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tween browsers. The standards specify the requirements for browsers, including
a JavaScript Application Programming Interface (API) for web developers, as
well as the media plane protocols to be used for connection establishment, media
transportation and data encryption.
In this thesis, support for Interactive Connectivity Establishment (ICE) and media
encryption was implemented to an existing gateway prototype. The gateway was
originally developed to connect the novel WebRTC possibilities with existing IP
Multimedia Subsystem (IMS) services, but it was lacking the necessary security
functionalities. The performance of the gateway was measured and analyzed in
different call scenarios between WebRTC clients. Two key elements, CPU load of
the gateway and packet delay, were considered in the analysis.
In addition to single call scenarios, the tests included relaying of ten simultaneous
HD video calls, and relaying of ten simultaneous audio calls. Estimates based on
the measurements suggest, that the overall capacity of a single gateway between
two WebRTC clients ranges from 14 simultaneous HD video calls to 74 simultane-
ous audio calls. The median delay in the gateway remained under 0.2 milliseconds
throughout the testing.
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Verkkopohjainen reaaliaikainen kommunikointi (WebRTC) on joukko uusia
standardeja, jotka mahdollistavat selainten välisen multimediakommunikoinnin.
Nämä standardit määrittelevät vaatimukset selaimille, sisältäen JavaScript-
ohjelmointirajapinnan sovelluskehittäjille, kuin myös mediatason protokollat,
joita käytetään yhteyden muodostamiseen, median välittämiseen sekä tiedon
salaukseen.
Tuki interaktiiviselle yhteyden luomiselle (ICE) ja tiedon salaukselle toteutettiin
olemassaolevalle yhdyskäytäväprototyypille. Kyseinen yhdyskäytävä oli alunperin
luotu yhdistämään WebRTC-mahdollisuudet olemassaolevaan IP-pohjaiseen
multimediaverkkoon, mutta siitä puuttui tarvittavat tietoturvaominaisuudet.
Yhdyskäytävän suorituskyky mitattiin ja analysoitiin eri puhelutyypeillä
WebRTC-käyttäjien välillä. Analyysi keskittyi kahteen suureeseen: yhdyskäytävän
prosessointikuorma sekä pakettien viive.
Yksittäisten puheluiden lisäksi yhdyskäytävää kuormitettiin kymmenellä
HD videopuhelulla ja kymmenellä audiopuhelulla. Mittausten perusteella
tehtyjen arvioiden mukaan kahden WebRTC-käyttäjän välillä olevan yksittäisen
yhdyskäytävän suorituskyky yltää 14:stä yhtäaikaisesta HD videopuhelusta
74:ään yhtäaikaiseen audiopuheluun. Mediaaniviive pysyi kaikissa testeissä alle
0.2 millisekunnissa.
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1 Introduction
Real-time communication has become everyday activity in the Internet. Text-based
messaging is already an integral part of many social network web pages, and various
instant messaging applications exist. Many of those instant messaging applications
are also Voice over IP (VoIP) clients, offering audio and video call possibilities over
the Internet, and thus bypassing the traditional telephone networks.

In spite of, or perhaps because of the variety of different VoIP clients, web
browsers still rule when it comes to the usage of Internet. That said, several tech-
niques already make it possible to implement multimedia telephony services that
are accessible from a web browser. However, the drawback of these different tech-
niques is that they are not built in to the browsers, and thus require plug-ins or
browser add-ons to work. Also, because of the proprietary nature of the plug-ins,
the interoperability between different services is poor.

From all this has emerged a desire for real-time communication standards, that
would allow users to utilize audio and video communication services with a standard,
off-the-shelf browser, thus avoiding unnecessary plug-ins. A standardized browser in-
terface would also enable web developers to easily create multimedia services on their
web pages, that would be natively supported by any standard compliant browser.

All this is now driven by two working groups, the Real-Time Communication
in WEB-browsers (RTCWEB) working group at Internet Engineering Task Force
(IETF), which focuses on the protocols that enable real-time communication be-
tween the endpoints, and the Web Real-Time Communication (WebRTC) working
group at the World Wide Web Consortium (W3C), which develops the Applica-
tion Programming Interface (API) for the web applications to utilize the browser’s
functionalities and the underlying system resources, such as a web camera and a
microphone.

Connecting these web-based multimedia services with legacy networks such as
the IP Multimedia Subsystem (IMS), or all the way to Public Switched Telephone
Network (PSTN), opens up new possibilities for end users and operators. For ex-
ample, calls straight from a web browser to a mobile phone and vice versa would be
a tempting feature on both user and operator perspective.

To address these possibilities, Ericsson Research recently developed a prototype
called a Multimedia Telephony Gateway (MMTelGW). The idea was to create a
gateway between WebRTC-based services and the IMS network. As the WebRTC
standards were (and still are) evolving, and the browser manufacturers had not yet
implemented full support for all the necessary aspects of WebRTC at that time, the
prototype was developed with a subset of required features.

The most important feature that was missing from the prototype was data en-
cryption. The standards require that all the media in WebRTC is encrypted with
Secure Real-time Transport Protocol (SRTP), using Datagram Transport Layer Se-
curity (DTLS) for key negotiation. Since the prototype did not support the encryp-
tion, Ericsson Research also created a compliant client, based on the open source
Chromium browser. It was modified to omit data encryption, so that it would work
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with MMTelGW. Support for H.264 video codec was also added, since it is widely
used in other systems, like video conferencing services.

1.1 Objectives and Scope

Since the creation of the MMTelGW, the browsers, namely Chrome and Firefox, have
evolved to support most of the so far agreed WebRTC specifications. Therefore, in
order for the MMTelGW to function with the current browsers, new functionality,
such as data encryption, needs to be added to it.

The objective of this thesis is to add the missing implementation of data plane
security to MMTelGW. This is achieved by integrating the DTLS-SRTP functionali-
ties to the existing infrastructure. The implementation details of the encryption and
other necessary functionalities, such as connectivity establishment, are described.

To evaluate the capacity of the prototype system, the overall performance is mea-
sured. The performance is defined by measuring the usage of the central processing
unit (CPU), while establishing one or several multimedia calls via the system. We
also aim to determine the overall capacity, i.e. how many calls can one instance of
MMTelGW handle. Another interesting aspect is the delay, that MMTelGW causes
when processing the media packets.

The performance differences between unencrypted and encrypted multimedia
calls are analyzed to give a picture on how the encryption affects the load that
MMTelGW is capable of handling. It is expected that the encryption increases the
load in such a way, that less encrypted calls can be handled than corresponding
unencrypted calls. Also, the delays in the encrypted calls are likely higher than in
the unencrypted calls, since the encryption requires additional processing.

Since we are dealing with a prototype system, the main objective is to understand
how this kind of system works, what needs to be considered, and if it is feasible to
implement the system this way. Rather than setting any strict expectations on the
capacity, we are purely interested in the number of simultaneous calls the system can
handle. In order to test different kind of scenarios, it is enough for MMTelGW to be
able to process a few simultaneous calls. More precisely, if ten or more simultaneous
video calls can be made, it is more than acceptable.

1.2 Structure

In this chapter the problem domain was introduced, and the objective and scope
of the thesis were defined. The second chapter explains the principles behind the
key techniques that are required for WebRTC, and describes the situation with the
MMTelGW prototype before writing this thesis. In the third chapter the imple-
mentation details of the security functionalities are described. The fourth chapter
presents the measurement results and analyzes the impacts of the data encryption to
the performance of the MMTelGW. In the fifth chapter we discuss the system’s ap-
plicability as a WebRTC gateway in real-life scenarios. Finally, in the sixth chapter
we summarize the results and draw final conclusions.
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2 Background
WebRTC standards do not specify the signaling protocols, which are left to the
implementations to decide, as described in WebRTC Overview draft [1]. Instead,
they define the media plane protocols for encrypting and transferring the data, as
well as the protocols used for connection establishment. The key techniques here
are DTLS-SRTP and Interactive Connectivity Establishment (ICE). In addition to
a general overview on WebRTC, this chapter describes the principles of these key
techniques. Also the status of the MMTelGW prototype before writing this thesis
is explained.

2.1 WebRTC Overview

The WebRTC specifications aim to provide means for peer-to-peer communication
between web applications. A web application in this context is a JavaScript appli-
cation executed most commonly in a web browser, although it can also be executed
in any kind of program or environment that implements the required standards to
be able to communicate with other WebRTC applications.

The architectural model of WebRTC is designed so that media travels directly
from one peer to another via the most direct route possible. An example of a
WebRTC trapezoid presenting this architecture is shown in Figure 1. In addition to
the browsers and servers, there might be some intermediate devices, such as Network
Address Translators (NAT) and firewalls on the way, but WebRTC is designed to
try and find a path through all restricting devices, enabling the peer-to-peer media
flow.

Although the media travels directly between the users, a centralized server sys-
tem is still needed as the rendezvous point for the users. After all, the users need to
somehow find out where the other user is so that the connection can be made. This
is taken care by the signaling system.

Signaling is handled by the servers that provide the WebRTC services. A browser
can connect to the server for example using Hypertext Transfer Protocol (HTTP) or
WebSockets. The actual signaling protocol is up to the service provider to decide.
The servers can then modify or translate the signals as needed. As the signaling
protocols at the server level are not standardized, two different service providers
can connect their services only if they can agree upon the protocols for inter-server
signaling. Commonly used protocols such as Session Initiation Protocol (SIP) or
Extensible Messaging and Presence Protocol (XMPP) are proposed as candidates
between servers [1].

As mentioned in introduction, two sets of specifications are managed by the
two working groups: the JavaScript APIs for the web applications wishing to use
the browser’s resources, and the standards defining the protocols used between the
browsers on the media path.

The WebRTC working group at W3C defines two key specifications for WebRTC:
Media Capture and Streams working draft defines the JavaScript API that the web
application can use to get access to local devices that can generate multimedia
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Figure 1: Example of a WebRTC framework overview.

stream data [2], and WebRTC 1.0: Real-time Communication Between Browsers
working draft defines the JavaScript API that allows the web application to create
a connection and send media over the network to another browser or device imple-
menting the appropriate set of real-time protocols, and media to be received from
another browser or device [3].

The RTCWEB working group at IETF develops the specifications for the pro-
tocols used on the media plane. These include the media transmission protocols,
encryption protocols and connection establishment and management protocols. The
RTCWEB working group also specifies data channel protocols, which are not dis-
cussed in this thesis.

The IETF specifications define two mandatory to implement (MTI) audio codecs
for WebRTC usage: G.711 and Opus [4]. Other codecs may also be used, but they
will be chosen for the media path only if both endpoints support the same codec
and choose to use it as the preferred codec.

Mandatory to implement video codec is not yet agreed upon between the stan-
dardization members. Some browser manufacturers are in favor of VP8, being an
open source and royalty free codec [5], whereas some prefer H.264 (mostly companies
holding patent rights to it) because it is widely used in the Internet [6]. Currently
browsers like Firefox and Chrome support only VP8.

However, at the moment H.264 has a slight advance in the race for the MTI video
codec. In addition to being the de facto industry standard video codec, Cisco has
now released an open source H.264 implementation, from which they will provide
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binary releases, free of any licensing fees. This would grant any WebRTC application
free H.264 support. [7]

2.2 Session Establishment

The actual signaling protocols are left unspecified in the standards, so it is up to the
application developers to determine which protocols they decide to use. However,
the session establishment, which is carried out on the signaling path, is well defined.

When an end-user wants to use a WebRTC service, it first goes to the web page
hosted by the service provider. That web page contains the web application, i.e. the
JavaScript application, that will be executed in the end-user’s browser.

The JavaScript APIs, which are being specified by W3C, define the interface be-
tween the web application and the browser. With these APIs, the service providers,
or basically anyone, can create their own WebRTC applications that can be used
with any compliant browser.

The web applications operate on so called RTCPeerConnections, that represent
the peer-to-peer connection in a WebRTC session. The RTCPeerConnection takes
care of the session establishment and the media transportation between the web
applications [3]. The general operation of the RTCPeerConnection is described in
Javascript Session Establishment Protocol (JSEP) draft [8].

The session establishment is carried out by exchanging session descriptions that
are presented in Session Description Protocol (SDP) [9]. These session descriptions
contain the connection and media settings each peer is willing to use. The SDP
descriptions are exchanged in the fashion described by An Offer/Answer Model with
the Session Description Protocol (SDP) [10].

Figure 2: JavaScript Session Establishment
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The session establishment procedure is presented in Figure 2. In a normal call
scenario, the caller side JavaScript web application (WebApp) first calls a function
that causes the browser’s native WebRTC module (WebRTC) to create an SDP
offer. This offer is given to the web application 1), which has an option to modify
the offer if needed. It is yet to be defined what parts of the SDP offer can be
modified at this stage, but possible reasons for the web application to modify the
browser’s generated offer could be to disable some features or discard some codecs
that the browser is offering. That offer is then given back to the browser as the local
description 2), so that the browser can set up the local configuration according to
the SDP. The same offer is then sent to the answer side over the signaling path 3).

When the answer side receives the offer 4), it sets the SDP as the remote de-
scription 5). When the call is accepted, the answer side calls a function that causes
the browser to create an SDP answer 6), that corresponds to the received offer.
This answer can then be set as the local description at the answer side 7), and sent
back to the originating side 8). When the caller gets the answer 9), it sets the SDP
answer as the remote description 10), and the initial setup is done and the media
path can be used.

2.3 Media Transportation

Since WebRTC is all about real-time communication, the media needs to be trans-
ported with a protocol suited for real-time data, such as interactive audio or video.
WebRTC uses the Real-time Transport Protocol (RTP) to transmit the media be-
tween peers. RTP is tightly coupled with its sister protocol RTP Control Protocol
(RTCP). In this section we describe these protocols.

2.3.1 Real-time Transport Protocol

RTP is a widely used protocol for streaming media over IP networks, and it is the
base of many VoIP systems. It provides end-to-end delivery services, such as pay-
load type identification, sequence numbering, timestamping and delivery monitoring.
RTP is defined in RFC 3550 [11].

RTP as such is a protocol framework that is not complete by design. It only
defines functions expected to be common across all the applications for which RTP
would be appropriate. RTP is intended to be tailored through modifications and/or
additions to the headers to suit the needs of a particular application. A complete
specification of RTP for said application will require one or more companion docu-
ments. Usually this means a profile specification document, which defines a set of
payload type codes and their mapping to payload formats.

Each RTP packet consists of a fixed header, followed by the payload data. The
RTP header is presented in Figure 3. The meaning of the header fields are briefly
explained in the following list:

• Version (V): Version number of RTP. RFC 3550 specifies version two (2) of
RTP.
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Figure 3: RTP header [11]

• Padding (P): The padding bit defines if there is additional padding octets after
the payload. The last octet of the padding contains the count of the padding
octets, including itself.

• Extension (X): If the extension bit is set, exactly one RTP extension field
should follow the fixed header.

• CSRC count (CC): The CSRC count contains the number of CSRC identifiers.

• Marker (M): The interpretation of the marker bit is profile specific. It can be
used to indicate significant events such as frame boundaries etc.

• Payload type (PT): Payload type number defines the format of the payload.
The mapping between payload type numbers and payload formats is defined
in a profile.

• Sequence number: The sequence number increases by one for each RTP packet
sent. It is used to detect packet loss and reconstruct packet sequences. The
initial value should be randomly selected.

• Timestamp: The timestamp reflects the sampling instant of the first octet in
the RTP data packet. The initial value of the timestamp should be random.
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• Synchronization source (SSRC): The SSRC field defines the synchronization
source. It identifies the source of a stream of RTP packets, for example a
microphone or a camera. This identifier should be chosen randomly.

• Contributing source (CSRC): The CSRC list identifies the contributing sources
for the payload contained in this packet. The list is inserted only by mixers,
which produce combined streams from several sources. The number of identi-
fiers is given by the CC field.

• RTP extension: Optional, application specific field to carry additional data.
Can be ignored by other applications.

The first twelve octets of the header are always present in an RTP packet. The
CSRC identifiers field is present only when inserted by a mixer, and the RTP ex-
tension field can be optionally used by an application if it is needed.

2.3.2 RTP Control Protocol

In addition to RTP, RFC 3550 also defines the RTP Control Protocol (RTCP). It
is based on the periodic transmission of control packets to all participants in the
session, using the same distribution mechanism as the data packets.

RTCP is intended to provide feedback on the quality of the data distribution.
This feedback can be used for example by the sender to control adaptive encoding
methods, and also to detect faults in the transmission.

RTCP is also used to carry a persistent transport-level identifier for an RTP
source. This identifier is called canonical name (CNAME), and it is used to identify
and keep track of the participants in an RTP session. This is needed, because
the SSRC identifiers can change during a session in case of a collision or program
restart. The CNAME can also be used for associating multiple data streams in a
set of related RTP sessions, for purposes like synchronizing audio and video.

Since the number of participants in an RTP session may be large, the RTCP
packet sending rate must be controlled to avoid network congestion. By having each
participant send its control packets to all the others, each can independently observe
the number of participants. This number is used to calculate the rate at which the
packets are sent.

RTCP serves as a convenient channel to reach all the participants, since RTP is
only sent by media sources. Therefore, RTCP can also be used to convey minimal
session control information, for example participant identification to be displayed in
the user interface.

There are several types of RTCP packets to be used for the varying purposes:

• Sender reports (SR) are sent by the participants that are active senders of
media. Sender reports are used to deliver transmission and reception statistics.

• Receiver reports (RR) are used only for reception statistics from participants
that are not active senders.
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• Source description items (SDES) are used to identify sources. SDES uses the
CNAME item.

• BYE packet indicates end of participation.

• APP stands for application-specific functions. APP packet is intended for
experimental use as new applications and new features are developed.

Each RTCP packet begins with a fixed part similar to that of RTP data packets,
followed by structured elements that may be of variable length according to the
packet type but must end on a 32-bit boundary.

Figure 4: RTCP header [11]

The fixed header part is presented in Figure 4. The version (V) and the padding
(P) fields are the same as in RTP header. They are followed by a type specific field,
which has different interpretations depending on the RTCP packet type. The packet
type (PT) field contains a value that defines the RTCP packet type. The length
field contains the length of that RTCP packet in 32-bit words minus one, including
the header and any padding.

The alignment requirement and a length field in the fixed part of each packet
enable the RTCP packets to be stackable on top of each other, so that many packets
can be concatenated to form a compound packet, which can be sent in one lower
level packet, for example UDP.

All RTCP packets must be sent in a compound packet of at least two individual
packets. The first RTCP packet in the compound packet must always be a SR or RR
packet, which makes the RTCP header validation easier. This is true even if no data
has been sent or received, in which case an empty RR must be sent, and even if the
only other RTCP packet in the compound packet is a BYE. The other mandatory
packet that must be included in each compound RTCP packet is an SDES packet
containing a CNAME item.

2.4 Media Encryption

RTP transmits the payload in the clear, so systems using plain RTP make the com-
munication vulnerable for eavesdropping by anyone on the way who can access the
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packets. Therefore, there is a strong desire to encrypt all media traffic in WebRTC.
WebRTC Security Architecture draft states that “All media channels MUST be se-
cured via SRTP. Media traffic MUST NOT be sent over plain (unencrypted) RTP”
[12].

This is further described in Web Real-Time Communication (WebRTC): Media
Transport and Use of RTP draft, which explains the media transport aspects of the
WebRTC framework. It defines the RTP profile for WebRTC to be the Extended
Secure RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feed-
back (RTP/SAVPF), which is a combination of the two profiles: the SRTP profile
SAVP, and the RTCP-based feedback profile AVPF. Also this draft demands that
the full RTP/SAVPF profile needs to be employed to protect all RTP and RTCP
packets [13].

SRTP itself is defined in RFC 3711 as a profile of RTP, which provides means for
confidentiality, message authentication, and replay protection to the RTP traffic and
to the control traffic for RTP, the Real-time Transport Control Protocol (RTCP)
[14]. SRTP can be considered as a new layer in the RTP stack, residing between
the RTP application and the transport layer. On the sending side, SRTP intercepts
RTP packets and then forwards an equivalent SRTP packet to the transport layer.
On the receiving side it intercepts SRTP packets and passes an equivalent RTP
packet up the stack.

SRTP relies on external key management mechanism for establishing the cryp-
tographic context, i.e. the master key. That master key is then used to derive the
session keys, which are used in the cryptographic transformations, such as encryp-
tion and message authentication. Several key management mechanisms exist, but
in WebRTC it is desired to use only one. The key management is discussed in the
next chapter.

The encryption is applied only to the payload of the SRTP packet. The header
fields are the same as in RTP packets, and only two additional fields after the payload
are defined for SRTP: Master Key Identifier (MKI) and Authentication tag. The
authentication is applied to the RTP header and the payload, excluding the SRTP
specific fields. The structure of an SRTP packet is presented in Figure 5.

The MKI is an optional field. It identifies the master key, which has been used to
derive the session key(s) that authenticate and/or encrypt the particular packet. The
authentication tag is a recommended field. It is used to carry message authentication
data, and in addition to providing authentication of the RTP header and payload,
it indirectly provides replay protection by authenticating the sequence number.

Secure RTCP (SRTCP) provides the same security services to RTCP as SRTP
does to RTP. SRTCP message authentication is mandatory and thereby protects
the RTCP fields to keep track of membership, provide feedback to RTP senders, or
maintain packet sequence counters. [14]

2.5 Encryption Key Management

For SRTP an external key management system needs to be applied to obtain the nec-
essary key information for the encryption and decryption algorithm. For WebRTC,
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Figure 5: SRTP packet [14]

one mandatory key management system is defined: Datagram Transport Layer Se-
curity (DTLS) Extension to Establish Keys for the Secure Real-time Transport
Protocol (SRTP), also known as DTLS-SRTP [13]. Like the name suggests, it com-
bines the functionality of DTLS and SRTP. DTLS itself is based on Transport Layer
Security (TLS) protocol. This section describes these protocols.

2.5.1 TLS

Transport Layer Security (TLS) protocol provides privacy and data integrity be-
tween two communicating applications. It is designed to be used over some reliable
transport protocol, such as Transmission Control Protocol (TCP). [15]

TLS is composed of two layers: the TLS Record Protocol and the TLS Handshake
Protocol. At the lowest level is the TLS Record Protocol, which ensures the privacy
and the reliability of the connection. It takes care of encrypting the data, and
checking the message integrity.

The TLS Handshake Protocol allows the server and client to authenticate each
other. It is used to negotiate an encryption algorithm and cryptographic keys,
that are needed for the data encryption on the TLS Record Protocol layer. TLS
Handshake Protocol provides authentication of the peer’s identity using asymmetric,
or public key, cryptography. The negotiation of the shared secret is both secure and
reliable: the negotiation secret is unavailable to eavesdroppers, and the negotiation
communication cannot be modified without being detected by the parties of the
communication.
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TLS is independent of the application protocol that runs on top of it. Once the
TLS handshake is complete, the application protocol can transmit its data securely
over TLS.

2.5.2 DTLS

Datagram Transport Layer Security (DTLS) protocol allows client/server applica-
tions to communicate in a way that is designed to prevent eavesdropping, tampering,
or message forgery, just like TLS does. DTLS-SRTP is based on DTLS 1.0, which
in turn is based on TLS 1.1. [16]

Unlike TLS, DTLS provides communication privacy over datagram protocols,
such as User Datagram Protocol (UDP). Thus, DTLS preserves the possibility of
unreliable and out-of-order delivery of data on application layer.

Since DTLS is very similar to TLS, instead of presenting DTLS as a new protocol,
the specification presents it as a series of deltas from TLS 1.1. If not mentioned
otherwise, DTLS is the same as TLS.

The DTLS handshake for a DTLS-SRTP session is presented in Figure 6. Note
that ’*’ indicates messages that are not always sent in DTLS. The CertificateRequest,
client and server Certificates, and CertificateVerify will be sent in DTLS-SRTP ses-
sions. The DTLS-SRTP protocol is explained in details in the next section.

The ClientHello message contains a list of cipher suites the client wishes to use
for the data encryption. The server selects one supported cipher suite from that list,
and includes it in the ServerHello message. That cipher suite is the used to encrypt
the DTLS data.

In DTLS-SRTP sessions the ClientHello and the ServerHello messages also con-
tain a use_srtp extension, which is used to negotiate the protection profile for the
SRTP encryption algorithm. Section 3.3.4 elaborates more on the protection profiles.

In the DTLS negotiation the peers use x.509 certificates to exchange the encryp-
tion keys. In the handshake procedure, both the server and the client send their
certificates to the other party.

In addition to the certificate exchange on the media path, the peers send certifi-
cate fingerprints on the signaling path. A fingerprint is a hash of the certificate, and
it binds the DTLS key exchange on the media plane to the signaling plane. [17]

2.5.3 DTLS-SRTP

Datagram Transport Layer Security Extension to Establish Keys for the Secure
Real-time Transport Protocol (DTLS-SRTP) is defined in RFC 5764 [18], and as
the name suggests, it is an extension to DTLS.

Each DTLS-SRTP session protects one source and destination port pair, gener-
ally one RTP or RTCP flow. Each session contains one DTLS association, i.e. DTLS
protected connection, and one or two SRTP contexts. Each SRTP context protects
all SRTP traffic flowing in one direction on that given source and destination port
pair. So for a bidirectional DTLS-SRTP session two SRTP contexts are needed.

To establish the DTLS association the peers perform the DTLS handshake on
the given source and destination port pair. The DTLS association can the be used
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Figure 6: DTLS handshake sequence for DTLS-SRTP session [18]

to generate the keying material for the SRTP stack. The keying material consists
of the master keys and master salts for both the client and the server.

The keying material is then given to the SRTP key derivation mechanism, which
produces the SRTP (and SRTCP) client and server write keys. The client write
keys are used by the client to encrypt and authenticate outgoing packets, and by
the server to decrypt and to check the authenticity of incoming packets. Similarly,
the server write keys are used by the server to encrypt and authenticate outgoing
packets, and by the client to decrypt and to check the authenticity of incoming
packets.

Figure 7 presents a bidirectional client side DTLS-SRTP session: it contains
the DTLS association, and one SRTP context for incoming data and another SRTP
context for outgoing data. Both of the contexts get the keying material for the SRTP
stack from the DTLS association. As this is the client side, incoming data uses the
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Figure 7: Bidirectional DTLS-SRTP session on client side

server write keys, and outgoing data uses the client write keys. DTLS packets are
delivered both ways through the single DTLS association.

Usually, RTCP traffic is sent on a different port than RTP. The usage of different
ports requires two DTLS-SRTP sessions, one for RTP and one for RTCP. If the
RTP and RTCP traffic are multiplexed to the same port, then a single DTLS-SRTP
session can protect both of them.

DTLS operates at the media level on the same host/port quadruple as SRTP, so
the DTLS handshake is done directly between the peers. Since the keying material
is not passed through the signaling path, the servers used for rendezvous purposes
are unaware of the encryption details.

2.6 Interactive Connectivity Establishment

WebRTC aims for peer-to-peer communication, but in the modern Internet peer-
to-peer connections are not as simple to establish as one might think. Peers are
commonly part of smaller networks, which are secured on the edges by firewalls,
and whose address spaces are decoupled from the public Internet by means of NATs.
These devices on the network boundaries often block incoming traffic, unless it is part
of a connection that was established earlier. To overcome this, WebRTC relies on
Interactive Connectivity Establishment (ICE), which is defined in RFC 5245 [19]. In
this section we describe the basic concepts of ICE: address candidates, connectivity
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checks, candidate authentication, different ICE roles and how the connectivity checks
are concluded.

2.6.1 ICE Candidates

ICE works by using several address candidates to establish a working connection. In
the beginning, ICE agents (the endpoints) gather possible candidates where they can
be reached. There are three different types of address candidates: host candidates,
server reflexive candidates and relayed candidates. The relationships between dif-
ferent address candidates is presented in Figure 8. The notation X:x means address
X and port x.

Figure 8: ICE candidate types[19]

Host candidates are derived directly from local network interfaces. In this case
the agent’s local address X and port x forms the host candidate. ICE also uses
Session Traversal Utilities for NAT (STUN) [20] messages to obtain other candidates
from appropriate servers. These servers may be simple STUN servers, or they may
also implement Traversal Using Relays around NAT (TURN).

When STUN server is used, the agent sends STUN Binding requests to the
server, which then replies with a Binding response containing the address where it
got the Binding request from. If there is a NAT in between, the address that STUN
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server returns will be the public address Y:y, that the NAT maps to the agent’s local
address. That is then called the server reflexive candidate.

When using a TURN server the procedure is largely similar: TURN server also
returns server reflexive candidates, but in addition to that, the TURN server is also
used to obtain a relayed candidate. When doing that, the TURN server allocates an
address Z:z for that media stream. Packets coming to that address from outside are
then relayed towards the agent (via the server reflexive address Y:y), and packets
coming from the agent are sent onwards from the relayed address. In this thesis
TURN is not used.

2.6.2 Connectivity Checks

In the signaling path these candidates are then exchanged inside (SDP) messages.
The agents then pair the local and remote candidates, and conduct a series of con-
nectivity checks to see which candidate pairs can be used to establish a connection.

Figure 9: ICE connectivity checks

The Connectivity checks are performed by sending STUN Binding requests to the
remote candidates. The procedure is illustrated in Figure 9. The Binding requests
may or may not reach their destination due to various reasons. For example, the
first Binding request from Agent A might have the Agent B’s host candidate as its
destination, and because the Agent B’s local address is not visible from the outside
due to NAT B, the Binding request will never reach its destination. The first Binding
request from Agent B might be blocked by a restrictive NAT A, which lets traffic
in only if the route has been first opened from within. The third Binding request
has a working destination address and the NATs let it through from Agent A to
Agent B. When Agent B receives the Binding request, it replies with a Binding
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response. Receiving a Binding request also means that a Binding request need to
be sent to the address from where the Binding request was received, whether that
address already was in the candidate list or not. This is called a triggered check. If
that also goes through and the other agent replies with a Binding response, the four
way handshake is done and that candidate pair can be used for the connection.

The connectivity checks are executed in a priority order defined by the agents.
This way the agents aim to find the best possible route as fast as possible. However,
the highest priority candidates may not always produce the most optimal route.
Therefore, the final decision on the selected route can be done according to different
practices. Section 2.6.5 discusses the concluding process.

ICE can be implemented either as a full or a lite implementation. The lite
implementation is for agents who know that they have a public IP address which is
accessible from anywhere. In this case the agent does not gather any ICE candidates,
and it only replies to the STUN Binding requests, never sends its own.

2.6.3 Candidate Authentication

ICE has its own authentication mechanism to make sure the candidates are who they
claim to be. ICE uses so called short-term credential mechanism to authenticate the
STUN connectivity checks between agents [19].

Figure 10: ICE credentials in a connectivity check

Short-term credential mechanism is defined in the STUN specification [20]. It
assumes that the endpoints exchange credentials in the form of a username and
password using some protocol. In the case of WebRTC and ICE this means that the
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agents send their ICE username and password in the signaling path inside the SDP
messages. These credentials are then used to form the USERNAME and MESSAGE-
INTEGRITY attributes in the STUN messages.

In ICE, the Binding requests are always authenticated. The USERNAME at-
tribute is formed by concatenating the username fragment of the receiver with the
username of the sender, separated by a colon. The password comes from the sender
and is used to calculate the MESSAGE-INTEGRITY attribute. An example of ICE
credentials in a connectivity check is presented in Figure 10. All the other STUN
attributes are omitted in this example.

The responses utilize the same usernames and passwords as the requests, which
means that a response to a Binding request can be generated even if the remote ICE
credentials have not yet been received at the time of receiving the Binding request.

2.6.4 Roles

The ICE agents take a role for each session: they can be either controlling or con-
trolled agents. In every session there is one controlling and one controlled agent.
The role depends on the types of the agents and which one initiated the session in
the following manner:

• full – full: the agent who generated the offer will be the controlling agent,
and the other one will be the controlled agent.

• full – lite: the full agent will always be the controlling one and the lite agent
will be the controlled one.

• lite – lite: same as with two full agents—the offerer is the controlling and the
answerer is the controlled agent.

In case of possible role conflict, the agents try to resolve it using a procedure
that involves a tie-breaker value. The tie-breaker is an integer value that both of the
agents select randomly. In a conflict situation, the agent with a larger tie-breaker
value is set to be the controlling agent.

2.6.5 Concluding ICE

The ICE procedure is concluded when the controlling agent decides that a good
enough candidate pair has been found. This can be either the first candidate pair
that successfully passes the connectivity check, or it can be based on some other
means, such as Round Trip Time (RTT) measurements executed on the successful
candidate pairs.

The decision is done by nominating the candidate pair that the controlling agent
wishes to use. The nomination is done by setting a nominated flag in a Binding
request that is sent to the selected candidate. Nomination can be done in two ways:
regular nomination and aggressive nomination. In regular nomination, the candi-
dates are first validated with normal Binding requests. When enough validations
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are done, and a final candidate is selected, another Binding request with the nom-
ination flag is sent again to the selected candidate. In aggressive nomination, the
flag is included in every Binding requests. This way, the first candidate that results
in a valid candidate pair is automatically selected.

2.7 Packet Multiplexing

The same media path, meaning the IP address and port quadruple between two
peers, is used for all the STUN, DTLS and RTP traffic of a single media connection.
Therefore, these three packet types need to be multiplexed to the same path on the
sender side and then demultiplexed on the receiving side. Multiplexing outgoing
packets to one port is trivial, but demultiplexing incoming traffic needs a bit more
logic.

Figure 11: Demultiplexing packets on media plane [18]

In case of WebRTC this is done by examining the first byte B of the packet, as
presented in Figure 11. “If the value of this byte is 0 or 1, then the packet is STUN.
If the value is in between 128 and 191 (inclusive), then the packet is RTP (or RTCP,
if both RTCP and RTP are being multiplexed over the same destination port). If
the value is between 20 and 63 (inclusive), the packet is DTLS.” [18]

2.8 Multimedia Telephony Gateway

In this Ericsson prototype system, there are two main components for enabling
WebRTC clients such as web browsers to connect to the IMS network: Web Commu-
nication Gateway (WCG) and Multimedia Telephony Gateway (MMTelGW). They
both reside in between the client and the IMS network, doing the proper transfor-
mations in the signaling and the media plane. The system setup is presented in
Figure 12.

The client application (WebApp in Figure 12) is a JavaScript application, pro-
vided by the service provider (Ericsson in this case). It is downloaded from a web
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Figure 12: Prototype setup

server, and executed in the browser. The application connects to the WCG through
HTTP for the signaling. It also uses the WebRTC JavaScript API to access the
browser’s WebRTC capabilities, such as the ICE functionality, capture devices and
media transportation.

WCG is an actual product developed by Ericsson. It is the connection point
for the web clients, and needed because it is unlikely that many web clients would
natively communicate using SIP, which is used for signaling on the IMS side. There-
fore, WCG provides a Representational State Transfer (REST) interface over HTTP
or WebSocket. Upon receiving HTTP requests WCG translates the messages to SIP,
and forwards them to the Signaling Gateway in MMTelGW.

MMTelGW is a prototype software, initially developed by Ericsson Research.
The purpose of MMTelGW is to translate both the signaling and the media traffic, so
that WebRTC clients can communicate with the IMS network. MMtelGW consists
of three parts: Signaling Gateway, STUN Server and Media Relay.

The Signaling Gateway takes care of the logic for creating and managing the
calls. It handles the SIP signaling and controls the Media Relay over a proprietary
control interface.

The STUN Server is a standalone application. Its job is to respond to clients’
initial STUN requests, which they make to gather the ICE candidates.

The Media Relay listens to Signaling Gateway and opens media connections
between the client and the IMS. It performs media encryption and decryption,
because WebRTC clients require SRTP whereas within the IMS media is sent as
unencrypted RTP.

When starting this thesis, MMTelGW had several shortcomings such as missing
support for DTLS and SRTP. Since the current browsers at that time did not
support WebRTC, Ericsson Research forked Chromium browser, and modified it to
support H.264 video codec and to pass the data encryption. That browser was then
named Leif.
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2.9 Summary

In the WebRTC architecture the media travels directly between the peers, whereas
the signaling goes through a service provider’s centralized server system. The
WebRTC standards do not specify any protocols for the signaling plane, whereas
the media plane protocols are well defined.

The media sessions are established by the JavaScript web applications that are
executed in the peers’ browsers. An offer/answer model with SDP messages is
utilized to negotiate the media parameters for each session.

Media is transported using SRTP, an encrypted version of the Real-Time Trans-
port Protocol, which runs on top of UDP. The encryption details for the SRTP
session are negotiated using DTLS, which provides security and data authenticity
over UDP.

Today’s networks are widely populated by middle boxes such as NATs and fire-
walls, which may restrict traffic between networks. WebRTC tries to cope with these
various network scenarios using Interactive Connectivity Establishment. ICE uses
STUN messages to gather address candidates for each endpoint, and then tries to es-
tablish connections between the different candidates. The best successful candidate
is then chosen to be used for the media traffic.

All three protocols, DTLS, SRTP and STUN run on the same media path. There-
fore the WebRTC applications need to be able to separate incoming packets from
each other. This can be easily done by inspecting the first byte of the packet.
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3 Implementing Security
In this chapter we discuss the implementation details of the necessary features.
DTLS-SRTP is a new feature that was added to MMTelGW. Some modifications
were needed in the existing ICE implementation to overcome interworking issues
between the browsers and our system. Several other issues that arose during devel-
opment are also addressed in this chapter. Finally, the resulting system is presented,
and the call setup procedure is explained.

It is worth noticing that many of the workarounds and features presented in this
chapter were implemented to overcome some issues with interworking and incomplete
implementations on the browser side. Therefore, some of them might not be needed
any more after the specifications are finished and the client implementations mature.

3.1 Need for Security

As described in the scope, the goal of this thesis was to implement necessary features
of the specifications, so that the MMTelGW would work with WebRTC compliant
commercial browsers, mainly Firefox and Chrome. The main blocker for this is the
lack of encryption: the specifications require that all the media in WebRTC sessions
are encrypted. Without this encryption, the connection cannot be established to-
wards Firefox or Chrome. Thus, the DTLS-SRTP encryption functionality needs to
be implemented to MMTelGW.

Another essential part of the connection setup in WebRTC calls is the interactive
connection establishment through restrictive networks, which is performed before
the DTLS key negotiation. ICE also has its own security mechanisms to ensure
that the offered candidates belong to the session that is about to be initialized.
While MMTelGW already has some support for ICE, many parts of the existing
ICE functionalities, among other small features, need to be reconsidered because of
the different behavior of the browsers

3.2 Software Components

MMTelGW consists of three software components: Media Relay, Signaling Gateway
and STUN server, as they are presented in Figure 12.

Media Relay is a Linux software written in C++. It consists of several layers
of classes, that represent the sockets and the relays on the lower layers, and the
contexts, terminations and streams on the higher layers. It has a control module
for the interface towards the Signaling Gateway, and ICE module for the STUN
handling. New functionality needs to be added to represent the DTLS and the
SRTP protocols, and the existing functionality is modified so that Media Relay
could interoperate with the current browsers.

Signaling Gateway is a Java application that takes care of the call handling logic
and the signaling modifications that are necessary between the WebRTC clients and
the SIP driven IMS network. Signaling Gateway also needs to be modified for some
parts, mainly for accepting and handling the necessary SDP attributes.
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The STUN server is another C++ software on Linux, running beside the Media
Relay. It simply responds to the STUN Binding requests that the clients send in
order to find out their server reflexive candidates. The STUN server runs in the
default STUN port 3478. That port is set in the JavaScript application, so that the
browser can connect to the STUN server and gather the ICE candidates. This part
of the software works as it is, and thus does not need any modification.

3.3 Implementing DTLS-SRTP

The MMTelGW needs the DTLS-SRTP protocol to conform to the standards and
to be able to interact with the WebRTC enabled browsers. Since the system is a
proof of concept and the objective was to get a working solution quickly set up, we
wanted to use readily available libraries instead of implementing the whole DTLS-
SRTP stack from scratch. In this section we described the used libraries, and how
they were integrated to MMTelGW. We also discuss a few changes that were made
to the libraries, and the protection profiles that are used in the encryption.

3.3.1 Encryption Libraries

To have a functional security stack, the new libraries need to be integrated to the
MMTelGW. Media Relay is the part of the software that handles all the media
traffic. Thus it is only logical to integrate the libraries to Media Relay.

For the DTLS, we decided to go with an implementation called edtls, created by
Ericsson Research. This decision was made since edtls was already used in other
projects in the company, and we knew that we could easily get support for it from
the original creators.

Edtls is a DTLS library written in C. It depends on OpenSSL, which it uses to
construct the DTLS context and to perform the cryptographic functions. Edtls can
be used to establish the DTLS connection and to derive the keying material for the
SRTP stack.

Edtls can be used with an external SRTP library to offer the whole DTLS-SRTP
framework. By default, edtls comes with an SRTP library called esrtp, which handles
the SRTP stack. Esrtp is also library written in C and developed by Ericsson. We
decided to use esrtp for the same reasons as with edtls, and since there already were
examples how to combine the two libraries.

Both libraries, edtls and esrtp provide a clear API to handle the structures and
the functionalities to achieve the needed cryptographic security.

The edtls library provides a context structure for the DTLS. One context rep-
resents one DTLS association. The context takes care of the DTLS state machine
of the association at hand. When created, the context structure is initialized with
a given x.509 certificate and a callback function, that the context uses to send out
DTLS messages.
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3.3.2 Software Architecture

To incorporate edtls to Media Relay we created a new class called DTLSContext,
which uses the edtls library to provide the needed functionality to the existing
software. DTLSContext is a wrapper around the context structure provided by
edtls. It contains the information about the role of the DTLS association, and also
the SRTP structures related to that DTLS association.

When DTLSContext receives a DTLS packet, the packet is fed to the context,
which updates its internal DTLS state machine accordingly. If the context needs to
respond to the DTLS message with another message, it uses the sending callback
function to do so.

Another class that was created is SRTPContext, which is a wrapper around
the context structure provided by esrtp. SRTPContext naturally represents the
SRTP contexts within a DTLS association. This means, that a bidirectional DTLS-
SRTP session contains one SRTPContext, which in turn contains two esrtp context
structures: one for incoming and one for outgoing SRTP traffic. In Figure 7 the
dashed line represents the SRTPContext in relation to the rest of the DTLS-SRTP
session.

DTLSContext creates and owns the SRTPContexts. If the media stream uses
RTCP multiplexing, there are two SRTPContexts: one for SRTP and one for
SRTCP. If SRTP and SRTCP are using separate ports, they both use their own
DTLS association, and thus reside in their own DTLSContext with a single SRTP-
Context.

When the DTLS connection setup is finished, the DTLS context can be used
to derive the SRTP keying material. This keying material is then given to the
SRTPContexts, which setup the SRTP stack with the given keys. Any incoming or
outgoing SRTP or SRTCP packets are then transferred through the corresponding
SRTPContexts, which take care of encrypting and decrypting the RTP data.

ICEModule is a module that already existed in Media Relay. The incoming
traffic from the media plane is forwarded to the ICEModule, which then takes care
of demultiplexing the incoming traffic, as explained in Section 2.7. There is one
ICEModule for each media stream, and the ICEModule owns the DTLSContext
associated with that media stream.

ICEModule redirects both DTLS and SRTP packets to DTLSContext, which
handles the packets as described above. STUN messages are handled in the ICE-
Module, which holds the STUN protocol stack. The STUN protocol stack consumes
the STUN messages and responds to the Binding requests, which are used for the
ICE negotiations in the call setup and for consent freshness during the call.

The structure of the new DTLS-SRTP functionality is presented in Figure 13.
The ICEModule already existed in the Media Relay. The ICEModule contains
the DTLSContext, which orchestrates the whole DTLS-SRTP functionality. The
DTLSContext utilizes the edtls library, whereas the SRTPContext utilizes the esrtp
library. SRTPContext is owned by the DTLSContext.

OpenSSL has a possibility for hardware accelerating the crypto algorithms. That
works on certain machines that also have support for this kind of acceleration. In
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Figure 13: Encryption architecture

order to speed up the encryption and decryption process of the SRTP packets, we
enabled the hardware acceleration for SRTP for machines that support it. This
required some changes in the esrtp library, which now, in addition to edtls library,
also uses OpenSSL functionalities.

3.3.3 Changes in edtls

In DTLS the peers exchange certificates on the media plane and corresponding
fingerprints on the signaling plane. Edtls only supported fingerprints that were
created with the SHA-1 hash function, whereas Firefox and Chrome both use SHA-
256 fingerprints. Therefore, we modified edtls to support also SHA-256 fingerprints.

Originally edtls created new certificate for each DTLS connection. We added an
option to use an existing certificate. This was to make troubleshooting easier and
to give Media Relay the possibility to use one (possibly configurable) certificate for
all the connections.

3.3.4 Protection Profiles

DTLS-SRTP uses protection profiles to determine the characteristics of the SRTP
connection. The protection profiles are negotiated within the DTLS handshake,
using the use_srtp extension. The client sends a list of supported protection pro-
files, from which the server selects one to use for the SRTP. If there is no common
protection profile, the SRTP connection cannot be established.

Edtls offers two protection profiles for SRTP:
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• SRTP_AES128_CM_HMAC_SHA1_80

• SRTP_AES128_CM_HMAC_SHA1_32

These protection profiles are the default profiles defined in RFC 5764, and have
the following meaning: SRTP_AES128_CM_HMAC_SHA1_80 uses the AES
Counter Mode cipher for encryption with key length of 128 and salt length 112,
and the HMAC-SHA1 authentication function with key length 160 and tag length
80. SRTP_AES128_CM_HMAC_SHA1_32 is otherwise the same, but the au-
thentication tag length is 32. All the lengths are in bits. [18]

Two more protection profiles are defined in RFC 5764, but they are NULL ci-
pher profiles, which means that they omit the data encryption and only provide
data authentication. Those protection profiles are not supported due to the lack of
encryption.

The protection profiles are offered in priority order: the first is the most preferred
by the client. In the answer the server selects the highest common protection profile
for the session. If no shared protection profile is found, the server should not return
the use_srtp extension and the connection falls back to the negotiated DTLS cipher
suite. [18]

Media Relay offers the 80 bit long authentication tag profile as the most preferred,
and the 32 bit long authentication tag profile as the second option. Firefox has the
same priority order. Chrome only offers the 80 bit profile.

3.4 Interoperability

Even though the DTLS-SRTP was the major change needed to interoperate with
Firefox and Chrome, there are also other impacts that arise from the differences in
the behavior of the browsers. This section describes the features that needed extra
attention to get both of the browsers work nicely with Media Relay and each other.

3.4.1 Impacts on ICE

MMTelGW already has some ICE functionality implemented. Basically it has ice-lite
capabilities, so it responds to STUN Binding requests but does not gather candidates
nor send any Binding requests on its own.

During testing we found out that this is not enough. For some reason the
MMTelGW was not able to establish connection towards a terminating Firefox.
The connection establishment got stuck to the ICE part, never reaching the DTLS
handshake phase.

Turned out that there is a bug in Firefox, which causes it to choose wrong ICE
role in a specific case. As described in Section 2.6.4, if one of the ICE agents
is ice-lite, the other one has to take the controlling role. In this case, where the
Media Relay was acting as an ice-lite agent, the terminating Firefox selected the
ICE controlled role, as if it would have been interacting with a full agent.
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To overcome this, we decided to implement a bit more functionality to MMTelGW.
Instead of being an ice-lite agent, we implemented some of the full agent features,
so that MMTelGW could communicate with Firefox.

This meant that instead of only replying to STUN Binding requests, MMTelGW
also sends out its own Binding requests to ensure and speed up the connection es-
tablishment. MMTelGW also selects the role according to the specification, instead
of always being the ice-controlled as ice-lite implementations should.

Since we knew that MMTelGW was going to be used like an ice-lite agent, having
a single interface publicly available to all users, we decided that it is not necessary
to implement the initial ice candidate gathering. Instead, MMTelGW selects the
local host address as the only candidate, just like an ice-lite agent would do. Thus,
MMTelGW is not an ice-lite agent, nor is it a complete ice-full agent. This seems to
be enough for Firefox, which is now able to establish connection with MMTelGW.

3.4.2 RTCP-MUX

RTP data packets and RTCP control packets are traditionally transferred on differ-
ent ports: in one RTP session RTP data traffic uses even ports, and the correspond-
ing RTCP control traffic uses the odd port one higher than the RTP port.

Because today’s networks are populated with NATs and firewalls, this kind of
scenario would cause a lot of overhead, since the NATs should maintain multiple NAT
bindings and that is costly. Therefore, it is required for WebRTC implementations to
support multiplexing RTP data packets and RTCP control packets on a single port
for each RTP session [13]. The feature should however be backwards compatible,
so that if rtcp-mux is offered but the answerer does not support it, the session is
established without RTCP multiplexing.

RFC 5761 defines a set of means to multiplex RTP and RTCP to the same port.
Demultiplexing RTP and RTCP packets is not as straightforward as demultiplexing
RTP, STUN and DTLS as described in Section 2.7. There are a few conflicts when
distinguishing RTP and RTCP packets. If the clients use dynamic RTP payload
types in the range 96-127 or static payload types as proposed in [21] RFC 3551
there should not be any problems. [22]

Both Chrome and Firefox offer rtcp-mux by default. Therefore we decided to
implement rtcp-mux also to MMTelGW, since it required only a small effort. De-
multiplexing of RTP and RTCP relies on the good behavior regarding the payload
types. In terms of signaling it works so that MMTelGW accepts offers with rtcp-
mux and acts accordingly, but it does not offer it to others by default. This decision
was made because MMTelGW also communicates towards the IMS clients, which
may not support rtcp-mux, and may even choke on unrecognized SDP attributes,
regardless of the backwards compatibility of the feature.

3.4.3 RTP-BUNDLE

Another way to save resources by reducing the number of transport-layer flows is
to multiplex all the RTP media streams in a single RTP session. This means, for
example, that in an audio-video call both the audio stream and the video stream is
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transported to and from the same port. In addition to rtcp-mux, it is required for
WebRTC implementations to support this multiplexing [13]. The multiplexing is to
be done according to the working draft Sending Multiple Types of Media in a Single
RTP Session [23].

The signaling for this multiplexing can be done according to the working draft
Multiplexing Negotiation Using Session Description Protocol (SDP) Port Numbers
[24]. In that working draft the SDP Grouping Framework [25] extension called
BUNDLE is presented.

Chrome offers multiplexing by default, using the BUNDLE format in SDP,
whereas Firefox does not offer it. Because the BUNDLE feature is a bit more com-
plex than rtcp-mux and it requires more changes in the signaling plane, we decided
to not support BUNDLE in MMTelGW.

The BUNDLE feature is also backwards compatible by the specification, so that
implementations that support BUNDLING have to be able to fall back to transport
all streams to individual ports. This can be achieved by either just leaving the
a=BUNDLE attribute out of the SDP answer, or by stripping the attribute away
from the SDP offer that the browser generates, before setting it back as the local
description, as described in Section 2.2. MMTelGW omits this parameter in the
SDP answers and offers to reject the bundling. We also disabled the BUNDLE in
the JavaScript client, so that the BUNDLE offer is not sent in the first place.

3.4.4 Extension Header

When we got the SRTP framework implemented, we noticed that there were inter-
operability issues between Chrome and Firefox: media sent from Chrome to Firefox
was not played back, even though media to other direction worked. Investigating
the network traces we noticed, that Chrome uses extension headers in its SRTP
packets. For some reason Firefox got confused with the incoming packets and failed
to decrypt the data.

We modified the Media Relay so that before sending out any (S)RTP packets it
checks if they contain extension header. If they do, the extension header is stripped
away before feeding the packet to the SRTP stack. This seemed to fix the issue, and
Firefox was satisfied with the SRTP packets and the media plane worked.

The purpose for Chrome to use the extension headers is unknown to us, but since
they only matter to Chrome, and removing the extension headers does not affect
the media quality, we were confident to do it.

3.4.5 DTLS Role

Framework for Establishing a Secure Real-time Transport Protocol (SRTP) Security
Context Using Datagram Transport Layer Security (DTLS) [17] describes (among
other things) how the endpoints should negotiate whether they take the active or
passive role in the DTLS negotiation. This is done using the setup attribute in the
SDP message.

The offerer must use the setup attribute value of setup:actpass, which means
that it can be either active or passive. The answerer can then choose to use either
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setup:active or setup:passive. Which ever it chooses to be, the offerer selects the
other role. The active endpoint must then start the DTLS negotiation. The answerer
is recommended to use the setup:active role, so that the DTLS negotiation can start
as soon as possible.

At this point, Firefox takes some shortcuts and assumptions in its implementa-
tion. One of these hard coded features is the DTLS role negotiation. Firefox omits
this setup attribute from the SDP, and relies on the recommended behavior: the
answerer is always the active endpoint, and the offerer is the passive endpoint. This
also means that it is always the answerer who initiates the DTLS handshake.

Chrome also acts according to the recommended behavior, but it also includes
the setup attribute in its SDP messages.

This had to be taken into account in the Media Relay. In case of missing setup
attribute, the default behavior was assumed. Even though Firefox omitted the setup
attribute, Media Relay would always respond with the correct setup attribute in the
SDP.

3.5 Complete System

The current system provides all the necessary features to establish WebRTC calls
with up-to-date browsers, including media plane security and interactive connec-
tivity establishment. This section describes the final system layout after the mod-
ifications, and how the different parts work together when setting up a WebRTC
call.

3.5.1 Final System Layout

Early in the beginning of our work, the responsibility of the Signaling Gateway
development was moved to the people developing WCG. The name of the Signaling
Gateway was changed to Media Controller (MC), and the software was coupled with
WCG, since both of them operate on the signaling plane. Media Relay stayed as a
standalone component, and the MMTelGW as a logical entity was deprecated. The
current system setup is presented in Figure 14.

This setup shows one entry point between a browser and the IMS network. In
this setup, there are two possible call scenarios: the call is initiated either from the
browser side going towards the IMS, or the call comes from the IMS and terminates
to the browser. It is irrelevant to the Media Relay and the WCG what is on the other
side of the IMS network—it might be another browser connected through another
WCG, a VoIP client or something else.

3.5.2 Browser Initiating Call

Putting it all together, a typical successful browser initiated call setup is presented
in Figure 15. Before the call setup, the user has registered to the IMS core through
the WCG. The call setup begins with the browser sending the initial SDP offer via
the HTTP path to WCG. WCG then instructs Media Controller to signal Media
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Figure 14: New system setup

Relay to create terminations towards the browser and the IMS. Once this is done,
WCG forwards the SDP offer in SIP to the other client behind the IMS.

Figure 15: Client originating call

When the SDP answer comes back from the other client, the Media Controller
modifies the terminations in Media Relay according to the received SDP answer,
which is then forwarded to the originating browser. That concludes the signaling
part. Next, the browser and the Media Relay start the ICE connectivity checks to
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determine the working media path between the two. Once the ICE has concluded,
the browser and the Media Relay can start the DTLS negotiation on the specified
media path. After the DTLS negotiation finishes, the media can start flowing; as
SRTP between the browser and the Media Relay, and as RTP between the Media
Relay and the IMS.

3.5.3 Browser Terminating Call

In a call that comes from the IMS side towards the browser (for example the other
end of the previous call setup), the setup steps are the same, just the ordering differs.
Figure 16 shows how this happens.

The SDP offer comes in a SIP INVITE to the WCG, which causes the Media
Controller to create the terminations in the Media Relay. The SDP offer is then
sent to the browser, which answers according to its capabilities. Once the termi-
nations are modified, the SDP answer is sent back towards the IMS. Now the ICE
connectivity checks can be started, and after finishing that, the DTLS negotiation
is executed. The media can start flowing as soon as the DTLS negotiation finishes
and the media path is open.

If you match together the two setup scenarios presented here and in Section 3.5.2,
the SIP INVITE towards the IMS in Figure 15 is the same as the SIP INVITE that
comes from the IMS side in Figure 16. Similarly the SIP 200 OK messages map to
one another, and the media flows as RTP between the two Media Relays.

Figure 16: Client terminating call
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3.6 Summary

Data encryption is mandatory part of WebRTC communication. The media has to
be encrypted using SRTP, and the key negotiation for the SRTP has to be done
using DTLS.

This was addressed in the MMTelGW by implementing support for DTLS-SRTP.
Media Relay uses two external libraries, both developed by Ericsson: edtls and esrtp.
Two main classes, DTLSContext and SRTPContext were implemented to wrap these
libraries and to integrate them to the existing code base. Both of the libraries depend
on OpenSSL.

Since the standardization is still underway, the browsers are still varying in their
behavior. Many workarounds were introduced to achieve interoperability between
different browsers, impacting the DTLS-SRTP and ICE functionalities.

MMTelGW as a logical node was deprecated, when Signaling Gateway changed
its name to Media Controller and became part of WCG, leaving Media Relay as the
single media plane node.

From Media Relay’s point of view, every WebRTC call has a direction that
characterizes the call: it either comes from a browser and goes towards the IMS, or
vice versa. It does not matter whether the other endpoint on the other side of IMS
is another WebRTC browser or an IMS client.
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4 Measurements and Evaluation
To evaluate the performance of the Media Relay, we conduct a series of measure-
ments with the prototype system. In this chapter we discuss different types of
scenarios where WebRTC will probably be used. These typical WebRTC sessions
can give characteristics for the overall performance of the Media Relay. Then we
describe the prototyping environment that was used for the measurement. After
presenting the measurement result we continue to analyzing the results to get a
good picture of the Media Relay performance characteristics.

4.1 WebRTC Scenarios

WebRTC is the standard of the future for multimedia communication, and it can
be used for varying types of real-time multimedia sessions. Typical multimedia
sessions contain different combinations of video, audio and data streams. Naturally
video requires more bandwidth than audio, and the bitrate of data streams can
vary greatly depending on the nature of the data: short chat messages will most
likely generate less traffic than some continuous application data for example in a
multiplayer game. In this thesis we focus on audio calls, and video calls which also
contain audio.

For calls containing a video stream, the resolution of the video affects greatly
the required bandwidth. High-definition (HD) video’s bitrate can be measured even
in megabits per second, whereas audio streams reach from a few to a few hundred
kilobits per second, depending on the used encoding method.

The Media Relay was created as a proof of concept to test the interconnectivity
between WebRTC endpoints and the IMS network. Since the Media Relay is not a
real product, the performance was not the key element in the development. However,
to have some kind of picture of the capabilities of the Media Relay and the bandwidth
requirements in typical WebRTC scenarios, some measurements are needed.

In the measurements we are interested in the processing performance metrics
of Media Relay. Since the system was first built without data encryption, it is
interesting to know how much overhead the encryption adds. Of course this is a
rather theoretical point of view, since WebRTC as such cannot be used without
encryption due to the mandatory requirements.

Much more concrete value for the measurements comes from the overall per-
formance of the Media Relay: how many calls can one instance of Media Relay
handle? What is the processing load and the throughput for different types of calls,
e.g. audio calls and video calls?

4.2 Prototyping Environment

To measure the performance of the Media Relay we setup a simple system consisting
of one WCG, one Media Relay, the IMS network and several clients. Instead of a
real IMS network we use a software-based simulated IMS core, called the Service
Development Studio (SDS).
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The IMS network as such consists of many parts: the Application Server (AS),
the Call Session Control Function (CSCF), the Home Subscriber Server (HSS), and
the Domain Name System server (DNS). These components communicate with each
other to handle incoming requests. SDS is a development environment based on the
Eclipse platform, which is used to simulate the IMS network. It is also developed
by Ericsson. In the figures the IMS network is presented as a cloud, which may or
may not handle the traffic. The actual functionalities of the IMS network are not
relevant for this thesis.

In this section we discuss different network scenarios where Media Relay could
be used. Then we describe the test devices that were used in the measurements.

4.2.1 Network Scenarios

Different network setups affect the expected load on the Media Relay. For Every Me-
dia Controller there can be N number of Media Relays. Media Controller assigns the
call legs to the Media Relays according to some load balancing rules. Media Relays
are only needed for WebRTC calls coming from or going to browsers, whereas IMS
clients connect straight to the IMS network. Different call scenarios are explained
with the help of the following figures.

Figure 17: WebRTC call with two Media Relays

If there are several Media Relays in the network, the Media Controller can assign
the call legs to any of the Media Relays it controls. In this scenario the clients
usually connect to different Media Relays, and the RTP traffic “inside” the network
is transmitted between the two Media Relays, as presented in Figure 17.

If only one Media Relay is used, the WebRTC call between two browsers is
handled twice in the Media Relay, as presented in Figure 18: the data from one
browser is transformed from SRTP to RTP on the way towards the network, but
then looped back to the same Media Relay before encoding and sending it to the
other browser. This kind of setup doubles the traffic in one Media Relay per call,
compared to a situation where both browsers would be connected to separate Media
Relays.
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Figure 18: WebRTC call with one Media Relay

Figure 19: WebRTC call between a browser and an IMS client

When a browser makes a WebRTC call to an IMS client, or vice versa, the
browser side behaves exactly as in the browser to browser call: the Media Relay
does the encryption and decryption between the browser and the IMS. On the IMS
client side, the media goes through the IMS network as plain RTP and is terminated
as such in the IMS client, assuming it does not require secure RTP. This is presented
in Figure 19.

In our prototyping environment we use the setup with one Media Relay, as
presented in Figure 18. This kind of scenario is easy to setup since it only requires
one machine for the single Media Relay. It is also feasible for load testing, since
single call generates double the amount of traffic—less calls are needed to reach the
capacity limit of the Media Relay.

The measurements were carried out in the machine running the Media Relay and
the WCG. The next section describes the characteristics of the used machines.
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4.2.2 Test Device Description

Both the WCG and the Media Relay are Linux applications. Even though it is
possible to run them on separate machines, in our tests they were run on the same
machine. The details of the Intel machine running the Media Relay and the WCG on
Ubuntu 13.10 are presented in Table 2. The Media Relay machine had the option
for OpenSSL hardware acceleration, which was used in all the test calls. All the
measurements were conducted on this machine.

Table 2: Media Relay machine specification

Media Relay PC
Processor Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz
Memory 8 192 MB DDR3 SDRAM 1600 MHz

Operating System Ubuntu 13.10 64 bit
Linux Kernel 3.11.0-15-generic

Even though all the measurements are done on the Media Relay machine, the
media is generated and transmitted by the client machine. This may be relatively
heavy operation, especially in case of HD video. Therefore, the details of the client
machine are presented in Table 3. All the single call tests were run on this machine,
and the multiple call cases were run using this and other more or less similar client
machines.

Table 3: Client machine specification

Client PC
Processor Intel(R) Core(TM) i5-2540M CPU @ 2.60GHz
Memory 4 096 MB DDR3 SDRAM 1600 MHz

Operating System Windows 7 64 bit

The simulated IMS core was run on a separate machine on top of 64 bit Windows 7.
The specifications of the machine are identical to the Media Relay PC.

4.3 Measurement Results

To get a grasp of the order of magnitude where the Media Relay’s performance lies,
we ran a set of tests with different traffic profiles in our prototyping environment
that was presented in Section 4.2. In this section we first describe the test setup.
Then we discuss the different traffic profiles that were used in the measurements.
Then we present the measurement results, by first analyzing the payload sizes on
the different media streams. After that, we examine the throughput of all the call
types. Then we focus on the Media Relay’s performance, in terms of CPU load and
packet delay. Finally, we present the results from the load testing.
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4.3.1 Test Setup

Two sets of tests were run to measure the Media Relay’s performance under single
calls and multiple calls. Tcpdump was used to capture all the traffic. From the
tcpdump output file we got the size of each RTP packet’s payload, and also the
delay between receiving and sending out each RTP packet. The RTP packets were
identified by their sequence number.

CPU performance was recorded with Linux utility top. The CPU load samples
of the Media Relay process and the WCG process were measured with a two second
time window. The overall traffic sent and received by the machine running the
Media Relay and the WCG was measured with another Linux utility called sar.

The test setup is presented in Figure 20. Since the prototype system does not
have any automatic feature test framework, the test calls need to be done manually.
This means that while the Media Relay and the WCG runs on one machine (Gateway
Machine), and the simulated IMS on another (IMS Machine), the test calls are
initiated from a separate machine (Client Machine). The calls are naturally made
between two different users, but in practice both the users are on the same machine
using just different browser windows. This was done to simplify the testing, and
also because from the Media Relay’s point of view it does not matter whether the
two clients are on the same machine or two different machines.

Figure 20: Test setup

The green line represents the public network interface in the Gateway Machine,
and the blue line is the local interface. The interfaces are divided into receiver (RX)
and transmitter (TX) parts, since they are measured separately.
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The single call measurements were conducted so that we measured the above-
mentioned statistics over a duration of five minutes from each call. The results of
the single call measurements are presented in Sections 4.3.3, 4.3.4 and 4.3.5.

Multiple call scenarios were tested with ten simultaneous calls. The calls were
done consecutively, so that each call was done on top of the previous one, and the
statistics were measured during one minute after each call setup. The load testing
results are presented in Section 4.3.6.

All of the single call tests were made using a Chrome browser, version
33.0.1750.154m as the client, and the multiple call tests were made with the same
version, or newer. The client application in use is a simple JavaScript code tailored
for basic video calls.

To offer a bit more than a mere average for the measurements, most of the data
is presented using a boxplot. They are useful especially for comparing distributions
between several groups of data. In the boxplots, the middle line corresponds to the
median, the hinges represent the first and the third quartile of the data, and the
whiskers extend to the most extreme data point which is no more than 1.5 times the
length of the box away from the box. Outliers are included in the figures and plotted
as small dots. The boxplot data are also presented in the tables in Appendix A.

4.3.2 Traffic Profiles

In the tests we used five different traffic profiles, which are presented in Table 4. Two
unencrypted scenarios include an audio call (A-RTP) and a low resolution video call
(SD-RTP). Three encrypted scenarios consists of an audio call (A-SRTP) and two
video calls, standard-definition (SD-SRTP) and high-definition (HD-SRTP).

Table 4: Traffic profiles

Name Encryption Audio
format

Video
format

Video
size Browser

A-RTP no PCMU - - Leif
SD-RTP no PCMU H.264 800x600 Leif
A-SRTP yes Opus - - Chrome
SD-SRTP yes Opus VP8 800x600 Chrome
HD-SRTP yes Opus VP8 1 280x700 Chrome

To measure the impact of the SRTP encryption and decryption in the Media
Relay, we compared the unencrypted and encrypted media sessions. Since Chrome
and Firefox transmit the media in SRTP by default, as it should be, we used the
Ericsson modified Chromium browser Leif to test the performance of plain RTP
traffic.

Unfortunately the supported codecs did not match between Chrome and Leif:
Chrome uses VP8 for the video and Opus for the audio, whereas Leif uses H.264
for the video and PCMU for the audio. Therefore the results between RTP and
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SRTP calls are not directly comparable, but nevertheless provide an indication of
the performance characteristics. Also, Leif is based on an older version of Chrome,
and therefore the JavaScript application for Leif does not support HD video, which
Chrome does support.

4.3.3 Payload Size Analysis

Figure 21 presents the audio packet payload sizes in the different call scenarios. The
graph contains also the video calls, but presents only the payload sizes of the audio
packets in them.

Figure 21: Payload size of audio packets

The different call scenarios are divided into three parts: IN, IMS and OUT.
The IN part shows the packet payload size when the packet comes from the client
towards the Media Relay. The IMS part shows the payload size on the IMS side
of the network, which in our test scenario means when sending the packet from the
Media Relay to itself. In a multi Media Relay scenario this would happen between
two different Media Relays. The OUT part shows the payload size when Media
Relay sends the packet towards the client.

As can be seen, the RTP calls contain audio packets with 160 byte payload,
whereas the SRTP calls use mostly less than 100 bytes per packet. The RTP calls
use PCMU encoding for the audio, and the payload size for PCMU is constant—not
even any outliers are detected. SRTP calls on the other hand use Opus audio codec,
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which clearly has more variance in its payload sizes, and outliers both below and
above the whisker range.

In the RTP calls the payload size is the same in all the three parts. This is clear,
since in the RTP calls, Media Relay only relays the traffic without any payload
tampering. In the SRTP calls, however, there is clear a difference between the three
parts. The IMS part is naturally lower than the two other parts. This is because the
Media Relay terminates the SRTP connection, and therefore the IMS side traffic is
plain RTP. SRTP packets are generally four to ten bytes larger, depending on the
authentication tag size (32 bit tag versus 80 bit tag, as described in Section 3.3.4).

The difference between IN and OUT parts are likely caused by the extension
header removal. As described in Section 3.4.4, Chrome uses extension headers,
size of eight bytes, in its SRTP packets. These extension headers are, however,
removed in the Media Relay, which results the outgoing packets being smaller than
the incoming packets. Even though the extension header is technically not part of
the payload, tcpdump’s RTP interpretation includes the extension header to the
payload byte count.

When looking at the SRTP calls, the audio payload sizes seems to be the same
in the SD and HD video calls. Also the audio only call matches the payload sizes
of the video call, which seems to indicate that there is no difference in the audio
encoding between the different call scenarios. This seems to hold true also for the
RTP calls.

Figure 22: Payload size of video packets
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Figure 22 shows the payload sizes for the video packets. The data is in line with
the audio payload sizes: there is no difference between the IN, IMS and OUT parts
in the RTP call, but in the SRTP calls the packets on the IMS side are smaller
than incoming and outgoing packets, and the outgoing packets are smaller than the
incoming packets due to the missing extension headers.

The H.264 video packets in the RTP call are also constant in size between the
different parts, whereas the VP8 video packets in the SRTP calls have some variance.
This is the same behavior that is seen in the audio packets: IMS packets are RTP
whereas in and out packets are SRTP, and outgoing packets do not have the extension
header what incoming packets may have. The HD video packets are slightly larger
than the SD video packets, but they also have a little less variance. The maximum
sizes in the SRTP calls seem to be on the same level.

All of the video packets, both H.264 in RTP calls and VP8 in SRTP calls have
a wide range of outliers below the lower whisker. Even though most of the video
packets’ payload sizes sit above thousand bytes, the outliers payload size range span
even close to zero bytes. This probably happens because larger video packets need
to be split in to several RTP packets. So, while most of the packets are close to
the maximum payload size, probably limited by the maximum transmission unit
(MTU), some of the packets carry the remaining of the video packet fragments, and
therefore spread below the more common packet sizes.

4.3.4 Throughput

To measure the traffic load on Media Relay, we monitored the network interfaces
with a Linux tool called sar. It records the RX and TX data statistics, and reports
them by the interface. The results do contain all the recorded network traffic in
those interfaces, so the RX and TX statistics contain a little overhead to the actual
WebRTC media.

Figure 23 presents the traffic data in packets per second. The different call types
are further divided into three parts: RX, TX and IMS. RX denotes the received
traffic on the public interface, and TX the transmitted traffic on the public interface.
Since the IMS side traffic was sent from the Media Relay to itself, it was done using
the local interface. Also, since the transmitted data equals the received data when
transferred within the loopback interface, the IMS side traffic is only presented once
in the graph. This setup can be seen in Figure 20: the RX and TX statistics
correspond to the RX and TX of the green interface, and the IMS statistics come
from the RTP path between the TX and RX of the blue interface.

The graph shows clearly the differences between the call types: audio calls trans-
fer around 100 packets per second per direction, whereas SD video calls get close to
300 packets per second in each direction. In HD video calls the average packet rate
per second sits around 500 packets for every direction.

The IMS side packet rate is lower than the packet rate in the public interface
in all the call scenarios, since there is less extra traffic in the loopback interface.
This extra traffic in the public interface consists mostly of STUN messages, which
are periodically sent during the call to check that the connection stays alive. The
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Figure 23: Throughput in packets per second

STUN messages are only needed between the Media Relay and the WebRTC clients,
so the IMS side is free of all the keepalive messages. In all the call scenarios the
received traffic has a slightly higher rate than the transmitted traffic, but this might
be caused by the other normal traffic in the network.

In addition to packets per second, sar also reports the traffic in kilobytes per
second. Figure 24 presents the throughput in kilobytes per second, and the result is
very much in line with the packet rate graph.

When taking into account that the IMS traffic in the graph is doubled when
calculating the total sent and received traffic on the local interface, and that the
median rate of the HD video call on IMS side is 426.07 kB/s, we can say that the
total amount of traffic one HD video call generates in the Media Relay, in this kind
of network setup, is on average around 1 700 kilobytes per second.

4.3.5 Media Relay Performance

As the main objective of this thesis the performance impacts of the WebRTC calls
to Media Relay are evaluated. To achieve this, we measure the CPU load during the
different call scenarios, as well as the delay that Media Relay causes to the media
transmission.

The average CPU loads of the Media Relay process, generated by the handling of
the RTP and SRTP calls are presented in Figure 25. The order of the call scenarios
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Figure 24: Throughput in kilobytes per second

based on the CPU load is predictable: plain audio calls generate less CPU load than
video calls, and naturally HD video is more processor heavy than SD video calls.
The difference between RTP and SRTP calls is also foreseeable: SRTP calls require
more processing than the respective RTP calls. After all, in the RTP calls the
packets are only relayed through, whereas in SRTP calls the packets are decrypted
and encrypted. This behavior can be seen between the audio calls as well as between
the SD video calls.

There is a little more variance in the CPU load in the SRTP video calls than
in the other calls. This may be because of the greater variance in the data rate in
SRTP video calls, as was seen in Figures 23 and 24.

Another interesting performance measurement is how much delay the Media
Relay generates when handling the packets. The delays for the different call scenarios
are presented in Figure 26. The delays are also divided into incoming and outgoing
groups, which denote the direction that the packets are going. Incoming group here
consists of the packets that arrive from the WebRTC client and which the Media
Relay delivers towards the IMS. The incoming packets are possibly decoded from
SRTP to RTP in case of an SRTP call. Outgoing group is the opposite, i.e. the
packets which Media Relay transfers from the IMS to the WebRTC client. The
outgoing packets are possibly encoded from RTP to SRTP in case of an SRTP
call. Naturally, the SRTP conversion does not happen in the end-to-end RTP calls
(A-RTP and SD-RTP).
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Figure 25: Single call CPU load

Vast majority of the delays are quite concentrated, which means that the box
and the whiskers do not extend very far from each other. However, the outliers
reach relatively far, in some cases above two milliseconds. Therefore the delays are
presented on a logarithmic scale, so that the differences in the small delays remain
visible.

As expected, the RTP calls have smaller delay than the respective SRTP calls,
although the difference is not big. Both incoming and outgoing delays are smaller
when the packets are only passed through, instead of doing the RTP-SRTP conver-
sion which increases the delay. The greatest variance in the delay is clearly in the
HD video call. This is interesting, since the payload sizes of the HD video packets
are not much greater than the payload sizes of the SD video packets on SRTP calls,
as shown in Figure 22. The HD call, however, has more variance in the throughput,
as presented in Figures 23 and 24. High bursts of packets might cause higher delay
for the last packets of the bursts.

One notable difference is also that the delays of outgoing packets are smaller
than the delays of incoming packets, both in audio and video calls. The reason for
this cannot be in the SRTP handling, since processing the outgoing packets is faster
than processing the incoming packets also in the RTP calls, where Media Relay only
passes the packets through. Since the differences are relatively small, there was no
need to invest much time to figure out the root cause. Anyhow, more profound
profiling would be needed to find out the actual reason behind this behavior.
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Figure 26: One-way packet delay

The measured delay is only the processing delay, e.g. how much it takes for
Media Relay to receive a packet, operate on it, and send it forward. So this does
not take into account the network delay that comes from routing and delivering the
packet to and from the Media Relay.

As recommended in [26], the one-way end-to-end delay should be kept under
150 milliseconds if possible, and not exceed 400 milliseconds which is considered
unacceptable. If Media Relay takes about 0.1 to 2 milliseconds, and it is done twice
on one-way end-to-end call, the Media Relay is unlikely to become the bottleneck
in single call scenarios.

4.3.6 Load Testing

Single call scenarios give a certain image of the performance characteristics between
different types of calls. The Media Relay’s processor load with a single call stays
under 10 percent even in the case of an HD video call. To obtain an indication of
the capabilities of the Media Relay we need to test the performance with several
simultaneous calls.

For the load tests we set up ten client machines with two user accounts each.
From every machine one HD video call was made to the other user on the same
machine, through the Media Relay. Only one video call was made per machine,
since generating, sending and receiving HD video turned out to consume signifi-
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cant amount of the client machines’ CPU time—additional calls would have already
slowed down the client processes, which could have affected the measurement results.

Each call was established after one another, with a minimum hold time of one
minute between the calls. During this hold time the CPU performance of the Media
Relay was measured during one minute, using a two second time window for the
sampling.

Figure 27: CPU load in load testing

Figure 27 shows the CPU loads of the Media Relay process and the WCG process
during the whole measurement period. The Media Relay’s CPU load is drawn in
black, and the WCG’s CPU load in red.

The moments of the call setups can be easily seen in the WCG’s CPU load,
indicated by the spikes in the otherwise quite idle process. It is the call setups when
the WCG receives the call offer from the client and delivers it forward, and also
when the Media Controller instructs Media Relay to reserve resources for the call.
During the calls the WCG does not need to do much anything.

The different calls can also be observed in the Media Relay CPU load, as it
increases after the spikes in the WCG’s CPU load. Ten consecutive HD video calls
raise the Media Relay’s CPU load to around 60 percent.

The average CPU loads of the cumulative calls are presented in Figure 28. The
CPU loads were measured during the one minute hold times between the calls.

The first call generates a bit higher load than in the single call measurement
presented in Figure 25. There is also some variance between the differences of the
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Figure 28: CPU load per number of calls

average CPU loads between the consecutive calls. These are probably caused by
overall fact, that the variance in the bitrate of HD video calls is relatively high. It
probably also depends on the client machine and the available resources for creating
and sending the HD video. So even though the client machines were all modern
PCs and all calls were made with an up to date Chrome as the client browser, the
individual calls differ in the needed processing requirements.

Figure 28 also shows the linear trend of the CPU loads for the cumulative HD
video calls. The trend line reaches 100 percent a little after 17 calls. Even though
some of the individual CPU load measurements differ quite a bit from the trend
line, we can say that based on this measurement, one Media Relay can theoretically
handle maximum of 17 simultaneous HD video calls. The performance, and therefore
the media quality, might of course degrade when approaching 100 percent CPU load.
This said, a little safer estimate for the maximum number of simultaneous HD video
calls would be around 15.

Figure 29 presents the Media Relay CPU load measurement samples as a function
of all the sent (TX) and received (RX) data on all interfaces.

Like in the previous graph, the trend is visibly linear. The data itself seems
to fit even better to the linear trend than in Figure 28, because here the different
calls are not separated. This graph gives a better overall estimation of the Media
Relay capacity, since it does not depend on the call type. The linear trend reaches
the maximum CPU performance at 30 791.82 kilobytes per second, which is the
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Figure 29: CPU load as a function of throughput in HD video load testing

theoretical maximum throughput for HD video calls. This presentation seems to be
fairly good for estimating the overall performance.

Since the video packet payload sizes in the SD video calls are very similar to the
payload sizes of the HD video calls, it is fair to assume that this model applies well
to SD video calls also. In audio calls, however, the payload sizes in the packets are
significantly smaller. This probably causes more processing overhead when compar-
ing to the video calls. Therefore we conducted another load test, using only audio
calls. The test was identical to the video call load test: a total of ten audio calls
were setup one after another, with one minute hold time after each new call.

Figure 30 presents the CPU load measurements as a function of total traffic in
Media Relay for ten cumulative audio calls. Even though the data set is quite small,
and the overall performance reaches barely ten percent, we can see from the trend
line that the maximum throughput for audio calls is significantly smaller than for
video calls: hundred percent CPU load is achieved already at 4 063.57 kilobytes per
second.

Another important topic also in load testing is the delay: does the delay increase
to unacceptable lengths when Media Relay has to handle greater number of packets?
In Figure 31 we see the delays of the audio packets for the cumulative HD video
calls. Once again, the delays concentrate around small values, while the individual
maximums reach quite high. Therefore the delays are presented on a logarithmic
scale.
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Figure 30: CPU load as a function of throughput in audio load testing

Evident from the graph, the median delay does not increase much when adding
calls on top of one another, which is good from the user experience perspective. Even
with ten simultaneous HD video calls the median delay of audio packets remain a
little over 0.1 milliseconds.

However, the outliers show that the maximum delay increases quite rapidly when
there are more traffic to be handled. The maximum time an audio packet spent
in Media Relay was 8.17 milliseconds, when there were eight simultaneous calls
ongoing. If we consider the recommended maximum end-to-end delay of 150 [26],
occasional delays of maximum eight milliseconds should not be harmful. Even if
the audio packet goes through the Media Relay twice in case of a call between two
WebRTC clients, it should hit the maximum in both of them, and the delay would
still probably be under 20 milliseconds. Of course the total end-to-end delay depends
greatly on other devices in the network.

When investigating the delays of the video packets during load testing, we see
even greater variance than with the audio packets. Figure 32 shows the delays of
the HD video packets for the cumulative calls, also presented on a logarithmic scale.

What is positive, is that the median delay stays between 0.1 and 0.2 milliseconds
with all ten calls. But in with the video packets, the maximum delays range even
further than with the audio packets. The single maximum delay is reached with
nine simultaneous calls, when a packet spent 38.00 milliseconds in the Media Relay.
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Figure 31: One-way packet delay of audio packets in HD video load testing

Delays reaching close to 40 milliseconds per one Media Relay traverse could
already be notable in the end-to-end delay, if they would occur more often. As
individual peak points they should not, however, degrade the overall quality too
much. Also, taking the 95th percentile of the ninth call reveals that majority of the
delays still lie below 0.98 milliseconds.

Media Relay does not perform any synchronization between the audio and the
video streams. The synchronization is then up to the clients. This means that when
the individual delays might increase as the number of calls grow, and because video
delays increase more rapidly, the audio packets pass through Media Relay faster than
the video packets. When the client synchronizes the audio and the video streams,
it is likely the video stream then that dictates the overall delay, no matter how fast
the audio packets had arrived.

4.4 Measurement Analysis

This section analyses the measurement results presented in the previous section.
The emphasis is on the performance of the Media Relay, focusing on the CPU load
and the delay that Media Relay introduces to the media traversal. First we analyze
the characteristics of the different traffic profiles. The CPU load analysis leads us
to estimate the maximum number of calls Media Relay can handle. After analyzing
the delays, we discuss the generality of the measurements.
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Figure 32: One-way packet delay of video packets in HD video load testing

4.4.1 Traffic

The measurements included different traffic profiles, ranging from plain audio calls
to HD video calls, and containing both unencrypted (RTP) and encrypted (SRTP)
calls. The RTP calls as such are not that relevant as a real-life use cases, since the
WebRTC specifications dictate that all media has to be encrypted in a WebRTC
session. Also, the current browsers already implement SRTP capabilities, and do not
even offer unencrypted WebRTC possibilities. Nevertheless, the RTP measurements
were conducted alongside the SRTP measurements, since the original setup consisted
of Media Relay without SRTP encryption and a customised browser supporting
unencrypted WebRTC. Therefore the measurements were also included in this thesis
for reference.

Because of the different browsers used for the measurements, the results have
somewhat different characteristics between the RTP and the SRTP calls. The nature
of the different codecs pose some constraints to the analysis of the different call
scenarios, but for general measurements that aim to provide some indication of the
Media Relay’s performance, the differences are not that significant. Nonetheless,
they provide another perspective on how the system behaves with different setups.

As mentioned in Section 2.1 there is an ongoing debate about the mandatory to
implement video codec between VP8 and H.264. Comparing the payload size results
in Figure 22 between the SD-RTP (H.264) and SD-SRTP (VP8) calls we can see
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that there is some, but not much difference. The average payload size of the video
packets is really close between the two. VP8 has a little more variance in its payload
sizes, whereas H.264’s minimum payload sizes reach a bit closer to zero.

The measured packet rates in Figure 23 are also very close to each other in SD-
RTP and SD-SRTP, when looking at the median values. In SD-SRTP there is a bit
more variance, whereas in SD-RTP the packet rate stays really close to the median.
All this is of course dependent on the codec implementation. The Leif browser we
used has Ericsson’s own implementation of H.264, and the VP8 in Chrome is the
browser’s own native implementation.

The performance differences between VP8 and H.264 cannot be directly inter-
preted from the measurements presented in the previous section, since all the calls
with VP8 included SRTP encryption and decryption, whereas H.264 calls were plain
RTP, going straight through Media Relay. In Media Relay’s point of view that would
also be the only difference between the two, since Media Relay does not care about
the payload type inside the (S)RTP packets.

These are only small observations about the different codecs noted in our mea-
surements, and strong statements cannot be made based on them in favor of one or
the other. There are more important factors to be considered and precise studies to
be made when deciding which codec will eventually be more feasible for WebRTC.

4.4.2 CPU Load

As a prototype system, Media Relay is not expected to handle hundreds or thousands
of simultaneous calls. Even a handful of calls is enough to trial the functionality
and to use the prototype in a proof of concept scenarios.

The different call scenarios have different performance characteristics. As Fig-
ure 25 displays, the more data and complexity (as in case of encryption) is present
in the call, the more processing it requires. This comes as no surprise. Even though
the SD-RTP video call is on par with the SD-SRTP video call when it comes to
the RTP packet payload sizes, the SRTP conversion is a big factor in the processing
requirements. HD video calls naturally add even more data to be processed.

Audio calls and SD-RTP video calls each fall into a quite narrow CPU load range,
whereas the SRTP video calls, both SD and HD, have a little more variance in the
CPU load they cause in Media Relay. The variance is probably caused by the higher
variance in the packet rate, when comparing to the SD-RTP calls.

The CPU load for all types of single calls remains mostly under ten percent,
even for the HD video calls. Single audio calls generate only one to two percent
CPU load. These kind of measures seem good enough for a prototype system, since
in terms of CPU load the Media Relay appears to be able to handle even tens of
simultaneous calls.

This was further validated in the load tests, where Media Relay had to handle
ten simultaneous HD video calls. The overall CPU load of the Media Relay process
increased to almost 60 percent. The results were even better than expected, and
the estimated maximum of 15 simultaneous HD video calls for a prototype system
sounds promising.
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Presenting the load measurements as a function of total throughput in Figure 29
gives a more generic picture of the Media Relay’s capabilities. In Section 4.3.4 it
was estimated that a single HD video call generates traffic on average around 1 700
kilobytes per second. This seems to be in line with the load measurements, where
ten simultaneous calls reach maximum 18 599.71 kilobytes per second.

The CPU load as a function of throughput seems like a good estimate on the
overall capacity of Media Relay, since the data fits well to the linear regression. This
kind of model, however, depends on the traffic profile, since different types of data
have different processing overhead.

Estimating the actual maximum number of calls Media Relay can handle is quite
hard, since the throughput, and also the CPU load of single calls can vary quite a
bit, as we have seen in the measurement results. We can try to give rough estimates
based on different throughput levels, but it is worth noting, that for example bursts
in traffic increase the processing load momentarily. This could limit the actual
number of possible simultaneous calls, or at least affect the media quality.

Table 9 in Appendix A presents the measurement data of the call bitrates in
kilobytes per second. The data is visualised in Figure 24. Using this data we can
calculate approximate estimates on the maximum number of calls that Media Relay
can handle. The calculations are based on the estimated maximum bitrates that
Media Relay can handle, presented in Section 4.3.6: for video calls it is 30 791.82,
and for audio calls it is 4 063.57 kilobytes per second. The maximum bitrate is then
divided by the total traffic RX + TX + (2× IMS) for each call type, presented in
Section 4.3.4. IMS is counted twice, because the RX and TX on the IMS side was
always equal, and thus was presented in the table and in the graph only once.

In Table 5 we present the maximum number of calls for the actual real-life use
cases: encrypted audio call, and encrypted SD and HD video calls. The maximum
number of calls are calculated using three different values for the total traffic: me-
dian, third quartile and maximum. All the results are rounded down to the closest
integer.

Table 5: Estimated maximum number of calls for different bitrate limits

Call Median 3rd Qu. Max.
A-SRTP 75 74 69
SD-SRTP 49 34 19
HD-SRTP 17 14 12

The values based on the maximum bitrates are safe estimates on how many
calls Media Relay could still handle, if all the calls run on maximum bitrate all the
time. For HD video calls this yields 12, which certainly should not overload Media
Relay—with ten HD video calls we reached only 60 percent CPU load in our tests.

The Median values are a bit more optimistic. If the CPU is running on hundred
percent load when the calls run on median bitrates, any bursts or variance might
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easily degrade the media quality. For HD video calls this estimate is 17, which is in
line with the estimate we got already in Section 4.3.6.

The third quartile estimates are probably the best estimates to be applied for
real-life scenarios: they leave a little margin for the extreme cases, yet providing quite
good estimates for the maximum capabilities of Media Relay. By this estimation, a
single Media Relay could handle 14 simultaneous HD video calls.

What comes to SD video calls, the estimates spread a bit more: the maximum
number of calls is somewhere between 19 and 49, the third quartile estimation giving
34 calls. The estimates for maximum number of plain audio calls fall quite closely
around 70 calls.

4.4.3 Delay

Delay plays an important role in real-time applications. Like [26] states, with one-
way delays under 150 milliseconds, most real-time applications will experience es-
sentially transparent interactivity. Delays between 150 and 400 milliseconds can be
tolerated, without making an excessive number of user experiences unacceptable.

The measurements concentrate only on the delay that Media Relay introduces to
the media transmission, which can be valuable information when planning a network
for WebRTC communication.

The delays in single call scenarios at Media Relay are minor. The maximum
delays reach to a few milliseconds, while the average delays remain well under one
millisecond. These kind of figures do not pose any threats to the recommended 150
millisecond limit.

The difference between the RTP and the SRTP calls is not major, but clearly
noticeable. While the packets in pure RTP calls are only passed through, the packets
in SRTP calls need to be encrypted or decrypted, which naturally increases the
processing load and thus also the delay.

However, there seems to be only little difference between the audio packet delays
and the video packet delays, even though the average sizes of the video packets are
roughly ten times larger. The overall load in the single call scenarios stays so low,
that the difference in the payload size does not result in noticeable differences in the
processing time.

When it comes to increasing the load in Media Relay, the differences between
audio packet delays and video packet delays become more apparent. With ten calls,
the audio packets still travel through Media Relay quite quickly, with maximum
delay in the measurements being under ten milliseconds. For the video packets, the
maximum delay reached nearly 40 milliseconds. This shows that when the load in
Media Relay grows, the larger video packets start taking a bit longer to be processed.
However, it is only the maximum delays that span rapidly; for example the third
quartile, and even the higher whiskers in the boxplots grow less than one millisecond.

Even when Media Relay load increased close to 60 percent with ten simultaneous
HD video calls, the median delays of both audio and video packets remained below
0.2 milliseconds. This is good in terms of media quality, and gives confidence when
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planning networks so that the one-way end-to-end delay would most of the time stay
under 150 (or at least under 400) milliseconds, as recommended.

4.4.4 Generality of the Measurement Results

The measurements were performed inside the company network, which has an av-
erage RTT less than one millisecond. This is probably much less than in the public
Internet. Even though we did not measure any end-to-end delays or such, a more
congested network could possibly affect the bitrate of the calls. Higher delays prob-
ably cause more variance in the bitrates. Also higher packet loss could cause more
data to be sent, because the video codecs may need to request missing key frames,
which are generally larger than any adjacent frames.

Also, due to lack of proper load testing environment, the generalizations of the
estimates presented in the whole Section 4.4 are pretty broad. The number of
executed test calls was relatively low, and especially the load tests were not trivial to
repeat due to manual testing. However, other single call test executions gave similar
results as documented in the thesis results. In addition to the generalization, it is
difficult to estimate how high the load would need to rise, so that it would already
start to affect the quality of the ongoing calls.

The audio and video quality were not considered in this thesis, other than
analysing the delay. Mostly both the audio and the video ran smoothly, but at
times there were some glitches and freezing frames, a bit more so in the load testing
than in the single calls.

The client software in all the measurements was Chrome (or Leif, modified
Chrome, in the RTP calls). At the moment also Firefox supports WebRTC, but
in the future, the client could well be any other software, that has different charac-
teristics and different codec implementations. Also the actual video resolution can
be specified more precisely in the JavaScript application—it is not restricted to only
two options.

4.5 Summary

We used a prototyping environment to examine the performance characteristics of
the Media Relay. The prototyping environment consisted of a simple network with
one Media Relay, which operated alongside the WCG and the SDS as the simulated
IMS network. As the client software we used Chrome and Leif browsers.

A series of measurements were run with five different traffic profiles, containing
unencrypted and encrypted media, both audio and two types of video. After ana-
lyzing the traffic profiles, we focused on the Media Relay’s performance metrics, in
terms of CPU load and delay.

The measurement results revealed that encrypted audio calls run on roughly two
percent CPU load, while encrypted SD video calls generate a bit over four percent
CPU load per call. The unencrypted versions of those calls generate on average
0.5-1 percent less CPU load. Encrypted HD video calls generate close to 8 percent
CPU load, with relatively higher variance than the other calls.
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The average delays in all the call types were less than 0.2 milliseconds, when
measuring single calls. What was interesting, was that the delay of incoming packets
(from the WebRTC client towards the IMS) was explicitly higher than the delay of
outgoing packets (from the IMS towards the WebRTC client). This was even with
unencrypted calls, so it was not a result of possible difference in encoding and
decoding processes.

By running ten simultaneous calls, cumulated on top of each other, we obtained
some load performance statistics for encrypted HD video calls and encrypted audio
calls. From the video calls we discovered, that the median delay did not grow almost
at all, even with ten simultaneous calls. The maximum delay did grow for both audio
and video packets, but that concerned only a small fraction of packets.

From the load statistics we derived estimates on how many simultaneous calls
Media Relay could handle. The estimates are based on the performance measure-
ments and the measured bitrates for the different calls. We presented three different
estimates: an optimistic estimate based on the median bitrates, an estimate with a
small margin based on the third quartile bitrates, and a safe estimate based on the
maximum bitrates.
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5 Discussion
This chapter discusses how Media Relay could perform in real-life scenarios, still
keeping in mind that it is merely a prototype system. We also present some ideas for
future work on how Media Relay could be improved, and what sort of measurements
could still be conducted to more thoroughly characterize the performance of it.

5.1 Media Relay as a WebRTC Gateway

Media Relay acts as a gateway between the public Internet and the private network,
owned by for example an operator. It converts a WebRTC call to a traditional IP-
based multimedia call, by terminating the DTLS and ICE sessions and decrypting
the forwarded RTP media, and vice versa. Every time a new intermediate node like
this is introduced to the media path, some amount of extra processing and delay is
bound to happen.

In real-time applications delay is a crucial element: a delay too high will render
the service practically unusable. Some limits for a “too high” delay are proposed
in [26]. The delay depends greatly on the processing that needs to be done in
the intermediate node. In this case, there existed a basic relay node, to which we
implemented the security functionality. This consisted of DTLS-SRTP protection,
coupled with ICE, as was required in the WebRTC specifications.

As SRTP encryption and decryption was considered computationally heavy op-
erations, we measured the effect of the new functionality compared to the initial
state. Also the overall performance was measured to see how Media Relay would
perform in different scenarios.

In Section 4.4.2 we presented estimates for the maximum number of simultaneous
calls that a single instance of Media Relay could be able to handle. Around 14
simultaneous HD video calls is not much, certainly not product level capacity. But
for a prototype system, which Media Relay is, this is certainly acceptable. Also,
since this is a software solution, the capacity scales according to the hardware in
use. If the hardware does not support OpenSSL, the capacity is probably lower.

The measurements were performed in a restricted and fairly stable environment.
In the public Internet conditions probably vary significantly more, which naturally
could affect the Media Relay’s performance. Also the traffic scenarios we tested
were very simple. In real life this kind of system would handle varying mixtures of
different kind of traffic. The audio calls compose of relatively steady stream of small
packets, whereas the video packets are distinctly larger and the bitrates of the video
streams fluctuate much more.

The overall capacity is a function of the traffic mixture: the different call types
require different amount of processing per kilobytes per second, because the different
sizes of packets introduce varying overhead in the processing.

All the measurements were performed with a single Media Relay in the network
setup. In a WebRTC to WebRTC call, this causes the media to pass through the
same Media Relay twice: once when it enters the network, and once when exits the
network. In a more complex scenario there could be more instances of the Media
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Relay running on different access points of the network. In these cases the media
would travel through two different Media Relays, each once. This naturally divides
the processing requirements per Media Relay roughly by two. The delay per Media
Relay would still be the same as was measured in Section 4.3.5, since we measured
one-way delay per each direction.

5.2 Future Work

As a prototype system, Media Relay is not rock solid. Therefore, there are a lot of
things that can be improved. In addition to actual functional improvements, Media
Relay could benefit from a proper testing environment, which would also come useful
in measuring the performance more thoroughly.

Since the objective of Media Relay’s implementation was to get “something func-
tional”, performance was not on the top of the wish list. As mentioned, Media Relay
is single-threaded. So in order to fully utilize today’s modern multi-core hardware,
multiple instances of Media Relay need to be executed simultaneously. This is both
cumbersome and hard to scale. One obvious improvement would be to make Media
Relay multi-threaded. This could, however, require quite a lot of redesigning, since
if multi-threading is not considered already in the very beginning, it can be difficult
to integrate into a software due to possible architectural changes.

Furthermore, there are certainly places where the code can be optimized to gain
better performance. The adopted libraries look fairly well written on the surface,
but nevertheless, proper profiling could easily point out bottlenecks both in the
library code and the application code.

A proper testing framework would benefit both implementation and measuring
the Media Relays performance. Now, due to lack of proper feature test frame-
work, the test runs in the measurements were done manually. This means firing
up two browser windows or tabs for each call, and doing all the call setup steps by
hand. In a proper test framework the tests could be run automatically during the
implementation, and the measurements could be performed more extensively and
systematically.

Creating the signaling parts for test calls would probably not be a big effort, but
generating the video and audio streams, and sending them in SRTP could require a
bit more work. Certainly there are programs and libraries for all those tasks, so it
is only a matter of time to be used, that this kind of system could be built. Also,
for the load testing, the test framework should be able to deal with N amount of,
say, HD video calls, without hogging all the resources.

In this thesis the load tests consisted of ten simultaneous calls. In case of HD
video calls this was enough to increase the Media Relay’s CPU load a little over 60
percent. But for audio calls the CPU load reached hardly ten percent. Bigger data
sets would yield more accurate results, especially in load testing. Also the variance
in the results could be defined more specifically with higher volume in the test data.

Since our measurements only included simple traffic scenarios, more testing
would be needed to thoroughly understand how different traffic mixtures affect the
Media Relay’s performance. These traffic mixtures could, for example, be obtained
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from actual client networks, and then simulated in the testing framework. In addi-
tion to that, various network scenarios could be measured by simulating congestion
and packet loss.

Another interesting characteristic in performance measurements is call setup
rate. It is feasible to know, how many calls can be set up per second. This is greatly
affected by the handling of the initial connectivity setups, i.e. the STUN messages
for the ICE, and the DTLS handshake before the actual data can start to flow.

All the basic WebRTC functionality were implemented to Media Relay, but some
interesting features could still improve the interoperability and user experience.

BUNDLE feature was introduced in Section 3.4.3. The feature aims to bundle
the audio and video streams into one port, thus saving resources and making for
example NAT and firewall traversal easier. BUNDLE could be easy to implement,
since it has some similarity with rtcp-mux function, which was now implemented.
The BUNDLE feature is used in Chrome by default, so it would definitely come to
use in browser-based WebRTC communication.

One significant interoperability feature is transcoding. Especially when connect-
ing browsers to IMS clients, there may very well be a mismatch in the offered codecs.
With the MTI video codec still being undecided, even the specification do not yet
tackle the issue. VP8 and Opus, which both are supported in the major browsers
Chrome and Firefox, might not be that widespread on the IMS side clients and ser-
vices. At the time of writing this, Media Relay has already gained video transcoding
support between VP8 and H.264. This was implemented as a separate service, which
can be added to Media Relay when needed. It can be hosted on a separate device,
so that the heavy transcoding process can be performed on a dedicated hardware.

The transcoding functionality could be further extended by adding support for
more codecs in addition to VP8 and H.264. For example transcoding between Opus
and PCM could be useful in some cases, even though PCM is already mandatory
part of WebRTC and very widely used in all voice communication. Also, the next
generation video codecs are making their way to provide better quality and higher
compression: VP9 [27] as the successor of VP8, and H.265 [28] as the successor of
H.264.

As we learned in Section 2.6.1, TURN offers another additional way to traverse
through restrictive networks, by relaying data through trusted servers. Incorporat-
ing a TURN server by the Media Relay would make Media Relay more usable for
example on the edges of strict corporate networks. This is already being investi-
gated, and the implementation is left for future work.

5.3 Summary

Media Relay was implemented as a prototype system, and thus the performance was
not the main objective. In order to proof that the concept works, it was enough
that some simultaneous calls would go through without problems. Nevertheless, the
measurements proved that Media Relay performed fairly well. The delay remained
moderate, and in terms of performance Media Relay met the expectations.
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Based on the measurements alone, however, it is difficult to say how Media
Relay would perform in real-life scenarios. The network conditions in the Internet
are not as good as in the test network. The traffic mixture in real-life is also not as
homogeneous as in our load tests.

To improve Media Relay, several future work items were introduced. Media Re-
lay’s architecture could be improved and additional features could be implemented.
Creating a proper testing framework and test automation would help to further
measure and analyze the Media Relay’s performance.
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6 Conclusions
A joined standardization effort by IETF andW3C has been emerging for the past few
years, trying to specify means for real-time peer-to-peer multimedia communication
between web browsers. The effort has been adopted by some of the major browser
vendors, who have been integrating the functionalities to their software in a rapid
pace. Basic audio and video call applications are already available, with the addition
of data transfer features.

In the dawn of native web-based multimedia communication, Ericsson started
to design a gateway system, that could connect the new WebRTC functionalities
in the Internet with the existing IMS networks. As a result, Ericsson implemented
MMTelGW: a prototype system, that was planned to do the necessary conversions in
the signaling and the media planes, so that the two worlds would interact seamlessly.

Since even the specifications were not ready, the prototype system was first
implemented without security: the media was unencrypted, and for testing purposes
even a specific browser was devised based on Google’s Chromium browser.

In order to comply with the standards, and to be able to interact with current
WebRTC compliant browsers, we implemented the necessary security features to the
Media Relay, an integral part of the MMTelGW. This included the data encryption
in form of DTLS-SRTP, and the connectivity establishment by using ICE. The
implementation was successfully tested with Chrome and Firefox, being the two
major browsers which support WebRTC.

To evaluate the usability of Media Relay as a prototype system we conducted
a series of measurements, using Chrome as the client software. The measurements
included encrypted audio calls, and encrypted video calls with low and high res-
olution video. We also included measurements with unencrypted audio calls and
unencrypted low resolution video calls, to evaluate the security functionalities’ ef-
fect to Media Relay’s performance.

The processing load of encrypted calls is naturally higher than the processing
load of corresponding unencrypted calls. The latter is only matter of forwarding the
RTP packets, whereas the former adds the encryption and decryption procedures to
the relaying process.

Based on the measurement results we presented estimates on the Media Relay’s
processing capabilities for the real-life use cases, i.e. the encrypted WebRTC calls.
Since the effect of hundred percent CPU load to the ongoing calls was not evaluated,
we present the estimates that have reasonable margins not to overload the Media
Relay process. That said, we can state that a single Media Relay instance can handle
maximum of 14 simultaneous HD video calls between two WebRTC peers, when both
clients are connected to the same Media Relay. The same figure for SD video calls
was estimated based on the HD video call data, resulting in 34 simultaneous calls.
Audio call measurements suggest that 74 simultaneous audio calls can be made
without pushing the Media Relay to the limits.

In addition to the Media Relay’s CPU load, we measured the delay that Media
Relay introduces to the media path. The results state that for single calls the
(S)RTP packet processing delay remains mostly under one millisecond. For real-
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time communication applications this kind of delay is certainly acceptable. When
the number of simultaneous calls increases, the maximum delays seem to increase
too: for ten simultaneous calls the maximum delay for video packets reached 38.00
milliseconds, and for audio packets the maximum delay was 8.17 milliseconds. Even
though the high end of the delay distribution raised quite a lot, it was only a fraction
of the packets that spent over five milliseconds in the Media Relay. Even under heavy
CPU load, the media delays for both audio and video packets remained very steadily
around 0.1 milliseconds.

To serve its purpose as a prototype system, Media Relay fills its expectations.
A set of even tens of simultaneous calls is enough to test WebRTC functionalities
in different scenarios. Being compatible with both Chrome and Firefox grants a big
share of the browser base. Now that the standards are still evolving, interoperability
is not automatically guaranteed. But over time, when both the standards and the
implementations mature, it should be indisputable that any standard compliant
application should be able to successfully interact with one another.

In addition to the measurement analysis, we present a set of future work items
that can be addressed to improve the Media Relay. Some features, such as TURN
or BUNDLE, would guarantee better performance or more seamless interoperability
with different browsers and client software. Other improvements, such as multi-
threading, aim to enhance the implementation and evaluation of the Media Relay
itself.

The emerging WebRTC standardization itself encourages innovations in the web
communication area. A WebRTC gateway system, such as the combination of Media
Relay and WCG, opens up new possibilities to further extend the new technology.
Combining the novel WebRTC capabilities with legacy telephony systems and other
services opens up new opportunities for the stakeholders: the users, the developers,
as well as the service providers have the possibility to compose a whole new set of
applications that one can only imagine.
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A Measurement Result Data for Boxplots
The following tables present the boxplot data values (median, first and third quar-
tiles, and whiskers), as well as minimum and maximum values.

Table 6: Payload size of audio packets in bytes, Figure 21

Call Dir. Min. Lower
whisker 1st Qu. Median 3rd Qu. Higher

whisker Max.

A
-R

T
P IN 160 160 160 160 160 160 160

IMS 160 160 160 160 160 160 160
OUT 160 160 160 160 160 160 160

SD
-R

T
P IN 160 160 160 160 160 160 160

IMS 160 160 160 160 160 160 160
OUT 160 160 160 160 160 160 160

A
-S

R
T

P IN 69 70 85 90 95 110 117
IMS 58 59 74 79 84 99 105
OUT 63 66 81 86 91 106 115

SD
-S

R
T

P IN 71 73 85 89 93 105 118
IMS 59 62 74 78 82 94 108
OUT 66 69 81 85 89 101 114

H
D

-S
R
T

P IN 71 73 85 89 93 105 116
IMS 59 62 74 78 82 94 104
OUT 67 69 81 85 89 101 114

Table 7: Payload size of video packets in bytes, Figure 22

Call Dir. Min. Lower
whisker 1st Qu. Median 3rd Qu. Higher

whisker Max.

SD
-R

T
P IN 3 1148 1148 1148 1148 1148 1151

IMS 3 1148 1148 1148 1148 1148 1151
OUT 3 1148 1148 1148 1148 1148 1151

SD
-S

R
T

P IN 151 1006 1081 1106 1131 1170 1170
IMS 129 984 1059 1084 1109 1148 1148
OUT 139 994 1069 1094 1119 1158 1158

H
D

-S
R
T

P IN 123 1094 1122 1132 1141 1168 1168
IMS 101 1072 1100 1110 1119 1146 1146
OUT 111 1082 1110 1120 1129 1156 1156
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Table 8: Throughput in packets per second, Figure 23

Call Dir. Min. Lower
whisker 1st Qu. Median 3rd Qu. Higher

whisker Max.

A
-R

T
P RX 72.00 78.00 100.00 109.75 115.50 125.00 125.00

TX 70.00 74.00 96.50 106.25 112.50 120.50 120.50
IMS 51.50 58.50 80.00 89.25 95.50 101.50 101.50

A
-S

R
T

P RX 112.00 112.00 115.50 116.79 118.50 123.00 131.00
TX 108.00 109.50 112.00 113.00 114.00 116.05 119.00
IMS 96.00 99.50 100.00 100.50 100.50 101.01 102.00

SD
-R

T
P RX 196.00 218.00 260.00 277.00 288.50 307.00 307.00

TX 194.00 222.50 256.00 273.25 281.91 297.00 297.00
IMS 162.00 188.00 223.50 239.50 249.00 262.00 262.00

SD
-S

R
T

P RX 165.00 165.00 236.00 268.25 345.00 504.50 504.50
TX 163.50 163.50 226.50 263.00 322.00 423.00 466.83
IMS 139.50 139.50 202.50 237.00 296.00 396.00 440.70

H
D

-S
R
T

P RX 209.50 209.50 327.00 516.75 585.00 812.00 812.00
TX 205.00 205.00 322.00 504.25 581.50 691.00 691.00
IMS 183.00 183.00 296.50 479.25 556.00 660.50 660.50

Table 9: Throughput in kilobytes per second, Figure 24

Call Dir. Min. Lower
whisker 1st Qu. Median 3rd Qu. Higher

whisker Max.

A
-R

T
P RX 10.18 11.59 16.77 19.03 20.50 23.33 23.33

TX 11.56 12.66 18.34 20.60 22.23 23.71 23.71
IMS 8.17 9.83 14.84 16.95 18.50 19.78 19.78

A
-S

R
T

P RX 13.68 13.68 14.19 14.40 14.83 15.77 17.80
TX 14.86 15.26 15.60 15.73 15.86 16.17 16.93
IMS 10.99 11.33 11.58 11.70 11.77 12.02 12.02

SD
-R

T
P RX 114.47 163.15 179.41 185.55 190.28 200.22 200.22

TX 118.16 167.63 183.31 189.81 193.96 204.61 204.61
IMS 110.63 161.02 175.54 181.71 185.65 195.75 195.75

SD
-S

R
T

P RX 50.84 50.84 126.70 161.39 246.00 396.76 396.76
TX 53.18 53.18 122.40 158.21 224.67 346.34 399.61
IMS 46.43 46.43 114.12 148.84 214.50 332.08 385.52

H
D

-S
R
T

P RX 101.95 101.95 232.17 447.09 527.66 712.57 712.57
TX 104.32 104.32 234.45 440.94 530.00 582.62 582.62
IMS 96.69 96.69 223.74 426.07 513.58 562.53 562.53
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Table 10: Single call CPU load in percent, Figure 25

Call Min. Lower
whisker 1st Qu. Median 3rd Qu. Higher

whisker Max.

A-RTP 0.5 0.5 1.0 1.5 1.5 2.0 2.0
A-SRTP 1.5 2.0 2.0 2.0 2.0 2.0 2.5
SD-RTP 2.5 2.5 3.0 3.5 4.0 4.0 4.0
SD-SRTP 2.5 2.5 4.0 4.5 5.5 7.5 7.5
HD-SRTP 3.0 3.0 5.0 7.5 8.5 10.5 10.5

Table 11: One-way packet delay in milliseconds, Figure 26

Dir. Call Min. Lower
whisker 1st Qu. Median 3rd Qu. Higher

whisker Max.

A
ud

io
in

co
m

in
g A-RTP 0.025 0.107 0.110 0.111 0.112 0.115 0.584

SD-RTP 0.020 0.107 0.109 0.110 0.111 0.113 0.826
A-SRTP 0.048 0.126 0.129 0.130 0.131 0.134 0.342
SD-SRTP 0.036 0.125 0.129 0.130 0.132 0.136 0.741
HD-SRTP 0.021 0.122 0.128 0.130 0.132 0.138 2.283

A
ud

io
ou

tg
oi

ng

A-RTP 0.012 0.025 0.045 0.046 0.064 0.092 0.388
SD-RTP 0.012 0.041 0.045 0.046 0.048 0.052 0.573
A-SRTP 0.025 0.056 0.057 0.058 0.058 0.059 0.287
SD-SRTP 0.027 0.055 0.058 0.059 0.060 0.063 0.401
HD-SRTP 0.017 0.049 0.058 0.059 0.064 0.073 0.456

V
id

eo
in

co
m

in
g SD-RTP 0.017 0.069 0.093 0.095 0.109 0.133 0.381

SD-SRTP 0.053 0.099 0.126 0.131 0.144 0.171 1.061
HD-SRTP 0.023 0.023 0.096 0.128 0.166 0.271 1.707

V
id

eo
ou

tg
oi

ng SD-RTP 0.011 0.040 0.045 0.047 0.049 0.054 0.506
SD-SRTP 0.043 0.043 0.070 0.074 0.128 0.215 0.573
HD-SRTP 0.021 0.021 0.070 0.106 0.164 0.305 0.550
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Table 12: CPU load per number of calls in percent, Figure 28

Number
of calls Min. Lower

whisker 1st Qu. Median 3rd Qu. Higher
whisker Max.

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 6.6 6.6 9.5 10.3 12.0 15.5 15.5
2 12.0 12.0 16.5 18.5 20.5 23.0 23.0
3 19.9 19.9 24.5 26.0 28.0 32.5 32.5
4 28.5 28.5 32.5 33.8 35.5 39.8 39.8
5 24.0 33.3 37.0 39.0 39.9 44.0 45.4
6 33.0 38.5 40.5 42.4 43.9 45.9 45.9
7 41.4 41.4 43.4 45.4 46.4 50.4 51.4
8 41.4 44.9 47.9 49.2 50.9 53.1 53.1
9 46.4 46.4 52.4 54.4 56.4 60.4 60.4
10 46.9 53.9 55.9 56.7 58.4 60.9 66.3

Table 13: One-way packet delay of audio packets in HD video load testing in mil-
liseconds, Figure 31

Number
of calls Min. Lower

whisker 1st Qu. Median 3rd Qu. Higher
whisker Max.

1 0.018 0.018 0.058 0.114 0.132 0.243 1.191
2 0.016 0.016 0.059 0.113 0.130 0.236 0.860
3 0.016 0.016 0.075 0.116 0.163 0.295 2.203
4 0.016 0.016 0.073 0.116 0.175 0.327 3.965
5 0.015 0.015 0.072 0.116 0.176 0.331 6.636
6 0.015 0.015 0.073 0.116 0.179 0.338 2.814
7 0.015 0.015 0.073 0.116 0.187 0.358 2.431
8 0.015 0.015 0.073 0.116 0.191 0.368 8.166
9 0.015 0.015 0.073 0.120 0.209 0.413 4.859
10 0.015 0.015 0.071 0.119 0.207 0.410 2.691
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Table 14: One-way packet delay of video packets in HD video load testing in mil-
liseconds, Figure 32

Number
of calls Min. Lower

whisker 1st Qu. Median 3rd Qu. Higher
whisker Max.

1 0.021 0.021 0.093 0.130 0.186 0.325 2.047
2 0.018 0.018 0.107 0.131 0.198 0.334 2.340
3 0.021 0.021 0.110 0.137 0.204 0.345 11.620
4 0.021 0.021 0.117 0.159 0.239 0.422 4.771
5 0.020 0.020 0.103 0.148 0.227 0.412 9.888
6 0.017 0.017 0.104 0.156 0.259 0.491 6.495
7 0.020 0.020 0.104 0.160 0.271 0.521 6.263
8 0.018 0.018 0.105 0.165 0.303 0.600 10.973
9 0.019 0.019 0.105 0.176 0.333 0.675 37.998
10 0.017 0.017 0.102 0.168 0.317 0.639 8.194
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