
Harri Hämäläinen

Evaluation of the network performance in a
high performance computing cloud

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo 21.05.2014

Thesis supervisor:

Prof. Jukka Manner

Thesis advisor:

M.Sc. (Tech.) Risto Laurikainen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80712406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AALTO-YLIOPISTO

SÄHKOTEKNIIKAN KORKEAKOULU

DIPLOMITYÖN

TIIVISTELMÄ

Tekijä: Harri Hämäläinen

Työn nimi: Suurteholaskentapilven verkon suorituskyvyn evaluointi

Päivämäärä: 21.05.2014 Kieli: Englanti Sivumäärä:7+55

Tietoliikenne- ja tietoverkkotekniikan laitos

Professuuri: Tietoverkot Koodi: S-38

Valvoja: Prof. Jukka Manner

Ohjaaja: DI Risto Laurikainen

Pilvipalvelut mahdollistavat resurssien joustavan käytön. Erityisesti niin sanoituissa
Infrastructure-as-a-Service -pilvipalveluissa käyttäjän voivat virtualisoinnin kautta ajaa
sovelluksiaan omissa virtuaalikoneissaan ja siten muokata sovellusten ajoympäristöä
omien tarpeidensa mukaan. Näissä palveluissa käytettävä virtualisointi lisää yleisra-
sitetta, joka heikentää sekä laskennan että I/O-laitteiden suorituskykyä.

Tässä työssä evaluoidaan tällaisen pilvipalvelun verkon suorituskykyä. Palvelussa
käytetty verkkoteknologia pohjautuu InfiniBand-arkkitehtuuriin, joka on yleinen
teknologia erityisesti suurteholaskennassa käytettävissä klusterijärjestelmissä. Eval-
uointimenetelmät tutkivat verkon latenssia ja läpisyöttöä (engl. throughput) eri
skenaarioissa, joissa suureita tutkitaan sekä ilman virtualisointia että virtualisoinnin
kanssa. Skenaarioiden tarkoituksena on kartoittaa yleisrasitteeseen voimakkaimmin
vaikuttavia tekijöitä. Tämän lisäksi työssä evaluoidaan erityistä SR-IOV-teknologiaa,
joka mahdollistaa fyysisen laitteen esittämisen joukkona virtuaalikoneisiin liitettäviä
virtuaalilaitteita. Teknologian avulla voidaan yleisesti tehostaa I/O laitteiden suori-
tuskykyä virtuaalikoneissa. Tämän evaluoinnin yhteydessä käytettävissä InfiniBand
laitteissa on SR-IOV-tuesta ollut kehitysversio, jota on testettu evaluoitavassa jär-
jestelmässä.

Evaluoinnin tulokset osoittavat käytettävän tunnelointiprotokollan sekä virtualisoinnin
I/O-tuen puutteen aiheuttavan suurimmat suorituskyvyn menetykset evaluoiduissa ske-
naarioissa. Evaluoitu SR-IOV-teknologia on tulosten perusteella kaikissa tapauksissa
suositeltava käyttöönotettava teknologia suorituskyvyn parantamiseksi.

Avainsanat: InfiniBand, pilvipalvelut, SR-IOV, virtualisointi

AALTO UNIVERSITY

SCHOOL OF ELECTRICAL ENGINEERING

ABSTRACT OF THE

MASTER’S THESIS

Author: Harri Hämäläinen

Title: Evaluation of the network performance in a high performance computing
cloud

Date: 21.05.2014 Language: English Number of pages:7+55

Department of Communications and Networking

Professorship: Data Networks Code: S-38

Supervisor: Prof. Jukka Manner

Advisor: M.Sc. (Tech.) Risto Laurikainen

The cloud services enable a flexible use of resources. Especially in so called
Infrasturcture-as-a-Service style cloud services the users can run their own applications
in their own virtual machines and so customize the whole execution environment
as needed. However the virtualization introduces an overhead which decreases the
performance of computation and I/O-device access.

This work contains a network performance evaluation of this kind of cloud ser-
vice. The service uses InfiniBand as its network interconnect solution, a technology
often used in high performance computing clusters. The evaluation methods study the
network latency and throughput in different scenarios. In these scenarios the metrics
are studied with and without virtualization. The purpose of these scenarios is to study
the major contributing sources for the introduced overhead. This work also contains
an evaluation of SR-IOV technology, which enables the mapping from physical device
into multiple virtual functions which can be assigned directly to virtual machines. The
technology can be used to improve the performance of I/O devices. In this work the
SR-IOV technology is studied with InfiniBand devices which are currently having an
experimental support for SR-IOV.

The evaluation results show that the tunneling protocol used and the lack of
hardware support for virtualized I/O are causing the biggest performance losses in
the evaluated scenarios. The evaluated SR-IOV technology is, based on the evaluated
scenarios, desired in all cases to improve the performance.

Keywords: InfiniBand, cloud services, SR-IOV, virtualization

iv

Preface

I want to thank my instructor, Risto Laurikainen, and supervisor, Prof. Jukka Manner, for
the feedback regarding this work. I also want to thank Pekka Lehtovuori for the chance
to work on this topic, as well as the all the members of old CS and CE teams at CSC for
the support I’ve received and especially for the great discussions I’ve had there.

Otaniemi, 21.05.2014

Harri Hämäläinen

v

Contents
Abstract (in Finnish) ii

Abstract iii

Preface iv

Contents v

Abbreviations vii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Objectives and Scope . 3
1.3 Related Work . 4
1.4 Outline . 5

2 Background 6
2.1 Cloud computing . 6
2.2 Virtualization . 7
2.3 Use cases for cloud services . 10
2.4 High Performance Computing . 14
2.5 Summary . 17

3 Design of HPC Cloud 19
3.1 Service Alternatives for HPC Cloud . 19
3.2 Software stack alternatives . 20
3.3 Interconnection alternatives . 21
3.4 Summary . 24

4 InfiniBand Networking 25
4.1 InfiniBand Characteristics . 25

4.1.1 Operation Semantics . 27
4.1.2 Service Types . 28
4.1.3 Congestion and Flow Control 28
4.1.4 Link Encoding . 29

4.2 Interfaces for InfiniBand Architecture 30
4.3 Summary . 32

5 Evaluation Methods and Tests 33
5.1 System Under Test . 33
5.2 Test Suite Description . 36
5.3 Initial IB RDMA results . 38
5.4 Initial IPoIB results . 40
5.5 SR-IOV enabled network interfaces . 42

vi

5.6 Summary . 46

6 Conclusions 48

References 50

vii

Abbreviations

10 GigE 10 Gigabit Ethernet
BIOS Basic Input/Output System
CPU Central Processing Unit
DC Direct Current
DMA Direct Memory Access
FDR Fourteen Data Rate
GigE Gigabit Ethernet
HCA Host Channel Adapter
HPC High-perforamance computing
HTTP Hypertext Transfer Protocol
IaaS Infrastructure-as-a-Service
IB InfiniBand
IBA InfiniBand Architecture
IBTA InfiniBand Trade Association
IOV PCI-SIG I/O Virtualization
IPoIB IP over InfiniBand
I/O Input / Output
KVM Kernel-based Virtual Machine
LAN Local Area Network
MPI Message Passing Interface
MTU Maximum Transmission Unit
NIC Network Interface Card
OFED OpenFabrics Enterprise Distribution
PCI Peripheral Component Interconnect
PCIe Peripheral Component Interconnect Express
RDMA Remote Direct Memory Access
SDP Sockets Direct Protocol
SDR Single Data Rate
SR-IOV Single-Root I/O Virtualization
ULP Upper Layer Protocol
VLAN Virtual Local Area Network
VMM Virtual Machine Monitor
vNIC Virtual Network Interface
VT-d Virtualization Technology for Directed I/O

1 Introduction

High performance computing (HPC) is a term used to refer a set of computing solutions
which can be applied to heavy computational problems. Most commonly this means the
usage of special computing hardware, such as a super computer or a super cluster. These
system are designed to process the computation tasks requiring the amount of resources
not available on commodity hardware such as basic workstation computers. The HPC
systems are today used to solve wide range of problems from weather forecasting to DNA
sequencing and from financial market analysis to fundamental questions in physics.

The superior computational power comes naturally with some drawbacks. The high initial
price and operating costs or the lack of expert knowledge to setup and administer the HPC
installations prevents some organizations from acquiring these systems for their own use.
In these cases the organizations can still have possibility to use shared HPC resources
offered by another organization taking the financial and administrative responsibilities
of the system. Also the shared HPC system are static by nature and the customization
of the computation environment must usually be carried by a system administrator who
controls which applications and libraries are installed. For the users of the systems this
means either to use the tools available in the system or to request an installation of the
tools required, which starts to cause troubles for administration of the system when large
number of users are to be served.

While Infrastructure-as-a-Service (IaaS) cloud services are also usually larger systems
with lots of computational capacity they are generally not thought as HPC platforms.
The purpose of such IaaS cloud is to offer an on-demand access to a pool of low-level
resources, usually a hardware or virtual machines managed by a cloud middleware ser-
vices. These middleware services consist of the underlying host operating systems, hy-
pervisors running the virtual machines, and accounting and control processes managing
the resource access from machines.

The on-demand access means that the user can request an allocation of system resources
for himself and the request is served if the system can fulfill the request. The resources
are allocated for that user until they are explicitly released back to the pool of available
resources. By allocating a larger set of resources the user of IaaS cloud system can also
compute problems usually solved only on traditional HPC environments. Compared to
HPC systems the allocated cloud resources are usually given to user with higher degree
of freedom. User can select which operation system to run and which applications to
use. The HPC systems are usually shared systems among multiple users without supe-
ruser access to the system. Using arbitrary applications on these systems might require
negotiation with system operators.

However the improved flexibility of cloud computing approach has its costs. Virtualiza-
tion used with the cloud services adds overhead which might degrade the performance of
the system. Also serving the different users in a fair and secure way has challenges in
these environments.

In HPC systems the system performance is affected by multiple factors. Traditionally the

2

HPC workloads have been limited by the available CPU and memory resources i.e. these
workloads are said to be CPU intensive. In super-cluster environments the computation
power usually comes from multiple host machines interconnected with a fast network
allowing efficient parallel execution of computation processes. To fully utilize the fast
interconnection between multiple CPU resources also the applications must support ef-
ficient communication and computation. Software optimization for HPC is a complex
area requiring deep expert knowledge. Several libraries implement a message passing
interface (MPI) to provide standard and efficient interfaces for inter-machine communi-
cation in a distributed environment, which makes the process of implementing efficient
communication less error prone.

While traditional HPC systems usually outperform virtualized cloud systems, an HPC
cloud has several use cases where the increased flexibility is more important than the
performance lost due to the virtualization layer. In addition to the flexibility provided by
virtualized on-demand service the virtualization layer can be used to provide an alternative
platform for legacy applications requiring e.g. a certain operating system configuration.
In these cases the virtualized cloud service offers a plan of continuation for the usage of
such applications even if the original hardware and operating systems are phased out.

1.1 Problem Statement

HPC cloud environment could offer a flexible way of accessing HPC resources. The user
of IaaS cloud system can either build a system highly customized for his needs or use
generic prebuilt system usually provided by a cloud operator. Because of the possibility
of customization the user can run both the legacy systems as well as the modern systems
on the same virtualized hardware.

The biggest question in this however is how much the virtualization affects the system
performance. Especially in case of the HPC the interest is in the virtualization overhead
of the network fabric optimized for rapid message passing and required by many parallel
HPC applications to achieve their full potential. This is due to the recent developments
in the CPU virtualization support making the effect of virtualization for CPU intensive
computing on single host less severe compared to systems where the computation is dis-
tributed over multiple hosts requiring large number of I/O operations from the network
hardware. In these cases the performance of virtualized network I/O has been lacking
behind until recently with development of technologies such as the single root I/O virtu-
alization (SR-IOV).

To understand the effect of virtualization for network performance in detail and to dis-
cover potential bottleneck components in the system an analysis is required on multiple
layers in the system. So far mostly the suitability of IaaS cloud for HPC is studied on
commercial IaaS clouds such as Amazon’s Elastic Compute cloud [11]. In these cases
however it is hard to get any deeper insight from the system as only the virtualized layer
is visible to user.

The high network throughput is usually always desired as long as it does not affect the

3

network latency too much. With bigger data flows this can happen for several reasons like
processing, queuing and congestion delays. As a consequence some transfer mediums
can have a high throughput but a very poor latency and vice versa.

The analysis is based on two general characteristics of network performance: latency
and bandwidth. The latency is used to report the delay introduced by endpoints and the
network connecting the them. In case of the HPC systems the ultra low latency is usually
key requirement due to the message passing between the system nodes. In practice this
means the latency being in microsecond range. The bandwidth reports the throughput or
amount of traffic which flows from the endpoint to another.

The problem addressed in this thesis is to get an insight from the different parts of the net-
work stack affecting the network performance. The focus is on comparing the virtualized
and the native network performance on top of InfiniBand network infrastructure. A test
system having InfiniBand adapters is configured with latest firmware from the hardware
supplier and a series of tests are executed to evaluate the recent development in hard-
ware based technologies which are promising better I/O performance characteristics for
virtualization.

1.2 Objectives and Scope

The problem analysis described in this thesis is carried for specific infrastructure-as-a-
service (IaaS) cloud service called Pouta and operated by CSC - IT Center for Science.
The exact details of the system under study and the analysis methods are given in detail
in Chapter 5.

For the analysis the goal is to understand the system performance limitations on multiple
levels in the system. This knowledge provides insight for the developers of a such system
to understand two key aspects:

1. How much slower the networking is in a virtualized cloud environment when com-
pared to a system without virtualized hosts.

2. Which system components are the greatest contributors for degraded network per-
formance.

The motivation behind this goal is to find potential places for improvements allowing
the system to provide higher service performance for users. The analysis is based on
the data gathered from the system under the study with several tools and applications
reporting certain network performance characteristics. As a proposal for a solution an
evaluation of Single-Root I/O Virtualization (SR-IOV) technology is tested and the results
are compared to the results from a current HPC cloud deployment.

In this thesis actual HPC applications are not used and the focus is on the lower layer of
communication protocols offered by the system. This is because the implementation and
usage of such applications requires deep knowledge of the specific application and how it

4

uses the resources it has. By studying the performance characteristics on the lower layer
we can still give certain bounds for the characteristics.

Based on the results of this thesis the cloud system administrators should be able to reason
about the suitability of the InfiniBand fabric for virtualized cloud environment. As with
the most technologies also the ones used in this thesis are under constant development,
which is why in this thesis the question about the suitability is studied with the current
technologies available.

1.3 Related Work

The suitability of cloud computing systems for high performance computing (HPC) has
been studied by several groups [46, 29, 38, 65, 32, 75, 27, 56, 69]. The results from these
studies indicate the system interconnection to be one of the main reasons for inferior
performance compared to traditional HPC systems. While the interconnection options
available in the most public cloud services are not as far efficient as the fast HPC in-
terconnects the flexibility and vast number of resources available in cloud services have
opened an interesting questions about their suitability for HPC like computation.

Many studies are comparing different systems built on top of Amazon EC2 instances
against some HPC system [38, 29, 32, 69]. The problem in these approaches is that the
underlying infrastructure is not controlled by the researchers which is why for example
the networking characteristics can have variation based on how the virtual machines are
placed into the cloud [76].

In a virtualized cloud environments the virtualization overhead of I/O operations is the
other natural reason for degraded performance due to interconnection overhead. Wang
and Ng [71] have analyzed the effect of virtualization for network performance with Ama-
zon EC2 computing cloud instances are they reported high delay variation with unstable
throughput which are likely to affect the scientific workloads in such an environment.
The effect of different hypervisors for network performance is also studied by Walters et
al. [70]. Especially with such software comparisons the actual results from their studies
might already be outdated, but their findings are interesting as different hypervisors are
having very different characteristics for network performance.

One of the prominent technologies to improve the I/O access from virtual machines is so
called Single-Root I/O Virtualization (SR-IOV). This thesis includes tests using SR-IOV
with InfiniBand network interface cards. So far only few studies have been published
about the actual performance improvement when SR-IOV is used [18, 26].

From these studies it is clear that the HPC cloud services are studied up to some extent, but
extensive and complete studies are missing. Studies comparing traditional HPC services
against generic virtual machines in the cloud will not do justice for HPC cloud services
in general as the another one is designed to have high performance and other one to have
high flexibility.

5

1.4 Outline

The rest of this thesis is organized as follows. In Chapter 2 the definitions of high per-
formance computing (HPC) and cloud computing are given. For the cloud computing
also several use cases are described. The chapter contains also an introduction to con-
cept of virtualization. The development of virtualization technologies are described from
historical viewpoint to point out how different requirements and limitations have guided
the work. Current virtualization technologies are introduced with their basic principles.
Hardware support technologies for virtualization, like single-root I/O virtualization used
in this thesis work, are introduced.

In Chapter 3 the technologies used to build Infrastructure-as-a-Service (IaaS) cloud ser-
vices are introduced. The discussion looks for alternative solutions for both the offered
service and the technology solutions used to build such a cloud service.

In Chapter 4 the InfiniBand Architecture (IBA) and its usage in the high performance
computing are introduced. The methods of accessing InfiniBand fabric from applications
are given. Also the performance effect of different access methods are described.

In Chapter 5 the system under study is described and the evaluation scenarios are defined
and the results from these scenarios are reported. The installation procedures required by
some evaluation scenarios are described.

Final conclusions from this work are given in Chapter 6.

6

2 Background

In the first section of this chapter the basics of high performance computing (HPC) and
the cloud computing are described. While both are relevant concepts to the subject of this
thesis these are only discussed briefly here as both topics are containing huge number of
studies and active research.

The virtualization technologies discussed in this Section 2.2 make it possible to run one or
multiple virtualized environments on top of single host. This host is here referred as hy-
pervisor even though terms like virtual machine monitor or VMM for short are also often
used. First the section discusses the history of virtualization after which some virtualiza-
tion models and hardware support developed especially to make the I/O operations more
efficient in virtualized environments are discussed. Especially the SR-IOV technology
discussed here is used in the evaluations discussed in Chapter 5.

In the second section the previous research related to the field of this thesis is introduced.

2.1 Cloud computing

The National Institute of Standards and Technology (NIST) has given an often used defi-
nition for the cloud computing [39] which states the following:

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources that can be rapidly provi-
sioned and released with minimal management effort or service provider interaction."

This definition however includes a wide range of different services which are discussed
in detail in Subsection 2.3. There are however a few common characteristics for these
services which are associated as a crucial features for any cloud computing service. These
characteristics are described next.

The ubiquitous service is a service which appears to be accessible from everywhere and
virtually with any kind of device. The service itself is not clearly bound to a specific host,
and the computation takes place in a physical location, which is not necessarily exactly
known by the user. For the cloud computing this means that in ideal case the computa-
tion resources are universally available to users regardless of their local systems used to
access the service. In reality some limitations might exists such as poor network con-
nectivity preventing the user from accessing the remote cloud resources or the lack of
capabilities required to access the cloud computing interfaces. Given the current popular-
ity of different cloud services these limitations are not having a huge effect on the offered
services.

The on-demand nature of cloud services allows users to request and allocate cloud re-
source as they need without human interaction to grant the resources or manage the re-
source access. This allows rapid provisioning i.e. allocation of requested resources and
scaling the resource allocation to match the variations in the service usage.

7

The definition for convenience is more tricky. Machine processable application program
interfaces (APIs) allow a convenient way of controlling the cloud resources and most
cloud services offer management APIs over Hypertext Transfer Protocol (HTTP). But like
the possibility of accessing the service virtually from anywhere at any time is surely also
very convenient. Some cloud computing services also offer customization and service
flexibility at much larger extent than similar non-cloud computing services. This flexibil-
ity is one of the major contributing factors why cloud computing has recently drawn the
attention of the public.

Most often some kind of virtualization solutions are used to provide more control and flex-
ibility for the management of the infrastructure. The concept of virtualization is discussed
in detail in Section 2.2. For the cloud computing the improved flexibility means decou-
pling the cloud applications from physical hardware with virtualization. This decoupling
allows the virtualized system to start new virtual machines with minimal overhead and
usually completely without human interaction. With the decoupling services can also be
migrated from one physical host to another more easily which can also improve fault
tolerance in case of hardware failures.

The virtualization layer is not a strict requirement. Recently especially in HPC cloud
environments so called bare metal [74] cloud solutions have gained more attention. In
the bare metal cloud environments the virtualization layer is completely missing which
eliminates the virtualization overhead, but reduces the amount of flexibility gained from
the virtualization. In the bare metal environments the operating system is provisioned to
a physical system through some management interface which handles the provisioning of
the system.

2.2 Virtualization

Virtualization technologies started to develop over 40 years ago [24]. The motivation
to develop virtualization technologies in the era of mainframe computers was to provide
ways allowing multiple operating systems to be operated on top of a physical system.
Traditionally these physical systems were allocated for one user at a time as the user was
executing commands in privileged mode after which the system was reconfigured for the
next user. With virtualization it became possible to run multiple operating systems in
virtual machines on top of a host operating system often called a virtual machine monitor
(VMM) or a hypervisor.

During the 1980s and 1990s the research focus shifted away from virtualization as modern
multitasking systems replaced big mainframe systems [58]. However in the beginning of
21st century virtualization technologies started again to draw the attention of the public
as the x86 architecture turned out to be very well available with reasonable price and the
system performance development continued to increase.

While the server hardware is now cheap and easily available the need for computational
services has also increased drastically. To fulfill these needs with straightforward ap-
proach of setting up new physical hardware installation with its software stack the out-

8

come will not only take lots of physical space and power, but it also requires lots of
management from the service provider whose responsibility is to keep the software stacks
updated and manage the user access in these machines. Virtualization as a solution pro-
vides means of decoupling the software stack from hardware while it also can make the
space and power consumption more efficient. Also with virtualization it is easier to de-
ploy systems with distributed components deployed in the virtual machines rather than
having a separate physical host for each system component [72].

Today well known use cases for virtualization are the different Infrastructure-as-a-Service
(IaaS) cloud services discussed in Section 2.1. Such services offer computing resources
to be allocated from a public service and the customers can run their systems and appli-
cations on top of the allocated resources. This not only removes the need to own physical
computing system in order to offer computing services but also provides flexible ways to
scale up the size of the service with the system usage.

Another virtualization trend today is the virtualized networking. With virtual networking
multiple virtual machines can be connected with virtual network topology. The direct
consequence from virtual network topology is an improved service flexibility as multiple
configurations can be assigned without the need to physically reconnect the links. This
eases the physical management work in data centers, improves the flexibility of provided
services and allows automated control of the virtualized networking infrastructure. In
addition to this also different link characteristics could be virtually assigned to links such
as the bandwidth or latency of the links.

But the x86 processor architecture was not designed to support virtualization. Due to
this it is assumed that the operating system is running on the bare-metal hardware [68].
With virtual machines running on top of single hypervisor this is not the case anymore.
Multiple virtual machines are sharing the resources and these machines are supposed to
be isolated or sand boxed from each other. The sand boxing tries to guarantee that a vir-
tual machine cannot access the resources allocated for another virtual machine or prevent
another virtual machine from accessing the resources assigned to it. The implementation
of this resource assignment and access control is usually a responsibility carried by the
hypervisor, but lately some of these techniques are offloaded to special hardware circuits
to make the virtual execution more efficient. In some of these cases the hypervisor is
merely controlling the assignment of the resources like instructing the memory manage-
ment unit to map certain memory regions to virtual machines. Some of these techniques
are discussed in Section 2.2.

There are multiple models to implement the details of virtualization. The most drastic
trade-off between these models is in performance and flexibility of the virtualized envi-
ronment. The models used most often are:

• Full virtualization, full hardware simulation, guests require no modifications

• Paravirtualization, hardware is not simulated, guests require modifications

The full virtualization usually implements almost fully simulated hardware so that the
guest system running on this virtual environment does not have to have any modifications

9

for virtualized environment. This efficiently make the virtualization layer completely
transparent for guest which makes the migration and portability of the virtual machine
easier while improving the isolation of virtual machines.

One implementation of full virtualization approach is so called binary translation. Binary
translation, used in VMWare products, allows guest system to run directly on host CPU
but it traps the privileged x86 instructions and the hypervisor then translates these to
emulated instructions.

The paravirtualization approach adds a specific interface to hypervisor which the guest
operating systems use to request certain actions (such as direct memory accesses). This
allows otherwise slow virtualized operation to be executed faster under the hypervisors
control. The execution speed up is gained because neither a full device virtualization nor
instruction trapping are needed in hypervisor level. The downside of this methods is that
the hypervisor interface requires a special support to be present in the kernel of the guest
system, which adds extra complexity for the usage of the system.

To make the virtualization more efficient the processor manufacturers started to include
develop virtualization support for x86 architecture which in 2005 [55] resulted in two
widely used processor virtualization technologies, namely VT-x from Intel and AMD-v
from AMD. These technologies are today found on most processors and the focus has
shifted to developing better I/O virtualization that required less or no involvement from
hypervisor to manage the I/O device usage. With these extensions the method of full
virtualization has become more efficient and is used e.g. in the Kernel-based Virtual
Machine (KVM) [48] which has been included in the mainline Linux [35] kernel since
the version 2.6.20.

To understand the performance problems with hypervisor managed the I/O operations
one can think a virtualized system with a hypervisor running multiple virtual machines
connected to some network as shown in Figure 1a. These virtual machines are having a
very intensive traffic consisting of packet flows coming from the physical network link
and routed to specific virtual machine by a software switch of the hypervisor. Each time a
new packet has arrived from network to network interface card (NIC) a processor interrupt
is required first to check the incoming packet. Based on the information in the packet
another interrupt is created for the processor core responsible to run the virtual machine
the packet was destined to.

The performance problem in this case is that for most of the incoming packets two in-
terrupts are created. One for the core responsible to handle the incoming packets and
another for the core responsible to handle the packet at the destination. In the networks
with high bandwidth available the interrupt processing starts to limit the maximum achiev-
able bandwidth. To make the processing more efficient less interrupts must be generated.
For example with the Intel VT-D or with the AMD’s AMD-Vi pass-through technologies
a PCI device on the host can be attached directly into the virtual machine running on
the host. In addition to I/O device assignment these technologies must also implement
address translation for DMA addresses as well as handle the remapping of all device in-
terrupts [49]. This way the device can be later accessed from the virtual machine with

10

no overhead. The limitation here however is that a single device can only be assigned to
single virtual machine at time, a limitation which is only recently lifted by PCI-SIG I/O
virtualization (IOV).

Intel VMDq [15] is a hardware-based virtualized traffic management technology which
makes it possible to offload parts of the data traffic management. In practice this means
that hypervisor can configure multiple hardware level I/O queues for its virtual machines
and the traffic targeting one of the virtual machines is sorted in hardware level. Each
of the queues have their own interrupt which allows the workload to be spread among
multiple processor cores and offloaded classifying and sorting reduces the number of
CPU cycles required to process the incoming packets. The hypervisor must still handle
the data transfer to the address spaces of virtual machines from the NIC and the other way
around.

Single-Root I/O Virtualization (SR-IOV) [52] is a PCI-SIG group [50] specification defin-
ing a standard means for virtual machines to bypass the involvement of the hypervisor in
the I/O device data management. SR-IOV makes it possible to turn any PCI device sup-
porting SR-IOV into multiple virtual devices which then can be associated with processes
like virtual machines running on the system. For these processes the associated virtual
function behaves like the real physical device.

PCIe devices having SR-IOV capabilities are called physical functions and these devices
are used to manage the set of virtual functions. Each of the virtual functions can be
mapped to a single virtual machine which sees the virtual function as a normal PCIe
device. With the SR-IOV the device operations can be made directly to the address space
of the device without hypervisor’s assistance. This also means fewer context switches and
better I/O performance.

2.3 Use cases for cloud services

This section introduces the most often used categorization for different cloud services.
This categorization to distinct different cloud service types is given in Table 1 though
multiple variations also exists. For the user of the services the difference is in the level of
interfaces offered. This interfaces range from the low-level virtual machine access to web
applications.

The Software as a Service (SaaS) service model provides an on-demand access for an
user to application services. Users starting to use a SaaS service can usually start using
the software easily without special installation process as the whole stack from the hard-
ware up to the software and the date are hosted by the cloud service providers. Such a
conceptual stack is given in Figure 2.

Well known examples of SaaS cloud services are different business applications such as
the customer relationship management application Salesforce [6]. The user can buy the
SaaS service from the provider and can usually start to use the application immediately
without first setting up the hardware system or running low level application setup and

11

Hardware

Software Switch

Hypervisor

VNIC

VM
VNIC

VM
VNIC

VM
VNIC

VM

Network

RX/TX
Queue

Network Interface Card

(a) Hypervisor managed access

Network Interface Card

Hardware

Software Switch

Hypervisor

VNIC

VM
VNIC

VM
VNIC

VM
VNIC

VM

Network

L2 Classifier

RX/TX
Queue

RX/TX
Queue

RX/TX
Queue

RX/TX
Queue

(b) VMDq

Network Interface Card

Hardware

Software
Switch

Hypervisor

VNIC

VM
VNIC

VM
VNIC

VM
VNIC

VM

Network

Virtual Ethernet Bridge & Classifier

Virtual
Function

Virtual
Function

Physical
Function

(c) SR-IOV

Figure 1: Architectural view on virtual machine network access with generic hypervisor
managed access, VMDq, and SR-IOV

12

Application
Server Database

Operating System

Networking Storage

Hypervisor

Operating System

Application
Libraries

Application

SaaS

ServersCompute IO

Figure 2: Conceptual cloud stack for Software-as-a-Service

maintenance. The SaaS cloud services are usually accessed with thin clients, such as web
browsers, which communicate with the service APIs over HTTP while the computation
and data handling are happening in the cloud service.

Model Description Example
SaaS The cloud providers offers an application ser-

vices and users can access the application
Salesforce [6]

PaaS The cloud provider offers a computing platform
service which usually includes a operating sys-
tem environment with some pre-configured en-
vironment on top of which the user can run the
applications

Heroku [2]

IaaS The cloud provider offers physical or virtual
machines to user with some basic low-level in-
frastructure services such as networking. User
is responsible to setup the rest of the system
such as operating systems.

Amazon’s EC2 [11]

Table 1: Often used cloud service models with well-known examples of that specific
service type

With Platform as a Service (PaaS) style cloud service the cloud service provider offers
a platform for users who can then implement their own software on top the provided
platform stack like the one in Figure 3. The platform can provide application development
and runtime environments, data storage services like databases, and ready-made solutions
for easily achievable scalability.

An example of PaaS style cloud service one could take Heroku [2], a cloud service plat-
form offering application runtime hosting on its cloud platform. The platform offers
application runtime environments with often used middleware services such as database
access, ready-made solutions for application scaling, and tools for application usage ac-

13

Application
Server Database

Operating System

Compute IO Networking Storage

Hypervisor

Operating System

Application
Libraries

PaaS

Figure 3: Conceptual cloud stack for Platform-as-a-Service

Operating System

IaaS

Compute IO Networking Storage

Hypervisor

Operating System

Figure 4: Conceptual cloud stack for Infrastructure-as-a-Service

14

counting. The services like Heroku make the process of starting application development
more light-weight as the tools and required libraries are provided without need to have a
local setup for these.

The lowest level of cloud service models is so called Infrastructure as a Service (IaaS)
model as shown in Figure 4. The IaaS model provides a set of physical or virtualized
resources for users. Users are to execute operating systems or applications directly on top
these resources or on top of hypervisor. IaaS style cloud services usually also provides
means to attach storage services or configure virtualized network infrastructure for the
virtual machines allowing machines to interconnect with each other and communicate to
other services and clients over Internet.

The most well known example of this cloud service type is the Amazon’s EC2 cloud
which sells virtual machine resources to customers. The customer can select a desired
amount of computational power and the operating system platform to be used. Basically
the customer is free to set up any kind of system configuration to be executed on his
virtual machine setup. The virtual machine instance is launched upon user request and
terminated when the user wants to stop the usage of the virtual machine. During the time
the virtual machine is active the physical computation resources are reserved for the user.
In some cases the service might also use over-committing of resources meaning e.g. that
the same processor core is allocated for multiple users at the time, effectively lowering
the performance if both users want to utilize the core simultaneously.

Another classification for cloud services is whether the service is intended for public to
use or not. The public cloud services are usually provided by a service provider whose
business is to sell the cloud resources, like Amazon’s EC2. Another approach is the
private cloud services which can be seen as intended for organization’s internal use.

2.4 High Performance Computing

High performance computing is a generic term used to refer to systems which are suit-
able to process large computation tasks notably faster compared to common personal
computers (PC) i.e. workstations and laptops. Some distributed systems consisting of
multiple PCs can be though as a HPC system as it is with projects such as Folding@home
[1] which, according to their statistics, is currently having a computational capacity over
36 x86 petaflops1. However more often HPC as a concept is associated with physically
big computer system installations consisting of huge number of central processing units
(CPU) and vast amount of memory available. As the HPC problems usually are solved by
utilizing the parallel execution on multiple CPUs the interconnection between the CPUs
and the memory access has a requirement for low latency [44].

With traditional HPC systems the requested resources are reserved and dedicated to one
application at time for the whole life time of the application. This usually prevents any
competition on resources between different applications in the system and hence results

1http://fah-web.stanford.edu/cgi-bin/main.py?qtype=osstats2

15

in no need for performance isolation [9]. When there are more resource requests in the
system than there are resources available the application execution will wait its turn in
job queue until resources are available. This property of HPC systems is one of the major
differences between the HPC and the cloud systems, where resources are usually pooled
and shared between multiple applications and workloads simultaneously.

Often the HPC systems are targeted to offer maximum computational capability rather
than capacity. This characteristic is desired for systems aimed to solve single large prob-
lems one at the time rather than share the resources among multiple problems leading
to longer execution times. The fair-share scheduling distributing the available resources
evenly for every user in the system might lead to resource contention, a situation where
users in the system are competing for shared resources, which is likely to cause race con-
ditions or thrashing2. The resource contention and the performance degradation it causes
are a severe problems especially in HPC systems, which are supposed to provide high
performance by the definition.

To manage the resource allocation in the HPC systems a special job queuing subsystem
can be utilized. The purpose of the job queue is to schedule the user processes, often
referred as jobs, so that the system resources are not over-utilized[31]. In a shared HPC
environment the jobs are submitted into the job queue. Jobs are taken into execution from
the queue when there are resources available to fulfill the resource requirements of the
job. The queue is controlled by a queue manager which can also implement scheduling
policies and enforce other restrictions for jobs to guarantee fair treatment among the users.
Such guarantees might limit the maximum life time of a computation job or the maximum
amount of resource for one job. When the user must

Designing and utilizing HPC systems with maximal capability in mind is a challenging
task. Several problems raise when the performance gain is received from the multiple
interconnected processors in the system. For the system design this means designing for
low latency so that the delays are causing minimal impact on the system performance. To
achieve this the HPC systems are utilizing high-end hardware components with special-
ized interconnection technologies which can provide sub-microsecond latency with the
aid from specialized interconnection topology, transport engine offloads, and lock-free
switching. A switched fabric topology as shown in Figure 5 is often used to increase the
total available bandwidth with multiple transport paths.

The large number of processors in typical HPC system are often so called multiple instruc-
tion, multiple data (MIMD) architectures. The processors in MIMD system can work
independently from each other, with different instructions and with different data. The
memory used in these systems can either be shared with every processor (Figure 6) or
distributed among processors (Figure 7).

Also the physical system environment has more weight in HPC system design. While
the large HPC systems still require more space and power capacity the biggest problem

2Thrashing in computer science means an event in computer system when misses in virtual memory or
in cache are constantly occurring due to high number of access requests to different locations. Due to this
the performance gain from the usage of the virtual memory or cache is lost.

16

Host Host

Switch Switch

Storage Storage

Figure 5: Switched fabric topology

Control unit

Control unit

Control unit

Processing unit

Processing unit

Processing unit
Sh

ar
ed

 m
em

or
y

...
...

Figure 6: MIMD with shared memory

when large number of processing units are placed closely to each other is the heat the
components start generate. When the system temperature grows too high it will hurt the
system performance which is why the system must have a proper cooling solution. To
remove the hot air from the system either a liquid or an air cooling can be used.

From the user perspective the biggest issue is the problem of writing applications which
scale up efficiently with the increasing number of added processor. The traditional tools
from the research field of concurrent programming, such as threads and tools for interpro-
cess communication, are hard to apply correctly and might require extensive debugging.
To ease the programming process of massively parallel systems several application pro-
gram interfaces (APIs) with associated libraries are invented. One of the most well-known
example of such is the message passing interface (MPI). The MPI is still after twenty since
its definition the de facto way of programming the parallel systems in a scalable, portable,
and efficient way [61].

17

Control unit

Control unit

Control unit

Processing unit

Processing unit

Processing unit In
te

rc
on

ne
ct

io
n

ne
tw

or
kLocal memory

Local memory

Local memory

...
...

...

Figure 7: MIMD with distributed memory

Up to this point the typical application profiles for HPC and cloud computing systems
have been very different. For the HPC applications the typical workload is CPU intensive
job requiring lots of computation such as different modeling problems in physics, engi-
neering, and bio sciences [63, 62, 47]. These HPC systems are usually having specialized
hardware components optimized for heavy computation providing e.g. low latency net-
work access to exchange data with processors on remote nodes.

Scientific cloud computing is characterized by different problems revolving around the
concept of big data [37] Such problems are dealing with large amounts of data which are
processed with tools like MapReduce [17] and Hadoop [60]. While

In most of the public cloud services the hardware or virtual interface for hardware is
similar what available on markets today so that most applications can be executed on these
systems. Today services like Amazon web services [11] offer also HPC cloud resources
which are aiming to offer HPC performance characteristics.

2.5 Summary

In this chapter the concepts of cloud computing, virtualization, and HPC are introduced.
The term cloud computing is used to refer a huge variety of different computing services,
which share certain characteristics. Especially the cloud services usually can provide
improved service flexibility, on-demand service, and convenient usage.

To achieve the promised high flexibility the resource in the cloud should be decoupled
from the hardware. This often means decoupling the hardware from the offered service.
One way to achieve this is to utilize virtualization, which allows running virtual machines
on top of physical system. Like with bare metal provisioning, the virtualization is not
strict requirement for all of the possible services defined as cloud services. However in
the most cases virtualization is one of the most prominent cloud enabling technologies.

There exists several levels of different cloud services. This chapter introduced most often

18

used categorization for these different services, namely the SaaS, PaaS, and IaaS types of
services.

Finally this chapter introduced the characteristics for HPC. The large computational scien-
tific problems require these specialized system offering high computational performance.
Designing HPC systems is very different from designing commodity hardware systems
due to latency and throughput requirements.

In this thesis the focus is on the IaaS style of cloud service offering virtualized HPC
resources. The focus is especially on how much the virtualization costs in terms of system
performance. As shown in this chapter the question of feasibility of HPC cloud is to what
extent the users of HPC cloud resources are willing to sacrifice the system performance
in order to get more flexible system.

19

3 Design of HPC Cloud

This chapter discusses about the technology alternatives used to build IaaS cloud services
with HPC use case in mind. The focus is on hardware and software alternatives. The
chapter starts with a look into other IaaS services available and their usability to fulfill
the need for HPC cloud service. Then the focus is shifted on technology alternatives
comparing different hardware and software options commonly available and used.

To build a reasonable HPC IaaS cloud the system developer must meet the goals of build-
ing both a reasonable IaaS service and reasonable HPC service. This somewhat trivial
statement however makes it clear why the goals of HPC IaaS cloud are hard to meet be-
cause of the goals and requirements of the different kind of services are combined. As
discussed in section

3.1 Service Alternatives for HPC Cloud

Rather than building a whole new HPC service any rational organization is going to check
first the availability and possible suitability of such a service before starting the service
planning. The high success of the Amazon’s EC2 computing cloud has caused multiple of
similar service competitors to appear. At the moment the competition of the IaaS market
shares is still greatly dominated by Amazon’s service [14].

Initially Amazon’s EC2 cloud has offered only generic virtual machine instances serving
purpose of generic computing. This approach sets neither guarantees nor deterministic
bounds for computation performance or network latency. Due to unfortunate scheduling
decision or limited resources the several virtual machines might end up being physically
separated with multiple network link hops leading to increased latency.

In the end of year 2013 Amazon announced new cloud virtual machine types for HPC
applications. These included both compute-optimized C3 and memory-optimized R3 in-
stance types and a new G2 type for graphics processing unit (GPU) computation. The
C3 and R3 instance types include SR-IOV enabled network access from virtual machines.
The network infrastructure used in EC2 services is using 10 Gigabit Ethernet.

Glenn Lockwood has analyzed the network characteristics of C3 instance in his blog post
[23]. In terms of latency in the communication between virtual machines his findings
show performance improvements for small MPI message sizes from 65 microseconds to
40 microseconds when SR-IOV is used. These results are still far from the native, non-
virtualized latency of 20 microseconds. The reported throughput performance improve-
ment with SR-IOV is minimal. From these characteristics it is a questionable whether or
not the service is actually providing HPC resources. Strict definitions do not exists but
certainly some other services using alternative network technologies can provide greatly
better service quality.

From the economic point of view when the service billing is based on reservation time of
the resources the best returned value is gained for the invested funds when resources are

20

constantly fully utilized. If billing is based on the resource utilization, like used CPU time,
the invested funds are spent according to service usage. In some cases the computational
needs are occurring periodically with longer idle periods between the periods with higher
load. In these cases the outsourced service provider can provide beneficial cost savings.
For the cases where the number of heavy computation tasks is constantly higher than the
available resource to compute these the service is going to be constantly on full load. In
these cases the ownership of such system can be rationalized.

For some use cases outsourcing the cloud service and the data handling could cause pri-
vacy issues and problems in data handling laws. Such might be the case for example with
business critical data or with medical patient data, which usually must be processed with-
out exposing the data into public. In these cases pushing the data to service located in
different country with different data privacy laws can be seen as a violation of this policy.
Having a private cloud installation is likely going to require more resources to set up and
to run but can circumvent some of these issues.

3.2 Software stack alternatives

The software stack of the IaaS style cloud consists of the host operating systems run-
ning several services and interfaces. These services are database instances, hypervisor
processes, interprocess messaging subsystems, distributed filesystem daemons, and ac-
counting processes just to name a few. The interfaces to different services allow different
system components to interact with each other and with the users of the system.

A more concrete view into different services present in IaaS style cloud service can be
obtained from the following list of core services present in OpenStack cloud middleware
[5].

OpenStack Nova
The OpenStack Nova component manages the virtual machine instances. Nova
service can abstract multiple hypervisors under its interfaces.

OpenStack Keystone
The OpenStack Keystone is the authentication service which validates user creden-
tials and provides authentication token used to access different components requir-
ing authentication.

OpenStack Neutron
The OpenStack Neutron provides virtualized networking services used by virtual
machines.

OpenStack Glance
The OpenStack Glance is the virtual machine image register. It is basically just a
library of available disk images used to launch new virtual machines.

OpenStack Swift
The OpenStack Swift is an object storage service used to store data which can be

21

read by multiple clients.

OpenStack Cinder
The OpenStack Cinder is a block storage service used to abstract away the details of
different block devices and provide unified interface for virtual machines to access
these devices.

OpenStack Telemetry
The OpenStack Telemetry is a metering component used to collect measurements
from the virtual machines like used CPU seconds.

The purpose of the cloud middleware software like OpenStack is to tie together the differ-
ent services required to provide IaaS cloud service. For example with the OpenStack Nova
the actual virtualization can be provided by any supported hypervisor implementation like
KVM or Xen. The differences between the hardware assisted full virtualization of KVM
and para-virtualization approach used in Xen are discussed more in Section 2.2. For the
users the KVM approach is going to be more convenient as the guest operating system in
virtual machine can be executed without any modifications. While these two hypervisors
are having different approach for virtualization the performance characteristics are pretty
much the same [43].

The OpenStack being an open source product has gathered huge number of active con-
tributors to back its development. While there exists other open source cloud middleware
alternatives, like OpenNebula [20], OpenStack is currently providing more advanced fea-
tures and is more focused to provide a public cloud solution, like Amazon’s EC2, while
OpenNebula can be seen more like a solution for datacenter virtualization [30]. In addi-
tion to open source public cloud solutions multiple companies are offering commercial
public cloud solutions or commercial support for OpenStack based public clouds.

The choice of the operating system running the cloud middleware is almost fully domi-
nated by different version of Linux distributions. The same goes with the TOP500 list of
the fastest HPC systems in the world [7]. Majority of the HPC systems are running some
Linux based operating system.

In the near future container based virtualization technologies like Docker [42] might pro-
vide interesting alternatives also for scientific workloads. For example the Docker allows
lightweight packaging and deploying of applications while it also allows packaging of
all the necessary dependencies for the application. In the ideal case a complex applica-
tion with its dependencies has to be assembled once after which it can be executed in all
environments supporting Docker containers.

3.3 Interconnection alternatives

The role of network interconnection is crucial in HPC environments. With poor intercon-
nection performance characteristics the communication will cause long delays for com-
putation that will dominate the overall performance and cause the system not to behave in
a fashion typical to HPC systems.

22

Two performance characteristics are crucial for the HPC interconnect. Namely the com-
munication latency and bandwidth. The latency means the time delay it takes from the
cause until the effect of the cause happens. For example the cause might be an event of
message being sent by the sender while the effect is the event of message being received
by the receiver.

For any communication happening over electromagnetic signals the wave propagation
speed will set a theoretical minimum latency t = s/vm, where s is the distance the signal
must travel and vm is the wave propagation speed in the medium convoying the signal.
While for electromagnetic wireless signals traveling in vacuum this wave propagation
speed equals to the speed of light the value will be less for signals traveling in some other
medium like optical fiber or copper wire.

In addition to the propagation delays also the transmission of the message will cause
additional delays as well as the processing and possible queuing which can take place in
the sender or in the middleboxes participating in the forwarding of the message.

While the latency of the communication defines the delays of the communication the
bandwidth or throughput of the communication defines how much data or messages can
be transferred within a certain time unit. Multiple factors affect the maximum achievable
throughput. As the digital communication is at some point converted to analog transmis-
sion there will always be noise sources present. Any practical communication system
also has a limited bandwidth available. These two factors lead to Shannon-Hartley theo-
rem [59] providing an upper bound for the achievable throughput.

The desired properties of an ideal HPC interconnect solution therefore are low latency,
high bandwidth, and negligible CPU load. In addition to these the interconnect must work
in a reliable manner and be constantly available. From the system builder’s viewpoint the
ideal solution should also be cost efficient while the users of the system are willing to use
systems which are convenient to use.

The distribution of different interconnect technologies in the Top500 listing of HPC sys-
tems is shown in Figure 8. While the top 5 of the list is dominated by custom interconnect
technologies the most common ones on the list are different InfiniBand, 1 Gigabit Ether-
net (GigE), and 10 Gigabit Ethernet (10GigE) technologies.

The InfiniBand and most of the other less often used HPC interconnect options are utiliz-
ing specialized hardware and communication protocols to scale up to system installations
consisting of large number of nodes with high bandwidth between the nodes. The down-
side of this approach is the requirements for specialized hardware solutions not commonly
available and usually the high cost of hardware acquisition. The custom communication
protocols have also the downside of not being compatible with TCP/IP stack. Like with
InfiniBand some tunneling protocol can be used to carry TCP/IP traffic within the custom
communication protocol, but this is likely to render useless the performance gain from
the custom protocol.

The InfiniBand architecture is described in more detail in Chapter 4. As studied by Vi-
enne et al. when 1GigE and 10GigE technologies are compared against the InfiniBand

23

the InfiniBand has an advance both in terms of latency and bandwidth [67]. It is also
shown that InfiniBand scales better with the number of concurrent flows than the Ethernet
alternative [33].

10
G

 E
th

er
ne

t

A
rie

s

C
ra

y
G

em
in

i

C
us

to
m

 In
te

rc
on

ne
ct

Fa
t T

re
e

N
et

w
or

k

G
ig

ab
it

E
th

er
ne

t

In
fin

ib
an

d
D

D
R

In
fin

ib
an

d
F

D
R

In
fin

ib
an

d
Q

D
R

In
fin

ib
an

d

M
yr

in
et

 1
0G

P
ro

pr
ie

ta
ry

T
H

 E
xp

re
ss

−
2

To
fu

X
T

4

0

20

40

60

80

100

120

140

Figure 8: HPC interconnect distribution among HPC systems in the Top500 listing [7]

As the retransmissions of lost or corrupted packets are source of long delays and decreased
throughput some of the HPC interconnection technologies are completely removing the
need for retransmissions in the first place. If reliable transport is required with the unre-
liable and connectionless service provided by the Ethernet the upper layer protocol like
TCP must be used to provide the reliability and in order delivery of the packets sent. With
technologies like InfiniBand the in order delivery and reliable message transport can be
enabled on the link level and offloaded to hardware from the operating system kernel.

But as the Top500 list shows many HPC systems are using some Ethernet variant. Espe-
cially useful this might be if the system is supposed to run generic applications requiring
TCP/IP communication. However designing an Ethernet based interconnect for large
number of host nodes requires good planning so that the network topology does not cause
limitations for scaling [10]. Basically the idea of providing efficient Ethernet based in-
terconnection is to aggregate links into a fat tree topology as shown in Figure 9. The
aggregation means that links closer the root in the topology are having more bandwidth
i.e. either more links or higher bandwidth links than the the links connecting to the host
nodes.

24

Figure 9: An example of fat tree topology

3.4 Summary

This chapter has discussed about different HPC IaaS technologies and services. At the
moment there are many public IaaS providers, some of which are claiming to provide
HPC IaaS resources. These services are most likely suitable for certain kind of HPC tasks,
but initial tests show that for example low latency requirements are a bit off from what can
be achieved with real HPC systems without the cloud service layer. The biggest network
related question in HPC system design is whether the interconnect is going to use standard
Ethernet or something else like InfiniBand. This design decision is fundamentally a choice
between the performance and flexibility of use.

25

4 InfiniBand Networking

InfiniBand Architecture (IBA) is a network technology used in many HPC systems. The
work related to IBA Standard [12] originates to 1999 when the InfiniBand Trade Associ-
ation (IBTA) defined the first InfiniBand standard for switched fabric I/O architecture for
interconnected devices. The driving motivator for a completely new inter-server commu-
nication architecture was to improve reliability, availability, scalability, and performance
to levels not easily achieved with shared bus I/O architectures [51]. The resulting IBA
standard includes over 1500 pages and it’s clear that this thesis is unable to cover all the
detail of IBA. Hence the focus here is to introduce the differences which have made the
IBA one of the most used interconnection type in certain areas of networking.

By looking the ranking of the fastest supercomputer sites in the world [7], one can see
that currently 205 sites out of 500 are using InfiniBand as the networking interconnect
solution of the system. For a comparison the list has 75 systems using 10 Gb Ethernet
interconnection and over 140 systems using 1 Gb Ethernet interconnection.

In Section 4.1 the principles and relevant details of IBA are introduced and these are
compared to other I/O architectures used as device interconnects. In Section 4.2 several
methods of interfacing the IBA from software are introduced.

4.1 InfiniBand Characteristics

InfiniBand Architecture (IBA) provides low-latency and high-bandwidth interconnect with
low processing overheads and focus on transport offload. The link bandwidth ranges from
2Gb/s 1 x Single Data Rate (SDR) up to 300Gb/s with 12 x Enhanced Data Rate (EDR).
The end-to-end latency on InfiniBand links are usually up to few microseconds depend-
ing on the InfiniBand hardware used and its data rate while the typical switching delay in
the middle boxes of the subnet is in the nanoseconds scale. To achieve the latency this
small the IBA uses hardware offload to move the I/O processing from the CPU to network
hardware. Based on these characteristics it is suitable for system area networking in data
centers and HPC clusters.

26

Router

Storage
node

HCA

Processor
node

HCA

Processor
node

HCA

Processor
node

HCA

Storage
node

HCA

Switch SwitchSwitch

Switch Switch

Figure 10: InfiniBand Network

The network topology shown in Figure 10 looks similar to widely used in current Ethernet
networks. The switched fabric topology which allows the traffic to be spread among
multiple paths connecting the source and target nodes for a communication flow which
improves the throughput and provides resilience against network breaks as other paths
provide fail-over possibilities.

Nodes in InfiniBand subnets can be interconnected directly or InfiniBand switches can
be used. Multiple subnets can be interconnected with InfiniBand routers allowing bigger
deployments. Routers can also be used to connect the IB fabric to other networking
infrastructures. The layered stack of IBA for end hosts and middleboxes is shown in
Figure 11.

27

Physical
Layer

Link
Layer

Network
Layer

Transport
Layer

Application
Layer

MAC

Link
Encoding

Network

IBA
Operation

Host
Client

MAC

Link

Packet
Relay

MAC

Link
Encoding

Network

IBA
Operation

Host
Client

MAC

Packet
Relay

Subnet Routing

Flow
Control

Inter Subnet Routing

QP Pair Messaging

Transactions

End Host IB Switch IB Router End Host

Figure 11: Layers in InfiniBand stack

4.1.1 Operation Semantics

The communication model of IBA is bases on operations which can be inserted into
queues which the IB hardware executes. These queues are always created as pairs, one
for send and another for receive operations, and the tuple they form is called a queue pair
(QP). The operations happening through these QPs are also called as verbs.

The operations used with send queues are defined in the IBA specification [12] and are
listed below:

• SEND: Specifies a block of data to be sent from sender’s memory space to receiver
who places the data into a memory location selected by the receiver

• RDMA: Remote direct memory access operations are operations to remote memory
location which include read, write, and atomic operations. With these operations the
sender specifies also a memory location the operation is targeted on the receiver’s
side which is why RDMA operations does not require actions from the receiver.

• MEMORY BINDING: With memory binding operations the memory locations
shared with other nodes can be altered and handles to locations can be created
which are then used with RDMA operations.

The communication with these operations happens with Work Queue Requests (WQR)
which are placed on the send queue. The requests are queue turns to Work Queue Ele-
ments (WQE) which are executed by the Host Channel Adapter (HCA) i.e. the IB hard-
ware. One the operation is completed a notification is placed into Completion Queue

28

(CQ) from where applications can check the status of the operation. The only receive
operation is to receive the data which is sent with send operation. With this operation the
recipient can copy the data sent by a remote sender to a memory location selected by the
recipient.

The IBA connection endpoints are identified by a tuple consisting of a local ID (LID) and
QP identifier. The LID is used to specify the host and QP is used to select service used.
One can see this as an analogy to a tuples consisting of an IP address and port number
used in TCP/IP connections.

4.1.2 Service Types

The IBA specification lists multiple service types for an IBA connection. A connection
can either be connection oriented or a datagram style connection. In case of connection
oriented service mode the QP used is associated with exactly one another remote QP and
the communication flows only between these two QPs. In case of datagram service mode
the QP can be used to communicate with multiple other QPs.

Another attribute for service types is whether or not the operations are acknowledged.
When the acknowledged mode is used each operation is supposed to return an acknowl-
edgement from the remote QP with either positive or negative acknowledgement. With
unreliable service type no acknowledgement is returned, which also means that the op-
erations are not guaranteed to complete and data associated with the operation is not
necessarily coherent.

With the service types described above four different kind of combinations can be created
listed in Table 2.

Service type Connection oriented Acknowledged
Reliable Connection (RC) yes yes

Unreliable Connection (UC) yes no
Reliable Datagram (RD) no yes

Unreliable Datagram (UD) no no

Table 2: InfiniBand architecture service types

4.1.3 Congestion and Flow Control

In traditional HPC the low latency is one of the key requirements. In a lossless network
without a proper congestion control the network links might become fully utilized leading
to effect known as congestion. The congestion increases delays and might lead to packets
being dropped because the packet buffers in the devices delivering the packets run out of
free space leading to re-transmissions of dropped packets. The congestion therefore could
lead to heavy performance degradation.

29

To avoid the congestion the transmission control protocol (TCP) has several well defined
congestion control mechanisms. The most common ones of these, namely TCP New Reno
[19], TCP CUBIC [57], and Compound TCP [64] are based on the idea the an observed
packet loss indicates congestion situation after which the congestion control mechanisms
reacts by reducing the data transmission rate. While no congestion indicators are reporting
congestion the transmission rate might be increased in order to reach better utilization of
free resources in the network.

To prevent these costly re-transmissions from happening in the first place the InfiniBand
interconnect uses a credit based flow control on IB links which guarantees that the link
cannot end up being congested. The credit based flow control achieves this so that packets
cannot be forwarded to link which is lacking buffer space to receive the packets.

4.1.4 Link Encoding

The link level communication between IB HCAs uses 8b/10b and 64b/66b encoding
schemes to enable clock recovery [73]. With the clock recovery the sender does not
need to send the clock signal along with the data stream. Upon receiving the data stream
the receiver can extract the clock information from the data stream with approximated
frequency reference source and phase-locked loop.

With SDR, DDR, and QDR the links using 8b/10b encoding. The use of this encoding
means that each 10-bit output symbol carries 8 bits of payload data and 2 bits are used to
allow an injective mapping from 8-bit of payload symbols to these 10-bit symbols. With
long enough input the mapped symbols have a practical properties such as that the output
bit string has the difference between the counts of ones and zeros is no more than two
and that maximum length of a substring containing only ones or zeros is five. This also
effectively prevents DC bias of the mapped symbols. Other communication protocols
using 8b/10b encoding include such technologies like USB 3.0 and Gigabit Ethernet.

Because the 8b/10b encoding adds an extra overhead 25% to input symbol length this
encoding scheme is not used with higher data rates namely FDR-10, FDR, and EDR.
Instead these data rates use encoding known as 64b/66b encoding which is also used in
protocols like 10 Gigabit Ethernet. Compared to 8b/10b encoding the resulting encoded
symbols can carry a much higher ratio of input data to encoded data namely the overhead
is just 3.125%. The strict guarantee for DC bias prevention is however lost while the
practical consequences of this are negligible and can be treated on receiver circuits.

The theoretical maximum transmission speed of the IB link can be calculated when the
data rate and used link aggregation factors are known. The signaling rate of a single SDR
link is 2.5 gigabits per second (Gb/s) which means that due to 8b/10b encoding the actual
payload transmission rate, also known as the goodput, is 2.0 Gb/s. On an IB network
the links can also be aggregated so that either four or twelve links are bundled which
multiplies the resulting goodput respectively. With Double Data Rate (DDR) the goodput
rate is doubled and with Quad Data Rate (QDR) the goodput is four times the SDR i.e. 8
Gb/s with single link aggregation. Again the data rates with FDR-10, FDR, and EDR does

30

not follow this formula. The signaling rate with Fourteen Data Rate (FDR) is 14.0625
Gb/s and due to encoding the goodput rate is (1− 2b

66b
) ∗ 14.0625Gb/s = 13.6364Gb/s.

4.2 Interfaces for InfiniBand Architecture

InfiniBand Architecture has no standard API specification but a set of verbs used to inter-
act with the transport service [25]. On top of the verbs the Open Fabrics Enterprise Dis-
tribution package (OFED) provides multiple upper layer protocols (ULPs) for accessing
the underlying InfiniBand (IB) interface. Some of these ULPs are going to be discussed
next.

The easiest of running generic IP applications on top of IB networking is to use IP over
InfiniBand (IPoIB) protocol. IPoIB encapsulates IP packets and tunnels these packets
over the InfiniBand link. The resulting InfiniBand frames are transported by using either
the Reliable Connected (RC) [34] delivery mode or the Unreliable Connected (UC) [16]
delivery mode.

The IPoIB is a very convenient way of allowing the applications to communicate over IB
fabric without any modifications. This means that basically any application using stan-
dard TCP/IP communication can work on top of system providing the IPoIB connectivity.
However the IPoIB protocol has its drawback. Most notably it has inferior performance
characteristics when compared to native IB communication. The reason for this is the
processing overhead introduced by the IP protocol. For example with a high throughput
IPoIB flow with small packet size will hurt the communication latency due to the IP state
management happening in operating system kernel [13]. To prevent the state management
processing from forming a bottle neck in the system a proper offload hardware support for
I/O is required. Another reason for the overhead introduced by the IPoIB protocol is the
presence of IP headers which increases the required message size and reduces the space
which can be used to carry the actual application communication payload.

Because the the IPoIB is basically tunneling network layer protocols it cannot handle
the link layer protocols. This is especially a problem when virtual local area networks
(VLAN) are used. One workaround for this problem is to the Ethernet of IB (EoIB) pro-
tocol, which encapsulates the link layer frames in the InfiniBand datagrams. The trans-
formation is completely transparent to applications and allows also the usage of VLANs
with the communication happening on top of IB network.

Sockets Direct Protocol (SDP) [12] is a protocol originally developed for TCP commu-
nication over IB but later extended to be a general protocol on top of Remote Direct
Memory Access (RDMA). SDP offers a way to utilize the RDMA capabilities from ap-
plications using BSD stream sockets. In practice with IB this means that with SDP the
applications can still use the same BSD socket API, but the underlying implementation is
replaced so that the offload capabilities and RDMA semantics of the IB stack are used.
As shown in Figure 12 this means bypassing the kernel part of the network stack as the
RDMA can be used to read and write data directly from and into the application buffers.
Bypassing the TCP/IP stack means also that the communication is utilizing the reliable,

31

Application

Socket API

TCP/IP Stack

Network Driver

Network Interface
Hardware

User
Space

Kernel
Space

(a) Traditional model

Application

Socket API

Sockets Direct
Protocol

Network Interface
Hardware

User
Space

(b) Model with SDP

Figure 12: Differences between the traditional network stack model and the stack model
when SDP is used

hardware based transport semantics of the IB devices. As the result the applications using
TCP sockets on IB enabled hosts can gain major performance boost when compared to
applications relying on IPoIB. This is due to the increased latency and more efficient CPU
utilization as less CPU cycles are wasted for redundant TCP flow management. The SDP
still has dependencies for the IP stack, especially what comes to address resolution. This
also means that the system using SDP must have a working IP stack in place, which is
replaced by SDP stack only if that is possible.

On Linux based system supporting SDP and with RDMA capabilities to execute a pro-
gram with SDP the program is started with an additional SDP shared library loaded which
will trap the libc socket calls for AF_INET stream socket calls with its own implemen-
tation for AF_SDP address family. By default, if the libsdp.so library is loaded and the
system has SDP capability, the SDP will be implicitly used to replace the TCP/IP if pos-
sible. A developer can also use the address family explicitly. With this approach the
application will either use SDP or fail if no SDP capability is available.

Message Passing Interface (MPI) is standard interface for portable and efficient parallel
computation [36]. The communication semantics of MPI allow its usage on top of HPC
network interconnects like IBA. After almost two decades MPI is still widely used for
that purpose, especially in the field of scientific computation.

In addition to the protocols discussed above there exists several others with similar goals
of providing efficient communication on top of IB network. Protocols like SCSI RDMA
Protocol (SRP) or ISCSI Extensions for RDMA (iSER) are targeted to be used with stor-
age systems attached to IB fabric.

32

4.3 Summary

This chapter described the characteristics of InfiniBand architecture. InfiniBand uses very
different approach compared to more commodity networking technology solutions like
Ethernet. As a consequence InfiniBand can provide very low latency and high throughput
performance. However the specialized hardware and protocol causes limitations for the
InfiniBand usage. To mitigate these limitations some upper layer protocols, like IPoIB,
exists to provide interoperability with applications using TCP/IP.

33

5 Evaluation Methods and Tests

In this chapter the evaluation environment and the test suite are described. The reader is
supposed to be familiar with the concepts related to virtualization introduced in Chapter
2.2 and InfiniBand architecture introduced in Chapter 4.

5.1 System Under Test

The system under study here is a HPC IaaS cloud called Pouta, which is operated by
CSC - IT Center for Science. The system is physically located in the CSC data center in
Kajaani. During the analysis described here the cloud service is going trough final pilot
testing before it goes into production. The pilot testing status means that while there are
some real usage having an effect on the system performance the system is still in quite a
idle state.

The high level presentation of the deployment is given in Figure 13. In this figure three
hosts are connected to IB fabric. One of the hosts is using SR-IOV functionality to provide
IB connectivity to virtual machine running on the host while the two others are using
Linux bridges.

The cloud hardware consists of HP ProLiant SL230s servers referred from now on as hosts
or host nodes. Each host node is having Intel Xeon 2.6 GHz E5-2670 processor with 16
cores and 64 gigabytes of main memory. The host nodes are connected to InfiniBand fab-
ric with Mellanox ConnectX3 InfiniBand Host Channel Adapters (HCA) which operate
in Fourteen Data Rate (FDR). The IB links are actually bundled so that and promise link
signaling rate up to 56 Gb/s with four times link aggregation (4x FDR) while the theo-
retical maximum goodput for this link is 54.556 Gb/s. On these hosts the large receive
offload [28] is turned on to push part of the networking processing to network hardware.

The hardware choice for the host nodes was largely dominated by the another cluster
system system sharing the hardware with Pouta. As a consequence this kind of hybrid
system can be configured to dynamically move host nodes from cluster system into cloud
system and vice versa.

The hosts are running CentOS Linux distribution with Linux kernel 2.6.32. All the virtual
machines are executed on hosts, which are dedicated only to run virtual machines on
top of the hypervisor called Kernel-based Virtual Machine [48] (KVM). KVM provides
full virtualization on x86 hardware and supports both supports both Intel VT and AMD-
V technologies. KVM hypervisor is a kernel module which upon loading adds support
for kernel to schedule virtual machines as any other processes in the system. Because
of this KVM has to implement smaller set of features compared to majority of other
hypervisor solutions available. For example the KVM does not need to implement the
process scheduler by itself as it can use the Linux kernel process scheduler to implement
this functionality.

Initially the network links had maximum transmission unit (MTU) of 1500 bytes which

34

IB (VF)

IB

IBHost

Virtual
Machine

Linux
Bridge

Virtual
Machine

Virtual
Machine

NICNIC

EoIB

SR-IOV
Host

IBHost

Linux
Bridge

Virtual
Machine

Virtual
Machine

NICNIC

EoIB

InfiniBand Fabric

Figure 13: Conceptual view of a small part of Pouta system

35

was later during the evaluation experiments updated to 4034 bytes to achieve better band-
width usage. The MTU limit of 4034 bytes is due to Ethernet over InfiniBand (EoIB)
protocol and VLAN header insertion overhead [40] which are used on compute hosts.

The official support for Single Root I/O Virtualization (SR-IOV) described in Section
2.2 is added to official Mellanox Open Fabrics Enterprise Distribution (Mellanox OFED)
versions since revision 2.0-3.0.0 released in 2013. The InfiniBand performance with SR-
IOV enabled host was however tested prior to this evaluation with firmware version still
in development. The results from these tests indicated that the achieved throughput were
known to be poor for SR-IOV enabled hosts and virtual machines running on these hosts.

To use SR-IOV functionality with InfiniBand network interface card the system Basic
Input/Output System (BIOS) must be configured with SR-IOV and Intel Virtualization
technology must be enabled. After this the kernel must be booted with kernel parameters
shown in Listing 1. After this the kernel can support SR-IOV technology and map the
physical devices into a set of virtual function devices.

Listing 1: Kernel parameters to boot a SR-IOV enabled kernel

intel_iommu=true iommu=pt

Next a firmware support for SR-IOV is required to be burnt on the device. This firmware
can be installed with tools provided with the OFED distribution. After a successful in-
stallation the system should have the original PCI device and multiple virtual function
devices of the original device as shown in the lspci output of the system in Listing 2.

Listing 2: The output of lspci command after the SR-IOV capable InfiniBand device
namely Mellanox ConnectX-3 is installed

lspci | grep -i ConnectX

06:00.0 Network controller: Mellanox Technologies MT27500 Family [

ConnectX -3]

06:00.1 Network controller: Mellanox Technologies MT27500 Family [

ConnectX -3 Virtual Function]

06:00.2 Network controller: Mellanox Technologies MT27500 Family [

ConnectX -3 Virtual Function]

...

Configuring SR-IOV enabled device to be used with virtual machines can be tricky. With-
out these options described above the hypervisor might be unable to assign virtual func-
tion device to virtual machines or the interrupt handling might require tremendous CPU
utilization to process the network traffic. This was noticed during the evaluations de-
scribed in this thesis and the issue was reported to Mellanox Technologies which later
updated their installation documentation instructing the usage of iommu=pt parameters
setting.

Multiple other configuration options for performance tuning are documented in the Mellanox
guide for IB performance tuning [41]. The biggest performance gain for these single flow
tests was from enabling the large receive offload.

36

The tests using SR-IOV are executed on the same hardware which is available on Pouta
cloud but the system and the network are separate systems. In these tests the network i.e.
the InfiniBand fabric is having minimal background utilization compared to Pouta cloud
where noise sources are present due to the pilot testing.

OpenStack Neutron is the networking component of OpenStack [5] cloud middleware
used in Pouta cloud installation. The component is responsible for creating the virtual
networking infrastructure for virtual machines to use. This includes e.g. procedures for
assigning addresses for virtual machines and managing the subnet allocation and access in
the system. While Neutron is mostly acting as a controller the underneath implementation
it uses a set of widely used networking tools and technologies. One of these technologies
is the Linux bridge implementation, which acts as a software switch connecting multiple
local area networks. The Linux bridging is known to have some processing overhead
due to switching state management and some alternatives for this have been evaluated
recently [66]. Neutron creates a special virtual TAP device interface for each virtual
machine which is connected to bridge. Multiple virtual machines on a single host can
then be attached to single bridge which happens e.g. if the virtual machines belonging to
the same same customer are scheduled to run on the same host.

A part of the network setup used in Pouta system is modeled in Figure 13. In the fig-
ure there are three physical host machines connected to IB fabric, two of which are both
having two virtual machines running on them are participating to standard network setup
configured by Neutron. The third one is a host with SR-IOV configuration and with one
virtual machine running on it. Currently Neutron has no off-the-shelf support for SR-IOV
devices. Also in a production environment of a public cloud like Pouta the security con-
siderations are still open for SR-IOV devices.

5.2 Test Suite Description

In this evaluation a test runner is implemented to handle the scheduled execution of test
suite. The test suite runner is a client-server application implemented in Python program-
ming language [53]. The test suite can be downloaded from its GitHub repository3.

All the tests are active network tests which means that they generate extra traffic in the
network and the measurements are taken from that traffic. Most of these tests require both
a server and a client applications and the results are reported either on the server or the
client end.

The latency on links between virtual machines and hosts using IPoIB is tested with ping
application from iputils [4] suite. For each measurement a set of fifty samples is taken
with 0.25 second interval. The throughput on these links is measured with iperf [3] tool.
The effect of different message sizes is tested with ØMQ (ZeroMQ) messaging library [8]
by sending one hundred messages of a specific size from sender to receiver.

3https://github.com/hhamalai/ducking-octo-wallhack

37

On hosts and virtual machines that have direct access to the InfiniBand interface the link
characteristics are also tested with applications from the OFED perftest package to mea-
sure network RDMA latency and throughput for read and write operations. These test
applications are using RDMA communication instead of IPoIB protocol and the results
are therefore expected to have an increased performance. For the hosts this should match
the native InfiniBand performance. For the virtual machines using SR-IOV the perfor-
mance is having an overhead due to virtualization and due to SR-IOV virtual functions
used.

Due to the experimental state of Mellanox OFED the Socket Direct Protocol (SDP) could
not be tested thoroughly in this evaluation. For the evaluation discussed in this thesis the
SDP could be used for communication between hosts or virtual machines using the SR-
IOV technology or a mix of these. As discussed in chapter 4 SDP might provide some
performance gain for IPoIB flows when TCP is used.

The test runner is a client-server application where the client process has the test suite
description of all tests supposed to be executed. As most of the tests are having both the
server and the client endpoints the client process is first supposed to connect to server
process and to tell the server process which test to execute. Upon receiving this message
from client the server process forks the new test process requested by the client and con-
firms to client that the test is running. The client process can now execute its part of the
test which is supposed to be terminated within a finite period of time. When the client
test process is finished the client requests the server process to terminate the server test
process, after which the server can receive new test request from the same or another test
runner client.

As the suite is a collection of well-known test applications they have different formats
and styles to report the results. Some applications report the results on the server process
while others report the results on client side process or both. The test runner collects the
output from both, the server and the client processes, and stores them for later processing
with the command used to execute the test so that it is possible later to return and verify
the test runs.

The test runner runs the suite once in a specified interval with default being one hour. This
means that for a single test there are multiple executions of it producing multiple results
for a single test case.

38

0
10

20
30

40

Class

V
al

ue

 0%

100%

25%

50%

75%

Figure 14: An example of statistics visualized with a box plot

The results from these tests are processed with Bash [22] shell scripts and R toolkit [54].
When applicable, box plots are used to visualize measured statistics, which provide a
convenient ways to present descriptive statistics of a data set. An artificial example of
such plot is given in Figure 14. The lowest whisker of a box plot depicts the minimum
value in the data set i.e. 0% of the samples have a value less than this. The highest whisker
depicts the maximum value. The box in the middle has its lower and upper edges so that
the second and the third quartile sets are inside the box. The line inside the box marks the
median value in the data set.

5.3 Initial IB RDMA results

The first set of results describes the initial characteristics of the system. To begin with
the native InfiniBand (IB) performance is tested with measurement utilities provided by
the Mellanox OFED distribution. These utilities report the latency and bandwidth for the
RDMA read and write operations.

The results for IB RDMA read and write latency tests are shown in Figure 15 for different
messages sizes. The results show that for small message sizes the latency is almost a
constant, but starts to grow exponentially when the message size is increased above 512
bytes. The latency for write operations is less than a microsecond for writes for small
message size and less than two microseconds for read operations returning the data. The
difference is saturated when message sizes are increased.

Similarly the results for IB RDMA bandwidth tests are shown in Figure 16 for different

39

● ● ● ● ● ● ● ●
●

●

●
●

●

●

●

●

●

●

●

●

1 100 10000 1000000

1
2

5
10

20
50

10
0

Message size (bytes)

A
ve

ra
ge

 la
te

nc
y

(µ
s)

● read latency
write latency

Figure 15: Native IB read/write latency for different message sizes (message size = 2n

bytes). Logarithmic axes.

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ●

1 100 10000 1000000

1
5

50
50

0
50

00

Message size (bytes)

B
an

dw
id

th
 (

M
B

/s
)

● read bandwidth
write bandwidth

Figure 16: Native IB read/write bandwidth for different message sizes (message size = 2n

bytes). Logarithmic axes.

40

message sizes. From these results it is visible that the throughput is increased with bigger
message size until the capacity of the link is exceeded around message size of 512 - 1024
bytes. When compared to Figure 15 this is also the point where the latency starts to grow,
which verifies the claim of link being fully utilized.

5.4 Initial IPoIB results

Next the IB networking performance is tested with an encapsulation protocol IP over
InfiniBand (IPoIB) without any advanced virtualized I/O support available in the system.

The hosts column in the Figure 17a shows the IPoIB latency between two separated hyper-
visor hosts connected with InfiniBand fabric. This sets a practical baseline for network
latency without any virtualization. The second column in the figure shows the IPoIB
latency between two virtual machines running on the two hypervisors hosts. The last col-
umn also shows the statistics for latency between two virtual machines, but these virtual
machines are now located on the same hypervisor host. When both virtual machines are
located on the same host machine, the packets are not assumed to leave from the hosts
and the communication is expected to perform more efficiently.

From the data shown in Figure 17a it is clearly visible that the latency is very different
compared to what native InfiniBand with Full Data Rate promises which should be around
few microseconds. The reason for this is that the connection is now using IPoIB, an
encapsulation protocol which carries the generic IP data traffic in IB data frames. The
encapsulation protocol adds more overhead for the payload of the packets and for the
required traffic processing and state management. As a result the efficient communication
seen in the results with IB RDMA is lost.

Initially the system installation had the default maximum transmission unit (MTU) of
1500 bytes on IPoIB links. While this value is common in local area networks using
Ethernet this value is not optimal in our system running on top of InfiniBand. Smaller
MTU size means that the ratio of packet headers to payload is greater meaning that less
bits within a given time frame can carry useful data. Also more packets means that more
processing is required from the end points of communication as well as from the mid-
dleboxes participating the transfer. Bigger packets means that the delays in the packet
transmission and delivery are going to increase. Also bigger packets are more likely to
be affected by bit errors introduced by an unreliable link. However in our system the IB
links are delivering the packets in reliable manner and the delays on the network are small
compared to delays caused by IPoIB protocol processing on end hosts.

The MTU size of 1500 bytes was next increased to 4034 bytes maximum possible MTU
value for IPoIB link as described in Section 5.1. Increasing the MTU should have little
effect for latency in networks where there are plenty of capacity available. This is true
which can be seen in Figures 17a and 17b showing the latency for 1500 bytes MTU and
4034 bytes MTU.

41

Hosts VM−VM VM−VM*

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

M
ill

is
ec

on
ds

(a) MTU 1500

Hosts VM−VM VM−VM*

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

M
ill

is
ec

on
ds

(b) MTU 4034

Figure 17: IPoIB latency measurements between the hypervisor hosts, between virtual
machines on two separate hosts, and between two virtual machines on the same host (*).

Increasing the MTU size comes visible when the bandwidth usage between two end hosts
is analyzed. In Figures 18a and 18b the network link throughput is shown for the three
scenarios. While the measured maximum throughput values are higher in all of the sce-
narios only the scenario of communication with two virtual machines on separate hosts
shows clear improvement. For the scenario where the virtual machines are located on
the same host there is no clear improvement. The reason for this is that actually pack-
ets from a virtual machine to another are never actually leaving the host machine but
passed through the software switch in the hypervisor. One reason for the improvement in
the scenario with two virtual machines on two separate hosts is the decreased amount of
processing required for packet headers due to bigger payload sizes.

While the increased MTU clearly provides higher throughput between virtual machines
on the separate hosts compared to the scenario where they are located on the same hosts,
the native IB link between the two hosts seems to perform equally good with the virtual
machines on the same host scenario.

Based on these results it seems that the IPoIB link provides consistent latency between to
hosts which is even smaller than the latency between two virtual machines on the same
host interconnected by a software switch. However the throughput is almost equal over
the IPoIB link between hosts and over the software switch between two virtual machines
on the same host.

The outcome of these results is twofold. The performance in terms of IPoIB latency seems
to be dominated by the fact whether or not virtualization is used. For the throughput what

42

Hosts VM−VM VM−VM*

0
5

10
15

20

B
an

dw
id

th
 (

G
bp

s)

(a) MTU 1500

Hosts VM−VM VM−VM*

0
5

10
15

20

B
an

dw
id

th
 (

G
bp

s)
(b) MTU 4034

Figure 18: IPoIB bandwidth measurements between the hypervisor hosts, between virtual
machines on two separate hosts, and between two virtual machines on the same host.

matters more is whether or not the virtualized communication happens over the physical
IB link.

As seen in results, using the maximum MTU does not hurt the latency in any scenarios
tested. For highest possible network performance the system installation should check
whether this assertion applies. The effect of MTU size variations are studied previously
and these results are known to apply [21, 45]. For the systems where the link bandwidth
is limited the use of big frames i.e. jumbo frames might introduce adverse effects like
noticeable latency increase.

5.5 SR-IOV enabled network interfaces

The results in this section are taken from the evaluated system when SR-IOV capability is
enabled. As described in Section 2.2 this enables the system to offload the I/O processing
of the virtual machine into special hardware so that the VMM does not need to handle the
I/O processing and transfer between the VMM memory space and the memory space of
the virtual machine, which reduces the I/O virtualization overhead.

The InfiniBand performance with SR-IOV enabled host was tested prior to this evalua-
tion and the results for achieved throughput were known to be rather poor for SR-IOV
enabled hosts and virtual machines running on these hosts. Before setting the IOMMU
pass-through option discussed in Section 5 the throughput performance between virtual
machines using SR-IOV was few hundred megabytes per second and the jitter present in

43

● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

1 100 10000

1
2

5
10

20

Message size (bytes)

A
ve

ra
ge

 la
te

nc
y

(µ
s)

● Native read latency
Native write latency
SR−IOV read latency (hosts)
SR−IOV write latency (hosts)
SR−IOV read latency (remote)
SR−IOV write latency (remote)

Figure 19: InfiniBand read/write latency for different message sizes between InfiniBand
hosts without SR-IOV and between virtual machines using SR-IOV on the same host
machines (hosts) and on separate hosts (remote). Logarithmic axes.

latency. The high CPU load of the system under heavy network I/O were clearly telling
that the system was misconfigured.

After the discussion with the hardware vendor the fix for this was published and the
system performance went up to reasonable performance characteristics shown in Figure
19 for latency and in Figure 20 for throughput. The communication with SR-IOV virtual
functions for virtual machines is having a latency overhead around one microsecond and
the throughput is consistently slightly less compared to communication between physical
hosts. These results however show that the communication with SR-IOV virtual functions
for virtual machines can scale up and the performance hit due to the virtualization is
negligible and close to the level which is achievable without SR-IOV.

The Figure 21 shows results from IPoIB latency tests while the throughput performances
are shown in Figure 22. The results show that enabling SR-IOV can improve the network
performance of the virtual machines close to the bare metal characteristics. The interest-
ing thing to note is the slightly inferior performance of communication when the virtual
machines as located within the same hypervisor host compared to scenario when these vir-
tual machines are deployed on two different hypervisors on separate hosts interconnected
with a IB link.

To get an idea of network characteristics from the real application point of view the per-
formance tests from ØMQ library were run with different message sizes with and the
results are shown in Figure 23. For each case the latency stays stable until a message size
exceeds the threshold of half megabyte after which the latency starts to ramp up.

In the host-to-host scenario of the ØMQ tests the latency is always below the values from

44

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ●

1 100 10000

2
5

20
50

20
0

10
00

50
00

Message size (bytes)

B
an

dw
id

th
 (

M
B

/s
)

● Native read bandwidth
Native write bandwidth
SR−IOV read bandwidth (hosts)
SR−IOV write bandwidth (hosts)
SR−IOV read bandwidth (remote)
SR−IOV write bandwidth (remote)

Figure 20: InfiniBand read/write bandwidth for different message sizes between Infini-
Band hosts without SR-IOV and between virtual machines using SR-IOV on the same
host machines (hosts) and on separate hosts (remote). Logarithmic axes.

Host−Host VM−VM VM−VM (host local)

0.
0

0.
2

0.
4

0.
6

0.
8

M
ill

is
ec

on
ds

Figure 21: SR-IOV enabled IPoIB latency measurements

45

Host−Host VM−VM VM−VM (host local)

14
.0

14
.5

15
.0

15
.5

16
.0

16
.5

B
an

dw
id

th
 (

G
bp

s)

Figure 22: SR-IOV enabled IPoIB bandwidth measurements

1 100 10000 1000000

0
20

0
40

0
60

0
80

0
10

00

Message size (bytes)

A
ve

ra
ge

 la
te

nc
y

(µ
s)

● ●
●

●

●
●

● ●
●

●

●

●
● ●

●

●
●

●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

● ●

●

●

●

●

●

●

VM−VM
VM−VM (same host)
host−host

Figure 23: SR-IOV enabled ØMQ latency measurements with different message sizes

46

scenarios using virtualization. There are no clear distinction between the two scenarios
using virtualization until the latency starts to increase more rapidly after which the sce-
nario where the virtual machines are running on the same hypervisor provides constantly
better service in terms of latency.

Comparing the ØMQ latency to latency reported by ping in SR-IOV enabled environment
(figures 23 and 21) the results show no major difference with reasonable message sizes.
This shows that the real-world application performance should be able to achieve stable
latency for its communication. Comparing the ØMQ latency to RDMA read and write
latency (figures 23 and 19) the difference in clear. RDMA communication is roughly
hundred times faster than generic communication over IPoIB used by ØMQ tests.

5.6 Summary

The results shown in this chapter confirm the known assumption of IPoIB performing with
higher latency and lower bandwidth than what is achievable with the native InfiniBand
RDMA access. This is due to the processing overhead of IPoIB which is suitable for
generic communication between applications build to run with standard TCP/IP stack. On
the other hand the communication with RDMA semantics has lower latency and higher
throughput, but the RDMA can only be utilized with RDMA aware applications. In the
evaluated system the IPoIB performs roughly one hundred times slower link latency and
the maximum bandwidth is one third of the RDMA performance.

The performance gain from high performance networking infrastructure like InfiniBand
can be utilized by general client applications with an added overhead. In this particular
scenario at least two sources of overhead exists. The first one is due to IPoIB protocol,
which adds an overhead due to encapsulated protocol requiring more message headers to
be transferred over the wire and more processing and accounting on end hosts. The second
one is due to virtualization. The hypervisor is required to control the virtual machine
communication flows and route messages according to this.

With virtualization without advanced virtualized I/O support the interrupt handling un-
der heavy network I/O will cause a CPU load in the system which might even limit I/O
processing and hence also the maximum network traffic bandwidth. Hardware assisted
technology such as SR-IOV can be used to map the physical device into multiple virtual
devices which can be associated with virtual machines on the host. These virtual machines
can then directly use these virtual devices with standard PCI access to interact with the
device, which will remove the need for extra interrupt handling and hence improve the
network I/O performance.

The results from the evaluation scenarios using IPoIB and SR-IOV show only a minor
latency overhead with virtualization. The throughput is interestingly a slower for virtual
machines running on the same hypervisor host than in the scenario without SR-IOV. How-
ever the throughput loss can be seen negligible and could be assumed to be improved with
more matured firmware. For the remote VM scenario the throughput is greatly improved
compared to scenarios without SR-IOV.

47

The results from the SR-IOV scenarios with RDMA access show stable and consistent
performance characteristics with and without SR-IOV. The SR-IOV results shows a neg-
ligible overhead for latency and throughput. This means that the variation in IPoIB sce-
narios are likely to caused by the tunneling protocol itself rather than due to SR-IOV
implementation.

48

6 Conclusions

This thesis contains a network performance evaluation of IaaS cloud installation on top
of IB networking. The evaluation scenarios study the effect of virtualization for network
performance. One of the evaluation scenarios contains an analysis of the network perfor-
mance where SR-IOV is used with IB devices. The results from this scenario shows a
drastic improvement in both the network latency and bandwidth.

The evaluation results show that the major reasons for performance losses are the en-
capsulation protocols for generic communication like IPoIB and the virtualization itself
without proper I/O support. To make the communication more efficient the generic com-
munication protocols can sometimes be changed with technologies like RDMA. The loss
of generality however going to limit the possible use cases. Sometimes protocols like
SDP can be used to bypass parts of the protocol which are used to implement features
already provided by the underlying protocol. Such tinkering can however only be used in
certain use cases and is not going to completely remove the overhead introduced by the
encapsulation.

To combat the performance problems due to virtualization there currently exists several
hardware assisted solutions for virtualized I/O. In this thesis SR-IOV was used to assign
virtual functions of IB HCA directly with virtual machines. The results from the SR-IOV
scenario show that SR-IOV introduces only a negligible overhead for the communication
latency and maximum throughput for the communication with virtual machines. In all
practical cases the performance with SR-IOV outperforms the cases where virtualization
is used without SR-IOV.

In this thesis only single flow scenarios were tested between two endpoints. To fur-
ther study the network performance characteristics between the virtual machines multiple
flows scenarios should also be studied. Previous studies show that InfiniBand should scale
reasonable well with multiple flows.

The direct IB access with SR-IOV offers not only more performance for networking but
also allows native IB interface to be used from virtual machines. Still widens the set
of communication protocols available for virtual machines and increases the number of
use cases for HPC IaaS cloud. One can also argue that without SR-IOV enabled virtual
machines the definition of HPC IaaS cloud is a bit vague as the network performance is
no way near the native IB performance.

The results presented in this thesis indicate that SR-IOV should be used in virtualized
cloud environment whenever possible in order to obtain the best performance. However
some shortcomings currently exists which are why the usage of SR-IOV might not always
be feasible. Most crucial problem at the moment being the lack of support for SR-IOV
enabled network access on the public cloud middleware applications.

The SR-IOV technology for IB is still very young. Several computing solutions utilization
virtualization, such as the OpenStack cloud middleware, are integrating these technolo-
gies into their environments, but currently there are no open source and publicly available

49

solutions to combine the SR-IOV enhanced networking with the cloud middleware while
commercial products using the SR-IOV have just become available for other network
technologies like the SR-IOV enabled access to 10 Gigabit Ethernet on the Amazon’s
EC2 platform.

50

References

[1] Folding @ Home. http://folding.stanford.edu/home/, May 2014.

[2] Heroku Cloud Application Platform. https://www.heroku.com/, April 2014.

[3] Iperf. http://iperf.sourceforge.net/, May 2014.

[4] iputils. http://www.skbuff.net/iputils/, May 2014.

[5] OpenStack Open Source Cloud Computing Software. http://www.openstack.

org/, May 2014.

[6] Salesforce.com. http://www.salesforce.com, April 2014.

[7] Top500, TOP 500 Supercomputer Sites. http://www.top500.org/lists/2013/
06/, 2014.

[8] ØMQ - Code Connected. http://zeromq.org/, May 2014.

[9] Dennis Abts and John Kim. High performance datacenter networks: Architectures,
algorithms, and opportunities. Synthesis Lectures on Computer Architecture, 6(1):1–
115, 2011.

[10] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, com-
modity data center network architecture. In ACM SIGCOMM Computer Communi-
cation Review, volume 38, pages 63–74. ACM, 2008.

[11] Amazon Web Services, Inc. Amazon Elastic Compute Cloud (Amazon EC2). http:
//aws.amazon.com/ec2/, December 2013.

[12] InfiniBand Trade Association. InfiniBand Architecture Specification Volume 1 Re-
lease 1.2.1, 2007.

[13] Pavan Balaji, Sundeep Narravula, Karthikeyan Vaidyanathan, Savitha Krishnamoor-
thy, Jiesheng Wu, and Dhabaleswar K Panda. Sockets direct protocol over infiniband
in clusters: is it beneficial? In Performance Analysis of Systems and Software, 2004
IEEE International Symposium on-ISPASS, pages 28–35. IEEE, 2004.

[14] Brandon Buttler. Just how much bigger AWS is compared its next competitor may
surprise you. http://www.networkworld.com/community/blog/just-how-

much-bigger-aws-compared-its-next-competitor-may-surprise-you,
2014.

[15] Shefali Chinni and Radhakrishna Hiremane. Virtual machine device queues. Intel
Corp. White Paper, 2007.

[16] J. Chu and V. Kashyap. Transmission of IP over InfiniBand (IPoIB). RFC 4391
(Proposed Standard), April 2006.

[17] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

51

[18] Yaozu Dong, Zhao Yu, and Greg Rose. SR-IOV Networking in Xen: Architecture,
Design and Implementation. In Proceedings of the First Conference on I/O Virtual-
ization, 2008.

[19] Sally Floyd, Tom Henderson, and Andrei Gurtov. The newreno modification to tcp’s
fast recovery algorithm. Technical report, RFC 2582, April, 1999.

[20] J Fontán, T Vázquez, L Gonzalez, Ruben S Montero, and IM Llorente. Opennebula:
The open source virtual machine manager for cluster computing. In Open Source
Grid and Cluster Software Conference, San Francisco, CA, USA, 2008.

[21] Annie P Foong, Thomas R Huff, Herbert H Hum, Jaidev P Patwardhan, and Greg J
Regnier. Tcp performance re-visited. In Performance Analysis of Systems and Soft-
ware, 2003. ISPASS. 2003 IEEE International Symposium on, pages 70–79. IEEE,
2003.

[22] Free Software Foundation Inc. GNU Bash. https://www.gnu.org/software/

bash/, 2014.

[23] Glenn Lockwood. High-Performance Virtualization: SR-IOV and Ama-
zon’s C3 Instances. http://glennklockwood.blogspot.fi/2013/12/high-

performance-virtualization-sr-iov.html, 2014.

[24] Robert P Goldbert. Survey of Virtual Machine Re- search. Computer, 7(6):34–45,
1974.

[25] Paul Grun. Introduction to InfiniBand TM for End Users. Technical report, 2010.

[26] HaiBing Guan, YaoZu Dong, Kun Tian, and Jian Li. SR-IOV Based Network
Interrupt-Free Virtualization with Event Based Polling. IEEE Journal on Selected
Areas in Communications, 31(12):2596–2609, December 2013.

[27] Abhishek Gupta and Dejan Milojicic. Evaluation of HPC Applications on Cloud.
2011 Sixth Open Cirrus Summit, pages 22–26, October 2011.

[28] Takayuki Hatori and Hitoshi Oi. Implementation and analysis of large receive of-
fload in a virtualized system. Proceedings of the Virtualization Performance: Anal-
ysis, Characterization, and Tools (VPACT’08), 2008.

[29] Qiming He, Shujia Zhou, Ben Kobler, Dan Duffy, and Tom McGlynn. Case study
for running HPC applications in public clouds. Proceedings of the 19th ACM In-
ternational Symposium on High Performance Distributed Computing - HPDC ’10,
page 395, 2010.

[30] Ignacio M. Llorente. OpenNebula vs. OpenStack: User Needs vs. Vendor
Driven. http://opennebula.org/opennebula-vs-openstack-user-needs-

vs-vendor-driven/, 2014.

[31] Saeed Iqbal, Rinku Gupta, and Yung-Chin Fang. Job Scheduling in HPC Clusters.
Dell Power Solutions, (February):133–136, 2005.

52

[32] Keith R. Jackson, Lavanya Ramakrishnan, Krishna Muriki, Shane Canon, Shreyas
Cholia, John Shalf, Harvey J. Wasserman, and Nicholas J. Wright. Performance
Analysis of High Performance Computing Applications on the Amazon Web Ser-
vices Cloud. 2010 IEEE Second International Conference on Cloud Computing
Technology and Science, pages 159–168, November 2010.

[33] Lars E Jonsson and William R Magro. Comparative performance of infiniband archi-
tecture and gigabit ethernet interconnects on intel R© itanium R© 2 microarchitecture-
based clusters. Technical report, Technical report, Intel Americas, Inc, 2003.

[34] V. Kashyap. IP over InfiniBand: Connected Mode. RFC 4755 (Proposed Standard),
December 2006.

[35] Linux Kernel Organization. The Linux Kernel Archives. https://www.kernel.

org/, 2014.

[36] Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance, portable
implementation of the mpi message passing interface standard. Parallel Computing,
22:789–828, 1996.

[37] Clifford Lynch. Big data: How do your data grow? Nature, 455(7209):28–29, 2008.

[38] Piyush Mehrotra, Jahed Djomehri, Steve Heistand, Robert Hood, Haoqiang Jin,
Arthur Lazanoff, Subhash Saini, and Rupak Biswas. Performance evaluation of
Amazon EC2 for NASA HPC applications. Proceedings of the 3rd workshop on
Scientific Cloud Computing Date - ScienceCloud ’12, page 41, 2012.

[39] Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing, Recom-
mendations of the National Institute of Standards and Technolog. National Institute
of Standards and Technology, 2011.

[40] Mellanox Technologies. Mellanox OFED for Linux - User Manual.
http://www.mellanox.com/related-docs/prod_software/Mellanox_

OFED_Linux_User_Manual_v2.0-3.0.0.pdf, December 2013.

[41] Mellanox Technologies. Performance Tuning Guidelines for Mellanox Net-
work Adapters (Revision 1.11). http://www.mellanox.com/related-

docs/prod_software/Performance_Tuning_Guide_for_Mellanox_

Network_Adapters.pdf, 2014.

[42] Dirk Merkel. Docker: lightweight linux containers for consistent development and
deployment. Linux Journal, 2014(239):2, 2014.

[43] Michael Larabel. Intel Haswell Linux Virtualization: KVM vs. Xen vs. Vir-
tualBox. http://www.phoronix.com/scan.php?page=article&item=intel_

haswell_virtualization&num=1, July 2013.

[44] Cyriel Minkenberg, F Abel, and P Muller. Designing a Crossbar Scheduler for HPC
Applications. Micro, IEEE, 26(3):58–71, 2006.

53

[45] David Murray, Terry Koziniec, Kevin Lee, and Michael Dixon. Large mtus and
internet performance. In High Performance Switching and Routing (HPSR), 2012
IEEE 13th International Conference on, pages 82–87. IEEE, 2012.

[46] Jeffrey Napper and Paolo Bientinesi. Can cloud computing reach the top500? In
Proceedings of the Combined Workshops on UnConventional High Performance
Computing Workshop Plus Memory Access Workshop, UCHPC-MAW ’09, pages
17–20, New York, NY, USA, 2009. ACM.

[47] Pär Olsson, Janne Wallenius, Christophe Domain, Kai Nordlund, and Lorenzo
Malerba. Two-band modeling of α-prime phase formation in Fe-Cr. Physical Re-
view B, 72(21):214119, 2005.

[48] Open Virtualization Alliance (OVA). Kernel-based Virtual Machine website: Status
- KVM. http://www.linux-kvm.org/page/Status, 2013.

[49] David Ott. Understanding VT-d: Intel Virtualization Technology for Directed I/O.
http://software.intel.com/en-us/blogs/2009/06/25/understanding-

vt-d-intel-virtualization-technology-for-directed-io, 2009.

[50] PCI-SIG. Address Translation Services 1.1 specification. http://www.pcisig.

com/specifications/iov/ats.

[51] Gregory F Pfister. An introduction to the infiniband architecture. High Performance
Mass Storage and Parallel I/O, 42:617–632, 2001.

[52] PCISIGSR Primer. An Introduction to SR-IOV Technology. Intel LAN Access Divi-
sion, Revision, 2, 2008.

[53] Python Software Foundation. Python Programming Language – Official Website.
http://python.org/, May 2014.

[54] R Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria, 2014.

[55] Red Hat Inc. KVM – Kernel based virtual machine. http://www.redhat.

com/rhecm/rest-rhecm/jcr/repository/collaboration/jcr:system/

jcr:versionStorage/5e7884ed7f00000102c317385572f1b1/1/jcr:

frozenNode/rh:pdfFile.pdf, 2009.

[56] J J Rehr, J P Gardner, M Prange, L Svec, and F Vila. Scientific Computing in the
Cloud. Computing in Science & Engineering, 3(12):34–43, 2010.

[57] Injong Rhee, Lisong Xu, and Sangtae Ha. Cubic for fast long-distance networks.
2008.

[58] Mendel Rosenblum and Tal Garfinkel. Virtual Machine Monitors: Current Technol-
ogy and Future Trends. Computer, (May):39–47, 2005.

[59] Claude Elwood Shannon. Communication in the presence of noise. Proceedings of
the IRE, 37(1):10–21, 1949.

54

[60] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
hadoop distributed file system. In Mass Storage Systems and Technologies (MSST),
2010 IEEE 26th Symposium on, pages 1–10. IEEE, 2010.

[61] Sayantan Sur, Matthew J. Koop, and Dhabaleswar K. Panda. High-performance and
scalable mpi over infiniband with reduced memory usage: An in-depth performance
analysis. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing,
SC ’06, New York, NY, USA, 2006. ACM.

[62] Teemu Takaluoma, Tero Säkkinen, Tom Bajorek, Risto S Laitinen, Bernt Krebs,
Heidi Conrad, and Olaf Conrad. Computational study of hybrid chalcogenoborate
anions. Journal of molecular structure: Theochem, 821(1):1–8, 2007.

[63] Tuomas Tallinen, J.A. Åström, P Kekäläinen, and Jussi Timonen. Mechanical and
thermal stability of adhesive membranes with nonzero bending rigidity. Physical
review letters, 105(2):26103, 2010.

[64] Kun Tan, Jingmin Song, Qian Zhang, and Murari Sridharan. A compound tcp ap-
proach for high-speed and long distance networks. 2006.

[65] Radu Tudoran, Alexandru Costan, Gabriel Antoniu, and Luc Bougé. A performance
evaluation of Azure and Nimbus clouds for scientific applications. Proceedings
of the 2nd International Workshop on Cloud Computing Platforms - CloudCP ’12,
pages 1–6, 2012.

[66] N. Varis and J. Manner. Performance of a software switch. In High Performance
Switching and Routing (HPSR), 2011 IEEE 12th International Conference on, pages
256–263, July 2011.

[67] Jerome Vienne, Jitong Chen, Md Wasi-ur Rahman, Nusrat S Islam, Hari Subramoni,
and Dhabaleswar K Panda. Performance analysis and evaluation of infiniband fdr
and 40gige roce on hpc and cloud computing systems. In High-Performance In-
terconnects (HOTI), 2012 IEEE 20th Annual Symposium on, pages 48–55. IEEE,
2012.

[68] VMWare, Inc. Understanding Full Virtualization, Paravirtualization, and Hardware
Assist. http://www.vmware.com/files/pdf/VMware_paravirtualization.

pdf, 2007.

[69] Edward Walker. benchmarking Amazon EC2 for high-performance scientific com-
puting. Usenix Login, 33(5):18–23, 2008.

[70] John Paul Walters, Vipin Chaudhary, Minsuk Cha, Salvatore Guercio Jr., and Steve
Gallo. A Comparison of Virtualization Technologies for HPC. 22nd International
Conference on Advanced Information Networking and Applications (aina 2008),
pages 861–868, 2008.

[71] Guohui Wang and T. S. Eugene Ng. The Impact of Virtualization on Network Per-
formance of Amazon EC2 Data Center. 2010 Proceedings IEEE INFOCOM, pages
1–9, March 2010.

55

[72] Andrew Whitaker, Marianne Shaw, and SD Gribble. Denali: Lightweight virtual
machines for distributed and networked applications. (Figure 1), 2002.

[73] Albert X. Widmer and Peter A. Franaszek. A dc-balanced, partitioned-block, 8b/10b
transmission code. IBM Journal of research and development, 27(5):440–451, 1983.

[74] Jun Xie, Yujie Su, Zhaowen Lin, Yan Ma, and Junxue Liang. Bare Metal Provision-
ing to OpenStack Using xCAT. Journal of Computers, 8(7), 2013.

[75] Y Zhai, Mingliang Liu, Jidong Zhai, X Ma, and Wenguang Chen. Cloud versus
in-house cluster: evaluating Amazon cluster compute instances for running MPI
applications. In State of the Practice Reports, pages 1–10, New York, NY, USA,
2011. ACM.

[76] Ou Zhonghong, Hao Zhuang, Jukka K Nurminen, Antti Ylä-Jääski, and Pan Hui.
Exploiting hardware heterogeneity within the same instance type of Amazon EC2.
4th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud), pages 4–8,
2012.

