply means that CCN Decouples senders form receivers and tackles the afore-
mentioned problem which is an important issue in TCP/IP. Data Centric feature
on the other hand, makes CCN interest packets independent of resources addresses
due to caching data in every node.

2.4.1 Interest and Data processing

Figure 6 depicts the algorithms used in CCN nodes to process Interest and Data
packets. When a CCN router receives an Interest Packet, a longest-match lookup
is done on its Content Name in the Content Store. Since there is a chance that the
desired Content packet has been already cached in this particular node, checking
the CS is the first priority for the arriving Interest Packets.

Figure 6: Interest and Data processing in CCN [12].

12

If there is a Data packet that matches the Interest, it will be sent back on the
face that has received interest and finally the satisfied Interest will be discarded.
When the content data cannot be found in the CS, then the second priority is to
lookup in the PIT. If the Interest Packet name does exactly match with a PIT entry
the receiver face will be added to the PIT Incoming Faces list and the Interest will
be discarded.This procedure is for making sure that all the arrival faces of the same
Interest will send back the matched Content Data [1].
Beside the Content Name, a random nonce value generated by the consumer is car-
ried in each Interest packet as well. A router keeps record of both the name and
nonce of each arrived Interest, so it can recognize whether a newly received Interest
is indeed a new one or an old one that looped back [12].
The last step in forwarding Interest Packets is to lookup in the FIB entries. If an In-
terest Packet matches with an FIB entry then the Interest needs to be sent upstream
towards the data. Otherwise, the Interest will be discarded because this node does
not have any matching data and even does not have any clue how to find any [1].
As mentioned earlier, Data Packet is not routed but simply follows the trail of PIT
entries as footprints to reach the original requester(s). A longest-match lookup of a
Data name is done upon arrival of a Data Packet in PIT entries. PIT match proves
that the Data was solicited by Interest(s)sent by this router, while mismatched data
means Data packet is unsolicited and discarded. When the router finds matched
Data name in PIT, sends the Data packet to the faces from which the Interest was
received, caches the data, and finally removes the PIT entry [12].

2.5 Summary

In this chapter basic concepts of Internet architecture and its layered protocol suit
was provided at the first section. Content Centric Networking system description
was introduced in the next part, followed by CCN transport model. Interest and
Data processing was the last section of this chapter to cover all the fundamental
definitions needed for discussing congestion control algorithms in the next chapter.

13

3 Congestion Control Algorithms

Congestion in packet switching networks is a state in which the network throughput
deteriorates when network resources including communication links, processors cy-
cles and memory buffers are saturated. Generally, congestion happens when there
are not sufficient resources to answer the demand, but surprisingly, increasing num-
ber of resources, e.g. larger buffer space, high speed links, and shorter packet pro-
cessing time cannot address this problem [29].
Nagle [31] proves that networks with infinite-buffer routers are as vulnerable to con-
gestion as networks with normal buffer space switches. It can be seen in figure 7.a,
that too much traffic load will be lead to the buffer overflow and packet drops. On
the other hand, large buffer space as shown in figure 7.b causes long queue and more
delay and consequently when packets processing is performed majority of them have
already been timed out [30].

Figure 7: Low-space memory in intermediate nodes is as disadvantageous as High-
Space memory [30].

High speed links in the network not only address the problem, but also may
exacerbate the situation. Since configuring a network with balanced link speeds and
processors is almost impossible, then there is always possibility of congestion due
to different link speeds and processing times. Figure 8 shows that if by any chance
a network has truly balanced configuration with the same speed for any link and
router, it is still susceptible to the congestion due to bandwidth bottleneck prob-
lem [30].
A bottleneck generally causes a system performance to be reduced or slowed down
due to limited resources or components. Consequently, a bandwidth bottleneck oc-
curs when there is not sufficient bandwidth available to ensure that all data packets
in the network reach their destination in a timely fashion. This can be observed
in figure 8 that, although all links have the 10Mbps speed, they deliver a higher

14

volume of data than what is supported by the existing routers. Since the traffic load
incoming by links attached to the routers are twice as the bottleneck link capacity
then consequently, the congestion occurs and performance of the entire network will
be compromised.
Considering all mentioned arguments, it is sensible to conclude that congestion is a
dynamic problem and therefore static solutions cannot tackle the problem perfectly.
Thus, any new control mechanism need to be designed to deal with the congestion
issue in the time of occurrence [30].

10Mb/s
Bottleneck

Figure 8: Bottleneck problem in balanced network

3.1 A taxonomy for Congestion Control algorithms

Due to explosive growth of bandwidth and network traffic load in recent years,
packet switched network congestion as a resource sharing problem, has been posing
a serious threat to these networks and the Internet in particular. Consequently,
congestion control became one of the major fields of research for computer networks
experts. This section categorizes different congestion control strategies proposed for
location based networks and highlights the most admired techniques implemented
in the Internet.

3.1.1 Open Loop Control

If a packet arrives at a node with a finite buffer faster than they can be processed,
the overflow will occur unavoidably. A sudden increase of traffic load can be one

15

of the main causes for congestion issue in packet switching networks. Therefore,
a congestion control algorithm needs to be designed to constrain bursts of source
traffic and to avoid unnecessary packet losses at an intermediate access nodes and
within the network.
Open loop congestion control algorithms are mainly designed to tackle this issue
by controlling the rate of packet transmission of senders and adopting appropriate
regulations to accept or discard packets on receivers. [29]Thus, they do not make
decision based on feedback from congested links. These algorithms control flow and
congestion with local information about buffer space and bandwidth. This scheme
itself is divided into two subcategories of source control and destination control
algorithms as follows:

Source Control

Algorithms in this scheme apply traffic control at the source end and take advantage
of local knowledge of the network [29]. The bit round fair queuing method [34], and
the input buffer model [35] are two instances of these algorithms. For instance the
latter algorithm, controls traffic load by imposing a constraint on the fraction of
buffers for input traffic in a node’s buffer space.

Destination Control

Algorithms accompanying with this group can be identified by operations on the
destinations end with no knowledge of feedback. Algorithms in which packets are
simply discarded due to buffer overflow, fall into this category [29]. Since algorithms
in this category focus on discarding packets, consequently, they cannot be very
effective in decreasing number of packet drops.

3.1.2 Closed Loop Control

Closed loop category is based on monitoring the system to detect congestion, passing
this information to where action can be taken, and adjusting system operation to
address the problem. The majority of congestion control algorithms are in this class
in which decision is based on feedback. This feedback can be sent either globally all
the way from source to destination or locally from intermediate nodes [29]. If the
feedback is based on end-to-end behaviour analysis without any explicit signal from
within the network, it is called implicit feedback. Packet loss due to buffer overflow
is the most important instance of this binary feedback. While, explicit feedback is
sent in a separate message or piggybacked via a signal bit in packet headers [54].
There are other features to categorize congestion control in closed loop schemes, but
these mentioned ones can be sufficed for the scope of this thesis.

16

Explicit Feedback

Approaches in this category are called network assisted congestion control. Routers
as network-layer components provide senders information about congestion state by
sending explicit feedback. The feedback can be either as simple as one bit mani-
festing congested link or messages about capacity of outgoing links for supporting
retransmission packets [44]. Explicit feedback congestion control algorithms are
mostly designed to avoid congestion and lead the network to the optimal operating
point by controlling traffic admission [29]. Adaptive admission control [32], rate-
based congestion avoidance [33], and Explicit congestion notification [36] are the
most tangible examples of this category.

Implicit Feedback

Congestion control approaches under this category are also known as end-to-end
algorithms. The key component of these approaches is that the endpoint nodes
are responsible for controlling the data rate. In this model, hosts take advantage
of implicit knowledge obtained from the network or globally between source and
destination to tune the transmission rate, and time of transmission as well. There is
no additional message or explicit notification in these algorithms. Time out alert and
missed acknowledgements are mostly used in these algorithms to indicate congested
network. Congestion avoidance and control of Jacobson [41], the most appreciated
congestion control technique, and timeout-based congestion control scheme [42] are
magnificent instances of algorithms in this class.

3.2 Standard TCP Congestion Control Algorithms

Given the taxonomy of congestion control algorithms, this section is in the right
position to consider the details of the most acclaimed TCP congestion control algo-
rithms developed by Jacobson which is described in [41], and [43], and standardized
in [45]. The algorithm has three main components known as slow start, congestion
avoidance, and fast recovery. TCP senders are required to have slow start, and
congestion avoidance, while fast recovery is only recommended. The discrepancy
between obligatory components is rooted from the way they increase the size of
congestion Window(cwnd) in response to received ACKs.
The congestion Window imposes a constraint on the amount of data that a TCP
sender can inject into the network before receiving an acknowledgement. The slow
start threshold (ssthresh) is another state variable which is used to regulate data
transmission by altering between the slow start and congestion avoidance algorithm
[45].

3.2.1 Slow Start

This technique is known as sender-based Flow control due to controlling the trans-
mission rate by the sender. The mechanism used by the sender is based on the rate

17

of acknowledgements returned from the destination node. In other words, the rate
at which the sender is allowed to transmit is determined by the rate of acknowledge-
ments returned from the receiver.
When a TCP connection first begins, the slow start algorithm initializes a cwnd to
a small value of one MSS. TCP sends the first segment into the network and then
waits for the acknowledgement. When Ack is returned by the receiver, the cwnd
increases by one segment and sends out two maximum-sized segments. This process
results in doubling of the sending rate every Round Trip Time(RTT). Since the
transmission rate grows exponentially, slow start is not slow indeed. On the other
hand, it is initialized with the least possible value and starts from the one segment
size. Thus, the TCP sending rate grows fast, but starts slow during the slow start
phase [44].
In accordance with notifications that TCP sender receives, slow start provides sev-
eral options to stop the exponential growth of cwnd. First, if there is a loss event
notified by a timeout, cwnd will be set to 1 by the TCP sender and it begins the
whole process again. It also needs to set the value of ssthresh to half of the con-
gestion window value of the time when congestion was last detected. The second
way of ending the exponential growth is related to ssthresh. When cwnd equals
to ssthresh, slow start ends and TCP transitions into congestion avoidance mode
which will be explained in the next section. The last option to cease this process
is based on detecting three duplicate acknowledgements. Once ACKs are detected,
TCP enters the fast recovery state as discussed below.

3.2.2 Congestion Avoidance

As figure 9 illustrates, congestion avoidance is one of the choices with which slow
start phase can be terminated. The slow start algorithm is used when cwnd is less
than ssthresh, while the congestion avoidance algorithm is used in reverse order.
Sender opts between slow start or congestion avoidance when cwnd and ssthresh are
the same [45].
The value of cwnd at the beginning of this state is approximately half its value when
congestion was last occurred and during congestion avoidance, cwnd is incremented
by roughly one single MSS every RTT. TCP’s congestion avoidance algorithms be-
haves the same until congestion is detected. The end of this state is similar to the
case of slow start in which cwnd is set to one segment and the value of ssthresh is
updated to half of the value when congestion was last encountered [44].

3.2.3 Fast Recovery

In order to inform the sender about receiving an out-of-order segment, a TCP re-
ceiver should send an immediate duplicate ACK when an out-of-order segment ar-
rives. This ACK informs also the sender about the sequence number that is ex-
pected [45]. The TCP sender should use the ”fast retransmit” algorithm to detect
and repair loss, based on incoming duplicate ACKs. The fast retransmit algorithm
uses the arrival of 3 duplicate ACKs as an indication that a segment has been lost.
After the fast retransmit algorithm sends what appears to be the missing segment,

18

Slow Start

Fast

Recovery

Congestion

Avoidance

cwnd = 1 MSS

Ssthresh = 64 KB

dupACKcount = 0

duplicate ACK

dupACKcount++

Timeout

ssthresh=cwnd/2

cwnd = 1 MSS

dupACKcount=0

retransmit

segment missing

new ACK

cwnd = cwnd+ MSS

dupACKcount = 0

Transmit new segment(s),

as allowed

cwnd >= ssthresh

duplicate ACK

dupACKcount++

cwnd = cwnd + MSS (MSS / cwnd)

dupACKcount = 0

Transmit new segment(s), as allowed

new ACK

Figure 9: Finite-State machine description of TCP congestion control

the ”fast recovery” algorithm regulates the transmission of new data until a non-
duplicate ACK arrives. At the end of this phase the value of cwnd is set to 1 MSS
and the value of sstresh is updated to half the value of cwnd when the loss event
occurred. It is worth mentioning that fast recovery in TCP congestion control is
recommended and at early version of TCP, known as TCP Tahoe, it was not incor-
porated [44].
Figure 9 projects the complete FSM description of TCP’s congestion control al-
gorithms explained above and it indicates where transmission of new segments or
retransmission can happen.

3.3 Congestion Control in CCN

In contrast to TCP that applies a flow-based end-to-end communication model be-
tween a pair of hosts, CCN content distribution session may involve multiple nodes
not identified in advance, making traditional end-to-end approach to congestion con-
trol impossible. In IP, the efficiency of TCP relies on the rapid detection of packet
loss through out-of-sequence packet delivery. In CCN, where flows can have multiple
sources and multiple destinations, the packet sequence is not respected and therefore
an analogy of triple duplicate ACK for detecting a loss event would not be feasible.
On the other hand, delay based congestion notification is not applicable due to the
fact that RTT values are variable. Thus, CCN nodes need to apply local measures

19

to detect congestion in advance that can lead to relieve congestion. In CCN loss of
data chunks because of buffer overflow is the main indicator for congestion. Figure
10 outlines the congestion issue in CCNs and concludes to the first step for address-
ing this problem.
In [1] flow balance, one Interest packets retrieves at most one data packet, has been
barely suggested to avoid congestion, while there is no further technique to manage
congested traffic flow and saturated transmission buffers.
It is believed that congestion increases packet losses and consequently degrades per-
formance in all packet switched networks. Congestion recovery mechanisms in these
networks have been being studied with high priority for decades. Regarding all
above, CCN as one of the possible internet infrastructure in the future needs to
address this issue in advance.

• Variable Timeout,
Long Delay

• No Triple duplicate
ACKs

• No explicit feedback

Packet drops due to
buffer overflow :

Not right time to
react

Find a way to
detect

congestion
appropriately

Figure 10: Outline of congestion issue in CCN

3.4 Related work

After delving into the details of CCN architecture in the last chapter, this section is
in the right position to introduce some important ongoing CCN research activities
studying the congestion control mechanisms. To the best of our knowledge, follow-
ing algorithms are the main congestion control mechanisms proposed for CCN to
date.
Carofiglio et al in [9] designed a window-based Interest flow control protocol driven
by an AIMD called Interest Control Protocol. The main idea is to guarantee reliable
data transfers by re-expressing Interest packets in case of Data packet losses. ICP

20

does not rely on losses as congestion notifications, but on delay measurements and
timer expirations mechanism to regulate the Interest rate at the receiver. ICP is
coupled with a hop-by-hop Interest shaping mechanism in [10] to realize a per-flow
Interest rate control at the output interfaces of every CCN router. In every output
interface, there is one virtual queue per flow, identified by the name of the content.
They have associated each virtual queue with a credit counter initialized to a max-
imum Data bytes the flow is granted to transmit, with no additional delay. The
counter is incremented at the estimated fair rate of the corresponding downlink and
decremented by forwarded Interest packets. Since deterministic window decreases
are sensitive to delay estimation errors, they have recently introduced an extended
initial design of ICP with a probabilistic window decrease mechanism aimed at con-
trolling at the receiver bottleneck queuing delays [11]. The common theme in these
evolutionary research is to detect congestion with a simple adaptive threshold set
to RTT estimation.
In [7] Rozhnova et al present hop-by-hop Interest shaping mechanism which moni-
tors the transmission buffers of a CCN router to compute the Interest packets rate
that have produced the associated Chunks filling these interfaces. The idea is heavily
based on the TCP congestion Control algorithm, however the proposed congestion
control scheme prefers hop-by-hop Interest shaping instead of end-to-end mecha-
nism. An alternative to relying on time outs would be to explicitly signal packet
loss. Oueslati et al in [13] propose an explicit congestion signal by truncating data
packet as following. When Deficit Round Robin(DRR) scheduler should discard a
packet from the flow with the longest backlog, only the packet payload is rejected
rather than refusing the entire packet. The header, including the name, is modified
to signal the discard. The end-system identifies the loss immediately and can rapidly
retransmit the corresponding Interest and react accordingly to the congestion signal.
Interest NACK has been proposed in [12] by Cheng et al. Interest NACK can be
categorized under the title of explicit feedback congestion control mechanism. The
reason for this classification is the definition of NACK itself as following. When
a CCN node can neither satisfy nor forward an Interest due to congested links, it
sends an Interest NACK back to the downstream node. A NACK carries the same
name as the corresponding Interest packet. If the downstream node has exhausted
all its own forwarding options, it will send a NACK further downstream.
To summarize, there are two main parts for any congestion control algorithm sug-
gested for CCN so far. The first part deals with detecting congestion in an effective
way, while the second one attempts to address the whole problem by proposing novel
solutions. These solutions can be roughly categorized as either adaptive transmis-
sion rate or adaptive forwarding. It means that, some algorithms control congestion
issue by adjusting the traffic load, while others adopt approaches in which finding
the least congested route would be their ultimate goal.

3.5 Summary

In this chapter we explained the concept of packet network congestion, and also
summarized the studies of congestion control algorithms both in traditional TCP/IP

21

transport paradigm and in CCN as a candidate of future Internet infrastructure.
Since it is a vast topic, it was not feasible and even not sensible to cover the whole
subject in this literature. Thus, we attempted to first, arrange a comprehensive
taxonomy of proposed algorithms in the research community and then provided
some inspiring examples under every single category.
The next topic of the section was devoted to describe elaborately, one of the most
notable TCP congestion control algorithms introduced by Jacobson in [41]. The
last section, focused on congestion issue in CCNs, and also provided an outline of
most noticeable related researches carried out in the community.

22

4 Neural Networks

In computer science a computational process of discovering correlations and pat-
terns in large amount of data sets is called data mining. It adopts statistical and
knowledge-based approaches to analyse data sets. The ultimate goal of the data
mining is to transform extracted patterns from a data sets into a comprehensible
structure and consequently gain insight into a large collection of data [37]. Arti-
ficial Neural Network(ANN) is one of the techniques used in data mining to find
non-linear relationships in data without pre-defined model.
This chapter first takes a brief look at the main concept of ANN and its resemblance
to a biological Neural network. In order to have a big picture of ANN, neural net-
work architecture and different learning paradigms are outlined in the subsequent
sections as well.

4.1 Artificial and Biological Neural Network

The computer science concept of an artificial neural networks is heavily based on a
biological neural network specifically the human brain.

Figure 11: The Connection between Neurons [39].

A biological neural network is a series of interconnected nerve cells called neurons
presented in the figure 11. They process and transmit information through electri-

23

cal and chemical signals. The relevant components of a neuron cell are dendrites,
synapses, a cell body and an axon. Neurons interconnection is provided by synapses
which are structures that permit neurons pass signals to other cells conducted by
the axon. These synapses or connecting links have weights which vary in the degree
to their influences on the neurons into which they feed [40].
The main feature of neural network is the ability of learning. When a neuron re-
ceives enough electric pulses through its dendrites, it activates and fires a pulse
through its axon which connects neurons and propagates information. The synaptic
connections alter throughout the lifetime of a neuron and the amount of incoming
pulses needed to activate a neuron threshold vary as well. This behaviour allows
the NN to learn.
Similarly, an artificial neural network depicted in figure 12 consists of highly inter-
connected processing units to model the human brain in performing a particular
task or a process of learning. These processing units are called nodes and their con-
nections have weight similar to synaptic weights to represent how much the output
of one node can have effect on the behaviour of the node to which it serves as an
input. ANN also has a bias value that allows shifting the neuron threshold, the
point of depolarization at which the neuron fires. Since the power of the neural
networks comes from the adjustment of the thresholds and weights of each node’s
input, these values are critical for successful learning[40].

4.2 Models of Neurons

The block diagram of figure 12 graphically illustrates the model of a neuron which
performs typically non-linear and analogue computations.

In order to calculate the output value of a neuron, a weighted sum of the node
inputs, and a bias term need to be added. This yields the linear output of the node:

uk =
m∑
j=1

wkj.xj (1)

and

yk = ϕ(uk + bk) (2)

where uk is the linear combiner output; x1,x2,...,xm are the input signals to the
node which can either be the actual input to the neural network system (hereafter
the term neural network will refer to as Artificial Neural Network), or the output
from other neurons in preceding layers, wk1,wk2,...,wkm are the synaptic weights of
neuron k; m is the total number of inputs to neuron k; bk is the bias ; yk is the output
signal of neuron; and ϕ(.) is a function which defines output of the neuron given
sets of inputs, referred to as the activation function [40].

24

Figure 12: Nonlinear model of a neuron [40]

The behaviour of an ANN (Artificial Neural Network) depends on both the weights
and the input-output function (Activation Function). The activation function ϕ(.)
can have many forms. This function typically falls into one of three categories illus-
trated in figure 13. In the linear or ramp function the output activity is proportional
to the total weighted output, while in the threshold or step-function the output is
set at one of two levels, depending on whether the total input is greater than or
less than some threshold value. The log-sigmoid or logistic function is the most
useful for training data and its output varies continuously but not linearly as the
input changes. It bears a great resemblance to real neurones, however all three
must be considered rough approximations of transforming the activation level of a
unit(neuron) into an output signal.

Figure 13: Activation Functions [40]
.

25

The role of the bias value is to have effect of applying an affine transformation
to the output uk of the linear combiner. As shown in Figure 12, each synaptic
connection has a weight and each input is multiplied with its related weight. The
weighted inputs are summed together with an externally applied bias to give the
induced local field as formulated in the next equation.

vk = uk + bk (3)

In particular, depending on whether the bias is positive or negative, the rela-
tionship between the induced local field of neuron k and linear combiner’s output is
modified respectively as depicted in figure 14.

Figure 14: Affine Transformation produced by the presence of a bias [40].

At the very last step, an activation function is applied to the induced local field
of the neuron in order to give the output of yk of neuron k. This concept can be
explained in mathematical term as follows:

yk = ϕ(vk) (4)

26

4.3 Network Architecture

The neurons can be clustered together in many ways. Basically, a neural network is
the grouping of neurons into layers. The way that these layers affect each other and
the direction in which signals travel, is referred to neural network architecture. In
order to train a neural network, learning algorithms and network architecture should
be linked together closely.
Since the focus of this chapter is on providing basic knowledge of neural network
techniques adopted in this thesis, it would be sensible to describe only the acyclic
layered neural network architectures. They have one-way connections from input
to output layers and are mostly used for prediction, pattern recognition, and non
linear function fitting.

Single-Layer Feedforward Networks

The simplest form of layered neural network is a single-layer feedforward network
in which there is an input layer of source nodes and one output layer of neurons. As
it can be seen in the figure 15, single layer refers to the output layer of computation
nodes. In this neural network the inputs are fed directly to the outputs via a series
of weights. The sum of the products of the weights and the inputs is calculated in
each node according to equation 1 described in the previous section, and based on
the related activation function the neuron fires and takes either the activated value
(commonly 1) or deactivated value (commonly -1).
The lines between the nodes indicate the flow of information from one node to the
next. Since in this particular type of neural network, the information flows only
from the input to the output (from left to right in the picture), it is called an acyclic
feedforward type [40] .

Figure 15: A single layer feedforward network with one-way direction of information
flow [40].

27

Multilayer Feedforward Networks

A typical multilayer feedforward neural network depicted in figure 16 is the most
popular in the classification [50]. Since every node in each layer of the network is
connected to every other node in the forwarding layer, this network architecture is
called fully interconnected structure.
As it can be observed in this picture, there is one distinguishable hidden layer with
corresponding hidden neurons as computation nodes. A hidden layer is used to
increase the expressiveness of the network.

Figure 16: A multilayer feedforward network. This is the most common structure
for neural networks [40].

A network with one or more hidden layers is enabled to extract higher-order
statistics [40]. This ability is particularly valuable when the size of an input layer of
a network is large. The hidden layer is usually about 10 percent the size of the input
layer. For instance, in the case of target detection, the output layer only needs a
single node. The output of this node is applied to threshold activation function to
provide a positive or negative indication of the target’s presence or absence in the
input data.
In this particular neural network the source nodes in input layer of network supply
the input signal to neurons in the next layer which is the first hidden layer. The
output signals of this layer are fed to its next layer which is the second hidden layer
and so on. The set of output signals of the neurons in the output layer of network are
considered as the overall response of a network to the activation function supplied
by source nodes of the input(first) layer [51].
The network illustrated in Figure 16 is referred to as a 4-4-1 network because it has
4 source nodes, 4 hidden neurons, and 1 output neuron. Generally, a feedforward
network with m source nodes, h1 neurons in the first hidden layer, h2 neurons in
the second hidden layer, and q neurons in the output layer is referred to as an
m− h1 − h2 − q network.

28

4.4 Learning Paradigms

The most significant property of a neural network is the ability of learning and
improving its performance through learning. The interactive process of adjustments
applied to synaptic weights and bias levels of a neural network leads it to become
more knowledgeable about its environments. It can gain more information through
increasing the number of learning process iterations [40].
There are two main different learning paradigms that can be used to train a neural
network. This section addresses how neural networks learn with or without a teacher
as well as simple overview of reinforcement learning.

4.4.1 Supervised Learning

Supervised learning networks is a machine learning paradigm for acquiring the re-
lationship between input and output data. It takes a known set of input data and
labelled responses to the data called training data, and attempts to design a predic-
tor model that generates accurate predictions for the response to new data. The set
of data, which enables the training process, is called labelled data or training data.
Since the learning benefits from the assistance of the training data, it is considered
as a learning process with a teacher [52].
In this training paradigm, both the inputs and the outputs are provided. The net-
work then processes the inputs and compares its resulting outputs with desired
outputs. The difference value between actual neural network and the desired out-
puts are errors of the network. These errors are then propagated back through the
system in order to adjust the weights that control the network.

Figure 17: Supervised Learning Model [53]

Figure 17 depicts a simple model for supervised learning. It can be observed that

29

the environment is measured and its measurement vector, x, is given to a knowledge
expert who outputs a desired response, f(x). The learning system is also disclosed
to the same measured variable and calculates a result, f’(x). The error between the
output of the learning system and the desired response from the knowledge expert
is computed and used to modify the response of the learning system. In general,
improving neural network response means adapting weights, so that its response
more closely matches that of the knowledge expert [53].

4.4.2 Unsupervised Learning

The term ”unsupervised learning” or ”learning without a teacher” is generically
associated with the idea of learning to adapt based on the experiences collected
through the previous training patterns. Thus, the network is trained to minimize
the cost function by finding a suitable input-output relationship without using any
teacher [40].

Figure 18: Unsupervised Learning Model [53]

Basically, the unsupervised training model shown in figure 18 is comparable
to the supervised method, however differs in that no teacher is employed in the
training process. It is analogous to students learning the lesson on their own, while
in supervised learning labelled data used as a teacher. The open loop learning
process shown in 18 consists of the environment, represented by a measurement
vector. This vector is fed to the learning system that provides the response. Based
on the system response and the applied adaptation rule, the weights of the learning
system will be tuned to acquire the desired performance [53].

4.4.3 Reinforcement learning

Reinforcement learning differs from the learning paradigms mentioned above. It is
called ”learning with a critic”, as altered from supervised learning which is based on

30

”learning with a teacher” idea. The main difference between a critic and a teacher
is that, a teacher labels data in advance, while a critic gives a feedback about the
learning process in the past. In other words, in this learning method, the learner is
an agent that makes decisions and receives reward or penalty accordingly in order
to solve a problem.
As it can be observed in figure 19 the agent interacts with an environment. At any
state of the environment, the agent makes a decision and takes an action that alters
the state and returns a reward respectively [49].

Figure 19: Reinforcement Learning process [49].

4.5 Summary

This chapter provided a general description of neural network, and the different
types of architectures as well as learning paradigms. Three main learning paradigms
discussed in this chapter, however this thesis employs merely the supervised learn-
ing model. The more details about the techniques used in this work specifically
backpropagation algorithms, will be explained in the next chapter.

31

5 Experimental studies

This chapter describes the design and implementation of neural network applied
in this thesis to detect congestion in CCNs. It focuses on presenting an overview
of the whole system and also clarifies which components have been used and what
roles they played. It describes also the rationale behind opting the specific Neural
Network algorithms used and considering the particular metrics as well.
This chapter is organized as follows. In the first section, the motivation for applying
neural network for our purposes is provided. The next section describes the whole
process of designing neural network. In the next section, simulation environment
and its specifications are explained, while in the subsequent section the important
parameters that have impact on congestion consequences on every computer net-
working and CCN in particular are discussed. The last section will provide the result
of neural network and compares different algorithms applied in this thesis.

5.1 Neural Network motivation

In real world network, packet loss can be caused by a number of factors including bit
errors (wireless link), corrupted packets rejection (in NDN, unsolicited data packets
will be dropped), and channel congestion. Since we are going to use simulation
environment and assume that there is no DOS attack in the scenario, we are al-
most assured that packet loss is due to congestion and accordingly we can use the
packet loss as a decent candidate for congestion signal in our experiment. We use
the number of dropped packets due to buffer overflow as a main congestion manifes-
tation. Therefore, the main goal of this thesis work is, to present a new approach of
early detection of congestion based on the number of data packet drops in order to
mitigate this issue in content-centric networking. In the following sections we will
discuss the whole path that we have followed to achieve this goal.
As mentioned earlier in the previous chapter, the basic idea in using a neural net-
work is to learn from its environment and improve its performance over time. It was
discussed that a neural network can be varied in an almost infinite number of ways
due to its various architectures . However, three main types of learning paradigms
in neural networks were highlighted to provide sufficient background from which to
interpret new concepts.
Since we benefit from the packet drop rate as a congestion indicator that teaches
to the neural network the conditions in which congestion happens, the supervised
learning method would be the best fit for our training purposes. Number of dropped
packets are labelled in order to train the neural network as a teacher. Thus, the
main purpose of using neural network is to early detection of congestion based on
computed number of dropped packets.
The most important issue concerning supervised learning is the problem of error
convergence, i.e. the minimization of error between the desired and computed unit
values [59]. It is known that a neural network has synaptic weights (such as dis-
cussed parameters in the previous sections) that need to be updated and accordingly
improving the performance of an ANN means optimizing these weights. This thesis

32

considers main important supervised learning algorithms and compares their results
to approach the best trained neural network and accordingly the best prediction for
network congestion.

5.2 Neural network design and environment

It is implied that we wish to implement neural network technique in our simulation
environment to predict the number of dropped data packets at the bottleneck gate.
Generally, any predictive data mining technique decomposes data in order to con-
struct one or a set of models and attempts to forecast the behaviour of new data
sets. It can be viewed as mapping or function , y = f(x), where x is the input
dataset, and y is the predicted value.
In order to have a predictor, we need to consider two issues. The first one is prepar-
ing the input datasets which involves a large number of preprocessing steps including
data cleaning , relevance analysis, data transformation, and data reduction. Pre-
processing the network inputs and targets improves the efficiency of neural network
training. The second issue is the stage of comparing the different prediction models.
The following sections introduce the methods by which we address these issues. Pro-
viding some basic knowledge of neural network, we will explain the data generation
steps and at the very last section of this chapter, we will compare neural network
models that we examined to conclude to the best predictor for our own purpose.
In this thesis work we have derived substantial benefit from using Matlab Neural
Network Toolbox which supports supervised learning with feedforward networks. In
addition to training, validating, and testing the neural network, the preprocessing,
and postprocessing of datasets experiments have been conducted using this toolbox.

5.2.1 Training and Testing

Two of the most important measures of neural network models are how well the
model generalizes to unseen data (generalization), and how well the model scales
with problem intricacy (overfitting) [61]. Overfitting occurs when a network has
memorized the training set but has not learned to generalize to new inputs. Since the
ultimate goal of using neural network is to find the configuration with the best per-
formance on independent data [53], it is of significance to train the neural networks
based on an appropriate pieces of training datasets and their number of events. The
former is applied to approach the generalization goal and the latter is to address the
overfitting problem.
On the one hand, one of the major advantages of neural networks is their ability
to generalize i.e., generate the appropriate outputs in response to inputs that are
not part of their training experience. This means that a trained set of data can be
applied to infer a rule for unseen data from the same class. Generalization is used
to determine whether the classifier is memorizing the input data.
On the other hand, when a network is trained with too few events, it will usually
memorize the data in classification tasks and will be unable to make predictions

33

as accurately as possible. In accordance with available neural network literature,
overfitting is the most serious issue in neural network training and results in a loss
of generalization performance.
Based on these facts, it is vital to use a sufficient number of events with great di-
versity in training dataset and apply testing data that were not used to train the
neural network as well.

5.2.2 Data division

The first step in building the optimized neural network is to generate a set of rele-
vant events which form the input dataset. Having acquired adequate datasets, it is
extremely important to divide input data sets into precise pieces of data sets in order
to train, generalize, and test the neural network. The input dataset is then divided
into training, validation, and test data. Generally, this classification is applied to
train an optimized neural network and to verify its accuracy.
A percentage of the records is used to build the model; the remaining records are
used to test the model. In order to build model dataset is divided to build neural
network with 70 percent for training, 20 percent for validation and 10 percent for
testing.
The training set is used during the process of training to train a neural network.
The error of this dataset is minimized during training. The validation set is used
to fulfil the generalization goal and determine the performance of a neural network
on patterns that are not trained during learning. A test set for finally checking the
over all performance of a neural net when the training process has been finished.
The test data must be compatible with the data used to build the model and must
be prepared in the same way that the build data was prepared. Typically the build
data and test data come from the same historical data set. In this specific case, first,
dataset collected from the first scenario used to train, validate and test the neural
network, and then the other two scenarios are applied to test model further.

5.3 Simulation Environment

In communication and computer network research, network simulation technique has
been introduced and developed to model the behaviour of a network and interaction
among the different network entities rather than using mathematical formulas, or
conducting an experiment with real world systems.
Computer network simulator usually permits system designers to study a problem
from many different angles by spending less time in comparison with real system
study. Nonetheless, simulations have many constraints. Correctness, speed, accu-
racy and relevance to the user’s simulation needs are all extremely important issues
to consider in order to approach the best possible conclusions [56]. The situation is
even more difficult when there is a need to simulate a CCN concept which is itself
does not exist in the real world.
This work was evaluated in the ndnSIM, an open source NS-3 based simulator, which
implemented the basic components of a NDN(CCN) network in a modular way using

34

separate C++ (set of) classes to model behaviour of each network-layer entity in
Content-Centric Networking [55].

5.3.1 NS-3 based Named Data Networking (NDN) simulator

The ndnSIM is NS-3 module that is optimized for Named Data Networking(CCN)
simulation purposes. Its implementation effort started in fall of 2011 at UCLA,
however the first release of the simulator as an open-source package has been made
available since June 2012.
ndnSIM provides a set of reference application and helper classes, allowing eval-
uation of various aspects of NDN protocol under many different scenarios. It is
implemented as a new network-layer protocol model, which can run on top of any
available link-layer protocol model including point-to-point, wireless, etc., as well
as IPV4 and IPV6 of Network-layer and TCP and UDP of Transport-layer. This
ability allows ndnSIM to simulate wide range of homogeneous and heterogeneous
scenarios. ndnSIM models behaviour of CCN network-layer entity including PIT,
FIB, content store, network and application interfaces, etc. Moreover, this simula-
tor is able to trace behaviour of every component and CCN traffic flow due to its
extensive collection of interfaces and helpers [55].

5.3.2 Simulation settings

Design of a descriptive simulation scenario is a crucial task which needs to be carried
out with special attention. The full range of parameters that might have influences
on an experiment, must be opted precisely to increase the validity of simulation
results. Since our area of particular interest is congestion related mechanisms in
content centric networks, our models must include characteristics of congested links,
content stores and PITs sizes, and the effect of congestion on these networks.
Table 1 lists the quantities chosen in our simulation scenarios with their design
ranges. We agreed on these more influential settings in order to both train the
Neural Network more appropriate and facilitate comparison of results as well. It is
necessary to perfectly analyse the range of parameter settings in order to validate
our results in this network model. In the subsequent sections , we will describe the
rationale behind choosing these parameters and their possible affects on the network
models.

5.4 Simulation Scenarios

In order to have reliable results, we needed to design wide range of possible congested
network scenarios. Different scenarios can result in different degrees of congestion,
in terms of the discarded packets number in every single router. A wide range of
CCN scenarios in which congestion happens with dynamic range of parameters is
designed and tested in this thesis to train the neural network properly and demon-
strate how thoroughly it can perform. However, we evaluate the result based on the
dumbbell topology which is typically used to analyse congestion issue in computer
networks.

35

Table 1: Design range for the simulation parameters

Quantity Design Range Mode

Number of Senders 1-16 Pseudo-random numbers

Bottleneck Link speed 256Kbps- 1Gbps Pseudo-random numbers

Link Delay 1ms -100ms Pseudo-random numbers

Traffic Load 1 - 6000(Interest/second) Exponential

Content Store Size 10,100,1000 Entries Exact

PIT size 10,100,1000 Entries Exact

We designed sixteen main scenarios with different number of senders, a wide range
of links delays, and several other parameters that will be discussed in detail later
in this chapter. It is worth mentioning that, in order to have more comprehensive
results, we adopted an approach to change important parameters values in a ran-
dom way during the simulation runs. We vary each network parameter in the basic
scenario, one at a time, while keeping everything else fixed.

5.5 The dumbbell topology

In this simulation scenario the dumbbell topology illustrated in 20 with variable
number of Interest requesters (Consumers) and Data providers (Producers) are sim-
ulated. Hereafter the terms Interest requesters and Consumers for referring to Inter-
est senders, and also Data providers and Producers for referring to Data senders will
be used interchangeably. These nodes are connected to the bottleneck link whose
capacity is variable. Access links have 100Mb/s bandwidth available, their delays
are 1ms, and traffic load is variable due to dynamic range of Interest rates. In this
scenario scenario consumers at the left side of the bottleneck link issues interests
for the contents served at the providers. Content payload size is fixed at 1024B and
the interest size is 24B (which slowly increases to 28B due to the increasing number
of digits in the content name: /datapacket/1, /datapacket/2, ...). This assumption
will be maintained throughout the rest of the thesis work.

36

10Mbps

Consumer 1

Router 1 Router 2

Producer 1

Producer 16

Producer 2

Consumer 16

Consumer 2

Figure 20: The dumbbell topology

The reverse path is symmetrical, however in order to have more realistic results
some randomisation functions have been applied to some settings of the simulation
scenario in the script code. These functions produce random numbers within the
defined range provided in the Table1. The bottleneck link delay is static during
the simulation, however, further scenarios are distinguished, as different number of
senders is simulated with default values provided in the table 2. Figure 20 illustrates
this network topology.
In this network topology we attempted to test as many as possible combinations of
parameters in different simulation runs. This network simulation lasts 30 seconds
every time that it runs. In every 5 seconds, simulator experiences different sets
of parameters to deliver concrete and informative results. In an environment with
large number of parameters, it is not easily feasible to isolate a particular variable
and study its relation with a particular parameter due to inter-dependency among
variables. However, in the following sections we consider the most important sim-
ulation settings and their effects on the whole network model with three nodes for
both requesters and providers.

5.6 Input Parameters

In this section, we consider the most important parameters that might impact on
congestion on a computer network in general and CCN in particular. In our exper-
iment we run simulation environment in a large number of times, and selected one
among them as a default value presented in table 2. In the following sections, the
impact of aforementioned metrics will be compared by this default value table.

37

Table 2: Variable parameters values vs Default values

Time

(Second)

Number of Transmitted Interests

(Packet)

Bottleneck Bandwidth

(Mbps)

Bottleneck Delay

(Millisecond)

Interval Consumer 1 Consumer 2 Consumer 3 New Value Default Value New Value Default Value

00:05 500 500 500 10 10 1 1

05:10 5700 100 3450 500 10 10 1

10:15 100 4499 1740 50 10 20 1

15:20 1339 878 3590 25 10 50 1

20:25 1990 1178 758 2 10 80 1

25:30 3099 4688 5359 100 10 100 1

5.6.1 Traffic load

One important factor in every packet network simulation is traffic load. Every pos-
sible computer network might undergo a wide range of traffic load from zero traffic
to burst traffic. Since congestion occurs when the load of packets placed onto the
network exceeds the capacity of the network to carry the packets, traffic load can
have a huge impact on the way that network behaves.
In this particular network model we dynamically alter the interest transmission rate
during the time that simulator runs in order to consider the crucial role that traffic
load plays notably in network congestion. As it can be seen in table 1 the design
range for the traffic load is from 1 to 6000 Interest packet per second for every
consumer. In this part of experiment we collected the Interest transmission rate
values produced randomly in the simulation script and provided in table 2. We will
consider other columns of this table in subsequent sections.
Figure 21 illustrates that every consumer sends its requests with different transmis-
sion rate. The transmission rate has been produced in the scenario randomly and
changes every time that scenario runs. As the topology of scenario suggests, all
the transmitted interests will be aggregated in router 1 and then forwarded further
through the bottleneck link. Figure 22 demonstrates this fact and depicts the inter-
est transmission rate in routers as well. It can be simply observed that both routers
forward interest with remarkably similar patterns except the last 5 seconds.

By observing precisely figure 22, we can underline the subtle difference between
the pictures. When a router receives an Interest packet, it first checks whether there
is a corresponding data packet in its Content Store. If a match is found, the data
packet is sent back to the incoming faces and the Interest will not be forwarded

38

0

1000

2000

3000

4000

5000

6000

1 6 11 16 21 26

Consumer 3

0

1000

2000

3000

4000

5000

6000

1 6 11 16 21 26

Consumer 1

0

1000

2000

3000

4000

5000

6000

1 6 11 16 21 26

Consumer 2

N
u

m
b

e
r

o
f
T

ra
n

s
m

it
te

d
 p

a
c
k
e

ts

Time [Second]

Figure 21: Number of transmitted Interest packets per second in consumers

0

1000

2000

3000

4000

5000

6000

7000

8000

1 6 11 16 21 26

Router 1

N
u

m
b

e
r

o
f
T

ra
n

s
m

it
te

d
 p

a
c
k
e

ts

Time [Second]

0

1000

2000

3000

4000

5000

6000

7000

8000

1 6 11 16 21 26

Router 2

Figure 22: Number of transmitted Interest packets per second in Routers

further. The left picture in figure 23 shows the number of incoming Interest packet
of router 2, which should be equal to the number of outgoing Interest packets from
router 1, and the number of dropped Interest packets on this router. Since there
is no discarded Interest packet on the router 2, the only reason that can justify

39

0

1000

2000

3000

4000

5000

6000

7000

8000

1 6 11 16 21 26

Incoming Interests Vs. Dropped Interests

Incoming Interests Dropped Interests

0

1000

2000

3000

4000

5000

6000

7000

8000

1 6 11 16 21 26

Cache Hit rate

CacheHits CacheMisses

Time [Second]

N
u

m
b

e
r

o
f
p

a
c
k
e

ts
 p

e
r

s
e

c
o

n
d

Figure 23: Left: Number of Incoming Interests Vs. the number Dropped Interests
of Router 2, Right: Cache Hit ratio of the same router

aforementioned difference would be cache hits. The right picture shows that there
are a number of cache hits, specifically in the first round and also the period of time
between 21 - 26 seconds, that cause less outgoing Interest packets from Router 2 in
this period of time.

5.6.2 Bandwidth

The bandwidth of a communication link is generally characterized by its latency
and the number of bits that can be conveyed on the link in a certain period of
time [58]. Although in real network, bandwidth of a particular physical link is a
constant value, we needed to examine the role of this parameter on the network
congestion and particularly on the number of dropped packets. In this network
model, the same scenario with the same parameter values, but different bottleneck
bandwidth is carried out.
Figure 24 compares the number of transmitted data packets and dropped data in
both routers when the simulation run with its default values. As mentioned earlier,
the bottleneck bandwidth has the value of 10Mbps for all periods of time in a one
round of simulation, and we saw that by changing the Interest transmission rate
the number of dropped packets is altered accordingly. In the next simulation round,
we consider a hypothetical situation in which during every 5 second interval the
bottleneck bandwidth value is changed. As it can be seen in the figure 25, the
numbers of dropped data and forwarded data have been altered in accordance with
the values provided in the table 2. We applied the gathered data of this test, in
order to train our neural network algorithm as precise as possible.

40

0

2000

4000

6000

8000

10000

12000

1 6 11 16 21 26

Router 2
Dropped Data Packets Outgoing Data packets

N
u

m
b

e
r

o
f
p

a
c
k
e

ts
 p

e
r

s
e

c
o

n
d

Time [Second]

Figure 24: Comparing the number of outgoing data packets with the number of
dropped data packets on the bottleneck with constant link capacity

0

2000

4000

6000

8000

10000

12000

1 6 11 16 21 26

Router 2
Dropped Data Packets Outgoing Data packets

N
u

m
b

e
r

o
f
p

a
c
k
e

ts
 p

e
r

s
e

c
o

n
d

Time [Second]

Figure 25: Comparing the number of outgoing data packets with the number of
dropped data packets on the bottleneck with variable link capacity

5.6.3 Latency

In accordance with a definition of Round Trip delay or Round-Trip Time(RTT) pro-
vided in [58], we can apply the similar concept to define RTT for CCN networks.

41

The time that an Interest packet spends in travelling across the NDN network to
retrieve the corresponding data is called Round-Trip Delay. Due to caching charac-
teristic of NDN network, data packet can be retrieved from every node including,
a data provider across the globe, or even from the next router. Therefore, in this
data centric networking heterogeneous RTTs need to be considered predominantly.
Figure 26 projects that when the latency becomes sufficiently high according to the
table 2, the number of dropped packets will be increased drastically.

0

2000

4000

6000

8000

10000

12000

1 6 11 16 21 26

Router 2
Dropped Data Packets Outgoing Data packets

N
u

m
b

e
r

o
f
p

a
c
k
e

ts
 p

e
r

s
e

c
o

n
d

Time [Second]

Figure 26: Comparing the number of outgoing data packets with the number of
dropped data packets on the bottleneck with variable link delay

We used the values provided in table 2 to show that how significant role the
link delay might play. By comparing figure 24 which shows the number of dropped
packets based on default values and figure 26 which depicts the same parameters
with new values, we can understand the impact of link delay or propagation delay
on the packet loss rate more intuitively.

5.6.4 Queue length

Each queue has a limit on the number of packets that the router can place onto
the queue. This limit is referred to as the queue length. During periods of high
traffic, a queue fills with packets waiting for transmission. When a queue reaches
its queue limit and becomes full, by default the router drops packets until the queue
is no longer full. Accordingly, the long queue length allows the queue to keep many
packets during congestion.
The queue length of routers in ndnSIM is user-configurable. In this section, we run

42

simulator with default parameter values, but different queue length for bottleneck
routers to demonstrate the effect of this limit on number of dropped packets. It can
be seen in figure 27 that when the queue length of router is larger 100 times, the
number of dropped data packets is drastically increased.

0

2000

4000

6000

8000

10000

12000

1 6 11 16 21 26

Router 2
Dropped Data Packets Outgoing Data Packets

N
u

m
b

e
r

o
f
p

a
c
k
e

ts
 p

e
r

s
e

c
o

n
d

Time [Second]

Figure 27: Comparing the number of outgoing data packets with the number of
dropped data packets on the bottleneck with Queue length = 1000 packets

5.6.5 Content Store size and Caching policies

As mentioned in the section 2.4, each router on the CCN is equipped with a buffer
memory called content store that has the the ability to cache data. Therefore,
content store size can play a crucial role in controlling number of packet drops due
to buffer overflow. Figure 28 compares the number of packet drops when the size
of CS varies according to the design range value presented in table 1. It can be
observed that by increasing the size of content store the number of dropped data
packets are decreased accordingly.

On the other hand, sets of rules that manage the order of discarding packets are
important features of any buffer memory. Caching strategies of the content stores
determine in which order new incoming data packets should replace the already
cached data. Caching strategy also, needs to track the content request rate at end
nodes to measure the popularity of an object, and adapts the caching decision to
better accordingly. Since designing efficient caching schemes for the NDN nodes is
still under investigation and is out of the scope of this thesis, we decided to merely
consider LRU caching replacement policies explained in section 2.3.1.

43

0

2000

4000

6000

8000

10000

12000

14000

1 6 11 16 21 26

Dropped Data packets on Router 2
Outgoing Data packets CS size = 100 packets CS size = 1000 packets

N
u

m
b

e
r

o
f
p

a
c
k
e

ts
 p

e
r

s
e

c
o

n
d

Time [Second]

Figure 28: Content Store with 1000, 100 and 10 packets size

5.6.6 Data popularity

Content store replicates passing contents to serve the subsequent requests without
the need of forwarding them to their source servers. The popularity of an object and
caching policies are complementary parameters for every data centric networking.
One of the other effective parameter that required consideration was the popularity
of content and its effects on the network congestion. The noticed network model ex-
amined both the situation that all the data requesters send Interest to request very
popular data (like a YouTube video), and a condition of requesting different and
unique Interest packets. Figure 29 and 30 illustrate caching trace of content stores
embedded in the routers and underline the difference between those mentioned sit-
uations.
Figure 29 shows that when requesters send unique Interest in every single time in-
stance, there is almost no Cache Miss in both routers. It is worth to remind that a
cache miss, generally, is when requested data cannot be satisfied from the cache and
the data has to be retransmitted from its original data provider. The Cache Hit on
the other hand, occurs when the request can be served by simply reading the cache.
It can be observed that in the popular data scenario shown in the figure 30 both
routers hit their caches frequently. In subsequent sections we will describe that how
an appropriate learning paradigm of a neural network can benefit from this infor-
mation and also other data gathered by the routers.

44

0

2000

4000

6000

8000

10000

12000

14000

1 6 11 16 21 26

Router 2
CacheHits CacheMisses

0

2000

4000

6000

8000

10000

12000

14000

1 6 11 16 21 26

Router 1
CacheHits CaheMisses

N
u

m
b

e
r

Time [Second]

Figure 29: Cache Tracer of the scenario with different Interest packets

0

2000

4000

6000

8000

10000

12000

14000

1 6 11 16 21 26

Router 2
CacheHits CacheMisses

0

2000

4000

6000

8000

10000

12000

14000

1 6 11 16 21 26

Router 1
CacheHits CacheMisses

N
u

m
b

e
r

Time [Second]

Figure 30: Cache Tracer of the scenario with popular data packet

5.6.7 PIT size PIT entry pruning timeout

PIT brings CCN many significant features [57], including detecting packet loss
by keeping track of unsatisfied (timedout) Interests. The PIT size(the number of

45

pending Interests) is a crucial parameter which can have a huge impact on the
number of both satisfied and timedout Interests, and consequently on the number
of packet losses.
One of the major features of CCN architecture that can contribute to routers to have
prior knowledge about incoming data packets is its unique routing and forwarding
algorithm. Since a Data packet follows the reverse path of the corresponding Interest
packet thanks to the PIT, CCN routers can manage traffic load through managing
the PIT size. Moreover, having benefit from this forwarding packet strategy, a router
is also guaranteed to observe whether a forwarded Interest is resulted in matching
data or triggers PIT timer expiry.
Figure 31 compares the number of dropped data packets while PIT size is larger 10
times. It can be observed that when PIT size grows the second router is overloaded
by incoming data traffic from any specific producer.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 6 11 16 21 26

PIT = 10000 Entries
Dropped Data Packets

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 6 11 16 21 26

PIT = 1000 Entries
Outgoing Data packets

N
u

m
b

e
r

o
f
p

a
c
k
e

ts
 p

e
r

s
e

c
o

n
d

Time [Second]

Figure 31: Comparison between the number of dropped data packets while PIT size
becomes 10 times larger

As discussed in the section 2.3.2, each PIT entry records the name and incoming
interfaces of every forwarded Interest packet, waiting for the matching Data packet
to return. A router inserts every incoming Interest into PIT, and for each received
corresponding Data packet removes its related PIT entry. PIT entry can be imme-
diately removed (by default), or scheduled for removal within a short time interval.
In ndnSIM there is a setting by which it is possible to set a different timer called
PitEntryPruningTimout for PIT entry to live after being satisfied. The rationale
behind this setting is, to assure recently satisfied interest will not be satisfied again.

46

In order to further clarify the role of this timer, consider the network simulation
scenario once again. In this network model when the second router, adjacent to
the Producers, receives the first packet, it will forward it to the consumer and re-
move the PIT entry immediately (PitEntryPruningTimout = 0). In this case, when
the second content object arrives to the router from another Producer, it will be
discarded due to being deemed as an unsolicited data packet. On the other hand,
non-zero pruning time will prevent new Interest packets to be accepted, potentially
resulting in more Timedout Interest packets. If an Interest is not responded by a
matching data packet beyond a time threshold, it will be considered as a Timedout
Interest.

5.6.8 Other settings

So far, we have considered almost all the important sets of input parameters that
can have effects on network congestion in a NDN simulation scenario. The param-
eters discussed earlier can lead us to better understanding of NDN congestion and
consequently to more precise conclusion. However, there are also other parameters
including data payload size, memory access frequency, and number of complexity of
both senders and routers which have not been taken into account.
Memory access frequency among them, is a constraint of any abstract network model
and obviously cannot be examined. Other parameters will be considered either ex-
plicitly or implicitly in subsequent sections, but in order to avoid prolonging the
first section of our experimental study it would be wise to postpone them for later
consideration.
Traffic load(Interest transmission rate), bandwidth, link delay, Queue Length, num-
ber of Cache hits, number of Cache misses, CS size, PIT size, and finally, number of
satisfied Interest packets were the parameters in input layer to train neural network
as precise as possible.

5.7 Neural Network results

In order to select an optimal neural network architecture, it is necessary to ad-
dress which, and how issues. It simply means providing an adequate rationale be-
hind choosing specific training parameters, and training patterns. Having discussed
the influence of training parameters, we need to provide an overview of training
paradigms examined in this thesis and compare their delivered results.
In this section first, we provide a brief background knowledge about the neural net-
work training algorithms applied in this thesis, and then the comparison among
delivered results in predicting the number of packet drops based on datasets pro-
duced in default values. It is worth mentioning that, the following sections merely
discuss the efficiency of these algorithms and finally choose the best one for further
investigation. The neural network results with new and unseen datasets will be
provided in the next chapter.

47

5.7.1 Back Propagation algorithm

A multilayer perceptron (MLP) as a feedforward artificial neural network model that
maps sets of input data onto a set of appropriate outputs is used to utilize super-
vised learning technique called backpropagation for training the network. The Back
Propagation algorithm, an abbreviation for ”backward propagation of errors”, uses
the feedforward (see Section 4.3) topology, and is the most widely used algorithm
for the supervised learning paradigm.
The neural network is trained with input data for which some desired output is
known. The difference between the actual neural network output and the desired
output is called an error. The error back-propagation algorithm then uses this error
information to find the gradient of the network error function, with respect to the
weights for a given input by propagating the error backwards [59]. It simply means
that, the algorithm computes the combination of weights (see Section 4.2) which
minimizes the error function in order to solve the learning problem.
The backpropagation algorithm looks for the minimum of the error function in
weight space using the method of gradient descent. In this thesis work, we ap-
plied four different backpropagation algorithms (Gradient descent backpropaga-
tion, Gradient descent with adaptive learning rate backpropagation, Levenberg-
Marquardt Learning Algorithm, Conjugate gradient backpropagation with Powell-
Beale restarts). We then compared their results to define which one will best suit
to our desired congestion control algorithm. All these algorithms, try to find the
minimum of error function with using their specific method. Since comprehending
the whole concept of these algorithms needs a vast background knowledge, we refer
the readers to [52], [53], [60], and [61] for detailed explanations of rationales
behind them.

5.7.2 Performance Validation

As it was described earlier, the learning process is carried out through iterative
changes in the synaptic weights and biases, in accordance with some learning rules.
Each of these iterations is often referred to as an epoch. The important question is
that when the learning process should be paused in order to avoid overfitting. Of
most interest are the performance, the magnitude of the gradient of performance,
the number of validation checks and maximum number of epochs.
However, the magnitude of the gradient and the number of validation checks are
used to terminate the training, we used maximum number of epochs for our purpose
.It is another way to stop the process of learning in training the neural network by
assigning the number of epochs that learning process continues after validation error
has been reached to its minimum.
In order to reach to the best generalization point the training process should be
stopped in the minimum of the validation set error. When learning is not stopped,
overtraining occurs and the performance of the network on the whole data decreases,
even if the error on the training and test data still become smaller. Figure 32 plots
performance progress of the four training algorithms. It indicates the iteration at
which the validation performance reached a minimum error. The training continued

48

for 30(the limit is adjusted manually) more epochs before the training stopped.
It shows also that the validation and test curves for all algorithms are reasonably
similar. If the test curve had increased significantly before the validation curve
increased, then it is possible that some overfitting might have occurred. It can be
seen in the 32(b) that around epoch 134, the network learns the final data point or
points in the training set, and its error drops close to its minimum. Although errors
for both train and test data decrease further at this point, validation error keeps
declining in the next 30 epochs.

0 50 100 150 200
10

−5

10
−4

10
−3

10
−2

10
−1

Best Validation Performance is 8.6968e−05 at epoch 198

M
ea

n
S

qu
ar

ed
 E

rr
or

 (
m

se
)

228 Epochs

Train
Validation
Test
Best

(a) Conjugate Gradient

0 20 40 60 80 100 120 140 160
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Best Validation Performance is 3.8693e−06 at epoch 134

M
ea

n
S

qu
ar

ed
 E

rr
or

 (
m

se
)

164 Epochs

Train
Validation
Test
Best

(b) Levenberg-Marquardt

0 500 1000 1500
10

−3

10
−2

10
−1

Best Validation Performance is 0.0063574 at epoch 1500

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

 (
m

se
)

1500 Epochs

Train
Validation
Test
Best

(c) Gradient descent

0 500 1000 1500
10

−4

10
−3

10
−2

10
−1

Best Validation Performance is 0.0001263 at epoch 1480

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

 (
m

se
)

1500 Epochs

Train
Validation
Test
Best

(d) Gradient descent with adaptive learning rate

Figure 32: Error development of a training, test, and a validation set. Note that the
Y axis ranges are different; This figure compares MSE of train, validation, and test
data sets of different algorithms separately, and shows the epoch number at which
each particular algorithm has terminated the learning process.

49

5.7.3 Error histogram

A histogram is ”a representation of a frequency distribution by means of rectangles
whose widths represent class intervals and whose areas are proportional to the corre-
sponding frequencies” [62]. The error histogram is used to interpret how reasonable
is to assume that the random errors inherent in the process have been collected
from a normal distribution. The normality assumption is needed for the error rates
we are willing to accept when making decisions about the process to indicate the
reliability of an estimate.

0

20

40

60

80

100

120

Error Histogram with 20 Bins

In
st

an
ce

s

Errors = Targets − Outputs

−
0.

04
20

1

−
0.

03
72

−
0.

03
24

−
0.

02
76

−
0.

02
27

9

−
0.

01
79

9

−
0.

01
31

9

−
0.

00
83

8

−
0.

00
35

8

0.
00

12
23

0.
00

60
26

0.
01

08
3

0.
01

56
3

0.
02

04
4

0.
02

52
4

0.
03

00
4

0.
03

48
5

0.
03

96
5

0.
04

44
5

0.
04

92
5

Training
Validation
Test
Zero Error

(a) Conjugate Gradient

0

20

40

60

80

100

120

140

160

Error Histogram with 20 Bins

In
st

an
ce

s

Errors = Targets − Outputs

−
0.

02
49

−
0.

02
19

−
0.

01
89

1

−
0.

01
59

2

−
0.

01
29

3

−
0.

00
99

3

−
0.

00
69

4

−
0.

00
39

5

−
0.

00
09

5

0.
00

20
39

0.
00

50
32

0.
00

80
25

0.
01

10
2

0.
01

40
1

0.
01

7

0.
02

0.
02

29
9

0.
02

59
8

0.
02

89
8

0.
03

19
7

Training
Validation
Test
Zero Error

(b) Levenberg-Marquardt

0

5

10

15

20

25

30

35

40

45

50

Error Histogram with 20 Bins

In
st

an
ce

s

Errors = Targets − Outputs

−
0.

08
95

6

−
0.

07
07

3

−
0.

05
19

1

−
0.

03
30

8

−
0.

01
42

6

0.
00

45
67

0.
02

33
9

0.
04

22
2

0.
06

10
4

0.
07

98
6

0.
09

86
9

0.
11

75

0.
13

63

0.
15

52

0.
17

4

0.
19

28

0.
21

16

0.
23

05

0.
24

93

0.
26

81

Training
Validation
Test
Zero Error

(c) Gradient descent

0

10

20

30

40

50

60

70

Error Histogram with 20 Bins

In
st

an
ce

s

Errors = Targets − Outputs

−
0.

03
91

6

−
0.

03
42

7

−
0.

02
93

8

−
0.

02
44

9

−
0.

01
95

9

−
0.

01
47

−
0.

00
98

1

−
0.

00
49

2

−
2.

8e
−

05

0.
00

48
63

0.
00

97
54

0.
01

46
5

0.
01

95
4

0.
02

44
3

0.
02

93
2

0.
03

42
1

0.
03

91

0.
04

39
9

0.
04

88
9

0.
05

37
8

Training
Validation
Test
Zero Error

(d) Gradient descent with adaptive learning rate

Figure 33: Error Histogram

The most common form of the histogram is obtained by splitting the range of the
data (error in our particular purpose) into equal-sized bins for which the number of

50

points from the data set that fall into each class (bin) are counted. Figure 33 graph-
ically summarizes the distribution of errors in four mentioned training algorithms.
Conjugate Gradient and Levenberg-Marquardt seem to have more reasonable error
histograms. They do not appear to be significant outliers in the tails, and they imply
sensibility of supposing that the data are from approximately a normal distribution.

5.7.4 Predictor accuracy

The Mean Squared Error (MSE) and Root Mean Square Error (RMSE) are arguably
the most important criterion used to assess the goodness of a predictor or an esti-
mator in terms of the relative magnitude of its bias and variance [62]. An MSE of
zero, meaning that the estimator predicts observations of the parameter with per-
fect accuracy. Generally, this measure aggregates bias and precision to evaluate how
close an estimator is to the parameter it is predicting. The RMSE is just the square
root of the mean square error and is directly interpretable in terms of measurement
units to measure the goodness of prediction.
Results shown in figures 34 and 35 are in order MSE and RMSE at the top, the
normalized target and output values at the middle, computed standard deviation
and mean error at the bottom for train, validation, test datasets separately and the
whole data sets totally. By considering all plots, it can be concluded that Levenberg-
Marquardt algorithm delivers more reliable results in terms of error measurement,
and fits target and output data more accurately. These four plots prove that this
specific algorithm is capable of predicting the number of packet drops in similar
scenarios.

5.7.5 Correlation between Target and Output data

Regression is a data mining function that predicts a number. Regression models
are tested by computing various statistics that measure the difference between the
predicted values and the expected values. This metric is used to estimate how
accurately the model predicts these known values. The regression has been projected
in figure 36 for train, validation and test data both individually and totally. Based
on all statistical analysis, performance of the Levenberg-Marquardt technique is the
most suitable for our purpose and meets the router requirements to be able to predict
the congestion situation of every link in the future time instance.

51

0 20 40 60 80 100 120 140 160
−0.05

0

0.05
Train Data, MSE = 3.9506e−05, RMSE = 0.0062854

Error

0 20 40 60 80 100 120 140 160
−0.5

0

0.5
Target vs. Output

Target
Output

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

20

40
µ = −0.00011004, σ = 0.0063052

0 5 10 15 20 25 30 35
−0.1

0

0.1
Validation Data, MSE = 8.6968e−05, RMSE = 0.0093257

Error

0 5 10 15 20 25 30 35
−0.2

0

0.2
Target vs. Output

Target
Output

−0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
0

5

10
µ = 0.0016514, σ = 0.0093206

(a) Conjugate Gradient

0 20 40 60 80 100 120 140 160
−0.05

0

0.05
Train Data, MSE = 1.081e−05, RMSE = 0.0032879

Error

0 20 40 60 80 100 120 140 160
−0.5

0

0.5
Target vs. Output

Target
Output

−0.01 0 0.01 0.02 0.03
0

50

100
µ = 1.1734e−06, σ = 0.0032987

0 5 10 15 20 25 30 35
−0.01

0

0.01
Validation Data, MSE = 3.8693e−06, RMSE = 0.0019671

Error

0 5 10 15 20 25 30 35
−0.5

0

0.5
Target vs. Output

Target
Output

−6 −4 −2 0 2 4 6 8

x 10
−3

0

5

10
µ = 0.0006366, σ = 0.0018901

(b) Levenberg-Marquardt

0 20 40 60 80 100 120 140 160
−0.5

0

0.5
Train Data, MSE = 0.0028174, RMSE = 0.053079

Error

0 20 40 60 80 100 120 140 160
−0.5

0

0.5
Target vs. Output

Target
Output

−0.2 −0.1 0 0.1 0.2 0.3
0

10

20
µ = 0.0013148, σ = 0.053238

0 5 10 15 20 25 30 35
−0.5

0

0.5
Validation Data, MSE = 0.0063574, RMSE = 0.079733

Error

0 5 10 15 20 25 30 35
−0.5

0

0.5
Target vs. Output

Target
Output

−0.2 −0.1 0 0.1 0.2 0.3
0

2

4
µ = 0.031605, σ = 0.074337

(c) Gradient descent

0 20 40 60 80 100 120 140 160
−0.1

0

0.1
Train Data, MSE = 0.0001364, RMSE = 0.011679

Error

0 20 40 60 80 100 120 140 160
−0.5

0

0.5
Target vs. Output

Target
Output

−0.04 −0.02 0 0.02 0.04 0.06
0

20

40
µ = −0.0023726, σ = 0.011473

0 5 10 15 20 25 30 35
−0.05

0

0.05
Validation Data, MSE = 0.0001263, RMSE = 0.011238

Error

0 5 10 15 20 25 30 35
−0.5

0

0.5
Target vs. Output

Target
Output

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

5
µ = 9.8482e−05, σ = 0.011412

(d) Gradient descent with adaptive learning rate

Figure 34: Train and Validation

52

0 5 10 15 20 25 30 35
−0.05

0

0.05
Test Data, MSE = 0.00017524, RMSE = 0.013238

Error

0 5 10 15 20 25 30 35
−0.5

0

0.5
Target vs. Output

Target
Output

−0.05 0 0.05
0

5

10
µ = −0.00036895, σ = 0.013438

0 50 100 150 200 250
−0.1

0

0.1
All Data, MSE = 6.7237e−05, RMSE = 0.0081998

Error

0 50 100 150 200 250
−0.5

0

0.5
Target vs. Output

 Target
Output

−0.06 −0.04 −0.02 0 0.02 0.04 0.06
0

50

100
µ = 0.00011741, σ = 0.0082179

(a) Conjugate Gradient

0 5 10 15 20 25 30 35
−0.05

0

0.05
Test Data, MSE = 4.5375e−05, RMSE = 0.0067361

Error

0 5 10 15 20 25 30 35
−0.5

0

0.5
Target vs. Output

Target
Output

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02
0

10

20
µ = −0.0020762, σ = 0.0065075

0 50 100 150 200 250
−0.05

0

0.05
All Data, MSE = 1.4992e−05, RMSE = 0.0038719

Error

0 50 100 150 200 250
−0.5

0

0.5
Target vs. Output

Target
Output

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

100

200
µ = −0.0002171, σ = 0.0038747

(b) Levenberg-Marquardt

0 5 10 15 20 25 30 35
−0.5

0

0.5
Test Data, MSE = 0.0042372, RMSE = 0.065094

Error

0 5 10 15 20 25 30 35
−0.5

0

0.5
Target vs. Output

Target
Output

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

5

10
µ = 0.0068887, σ = 0.065732

0 50 100 150 200 250
−0.5

0

0.5
All Data, MSE = 0.0035682, RMSE = 0.059734

Error

0 50 100 150 200 250
−0.5

0

0.5
Target vs. Output

Target
Output

−0.2 −0.1 0 0.1 0.2 0.3
0

20

40
µ = 0.0067438, σ = 0.059489

(c) Gradient descent

0 5 10 15 20 25 30 35
−0.05

0

0.05
Test Data, MSE = 0.00013927, RMSE = 0.011801

Error

0 5 10 15 20 25 30 35
−0.5

0

0.5
Target vs. Output

Target
Output

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

2

4
µ = −0.0036677, σ = 0.011391

0 50 100 150 200 250
−0.1

0

0.1
All Data, MSE = 0.0001353, RMSE = 0.011632

Error

0 50 100 150 200 250
−0.5

0

0.5
Target vs. Output

Target
Output

−0.06 −0.04 −0.02 0 0.02 0.04 0.06
0

20

40
µ = −0.0021946, σ = 0.011449

(d) Gradient descent with adaptive learning rate

Figure 35: Test and All data

53

0 0.05 0.1 0.15 0.2

0

0.05

0.1

0.15

0.2

Target

O
u

tp
u

t
~

=
 0

.9
9

*T
a

rg
e

t
+

 0
.0

0
0

4
4

Training: R=0.99451

Data
Fit
Y = T

0 0.05 0.1 0.15 0.2

0

0.05

0.1

0.15

0.2

Target
O

u
tp

u
t

~
=

 0
.9

8
*T

a
rg

e
t

+
 −

0
.0

0
1

2

Validation: R=0.97503

Data
Fit
Y = T

0 0.05 0.1 0.15 0.2

0

0.05

0.1

0.15

0.2

Target

O
u

tp
u

t
~

=
 1

*T
a

rg
e

t
+

 −
0

.0
0

0
6

Test: R=0.98457

Data
Fit
Y = T

0 0.05 0.1 0.15 0.2

0

0.05

0.1

0.15

0.2

Target

O
u

tp
u

t
~

=
 1

*T
a

rg
e

t
+

 −
7

.5
e

−
0

6

All: R=0.99077

Data
Fit
Y = T

(a) Conjugate Gradient

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

Target

O
u

tp
u

t
~

=
 1

*T
a

rg
e

t
+

 9
.4

e
−

0
5

Training: R=0.99847

Data
Fit
Y = T

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

Target

O
u

tp
u

t
~

=
 0

.9
9

*T
a

rg
e

t
+

 −
0

.0
0

0
2

1

Validation: R=0.99967

Data
Fit
Y = T

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

Target

O
u

tp
u

t
~

=
 1

*T
a

rg
e

t
+

 0
.0

0
1

2

Test: R=0.99421

Data
Fit
Y = T

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

Target

O
u

tp
u

t
~

=
 1

*T
a

rg
e

t
+

 0
.0

0
0

2
4

All: R=0.99794

Data
Fit
Y = T

(b) Levenberg-Marquardt

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

Target

O
u

tp
u

t
~

=
 1

.3
*T

a
rg

e
t

+
 −

0
.0

0
9

4

Training: R=0.83322

Data
Fit
Y = T

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

Target

O
u

tp
u

t
~

=
 1

.4
*T

a
rg

e
t

+
 −

0
.0

4
2

Validation: R=0.75083

Data
Fit
Y = T

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

Target

O
u

tp
u

t
~

=
 1

.1
*T

a
rg

e
t

+
 −

0
.0

1
1

Test: R=0.73034

Data
Fit
Y = T

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

Target

O
u

tp
u

t
~

=
 1

.3
*T

a
rg

e
t

+
 −

0
.0

1
5

All: R=0.79833

Data
Fit
Y = T

(c) Gradient descent

0 0.05 0.1 0.15 0.2

0

0.05

0.1

0.15

0.2

Target

O
u

tp
u

t
~

=
 0

.9
6

*T
a

rg
e

t
+

 0
.0

0
3

6

Training: R=0.9815

Data
Fit
Y = T

0 0.05 0.1 0.15 0.2

0

0.05

0.1

0.15

0.2

Target

O
u

tp
u

t
~

=
 0

.9
4

*T
a

rg
e

t
+

 0
.0

0
2

3

Validation: R=0.98733

Data
Fit
Y = T

0 0.05 0.1 0.15 0.2

0

0.05

0.1

0.15

0.2

Target

O
u

tp
u

t
~

=
 0

.9
9

*T
a

rg
e

t
+

 0
.0

0
3

9

Test: R=0.97571

Data
Fit
Y = T

0 0.05 0.1 0.15 0.2

0

0.05

0.1

0.15

0.2

Target

O
u

tp
u

t
~

=
 0

.9
6

*T
a

rg
e

t
+

 0
.0

0
3

5

All: R=0.98181

Data
Fit
Y = T

(d) Gradient descent with adaptive learning rate

Figure 36: Regression

54

5.8 Summary

In this chapter, first, we discussed the important parameters that can affect the
congestion of NDN network. Then, we explained their possible impacts on the
network and collected them to build input dataset for desired neural network. In
the next section, the neural network design and four different algorithms applied in
this thesis described and their results compared.
Having considered the results of neural networks in the last section of this chapter
we came to conclusion that Levenberg-Marquardt is the best suitable algorithm to
be applied for our purposes. In the next chapter we will describe how we have
applied our neural network model to the different NDN scenarios and prove that the
proposed congestion control algorithm for these networks.

55

6 Evaluation

Chapter 5 described the design and implementation of our neural network scheme
for predicting the number of dropped data packets in every attached face of NDN
routers. In this chapter, we evaluate the behaviour of our already trained neural
network through different network scenarios as well as performance measurements
in congested bottleneck. This chapter illustrates the effectiveness of the proposed
technique to control congestion in content centric networking and in a broad sense
in Information centric networking.
In the first section we describe the proposed congestion algorithm producing some
results of the simulation run. We, then turn to solidify the accuracy of trained
neural network by providing different network topologies and comparing theirs be-
haviours with and without neural network in routers. In the last part of this chapter
we implement the neural network algorithm in the first scenario and measures its
throughput and packet drop rate which are the most important metrics for assessing
the efficiency of any congestion control algorithm.

6.1 Congestion control algorithm

In chapter 3 we provided the background about congestion in computer networking,
and described the most important congestion control algorithms both in traditional
IP networks and in the Information Centric Networking focusing on CCN. We came
to the conclusion that, since CCN communication model does inherently differ from
flow-based end-to-end model of the current Internet, we need to have an algorithm
that is capable of early detection of congested links based on collected data in
routers.
In this thesis, a neural network algorithm is implemented in each CCN router to
decompose data gathered from its local environment (PIT, CS and Faces) in order
to early detect of congestion. Based on the output of a trained neural network,
router is able to predict the probability of congestion based on queue overflow in
the next time instance.
Queue overflow occurs when an output link from a node has a load factor that ex-
ceeds 1.0. That is, data is arriving at the queue for the link faster than it can be
transmitted. As a result, queue length grows until there is no more space in the
queue. At that time, a node has no choice but to discard a packet. As mentioned
earlier, an equipped neural network router can predict the number of data packets
that are going to be discarded due to overflow in each face. The main idea is rooted
from the fact that every data packet in CCN network follows the reverse route along
which corresponding Interest packet has already travelled.
Neural network will deliver the predicted number of dropped packets for every time
instance. This number can provide the probability of link congestion by dividing
it to the whole number of outgoing data packet in every interface as shown in the
equation 5. It is worth highlighting that, we apply the packet loss as a manifestation
for congestion in content centric networking.

56

P = D/(I + D) (5)

where P is the probability of discarding data packets; D is the number of dropped
packets, and I is the number of successfully received data packets. At this stage,
router sends a notification to downstream nodes to adapt their Interest transmission
rate in accordance with the value of P .
Figure 37 depicts signalling between two routers attached to a bottleneck. Once
NN calculates packet drop probability in Router2, it sends back a packet trans-
mission rate packet to its downstream node shown as Router1. Downstream node
then, decreases its Interest transmission rate according to the probability of conges-
tion predicted by neural network. This process continues until NN output reaches
zero which means any Interest will be sent successfully in the next time instance.
From this point, congestion control transits to a new phase which is similar to TCP
congestion control slow start. In this stage, every time that Router1 receives zero
percent shaping rate, it will increase transmission rate exponentially as it it is shown
in the figure.

NN

80%

15%

0%

0%

0%

R

R = R20%

R = R85%

R = R +R1%

R = R +R2%

R = R +R4%

R = R +R8% 0%

60%

R = R40%

Interest
Shaping

Figure 37: Shaping Interest rate signalling

The shaping rate notification implies that the transmission rate of each node is
based on the value that is delivered from the upstream nodes. For instance in the
mentioned scenario the Interest transmission rate of the first router is adapted at any
time instance by the received shaping rate sent back from the second router. The
table 3 applies the equation 5 to modify the Interest transmission rate of the first

57

Table 3: Transmission rate for Router 1

Time
Instance

Transmission
rate(Packet/second)

Probability of dropped
data packets

Shaping
rate

Modified rate for the
next time instance

3 2078 43% 57% 1184

8 2986 61% 39% 1164

13 3093 62% 38% 1175

18 2324 49% 51% 1185

23 1282 01% 99% 1269

28 2155 83% 17% 1185

router based on the probability of discarded data packets assessed by the trained
neural network. It can be seen that the Interest transmission rate of the first router
is being modified by the shaping rate notifications sent by the second router. It
is worth to highlight that the traffic load is assumed to be constant for the time
intervals of five seconds. This is due to the fact that the simulation environment is
not capable of responding to the sudden traffic load fluctuations immediately.
It is important to clarify that, the thesis does not take into account the influence of
sending shaping rate notification to downstream nodes on congestion of the network.
Therefore, the question of how fast the rate notifications need to be sent back remains
as a future area of study.

6.2 Neural Network validation

Having established training method and concluded to the sensible result in the pre-
vious chapter, it is necessary to determine how well our trained neural network per-
forms in detecting packet loss rate with unseen datasets. Multi layered perception
with Levenberg-Marquardt backpropagation algorithm leaded to the best results
among the other neural network techniques. In this step we run the three different
dumbbell topology scenarios within design range, but with absolutely new combina-
tions of discussed metrics. The new test datasets are provided to the neural network
to determine how accurately it can predict the number of dropped data packets on
the bottleneck of the dumbbell topology applying new simulation settings.

58

6.2.1 Validation scenarios

In this section we introduce three different networking models used to test the ac-
curacy of the neural network in predicting the number of data packets. The very
first topology that we consider in this section is, the baseline topology which is the
simplest form of the mentioned dumbbell topology.

Router 1 Router 2Consumer Producer

Figure 38: The Baseline topology

Consumer 1

Router 1 Router 2

Producer 1

Producer 3

Producer 2

Consumer 3

Consumer 2

Figure 39: The dumbbell topology with three flows on the two ends of bottleneck
link

In the baseline scenario shown in figure 38, consumer(Src1) at the left side of
the network transmits interests through the routers(Router1 and Router2) for the
contents served at the provider(Dst1). Content payload size is fixed at 1024B and
the interest size is 24B (which gradually increases to 28B due to the increasing num-
ber of digits in the content name: /datapacket/1, /datapacket/2, ...). It is worth

59

mentioning that the payload size of both Interest and Data packets will be kept
constant for all the other networking models.
The next scenario illustrated in figure 39 is the dumbbell topology with three con-
sumers and three providers. This networking model studies the new settings of the
exact topology that we presented earlier in the chapter 5 to analyse the roles that
different metrics play to alter the number of dropped data packets on the bottleneck.
As it can be observed in this figure, packet drop event occurs on the right side of
the bottleneck link where the second router is struggling to put the data packets to
the bottleneck link. Therefore, the term packet drop in this thesis work refers to
the number of discarded data packets on the router 2.
The last networking scenario that we consider in this thesis is the scenario depicted
in figure 40 with the same dumbbell topology, but with nine flows at both ends of
bottleneck link. This scenario is designed to solidify that the neural network can
perform its task regardless of number of data flows attached to the bottleneck.

Consumer 1

Router 1 Router 2

Producer 1

Producer 9

Producer 2

Consumer 9

Consumer 2

Figure 40: The dumbbell topology with nine flows on the two ends of bottleneck
links

6.2.2 Validation results

The effectiveness of neural network can be measured using the accuracy of a predictor
refers to how well a given predictor can guess the value of the predicted attribute
for new or previously unseen data. In this section we provide some graphs to prove
that trained neural network can predict the number of dropped data packets with
high accuracy.

60

0 5 10 15 20 25 30
−2

0

2
Test Data, MSE = 0.0010644, RMSE = 0.032624

Error

0 5 10 15 20 25 30
−2

0

2
Target vs. Output

Target
Output

−0.05 0 0.05 0.1
0

2

4
µ = 0.014393, σ = 0.029778

Figure 41: measured Error at top, normalized target and output between -1 and 1
at the middle , and error histogram at the bottom when the test data is gathered
from the baseline topology

0 10 20 30 40 50 60
−2

0

2
Test Data, MSE = 0.0030336, RMSE = 0.055078

Error

0 10 20 30 40 50 60
−2

0

2
Target vs. Output

Target
Output

−0.2 −0.1 0 0.1 0.2 0.3
0

10

20
µ = 0.0072701, σ = 0.055057

Figure 42: measured Error at top, normalized target and output between -1 and 1
at the middle , and error histogram at the bottom when the test data is gathered
from the dumbbell topology with three flows

61

0 10 20 30 40 50 60
−2

0

2
Test Data, MSE = 0.0032364, RMSE = 0.05689

Error

0 10 20 30 40 50 60
−2

0

2
Target vs. Output

Target
Output

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

10

20
µ = −0.020404, σ = 0.053553

Figure 43: measured Error at top, normalized target and output between -1 and 1
at the middle , and error histogram at the bottom when the test data is gathered
from the dumbbell topology with nine flows

Figures 41, 42, and 43 depict the correlation between the actual number of
dropped packets(target) and the predicted number of dropped packets(output) con-
sidering the new networking scenarios as described in the last section. The pictures
show in order, the MSE and RMSE values at the top, the normalized target and
output values at the middle, and the error histogram at the bottom when the test
datasets alter with the gathered data from the mentioned scenarios.
Although increasing the number of flows attached to the bottleneck has reduced the
performance of the neural network and accordingly increased the MSE and RMSE
values, the error is still negligible. On the other hand, the large center peak of error
histogram graphs also indicates very small errors and implies that the output value
is adequately close to the targeted values.
Figures 44, 45, and 46 are regression models of the neural network when test datasets
differs in order from the baseline topology, the dumbbell topology with 3 flows and
with 9 flows. These graphs visualize that how well the predicted value fits the actual
output data and outlines the influence of increasing number of flows in predicting
number of dropped data packets. It can be observed that by increasing the intricacy
of the network topologies the accuracy of the predictor has been declined. However,
the results are still valuable for our purpose and the neural network congestion con-
trol measures will justify implementing this data mining predictor technique. In the
next section we will explain how we have gained benefit from the neural network
and provide the implemented congestion control measures.

62

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

Target

O
u

tp
u

t
~=

 0
.8

7*
T

ar
g

et
 +

 0
.0

07
1

Regression: R=0.94124

Data
Fit
Y = T

Figure 44: Correlation between target and output values when the test data is
gathered from the baseline topology

0 0.1 0.2 0.3 0.4

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Target

O
ut

pu
t ~

=
1.

1*
T

ar
ge

t +
 −

0.
01

7

Regression: R=0.90881

Data
Fit
Y = T

Figure 45: Correlation between target and output values when the test data is
gathered from the dumbbell topology with three flows

63

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Target

O
u

tp
u

t
~=

 1
*T

ar
g

et
 +

 0
.0

21

Regression: R=0.88678

Data
Fit
Y = T

Figure 46: Correlation between target and output values when the test data is
gathered from the dumbbell topology with nine flows

6.3 Simulation results

This part is dedicated to presentation of simulation results. We start by analysing
performance over the simple, classic single-bottleneck dumbbell topology described
in the previous chapter. Although it is simple and it does not model the richness
of real-world network paths, it gives a decent indication of behaviour of congestion
control algorithms. It is a valuable topology to investigate because in practice there
are many single-bottleneck paths experienced by any computer networking flows.
In this section we implemented the trained neural network in the bottleneck routers
and at every time instance modified the outgoing Interest rate according to the pre-
dicted dropped data packets. It should be considered that due to using simulation
environment we were able to alter the transmission rate without sending a notifi-
cation to the downstream nodes. It means that in these experiments we examine
the use of early detection in its ideal form where congestion notification is free and
causes no packet losses. However, In case of applying this technique in the real world
networking, we have to consider the influence of sending notification to downstream
nodes on congestion issue.

6.3.1 Interest transmission rate

This section depicts the Interest transmission rate of the first router when the pro-
posed congestion control algorithm has been implemented in the networking models.

64

O
u
tg

o
in

g
 I
n
te

re
s
t
ra

te
 o

f
R

o
u
te

r1
[P

a
c
k
e
t/
S

e
c
o
n
d
]

Time [Second]

0

1000

2000

3000

4000

5000

6000

1 6 11 16 21 26

Normal NDN Routers

0

1000

2000

3000

4000

5000

6000

1 6 11 16 21 26

Neural network equipped NDN routers

Figure 47: Outgoing Interest transmission rate comparison of the baseline topology
with and without congestion control algorithm

O
u
tg

o
in

g
 I
n
te

re
s
t
ra

te
 o

f
R

o
u
te

r1
[P

a
c
k
e
t/
S

e
c
o
n
d
]

Time [Second]

0

500

1000

1500

2000

2500

3000

3500

4000

1 6 11 16 21 26

Normal NDN Routers

0

500

1000

1500

2000

2500

3000

3500

4000

1 6 11 16 21 26

Neural network equipped NDN routers

Figure 48: Outgoing Interest transmission rate of the dumbbell topology with three
flows with and without congestion control algorithm

65

O
u
tg

o
in

g
 I
n
te

re
s
t
ra

te
 o

f
R

o
u
te

r1
[P

a
c
k
e
t/
S

e
c
o
n
d
]

Time [Second]

0

1000

2000

3000

4000

5000

6000

1 6 11 16 21 26

Normal NDN Routers

0

1000

2000

3000

4000

5000

6000

1 6 11 16 21 26

Neural network equipped NDN routers

Figure 49: Outgoing Interest transmission rate of the dumbbell topology with nine
flows with and without congestion control algorithm

Figures 47, 48, and 49 illustrate the discrepancy between the number of outgoing
Interest from the first router both in absence and presence of the neural network
rate adapter. It can be observed that regardless of the structure of the networking
scenarios, the neural network Interest adapter attempts to keep the transmission rate
in proximate of the full bottleneck utilization. On the other hand, by comparing the
graphs it is deducible that whenever there is a sudden change in the transmission
rate, the Interest rate adapter has some difficulties to adapt the rate close to its
optimum values. However, the adapter approaches to the desired value very soon.
It is worth to highlight again that due to having better understanding of the neural
network performance, we adopted an approach in which the Interest transmission
rate of the networking models alters in every five seconds.

6.3.2 Packet loss rate

As discussed earlier, one of the ultimate goals of every congestion control algorithm
is, to decrease the packet loss rate. However, this doesn’t mean that no packet loss
cannot guarantee the high performance of a congestion control scheme. We must
make sure that bottleneck link utilization also reaches a certain value. Figures 50,
51, and 52 compares the number of dropped data packets on the bottleneck for the
three mentioned scenarios when the neural network rate adapter has been imple-
mented with the condition that there is no congestion control algorithm adopted.

66

Time [Second]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 6 11 16 21 26

Normal NDN Routers

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 6 11 16 21 26

Neural network equipped NDN routers

N
u

m
b

e
r

o
f

d
ro

p
p
e

d
 d

a
ta

 p
a

c
k
e

ts

Figure 50: Drop rate Bottleneck comparison of the baseline topology with and
without congestion control algorithm

Time [Second]

0

500

1000

1500

2000

2500

1 6 11 16 21 26

Normal NDN Routers

0

500

1000

1500

2000

2500

1 6 11 16 21 26

Neural network equipped NDN routers

N
u

m
b

e
r

o
f

d
ro

p
p
e

d
 d

a
ta

 p
a

c
k
e

ts

Figure 51: Drop rate Bottleneck comparison of the dumbbell topology with three
with and without congestion control algorithm

67

Time [Second]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 6 11 16 21 26

Normal NDN Routers

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 6 11 16 21 26

Neural network equipped NDN routers

N
u

m
b

e
r

o
f

d
ro

p
p
e

d
 d

a
ta

 p
a

c
k
e

ts

Figure 52: Drop rate Bottleneck comparison of the dumbbell topology with nine
with and without congestion control algorithm

It can be seen that, by implementing the neural network rate adapter the num-
ber of dropped data packets has been drastically decreased and approached to zero.
However, it is observable that when there is more connections attached to the bottle-
neck the number of dropped data packets are not as satisfactory as we have tested
the simpler topologies. The reason for which this incident happens refers to the
fact that with nine flows attached to the bottleneck the neural network accuracy in
prediction is lower than other cases.

6.3.3 Throughput

The throughput is shown to verify the ability that the neural network can effectively
utilize the network capacity. Figure 53, 54, and 55 depict that in case of using no
data mining algorithm the bottleneck throughput is close to the theoretical value
which is 1250 Kilobyte per second for the bandwidth capacity of 10 Megabits per
second. It can be observed that when the number of active connection grows, the
throughput undergoes more fluctuations and it will be maintained under the desired
value which is 1250 Kilobytes per second.
By considering the packet drop rate graphs on one hand, and throughput on the
other hand it can be concluded that our proposed neural network based algorithm
has effectively controlled data congestion, and achieved near-optimal data through-
put with near-zero packet loss across all the test cases we have simulated considering
mentioned presumptions.

68

T
h

ro
u

g
h

p
u

t
[K

b
y
te

/s
]

Time [Second]

0

200

400

600

800

1000

1200

1400

1 6 11 16 21 26

Normal NDN Routers

0

200

400

600

800

1000

1200

1400

1 6 11 16 21 26

Neural network equipped NDN routers

Figure 53: Bottleneck throughput comparison of the baseline topology with and
without congestion control algorithm

T
h

ro
u

g
h

p
u

t
[K

b
y
te

/s
]

Time [Second]

0

200

400

600

800

1000

1200

1400

1 6 11 16 21 26

Normal NDN Routers

0

200

400

600

800

1000

1200

1400

1 6 11 16 21 26

Neural network equipped NDN routers

Figure 54: Bottleneck throughput comparison of the dumbbell topology with three
flows with and without congestion control algorithm

69

T
h

ro
u

g
h

p
u

t
[K

b
y
te

/s
]

Time [Second]

0

200

400

600

800

1000

1200

1400

1 6 11 16 21 26

Normal NDN Routers

0

200

400

600

800

1000

1200

1400

1 6 11 16 21 26

Neural network equipped NDN routers

Figure 55: Bottleneck throughput comparison of the dumbbell topology with nine
flows with and without congestion control algorithm

6.4 Summary

This chapter presented the proposed congestion control algorithm and provided some
measures of to demonstrate its proficiency in control of congestion in content centric
networkings. The main idea of the congestion control scheme accompanied with its
assumptions were described in the first section. The next section provided three
new networking models to validate the accuracy of the trained neural network in
predicting the number of dropped data packets at the bottleneck. The last section
assessed the performance of the implemented algorithm in the routers by comparing
the throughput and packet drop rates of the bottleneck in the absence and presence
of the suggested congestion control mechanism.

70

7 Conclusions and Future work

This chapter describes several avenues of future work providing suggesting solutions.
Moreover, a conclusion of the research conducted and some of the difficulties that
have been run into during this project are presented. Finally, major contributions
of the thesis are outlined, followed by feasibility of implementation of the presented
work in the real world networking.

7.1 Concluding remarks

In this thesis work the design and implementation of a novel congestion control al-
gorithm for content centric networking were presented. The main idea is to early
detection of congestion based on predicting the number of discarded data packets
using neural network algorithms. Moreover, the effectiveness of the proactive con-
gestion detection and notification in decreasing the packet loss rate and keeping the
link throughput close to its optimal value simultaneously was presented.
Our results demonstrate the great potential of the proposed algorithm to control
congestion in any information centric networking and even in the current Internet
transport paradigm. Since every router gathers data from its local resources, train-
ing a neural network based on the collected datasets would not be a difficult task.
However, the feasibility of implementing neural network techniques in any particular
networking architecture needs to be assessed according to its specific attributes. We
hope that our proposed technique will encourage further exploration of interacting
data mining schemes in control and avoidance of congestion on various computer
networking transport models.
There are many aspects of early detection congestion control on CCNs that still
need to be addressed. In this thesis, only very simple networks were analysed. The
analysis of this algorithm in large networks need to be carried out. Since CCN itself
is in the early stage of research and it has not been widely examined in the real
world networks, it is not an easy task to measure the feasibility of implementing
the proposed congestion control algorithm. Therefore, the question of using neural
network for Interest transmission rate adaptation remains unanswered.
In summary, the proposed algorithm for controlling congestion in content centric
networking is based on the idea of early detection of congestion using neural net-
work technique in every router. Therefore, it can be categorized as a hop by hop
proactive congestion control algorithm that regulates the Interest transmission rate
of every node in accordance with the number of discarded data packets predicted
by the supervised learning algorithm of the neural networks.

7.2 Future work

It was observed that when the neural network collects necessary information, it
could predict with high precision the probability of congestion based on the num-
ber of dropped packets. This technique will provide multiple options for routers to

71

decide to respond to the impending congestion in advance. An important area to
explore is to consider more sophisticated data mining algorithms and to examine
more mature networking topologies to enrich the detection algorithm efficiency.
The results presented in this thesis point to a number of possible areas for future
work. One of the main promising future work avenue would be to consider the option
of adaptive forwarding algorithm based on the predicted number of packet discards
and moreover its combination with proposed Interest shaping algorithm based on
neural network.

CCN Router / NN

10%

25%

95% 50%

Figure 56: Data packet drop rate on each face of NDN router predicted by the neural
network. The face with 95 percent and the one with 10 percent probability of data
packet drops show in order the worst and the best possible route for forwarding
Interest packets.

The figure 56 depicts a hypothetical CCN router with four attached faces. It
shows that the neural network has already predicted the number of dropped data
packets for the next time instance. It illustrates that a neural network equipped
router can have a clearer understanding of impending congestion in their attached
interfaces. In this thesis we merely considered an Interest shaping algorithm which is
being regulated by the prediction notification. For instance in this figure the router
sends a notification to each face and asks them to shape their Interest transmission
rate by the prediction number accordingly. A very considerable future work would
be to adopt an approach to benefit from the predicted packet discard rates by cou-
pling them with FIB databases of each router. It would simply imply the adaptive
forwarding technique based on the predicted number of dropped data packets and
choosing possible routes adaptively.

72

When a trained neural network implemented in a router detects that a link is going
to reach to its load limit, it will automatically try other available links to forward
the Interests. In other words, the neural network can provide sophisticated alter-
natives paths for FIB, and consequently the router would be able to opt the best
possible route to forward interests. PIT makes sure that the reverse path for content
data is the same with the route of interests towards producers. Thus, it is a crucial
decision for routers to select the least probable congested link to forward interests.
This technique realizes this goal with an intelligent and precise decision algorithm.
In case of high probability of congestion in all the available links, the router will
send feedback to downstream routers, which will try their alternative paths.
The more mature approach to control congestion in CCNs would be the combina-
tion of the adaptive forwarding technique outlined above and the neural network
Interest shaping algorithm presented in this thesis work. The approach can make a
huge impact on the link utilization especially in extreme cases of high probability
of packet discards. It was discussed that the neural network regulates the Interest
transmission rate of downstream nodes based on the number of predicted discarded
data packets. The interaction of these algorithms can be realized by defining a
threshold point for the routers. It means that, we need to define that when would
be the right time to alter between adaptive Interest rate algorithm and the adaptive
forwarding scheme.

In order to have a better imagination of suggested algorithms, figure 57 has
been provided. This figure is a snapshot picture of running CCN scenario and illus-
trates a networking topology that has four bottlenecks in the center by which three
consumers in the left can send their Interests to the data providers in the right.

0

-20

-40

-60

-80

-100

200150100500

7 (Dst3)

8 (Dst2)

9 (Dst1)

4 (Rtr2)

6 (Gtw2)

3 (Rtr1)

2 (Src1)

1 (Src2) 5 (Gtw1)

0 (Src3)

←
 7

85
.2

0
kb

it/
s

43.20 kbit/s
 →

20.37 kbit/s →

← 471.12 kbit/s

13.58 kbit/s →

42.58 kbit/s →

21
.6

0
kb

it/
s
→

21.91 kbit/s →

← 1002.64 kbit/s

20
.0

6
kb

it/
s
→

← 531.52 kbit/s

←
 459.04 kbit/s

←
 797.28 kbit/s

← 797.28 kbit/s

20.67 kbit/s
 →

11.73 kbit/s →

←
 4

95
.2

8
kb

it/
s

20.67 kbit/s →

← 785.20 kbit/s

← 990.56 kbit/s

665.66 kbit/s

Figure 57: Variable link capacity scenario with four bottlenecks

73

The adaptive forwarding algorithm alone suggests that the router(Gtw1) close to
the consumer sides can make decisions to forward Interests to each of its upstream
nodes based on the notification packets sent by routers(Router1 and Router2) in
the center. The difference between this algorithm and its interaction with shaping
Interest algorithm lies in the forwarding stage. The combined algorithms can benefit
from altering between adapting Interest rate and choosing the least congested path
based on some assumptions, while the adaptive forwarding algorithm or even the
proposed shaping Interest algorithm have less options to consider.

74

References

[1] V. Jacobson, D. Smetters, J. Thornton, M. Plass,N. Briggs, and R. Braynard.
”Networking named content”. In Proc. of ACM CoNEXT 09.

[2] M. Handley,”Why The Internet Only Just Works” BT Technology Journal, Vol
24, No 3, July 2006.

[3] J. Rexford and C. Dovrolis, ”Future Internet architecture: clean-slate versus
evolutionary research,” Communications of the ACM, vol. 53, no. 9, pp. 36:40,
2010.

[4] Carofiglio, G.; Gehlen, V.; Perino, D.; , ”Experimental Evaluation of Mem-
ory Management in Content-Centric Networking,” Communications (ICC),
2011 IEEE International Conference on , vol., no., pp.1-6, 5-9 June 2011 doi:
10.1109/icc.2011.5962739.

[5] Koponen T., Chawla M., Chun B.-G., Ermolinskiy A., Kim K. H., Shenker S.,
and Stoica I. ”A data-oriented (and beyond) network architecture”. In SIG-
COMM, 2007

[6] B.Ahlgren,Ch.Dannewitz,C.Imbrenda,D.Kutscher,and B.Ohlman.A Survey of
Information-Centric Networking (Draft). In Bengt Ahlgren, Holger Karl, Dirk
Kutscher, Brje Ohlman, Sara Oueslati, and Ignacio Solis, editors, Information-
Centric Networking, number 10492 in Dagstuhl Seminar Proceedings, Dagstuhl,
Germany, 2011. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany

[7] Rozhnova, N.; Fdida, S., ”An effective hop-by-hop Interest shaping mecha-
nism for CCN communications,” Computer Communications Workshops (IN-
FOCOM WKSHPS), 2012 IEEE Conference on , vol., no., pp.322,327, 25-30
March 2012

[8] S.Tarkoma,M.Ain,K.Visala ”The Publish/Subscribe Internet Routing
Paradigm (PSIRP):Designing the Future Internet Architecture”, 2009

[9] G.Carofiglio, M.Gallo, and L.Muscariello. ”Icp: Design and evaluation of
an interest control protocol for content-centric networking”. In Proc. of
IEEE INFOCOM NOMEN Workshop, 2012. Technical Report available at
http://perso.rd.francetelecom.fr/muscariello

[10] G.Carofiglio, M.Gallo, and L.Muscariello. ”Joint hop-by-hop and receiver-
driven interest control protocol for content-centric networks”.ICN12, August
17, 2012, Helsinki, Finland.

[11] Giovanna Carofiglio, Massimo Gallo, Luca Muscariello, Michele Papalini, ”Mul-
tipath Congestion Control in Content-Centric Networks” in IEEE NOMEN
Workshop, co-located with INFOCOM 2013, Turin, Italy.

75

[12] Cheng Yi,Alexander Afanasyev ,Lan Wang ,Beichuan Zhang ,Lixia
Zhang,”Adaptive forwarding in named data networking”, ACM SIGCOMM
Computer Communication Review,Vol.42,N.3,July 2012

[13] Oueslati, S.; Roberts, J.; Sbihi, N., ”Flow-aware traffic control for a content-
centric network,” INFOCOM, 2012 Proceedings IEEE , vol., no., pp.2417,2425,
25-30 March 2012

[14] ”APNIC IPv4 Address Pool Reaches Final /8”. APNIC. 15 April 2011.

[15] Xylomenos, G.; Ververidis, C.; Siris, V.; Fotiou, N.; Tsilopoulos, C.; Vasi-
lakos, X.; Katsaros, K.; Polyzos, G., ”A Survey of Information-Centric Net-
working Research,” Communications Surveys and Tutorials, IEEE , vol.PP,
no.99, pp.1,26,

[16] M. Gritter and D. R. Cheriton, ”An architecture for content routing support
in the Internet,” in USENIX Symposium on Internet Technologies and Systems
(USITS), 2001.

[17] T. Koponen, M. Chawla, B. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker,
and I. Stoica, ”A data-oriented (and beyond) network architecture,” in ACM
SIGCOMM, 2007, pp. 181?192.

[18] FP7 PSIRP project.[Online]. Available: http://www.psirp.org/

[19] FP7 PURSUIT project.[Online].Available: http://www.fp7pursuit.eu/PursuitWeb/

[20] FP7 SAIL project.[Online]. Available: http://www.sail-project.eu/

[21] FP7 4WARD project.[Online]. Available: http://www.4ward-project.eu/

[22] FP7 COMET project.[Online]. Available: http://www.comet-project.org/

[23] FP7 CONVERGENCE.[Online]. Available: http://www.ictconvergence.eu/

[24] ANR Connect project.[Online]. Available: http://anr-connect.org/

[25] Named Data Networking project.[Online]. Available: http://www.named-
data.net/

[26] Content Centric Networking project.[Online]. Available: http://www.ccnx.org/

[27] Mobility First project.[Online]. Available: http://mobility?rst.winlab.rutgers.edu/

[28] Delay-Tolerant Networking. Available: http://tools.ietf.org/html/rfc4838

[29] Yang, C.-Q.; Reddy, A.V.S., ”A taxonomy for congestion control algorithms
in packet switching networks,” Network, IEEE , vol.9, no.4, pp.34,45, Jul/Aug
1995

76

[30] Jain, R., ”Congestion control in computer networks: issues and trends,” Net-
work, IEEE , vol.4, no.3, pp.24,30, May 1990

[31] Nagle, J., ”On Packet Switches with Infinite Storage,” Communications, IEEE
Transactions on , vol.35, no.4, pp.435,438, Apr 1987

[32] Z.Haas, ”Adaptive Admission Congestion Control,” ACM, SIGCOMM’88, 1991

[33] Comer, D.E.; Yavatkar, R.S., ”A rate-based congestion avoidance and control
scheme for packet switched networks,” Distributed Computing Systems, 1990.
Proceedings., 10th International Conference on , vol., no., pp.390,397, 28 May-1
Jun 1990

[34] A. Demers , S. Keshav , S. Shenker, ”Analysis and simulation of a fair queue-
ing algorithm”, Symposium proceedings on Communications architectures and
protocols, p.1-12, September 25-27, 1989, Austin, Texas, United States

[35] Lam, S.; Reiser, M., ”Congestion Control of Store-and-Forward Networks by
Input Buffer Limits–An Analysis,” Communications, IEEE Transactions on ,
vol.27, no.1, pp.127,134, Jan 1979

[36] Floyd, S., ”TCP and Explicit Congestion Notification,” ACM Computer Com-
munication Review, V. 24 N. 5, October 1994, p. 10-23.

[37] M.Craven,J.Shavlik,”Using Neural Networks for Data Mining,” Future Gener-
ation Computer Systems, 13, pp. 211-229 ,1997

[38] [Online]. Available : http://www.ccnx.org/doc/technical/CCNxProtocol.html

[39] [Online]. Available : http://www.utexas.edu/research/asrec/neuron.html

[40] Simon Haykin,”Neural Networks a comprehensive foundation”, Second Edition
,1999

[41] Jacobson, Van, Karels, MJ (1988). ”Congestion avoidance and control”. ACM
SIGCOMM Computer Communication

[42] R. Jain, ”A Timeout Based Congestion Control Scheme for Window Flow-
Controlled Networks,” IEEE Journal of Selected Areas in Communications,
Vol. SAC-4, No. 7, October 1986, pp. 1162-1167.

[43] Jacobson, Van., ”Modified TCP Congestion Avoidance Algorithm,” end2end-
interest mailing list, April 30, 1990.

[44] J.Kurose, K.Ross.,”Computer Networking,A Top-Down approach,” Fifth Edi-
tion

[45] M. Allman, V. Paxson, and W. Stevens. ”TCP Congestion Control,” April
1999, RFC 2581.

77

[46] Requirements for Internet Hosts – Communication Layers.[Online]. Available:
http://tools.ietf.org/html/rfc1122

[47] Craig Hunt.,”TCP/IP Network Administration,”ISBN 1-56592-322-7, 630
pages. Second Edition, December 1997.

[48] Terminology for FIB based Router Performance.[Online]. Available:
http://tools.ietf.org/html/rfc3222

[49] Ethem Alpaydin.,”Introduction to Machine Learning,” Second Edition, The
MIT press Cambridge, Massachusetts , London , England.

[50] Lipo Wang, Xiuju Fu ”Data Mining with Computational Intelligence,” 2005

[51] Steven W. Smith., ”The Scientist and Engineer’s Guide to Digital Signal Pro-
cessing,” 1997

[52] D. Kriesel., ”A Brief Introduction to Neural Networks,” 2005

[53] Kevin L. Priddy, Paul E. Keller ”Artificial Neural Networks: An Introduction,”

[54] Michael Welzi, ”Network Congestion Control: Managing Internet Traffic”

[55] A. Afanasyev, I. Moiseenko, and L. Zhang, ”ndnSIM: NDN simulator for NS-3”,
Technical Report NDN-0005, 2012

[56] Tsai, Pearl T,.”Parallel network simulation techniques,” Massachusetts Insti-
tute of Technology. Dept. of Electrical Engineering, 1995

[57] H. Dai, B. Liu, Y. Chen, and Y. Wang, ”On pending interest table in named
data networking,” in Proceedings of ACM/IEEE ANCS, Austin, Texas, USA,
Oct 2012, pp.211,222.

[58] L.Peterson, D.Davie, ”Computer Networks”, A systems approach,” Third Edi-
tion

[59] S. Rajasekaran and P.Vijayalakshmi, ”Neural networks,Fuzzy Logic and Ge-
netic Algorithms”,New Delhi, Prentice Hall of India, 2004.

[60] Raul Rojas, ”Neural Networks - A Systematic Introduction” , Springer-Verlag,
Berlin, New-York, 1996 (502 p.,350 illustrations).

[61] Menlo Park, ”Lessons in Neural Network Training: Overfitting Maybe Harder
than Expected,” Proceedings of the Fourteenth National Conference on Artifi-
cial Intelligence, AAAI-97, AAAI Press, California,pp.540,545,1997.

[62] Michael J.Pan, ”Advanced Statistics from an Elementary Point of View”, 2005

[63] [Online]. Available : http://www.merriam-webster.com/

