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Symbols and abbreviations

Symbols
N(· | µ, σ2) Normal or Gaussian distribution with mean parameter µ

and variance σ2

x Input vector
X Availabale input data consisting of several input vectors xi
f ∗ Unknown function value for some input x∗

p(f | X) Prior distribution of f given X
p(y | f) Likelihood function of y
p(f | X,y) Posterior distribution of f given available data X and y
Z or p(y | X) Marginal likelihood or evidence of the data
p(y∗ | x∗, X,y) Predictive distribution of the unknown value y∗ at location x∗,

given the data X and y
K or K(X,X) Covariance matrix between function values at data points X
K∗ or K(X,X∗) Covariance matrix between function values at data points X

and function values at data points X∗
K∗∗ or K(X∗, X∗) Covariance matrix between function values at data points X∗
KT Matrix transpose of K
K−1 Matrix inverse of K
Σ Covariance matrix
diag(e1, e2, . . . , en) Diagonal matrix with the diagonal e1, e2, . . . , en.
I Identrity matrix, I = diag(1, 1, . . . , 1)
y ∼ p(y) y is distributed according to p(y)
p(y) ∝ q(y) p(y) is proportionally equivalent to q(y), i.e. p(y) = Cq(y)

with some constant C that does not depend on y

Operators
∂
∂x

Partial derivative with respect to x
∇ or ∇f Gradient (vector of first derivatives) with respect to

vector values f
Eq(f)[h(f)] or Eq[h(f)] Expected value of h(f) over the distribution q(f):∫

h(f)q(f)df

Abbreviations
GP Gaussian process
EP Expectation propagation
CV Cross-validation
MAP Maximum a posteriori
i.i.d. Independent and identically distributed
KL Kullback-Leibler divergence measure
SVI Stochastic variational inference
FIC Fully independent conditional approximation for Gaussian processes



1 Introduction
With the increasing amount of data being collected from various sources, standard
statistical methods for doing inference are becoming too slow and computationally
expensive. New fast algorithms and methods are needed for handling these big data
sets or Big Data. The use of Big Data has become more and more common recently
as the collection of data has increased.

Sometimes the user of the statistical methods has knowledge that the observ-
able quantities can be monotonic with respect to some explanatory variables. This
monotonicity assumption means that when the value of some quantitative explana-
tory variable increases, the expectation of the observable quantity always increases
(monotonically increasing) or decreases (monotonically decreasing). Consider a case
where the death rate for some disease is measured given how old the patient is. It
is natural to assume that the death rate might be higher for patients that are older.
Incorporating this kind of monotonicity information to the statistical model can
often be a challenge or even impossible.

In this thesis, we develop methods and investigate how to efficiently combine
the monotonicity assumption with large data sets. The methods are developed for
Gaussian processes which can be considered as Bayesian nonparametric models. The
developed methods combine recent advances in Gaussian process inference for large
data sets and monotonicity constrainments for the Gaussian processes. The methods
are experimented on several simulated and real world data sets.

The thesis is structured as follows: in section 2 we go over the basics of Bayesian
inference. The appropriate terminology is introduced and explained to ease the
understanding of the following sections.

In section 3 we introduce the main model of the thesis, Gaussian process. The
basic inference for Gaussian processes is explained. We introduce some standard
approximation tools used in Gaussian process framework. Furthermore, we explain
how the monotonicity of the function values can be achieved with Gaussian pro-
cesses.

In section 4 the main contributions and work of this thesis are explained. We
start by introducing the first stepping stone towards Big Data Gaussian processes:
Sparse Gaussian processes. We explain the variational learning and how it can
be used to do fast inference in the large data sets. We continue by explaining
how the variational learning can be combined with Gaussian process framework to
enable Big Data inference for Gaussian processes. We end the section by proposing
how to combine variational learning with the monotonicity constraints of Gaussian
processes.

Section 5 explains how the parameters of the Gaussian process are chosen. We go
over different ways to either choose the parameters or integrate over them. Section 6
introduces the data sets we use in this thesis, which models we compare and how
we assess or compare the different models. In section 7 we go over and analyze the
results. We end this thesis by discussing the properties of the introduced models in
section 8.



2

2 Bayesian modelling
Bayesian modelling or Bayesian statistics refers to inference about unknown parame-
ters with the use of probability models and data (Gelman et al., 2013). The defining
aspect of the Bayesian modelling is the use of probability distributions of unknown
quantities for expressing the uncertainty. The origin of Bayesian modelling can be
traced as far back as the year 1763 (Bayes, 1763). The fundamental cornerstone of
all Bayesian modelling is Bayes’ Theorem:

p(θ | x) =
p(θ)p(x | θ)

p(x)
=

p(θ)p(x | θ)∫
p(θ)p(x | θ)dθ

. (1)

Bayes Theorem is used to compute the conditional distribution of θ given x. What
makes the equation (1) special is not the technical details but rather the wide ap-
plicability of the Bayes’ Theorem in statistical modelling and inference.

What separates the Bayesian modelling from the frequentistic framework is the
use of probability distributions for expressing the uncertainty of variables, rather
than assuming that the variables are fixed but unknown. The a priori uncertainty
assumptions on variable θ are characterized by the prior distribution p(θ). The prior
distribution represents assumptions on variable θ before seeing any data. This can
mean, for example, specific knowledge that the statistician doing the inference has,
or some kind of universal prior distribution (i.e. no knowledge). The likelihood
function of the parameters θ, p(x | θ) or sometimes denoted as L(θ) or L(θ | x),
quantifies the likelihood of the parameter value θ after observing the data x. The
likelihood function can be derived from the observation model of the data, condi-
tioned on the observed data. However, this map is not bijective as the observation
model for the data cannot be inferred from the likelihood function. This is because
there can be several observation models that produce the same likelihood functions
for the parameters respectively. Combining the prior knowledge of the parameter
p(θ) and the information from the data, p(x | θ), produces the posterior probabil-
ity of the parameter p(θ | x) which quantifies the best knowledge we have on the
parameter: prior knowledge combined with the data.

The uncertainty on the parameter values is taken into account by integrating
over the probability distribution representing the uncertainty. Consider for example
the posterior distribution in (1) where we compute the posterior distribution of some
parameter θ given data x. Assuming that after the posterior distribution has been
computed, we want to estimate how some new data, x∗ behaves, given the old data
x with parameters θ. In Bayesian inference, the posterior predictive distribution of
x∗ is computed by averaging the predictive distribution of the new data, p(x∗ | θ, x),
over the posterior distribution of the parameters θ:

p(x∗ | x) =

∫
p(x∗, θ | x)dθ,

=

∫
p(x∗ | θ, x)p(θ | x)dθ.

It is possible to avoid the full Bayesian analysis of integrating over parameters by
using point estimates for the posterior distribution. If we replace the full posterior
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p(ν) ν p(θ | ν) θ p(x | θ) x

Figure 1: The graphical model of the hierarchical model structure. Circles represent
the variables and rectangles represent the relations. The blue color indicates that
the variable is observed. The orange rectangles emphasise that there can be multiple
θ that affect p(x | θ) and multiple ν that affect p(θ | ν).

distribution with the point estimate, the posterior distribution is approximated so
that it has mass only at the location of point estimate. The use of point estimates
usually reduces the computational burden, but underestimating the uncertainty of θ.
With the point estimate θ̂ for the parameter θ, the posterior predictive distribution
of x∗ is

p(x∗ | x) =

∫
p(x∗ | θ, x)p(θ | x)dθ,

= p(x∗ | θ̂, x). (2)

The idea of prior and posterior distributions also naturally extends to hierarchical
models. Consider for example the posterior distribution representation in (1) where
we have the model parameters θ. We can further extend this model specification by
assuming that the prior distribution of θ is conditioned on some hyperparameters ν.
Now by setting prior distribution for ν, hyperprior of the model, we can construct a
hierarchical model where we have first layer parameters θ and second layer hyperpa-
rameters ν which affect the first layer parameters. The joint posterior distribution
of the parameters and the hyperparameters is now

p(θ, ν | x) =
p(x | θ, ν)p(θ, ν)

p(x)
=

p(x | θ)p(θ | ν)p(ν)∫∫
p(x | θ)p(θ | ν)p(ν)dθdν

, (3)

where p(ν) is the prior distribution of ν. Figure 1 is the graphical representation of
model in (3).
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3 Models

3.1 Gaussian Processes

In this section, we go over the Gaussian process framework. Gaussian process (e.g.
Rasmussen and Williams, 2006) is an infinite set of points for which any finite subset
has a Gaussian joint distribution

p(x1,x2, . . . ,xn) ∼ N(µ,Σ). (4)

The mean and covariance of the Gaussian distribution are defined by the mean and
covariance functions of the Gaussian processes respectively:

µ = m(X), (5)
Σ = K(X,X), (6)

where we have denoted the set of data points as X = [x1,x2, . . . ,xn]. Gaussian
processes are mainly used as a prior distribution for some unknown functions by as-
suming that the process f(x) is Gaussian. The prior mean function m(X) is usually
assumed to be zero due to notational convenience. The process f(x), evaluated at
the data points X, f(X), can be compactly presented as

f(X) ∼ GP(0, K(X,X)), (7)

where K(X,X) = E(f(X)Tf(X)) denotes the covariance between function values.
The assumption that f(x) is a Gaussian process means that we assume an infi-
nite dimensional normal distribution as a prior distribution for the function values.
Furthermore, the covariance between function values depends only on the inputs
at the corresponding locations. In practice, this prior assumption realizes as an
n-dimensional normal distribution after we have n observations from the function.
Let us set f = f(X) to be the vector containing the function values. Due to the
nature of the Gaussian process, the joint distribution of function values f , at data
points X, and f∗, at data points X∗, can be expressed as[

f
f∗

]
= N

(
0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
. (8)

From here on we denote K∗∗ = K(X∗, X∗), K∗ = K(X∗) and K = K(X,X).
Now using properties of Gaussian distributions, the conditional distribution of f∗

given X∗, X and f can be expressed as (see Appendix A)

f∗ | f , X,X∗ ∼ N(KT
∗ K

−1f , K∗∗ −KT
∗ K

−1K∗). (9)

3.1.1 Mean and covariance functions

Gaussian process is defined by its mean and covariance functions.
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In this thesis, we use zero prior mean function m(X) = 0 and the Squared-
Exponential or exponential quadratic covariance function

k(x,x′) = σ2
f exp

(
−
∑d

i=1(xi − x′i)2

2li

)
, (10)

where σ2
f is signal variance or the magnitude , li are the characteristic lengthscales

of the input-space and x,x′ ∈ Rd denote single data points.

3.1.2 Regression

In regression tasks, the function f is not usually observed directly, but rather, we
observe a noisy version of it

y = f + ε, (11)

where ε is the noise term. It is often assumed that the noise is additive and inde-
pendent zero mean Gaussian noise (white noise) with some variance σ2, meaning
that

ε ∼ N(0, σ2I), (12)

leading to
y ∼ N(f , σ2I). (13)

Now if we assume the Gaussian process prior for function values f , so that

f ∼ N(0, K), (14)

the distribution of y can be expressed as (due to nature of Gaussian distributions)

y ∼ N(0, K + σ2I). (15)

Recalling the joint distribution of f and f∗ from the previous section, the joint
distribution of y and f∗ is[

y
f∗

]
= N

(
0,

[
K + σ2I K∗
KT
∗ K∗∗

])
. (16)

Using the properties of the Gaussian distributions, we can again condition the
function values f∗ on the observations y to get

f∗ | y, X,X∗ ∼ N(µ∗,Σ∗, ), (17)
where
µ∗ = KT

∗ (K + σ2I)−1y, (18)
Σ∗ = K∗∗ −KT

∗ (K + σ2I)−1K∗. (19)

Equations (17) – (19) can be used for predicting the function values f∗ at locations
X∗ when we know the noisy function values y at locations X.
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When we make the assumption that y are function values f with some Gaussian
noise, we set the likelihood function of our model to be Gaussian

p(y | f) = N(y | f , σ2I). (20)

The conditional distribution p(f∗ | y, X,X∗) can be computed as

p(f∗ | y, X,X∗) =

∫
p(f∗, f | y, X,X∗)df , (21)

=

∫
p(f∗ | f , X,X∗)p(f | y, X)df , (22)

=

∫
p(f∗ | f , X,X∗)p(y | f)p(f | X)

p(y | X)
df , (23)

which can be computed analytically and results in (17). However, if our likelihood
function is not Gaussian, the above integral cannot be evaluated analytically. In this
case the only way to proceed is to either evaluate the integral numerically for example
by using some sampling scheme, or approximate the appropriate components as
Gaussian so the integral can be evaluated analytically.

The marginal likelihood, or evidence

Z = p(y | X) =

∫
p(y | f)p(f | X)df , (24)

of the GP model is an important value in that it is often used for parameter estima-
tion in GP framework. The parameters of the GP model are the parameters of the
covariance functions and the parameters of the likelihood function. The parameters
of the covariance function are usually called the hyperparameters of the GP model
as they can be considered second layer parameter (the parameters of the prior dis-
tribution). The marginal likelihood can be used to find the optimal parameters of
the GP model, because the maximum of the marginal likelihood usually corresponds
with good predictions (Nickisch and Rasmussen, 2008; Riihimäki et al., 2013). The
hyperparameters could also be selected by maximizing the predictive performance,
but maximizing the marginal likelihood with respect to the hyperparameters usually
results in better predictive performance globally. For a GP model with Gaussian
likelihood, the log marginal likelihood can be computed analytically

log p(y | X) = −1

2
yT (K + σ2I)−1y − 1

2
log |K + σ2I| − n

2
log 2π, (25)

by noting that y ∼ N(f , σ2) = N(0, K + σ2I).

3.1.3 Classification and other non-Gaussian likelihoods

Sometimes the observations are not function values f or even the noisy version
directly, but rather something entirely different. Consider for example when the
observations are whether a customer buys an item or not. In this case the observation
is a binary variable, y ∈ {0, 1}. Another possibility could be number of customers
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in a bank during lunch hour. Now the observation y is a non-negative integer. For
these example cases, the likelihood function p(y | f) is no longer Gaussian.

The statistician has to then decide an appropriate likelihood to model the ob-
servations. The number of the bank customers could be modelled as a Poisson
distributed variable for example. Regardless of the case, the behaviour of the likeli-
hood function is usually governed by some parameters. For the Poisson distribution,
this is the expected number of occurrences or events. By transforming the appro-
priate parameter to the interval (−∞,∞), Gaussian process prior can be used for
the transformed variable, which is usually denoted as the latent function f (latent
as in we don’t directly observe it).

Assuming the GP prior for the function values f in these cases results in an
analytically intractable posterior distribution p(f | X,y), as the likelihood and prior
cannot be combined analytically. If we have an analytically intractable posterior dis-
tribution, we cannot evaluate analytically the predictive distribution of the function
values

p(f∗ | y, X,X∗) =

∫
p(f∗ | f , X,X∗)p(f | X,y)df ,

=

∫
p(f∗ | f , X,X∗)p(y | f)p(f | X)

p(y | X)
df , (26)

or the observations

p(y∗ | y, X,X∗) =

∫
p(y∗ | f∗)p(f∗ | X,X∗,y)df∗. (27)

To be able to do inference when the likelihood function is not Gaussian, we
can either resort to sampling methods (Neal, 1997) to sample the posterior of the
latent values p(f | y, X) or approximate the posterior distribution as a Gaussian
distribution

p(f | y, X) =
1

Z
N(f | X)p(y | f) ≈ q(f | y, X) = N(f | µ,Σ), (28)

where Z =
∫
N(f | X)p(y | f)df is the marginal likelihood. In this thesis,

we use two different approximation approaches, expectation propagation (Opper and
Winther, 2000; Minka, 2001a,b) and variational inference to do the Gaussian approx-
imation for the posterior distribution. In addition to the approximation methods,
we also use sampling based methods for comparison.

3.1.4 Expectation Propagation

Often, we can assume that the data is independent and identically distributed (i.i.d.).
This means that the joint likelihood p(y | f) factorizes over the observations

p(y | f) =
n∏
i=1

p(yi | fi), (29)
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where n is the number of observations. Expectation propagation (EP, Opper and
Winther, 2000; Minka, 2001a,b) approximates the posterior distribution of the latent
function values f as a Gaussian distribution by replacing the non-Gaussian likelihood
terms p(yi | fi) in (29) with unnormalized Gaussian site approximations Z̃it̃i(fi) .
The joint likelihood can now be expressed as

p(y | f) ≈
∏

Z̃it̃i(fi) =
∏

Z̃iN(fi | µ̃i, σ̃2
i ) = Z̃N(f | µ̃, Σ̃), (30)

where Σ̃ = diag(σ̃2
1, σ̃

2
2, . . . , σ̃

2
n) and µ̃ = [µ̃1, µ̃2, . . . , µ̃n]T . Combining the GP prior

of f and the site approximations results in a Gaussian posterior

p(f | y, X) ≈ 1

Zep
p(f | X)

n∏
i=1

t̃i(fi) = q(f | y, X), (31)

where q(f | y, X) = N(f | µ,Σ) and Zep is the EP approximation to the marginal
likelihood. The parameters of the posterior approximation can be expressed as

µ = ΣΣ̃µ̃, (32)

Σ =
(
K−1 + Σ̃−1

)−1
. (33)

After initializing the site approximations to some appropriate values, the follow-
ing process is iterated through all i until convergence to achieve the EP approxima-
tion to the posterior distribution:

(i) Form the cavity distribution q−i(fi) by removing the ith site approximation t̃i
from the marginal posterior distribution qi(fi)

q−i(fi) = N(fi | µ−i, σ2
−i) ∝

qi(fi)

t̃i(fi)
, (34)

with

µ−i = σ2
−i

(
µi
σ2
i

− µ̃i
σ̃2
i

)
,

σ2
−i =

(
1

σ2
i

− 1

σ̃2
i

)
.

(ii) Find the new marginal posterior approximation for fi by minimizing theKullback-
Leibler (KL) divergence (Kullback and Leibler, 1951) from the marginal pos-
terior approximation to the tilted distribution p̂(fi) = q−i(fi)p(yi | fi).

minqKL(qi(fi) ‖ p̂(fi)). (35)

For Gaussian approximation qi(fi), this means that we set the first two mo-
ments of the new marginal posterior approximation to be the first two moments
of the tilted distribution

Eq[fi] =

∫
fiq−i(fi)p(yi | fi)dfi,

Eq[f 2
i ] =

∫
f 2
i q−i(fi)p(yi | fi)dfi.
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(iii) Compute the normalization term Ẑi of p̂(fi)

Ẑi =

∫
q−i(fi)p(yi | fi)dfi.

(iv) Update the site approximation by removing the cavity distribution q−i(fi) from
the new marginal posterior approximation

t̃i(fi) = N(fi | µ̃i, σ̃2
i ) ∝

qi(fi)

q−i(fi)
,

with

µ̃i = σ̃2
i

(
µi
σ2
i

− µ−i
σ2
−i

)
,

σ̃2
i =

(
1

σ2
i

− 1

σ2
−i

)
.

(v) Compute the normalization terms Z̃i. This can be done by noting that the
moments of t̃i(fi)q−i(fi) must match the moments of p̂(fi) or qi(fi)

Z̃i = Ẑi

∫
N(fi | µ̃i, σ̃2

i )N(fi | µ−i, σ2
−i)dfi, (36)

= Ẑi(2π)1/2(σ̃2
i + σ2

−i)
1/2 exp

(
(µ̃i − µ−i)2

2(σ̃2
i + σ2

−i)

)
, (37)

where we have used (B.4) to compute the normalization constant for the prod-
uct of the two Gaussian distributions.

Marginal likelihood with EP can be computed analogously to the regression case

p(y | X) =

∫
p(y | f)p(f | X)df ≈

(
n∏
i=1

Z̃i

)∫
p(f | X)

n∏
i=1

t̃i(fi). (38)

The part inside the integral corresponds to the marginal likelihood in the regression
case. The log marginal likelihood can be expressed as

logZ =
n∑
i=1

log Ẑi +
1

2
log(σ̃2

i + σ2
−i) +

(µ̃i − µ−i)2

2(σ̃2
i + σ2

−i)
(39)

− 1

2
log |K + Σ̃| − 1

2
µ̃T (K + Σ̃)−1µ̃. (40)
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3.2 Gaussian Processes with monotonicity constraint

Sill and Abu-Mostafa (1997) proposed a general framework for including monotonic-
ity constraints for multilayer perceptron (see for example Bishop 2006) by using
appropriately placed virtual observations or hints to force monotonicity. Standard
Gaussian process prior assumption on f does not restrict the function values to be
monotonically increasing or decreasing with respect to input dimensions. However,
it is possible to use virtual observations with GP prior to force the monotonicity of
the posterior of the latent values p(f | X,y) (Riihimäki and Vehtari, 2010).

Due to the nature of the Gaussian process and differentiation operation, the
derivative of the GP (with respect to one of the input dimensions) is also a Gaussian
process (e.g. Rasmussen, 2003; Solak et al., 2003). For example, the derivative of
the expected value of function value fi is

∂E[fi]

∂x
(d)
i

= E

[
∂fi

∂x
(d)
i

]
. (41)

Because the derivative of the Gaussian process is a Gaussian process, we can
include virtual observations from the derivative to our GP model. As the differenti-
ation is a linear operation, the covariance between derivative and the function value
can be computed with

Cov

[
∂fj

∂x
(d)
i

, fi

]
=

∂

∂x
(i)
i

Cov [fj, fi] , (42)

and covariance between derivatives

Cov

[
∂fj

∂x
(d)
j

,
∂fi

∂x
(g)
i

]
=

∂2

∂x
(d)
j ∂x

(g)
i

Cov [fj, fi] . (43)

The above derivatives are in Appendix A for Squared-Exponential covariance func-
tions. The expected value or prediction of the derivative of the function can be
expressed as

E
[
∂f ∗

∂x∗d

]
=
∂K(x∗, X)

∂x∗d

(
K(X,X) + σ2

)−1
y. (44)

As mentioned, the monotonicity is forced by adding virtual observations around
the input space, and forcing the function to be either increasing or decreasing in
those virtual inputs, with respect to one or more input dimensions. What this
means is that we have virtual observations {xv, yv} where the response variable is
yv = {−1, 1}, depending on whether the function is decreasing or increasing with
respect to one of the input dimensions. The monotonicity can now be integrated into
the model by choosing a suitable likelihood function for the virtual observations. In
this thesis, we use the probit likelihood

p

(
yv |

∂fv
∂xdv

)
= Φ(yv

∂fv
∂xdv

) =

∫ ∂fv
∂xdv

−∞
N(t | 0, 1)dt. (45)
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The full posterior of the function values is

p(f , f ′ | X,Xv,y,yv) =
1

Z
p(y | f)p(yv | f ′)p(f , f ′ | X,Xv), (46)

where f ′ is the derivative of f , Z is the marginal likelihood and p(f , f ′ | X,Xv) is the
GP prior of the function and its derivative

p(f , f ′ | X,Xv) = N

(
fjoint | 0,

[
K(X,X) K(X,Xv)
K(Xv, X) K(Xv, Xv)

])
, (47)

and
fjoint =

[
f
f ′

]
∈ Rn+m. (48)

If we have multidimensional input space, the monotonicity of the specific dimensions
is incorporated into the prior covariance of fjoint. The posterior is not analytically
tractable when the likelihood is not Gaussian (see section 3.1.4). However, we can
still utilize the methods in section 3.1.4 for approximating the posterior p(f ′joint |
X,Xv,y,yv) with a Gaussian distribution. This is done by approximating the non-
Gaussian likelihood terms p(yj,v | f ′j), where j = {1, 2, . . . ,m}, with Gaussian site
terms t̃j(f ′j). The Gaussian approximation to the posterior is now

q(fjoint | X,Xv,y,yv) =
1

ZEP
p(fjoint | X,Xv)

n∏
i=1

p(yi | fi)
m∏
j=1

Z̃j t̃i(f
′
j),

= N
(
fjoint | µjoint,Σjoint

)
, (49)

where µjoint = ΣjointΣ̃
−1
jointµ̃joint, Σjoint =

(
K−1joint + Σ̃−1joint

)−1
and

µ̃joint =

[
y
µ̃

]
, (50)

Σ̃joint =

[
σ2I 0

0 Σ̃

]
, (51)

when t̃j(f ′j) = N(f ′j | µ̃j, σ̃2
j ) and µ̃ = [µ̃1, µ̃2, . . . , µ̃m]T , Σ̃ = diag(σ̃2

1, σ̃
2
2, . . . , σ̃

2
m) as

in section 3.1.4. The EP approximation to the marginal likelihood in the monotonic
GP case is

p(y,yv | X,Xv) =

(
m∏
j=1

Z̃j

)∫
p(f , f ′ | X,Xv)

n∏
i=1

p(yi | fi)
m∏
j=1

t̃j(f
′
j)dfjoint, (52)

and the log marginal likelihood is

logZEP =
m∑
i=1

(
log Ẑi +

1

2
log(σ̃2

i + σ2
−i) +

(µ̃i − µ−i)2

2(σ̃2
i + σ2

−i)

)
+
m− n

2
log 2π

− 1

2
log |Kjoint + Σ̃joint| −

1

2
µ̃T

joint(Kjoint + Σ̃joint)
−1µ̃joint. (53)
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4 Methods
In this section we introduce the rest of the methods of this thesis and how these can
be combined with models and methods of the previous section to enable monotonic
Gaussian processes with large data sets. First we introduce the sparse Gaussian
processes which enable the use of larger data sets with GP models. After this we
review the variational inference framework, how this can be applied to larger data
sets with stochastic variational inference, and finally the application of stochastic
variational inference for Gaussian processes.

4.1 Sparse Gaussian Processes

The standard Gaussian process approach offers an intuivite, flexible and analytical
framework for full probabilistic analysis. However, when using the approach intro-
duced in section 3.1, the computational cost of doing the inference scales cubically
with respect to the number of observations. The cubic scaling comes from inverting
and computing the Cholesky factor of the covariance matrix K(X,X) ∈ Rn×n. This
O(n3) computational cost can easily become too expensive when the number of ob-
servations increases. With modern desktop computers, the O(n3) cost prohibits the
use of standard GP models for more than ten thousand observations.

To be able to use GP models with more than a few thousand data points, several
sparse approximations have been proposed in the literature (see e.g. Quinonero-
Candela and Rasmussen, 2005). All of these sparse methods have one thing in
common: to do the inference exactly form variables and to do approximate inference
for the rest of the n variables (m << n). In practice this is done with the help of
inducing variables u = [u1, u2, . . . , um]. The inducing variables are the function
values corresponding to inducing inputs Xu and are located in the same space as
the function values f or f∗. Due to the properties of the Gaussian processes, the
prior for f or f∗ can be expressed by marginalizing the inducing variables

p(f , f∗ | X,X∗) =

∫
p(f , f ∗,u | X,X∗, Xu)du, (54)

=

∫
p(f | u, X)p(f∗ | u, X∗)p(u | Xu)du, (55)

where p(u | Xu) is just the GP prior of u

p(u | Xu) = N (u | 0, K(Xu, Xu)) = N(u |,0, Kuu). (56)

The conditional distributions p(f | u, X) and p(f∗ | u, X∗) are

p(f | u, X) = N(f | KnuK
−1
uu u, K −KnuK

−1
uuKun), (57)

p(f∗ | u, X∗) = N(f∗ | K∗uK−1uu u, K∗∗ −K∗uK−1uuKu∗), (58)

where we have used Knu = K(X,Xu) = KT
un and K∗u = K(X∗, Xu) = KT

u∗. Most
of the sparse methods proposed in the literature use exact prior p(u | Xu) and
approximate the conditional distributions p(f | u, X) and p(f∗ | u, X∗). We focus on
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the Fully independent conditional (FIC), also known as Sparse Gaussian processes
using Pseudo-Inputs (SGPP, Snelson and Ghahramani, 2006), as it gives intuition on
how the sparse approximations work and helps understand the variational approach
later on.

4.1.1 Fully independent conditional

With FIC, the conditional distributions (57) and (58) are approximated with

qFIC(f | u) =
n∏
i=1

p(fi | u) = N
(
KnuK

−1
uu u, diag(K −KnuK

−1
uuKun)

)
, (59)

qFIC(f∗ | u) =
n∗∏
i=1

p(f ∗i | u) = N
(
K∗uK

−1
uu u, diag(K∗∗ −K∗uK−1uuKu∗)

)
, (60)

so that we use the exact mean for the conditional distribution but approximate the
covariance matrix with the exact diagonal (i.e. independent terms). The approxi-
mative priors qFIC(f | X) and qFIC(f∗ | X∗) can now be given as

qFIC(f | X) =

∫
qFIC(f | u)p(u | Xu)du, (61)

= N(f | 0, KnuK
−1
uuKun − diag(K −KnuK

−1
uuKun)), (62)

qFIC(f∗ | X∗) =

∫
qFIC(f∗ | u)p(u | Xu)du, (63)

= N(f∗ | 0, K∗uK−1uuKu∗ − diag(K −K∗uK−1uuKu∗)). (64)

4.2 Variational Inference

Variational inference or Variational Bayes is a method, like EP, to approximate the
true posterior distribution p(f | X,y) and marginal likelihood p(y | X) (Bishop,
2006). Assuming q(f | X,y) is the approximation to the true posterior distribution
p(f | X,y). The log marginal likelihood p(y | X) can be decomposed to

log p(y | X) = L(q) + KL(q ‖ p), (65)

where

L(q) =

∫
q(f | X,y) log

p(f ,y | X)

q(f | X,y)
df , (66)

KL(q ‖ p) = −
∫
q(f | X,y) log

p(f | X,y)

q(f | X,y)
df . (67)

The decomposition (65) can be realized by first noting that

log p(f ,y | X) = log p(f | X,y) + log p(y | X). (68)
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Now by plugging in (68) to the definition of L(q) in (66), we get

L(q) =

∫
q(f | X,y) (log p(f | X,y) + log p(y | X)− log q(f | X,y)) df , (69)

=

∫
q(f | X,y) log

p(f | X,y)

q(f | X,y)
df +

∫
log p(y | X)q(f | X,y)df , (70)

= −KL(q ‖ p) + log p(y | X). (71)

If we want to maximize the marginal likelihood p(y | X) with respect to q(f | X,y), it
is enough to maximize L(q) or equivalently, minimize KL(q ‖ p). If we don’t restrict
q(f | X,y), it is evident that the KL-divergence minimizes when q(f | X,y) = p(f |
X,y). However, because this does not offer anything in the approximative sense
(tractability), we restrict q(f | X,y) to be something simpler that has tractable
form and try to minimize the KL-divergence.

Altough there is an infinite number of possible ways to restrict the distribution
q(f | X, y), one often used is the factorized approximation

q(f | X,y) =
n∏
i=1

qi(fi | X,y), (72)

which corresponds to the mean field theory in physics (Parisi, 1998). The idea here
is that the independent factors qi are not restricted and we now seek the qi, from all
possible distributions, that maximize the L(q). It can be shown that the qi which
maximize L(q) are (Bishop, 2006, pp. 464-466)

log qi(fi | X,y) = Eqj ,j 6=i[log p(f ,y | X)] + constant. (73)

Note that as the log qi(fi | X,y) depends on other terms qj, some sort of cycling
procedure might be needed where each term is updated in turn until some conver-
gence criterion is satisfied. These factorized approximations have the nice property
that the convergence is guaranteed, because the bound is convex with respect to all
of the factors qi (Boyd and Vandenberghe, 2004).

4.3 Variational Inference with mean field approximation

Now consider a model where we have two sets of latent variables: Vector of global la-
tent variables u and local latent variables z = [z1, z2, . . . , n]. Each of which is a vector
of J elements, zi = [zi.1, zi,2, . . . , zi,J ]. In addition to the latent variables, we have n
observations y = [y1, y2, . . . , yn]. We suppress the conditioning to X for the distribu-
tions to clear the notation. We assume that the observations yi and local latent vari-
ables zi are independent of the other observations y−i = [y1, y2, . . . , yi−1, yi+1, . . . , yn]
and local latent variables z−i = [z1, z2, . . . , zi−1, zi+1, . . . , zn], given the global latent
variables u:

p(yi, zi | y−i, z−i,u) = p(yi, zi | u). (74)
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In addition to the independence, we assume that the conditional distributions of the
latent variables are in the exponential family:

p(u | y, z) = h(u) exp
(
ηg(y, z)T t(u)− ag(ηg(y, z))

)
, (75)

p(zi,j | yi, zi,−j,u) = h(zi,j) exp
(
ηl(yi, zi,−j,u)T t(zi,j)− al(ηl(yi, zi,−j,u))

)
, (76)

where functions h(·) and a(·) are base measure and log-normalizer and the vector
functions η(·) and t(·) are the natural parameter and sufficient statistics. Given the
assumptions, the distribution of the local variables, conditioned on the global latent
variables, must also be of the exponential family, specifically:

p(yi, zi | u) = h(yi, zi) exp
(
uT t(yi, zi)− al(u)

)
, (77)

as do the prior of the global latent variables

p(u) = h(u) exp
(
αT t(u)− ag(α)

)
. (78)

In section 4.2 the log marginal likelihood was expressed in the decomposed form.
We can extend and apply the same procedure now for two sets of latent variables z
and u

log p(y) = L(q) + KL(q ‖ p) (79)

≥ L(q) =

∫
q(z,u) log

p(y, z,u)

q(z,u)
dzdu, (80)

because KL divergence is always positive. As noted earlier, the idea in variational
inference is to restrict the variational distribution q(z,u) so that we can compute
the expectations efficiently in the maximization of the lower bound L(q).

To be able to do the inference with large data sets, we assume that q(z,u) is of
the mean field family, meaning that it factorizes

q(z,u) = q(u | θ)
n∏
i=1

J∏
j=1

q(zi,j | φi,j), (81)

where we have noted the parameters of the global latent variables as θ and the
parameters of the local latent varibles with φi,j. For tractability, we set the factors
q(u | θ) and q(zi,j | φi,j) to be the same exponential family distributions as the
conditional distributions p(u | y, z) and p(zi,j | yi, zi,−j,u).

q(u | θ) = h(u) exp
(
θT t(u)− ag(θ)

)
) (82)

q(zi,j | φi,j) = h(zi,j) exp
(
φTi,jt(zi,j)− al(φi,j)

)
(83)

With the help of mean field approximation (81), the marginal likelihood lower
bound L(q) can now be written as a function of θ

L(θ) =

∫
q(z,u) log

p(u | y, z)p(y, z)

q(u | θ)q(z)
dzdu, (84)

=

∫
log p(u | y, z)q(z,u)dudz−

∫
log q(u | θ)q(z,u)dudz + constant, (85)
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where the constant term absorbs all the terms that do not depend on u. Substituting
the conditional distributions p(u | y, z) and q(u | θ) from (75) and (76) to the lower
bound (85), we get

L(θ) =

(∫
ηg(y, z,α)q(z,u)dudz

)T
∇θag(θ)−θT∇θag(θ)+ag(θ)+constant, (86)

where we have used the fact that the expectation of the sufficient statistics is the
gradient of the log-normalizer,

∫
t(u)q(z,u) = ∇θag(θ). The bound can now be

maximized with respect to the global variational parameters θ by taking the gradient
of (86) with respect to θ

∇θL(θ) = ∇2
θag(θ) (Eq[ηg(y, z,α)]− θ) , (87)

and setting it to zero, to get

θ = E[ηg(y, z,α)]. (88)

With the same kind of procedure, the gradient of the bound with respect to local
variational parameters φi,j is

∇φi,jL(φi,j) = ∇2
φi,j
al(φi,j) (Eq[ηl(yi, zi,−j,u)− φi,j) , (89)

which equal zero when
φi,j = E[ηl(yi, zi,−j,u)]. (90)

The above equations form the algorithm for coordinate ascent variational inference
with mean-field approximation, iterating between the updates of the local and global
parameters. The problem with the standard coordinate ascent method is that the
updates of the global parameters need the whole data to be available.

4.4 Stochastic Variational Inference

When the data sets get increase in size, problems arise with the standard variational
approach. Consider for example the case where we have hundreds of thousands of
observations. Computing the expectations can become very expensive for all but
the simplest models. Hoffman et al. (2013) proposed stochastic variational inference
(SVI) framework which enables application of variational inference for large data
sets.

Stochastic variational inference uses stochastic natural gradients (Amari, 1998)
computed using only the subset of the data for updating the global variational pa-
rameters. Natural gradients work in the space of KL divergence between two distri-
butions, rather than the euclidean space of the parameters as the normal gradients
do. The natural gradient of the objective function can be computed by premul-
tiplying the gradient with inverse of the Fisher information matrix (Amari, 1982;
Kullback and Leibler, 1951)

∇̂θf(θ) = G(θ)−1∇θf(θ), (91)
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where G is the Fisher information matrix of q(θ)

G(θ) = Eθ[∇θ log q(u | θ)(log q(u | θ))T ]. (92)

When q(u | θ) is in the exponential family, the Fisher information matrix is the
second derivative of the log normalizer

G(θ) = Eθ[(∇θ log p(u | θ))(∇θ log p(u | θ))T ], (93)
= Eθ[(t(u)− E[t(u)])(t(u)− Eθ[t(u)])T ], (94)
= ∇2

θag(θ). (95)

We can now compute the natural gradients of the lower bound L(θ) and L(φi,j) from
the gradients in equations (87) and (89)

∇̂θL(θ) = (∇2
θag(θ))

−1∇θL(θ) = Eq[ηg(y, z,α)]− θ, (96)

∇̂θL(φi,j) = (∇2
φi,j
al(φi,j))

−1∇φi,jL(φi,j) = Eq[ηl(yi, zi,−j,u)− φi,j. (97)

We see that taking a step of unit length towards the direction of natural gradient
corresponds to coordinate ascent update of the parameters.

Stochastic variational inference works by replicating the subsets of the data to
form noisy estimates for the natural gradients. This can be effective when we can
write the objective function as a sum of terms, as in the variational inference. The
stochastic gradient methods have been proven to converge to an optimum (Robbins
and Monro, 1951) given an appropriate step size schedule. For convex objective
functions, this optimum is global, and for non-convex functions, local or global.
Consider objective function L(θ) and its noisy gradient ∇θL(θ), computed with the
replicated subset of the data. In standard coordinate ascent, or gradient ascent,
we take a step of length ρ(i) towards the direction of the gradient to update the
parameter estimate

θ(i+1) = θ(i) + ρ(i)∇θL(θ(i)). (98)

If the gradient is the noisy estimate of the true gradient, the stochastic gradient
ascent is guaranteed to converge to local optimum of the objective function if the
step size ρ(i) satisfies the following∑

ρ(i) =∞,
∑(

ρ(i)
)2
<∞. (99)

The above condition also applies for the natural gradients

θ(i+1) = θ(i) + ρ(i)G−1i ∇θL(θ(i)) = θ(i) + ρ(i)∇̂θL(θ(i)). (100)

Consider sampling the ith data point from the whole dataset. The stochastic
variational inference updates the global variational parameters θ with

θ(i+ 1) = θ(i) + ρ(i)∇̂θL(θ(i)) = θ(i) + ρ(i)
(
E[ηg(y

(N), z(N), α)]− θ(i)
)
, (101)

where y(N) and z(N) are the replicated datasets from the sampled values y(i) and
z(i).
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4.4.1 Stochastic Variational Inference for Gaussian Processes

To apply stochastic variational inference for Gaussian processes, we need a set of
global parameters to optimize so that the optimization can be factored over the
data points. The marginal likelihood which is usually optimized in Gaussian process
framework cannot be factored over the training cases. To be able to factorize the
objective function, Jensen’s inequality is used in combination with the sparse GP
framework (Hensman et al., 2013). Recall section 4.1 and the inducing variables u
and assume that the observations y are Gaussian with mean f as in section 3.1.2.
With the inducing variables, we have

p(y | f) = N(y | f , σ2I), (102)

p(f | u) = N(f | µ, K̃),

= N(f | KnuK
−1
uu u, Knn −KnuK

−1
uuKun), (103)

p(u) = N(u | 0, Kuu). (104)

By applying Jensen’s inequality for conditional probability p(y | u), we can compute
the lower bound of log p(y | f):

log p(y | u) = log

∫
p(y | f)p(f | u)df ,

≥
∫

log p(y | f)p(f | u)df = L1. (105)

Jensen’s inequality is applied to log p(y | f) because the computational complexity
of computing log p(y | u) analytically is O(n3) as there is the inversion of n × n
matrix Knn. By applying the Jensen’s inequality, the computational complexity
of computing the expectation is only O(m3) where m is the number of inducing
variables u. If we assume that the likelihood factorized over the data points as
earlier, L1 can be computed analytically (see appenix) and results in

exp(L1) =
n∏
i=1

N(yi | µi, σ2) exp

(
− 1

2σ2
k̃i,i

)
, (106)

where µi is the ith element of µ and k̃i.i is the ith diagonal element of K̃.
As noted earlier, the inducing variables u work as the global latent variables in

the formulation of stochastic variational inference in equations (80)–(88). In Gaus-
sian process framework the local variables z are absent. By introducing variational
distribution q(u), the marginal likelihood can be bounded as in equation (65)

log p(y | X) = log

∫∫
p(y | f)p(f | u, X)p(u)dfdu,

= log

∫∫
p(y | f)p(f | u, X)

p(u)

q(u)
q(u)dfdu,

≥
∫ (∫

log p(y | f)p(f | u, X)df + log
p(u)

q(u)

)
q(u)du,

=

∫
(L1 + log p(u)− log q(u)) q(u)du = L2. (107)
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The optimal variational distribution q(u) is Gaussian based on the above. Using
q(u) = N(u |m, S), the bound L2 is

L2 =
n∑
i=1

(
logN(yi | kTi K−1uu m, σ2)− 1

2σ2
k̃i,i −

1

2
tr(SΛi)

)
−KL(q(u) ‖ p(u))

(108)

where ki is the ith column of Kuu and Λi = 1
σ2K

−1
uu kik

T
i K

−1
uu . The KL divergence

from q(u) = N(u |m, S) to p(u) = N(u | 0, Kuu) is

KL(q(u) ‖ p(u)) =
1

2

(
tr(K−1uu S) + mTK−1uu m−m− log

|S|
|Kuu|

)
. (109)

The marginal likelihood lower bound L2 is now factorized with respect to the ob-
servations. This means that the stochastic variational inference can be applied to
Gaussian processes.

The gradients of the bound L2 with respect to the variational parameters are

∂L2

∂m
=

1

σ2
K−1uuKuny − Λm (110)

∂L2

∂S
=

1

2
S−1 − 1

2
Λ. (111)

The stochastic variational inference works in the natural parameter space of the
variational distribution. The mean and covariance of the variational distribution
q(u) can be converted to the natural parameters with

θ1 = S−1m (112)

θ2 = −1

2
S−1 (113)

These natural parameters θ1 and θ2 correspond to the global variational parameters
λ in the previous sections. The natural gradients of the parameters are computed
with

∇̂θL2 = G(θ)−1
∂L2

∂θ
, (114)

where G(θ) is the Fisher Information matrix. For the exponential family distribu-
tions, we can utilize the expectation parameters

η1 = m, (115)
η2 = mmT + S, (116)

to compute the natural gradients. The natural parameters and expectation param-
eters are reciprocal, meaning that the gradient of one is the natural gradient of the
other (Hensman et al., 2012, 2013)

∇̂θL2 = ∇ηL2, ∇̂ηL2 = ∇θL2. (117)
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Using (110) and (111), it is easy to see that the gradient of L2 with respect to the
expectation parameters are equal to the gradient with respect to m and S. The
natural parameters are thus updated with

θ1,(t+1) = θ1,t + ρt

(
1

σ2
K−1uuKuny − Λmt

)
, (118)

θ2,(t+1) = θ2,t + ρt

(
1

2
S−1t −

1

2
Λ

)
. (119)

With the bound L2 and its natural gradient with respect to the natural parameters
of the variational distribution, the stochastic variational inference can be applied.
As both the bound and the gradient can be decomposed to parts with respect to
observations, we can apply the stochastic variational inference with either individual
observations or minibatches of the data.

The variational distribution q(u) approximates the true posterior distribution
of the inducing inputs p(u | y, X). The predictions with stochastic variational
inference Gaussian processes (SVI-GP) are computed with

p(y∗ | x∗,y, X)) =

∫
p(y∗ | f ∗)p(f ∗ | x∗,y, X)df ∗,

=

∫∫
p(y∗ | f ∗)p(f ∗ | x∗,u)p(u | y, X)dudf ∗,

≈
∫∫

p(y∗ | f ∗)p(f ∗ | x∗,u)q(u)dudf ∗. (120)

The likelihood and conditional distribution in (120) are analogous to (102) and (103)

p(y∗ | f ∗) = N(y∗ | f ∗, σ2), (121)
p(f ∗ | x∗,u) = N(f ∗ | k∗uK−1uu u, k∗∗ − k∗uK

−1
uu ku∗), (122)

where k∗u = kTu∗ is the covariance vector computed between the prediction input
x∗ and the inducing inputs u while k∗∗ is the variance at the prediction input. Be-
cause all of the distributions in (120) are Gaussian, we can compute the predictions
analytically

p(y∗ | x∗,y, X)) ≈
∫∫

p(y∗ | f ∗)p(f ∗ | x∗,u)q(u)dudf ∗,

=

∫∫
N(y∗ | f ∗, σ2)N(f ∗ | k∗uK−1uu u, k∗∗ − k∗uK

−1
uu ku∗)N(u |m, S)dudf∗,

=

∫
N(y∗ | f ∗, σ2)N(f ∗ | k∗uK−1uu m, k∗∗ − k∗uK

−1
uu ku∗ + k∗uK

−1
uu SK

−1
uu ku∗)df

∗,

= N(y∗ | k∗uK−1uu m,−k∗uK
−1
uu ku∗ + k∗uK

−1
uu SK

−1
uu ku∗ + σ2). (123)

4.4.2 SVI-GP with non-Gaussian likelihood

In this thesis, we apply the stochastic variational inference to Gaussian process
models with non-Gaussian likelihoods. Because the integral in the computation of
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log p(y | u) in (105) cannot be computed analytically if p(y | f) is not Gaussian,
it is not possible to take such a straightforward approach as above. To be able to
do the inference, we introduce latent observations and latent likelihood (Hensman
et al., 2013). We assume that there is noise in the latent function f which produces
the latent observations y. Furthermore, we assume that this noise is normally
distributed:

y = f + ε, ε ∼ N(0, σ2I). (124)

Thus we treat the values y as the standard regression problem with Gaussian likeli-
hood. The model likelihood then maps the latent observations to the true observa-
tions. The true observations are denoted as t in this case. The likelihood functions
of the model can be summarized with

p(y | f) = N(y | f , σ2I), (125)

p(t | f) =

∫
p(t | y)p(y | f)dy. (126)

The use of latent likelihood enables the decomposition of the marginal likelihood
to the Gaussian and non-Gaussian parts, which in turn enables the applying of
stochastic variational inference to non-Gaussian likelihoods. The marginal likelihood
is

p(t | X) =

∫
p(t | y)

∫
p(y | f)p(f | X)dfdy =

∫
p(t | y)p(y | X)dy. (127)

The equation (127) has the Gaussian marginal likelihood part p(y | X) which is
then combined with the actual likelihood p(t | y) to compute the real marginal
likelihood. We assume the i.i.d. likelihood p(t | y) =

∏
i = 1np(ti | yi). Combining

the likelihood with the Gaussian marginal likelihood bound L2 computed earlier and
applying Jensen’s inequality, the marginal likelihood is

p(t | X) = log

∫
p(t | y)

∫
p(y | f)p(f | X)dfdy =

∫
p(t | y)p(y | X)dy,

≥
∫

exp
(
L2

)
p(t | y)dy,

=

∫
exp

( n∑
i=1

(
logN(yi | kTi K−1uu m, σ2)− 1

2σ2
k̃i,i −

1

2
tr(SΛi)

)
−KL(q(u) ‖ p(u))

)
p(t | y)dy,

=
n∏
i=1

∫
N(yi | kTi K−1uu m, σ2)p(ti | yi)dyi exp

(
− 1

2σ2
k̃i,i −

1

2
tr(SΛi)

−KL(q(u) ‖ p(u))
)
. (128)

In this thesis, the observations are either continuous with assumed Gaussian
noise or binary variables. In the binary case, we use the probit likelihood

p(ti | yi) = Φ(yiti) =

∫ yiti

−∞
N(h | 0, 1)dh. (129)



22

The probit likelihood has the convenient quality in that it can be analytically in-
tegrated over Gaussian distribution (Rasmussen and Williams, 2006, pp. 74–75)
which enables the analytic computation of p(t | X):∫

N(t | m, s2)Φ
(
t

v

)
dt =

{
Φ( m√

v2+s2
) if v > 0

Φ(− m√
v2+s2

) if v < 0.
(130)

The marginal likelihood bound (128) can now be computed analytically. The log
marginal likelihood bound becomes

log p(t | X) ≥
n∑
i=1

log
(∫

N(yi | kTi K−1uu m, σ2)Φ(yiti)dyi

)
− 1

2σ2
k̃i,i −

1

2
tr(SΛi)−KL(q(u) ‖ p(u)),

=
n∑
i=1

log Φ(zi)−
1

2σ2
k̃i,i −

1

2
tr(SΛi)−KL(q(u) ‖ p(u)) = L3, (131)

where

zi =
tik

T
i K

−1
uu m√

1 + σ2
. (132)

The predictions with non-Gaussian likelihood follow the Gaussian case. However,
the integral over y∗ in general cannot be computed and we have to resort to numerical
integration. We decompose the predictive distribution p(t∗ | x∗, t, X) again to the
Gaussian and the non-Gaussian parts as we did with the marginal likelihood

p(t∗ | x∗, t, X) =

∫
p(t∗ | y∗)p(y∗ | x∗, t, X)dy∗. (133)

The Gaussian part p(y∗ | x∗, t, X) can be computed as in (123), which we then
combine with the likelihood p(t∗ | y∗) and integrate over y∗:

p(t∗ | x∗, t, X) =

∫
p(t∗ | y∗)N(y∗ | µ∗, σ2

∗)dy
∗, (134)

where

µ∗ = k∗uK
−1
uu m, (135)

σ2
∗ = k∗∗ − k∗uK

−1
uu ku∗ + k∗uK

−1
uu SK

−1
uu ku∗ + σ2. (136)

If we use the probit likelihood, predictive distribution (134) can be computed
analytically as in (128)

p(t∗ | x∗, t, X) =

∫
Φ(y∗t∗)N(y∗ | µ∗, σ2

∗)dy
∗,

= Φ (t∗z∗) , (137)
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where
z∗ =

µ∗√
1 + σ2

∗
. (138)

Equation (137) computes the probability of the class t∗ ∈ {−1, 1} in binary classi-
fication. We can further summarize the predictive distribution with expected value
and variance

E[t∗] =
∑

t∗∈{−1,1}

t∗p(t∗ | x∗, t, X) = Φ (z∗)− Φ (−z∗) ,

= Φ (z∗)− (1− Φ (z∗)) = 2Φ (z∗)− 1, (139)

E[(t∗)2] =
∑

t∗∈{−1,1}

(t∗)2p(t∗ | x∗, t, X) = Φ (z∗) + Φ (−z∗) ,

= Φ (z∗) + (1− Φ (z∗)) = 1,

V[t∗] = E[(t∗)2]− (E[t∗])2 = 1− (2Φ (z∗)− 1)2 ,

= −4Φ (z∗)
2 + 4Φ (z∗) = 4Φ (z∗) (1− Φ (z∗)) (140)

The variance of t∗ in (140) is always positive because the cumulative Gaussian
Φ ∈ (0, 1). The expected value (139) and the variance (140) are intuitive: the closer
the cumulative Gaussian is to 1, the closer the expected value is to 1, and the smaller
the variance becomes. Similarly, closer the cumulative Gaussian is to 0, the closer
the expected value is to −1, and again, the smaller the variance is.

4.4.3 SVI-GP with monotonicity constraint

Now assume that we want to constrain the latent function f to be monotonic. By
following the section 3.2, we use virtual observations tv and xv for the derivative
of the latent function f ′ to denote that the latent function is either decreasing,
tv = −1, or increasing tv = 1 in the virtual input xv. Following the above derivations,
the SVI-GP framework is straightforward to include the monotonicity constraint.
The setting now consists of the real observations {yi,xi}; the virtual observations
{tv,k,xv,k}; and the inducing inputs {uj}, where i = 1, 2, . . . , n, k = 1, 2, . . . , nv and
j = 1, 2, . . . ,m. Using yv as the latent virtual observations, we can decompose the
marginal likelihood as

p(tv,y | X,Xv)

=

∫
p(tv | yv)

∫∫∫∫
p(y | f)p(yv | f ′)p(f , f ′ | u, X,Xv)p(u)dudfdf ′dyv. (141)

Reusing the joint notation fjoint and yjoint

fjoint =

[
f
f ′

]
, yjoint =

[
y
yv

]
, (142)
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the marginal likelihood can be compressed as

p(tv,y | X,Xv)

=

∫
p(tv | yv)

∫∫∫
p(yjoint | fjoint)p(fjoint | u, X,Xv)p(u)dudfjointdyv,

=

∫
p(tv | yv)p(yjoint | X,Xv)dyv. (143)

Equation (143) is now analogous to the marginal likelihood in (128), except that
now we only integrate over the latent virtual observations yv. The log marginal
likelihood can thus be expressed as

log p(y, tv | X,Xv) ≥
n∑
i=1

(
logN(yi | kTi K−1uu m, σ2)− 1

2σ2
k̃i,i −

1

2
tr(SΛi)

)
+

nv∑
k=1

(
log

(∫
N(yv,k | kTn+kK−1uu m, σ2

v)Φ(yv,ktv,k)dyv,k

)
− 1

2σ2
v

k̃n+k,n+k

−1

2
tr(SΛv,k)

)
−KL(q(u) ‖ p(u)), (144)

where ki is now the ith column vector and k̃i,i is the ith diagonal of the covariance
matrix of the joint latent vector fjoint

fjoint =

[
f
f ′

]
, Cov(fjoint) = Kjoint =

[
Knn Knd

Kdn Kdd

]
=

[
K(X,X) K(X,Xv)
K(Xv, X) K(Xv, Xv)

]
(145)

and
Λi =

1

σ2
K−1uu kik

T
i K

−1
uu , Λv,k =

1

σ2
v

K−1uu kn+kk
T
n+kK

−1
uu , (146)

with σ2
v being the variance of the latent likelihood of the virtual observations p(yv,i |

f ′i) = N(yv,i | f ′i , σ2
v). The integrals can again be computed analytically

log p(y, tv | X,Xv) ≥
n∑
i=1

(
logN(yi | kTi K−1uu m, σ2)− 1

2σ2
k̃i,i −

1

2
tr(SΛi)

)

+
nv∑
k=1

(
log Φ

(
tv,kk

T
n+kK

−1
uu m√

1 + σ2
v

)
− 1

2σ2
v

k̃n+k,n+k −
1

2
tr(SΛv,k)

)
−KL(q(u) ‖ p(u)). (147)

If the real observations are also binary variables as in section 4.4.2, log marginal



25

likelihood bound becomes

log p(t, tv | X,Xv)

≥
n∑
i=1

(
log

(∫
N(yi | kTi K−1uu m, σ2)Φ(yiti)dyi

)
− 1

2σ2
k̃i,i −

1

2
tr(SΛi)

)
+

nv∑
k=1

(
log

(∫
N(yv,k | kTn+kK−1uu m, σ2

v)Φ(yv,ktv,k)dyv,k

)
− 1

2σ2
v

k̃n+k,n+k −
1

2
tr(SΛv,k)

)
−KL(q(u) ‖ p(u)),

=
n∑
i=1

(
log Φ

(
tik

T
i K

−1
uu m√

1 + σ2

)
− 1

2σ2
k̃i,i −

1

2
tr(SΛi)

)
+

nv∑
k=1

(
log Φ

(
tv,kk

T
n+kK

−1
uu m√

1 + σ2
v

)

− 1

2σ2
v

k̃n+k,n+k −
1

2
tr(SΛv,k)

)
−KL(q(u) ‖ p(u)). (148)
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5 Parameter estimation and integration
The parameters that define how the function values f behave a prior are the pa-
rameters of the covariance functions (hyperparameters) and the noise variance σ2 in
the likelihood function. In this section, we go over the methods we use to set these
parameters.

5.1 Maximum a posteriori estimate

Lets denote with θ the parameters of the GP model, including the hyperparameters
and the likelihood parameters. In section 2, we went over the basic of Bayesian
modelling. Using the earlier notation of observations y with inputs X, the posterior
density (1) of the parameters is

p(θ | y, X) =
p(y | θ,X)p(θ)

p(y | X)
∝ p(y | θ,X)p(θ), (149)

where p(y | X) does not depend on θ. In GP framework, the likelihood of the obser-
vations p(y | θ,X) is actually the marginal likelihood, where we have marginalized,
or integrated over, the latent values f . Here we have explicitly expressed the condi-
tioning on the parameters θ, which is often left out for notational convenience. To
do the full Bayesian analysis, we would have to use the posterior density for θ and do
the inference with it. In this thesis we adopt the use of MAP point estimate for the
parameters, due to computational reasons and convenience. The MAP values corre-
spond to maximum a posteriori values, the values that maximize the corresponding
posterior density.

The MAP values for the parameters can be found by maximizing the posterior
density (149) with respect to the parameters. We utilize gradient based methods in
order to find the optimal parameter values. Gradient based methods use the gradi-
ents of the objective function iteratively to find the maximum or the minimum. It is
common practice to maximize the logarithm of the (un)normalized posterior density
instead of the normalized posterior density. Because the logarithm is a monotonic
function, the maximum of the posterior density is the same as the maximum of
the logarithm of the posterior density. Furthermore, the logarithm can make the
objective function resemble quadratic function which is better suited for gradient
methods.

We already encountered one class of gradient methods, namely the stochastic
gradient ascend, when going over the stochastic variational inference in section 4.4.
The gradient ascend method finds the optimum parameter value by taking successive
steps towards the direction of the gradient

θi+1 = θi + ρgi = θi + ρ
∂L(θi)

∂θ
, (150)

where ρ is the step size and L is the objective function to be maximized. While being
intuitive, the standard gradient ascend method suffers from several drawbacks. The
major drawback of the gradient ascend is that the convergence to the optimum can



27

be very slow near the maximum or minimum. The gradient ascend can also suffer
from oscillating updates due to the step-size being too large. Due to the limitations
of the gradient ascend, we use conjugate gradient methods in this thesis.

5.1.1 Conjugate Gradient methods

Conjugate gradient methods (Hestenes and Stiefel, 1952) are methods utilizing gra-
dients for finding the minimum or maximum of function f(x). The conjuagate
gradient methods work by taking steps towards the conjugate direction which is a
linear combination of the steepest (gradient) direction and the direction of the previ-
ous conjugate step. In contrast to standard gradient ascend method, the conjugate
gradient methods have better convergence properties and behaviour.

The conjugate gradient method for finding the maximum of general nonlinear
function f(x) can be summarized as

1. Compute the gradient gi = ∇xf(xi) in the current point xi.

2. Compute the conjugate coefficient βi.

3. Update the conjugate direction si = gi + βisi−1.

4. Perform a line search on si: Find the maximum of the function f(xi + αsi)
with respect to α.

5. Update the current point xi+1 = xi + αsi.

The conjugate gradient algorithm is initialized with s0 = 0, so the first step is
always towards the direction of the gradient. There are several possible methods for
computing the conjugate coefficient βi. The most popular are the Flethcher-Reeves
(FR), Polar-Ribière (PR), and Hestenes-Stiefel (HS):

βFR
i =

gTi gi
gTi−1gi−1

, (151)

βPR
i =

gTi (gi − gi−1)
gTi−1gi−1

, (152)

βHS
i = − gTi (gi − gi−1)

sTi−1(gi − gi−1)
. (153)

In this thesis, we use the Polar-Ribière conjugate coefficient βPR. We also reset
the conjugate direction si to point towards the direction of the gradient after we
have taken np steps, where np is the number of parameters to be optimized.
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5.1.2 Gradients of the marginal likelihoods

To optimize the parameters of the GP model, we need the gradient of the marginal
likelihood with respect to the hyperparameters and the likelihood parameters. To
recap, the log marginal likelihood in the GP regression is

log p(y | θ, σ2, X) = −1

2
yT (Kθ + σ2I)−1y − 1

2
log |Kθ + σ2I| − n

2
log 2π, (154)

where we have explicitly denoted the conditioning on hyperparameters θ and the
noise variance σ2. The gradient of (154) with respect to the hyperparameters θ and
the noise variance σ2 is

∂ log p(y | θ, σ2, X)

∂θ
=

1

2
yT (Kθ + σ2I)−1

∂Kθ

∂θ
(Kθ + σ2I)−1y

− 1

2
tr
(

(Kθ + σ2I)−1
∂Kθ

∂θ

)
, (155)

∂ log p(y | θ, σ2, X)

∂σ2
=

1

2
yT (Kθ + σ2I)−1(Kθ + σ2I)−1y

− 1

2
tr((Kθ + σ2I)−1). (156)

The EP approximation to the marginal likelihood in the case of non-Gaussian
likelihood is

logZEP =
n∑
i=1

log Ẑi +
1

2
log(σ̃2

i + σ2
−i) +

(µ̃i − µ−i)2

2(σ̃2
i + σ2

−i)

− 1

2
log |Kθ + Σ̃| − 1

2
µ̃T (Kθ + Σ̃)−1µ̃. (157)

If the EP algorithm has converged, the implicit derivatives of the EP site approxi-
mations with respect to the hyperparameters are exactly zero (Seeger, 2005). Thus,
the gradient of the EP approximation to the log marginal likelihood is

∂ logZEP

∂θ
= −1

2
tr
(

(Kθ + Σ̃)−1
∂Kθ

∂θ

)
+

1

2
µ̃T (Kθ + Σ̃)−1

∂Kθ

∂θ
(Kθ + Σ̃)−1µ̃. (158)

For the monotonic GP, we have a combination of the Gaussian process regression,
with the EP classification of the virtual observations. The log marginal likelihood
is

logZEP,m =
m∑
i=1

(
log Ẑi +

1

2
log(σ̃2

i + σ2
−i) +

(µ̃i − µ−i)2

2(σ̃2
i + σ2

−i)

)
+
m− n

2
log 2π (159)

− 1

2
log |Kjoint + Σ̃joint| −

1

2
µ̃T
joint(Kjoint + Σ̃joint)

−1µ̃joint. (160)

The derivatives of the EP site approximation terms are again zero, with respect to
the hyperparameters of the model. However, here we have the likelihood noise σ2

in addition to the hyperparameters in the joint site covariance matrix

Σ̃joint =

[
σ2I 0

0 Σ̃

]
. (161)
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The gradient with respect to the hyperparameters is equal to (158) and the gradient
with respect to the noise variance σ2 is

∂ logZEP,m

∂σ2
= −1

2
tr

(
(Kθ + Σ̃joint)

−1∂Σ̃joint

∂σ2

)

+
1

2
µ̃T (Kθ + Σ̃joint)

−1∂Σ̃joint

∂σ2
(Kθ + Σ̃joint)

−1µ̃, (162)

where
∂Σ̃joint

∂σ2
=

[
I 0
0 0

]
. (163)

For the stochastic variational inference with monotonicity constraint, where the
observations are continous and we assume the Gaussian likelihood p(yi | fi) = N(yi, |
fi, σ

2), the lower bound to the log marginal likelihood is

log p(y, tv | X,Xv) ≥
n∑
i=1

(
logN(yi | kTi K−1uu m, σ2)− 1

2σ2
k̃i,i −

1

2
tr(SΛi)

)

+
nv∑
k=1

(
log Φ

(
tv,kk

T
n+kK

−1
uu m√

1 + σ2
v

)
− 1

2σ2
v

k̃n+k,n+k −
1

2
tr(SΛv,k)

)
−KL(q(u) ‖ p(u)) = L4. (164)

The gradients with respect to θ can be realized with the help of the chain derivation
rule

∂Φ(zi)

∂θ
=
∂Φ(zi)

∂zi

∂zi
∂θ

= N(zi | 0, 1)
∂zi
∂θ

. (165)

To simplify the notation, we compute the gradients of the individual terms. First
the log Gaussian terms

∂ logN(yi | kTi K−1uu m, σ2)

∂θ
=

∂

∂θ

(
−1

2
log(2πσ2)− 1

2σ2

(
yi − kTi K

−1
uu m

)2)
,

=
1

σ2

(
yi − kTi K

−1
uu m

)((∂ki
∂θ

)T
K−1uu m− kTi K

−1
uu

∂Kuu

∂θ
K−1uu m

)
, (166)

∂ logN(yi | kTi K−1uu m, σ2)

∂σ2
= − 1

2σ2
+

1

2σ4

(
yi − kTi K

−1
uu m

)2
. (167)

The gradients with respect to the log cumulative Gaussian Φ are

∂

∂θ
log Φ (zi) = Φ (zi)

−1 ∂

∂θ
Φ (zi) = Φ (zi)

−1 N (zi | 0, 1)
∂zi
∂θ

, (168)

∂

∂σ2
v

log Φ (zi) = Φ (zi)
−1 N (zi | 0, 1)

∂zi
∂σ2

v

, (169)
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where the zi and its gradients are

zi =
tv,kk

T
n+kK

−1
uu m√

1 + σ2
v

, (170)

∂zi
∂θ

=
tv,k√
1 + σ2

v

((
∂kn+k
∂θ

)T
K−1uu m− kTn+kK

−1
uu

∂Kuu

∂θ
K−1uu m

)
, (171)

∂zi
∂σ2

v

= −
tv,kk

T
n+kK

−1
uu m

2(1 + σ2
v)

3/2
. (172)

The trace terms are linear, so the gradients can be computed as

∂tr(SΛi)

∂θ
= tr

(
S
∂

∂θ

(
1

σ2
K−1uu kik

T
i K

−1
uu

))
,

= tr
(
S

(
− 2

σ2
K−1uu

∂Kuu

∂θ
K−1uu kik

T
i K

−1
uu +

2

σ2
K−1uu

∂ki
∂θ

kTi K
−1
uu

))
, (173)

∂tr(SΛi)

∂σ2
= tr

(
S
∂

∂σ2

(
1

σ2
K−1uu kik

T
i K

−1
uu

))
= tr

(
− 1

σ2
SΛi

)
, (174)

∂tr(SΛv,k)

∂θ
= tr

(
S
∂

∂θ

(
1

σ2
v

K−1uu kn+kk
T
n+kK

−1
uu

))
,

= tr
(
S

(
− 2

σ2
K−1uu

∂Kuu

∂θ
K−1uu kn+kk

T
n+kK

−1
uu +

2

σ2
K−1uu
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The gradient of the KL divergence between the two Gaussians is
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Using (166)–(177), the gradients of L4 are
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where zi and its gradients are computed with (170)–(172).
If the real observations are also binary variables, the lower bound to the marginal

likelihood is
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The only difference between the log marginal likelihood bounds L4 in (164) and L5

in (181) is that the log Gaussian term logN(·) is now replaced by the log cumulative
Gaussian log Φ(·). Thus, the gradients can be computed by replacing the gradient
of the log Gaussian with the gradient of the log cumulative Gaussian. The gradient
of the log cumulative Gaussian, log Φ(z1,i), can be computed analogously to the gra-
dient of log Φ(z2,i) which has been computed already in (168)–(172). The gradients
of L5 are
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5.2 Markov Chain Monte Carlo

The MAP estimates for the parameters are usually good enough for practical appli-
cation. However, these point estimates for the parameters discard the uncertainty of
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the parameters. If we want to do full Bayesian inference and integrate over the un-
certainty of the unknown parameters, the distributions and inference quickly become
intractable. This is often the case with complex statistical models.

Monte Carlo methods are sampling based methods where instead of using exact
distributions in the inference, we sample the appropriate distributions to get samples
that represent the distribution of interest. One-dimensional distributions can be
easily sampled by computing the distribution in a grid and using for example the
inverse transform sampling. However, when sampling multiple parameters at the
same time, tabulating the distribution values is no longer a viable option. If there
are multiple parameters and the functional form of the joint distribution of the
parameters is very complex, and cannot be factored to easy to sample conditional
distributions, getting true samples from the joint distribution is usually impossible.

Markov Chain Monte Carlo (MCMC, Metropolis and Ulam, 1949; Metropo-
lis et al., 1953; Hastings, 1970) methods are extensions to standard Monte Carlo
methods which enable the sampling of arbitrary distributions. The downside of the
MCMC methods is that the representative samples are now correlated and thus are
not real Monte Carlo samples from the distribution. The fact that the samples cor-
relate means that in order to get the full picture of the distribution, more samples
are needed than with standard Monte Carlo methods.

If we want to do full Bayesian analysis with Gaussian processes (Neal, 1997),
we need to infer the posterior distribution of the latent function values f and the
parameters θ of the GP model

p(θ, f | y, X) = p(f | θ,y, X)p(θ | y, X). (186)

For Gaussian likelihood, the posterior distribution p(f | θ,y, X) is analytically
tractable and therefore we only need to sample the parameters θ (see section 3).
However, if the posterior distribution of f is not analytically tractable, the posterior
of the latent values needs to be either approximated, for example with EP, or sam-
pled. To sample the posterior p(θ, f | y, X), we alternate between the sampling of
p(f | θ,y, X) and p(θ | f , X). Note that if f is known, the dependency on y can be
dropped. The general scheme for full Bayesian analysis with Gaussian processes is
as follows

Full MCMC for Gaussian processes:

1. Initialize f and θ to some appropriate values.

2. Given the most recent sample for θ, sample f from its posterior distribution

p(f | θ,y, X) =
p(y | f)p(f | θ,X)

p(y | θ,X)
. (187)

3. Given the most recent sample for f , sample θ from its posterior

p(θ | f , X) =
p(f | θ,X)p(θ)

p(f | X)
∝ N(f | 0, Kθ)p(θ). (188)
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4. If not enough samples, go to 2., otherwise end.

It is also possible to do partial or latent MCMC where we only sample the
parameters θ. In this case the marginal likelihood p(f | θ,y, X) is approximated
with some suitable method, for example with EP. The hyperparameters are then
sampled straight from the posterior approximation p(θ | y, X)

Latent MCMC for Gaussian processes:

1. Initialize θ to appropriate values.

2. Approximate the posterior of θ using suitable method, for example EP

p(θ | y, X) ∝ p(y | θ,X)p(θ) ≈ q(y | X)p(θ), (189)

where q(y | X) is the approximation to the marginal likelihood p(y | X), for
example (157).

3. Sample the posterior of θ

4. If not enough samples, go to 2., otherwise end.

In this thesis, we use both the full MCMC and the latent MCMC and com-
pare these to methods using point estimates. The parameters θ are sampled using
slice sampling (Neal, 2003) and the latent values f are sampled using elliptical slice
sampling (Murray et al., 2009).

5.2.1 Slice sampling

In this thesis, we use slice sampling (Neal, 2003) to sample the parameters of the
covariance and likelihood function. In slice sampling the next value for the parameter
is sampled uniformly from the interval defined by the previous slice. The slice is the
density of the sampled distribution at the current sample. This slice is then sampled
uniformly to get the limits for sampling of the next values for the parameters.

Figure 2 displays the procedure. The vertical line is the slice defined at zi
from 0 to p̃(zi) where p̃ is the distribution which we wish to sample (normalized
or unnormalized). The random point u is then randomly sampled from interval
[0, p̃(zi)]. The variable u defines the interval which we sample for the next sample of
the parameters. Our aim is to get the next sample from the interval which is defined
by {zmin, zmax} = p̃−1(u) so that p̃(zmin) = u and p̃(zmax) = u. However, usually the
inverse transformation p̃−1 is not available. The standard procedure is to assume
some interval and then adapt it. We can start with some initial interval and check
the end points zmin and zmax. We can then increase or decrease the interval end
points based on whether p̃(zmin) is larger or smaller than u. The red horizontal line
in figure 2 depicts the adapted sampling interval. After adaptation, the next sample
is sampled uniformly from the interval.

The slice sampling procedure ensures that the sample from the higher density of
the probability distribution is always accepted with probability 1 and sample from
lower density is accepted with probability u.
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Figure 2: The slice sampler procedure. The current slice, denoted as the black
vertical line, is sampled for the variable u which defines the interval of the next
sample. This interval, denoted as the red horizontal line, is then adapted so that
when we sample from it uniformly, we obtain a sample from the interval defined by
the intersections of the distribution and the red line.

5.2.2 Elliptical Slice sampling

Elliptical slice sampling (ESLS, Murray et al., 2009) is a simple parameter-free
sampling technique based on the original slice sampling. ESLS can be used when
the joint prior distribution of the sampled variables f is multivariate Gaussian and
the posterior can be expressed as

p(f | Data) ∝ p(Data | f)p(f) = p(Data | f)N(f | 0,Σ). (190)

The posterior distribution of the latent variables for Gaussian processes is equal to
(190) if we replace {Data} with {y, X}. Thus, ESLS can be used for sampling the
latent variables in (187).

ESLS builds upon the Metropolis-Hastings algorithm, where the new sample for
f can be expressed as

f ′ =
√

1− ε2f + εν, ν ∼ N(0,Σ), (191)

with the acceptance probability of

p(accept | f ′) = min(1, p(Data | f ′)/p(Data | f)). (192)

The new state f ′ can alternatively be expressed as

f ′ = ν sin θ + f cos θ, (193)
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which defines an ellipse passing through f and ν. ESLS works by first sampling the
proposal step ν from the prior distribution, and then using the slice sampler to find
appropriate θ from the ellipse. The ESLS procedure for getting a new sample f ′ can
be summarized as

1. Draw random number u unifromly from the interval [0, 1] and sample ν from
N(0,Σ).

2. Sample initial θ unifromly from [0, 2π]. Set the initial interval of the slice
sampler as θmin = θ − 2π and θmax = θ. Update f ′ = f cos θ + ν sin θ.

3. If u ≥ p(accept | f ′), accept the current sample f ′.

4. If the current sample is not accepted, shrink the slice sampler interval (the
angle of the ellipse) by setting θmin = θ if θ < 0 and θmax = θ otherwise.

5. Sample θ uniformly from [θmin, θmax]. Compute the new proposal f ′ and com-
pute the new acceptance probability. If u ≥ p(data | f ′), accept the sample,
otherwise go to 4.
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6 Experiments
Our aim in this thesis is to develop and test how the algorithm for Big Data with
monotonicity constraint compare to the EP monotonicity constraint. To be able to
compare the models we use small and large data sets, some simulated and some
real world data sets. We compare 4 different monotonic models in this thesis:
Monotonic Gaussian process with Stochastic Variational Inference (SVI); Mono-
tonic Gaussian process with Expectation Propagation (EP); Monotonic Gaussian
process with Markov Chain Monte Carlo sampled parameters and EP approxima-
tion to the marginal likelihood (MCMC); and Monotonic Gaussian process with a
Markov Chain Monte Carlo sampling of both the parameters and the latent values
(FMCMC). We also compute the results with the non-monotonic standard full GP
model (GP) and the FIC sparse approximation (FIC). EP approximation is used
with the full GP and FIC for the classification data sets.

The O(n3) computational complexity of the standard GP methods restrict the
use of these methods to a few thousand data points. The SVI can theoretically
handle very large data sets, due to the O(nm3) complexity. The FIC sparse method
can also handle large data sets with the computational complexity of O(mn2). For
data sets larger than 3000 observations, we sample the training data repeatedly for
a subset of 1000 observations. These subsets of the original datasets are used to
compute the results for the test data set. This kind of subsampling is necessary for
other methods besides SVI.

Based on the earlier work on GP models, we expect that EP will be better than
SVI (Nickisch and Rasmussen, 2008) if we use the same data for both algorithms.
Our interest is in whether the SVI increases the predictive accuracy with larger data
sets, when compared to EP results with the subsets of the data. We also compare
the monotonic methods (SVI, EP, MCMC, FMCMC) to non-monotonic methods
(GP, FIC) to see whether the monotonicity helps or not.

The number of inducing variables for SVI and FIC (the same inducing variables
are used for both methods) is 100 for synthc1 and synthr and 1000 for the rest of
the data sets. The locations of the inducing variables are chosen with K-means
algorithm from the training data.

The experiments are done with the modified version of the GPstuff toolbox
(Vanhatalo et al., 2013) for MATLAB and Octave.

6.1 Data sets

We use several different data sets to assess how SVI algorithm compares to EP. We
chose the the real data sets based on the number of observations and they are mainly
for comparing SVI and EP. We note that the monotonicity assumptions on these
data sets may or may not help with respect to the predictive performance.

6.1.1 Simulated data sets

The models are compared with three simulated data sets. Two of the data sets are
for binary classification and one for a regression task. The first binary classification
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Figure 3: Example of the simulated classification data sets. The red circles represent
class 1 and the blue circles represent class -1.

data set, synthc1, is represented in figure 3a. This small data set is mainly for
comparing EP and SVI algorithms. The data set consists of 250 observations with
125 for class 1 and 125 for class -1 (Ripley, 1996).

The second simulated binary classification data, synthc2, is presented in figure 3b,
where we have plotted every 10th data point. The whole data set consists of 10000
training observations and 900 test observations. The training data inputs were
sampled from each of the four normal distributions seen in figure 3b, with means
defined by [0.5, 0.5]T , [0.5,−0.5]T , [−0.5, 0.5]T and [−0.5,−0.5]T . The covariance for
each normal distribution was diagonal with the variance of 0.12 for both dimensions.
Each normal distribution was sampled for 2250 points. The true latent function was
linear with

f(xi) = 0.5xi,1 + 0.5xi,2. (194)

The observations yi were created by adding Gaussian noise εi ∼ N(0, 1) to the true
latent function and then thresholding the latent function with

y(xi) =

{
1 if f(xi) + εi ≥ 0,

−1 if f(xi) + εi < 0.
(195)

The test data set was created by taking the test inputs from a uniform grid of
30×30 in the interval [−1, 1]× [−1, 1] and then forming the test latent function and
observations without adding noise.

The simulated regression data, synthr, set is presented in figure 4. This training
data was created by first sampling 225 data points uniformly from [−2, 2]× [−2, 2]
and then creating the latent function

f(xi) = 3Φ(2xi,2) + 2Φ(4xi,1) + 0.5xi,1 + 0.5xi,2, (196)

where Φ is the standard cumulative Gaussian function. The observations y(xi) were
created by adding Gaussian noise εi ∼ N(0, 0.252) to the latent function values. The
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Figure 4: Simulated regression data set synthr. The blue dots are the noisy obser-
vations and the surface represents the true function.

test data was created by taking 900 test inputs uniformly from the grid [−2.5, 2.5]×
[−2.5, 2.5] and then forming the test function values without adding noise. This
data set is used to demonstrate how the monotonicity can help in extrapolation
tasks.

We assume monotonically increasing latent function with respect to both input
dimensions for all three simulated data sets.

6.1.2 Arsenic

The arsenic data set consists of 3020 observations with four explanatory variables
for each observation and binary response variable. The data set is collected from
villagers in Africa. The explanatory variables are 1. Arsenic content of the water, 2.
distance to the next well, 3. participation of the villagers in the village association
and 4. how much the villagers have been educated about the dangers of arsenic. The
binary response variable is 1 if the villagers switch to use other well and 0 if they
continue to use the same well. We assume that the latent function is monotonically
increasing with respect to the first input variable, meaning that the more there is
arsenic in the water, the more likely the villagers are to change to the next well. We
also assume that the response variable decreases monotonically with respect to the
second input variable, meaning that the longer the distance to the next well, the
less likely the villagers change to use that well.

6.1.3 Leukemia

The leukemia data set consists of 1043 survival times ti and censoring indicators
for people with acute myeloid leukemia, between the years 1982 and 1998 from
the United Kingdom Leukemia Register. The censoring indicator tells whether the
event (death) has happened or not at the recorded survival time. The explanatory
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variables are age, sex, white blood cell count at the time of leukemia diagnosis,
and Townsend deprivation index which measures the deprivation in the district of
residence.

The data set can also be considered with respect to the person-moments, where
the ’moment’ is a point in time for each person (Hanley and Miettinen, 2009).
The observations are then the last moments where either the event happens (not
censored) or does not happen (censored). We want to model the hazard, or the
likelihood, of the event happening for person x at time t. T he person-moments
effectively transform the data set to infinite size: 1043 time points with the event
happening (not censored) or not happening (censored) and an infinite number of time
points before the observation time ti when the event has not happened (continuous
time).

To be able to do inference for the person-moment data, we sample a subset of
the time points for the event not happening (Mantel, 1973; Hanley and Miettinen,
2009). Thus, the data set consists of the original observation triplets xi, ti, yi where
we have the time of the event ti, an indicator of whether the event happened y = 1 or
was cencored y = −1, and the explanatory variables for each person xi. In addition
to these, the data set consists of the sampled triplets xi, ti,s, yi,s where we sample
the times ti,s for each person xi with yi,s = −1 always (event not happened).

The times ti,s are sampled so that we have a total of 10000 observations, meaning
that we sample 1000−1043 = 8953 time points in total. The number of time points
sampled for person xi is proportional to the duration to the event for that person ti.
This means that if we have for example person x1 and person x2 with event times
t1 = 100 and t2 = 50, we expect there to be twice as many samples t1,s than t2,s.

The final analysis is done using the binary event indicators yi and yi,s with
explanatory variables xi and ti. The task is then to predict whether the event
happens or not for some pair {x, t}. We assume monotonic increase for the likelihood
of the event with respect to the age in xi.

6.1.4 Adult

Adult data set (Kohavi, 1996) consists of 30725 observations for the training data
set and 15318 observations for the test data set. The data set is extracted from
the census bureau database found at http://www.census.gov/ftp/pub/DES/www/
welcome.html.

The binary response variable y in the data set is whether a persons income
exceeds 50 000$ a year. The explanatory variables are age, work class, education,
marital status (numeric value between 1-7 depending of whether the person is for
example single or widowed), relationship status (1 if the person is married and 0
otherwise), race (1 if the person is white, 2 if black and 3 otherwise), sex, and
working hours per week.

We assume a monotonically increasing latent function with respect to the first
and third explanatory variables, meaning that we assume that the older and higher
educated the person is, the more likely he or she has an income of over 50 000 $ a
year.

http://www.census.gov/ftp/pub/DES/www/welcome.html
http://www.census.gov/ftp/pub/DES/www/welcome.html
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6.2 Comparing the models

The models are compared by computing the mean log predictive densities (MLPD)
of the predictions for the independent test data set

MLPDM =
1

nt

nt∑
i=1

p(y∗i | x∗i , X,y,M), (197)

where yi is the true function value at x∗i , not included in y, and p(y∗i | x∗i , X,y,M)
is the predictive distribution of the y∗i , evaluated at y∗i , for model M . Independent
test data set means that we don’t use it for training the model. For regression
tasks, the predictive distribution is Gaussian with predictive mean and variance, and
log predictive density is just the logarithm of the Gaussian distribution evaluated
at y∗i . For classification, the predictive density is the predicted probability of the
corresponding class and log predictive density is the logarithm of the probability.

If the independent test set {X∗,y∗} is not available, we can use cross-validation
to approximate the predictive performance, using only the training data {X,y}. For
the binary classification data sets we also use the receiver operating characteristics
(ROC) curve to assess the predictions.

As noted earlier, the larger data sets (synthc2, leukemia, adult, bike) are sampled
randomly to get a the subset of 1000 observations from the original data set. This
sampling is necessary, in order compute the predictions for the computationally
costly methods (EP, MCMC, FMCMC, GP). The subsampling is repeated several
times and the predictions for the test data set are averaged over the different training
subsets. The subsampling allows the measurement whether the SVI algorithm learns
additional information from the whole data set, compared to the subset of the data
sets. The smaller data sets (synthc1, synthr, arsenic) are used to measure how well
the SVI algorithm performs against EP and MCMC methods.

6.2.1 Cross-validation

Bayesian cross-validation (Vehtari and Lampinen, 2002; Vehtari and Ojanen, 2012) is
a method for assessing the predictive quality of statistical methods. Bayesian cross-
validation can be used to estimate how the model would perform on an independent
test data set.

In cross-validation the training data set {X,y} is split into k parts, indexed by
{I1, I2, . . . , Ik}. The model is then trained without one of the subsets Ii. The model
predictions are computed for input points xj, j ∈ Ii and the predictions are tested
against yj. This is repeated k times, once for every i, to get the approximate test
predictions for the training data set. The MLPD can be approximated with

MLPDM ≈
k∑
i=1

1

|Ii|
∑
j∈Ii

p(yj | xj, X−Ii ,y−Ii ,M) =
1

n

∑
j∈Ii

p(yj | xj, X−Ii ,y−Ii ,M).

(198)
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Figure 5: An example of a ROC curve for two different classifiers. Here classifier 1
is the better classifier as we expect more true positives and less false negatives than
with classifier 2.

6.2.2 Reicever operating charachteristics

Receiver operating characteristics (ROC curve) visualizes the performance of a bi-
nary classifier. ROC curve plots the true positive rate (TPR), or sensitivity, against
the false positive rate (FPR), or fall-out, of the classifier, by varying the threshold
value of classification to one of the classes. The true positive rate is the number
of correctly classified test instances for class 1 divided by the true number of test
instances belonging to class 1. The false positive rate is the number of falsely classi-
fied test instances belonging to class 0 divided by the true number of test instances
belonging to class 0.

For GP models, the ROC curve is computed by varying the probability threshold
tr of predicting to class 1

y∗ =

{
1, if p(y∗ = 1 | x∗, X,y) > tr,

0, otherwise.
(199)

An example of a ROC curve is in figure 5, where the different colors represent
different methods. The diagonal line in a ROC curve is the pure guess, meaning
that we expect as many false positives as true positives. The more the ROC curve
bends to the upper left corner, the better the classifier, because we expect less false
positives while getting more true positives.
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Data set SVI EP MCMC FMCMC
synthc1 -0.339 -0.339 -0.343 -0.349
synthc2 -0.470 ± 0.0067 -0.457 ± 0.0138 -0.454 ± 0.0191 -0.385 ± 0.0058
synthr 0.722 ± 0.0945 0.906 ± 0.1077 0.918 ± 0.0680 -1.44 ± 4.45
Arsenic -0.647 -0.640 -0.641 -0.640
Leukemia -0.255 -0.261 -0.260 -0.263
Adult -0.365 -0.375 ± 0.0023 -0.374 ± 0.0022 -0.386 ± 0.0072

(a) Monotonic methods

Data set GP FIC
synthc1 -0.305 -0.305
synthc2 -0.493 ± 0.0087 -0.475 ± 0.0092
synthr 0.666 ± 0.0956 0.661 ± 0.0959
Arsenic -0.640 -0.640
Leukemia -0.258 -0.249
Adult -0.376 ± 0.0042 -0.358

(b) Non-monotonic method

Table 1: The mean log predictive values for the different methods. For the cases
where we have different realizations of the training data, the uncertainty of the
MLPD values is shown as the mean over the repetations ± one standard deviation.
These cases include the cases where we sample a subset of the data as well as
the simulated data sets. Note that even though we sample a subset of data for
leukemia data, the uncertainty intervals are not shown, because the MLPD values
are computed with cross-validation.

7 Results
Table 1a displays the mean log predictive densities for the monotonic methods.
Table 1b displays the results for standard GP methods. In the table 1b, the GP refers
to either standard GP regression solution (regression data) or the EP approximation
(classification data).

The results of the small data sets (synthc1, synthr, arsenic) confirm that the SVI
approximation to the marginal likelihood is not as good as the EP approximation
with respect to predictive density. Figure 6 displays the ROC curve for the synthc1
data set. The ROC curve confirms that both the EP and SVI algorithm work for
this data set and there are not much differences with respect to predictions. Figure 7
displays the predictions of the latent function f for different methods. We see that
both the EP and SVI produce identical function surfaces which differ somewhat
from the non-monotonic methods.

The results on the second simulated classification data set, synthc2, are worse
with SVI because the data set is quite simple and the additional data points don’t
help in the prediction task. Figure 8 displays the ROC curve for the synthc2 data
set. Figure 9 displays the predictions of the latent function.
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Figure 6: ROC curve and the training data for the synthc1 data.
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Figure 8: ROC curve and the training data for the synthc2 data. Note that every
methods works very well for this data and thus we have limited the ROC curve for
the upper left quadrant of the normal [0, 1]× [0, 1] limits.
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the full non-monotonic GP. The right density plot is the densities of the methods
compared to the SVI predictions. The proportion below zero has MLPD lower than
with SVI and above zero higher. The density plots are formed over 100 simulations
of the training data.

Figure 10 plots the density of the mean log predictive densities over 100 sim-
ulations of the training data for the synthr regression task. We see that the EP
algorithm works better here than the SVI. For this data set, the test data set in-
cludes observations which are outside the convex hull of the training data set, so
predicting becomes an extrapolation task. The monotonicity constraint takes away
some of the flexibility of the function and the predictions are better. This is due
to the additional information monotonicity provides. Extrapolation with Gaussian
processes is generally very hazardous as the uncertainties increase rapidly the fur-
ther the test inputs are from the training inputs. Monotonicity constraints the latent
function on this extrapolation task and thus the predictions are better. This mono-
tonicity constraint can be seen in the figure 11, where the predictions of the latent
function are displayed.

ROC curve for the arsenic data set in figure 12 confirms the fact that EP works
better than SVI if we use the same data. While there is not a great difference, it is
obvious that the EP approximation is better than the SVI approximation. Figure 13
displays the conditional predictions for the different explanatory variables of the ar-
senic data. The conditional predictions are done by fixing the other explanatory
variables to their median value from the training data set and then varying the spe-
cific explanatory variable. We see that the conditional latent predictions are almost
the same. It is obvious that the SVI approximation prefers smoother functions in
this case. This can be due to the number of inducing variables or their placement.

The monotonicity does not help on the synthc1 or arsenic data, but the results
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Figure 12: ROC curve for the arsenic data set.

on synthr are better with the assumed monotonicity. Both the SVI and EP are
competitive with respect to the MCMC results. We see from the results that the
full MCMC fails in the simulated regression task. This is due to the elliptical slice
sampler getting stuck on a unfavorable (non-monotonic) solution which causes the
samplers to accept all kinds of weird samples.

When using the subset of the whole data for EP and MCMC methods with the
larger data sets (leukemia, adult), we see that the results are better with SVI. We
can thus argue that the SVI monotonicity learns additional information from the
data set and gives better predictions.

The ROC curve for the leukemia data is displayed in figure 14. The conditional
predictions are in figure 15. We see that while there is not much difference, SVI
is better than EP and MCMC methods. The conditional predictions also differ for
explanatory variable time but for the other explanatory variables, they seem to be
almost identical. Again, SVI prefers more linear latent functions.

The ROC curve for the adult data in 16 supports the conculusion that the SVI
algorithm learns from the whole data. We see that the SVI performs better than
the EP and MCMC methods with subsampled data. The conditional predictions for
the adult data in figure 17 agree with the earlier conclusions that the SVI and EP
produce almost identical conditional predictions.
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Figure 13: Conditional predictions for the arsenic data. The red line is the SVI
conditional prediction and the blue line is the EP conditional prediction. Dashed
lines represent ± three standard deviations of the predictions. Monotonic increase
of the latent function is assumed with respect to arsenic content in the water (upper
left) and monotonic decrease with respect to the distance (upper right). The y-axis
represents the latent function prediction and on the x-axis are the values of the
specific covariate.
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Figure 14: ROC curve for leukemia data set.



49

−1 0 1 2 3
−6

−4

−2

0

2
Time

−2 −1 0 1 2
−4

−2

0

2
Age

0 2 4 6 8
−4

−2

0

2
White Blood cell count

−1 0 1 2
−3

−2

−1

0
TPI

Figure 15: Conditional predictions for leukemia data set. The red line is the SVI
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Figure 16: ROC curve for adult data set.
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Figure 17: Conditional predictions for adult data set. Blue line corresponds to EP
and red line for SVI. Monotonic increase of the latent function is assumed for the
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8 Discussion
In this thesis, we developed a method for using monotonicity information for Gaus-
sian processes when the data sets are large. The stochastic variational inference
(SVI) based method was experimented with several different data sets, both sim-
ulated and real world data. The new method was tested against the Expectation
Propagation (EP) based monotonic method, as well as the sampling based methods
(MCMC) which can be thought of as the ground truth with the limit of an infi-
nite number of samples. We also tested how the monotonic methods fare against
standard non-monotonic methods.

The aim of this thesis was also to show that the SVI can be applied straight-
forwardly to also infer the virtual monotonicity observations, and that the resulting
algorithm can be applied to several different kinds of problems. We wanted to ex-
periment how the SVI algorithm fares against the EP algorithm which is known to
produce very good results with binary classifiers.

The experiments showed that the SVI algorithm can be used for large data sets
and yields better results than the computationally heavy EP or MCMC methods
for the subsets of the data. The hard part in including monotonicity constraints
is that if these are not reasonable assumptions, the non-monotonic methods are
usually better with respect to the predictions. However, it was shown that, while
the monotonicity constraints might restrict the function too much, the SVI algorithm
is a viable option when there is indeed knowledge of the monotonicity.

The proposed monotonicity constraint rely heavily on the choice of the virtual
inputs. In the ideal situation, we would have an infinite number of virtual inputs
all over the input space. However, while the SVI can theoretically handle very
large number of observations, the computation becomes quite slow if there is a great
number of input dimensions. Usually, we settle for a small number of virtual inputs,
which are inside the convex hull of the true observed input values, as long as the
forced function is monotonic in the observed inputs and the virtual inputs. In this
thesis, we used the K-means algorithm to select the virtual inputs. If there are a
small number of dimensions (3 or less), a viable option is to simply set the virtual
inputs in a uniform grid. While the use of virtual observations to force monotonicity
might seem like an arbitrary and not so elegant choice, it also has some interesting
properties that can be of use. The use of virtual observations naturally enables
the choice of different monotonicity for different input dimensions. Furthermore,
by placing the virtual observations appropriately, one can also induce for example
the unimodality of the latent function. This can be achieved by assuming that
the latent function is monotonically increasing (or decreasing) for the values of
the input which are smaller than the assumed mode of the latent function and
monotonically decreasing (increasing) for the values of the input which are greater
than the mode. This can be readily achieved by setting the virtual observations
yv = 1 where we assume the function is increasing and yv = −1 for where it is
assumed to be decreasing.

The use of the binary classifier for the virtual observations causes the function
to prefer larger gradients. This can cause problems in regions where the function
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might be flat. This has already been discussed in the earlier work by Riihimäki and
Vehtari (2010). The virtual inputs can be used again to allow flat or semi-monotonic
function by not setting any virtual inputs in that region. Another possible way is
a multi-class classifier, where we could have the virtual observations of -1, 0 and 1,
based on whether the function is monotonically decreasing, flat, or monotonically
increasing. The likelihood for the flat observations could for example be standard
Gaussian so that the latent function values are penalized based on how far they are
from zero.

The use of latent likelihood for the binary observations with SVI can also cause
some problems. Optimizing the noise variance parameters for the latent Gaussian
likelihood can easily cause the likelihood to overfit. On the other hand, it can allow
missclassifications too easily. For this reason, we chose to not optimize the noise
variance for the virtual observations as we want the likelihood to penalize latent
values which don’t agree with the monotonicity assumption.

Because the stochastic nature of the SVI algorithm, care also needs to be taken
for the updating schedule. We followed the suggestions of Hensman et al. (2013)
and fixed the hyperparameters for a few epochs of the training data to allow the
variational parameters to update to some reasonable values. Based on our experi-
ments the stochastic nature can very easily cause problems with the updates of the
variational parameters and the step-size parameter should thus be very conservative.
This may result in the need of few more iterations, but we accept this. Sometimes
it is also necessary to force the positive definitiness of the variational covariance S,
which can easily be done with eigenvalue decomposition.

We already mentioned in section 7 that the samplers can occasionally get stuck.
This was emphasized in the synthr experiment. We noted that sometimes the ESLS
accepted latent values which were not monotonic. Accepting these samples caused
the marginal likelihood to decrease to very small values and the subsequent samples
to be accepted whether they were reasonable or not. One possible approach to
eliminate this would be to sample the latent values and hyperparameters and accept
only the pairs where the latent function was monotonic. However, pruning like this
can cause all of the samples to be rejected after the sampler gets stuck.

This thesis introduced the SVI application to the monotonicity constraints with
virtual observations. The experiments provided valuable information which strength-
ened the prior assumption that EP approximation works better than the variational
approximation. The experiments also showed that the SVI application can be ap-
plied to large data sets, and it utilizes the whole data set in learning. The prior
experimental questions were thus answered and we can consider the work to be
successful.
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A Derivatives of the covariance function
For the Gaussian processes, the covariance between function value f1 and derivative
f ′2 at some other point, can be computed by derivating the covariance between
function values f1 and f2. The covariance between two derivatives f ′1 and f ′2 can be
computed analogously by differentiating the covariance between f1 and f2 twice.

With the Squared-Exponential covariance function

k(x,x′) = σ2
f exp

(
−
∑d

i=1(xi − x′i)2

2li

)
, (A.1)

the first derivative of the covariance function is

∂k(x,x′)

∂xg
= σ2

f

(
− 1

lg

(
xg − x′g

))
exp

(
−
∑d

i=1(xi − x′i)2

2li

)
. (A.2)

The second derivative is

∂2k(x,x′)

∂xg∂xp
= σ2

f

1

lg

(
δgp −

1

lp

(
xg − x′g

)(
xp − x′p

))
exp

(
−
∑d

i=1(xi − x′i)2

2li

)
, (A.3)

where deltagp = 1 if g = p and 0 otherwise.
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B Gaussian identities
If we have joint Gaussian distribution of two variables a and b

p(a,b) = N
([

a
b

]∣∣∣∣[ma

mb

]
,

[
Sa Sab
Sba Sb

])
, (B.1)

the conditional distribution p(a | b) is

p(a | b) = N
(
a |ma + SabS

−1
b (b−mb), Sa − SabS−1b Sba,

)
(B.2)

and the marginal distribution p(a) is

p(a) = N(a |ma, Sa). (B.3)

The product of two Gaussian distributions can be computed with

N(x |m1, S1)N(x |m2, S2) = Z−1N(x |m, S), (B.4)

where

m = S
(
S−11 m1 + S−12 m2

)
, (B.5)

S =
(
S−11 + S−12

)−1
, (B.6)

Z−1 = (2π)D/2|S1 + S2|−1/2 exp

(
−1

2
(m1 −m2)

T (S1 + S2)
−1(m1 −m2)

)
, (B.7)

and D is the dimension of x.
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