
AALTO UNIVERSITY
School of Science
Degree Programme of Computer Science and Engineering

Bulk Indexing on Flash Devices

Jonas Lehtonen

Master’s thesis submitted in partial fulfilment of the requirements for
the degree of Master of Science in Technology

Supervisor Eljas Soisalon-Soininen
Instructor Riku Saikkonen

Espoo, May 20, 2014

Copyright c© 2014 Jonas Lehtonen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80712389?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


aalto-yliopisto diplomityön tiivistelmä
Tekijä: Jonas Lehtonen
Työn nimi: Tietuekimppujen indeksointi flash-muistilla
Päivämäärä: 20. toukokuuta 2014 Sivumäärä: viii + 65
Laitos: Tietotekniikan laitos
Professuuri: T-106 Ohjelmistojärjestelmät
Työn valvoja: professori Eljas Soisalon-Soininen
Työn ohjaaja: tieteen tohtori Riku Saikkonen

Tietokantasovelluksissa kimppuoperaatiot jotka vaikuttavat useampaan
alkioon kerralla ovat yleisiä, ja niitä käytetään tehostamaan tietokan-
nan toimintaa. Niitä voi käyttää kun data lisätään tietokantaan suu-
ressa erässä (esimerkiksi myyntidata jota päivitetään kerran päivässä)tai
osana muita tietokantaoperaatioita.

Kimppuoperaatioita on tutkittu jo vuosikymmeniä, mutta niiden
käyttöä flash-muistilla on tutkittu vähemmän. Flash-muisti on yleis-
tyvä muistiteknologiajota käytetään magneettisten kiintolevyjen sijaan
tai niiden rinnalla. Sen tietokannoille hyödyllisiin ominaisuuksiin kuu-
luvat mm. nopeat hakuajat ja alhainen sähkönkulutus. Kuitenkin da-
tan poisto levyltä on työläs operaatio flash-levyillä, mistä johtuen tie-
torakenteet kannattaa suunnitella erikseen flash-levyille. Tämä työ tut-
kii flashin käyttöä tietorakenteissa ja koostaa niistä flashille soveltuvia
suunnitteluperiaatteita. Näitä periaatteita edustaa myös työssä esitetty
uusi rakenne, kimppuhakemisto (bulk index). Kimppuhakemisto on tie-
torakenne kimppuoperaatioille flash-muistilla, ja sitä verrataan kokeelli-
sesti LA-puuhun (Lazy Adaptive Tree, suom. laiska adaptiivinen puu),
joka on suoriutunut hyvin kokeissa flash-muistilla.

Kokeissa käytettiin vaihtelevan kokoisia alkeiskimppuja, eli maksi-
maalisia joukkoja lisätyssä datassa jotka sijoittuvat kahden olemassao-
levan avaimen väliin. Kimppuhakemisto oli nopeampi kuin LA-puu,
ja erityisen paljon nopeampi kimppulisäyksissä pienellä määrällä hy-
vin suuria tai suurella määrällä hyvin pieniä alkeiskimppuja, tai suurilla
kimppulisäyksillä. Parhaimmillaan se oli yli neljä kertaa nopeampi. Vä-
lihauissa se oli jopa 50 % nopeampi kuin LA-puu, ja parempi suurten vä-
lien kanssa. Välipoistot näytettiin vakioaikaisiksi kimppuhakemistossa.

Avainsanat: hakemistorakenne, indeksointi, hakupuu, B-puu,
kimppupäivitys, kimppupoisto, kimppulisäys,
intervallipoisto, tietokanta, avainvälipoisto,
flash-muisti





iv

aalto university abstract of
master’s thesis

Author: Jonas Lehtonen
Title of thesis: Bulk Indexing on Flash Devices
Date: May 20, 2014 Pages: viii + 65
Department: Department of Computer Science and Engineering
Professorship: T-106 Software Technology
Supervisor: Professor Eljas Soisalon-Soininen
Instructor: Doctor of Science Riku Saikkonen

In database applications, bulk operations which affect multiple records
at once are common. They are performed when operations on single
records at a time are not efficient enough. They can occur in several
ways, both by applications naturally having bulk operations (such as
a sales database which updates daily) and by applications performing
them routinely as part of some other operation.

While bulk operations have been studied for decades, their use with
flash memory has been studied less. Flash memory, an increasingly
popular alternative/complement to magnetic hard disks, has far better
seek times, low power consumption and other desirable characteristics
for database applications. However, erasing data is a costly operation,
which means that designing index structures specifically for flash disks
is useful. This thesis will investigate flash memory on data structures in
general, identifying some common design traits, and incorporate those
traits into a novel index structure, the bulk index.

The bulk index is an index structure for bulk operations on flash
memory, and was experimentally compared to a flash-based index struc-
ture that has shown impressive results, the Lazy Adaptive Tree (LA-tree
for short). The bulk insertion experiments were made with varying-sized
elementary bulks, i.e. maximal sets of inserted keys that fall between
two consecutive keys in the existing data. The bulk index consistently
performed better than the LA-tree, and especially well on bulk insertion
experiments with many very small or a few very large elementary bulks,
or with large inserted bulks. It was more than 4 times as fast at best.
On range searches, it performed up to 50 % faster than the LA-tree,
performing better on large ranges. Range deletions were also shown to
be constant-time on the bulk index.

Keywords: index structures, database, search trees, B-tree,
group update, bulk update, group deletion,
bulk deletion, group insertion, bulk insertion,
interval deletion, range deletion, flash memory



Acknowledgements

Writing this thesis has let me investigate an interesting problem, and im-
proved my ability as a researcher greatly. It wouldn’t be here without the
help from friends and colleagues at Aalto University.

In particular, I’d like to thank Eljas Soisalon-Soininen, my professor, for
giving me this problem to work with and giving good advice and support
throughout, not to mention a deeper insight into the world of academia than
I expected when starting out. Riku Saikkonen and Seppo Sippu gave me
good advice throughout - I solved many a problem with Riku over lunch,
and Seppo was always happy to share his experiences. Timo Lilja gave me
the LaTeX template that turned into this thesis, and I had some productive
conversations with Timo Lindfors.

Thanks goes out to my family, my friends and the excellent teachers I
had throughout my life.

v



Contents

1 Introduction 1

2 Flash memory 4
2.1 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Flash Translation Layer . . . . . . . . . . . . . . . . . . . . . 8
2.3 Measurement of the flash disk used in experiments . . . . . . . 10

3 Bulk operations 15
3.1 B-tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Bulk search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Bulk insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Bulk deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Showcase: Buffer tree . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Showcase: Y-tree . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Tree structures on flash 26
4.1 Principles of flash B-tree design . . . . . . . . . . . . . . . . . 26
4.2 B-tree implementations . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Showcase: The FD-tree . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Showcase: Lazy Adaptive Tree . . . . . . . . . . . . . . . . . . 29

5 Indexing bulks 32
5.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Bulk search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Bulk insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4 Bulk deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . . 40
5.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Experimental results 48
6.1 Bulk insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vi



CONTENTS vii

6.2 Range search . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3 Bulk deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . 56

7 Conclusion 57

Bibliography 58



List of Algorithms

1 B-tree range search . . . . . . . . . . . . . . . . . . . . . . . . 19
2 Bulk insertion into B-tree (simplified) [48] . . . . . . . . . . . 20
3 Bulk insertion into Y-tree [27] . . . . . . . . . . . . . . . . . . 24
4 Range search in bulk index . . . . . . . . . . . . . . . . . . . . 35
5 Bulk insertion in bulk index . . . . . . . . . . . . . . . . . . . 36
6 Bulk update in bulk index . . . . . . . . . . . . . . . . . . . . 38
7 Bulk deletion in bulk index . . . . . . . . . . . . . . . . . . . . 39

viii



Chapter 1

Introduction

B-trees have long served as a data structure for containing large amounts of
ordered data. The relatively low height of the trees, caused by the typically
large branching factors, helps with keeping the number of disk accesses low
when all the data cannot be cached in main memory. The utilization rate of
disk space tends to be high too, about 69 % [28, 54].

However, there are applications where the normal B-tree algorithms are
not efficient enough. In high-update environments, such as sensor data where
new updates are made continuously [20], more efficiency than simply insert-
ing one key at a time is needed. One solution is collecting the updates as
they arrive into a buffer, creating a bulk, then sorting this bulk when it’s large
enough and adding them one at a time. This will lead to many consecutive
insertions into the same tree node, which increases efficiency. A similar sit-
uation exists in data warehousing, where so-called application-specific bulks
(bulks forming naturally rather than through batching single operations) oc-
cur when, for example, all the sales data from a single day is inserted at once
[19].

In full-text indexing, doing many incremental updates can be very ineffi-
cient, so bulk updates are needed [10]. Even more efficient than simply sorting
the data first, however, is using dedicated algorithms or data structures for
handling these bulk updates. These can be simple B-tree-based algorithms,
like ones that reduce the amortized complexity of rebalancing [49]. They can
also be new data structures – for example, the buffer tree [3] does both the
bulk forming and the efficient insertion of bulks and gradually inserts them
down through the tree. The Y-tree [27] is a data structure that uses an ex-
plicit bulk insertion algorithm and has extremely high insertion efficiency –
reportedly, 25 to 100 times higher than a normal B-tree.

In addition to algorithmic improvements to bulk operations, hardware
improvements can also make a difference. The use of flash memory, with

1



CHAPTER 1. INTRODUCTION 2

characteristics such as fast seek times, low power consumption, and high
shock resistance, is one way to get faster database access times. The capacity
of flash memory disks has been consistently increasing, doubling every year
since 2001 [22]. Flash memory has an edge over magnetic hard disks in
many applications such as logging, external sorting, and SQL transactions
[36], frequently with improvements in speed of an order of magnitude. In
addition, it takes relatively few concurrent transactions for the processor to
become the bottleneck rather than the flash disk. Previously, disks had often
been the bottleneck [46].

However, flash memory’s advantages come with certain restrictions. The
NAND type of flash memory, which is used for its higher data density and
faster operations compared to NOR flash memory, must be erased before
rewriting. In addition, erases can only be done in large, contiguous, statically
placed units called blocks, which are much larger than the read/write pages.
Each block can only be erased a certain number of times, between 10,000
and 100,000. Furthermore, if a number of still valid pages get erased, they
all require copying elsewhere, which causes further slowdown in erases. To
alleviate these issues, a layer called the Flash Translation Layer (FTL) [16] is
used, minimizing the overhead caused from these constraints of flash memory.
A number of FTLs have been proposed by [5, 6, 15, 23, 30–32, 35, 41, 47] ;
they can be divided on the basis of the kind of references they hold in memory
into either page-level (read/write pages), block-level (erase blocks) or hybrid
FTLs (both). A recent hybrid, LazyFTL [41], showed results suggesting a
near-optimal performance in the space of all possible general-purpose FTLs.

The FTLs are general-purpose tools, however, and I/O-intensive data
structures such as B-trees should still be optimized for flash separately. Since
2003, a number of approaches have been proposed for B-tree-like structures
for flash, starting from BFTL [53] which was a layer between the used file
system and a B-tree. The research went through a number of efforts of grad-
ual adaptation of B-trees [29, 37, 44], and in 2009 two trees were proposed,
the FD-tree [38]] and the Lazy Adaptive Tree [1]. They deviated further
from the structure of the original B-tree, while achieving gains over previous
efforts. The Lazy Adaptive Tree, or LA-Tree, in particular is of interest in
this thesis, as it is partly based on the buffer tree idea by Arge [3] that was
used to aggregate update operations into bulk update operations. All of these
data structures have shown marked improvement at least over B-trees run-
ning over an FTL. All of them also show at least one of several common flash
disk design traits. These are colocating data that is likely to be erased at
the same time (to avoid unnecessary copying on erases), minimizing writes,
avoiding in-place updates and writing large chunks of data when possible.

This thesis will investigate B-tree-like indexes on flash devices, with an



CHAPTER 1. INTRODUCTION 3

emphasis on bulk operations. The performance analysis [8] of the Y-tree
[27] when used on a flash device could be considered previous work in the
field of bulk operations on flash devices, as the Y-tree supports very high
bulk insertion performance. We will present a somewhat similar analysis –
besides experimental analysis – of our new structure suitable for bulk updates
and flash devices. The new data structure that will be investigated is called
a bulk index, composed of two parts. The first part is the main file, where
non-overlapping ordered sequences of data tuples are kept. The other part
is the range index, which contains the locations and values of the highest
and lowest keys of the sequences. The data on the main file is read and
written in moderately large blocks for better efficiency, and the range index
is typically small enough, due to a size guarantee inherent in the design,
that it is completely held in main memory. This structure allows for a large
amount of operations on the range index to be performed without I/O cost.

Experiments on the bulk index are made to analyze its performance.
Overall, its performance is found to be comparable to or better than the
lazy-adaptive tree [1]. The bulk index is particularly efficient on clustered
data and in bulk deletion – in bulk deletion, its complexity is shown to be
constant in terms of immediate operations on the main file.

The organization of the thesis is as follows. Chapter 2 will detail the
special considerations of flash memory, going into some detail on the func-
tioning of Flash Translation Layers and the characteristics of flash memory
in general, including the flash disk used in our experiments. Chapter 3 will
describe bulk operations in general, outlining how previous work has imple-
mented them and what their advantages have been. It ends by showcasing
two data structures, the buffer tree [3] and the Y-tree [27]. Chapter 4 will
consider the lessons drawn from previous implementation of B-trees on flash,
outlining general principles, showing how past B-trees have conformed to
them, and showcasing two recent data structures for flash, the Lazy Adaptive
Tree [1] and the FD-tree [38]. Chapter 5 will describe the bulk index itself,
going through its operations (all of which are bulk operations) one by one
and obtaining some complexity results for them. The chapter’s last section
will also detail some possible improvements to the bulk index. Chapter 6 will
describe the experimental results on the bulk index that were obtained and
discuss them. Chapter 7 will end the thesis in the conclusions, particularly
about the strengths and weaknesses of the bulk index.



Chapter 2

Flash memory

This chapter will explain the characteristics of flash memory in some detail,
showing how it differs from magnetic hard disks. Section 2.1 will explain the
key differences between flash memory and magnetic hard disks. The Flash
Translation Layer addresses the issues caused by some of these differences,
and it’s explained in more detail in Section 2.2. Finally, the disk that was used
for the experiments in this thesis is experimentally investigated in Section 2.3.

2.1 Flash memory

Flash memory is non-volatile erasable memory, similarly to magnetic hard
disks. Non-volatility means that flash memory retains data even when the
memory is not connected to a power supply, and erasability means that data
written on it can be removed and replaced with other data.

Many of the differences of flash memory to magnetic hard disks come from
the fact that flash memory has no mechanical moving parts. A magnetic
hard disk has a spinning platter, and every time a read or write operation
is made to it, it has to spin into the correct angle first (see Fig. 2.1). This
reliance on mechanical spinning causes a read and write latency of about 9
ms, depending on the rotational speed of the platter. Flash memory’s lack
of mechanical moving parts (see Fig. 2.2) results in it having higher shock
resistance and lower power consumption than a magnetic hard disk [22]. in
addition to having a much smaller read and write latency (typical latencies
are under 0.2 ms [17]).

There are two main types of flash memory, NAND and NOR flash. NOR
flash allows every byte on the flash memory to be read or written individually,
whereas NAND flash allows writing and reading in pages of a certain minimal
size [31]. NAND flash is commonly used in SSDs (see the next subsection)

4



CHAPTER 2. FLASH MEMORY 5

Figure 2.1: A magnetic disk’s internal view. The currently in-
ert disc that rotates rapidly while in use can be seen, as well
as the read/write-head. Image credit: Flickr user Jeff Geerling,
http://www.flickr.com/photos/lifeisaprayer/2282011834. Used with Cre-
ative Commons license: https://creativecommons.org/licenses/by-nc-sa/2.0/



CHAPTER 2. FLASH MEMORY 6

Figure 2.2: Internal view of flash memory. There are no me-
chanical moving parts. Image credit: Flickr user ciaociao,
https://www.flickr.com/photos/ciaociao/2859153476/. Used with Creative
Commons license: https://creativecommons.org/licenses/by-nc-sa/2.0/



CHAPTER 2. FLASH MEMORY 7

because of its much higher capacity. When discussing flash memory in the
rest of this thesis, NAND flash will be meant by default. NAND flash can be
further subdivided into two categories, Single-Level Cell (SLC) and Multi-
Level Cell (MLC) NAND. A SLC flash memory cell stores one bit, while a
MLC cell stores more than one bit. SLC flash tends to have a much longer
lifetime and faster access time than MLC flash, but MLC flash is denser and,
thus, cheaper per unit of storage [14].

The page-based reading and writing of NAND flash does not work exactly
as it does on magnetic disks. On a magnetic disk, any given page can be
rewritten over and over again. On NAND flash, each page can be read at
will, and written once, but once a page has been written on it has to be
erased before it can be rewritten [18]. In addition, pages can not be erased
individually, but must be erased as part of an erase block consisting of many
pages [18]. Each erase block can also only be erased a certain number of
times (usually between 10 000 and 100 000) before becoming unwriteable.
This is the main source of complexity in using flash memory efficiently.

As an example of this complexity, consider a block that contains both
pages of data that are allowed to be deleted, and pages of data that are not
allowed to be deleted (live pages). When this block needs to be erased (to
make room for new data, for example), the live pages need to have their data
retained somehow. If the data is allowed to be moved, then the live pages can
be copied to other blocks and the block can then be erased. However, this
introduces the significant cost of having to copy all these pages, in addition to
having to erase the block and in addition to having to keep track of the moved
pages. When space is needed and an erase block must be erased to make
room, preference should be given to blocks that (1) have fewer live pages and
(2) more erases left in their lifetime, in order to minimize time spent erasing
and maximizing the overall lifetime of the flash memory, respectively.

Solid State Drives

The complexity of the erase operation is mitigated in solid state drives
(SSDs), where flash memory units are grouped together with auxiliary com-
ponents. This improves the normally poor bandwidth of a single flash mem-
ory unit [2] with a RAID-0-like setup of multiple flash memory units con-
nected to a single controller. The setup can also include internal RAM that’s
needed for its accompanying software. The complexity involved in the erase-
dependent design is addressed by software called the Flash Translation Layer
(FTL). Read, write and erase operations are performed through the FTL.
Erase operations are performed through the TRIM command [18] that tells
the FTL that a certain part of the logical disk (not necessarily an entire erase



CHAPTER 2. FLASH MEMORY 8

Manufacturer Samsung Kingston Seagate Western Digital
Model 840 Pro SSDNow V300 Barracuda Red
Capacity 250 GB 120 GB 1 TB 3 TB
Price / GB 0.58 e 0.59 e 0.061 e 0.044 e
Spin speed N/A N/A 7200 RPM -
Read seek time - - 8.5 ms -
Write seek time - - 9.5 ms -
Sequential write 520 MB/s 133 MB/s 156 MB/s 147 MB/s
Sequential read 540 MB/s 180 MB/s 210 MB/s 147 MB/s
4k random read 100 000 IOPS 85 000 IOPS - -
4k random write 90 000 IOPS 55 000 IOPS - -

Table 2.1: Information on some hard drives popular in Finland at the time of
writing. All information is as detailed by manufacturers. The Samsung 840
Pro is a more advanced version of a popular drive, and is the SSD that’s used
for the experiments in this thesis. The WD drive’s seek time and rotation
speed were not available on its data sheet. SSDs do not have a spinning plat-
ter, and thus do not have a spin speed listed. The Kingston drive’s sequential
speeds are for incompressible data. For compressible data it has 450 MB/s
read and write. Popularity is measured by placement in the popular sales
list of the Finnish reseller Verkkokauppa, as per a snapshot taken 10.5.2014.

block) can be erased. These parts are then erased when the FTL frees up
space as part of its normal operation. Usually, erasure is performed in a de-
ferred fashion rather than immediately when the TRIM command is issued,
for improved efficiency. Aside from the TRIM command, the FTL makes the
SSD behave like a normal hard drive from the point of view of the operat-
ing system. The principles of FTLs, and how to implement data structures
efficiently on top of them, will be discussed in the next section.

2.2 Flash Translation Layer

The Flash Translation Layer is a software layer that is typically implemented
directly in the SSD. There are three things that it typically does:

• It maintains a mapping of logical page numbers to physical page num-
bers

• It minimizes the number of pages copied when a block is erased

• It minimizes the number of times that each block is erased



CHAPTER 2. FLASH MEMORY 9

Mapping logical page numbers to physical page numbers means that when
a user of an SSD tries to access a given page, the page’s contents should stay
the same until they are changed by the user. When pages are copied elsewhere
as part of an erase operation, for example, the contents of a logical page
should not change even if the physical page that the logical page corresponds
to changes.

When a block is erased, there are often pages on the eraseable block that
are still in use. For every page that must be copied elsewhere, an extra
read and write operation must be made. This cost can easily exceed the
inherent cost of performing an erase operation, and an FTL should try to
minimize this cost by selecting blocks with a minimal amount of live pages
when deciding which block to erase.

Minimizing the number of times each block is erased is also known as
wear leveling. The principle behind wear leveling is that each erase block can
only be erased a certain amount of times before it becomes unwriteable, and
so in order to preserve the most overall capacity on the SSD blocks should
be erased as evenly as possible to extend the effective lifetime of the flash
memory.

To handle these three tasks, many different techniques have been em-
ployed since the first FTL was created by Ban in 1995 [5]. They can be
roughly divided into three different groups based on the data structures they
employ [41].

The first FTL by Ban and some others like Demand-Based FTL [23] used
a page-level mapping approach. In page-level mapping, there is a mapping
stored from every logical page to every physical page. The advantage of this
scheme is its simplicity. When a page needs to be written, any empty and
writeable page can be used. When a page is read, the mapping table is used
to do a direct lookup for the right page, and only one read needs to be done.
The main downside, which often prevents using this scheme, is that it is very
memory-intensive to hold a reference to every page.

An alternative is block-level mapping schemes like NFTL-1, NFTL-N [6],
and Mitsubishi [51]. In block-level mapping, the logical drive is divided into
blocks of the same size as the physical flash memory’s erase blocks and a
mapping between these blocks is maintained. The offset of any physical page
within its block will then match the offset of the logical page within the block
it corresponds to. When a page is read from or written to, first the correct
block is located by taking the mapping of the logical block to the physical
block. Then the correct page within that block is located by taking the offset
of the page within the logical block and finding the page at the same offset in
the physical block. The main advantage of this scheme is that the mapping
table is much smaller when only a mapping between logical and physical



CHAPTER 2. FLASH MEMORY 10

blocks needs to be stored. Consequently, it requires less on-board RAM for
being fully stored, and takes less time to re-initialize in the event of a power
failure. The downside is having less control over where pages that are close
to each other logically are located physically. For example, if a certain logical
page is the only one in a block that’s constantly rewritten, the other pages in
the block may also have to be erased and rewritten at great cost. Avoiding
extra costs from this is one reason why in-place updates are generally avoided
in flash memory data structure design.

Finally, there are hybrid approaches like BAST [31], FAST [35], Su-
perblock FTL [30], SAST [47], A-SAST [32], KAST [15], and HFTL [34].
These generally use a block-level mapping for most blocks, and use a page-
level mapping for some of them. For example, BAST divides the blocks into
log blocks and data blocks. When a write request is made to a page within a
data block, a log block is allocated to correspond to that data block, and up-
dates are made incrementally to it. When a log block becomes full, or when
there are no more log blocks to be allocated, one is evicted, and the evicted
page is merged with the data block it corresponds to. This approach is prob-
lematic in the case of randomly distributed small writes, as it will cause log
blocks to be evicted constantly, forcing costly merges of blocks with only one
modified page on them.

When designing software that’s built on top of FTLs, i.e. any software
meant for use on SSDs, it is good to be aware of the different operation
patterns (e.g. random writes) that can cause some FTLs to perform very
inefficiently. Manufacturers generally do not release many details on how
exactly the FTL inside a given SSD works, so it is often essentially a black
box that is probably based on a published FTL. Some design principles that
attempt to cover a large part of the possible FTL universe will be shown in
Section 4.1.

2.3 Measurement of the flash disk used in ex-

periments

This thesis introduces a new data structure, the bulk index (see Chapter
5). The bulk index uses a parameter M that determines the maximum and
minimum size of the nodes it handles. To better choose the parameter,
among other reasons, the SSD that was used for experimentation was tested
thoroughly. The used SSD was a 256 GB Samsung 840 Pro Series model.

While it is difficult to thoroughly model an SSD theoretically (and this
is partly why experimental evaluation is used), it is possible to extract use-



CHAPTER 2. FLASH MEMORY 11

ful information by running some tests on it. Specifically, a model that can
approximate the actual time taken for an operation sequence can be formed.
The tests used in this case were for four different operation sequences: ran-
dom reads, random writes, sequential reads and sequential writes. For each
operation type, data was written or read in different-sized blocks. The writ-
ten data was random. The first test was simply reading and writing 10 000
times on the disk in blocks of varying size. The random operations were
performed over a 100 GB area of the disk, while the sequential operations
started at a random point in that area and then iteratively appended the
next operation to where the previous operation ended. All experiments were
performed in a single-threaded manner. To prepare for the experiments, the
disk was first written full of random data and then the TRIM command was
used on the first half of the disk using the blkdiscard tool. The first half
of the disk was then used for the experiments. This was done to make the
experimental situation closer to a disk in active use.

The results can be seen in Fig. 2.3. Writes and reads perform very
similarly, but there is a significant difference between sequential and random
operations on smaller block sizes. Generally, random reads and writes are
slower, but the difference becomes very small as the page size increases. This
suggests that the appropriate model for time taken by a single operation is
a combination of a minimum seek time and an additional time dependent
on the block size. There is a notable discrepancy in the pattern of bigger
operations taking more time when very small operations are performed, but
this effect disappears at block sizes 4 kB or larger.

The previous experiments show how much time is taken by the different
operation sequences, which is useful for obtaining parameters for the model.
For ease of choosing parameters for data structures, the information is shown
in Fig. 2.4 in terms of how quickly data can be processed by using a certain
block size (bandwidth). This shows how bandwidth peaks off around a block
size of 256 kB (linear scaling on the y-axis for easier comparison), but band-
width of about half the maximum can already be achieved by using a 16 kB
block size. This information is particularly helpful if, for example, a struc-
ture has many operations on single nodes that can be arbitrarily small in size,
and the whole node must be read for each operation. Single-record searches
are one example of this. The maximum speed of about 250 MB/s in the
bandwidth experiments differs from the manufacturer-stated number of 540
MB/s for reads and 520 MB/s for writes (see Table 2.1). The large difference
may be due to the experiments being run single-threadedly.

These experiments are also helpful for choosing the right node size for the
experiments of Chapter 6. A size of 16 kB for the LA-tree’s node size and a
size of between 16 kB and 32 kB for the bulk index’s node size was chosen,



CHAPTER 2. FLASH MEMORY 12

103 104 105 106

100

101

Sequential operations
Random operations

Figure 2.3: Time used by the SSD for 10 000 read operations run sequentially
or randomly. The times are almost exactly the same for writes, so writes are
not shown. The x-axis shows the block size per page, and the y-axis shows
the time in seconds.



CHAPTER 2. FLASH MEMORY 13

103 104 105 106

0.5

1.0

1.5

2.0

2.5

3.01e8

Sequential operations
Random operations

Figure 2.4: Bandwidth for the SSD for 10 000 read operations run sequen-
tially or randomly. The bandwidth is almost exactly the same for writes, so
writes are not shown separately. The x-axis shows the block size per page,
and the y-axis shows the bandwidth in B/s.

as 16 kB strikes a good balance between bandwidth and response time. The
experiments can also be used to derive values for the SSD operation time
model used in Section 5.5. The time taken for a random reads or writes of
size b would then be a(0.81 × 10−4 + 4 × 10−9b) s and the time taken for a
sequential reads or writes of size b would be a(0.68 × 10−4 + 4 × 10−9b) s.
This model is shown in Fig. 2.5.



CHAPTER 2. FLASH MEMORY 14

103 104 105 106

100

101

Sequential operations
Sequential model
Random operations
Random model

Figure 2.5: The real time taken for 10 000 read operations run sequentially
or randomly, and the time predicted by the model for SSD read times. The
real times for writes are nearly identical to reads, and the model is identical
for writes. The x-axis shows the block size per page, and the y-axis shows
the time in seconds.



Chapter 3

Bulk operations

This chapter will explain the concept of bulk operations, i.e. operations that
affect one or more records. It will begin by explaining how a B-tree works in
Section 3.1, as the bulk operations for B-trees are relatively simple in both
motivation and implementation. The B-tree lends itself well to bulk opera-
tions due to its records being organized in nodes that can contain hundreds
of records or more per node. Bulk implementations of search, update and
deletion will be explained in Sections 3.2, 3.3 and 3.4, respectively. Some
examples of data structures that handle bulk operations efficiently are then
given in Sections 3.5 and 3.6.

3.1 B-tree

A B-tree (see Fig. 3.1)is a tree-based data structure that allows for searches,
updates, and deletions of key-value tuples in time O(log n), where n is the
number of keys already in the tree. A variant of the B-tree called the B+-
tree will be described here, and will be referred to hereafter as a B-tree. To
explain how the B-tree works, we’ll first explain the (a, b)-tree by Huddleston
and Mehlhorn [25], using the definition of the authors.

Definition 3.1. ρ(v) denotes the number of sons of node v. When T is a
tree, |T | denotes the number of leaves of T .

Definition 3.2. Let a and b be integers with a ≥ 2 and b ≥ 2a− 1.
A tree T is an (a, b)-tree if

1. all leaves of T have the same depth

2. all nodes v of T satisfy ρ(v) ≤ b

15



CHAPTER 3. BULK OPERATIONS 16

3. all nodes v of T except the root satisfy ρ(v) ≥ a

4. the root r of T satisfies ρ(r) ≥ min(2, |T |)

An order m, m ≥ 3, B-tree is a (dm/2e,m)-tree. A B-tree’s nodes are divided
into internal nodes and external nodes (also known as leaf nodes). Borrowing
from the definition of Lilja [40], an internal node of size n has the structure

[p0, k0, p1, k1, ..., pn−1, kn−1, pn]

where every ki is a key and every pi is a pointer. An external node has the
structure

[a0, k0, a1, k1, ..., an−1, kn−1, pnext]

where every ki is key and every ai is a data value. In both kinds of nodes, the
keys are stored in increasing order so that k0 < k1 < k2 < . . . < kn−2 < kn−1.
In internal nodes, each pointer pi points to a subtree Tpi with height one less
than the node N containing the pointer pi. Then Tpihas a depth of one more
than N . Denote by K(pi) the keys of the subtree pointed to by pi. Then one
of the following properties holds:

1. ∀k ∈ K(p0) : k ≤ k0

2. ∀k ∈ K(pi) : ki < k ≤ ki+1, i = 0, 1, . . . , n− 1

3. ∀k ∈ K(pl) : kn−1 < k

These properties specify that the subtree holds only the keyrange between
the two possible adjacent keys. In external nodes, the keys are stored as
part of key-value pairs, with ki paired with ai. These pairs form the actual
records held within the B-tree. The order of the B-tree, i.e. the value of m,
determines the size of a single node. In disk-based B-trees, m is set so that
node size is close to a multiple of the disk’s page size.

The basic structure of the B-tree has now been defined. Next, the three
main operations on it will be defined and explained.

Search

Search is the simplest operation on the B-tree, and it underlies the operation
of the insertion and deletion operations. Given a B-tree T and a search key
k, the search operation finds the data value that the key k corresponds to,
i.e. it locates the leaf node N containing the key k = kj and returns the



CHAPTER 3. BULK OPERATIONS 17

30

10 20 50 60

1 4 12 15 21 22 33 35 54 56 78 99

Figure 3.1: A simple B-tree. The values of leaf nodes are not shown.

value aj from that node. If the B-tree does not contain a key equal to k, NIL
is returned.

The search is started at the root node of T , and recursively moves down
into the subtree that may contain k. When a leaf node is reached, that node
is checked for whether it contains the key k, and if so, the corresponding data
value is returned. If it does not contain the key k, then NIL is returned.

Insertion

Insertion into the B-tree T of key k and data value a adds the tuple (k, a) to
T and balances T if needed.

The insertion is always made to a leaf node, adding (k, a) to that node
in such a position that the keys remain stored in increasing order within the
node. If the insertion is made into an empty tree, a node is first created and
then the tuple is inserted into it. If the root node is full, a new root node
is allocated, the old root node is split, and the two nodes that result from
the split are placed as children of the new root. Then we traverse the tree
toward the leaf node for k as in search. If a full node is found on the way
(i.e. a node with n = m), it is split. When the leaf node is found, there will
be enough space for the new key due to the splitting along the way. Then
the key and its data value are inserted into that node. If the node already
contains the key, then depending on the semantics of the insertion operation
it will either replace the old data value associated with that key with the new
data value or an error will be thrown. See e.g. [40] for specifics on how the
split works. The method described here is known as top-down balancing. It
is also possible to do bottom-up balancing where balancing operations begin
at the node where (k, a) is inserted. Deletion can also be done in this way,
but the method described next is top-down.

Deletion

Deletion of key k from a B-tree T removes the key k and its associated data
value from T if that key exists in T , and balances T if needed.



CHAPTER 3. BULK OPERATIONS 18

The deletion, like the insertion, is always to a leaf node. The deletion
algorithm first checks that the tree is not empty. Then, just like in insertion,
the tree is traversed to find the node containing the key and data value to be
deleted. If a node is encountered along the traversal that is underfull (has
n = dm/2e), the node is compressed, i.e. shared or fused depending on the
size of its neighbouring nodes. Fusing is done when the combined size of the
two nodes is less than m, and merges the contents of the two nodes. Sharing
is done otherwise, and moves some of the contents of the neighbouring node
into the underfull node. Specifics on these operations and deletion in general
can be found in e.g. [26]. If the root node only has one child, the root node
is removed and the child node is set as the new root, lowering the height of
the T . When all the nodes along the path have been compressed if necessary,
the key and its associated data value are removed from the leaf node that
was found.

3.2 Bulk search

A bulk search operation finds all records that satisfy a given predicate and
outputs them in sorted order. This differs from a point search operation that
only finds one record, i.e. the search operation that was explained for the
B-tree in the previous section. A special case of bulk search, range search
finds all records with keys between a low key L and a high key H. L and
H can be unbounded as −∞ and ∞ respectively, in which case the range
search finds all records with keys lower than L or higher than H respectively.
This thesis will focus on range searches rather than bulk searches with other
kinds of predicates. In a tree structure like a B-tree, all keys in a certain
interval are often in the same node. Thus, finding all keys between L and
H can be sped up with a range search both because many of these keys can
be read in one I/O operation on a node, and because the tree must only be
traversed once from the root to the leaf nodes. In a B-tree, range search can
be implemented as follows:
Finding the next node can be done in ways other than the pnext pointer.
The path of the search from root to leaf, a saved path [42], can be stored
during the initial search down the tree, using this to move upward in the
tree and then down to the next node. In a structure that stores links to
their parent in nodes, they could also be used for this. In B-tree-like data
structures, range searches are often easy to implement in a similar way when
nodes with consecutive keys can be accessed efficiently and the ranges of
keys contained in nodes are disjoint. Consequently, differences in efficiency
are usually small between different data structures of this kind. More sig-



CHAPTER 3. BULK OPERATIONS 19

Algorithm 1 B-tree range search

{Range search of B-tree with low key L and high key H}
T ← ∅
(v0, k0, ..., vn−1, kn−1, pnext) ← leaf node with k0 ≤ L ≤ kn−1, or leaf node
with smallest k0 larger than L if no such leaf node exists
T ← T ∪ {(vi, ki)|L ≤ ki < H}
while kn−1 ≤ H do

(v0, k0, ..., vn−1, kn−1, pnext) ← node pointed to by pnext
T ← T ∪ {(vi, ki)|L ≤ ki < H}

end while
return T

nificant differences are usually a consequence of significant optimization for
another operation, for example insertion. If high insertion efficiency is ob-
tained from maintaining several data structures that are sometimes merged,
for example, a range search operation would need to look through all the
data structures separately[20]. The problem becomes more difficult in mul-
tidimensional range search[4], but that problem is outside the scope of this
thesis.

3.3 Bulk insertion

Individual updates on a database may be grouped as a bulk, a set of tuples to
be inserted. This grouping can happen in several ways. In many applications,
there naturally occur bulks in the normal course of events, such as in data
warehousing where typically many updates are made at once. These are
called application-specific bulks, and the operation manipulating one is an
application-specific bulk update. In other applications, it is feasible to create
bulks by grouping single insertions together as part of the algorithm’s normal
operation. These will be called deferred bulks and the operation will be
referred to as a deferred bulk update.

Application-specific bulks occur for example in data warehousing, where
large amounts of data is inserted infrequently. For example, the daily sales
data from a store or store chain can be inserted once a day in a single
application-specific bulk update [19].

Deferred bulks can be created by holding incoming tuples in an interim
structure. This structure can be a different kind of structure from the one
that is being buffered for, such as a hash table in memory. It can also be
a smaller version of the structure itself, emptied when this smaller structure



CHAPTER 3. BULK OPERATIONS 20

becomes full. It can be a layer within the structure itself, such as in the buffer
tree (described later in this section). There can be more than one deferred
bulk forming at the same time. For example, B-trees can have per-node
update buffers, or they can have buffers partitioned based on some attribute
of the incoming tuples.

A simple method for efficient handling of bulk updates in a B-tree is to sort
the bulk first. Then the node that covers the lowest key is found, and all keys
covered by that node are inserted into the node. If the node becomes overfull
rebalancing is done, and the process is repeated for the node that contains
the next lowest keys. Algorithm 2 is for insertions, but updates (insertions
on existing keys) can be done by overwriting keys in nodes instead of adding
to them.

Algorithm 2 Bulk insertion into B-tree (simplified) [48]

{Bulk insertion with B-tree root p, inserted tuples L[1], ..., L[n] and max
node size b.}
i ← 1
while i ≤ n do

starting from p search for the leaf node having L[i] pushing the nodes
read into saved path.
nleaf ← the found leaf node
j ← the largest index such that L[j] is in the range of nleaf

insert L[i], ...L[j] into nleaf

if nleaf contains more than b keys after insertion then
split nleaf and rebalance

end if
i ← j + 1
p ← First node from saved path which is an ancestor of the next nleaf

end while

This kind of algorithm is more efficient than simply adding keys one at a
time to a B-tree, but more efficient ones can also be used. For B-trees, for
example, Pollari-Malmi [48] presented a more efficient algorithm. However,
for further improving insertion performance, some approaches change the
underlying tree structure. Two of these approaches will be gone into in some
detail, including the buffer tree and the Y-tree.

Elementary bulks and clustering

Bulk insertion algorithms are obviously more efficient for some patterns of
insertion than others. For example, if all inserted keys could be found in



CHAPTER 3. BULK OPERATIONS 21

the same leaf node in a B-tree, a bulk insertion algorithm will likely perform
better than if the insertions are scatttered all over the B-tree’s leaf nodes.
To quantify this effect, we can use the concept of elementary bulks. An
elementary bulk is defined in terms of the keys already in the structure in
ascending order, C = c1, c2, c3, ..., cn, and the keys that are being inserted
in ascending order, K = k1, k2, k3, ..., km. An elementary bulk can then be
defined as being any set {e ∈ K|ci ≤ kj < ci+1}. In other words, all the keys
that are inserted between two adjacent keys.

Clustering in this thesis refers to inserted keys being close to each other
in this fashion, though not necessarily adjacent. In particular, the bulk in-
dex (see Chapter 5) benefits from having many insertions affecting the same
range.

3.4 Bulk deletion

Like with the other bulk operations of bulk search and bulk insertion, bulk
deletion is a regular tree operation, deletion, that is rewritten to affect many
tuples at once. Frequently, the special case of bulk deletion called interval
or range deletion is implemented, where all keys between a low key L and
a high key H are deleted. One of these keys can be unbounded, so that all
keys smaller than L or larger than H are deleted.

One example of the operation in practice would be in a sales database,
where all sales data older than six months needs to be deleted. In this case,
H would be ”six months ago” and L would be the first possible time, an
unbounded low key. Legal requirements for data retention are frequently
expressed in terms of how recent data needs to be kept or, conversely, how
old data needs to be removed.

The bulk deletion operation can also appear as part of certain more gen-
eral operations. For example, in cascade-on-delete we have two tables X, Y
and a key k. In table X, k is the primary key and in table Y , k is part of a
foreign key (k, x) and is built with a B-tree index I. Now, when any key k is
deleted in table X, an interval deletion will be performed in table Y for any
record with the foreign key (k, x) if cascade-on-delete is used for that foreign
key.

There are many algorithms for doing bulk deletion. The approach of
simply doing normal deletion on every key is very inefficient compared to
alternatives. Hoffmann et al. [24] described algorithms for splitting and con-
catenating B-trees. This method can be used to split a given tree into three
parts, then concatenate the two outer parts, thus implementing range dele-
tion. Carey et al. [11] describe a three-pass method for bulk deletion. In



CHAPTER 3. BULK OPERATIONS 22

the first pass, the tree is traversed from the root to the two extremities of
deletion. The algorithm also removes all subtrees completely contained in
the deletion range. The second and third passes implement marking some
parts of the edges and rebalancing them, respectively. Lilja et al. [39] imple-
mented an online bulk deletion algorithm with transactional support, with a
separate scanning phase and rebalancing phase. Lilja et al. [39] noted that
the complexity of their method is logarithmic per range that is deleted, un-
derscoring an important thing in bulk deletion. Namely, range deletion with
a good algorithm is sublinear in complexity with respect to the amount of
affected keys, a property that bulk insertion and range search don’t share.

3.5 Showcase: Buffer tree

The buffer tree that Arge presented in 1995 [3] is an (a, b)-tree, a general-
ization of a B-tree with between a and b tuples per node (see Section 3.1).
It is both a method for batching large amounts of updates and an efficient
method for processing large amounts of insertions.

The buffer tree is an application of the buffer technique that Arge used for
other data structures in the paper, which begins with the idea of collecting
insertions, updates, deletions and even queries into a root buffer the size
of the available memory m. When the buffer is full, they are all executed
starting from the lowest keys.

The buffer technique assumes that there is a tree-like hierarchy of m-sized
nodes, which are organized similarly to the nodes in a B-tree. However, in
contrast to a B-tree not all of the data is kept in the leaf nodes. Instead, the
data is held lazily in the upper nodes in buffers until these buffers become
full. When the operations are executed, they are ”pushed down” to the
nodes below them, divided appropriately (the general technique itself is not
very specific in how this is done). This pushing down happens recursively if
necessary, when the nodes that are pushed down into are filled up. As part
of this process, the contents of the nodes are modified to account for deletes,
updates and insertions. More recent results are located higher up in the tree
for purposes of resolving conflicts (such as two updates with the same key).
The bottom level does not have a buffer (see Figure 3.2). Searches can also
be made lazy and resolved during the pushing down.

The buffer tree follows the buffer technique closely with regard to in-
sertions, updates and deletions. It collects these operations into the root,
timestamps them, and when the root is full, pushes them downwards. At
this stage, of course, any operation with a more recent timestamp affecting
the same key as an operation in the same node with an older timestamp can



CHAPTER 3. BULK OPERATIONS 23

Figure 3.2: The buffer tree. All nodes but the leaf nodes are accompanied by
a buffer, and when they become full, data is pushed down to the next buffers
and eventually to leaf nodes. [3]

overwrite the older operation in some cases, freeing up space and delaying
the point where the node must be emptied. When a node is emptied, it is
emptied with much the same principle as in a B-tree, with keys divided into
lower nodes according to the keys already present in those nodes.

Search can be implemented on the buffer tree similarly to a B-tree. The
only difference is that timestamped data must be taken into account, and
if the searched-for key appears in several operations along the search path,
some evaluation to ascertain the final value for any key must be done. The
timestamping causes some overhead compared to a B-tree, so the search
performance may be lower as a result.

While the buffer tree is mostly interesting for its lazy evaluation mechanic,
namely its ability to collect multiple types of operations into the root before
executing them, it also has direct applications for external sorting. External
sorting can be done on it by simply inserting keys one after the other into
it and then flushing all the keys down to the leaf level. This results in
O(n logm n) I/O operations, where n is the amount of I/O operations required
to write all sorted tuples and m is the number of I/O operations required to
write all tuples that can fit into memory.

3.6 Showcase: Y-tree

The Y-tree [27] is a hierarchical index structure that is specialized in fast bulk
insertions. Its structure is similar to a B-tree, containing internal nodes with
pointers to other nodes and external nodes with key-value pairs. In addition
to this, internal nodes a number of heap buckets, each corresponding to one



CHAPTER 3. BULK OPERATIONS 24

of the nodes that the internal node branches out to. Heap buckets contain
entries that are in the process of being inserted. The maximum number of
the heap buckets per node is also a constant, as is the maximal number of
pairs across all heap buckets in a node.

Algorithm 3 Bulk insertion into Y-tree [27]

{Bulk insertion into Y-tree with tuples L, |L| ≤ d, given node N with
fanout fN}
if N is an internal node then

For each element l ∈ L, add l into the first heap bucket bi such that the
associated key value Ki ≥ s.key ; or inset into the last heap bucket if
there is no such Ki

bj ← Bucket with most tuples in N .
if the heap buckets contain more than (fn − 1)× d pairs in total then

Remove min(d, size(bj)) tuple pairs from bj to create Lnew, write N
to disk, and recursively call insertion with parameters Lnew and node
pointed to by bj

else
Write N to disk

end if
else
N is a leaf node. Add L to the tuple pairs in N , then write N to disk

end if

The basic idea of the Y-tree (derived from the words Yet Another Tree
Structure-Tree, or YATS-tree, or Y-tree) is, in the case of any single bulk
insertion, to do insertion only along a single path in the tree. The way the
insertion begins is that first, the bulk insertion is limited in size to a certain
amount d, depending on the available memory for caching heap buckets and
the fanout parameter f .

The bulk insertion proceeds from the root node downwards along a single
path to a leaf node, at each level dividing the inserted tuples among the heap
buckets of that node (see Figure 3.3) depending on the keys of those tuples. If
the node becomes full, up to d tuples are removed from the largest bucket of
that node and the insertion continues using these removed pairs (which may
be different from the pairs originally inserted) and the corresponding child
node to that bucket. In this way, the insertion continues until it reaches a
leaf node, at which point the insertable tuples are simply added to the leaf
node and written to disk.

Searches and range searches on the Y-tree are quite simple: the nodes are
searched as they would be in the case of a B-tree, but in addition, the node’s



CHAPTER 3. BULK OPERATIONS 25

10 30

25
21

20

34
32

9
2

3 5

5
4

8
6

3
1

15

26
22

20

16

14
15

12

11

7
40

48
42

39
36

33

31

44 48 49 50 52

Figure 3.3: The Y-tree [27]. The grayed out areas are nodes, the bottommost
node being a leaf node. The other leaf nodes are not shown, but every bucket
in the second level leads to one.

heap buckets are searched for matching keys.
The Y-tree showed good performance against a B-tree in bulk insertion

experiments done by Jermaine et al. [27]. The experimental setup was 10,000
insertions into 200 million existing tuples, or 1/20,000th of the existing keys,
which could be seen as a very favorable setup for the Y-tree given how sparsely
the keys will end up allocated over the B-tree. The performance gains under
this setup were on the order of 25 to 100 times over the B-tree with a bulk
insertion procedure. Search speed was about three times slower on small
range searches, but comparable or better for very large range searches.



Chapter 4

Tree structures on flash

This chapter is composed of four sections. First, general principles of B-
tree design on flash will be covered in Section 4.1, outlining how the various
designs differ from those that are designed for magnetic disks. Section 4.2
will go over various flash B-tree designs since 2003, explaining how they
have evolved over the years. Sections 4.3 and 4.4 will each cover an efficient
modern tree design suitable for flash devices.

4.1 Principles of flash B-tree design

A normal B-tree implementation handles insertion by locating the correct
node to be inserted into with a search operation, and then updating the
node contents. If the node becomes overfull, some splitting of the node and
rebalancing of the tree is required. This causes an in-place update on the B-
tree’s node. On the flash hardware level, an in-place update is costly due to
flash requiring erasing of a page before it’s rewritten and, consequently, the
erasing and possible copying of a great number of other pages. While some
FTLs deal well with this, it can be a particular problem for e.g. block-based
FTLs (see Section 2.2).

Random writes can also be very inefficient when working with some FTLs
such as BAST (see Section 2.2). They can increase the amount of erases that
need to be made on average per write to a large number, even approaching
1 in some cases. As erases are significantly slower than writes, this can
degrade performance by a factor of several times. The write-optimized B-
tree [21] offers one method for dealing with many random writes. It modifies
the buffer manager for the B-tree to batch random writes into large sequential
writes when possible.

Some flash disks also have much faster reads than writes [38], which en-

26



CHAPTER 4. TREE STRUCTURES ON FLASH 27

courages minimizing writes when designing. The effect can be larger on
random writes vs random reads. Finally, the erase operation always erases
a certain number of pages close to each other. If pages are written close to
each other, it’s likely that the underlying FTL will also place them physically
close to each other. Therefore, pages that are likely to be erased at the same
time should be written close to each other.

FTLs try to do a good job of avoiding the inefficiencies that come from
problematic operation patterns, but they are generally unaware of the appli-
cation running on top of them. Thus, it’s better to design data structures
with the limitations of FTLs in mind even if one knows that the underlying
FTL is a very good one for the workload that it will be used for. When de-
signing for SSDs, then, one should avoid in-place updates and random writes.
Having too many writes in general can also be a problem, and for best results
one should try to cluster together pages that are likely to be erased at the
same time (for example, as part of a range deletion operation). The next
section will go over some implementations of B-tree-like structures on flash,
showing in practice some of the design choices made by the authors.

4.2 B-tree implementations

Since 2003, there have been a number of B-tree or B-tree-like data structure
implementations for flash. The early ones made small, incremental changes
to the base case of merely running a B-tree on a flash translation layer. C-H
Wu et al. [53] proposed BFTL in 2003, a layer partially between the FTL
and any B-tree. This proposal collected insertions into a buffer to write them
all out to the flash disk at once, thus decreasing the amortized time for an
insert operation. Depending on the sortedness of the data, their approach
was up to twice as fast, and yielded a dramatic decrease in pages written and
deleted overall.

Lee and Moon [37] introduced the in-page logging method in 2007 , where
the logging data for a given B-tree node was co-located with the data for that
node in order to minimize the amount of writes to different pages when the
data was updated, and also saving on erases when it was deleted.

Nath and Kansal [44] proposed FlashDB in 2007, a B-tree-like data struc-
ture. Their argument was that existing indexing schemes adapted poorly to
changes in workload (updates vs lookups) or flash devices (write vs read la-
tency), and proposed a self-tuning algorithm for adapting to all these cases.
Their algorithm revolves around the idea of individual tree nodes switching
between Log and Disk mode, where the former is faster with update-intensive
applications and the latter is faster with lookup-intensive applications. The



CHAPTER 4. TREE STRUCTURES ON FLASH 28

read and write latencies factor into the calculation of when to switch modes.
A B-tree’s rebalancing operation works recursively from a leaf node to

the root, and accordingly Nath and Kansal’s proposal was to have as much
of this rebalancing path inside a single flash page as possible for any given
node in order to minimize the number of pages accessed. They achieved a
28 % increase over real workloads compared to a B-tree, or up to 90 % with
a small amount of RAM for caching. The idea of co-location was similar to
that of Lee and Moon [37].

Two other recent structures, the FD-tree [38] and the Lazy Adaptive
Tree [1], both from 2009, will be gone through more closely.

4.3 Showcase: The FD-tree

The FD-tree by Li et al. [38] is a tree-like structure for flash disks that takes
inspiration from the logarithmic method [7] and the fractional cascading [13]
technique. Using the logarithmic method, a data structure is split into a
logaritmic number of parts of exponentially increasing size, and queries are
done on all the parts separately to obtain all the results. In insertion, several
of these parts are combined when needed. Fractional cascading is a technique
for speeding up searches through multiple similar structures.

The FD-tree is composed of several levels, with the top level being a
small B-tree called the head tree (see Figure 4.1). The levels below it are all
composed of sorted runs of key records, with each level having a maximum
size exponentially larger than the previous level. The levels each contain
pointers (called fences) to the levels below them, so that searches can find
keys from all the levels. There are two types of fences: internal fences and
external fences. They are organized based on a division of the levels into
pages. Each external fence points to the end of a page on the next level,
and divides the key space on the next level much like a key in a B-tree’s
internal node. There is one external node per page on the next level, and
their key value is set to be the last key of the page they point to. Internal
fences are an aid to searches, and they are placed at the end of a page when
the entries between two external fences span multiple pages (see Fig. 4.1
for an example). Record entries contain a key value and the type of record
(insertion or deletion).

The insertion in the FD-tree is performed by inserting a record into the
top level, the head tree. If the number of entries in the head tree exceeds
its capacity, the head tree’s contents are merged with the level below it.
If that level becomes full, it’s merged with the level below it recursively.
Merging is performed by iteratively reading in all the key-value pairs of the



CHAPTER 4. TREE STRUCTURES ON FLASH 29

L0

L1

L2

Figure 4.1: The FD-tree structure. Data is contained at every level. White
areas are unused space that is reserved for a node or level, light gray areas
are data, and dark gray areas are fences. The X denotes an internal fence.
[38]

upper level and lower level and writing out the combined key-value pairs as
a sorted run. It’s possible to do this in linear time as both merged runs
are already sorted. Deletions are handled by inserting a delete entry, which
cancels out an existing older key in a merge. When a delete entry reaches
the lowest level, the key it affects is removed if it exists, and regardless the
delete entry is removed during the merge. Fences are updated appropriately
during merges. Pointers are updated appropriately throughout the process.
Range searches are done by recursively moving down the tree and at each
level using the fences to efficiently find the starting and ending points on
each level that the range search needs to return (since each level is sorted,
once the starting point is found the algorithm can just scan forward until it
reaches the end point). Deletion entries encountered during the search will
be taken into account if a matching inserted key is found.

The FD-tree’s performance was compared to the LSM-tree [45] and the
flash-based BFTL [53], in addition to a very poorly performing B-tree. On
the two chosen workloads, it was about five times faster than BFTL and
between 1.69 times and 2.26 times faster than LSM-tree. Notably, it had
a much more consistent performance than most of its competitors. Due to
its structure, the FD-tree is not very sensitive to differences in modifying
workloads. Merges take roughly the same time, as long as the operations
have a consistent ratio of insertions to successful deletions.

The FD-tree uses the design principle of avoiding writes, particularly ran-
dom writes, by causing arbitrary insertions to result in small and predictable
amounts of long sequential writes. It avoids in-place updates by only doing
in-place updates in the head tree that’s held mostly in memory.

4.4 Showcase: Lazy Adaptive Tree

The Lazy Adaptive Tree [1], or LA-Tree for short, is a tree-like structure
that mainly uses the techniques of cascaded buffers and adaptive buffering to



CHAPTER 4. TREE STRUCTURES ON FLASH 30

achieve very good general speed and adaptitivity to many different kinds of
data. The idea in cascaded buffering is to have in-memory buffers attached
to nodes in the tree, so that every Kth level has nodes with buffers, where
K ≥ 1. When some buffer higher up in the tree becomes full, it is emptied
and its contents migrate to nodes and buffers lower in the tree. This can be
used to optimize both node reads and node writes in nodes during the course
of an update operation. Writes are optimized due to several writes being
amortized when the node contents propagate downwards, and reads due to
not having to read the data from disk.

The idea in adaptive buffering is slightly more complex. The key concept
is called reasoning in hindsight. Reasoning in hindsight is the idea that if
we had known what data would be inserted right now at some prior point in
time, then if we would have made a certain decision at that point in time,
we are going to make a certain decision right now. The thing that is being
decided, specifically, is whether to empty buffers after any given operation.
On one hand, emptying the buffer causes a cost that is linear to the size of
the buffer. On the other hand, not emptying the buffer, when looking at it
in hindsight, causes an additional scan cost of the buffer every time there is
a lookup targeting that buffer. The basic idea of the ADAPT algorithm that
governs the behaviour of the LA-tree, then, is this: If the summed costs for
additional scans after a point t in time, when looking at any previous point
t, exceed the cost at that time to empty, then empty. This simple algorithm
allows the LA-tree to adapt both to lookup-intensive and update-intensive
applications.

An example is shown in Table 4.1. The costs to scan up to that point
in the buffer for every subsequent lookup and the cost to empty are shown
for the situation of the buffer at every prior lookup. In this situation, the
costs to look up exceed the costs to empty at L4: At the time of L1, the
extra cost for scanning was 75 and the cost to empty was 215. Since then
three lookups have borne the extra cost of scanning, and so, the total extra
cost from scanning has become 3× 75 = 225 > 215. Thus, at that point the
buffer is fully emptied.

The performance of the LA-tree, according to tests done by the authors
themselves, was extremely good. Compared to its competitors, including
a normal B-tree, and implementations of FlashDB [44], BFTL [53], and
IPL [37], it was always at least as fast as the best competitor across a variety
of chosen workloads, and 3-6 x faster over several workloads (For example,
on the TPC-C Customer and Order benchmarks it was better than the best
competitor by more than 5x for both).



CHAPTER 4. TREE STRUCTURES ON FLASH 31

Lookup Register(scanCost, emptyCost)
1 (75, 215)
2 (90, 230)
3 (120, 260)
4 (230, 370)

Table 4.1: Reasoning in hindsight with the Lazy Adaptive Tree [1]. Three
prior lookups have been made, interspersed with additions to the buffer, and
the fourth one triggers a buffer emptying.



Chapter 5

Indexing bulks

This chapter will detail the bulk index, a new data structure that’s designed
to work well on SSDs, particularly with large bulk operations. The structure
of the bulk index, and its components, will be described in Section 5.1. The
simplest operation, search, will be described in Section 5.2. Bulk insertion,
where the bulk index does especially well on clustered data, is described in
Section 5.3. Bulk deletion, with its near-constant complexity, is described in
Section 5.4. Section 5.5 calculates complexity results for the bulk index, and
Section 5.6 suggests some practical optimizations for it.

5.1 Structure

The bulk index is a novel data structure for which three operations have
been defined: Bulk search, bulk insertion and bulk deletion. It contains
two components. The main file stores record tuples, the keys of which form
nonoverlapping sorted ranges. The main file contains no metadata by default,
and is only a storage space for the records that the bulk index manipulates. It
has no significant structure, and in fact one way to implement it is as a binary
file that is only ever appended to and read aside from garbage collection. The
other part, the range index, is a small B-tree, or another data structure with
the standard B-tree operations of insertion, update, deletion and search, that
contains pointers to the sorted ranges in the main file. The ranges are defined
more precisely next.

The ranges

A range is a sorted sequence of keys that does not overlap with the other
ranges contained in a given bulk index. Metadata on ranges is contained in
the range index, while the actual content (the tuples) are contained in the

32



CHAPTER 5. INDEXING BULKS 33

main file as sorted tables. Figure 5.1 shows the relation of the range index
to the main file. Every range entry contains a pointer to one of the tuple
sequences on the main file, and also notes between which keys all the keys in
a range are contained. Formally, a range entry r = (k1, k2, p1, p2) where k1
and k2 are the smallest and largest keys of the range (represented in Figure
5.1 with interval notation in the range index entries) and p1 and p2 are the
two offsets on the main file between which the range’s tuples are located.
The offset p1 refers to the first byte of the first tuple in the range, and the
offset p2 refers to the last byte of the last tuple in the range. The range index
is indexed on the key k1.

The following sections will go more closely into the specifics of how ranges
are inserted, deleted and searched through, and how the main file is used.
Generally, the range index uses operations to remove, add or update a range.
In addition, it is assumed that normal search for a key is possible, and that
searching for the nearest neighbour to a key in either direction is possible.
Finally, for the purpose of complexity calculations, all these operations are
assumed to have complexity O(logNR), where NR is the number of entries in
the range index. A B-tree, for example, would make a suitable range index.

The size parameter, M

One more thing is necessary to fully understand the structure of the bulk
index. The bulk index, as shown in Figure 5.1 has ranges of size 4, 4, 6 and
6. It is no accident that these are all close to each other in size. In order to
maintain certain complexity results that will be described in Section 5.5, the
bulk index’s operations maintain the invariant that all ranges are of a size
between M and 2M − 1, where M is any positive integer. In the case of the
small versions of the bulk index used throughout this chapter, the value for
M is 4, which means that every range must be of a size between 4 and 7.
The parameter M will be referenced often, both in the text, the pseudocode
for the algorithms and in the complexity results. Optimizing this parameter
is important for best performance of the bulk index - this will be discussed
further in Chapter 6. A sufficiently large value for M makes the range index
small enough to fit completely into memory. However, M should be small
enough that one range can be read quickly when doing point searches and
small range searches. It should also be large enough that reading many
records from the main file is still efficient when doing large bulk insertions
or range searches. In this thesis, the value for M chosen for the experiments
was 2048, after the SSD measurements in Section 2.3.



CHAPTER 5. INDEXING BULKS 34

12 13 14 15 60 62 63 6745 48 49 52 72 7918 21 22 23 34 37

12-15 18-37 45-52 60-79

Main file

Range index

Figure 5.1: The bulk index structure. Here the range numbers like 18-37
represent k1 and k2, and the pointers p1 and p2 are represented by an arrow
to the right interval.

5.2 Bulk search

This section explains how to perform range search on the bulk index. General
bulk search of several ranges can be done by running several iterations of
range search either iteratively or in parallel and merging the results. Range
search of the bulk index is straightforward. Given the range of a low key
L and a high key H between which to search, the search locates all ranges
that include keys between L and H and reads them off the main file. In this,
it is similar to the normal approach for range search in B+-trees, with the
exception that instead of traversing all the relevant leaves over a range of
keys it traverses the key ranges.

The algorithm proceeds as follows: First, the nearest lower neighbour
to the low key is located. The range index is traversed once to locate the
range that corresponds to this key, remembering that the ranges are indexed
on their low key. The range is read into memory, and binary search is per-
formed on it to determine the first key greater than or equal to L. Now, if the
last key in the range is smaller than or equal to H, binary search is used again
to determine where the last tuple to be returned is, and everything between
L and H is returned. Otherwise, the tuples with keys above or equal to L are
read, and the next range is read. Then full ranges are read and added to the
list of tuples to be returned until a range is found which should contain H, at
which point all tuples with keys less than H will be returned from that range.

As an example, in Figure 5.2 below a range search of keys between 14 and
48 is done. The affected ranges and range index entries are shown in a light
gray, the read tuples in a darker gray. The process begins by finding the
range that is the nearest lower neighbour of 14, namely 12-15. Then, binary
search is performed to see where to begin reading tuples. The endpoint is
not in this range, so the search continues, reading the 18-37 range next. As
the endpoint is not here either, the range is read in full. Finally, the search



CHAPTER 5. INDEXING BULKS 35

Algorithm 4 Range search in bulk index

{Range search for keys L to H, given range index R and main file F .}
t ← empty list of tuples
(k1, k2, p1, p2) ← range in R with the greatest k1 such that k1 ≤ L
m ← all (k, v) between offsets p1 and p2 in F
t ← t ∪ {x ∈ m|L ≤ x ≤ H}
while H > k2 do

(k1, k2, p1, p2) ← successor range of range with key k1
m ← all (k, v) between offsets p1 and p2 in F
t ← t ∪ {x ∈ m|L ≤ x ≤ H}

end while
return t

12 13 14 15 60 62 63 6745 48 49 52 72 7918 21 22 23 34 37

12-15 18-37 45-52 60-79

Main file

Range index

Figure 5.2: The bulk index search. Light gray areas are range index entries
or ranges that have to be read, dark gray areas are actually read keys.

arrives at the range 45-52, where the endpoint 48 should be located, and it’s
found by binary search, adding all the tuples less than or equal to it to the
set to be returned.

This means that one read of the main file will be necessary for every
range affected. Due to every range being of size between M and 2M − 1, the
number of reads is proportional to the amount of retrieved tuples.

5.3 Bulk insertion

The idea in the bulk insertion algorithm is that given a set of tuples to be
inserted, each tuple is added to the existing range where its key would fit.
Many tuples can be inserted into the same range for roughly the same cost
as a single tuple, making the algorithm more efficient per tuple when more
tuples can be fit.

The bulk insertion algorithm proceeds as follows, given a set of keys L to
be inserted. First, L is sorted in main memory. If L will not fit into main
memory, it is divided into smaller bulks first. Then, the insertion procedure



CHAPTER 5. INDEXING BULKS 36

proceeds from the first tuple onward. The place in the range index where
the tuple should be is identified by a search of the range index. Then the
tuples in this range are read from from the main file, and any tuples in L
that fit between its endpoints are merged with it in memory, maintaining
sorting. The range itself is removed from the range index. This sorted set
of tuples is then written out to the main file, along with a new range entry.
Should the new range, with the merged keys, be at least 2M in size, M -sized
ranges starting from the lowest key in the range are written out until the last
range that is written out has less than 2M keys. When there are no more
keys to be inserted, the buffer is also emptied, leaving M to 2M − 1 keys to
be written out to the main file. This way the buffer always has at least M
tuples when it has not been fully emptied, and so ranges with less than M
tuples never have to be created.

Algorithm 5 Bulk insertion in bulk index

{Bulk insertion of records L = [(l0, v0), (l1, v1), ..., (ln, vn)] into range R and
main file F . x[i] means the (i+ 1):th entry in the ordered set or tuple x.}
while L 6= ∅ do

(k1, k2, p1, p2) ← range in R with the largest k1 such that k1 ≤ l0
R ← R− (k1, k2, p1, p2)
m ← all (k, v) in F between offsets p1 and p2
{m remains sorted by key in ascending order after the merge on the next
line, as well as when tuples are removed from it later}
m ← m ∪ {(k, v) ∈ L|k ≤ k2}
L ← L− {(k, v) ∈ L|k ≤ k2}
while |m| ≥ 2M do
s ← {m[i] | 0 ≤ i < M}
m ← m− s
Write s to F
{pnew1 and pnew2 are the first and last offset of s on F}
R ← R ∪ {(s[0][0], s[M − 1][0], pnew1 , pnew2}

end while
Write m to F
{pnew1 and pnew2 are the first and last offset of m on F}
R ← R ∪ {(m[0][0],m[|m| − 1][0], pnew1 , pnew2}

end while

Figure 5.3 shows how a single bulk insertion works. Here, 4 tuples are inserted
and M=4. One each is inserted into the area covered by the first two ranges,
and two keys into the last range. The ranges are merged with the tuples to
be inserted, and the merged tuples are written in blocks of size M, or blocks



CHAPTER 5. INDEXING BULKS 37

21 23 34 37 60 67 72 7912 13 15 18 45 48 49 52

12-18 21-37 45-52 60-79

Main file

Range index

Inserted keys
14 22 62 63

BEFORE

AFTER

18 21 22 2312 13 14 1545 48 49 52

12-15 18-37 45-52 60-79

Main file

Range index

34 37 60 62 63 67 72 79

Figure 5.3: The bulk index insertion. Gray areas are areas that are affected
(above, pre-insertion) or freshly inserted (below, post-insertion)

of size between M and 2M , inclusive, for the last block before a non-affected
range. In this case, it means one block of size 4 = M and one block of
size 6 before the non-affected range 45-52. After this range, also, 6 tuples
remain to be written, and they are all written out as a single range. However,
regardless of the specifics of division into ranges, it can be seen that all the
merged tuples are written out in order to the end of the main file (”holes” in
the main file are not shown here, such as the one left when the ranges 12-18
and 21-37 were read - they have been omitted for brevity of presentation).

The same algorithm works for updates as opposed to insertions, with one
difference: The keys to be updated are just modified in the merging phase,
rather than being added to. A combination of insertions and updates can
thus be processed efficiently.

The new ranges are assumed to be appended to the end of the main file.
In practice some garbage collection procedure will be employed to clear the
spaces that are now unnecessary. For example, a background process could
periodically run garbage collection on those spaces, using the information
in the range index to find which spaces are no longer in use. Another way
is to integrate the garbage collection into the bulk insertion, update and
deletion procedures, writing to space no longer in use rather than to the end
of the main file. Further details are outside the scope of this thesis. As the
writing is done to the end of the file, and many ranges are frequently written



CHAPTER 5. INDEXING BULKS 38

out during the same bulk insertion procedure, the implementation has some
leeway in the specific write buffer-emptying policy. These considerations will
be discussed in Section 5.6.

Bulk update

Algorithm 5 assumes insertion of at least one key that is not known to already
exist in the index. If it is known that only updates are contained in the list
of keys to be modified, then the algorithm becomes significantly simpler.

Algorithm 6 Bulk update in bulk index

{Bulk update with records L = [(l0, v0), (l1, v1), ..., (ln, vn)], given range R
and main file F . x[i] means the (i+ 1):th entry in the ordered set or tuple
x.}
while L 6= ∅ do
k1, k2, p1, p2 ← range in R with largest k1 such that k1 ≤ L[0][0]
m ← all (k, v) in F between offsets p1 and p2
For any (k, v) ∈ m s.t. k ≤ k2 and (k, x) ∈ L, remove (k, v) from m and
add (k, x) to m
L ← L− {(k, v) ∈ L | {k ≤ k2}
Write m to F between p1 and p2

end while

Algorithm 6 shows how it works without modifying the range index at
all. In the final step, the update could also be written to the end of the main
file and the range entry of the range index could be modified to point to it,
rather than the main file being updated in-place. This would mean addi-
tional garbage collection to handle, but would allow for some optimization
when writing out the write buffer’s contents and would avoid the problems
of update-in-place on SSDs.

5.4 Bulk deletion

Deletion of a range of keys takes advantage of the division of the bulk index
into the small, easily modified range index with ranges only of a certain size
and the main file. First, all ranges in the range index that fit completely
between the two ends of the range to be deleted, are deleted from the range
index. Here, it’s possible to take advantage of an efficient bulk deletion
algorithm if one exists for the range index. For example, B-trees have several
efficient bulk deletion algorithms (see Section 3.4). This leaves one or two



CHAPTER 5. INDEXING BULKS 39

ranges that are partially to be deleted. The ranges that these two correspond
to are read from the main file, and the tuples to be deleted are removed from
the merged whole. The corresponding range(s) are deleted from the range
index. Now, the number of the tuples remaining can be anything from 0 to
4M − 4 (in the case of two maximal-size ranges that both have one tuple
deleted). If this number is less than M , the keys are merged with one of
the neighbouring ranges before writing them out, deleting the merged range.
Then these M to 4M − 4 tuples are written out and corresponding ranges
added to the range index, writing out as many full ranges of size M as possible
while ensuring that each range is at least of size M .

Algorithm 7 Bulk deletion in bulk index

{Deletion of keys between L and H in range index R and main file F . x[i]
means the (i+ 1):th entry in the ordered set or tuple x}
(kl1, kl2, pl1, pl2) ← range in R with highest kl1 ≤ L
Delete this range from R
(kh1, kh2, ph1, ph2) ← range in R with lowest kh2 ≥ H
Delete this range from R
Delete all ranges (k1, k2, p1, p2) in R with kl2 < k1 < kh1
m ← All (k, v) between offsets pl1 and pl2 in F with k < L
Add to m all (k, v) between offsets ph1 and ph2 in F with k > H
if |m| < M then

(k1, k2, p1, p2) ← Range with k1 closest to kl1 in R
Delete this range from R
{m remains sorted by key in ascending order}
Add to m all (k, v) between offsets p1 and p2 in F

end if
while |m| ≥ 2M do
s ← {m[i] | 0 ≤ i < M}
m ← m− s
Write s to F
{pnew1 and pnew2 are the first and last offset of s on F}
R ← R ∪ {(s[0][0], s[M − 1][0], pnew1 , pnew2}

end while
Write m to F
{pnew1 and pnew2 are the first and last offset of m on F}
R ← R ∪ {(m[0][0],m[|m| − 1][0], pnew1 , pnew2}

Figure 5.4 shows how the bulk deletion procedure proceeds in the case where
the merged leftover ranges are of a combined size of at least M , in this case
4. Here, the deletion was for keys 30 to 70, affecting three ranges in total.



CHAPTER 5. INDEXING BULKS 40

21 23 34 3712 13 15 18

12-18 21-37 45-52 60-79

Main file

Range index

60 67 72 7945 48 49 52 80 82 84 88

80-88

BEFORE

21 2312 13 15 18

12-18 21-79

Main file

Range index

72 7980 82 84 88

80-88

AFTER

Figure 5.4: The bulk index deletion. Affected range index entries and tuples
shown in gray.

One range is deleted completely, and 4 tuples are left over. As there are at
least M leftover tuples, they are combined into their own range and written
to the end of the main file. A new range entry is also inserted into the range
index. If the merged number of tuples had exceeded 2M , additional ranges
of size M would have to be written before the final range of size between M
and 2M is written out (not shown).

The situation where their combined size is less than M and another range
has to be merged with them to get enough tuples to write out a range of at
least size M is shown in Figure 5.5. In this case, one extra range has to be
read. The deletion here is for keys between 30 and 75, affecting one more
key than in the previous case. Now, there are only the keys 21, 23 and 79
left over, 3 keys in total. As this is less than M , the next range is used to
make a range of at least size M , in this case, of size 7 (in the case of the
range having the largest k1 in the range index and thus having no successor,
the previous range could be used instead). If the combined total after using
the next range had exceeded 2M (ranges being of sizes between M and 2M),
extra ranges of size M would need to be written out until the last range was
between sizes M and 2M , inclusive.

5.5 Complexity analysis

The previous sections have focused on the descriptions of the algorithms,
omitting discussion about how efficient they are likely to be. This section will



CHAPTER 5. INDEXING BULKS 41

21 23 34 3712 13 15 18

12-18 21-37 45-52 60-79

Main file

Range index

60 67 72 7945 48 49 52 80 82 84 88

80-88

BEFORE

21 2312 13 15 18

12-18 21-88

Main file

Range index

79 80 82 84 88

AFTER

Figure 5.5: The bulk index deletion, when the leftover number of tuples is
too small and the next range (80-88) must supply the needed tuples. Directly
affected range index entries and tuples shown in gray.

describe what the efficiency of bulk search, bulk insertion and bulk deletion
depends on, both in terms of operations on the main file and in terms of
operations on the range index. While it is noted that operations on the range
index are generally performed fully in memory, and so are likely to use up
very little time compared to even a single read or write of the flash disk, the
range index operation counts and complexities are included for completeness.
They are not compared in the experimental section, however, as only flash
I/O is compared there.

The paper ”Performance analysis of Y-tree on Flash Drives” [8] did the-
oretical analysis of the Y-tree [27] with a simplified model of a flash drive.
The model used several characteristics of the flash drive - seek time, write
speed, read speed, and erase speed - to project how the Y-tree [27] would
perform in practice. The paper lacked experimental verification, but the es-
sential analysis appeared sound, and a similar method will be used here. For
every operation, given certain parameters that depend on the operation in
question, the expected performance will be expressed with these variables.
tseekr + ntread is the total time for a random read of n tuples. Similarly,
tseekw + ntwrite is the total time for a random write of n tuples. Finally,
nterase is the time taken to erase n tuples.

In practice, these values depend on how many tuples are actually read
or written, the particular Flash Translation Layer in use for the disk, and
physical characteristics of the disk. However, for sufficiently large reads and
writes this model is believed to be reasonably accurate and tseekr , tread, tseekw ,



CHAPTER 5. INDEXING BULKS 42

and twrite can be calculated from the results in Section 2.3. Specifically,
with an assumed entry size of 8 bytes (4 bytes for the key and 4 bytes for the
value) we obtain tseekr = tseekw = 0.81×10−4s and tread = twrite = 3.2×10−8s.
terase is included for completeness but will not be measured experimentally.
It represents the time taken for deferred erase operations that will be done
eventually after the TRIM command [12] is used on the areas of the flash
disk that can be safely erased after a deletion.

Bulk search

The bulk search searches for keys in a number of ranges. In all but one or two
of these ranges, all the keys are returned - in up to two ranges, at least one
key is returned. Thus, the number of ranges affected depends on the number
of searched for tuples, T , in addition to the minimum size of each range, M .
Each range is of size between M and 2M , so the number of affected ranges
is at most T/M + 1, or O(T/M).

The range index’s search time is assumed to be logarithmic to the size of
the range index, and as each range is of a size between M and 2M , the size
of the range index corresponds to the amount of tuples already in the bulk
index, N . The size of the range index is at least N/2M , or O(N/M).

Thus, the number of reads on the main file becomes (T/M+2) = O(T/M).
In the worst case, all the searched-for ranges are randomly distributed across
the main file, so each range also adds the tseek cost. Thus, in sum, the
cost becomes (tseekr + treadM)(T/M + 2) = O((tseekr + treadM)(T/M)) =
O(tseekT/M + treadT ).

For the range index, the search time is logN/M = O(logN/M) so the
total search time becomes O(logN ∗ T/M). To speed up the range index’s
operations, a range search can be used with cost O(log(N/M) +T/M). This
gives us

Theorem 5.1. When range search is performed on a bulk index with range
size parameter M and N existing keys and returns T keys, the time com-
plexity of accessing the range index is O(log(N/M) + T/M) and the worst
case time spent accessing the main file is (tseekr + treadM)(T/M + 2), or
asymptotically O(tseekT/M + treadT ).

Bulk insertion

The bulk insertion has two phases, which overlap with each other. First,
there is the reading of ranges from the main file. For each range read, the
range index is searched once, and the corresponding range is read off the
main file. However, this does not directly depend on the number of keys



CHAPTER 5. INDEXING BULKS 43

added, so instead we adopt a parameter R to describe the number of ranges
affected.

For every range affected, the tuples in those ranges are read, and the range
is searched for in the range index. The affected ranges in the range index
are subsequently deleted and new ranges are written in their place. As every
affected range can potentially end up as two new ranges with the insertion
of a single key, if the range’s size was 2M − 1 to start with, this means that
with small bulk insertions (up to the size of the range index, if there is no
further optimization going on) the number of insertion operations may be up
to 2T = O(T ), where T is the number of inserted tuples. In practice this is
quite unlikely, however. With an equal distribution of range sizes between
M and 2M , the chances of a single insertion leading to that range being split
are only 1/M . Even this distribution may overstate the chances, as certain
optimizations can maintain a low average size for ranges.

For the range index, the worst case for bulk insertion then becomes
O((min(R, T ) + T/M) log(N/M)), where T is the number of keys inserted,
N is the number of existing ranges, M is the range size parameter, and R is
the number of ranges affected.

For the main file, on the other hand, the two phases mean that there
will be a certain amount of (random) reads from the main file equal to the
amount of ranges read, after which a certain number of writes are made to
the main file. The reads depend on the number of ranges read R, whereas
the writes depend also on the number of keys inserted. The number of tuples
written out becomes O(RM + T ). This gives us

Definition 5.1. The update interval of a range (k1n , k2n , p1n , p2n) in a range
index with a preceding range (k1p , k2p , p1p , p2p) is defined as (k2p , k2n ].
The update interval of a range (k1n , k2n , p1n , p2n) in a range index with min-
imal k1 in the range index is defined as (−∞, k2n ].

Theorem 5.2. When bulk insertion is performed on a bulk index with range
size parameter M and N existing keys and inserts T keys that are contained
in the union of the update intervals of R distinct ranges, the time complexity
of accessing the range index is O((min(R, T ) + T/M) log(N/M)) and the
worst case time spent accessing the main file is (tseekr + (4M − 1)tread)R +
tseekw +twrite((2M−1)R+T ), or asymptotically O((tseekr +Mtread)R+tseekw +
twrite(RM + T )). In addition, leaving the old entries on the main file for
garbage collection incurs a worst-case deferred erase cost of teraseR(2M − 1),
or asymptotically O(teraseRM).



CHAPTER 5. INDEXING BULKS 44

Bulk update

A bulk update algorithm can be used when no new keys are being inserted.
In this case, the range index is used for a search operation and optionally
an insertion operation for each range that a key exists in. As the ranges can
be scattered, range search cannot be used effectively in all cases. The main
file is modified either in-place or by appending to the end of the main file
– this affects the number of seek operations. This never causes ranges to
split, however. The calculations below reflect the case where the main file is
appended to. This gives us

Theorem 5.3. When bulk update is performed on a bulk index with range
size parameter M and N existing keys and inserts T keys that are contained
in the union of the update intervals of R distinct ranges, the time complex-
ity of accessing the range index is O((min(R, T ) + T/M) log(N/M) and the
worst case time spent accessing the main file is (tseekr + (2M − 1)tread)R +
tseekw + twrite((2M − 1)R), or asymptotically O((tseekr +Mtread)R+ tseekw +
twrite(RM)). In addition, leaving the old entries on the main file for garbage
collection incurs a worst-case deferred erase cost of teraseR(2M − 1), or
asymptotically O(teraseRM).

Bulk deletion

In bulk deletion, the number of affected ranges depends on the amount of
tuples deleted, T , and the size of the block size parameter, M . Every range
that is in the affected key range is deleted, and if the one or two ranges at the
two extremes of the deletion area have parts which are not supposed to be
deleted, these parts are read from the main file and merged. If it so happens
that the merged area is nonzero but less than M tuples in size, an adjacent
range is read in order to make sure that there are enough tuples to read.

What is notable in bulk deletion is that, while the amount of deleted
ranges depends on the number of tuples deleted, the operations that have to
be immediately performed on the main file are constant. This constant is
greatest if the ranges at the ends of the deletion interval are both of size 2M
- 1 and a single tuple is deleted from each, in which case they both have to
be read and then three separate ranges have to be written out, of sizes M , M
and 2M − 4. However, there is a T/M -dependent number of deletions in the
range index, and a corresponding T -dependent number of eventual deletions
of data on the main file. The range index deletions can be optimized by using
a bulk deletion algorithm on the range index. This gives us

Theorem 5.4. When range deletion is performed on a bulk index with range
size parameter M and N existing keys and deletes T keys, the time complexity



CHAPTER 5. INDEXING BULKS 45

of accessing the range index is O(log(N/M) +T/M) and the worst case time
spent accessing the main file is tseekw +(4M−4)twrite+2tseekr +(4M−2)tread,
or asymptotically O(tseekw + twrite + tseekr + tread). In addition, leaving the old
entries on the main file for garbage collection incurs a worst-case deferred
erase cost of terase(T + 4M − 4), or asymptotically O(terase(T +M)).

Summary

The previous subsections derived precise and asymptotic formulas for the
efficiencies of the different operations on the bulk index. Range search is
roughly as efficient asymptotically as a normal B-tree, assuming that all
nodes except leaf nodes in the B-tree were kept in memory. The bulk index’s
node structure, however, keeps its nodes full of data and usually of similar
size. Thus, range searches are likely to be more efficient on it than on a
B-tree.

The bulk insertion’s efficiency is very good for cases where a large number
of keys fall in the update interval of a small number of ranges. In this, it is
similar to bulk update algorithms for the B-tree. However, its range index
operations are very simple, consisting of deleting the affected ranges and then
writing out a set of new ones, while appending records to the end of the main
file. It’s similar to the write-optimized B-tree [21] in that it can efficiently
combine several writes to the main file.

Range deletions are constant-time on the bulk index in terms of main file
operations. The range index’s operations are as fast as a range deletion on
the underlying data structure of the range index. The bulk index is thus
likely to be at least as fast in range deletion as a B-tree, and likely faster, as
the B-tree’s best range deletion procedures are logarithmic to the amount of
the deleted keys.

5.6 Optimization

This section will detail some techniques used in practice to improve the per-
formance of the bulk index.

Batching range writes

This is one of the simplest bulk index-specific techniques available.When a
bulk insertion is made, frequently there is a case when more than one range
is modified. In this case, both ranges are written out to the end of the file.
Their sizes can vary between M and 2M − 1, and the base algorithm writes
them out one at a time. However, it can be more efficient to use a constant



CHAPTER 5. INDEXING BULKS 46

write size, like a large power of 2, to write out ranges. With sufficiently
large write sizes, multiple ranges can be written out at once. This does not
present a problem for the maintenance of the range index, as the range index
only contains pointers to the main file and the location of the data on the
main file does not change just because larger writes are used. The usage in
experiments is justified, because in any situation with a write buffer-sized
area to write to, it can be used. It should be noted that, in situations where
the write buffer is not considered unlimited, it should be ensured that partial
writes of ranges do not take place. For example, if the write buffer was 512
kB and there was only an exactly 512 kB-sized area to write to at a particular
location on the disk, then the last range in the write buffer should be shunted
to the next write buffer in order for it not to get cut in half.

Batching range reads

When the range index is traversed as part of the bulk insertion, it’s possible,
particularly with the range-write batching described above, that consecutive
ranges will also be consecutively placed on the main file. The bulk insertion
is essentially a sweeping-path algorithm that passes through ranges from low
to high and never goes the other way. Thus, the lower ranges do not need
to have their insertions processed before reading the higher ranges. Thus,
it’s possible to implement read-ahead in the algorithm, so that many ranges
that need to be read are known ahead of time. When they are known,
as they are consecutive, many of them can be read in with one operation,
which is generally more efficient as it saves on seeks. Even if the ranges are
fragmented, it can be done by reading in ranges to memory with another
thread while the main thread is working on the previous ones.

Batching ranges

During bulk insertion or bulk deletion, when two or more consecutive ranges
are read from the main file, and are merged with the keys that are supposed
to be inserted into them, they can be combined with each other. This means
that in the writing-out phase of the bulk insertion, there is a larger amount
of M -sized blocks that can be written out before a larger block must finally
be written. This, in turn, means that there are more M -sized blocks in the
bulk index, which is generally good as optimization of M ’s size (as per the
experiments in Section 2.3) is done for a block size of M rather than some
block size up to 2M − 1. This helps keep the index from deteriorating over
time to ranges with less standard-sized blocks. Without this optimization,
M -sized ranges followed by a [M, 2M)-sized range will be written out for



CHAPTER 5. INDEXING BULKS 47

each range individually.

Differential indexing

Differential indexing is the idea of storing changed records that invalidate
existing records without modifying those records [20]. This is accomplished
by storing these new records in a new data structure with the same structure
as the main structure, and considering the new record for a given key to
supersede the record that is stored in the main structure. For an insertion
or update, this record contains the new value for a given key. For a deletion,
the record denotes the deletion of the key.

When a search is performed on the data structure, it needs to read both
the original data structure for values of the key, and also this differential data
structure in case the value has changed. The returned value is then the most
recent one (the one found in the differential data structure if the differential
data structure has a relevant entry). In this way, search performance becomes
lower, because several different structures need to be read through.

However, differential indexing allows for improved insertion, deletion and
update performance. When records are modified in the smaller differential
data structure, the cost to do so can be significantly lower than for modifying
them in the original data structure. In the case of the bulk index, this is
largely due to the fact that when the data structure is smaller, the same
number of inserted keys tends to cause a smaller amount of ranges to be
modified. Now, eventually the differential data structure needs to be merged
with the original one, causing some additional cost. With the bulk index, this
could be done by maintaining several independent bulk indexes and using all
the keys in one bulk index as a bulk insertion in the next larger bulk index.



Chapter 6

Experimental results

This chapter will detail the experiments that were performed to evaluate the
bulk index. Section 6.1 will show how the bulk index performs under different
workloads that add data to the structure, as compared to the LA-tree. These
form the bulk of the experimental section. Section 6.2 will then briefly show
how the range search of the two trees differs in efficiency, and Section 6.3 will
experimentally verify the constant-time complexity of range deletion on the
bulk index. Finally, Section 6.4 will discuss the results.

6.1 Bulk insertion

When doing a bulk insertion, the bulk index’s bulk insertion algorithm mod-
ifies both the range index and the main file. The range index is modified
for each range that has keys inserted into it by deleting the old range and
adding one or more new ranges. The main file is only ever appended to, and
unused parts of it will eventually be garbage collected. The garbage collec-
tion is not simulated in these experiments. The range index’s modifications
are done entirely in memory, and at the end of a bulk insertion its contents
are written to disk. The lazy adaptive tree lacks a separate bulk insertion
algorithm, but it has demonstrated very good performance on a variety of
workloads with single-record operations [1].

The efficiency of the bulk insertion algorithm on the bulk index depends
on the number of ranges affected as well as the amount of keys inserted
and the parameter M (see Section 5.5 and Section 5.1). A high amount of
clustering reduces the amount ranges affected and thus improves efficiency.
The experiments will vary the amount of keys inserted as well as the amount
of clustering.

For all the experiments, we used 128 kB of RAM, enough to fit a bit

48



CHAPTER 6. EXPERIMENTAL RESULTS 49

over 16 000 key-value pairs. For the LA-tree, we divided this RAM so that
3/4 of it was used for the LA-tree’s LRU cache and the remaining 1/4 for
the LA-tree’s node cache, as suggested by the LA-tree’s authors. For the
bulk index, we used all the RAM to contain the range index. In addition,
both structures used some RAM for non-variable things like containing the
program code. This is not counted toward the 128 kB. The bulk index’s
range index was simulated with a binary tree, but this does not matter much
as there was enough RAM to contain the whole tree so the only operations
the range index caused on disk were the ones to flush the tree to disk at
the end of the experiment. The value for the parameter M was chosen to
be 2048, for a minimum page size of 16 kB. The Lazy-Adaptive Tree used a
node size of 16 kB, although some of its operations were only a few hundred
kB (possibly the small operations done as part of the ADAPT algorithm).

For all data structures, we flushed the data to disk at the end of the
experiment. Both data structures generated a trace of I/O operations that
they would perform in a non-simulated situation. These I/O traces were then
run on our SSD disk to obtain the running times for both structures. In this
way, we disregard all the time that goes into handling non-disk operations.
Although not tested experimentally, it is likely the case that this slightly
favors the LA-tree, as its ADAPT algorithm is more complex than the bulk
index’s very simple operations. The experiments were set up by inserting the
initial keys into the bulk index in a single bulk insertion operation, resulting
in all ranges except one being of size M . In all bulk insertions, the tuples
to be inserted were sorted before insertion. As the LA-tree does not have a
specific bulk insertion operation, the keys were inserted into it in ascending
order.

The first experiment measured the adaptivity of both structures to the
simplest kind of clustering: Elementary bulks of a given size were inserted
into the bulk index, with their positions in the data chosen uniformly at
random. In total, 50 000 records were inserted into 450 000 existing records.
The total number of elementary bulks inserted is equal to 50 000 divided by
the elementary bulk size. The results are shown in Fig. 6.1.

The bulk index is about twice as fast as the LA-tree for smaller values of
elementary bulk size. The difference narrows a little at elementary bulk sizes
of about 300. At that point the bulk index still reads in most of its existing
nodes, but the LA-tree’s lazy buffering begins improving its performance at
elementary bulk sizes of about 50-100. With larger elementary bulk sizes
the difference widens again as the bulk index’s number of ranges affected
drops, down to a minimum of 5 ranges affected at an elementary bulk size
of 10 000. With very large elementary bulks the amount of ranges affected
becomes very small on the bulk index, and then most of the time is spent



CHAPTER 6. EXPERIMENTAL RESULTS 50

100 101 102 103 10410-3

10-2

10-1

100

Bulk index, M=2048
Bulk index, M=4096
LA-tree

Figure 6.1: Bulk insertion of 50 000 keys with varying size of elementary bulk
in the insertion. The x-axis shows the elementary bulk size, while the y-axis
shows the time taken in seconds.



CHAPTER 6. EXPERIMENTAL RESULTS 51

104 10510-2

10-1

100

Bulk index, M=2048
Bulk index, M=4096
LA-tree

Figure 6.2: Bulk insertion of a varying number of keys, with size 100 ele-
mentary bulks in the insertion. The x-axis shows the total amount of added
keys, while the y-axis shows the time taken in seconds.

on writing out the new bulks. This can be seen in how the improvements in
efficiency decrease in magnitude at elementary bulk sizes of over 2 000. The
choice of the range size parameter M for the bulk index is very important, as
a large node size will cause a slowdown when only a small number of existing
nodes are affected by the bulk insertion. In this case, the same number of
nodes must be read as with a smaller value of M , but the time to read it and
write it out becomes larger. Conversely, when many nodes are affected with
a smaller elementary bulk size, the large M is favorable as one node with
4096 entries can be read more efficiently than two nodes with 2048 entries.

Another set of bulk insertion experiments were also run, with the elemen-
tary bulk size being set to 100 or 1000 and a varying number of keys being
added. Otherwise the setup was the same as in the previous experiment. The
results are shown in Figs. 6.2 and 6.3.

There are a few interesting things to note here. It should be noted that for
small insertions, the LA-tree is nearly as efficient as the bulk index. However,
the difference in efficiency increases significantly as the size of the insertion
does. The other thing is that the optimal choice of M seems to be very
dependent on the expected size of the elementary bulk in the data. With size



CHAPTER 6. EXPERIMENTAL RESULTS 52

104 10510-3

10-2

10-1

100

Bulk index, M=2048
Bulk index, M=4096
LA-tree

Figure 6.3: Bulk insertion of a varying number of keys, with size 1000 ele-
mentary bulks in the insertion. The x-axis shows the total amount of added
keys, while the y-axis shows the time taken in seconds.



CHAPTER 6. EXPERIMENTAL RESULTS 53

100 elementary bulks, the bulk index with M = 4096 is the superior choice
for insertions of 30 000 keys and above, whereas for size 1000 elementary
bulks the bulk index with M = 2048 is the better choice for all the tested
cases up to 200 000 added keys.

6.2 Range search

The range search touches the main file very predictably during search: It
only looks at those ranges containing keys that it should be returning. This
is usually the case for other tree-based structures as well: Their inner nodes
are cached in memory, so I/O must only be done on those parts of the disk
that correspond to their outermost nodes. Small branching factors in the
tree may change this.

Some structures, like the Y-tree [27], use relatively high node sizes nat-
urally. This can lead to a slowdown particularly on small reads, as overly
large nodes have to be read every time. Some can just have more ”wasted”
space than others. For example, a B-tree has a natural fill-rate of about 70
%, while tree structures like the bulk index and the FD-tree approach 100
%. The node size, how the nodes are distributed (whether they can be read
sequentially or not), and any extra I/O work that the range search operation
needs to do all have an impact on range search performance.

The range search experiment again had an initial set of 450 000 keys,
and range searches of constant size were performed on it with the starting
point selected uniformly at random among the keys and 1000-20 000 keys
being returned per range search. The results can be seen in Fig. 6.4. The
experiments were run with two different values for M for the bulk index.

The bulk index’s low complexity and full nodes make it quite efficient in
range searches. The LA-tree has more metadata to keep track of, and its
nodes may not be as densely packed as the bulk index’s. In the comparison
with similar node size (M = 2048), it takes up to 50 % more time per range
search, which would be expected if its fill rate is close to the normal B-tree
fill rate of 70 %.

6.3 Bulk deletion

Bulk deletion on the bulk index is a constant-time process on the main file,
discounting the deferred erase operations (see Section 5.5). The range index
deletions can generally be assumed to be done in no significant time, so the
only significant factor is the main file. The LA-tree implementation does not



CHAPTER 6. EXPERIMENTAL RESULTS 54

0 5000 10000 15000 200000.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045
Bulk index, M=2048
Bulk index, M=4096
LA-tree

Figure 6.4: Average range search time for varying size of range searched.
The x-axis shows the amount of keys returned by the range search, and the
y-axis shows the average time spent per range search in seconds. Results are
averaged over 2000 range searches.



CHAPTER 6. EXPERIMENTAL RESULTS 55

0 5000 10000 15000 200000.0006

0.0007

0.0008

0.0009

0.0010 Bulk index, M=2048

Figure 6.5: Average range deletion time for varying size of range deleted.
The x-axis shows the amount of keys deleted by the range deletion, and the
y-axis shows the average time spent per range deletion in seconds. Results
are averaged over 2000 range deletions run on the same initial state.

include a deletion operation, so this section is only showing the bulk index.
The experiments performed are done with the same parameters as for range
searches in the previous section, but with range deletion for the same low
keys and high keys instead. The results are shown in Fig. 6.5.

These results show some oscillation, which depends on how many read and
write operations have to be made per deletion. The reason is that almost
every range in the initial keys is of size M = 2048. This means that if a
number of keys that is a multiple of M is deleted, there will almost always
be M keys left over when the other keys are deleted. This is the optimal
case where a single M -sized range is then written out. However, if there are
a multiple of M plus one keys deleted, then either M − 1 or 2M − 1 keys are
going to be left over. In the former case, a neighbouring range must always
be read, merged and written out, which is much less efficient. Other deleted
range sizes fall between these.

The experiment also validates that the range deletion is a constant-time
operation on the main file, disregarding deferred erase costs.



CHAPTER 6. EXPERIMENTAL RESULTS 56

6.4 Discussion of results

The previous sections have explained how the bulk index performs in a variety
of circumstances. In the case of bulk insertion of a single large bulk, the bulk
index performs consistently better than the LA-tree. The LA-tree does not
use a bulk insertion operation, but a variation of the bulk insertion method
noted in Section 3.3 was used: The input was sorted and then inserted one
by one, relying on the LA-tree’s own buffer structure to keep the insertion
fast. As can be seen in the results, this method is quite good but the bulk
index is still better optimized for bulk insertion of large bulks. It’s likely
that dividing the bulk into smaller parts and then inserting them would be
significantly less efficient on the bulk index, especially if the number of total
elementary bulks increased as a result. The worst possible case would be
a bulk insertion where one record is inserted into each range, causing every
range to be read and then written. In a practical application, where more
entropy in the data is expected, the bulk index could be paired with a cache
structure that prioritizes insertion into ranges that many of the inserted keys
fit into. Research has begun on this topic, as well as the topic of using
differential indexing on the bulk index.

The range search of the bulk index performed very well, which could
partly be explained by the bulk index’s tendency to put its ranges in order on
the main file. With a less efficient arrangement, for example with more ranges
that were not of size M being present, the results might degrade somewhat,
even though the results of Section 2.3 did not show a large difference between
random and sequential reads. However, particularly in applications with large
bulk insertions it seems justifiable to assume that bulk insertions often affect
consecutive ranges, which improves the efficiency of range searches.

The range deletion of the bulk index only takes a small constant time in
terms of main file operations, and there are no caveats to this result. This
range deletion method could be built on to efficiently perform deletion of a
large amount of smaller ranges contained between a low key L and a high
key H, by removing all the deleted keys between L and H and then writing
out the remainder in a single bulk insertion.

Overall, the bulk index has strong results in the areas where it should
work well, and its simplicity makes it a good base for further research.



Chapter 7

Conclusion

This work has introduced a novel indexing structure for flash devices, the
bulk index. The bulk index was designed with the key characteristics of
flash memory in mind: avoiding costly in-place updates of data, and reading
and writing in large blocks so as to increase amortized performance. The
bulk index is composed of two parts. Firstly, a main file, that stores record
tuples without any metadata, the keys of which form nonoverlapping sorted
ranges with length within a fixed interval. Secondly, a range index that
contains pointers to the sorted ranges on the main file. The range index
is very small, and is assumed to fit completely into memory. This dual
structure allows deletions to be performed in time that is constant on the
main file, and insertions to be performed efficiently by merging inserted tuples
with existing ranges and writing out ranges at optimized length. The bulk
insertion operation is notable for requiring sorted data as input, though as
the bulk index has a very small memory footprint, the input could often be
sorted in main memory. When measured in main file operations, the bulk
index’s range search complexity is O(min(N , M)) where N is the amount of
keys returned and M is a size parameter of the main file. Bulk insertion is
O(MR+ T ), where R is the number of ranges affected by the bulk insertion
and T is the number of keys inserted. Finally, range deletion is O(1).

To measure the effectiveness of the bulk index, experiments were run
against the Lazy Adaptive Tree [1], chosen due to how well it had performed
against other flash-based indexes. There were two kinds of comparative ex-
periments, bulk insertions and range searches. For the bulk insertion exper-
iments, we experimented with differently-sized elementary bulks distributed
randomly. An elementary bulk is a maximal set of inserted keys that falls
between two consecutive keys in the existing data. A smaller elementary bulk
size with the same amount of added keys usually means that a larger fraction
of existing ranges is affected, and vice versa. Overall, bulk insertion on the

57



CHAPTER 7. CONCLUSION 58

bulk index was consistently more efficient than the LA-tree, and relatively
most efficient with large bulk insertions and on bulk insertions with either
very small or very large elementary bulks. It was 2-4 times as fast on most
data.

In the range search experiments, the bulk index performed particularly
well on larger range searches. The LA-tree’s performance was close to the
bulk index’s performance with smaller range searches, but its performance
relative to the bulk index declined linearly to the size of the range search.

In addition, range deletion experiments were performed to validate the
theoretical results that showed a constant-time range deletion operation. Per-
formance did stay below a small constant value, although there was significant
oscillation in that small constant depending on the size of the range deleted.

In conclusion, the bulk index performed well for all the bulk operations
that were tested, and adapted particularly well to very large elementary bulks
where only a small fraction of the existing ranges were affected by the bulk
insertion. Future research would likely be aimed at improving its performance
for more irregular data, such as data that affects only a few ranges otherwise
but has a small number of random insertions mixed in, or a bulk insertion
that affects all ranges but inserts only a few keys per range. The available
memory could be better used here (the range index currently uses very little,
and the main file uses none). A promising research direction that combines
differential indexing with partial caching of inserted data is currently being
investigated, but the results did not make it into this thesis.



Bibliography

[1] D. Agrawal, D. Ganesan, R. Sitaraman, Y. Diao, and S. Singh. Lazy-
adaptive tree: an optimized index structure for flash devices. Proc.
VLDB Endow., 2(1):361–372, 2009. ISSN 2150-8097. URL http://dl.

acm.org/citation.cfm?id=1687627.1687669.

[2] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark
Manasse, and Rina Panigrahy. Design tradeoffs for SSD performance.
In USENIX 2008 Annual Technical Conference on Annual Technical
Conference, ATC’08, pages 57–70, Berkeley, CA, USA, 2008. USENIX
Association. URL http://dl.acm.org/citation.cfm?id=1404014.

1404019.

[3] L. Arge. The buffer tree: A new technique for optimal I/O-algorithms.
In Selim Akl, Frank Dehne, Jörg-Rüdiger Sack, and Nicola Santoro,
editors, Algorithms and Data Structures, volume 955 of Lecture Notes
in Computer Science, pages 334–345. Springer Berlin / Heidelberg, 1995.
ISBN 978-3-540-60220-0.

[4] L. Arge, V. Samoladas, and J.S. Vitter. On two-dimensional indexability
and optimal range search indexing. In 18th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS ’99,
pages 346–357, New York, NY, USA, 1999. ACM. ISBN 1-58113-062-
7. doi: 10.1145/303976.304010. URL http://doi.acm.org/10.1145/

303976.304010.

[5] A. Ban. Flash file system, April 4 1995. URL https://www.google.

com/patents/US5404485. US Patent 5,404,485.

[6] A. Ban. Flash file system optimized for page-mode flash technologies,
August 10 1999. URL https://www.google.com/patents/US5937425.
US Patent 5,937,425.

[7] J.L. Bentley and J.B. Saxe. Decomposable searching problems i. static-
to-dynamic transformation. Journal of Algorithms, 1(4):301–358, 1980.

59

http://dl.acm.org/citation.cfm?id=1687627.1687669
http://dl.acm.org/citation.cfm?id=1687627.1687669
http://dl.acm.org/citation.cfm?id=1404014.1404019
http://dl.acm.org/citation.cfm?id=1404014.1404019
http://doi.acm.org/10.1145/303976.304010
http://doi.acm.org/10.1145/303976.304010
https://www.google.com/patents/US5404485
https://www.google.com/patents/US5404485
https://www.google.com/patents/US5937425


BIBLIOGRAPHY 60

[8] N. Boonyawat and J. Natwichai. Performance analysis of Y-Tree on flash
drives. In Second International Conference on Computer and Network
Technology (ICCNT), 2010, pages 472 –476, april 2010. doi: 10.1109/
ICCNT.2010.126.

[9] Rajesh Bordawekar and Christian A. Lang, editors. International Work-
shop on Accelerating Data Management Systems Using Modern Proces-
sor and Storage Architectures - ADMS 2010, Singapore, September 13,
2010, 2010.

[10] E.W. Brown, J.P. Callan, and W.B. Croft. Fast incremental indexing
for full-text information retrieval. In VLDB, pages 192–202. Morgan
Kaufmann, 1994.

[11] M.J. Carey, D.J. DeWitt, J.E. Richardson, and E.J. Shekita. Stor-
age management for objects in EXODUS. In Object-Oriented Concepts,
Databases, and Applications, pages 341–369. ACM Press and Addison-
Wesley, 1989.

[12] C.E.Stevens. Information technology - ATA/ATAPI command
set- 2 (ACS-2). ”In CITS Working Draft T13/2015-D Rev.7”,
June 2011. http://www.t13.org/documents/UploadedDocuments/

docs2011/d2015r7-ATAATAPI_Command_Set_-_2_ACS-2.pdf.

[13] Bernard Chazelle and LeonidasJ. Guibas. Fractional cascading: I. a
data structuring technique. Algorithmica, 1:133–162, 1986. ISSN 0178-
4617. doi: 10.1007/BF01840440. URL http://dx.doi.org/10.1007/

BF01840440.

[14] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Understanding
intrinsic characteristics and system implications of flash memory based
solid state drives. In 11th International Joint Conference on Measure-
ment and Modeling of Computer Systems, SIGMETRICS ’09, pages
181–192, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-511-6.
doi: 10.1145/1555349.1555371. URL http://doi.acm.org/10.1145/

1555349.1555371.

[15] H. Cho, D. Shin, and Y.I. Eom. KAST: K-Associative sector translation
for NAND flash memory in real-time systems. In DATE ’09 Proceedings
of the Conference on Design, Automation and Test in Europe, pages
507–512, Leuven, Belgium, 2009. ACM. ISBN 978-3-9810801-5-5.

[16] Tae-Sun Chung, Dong-Joo Park, Sangwon Park, Dong-Ho Lee, Sang-
Won Lee, and Ha-Joo Song. A survey of flash translation layer. Journal

http://www.t13.org/documents/UploadedDocuments/docs2011/d2015r7-ATAATAPI_Command_Set_-_2_ACS-2.pdf
http://www.t13.org/documents/UploadedDocuments/docs2011/d2015r7-ATAATAPI_Command_Set_-_2_ACS-2.pdf
http://dx.doi.org/10.1007/BF01840440
http://dx.doi.org/10.1007/BF01840440
http://doi.acm.org/10.1145/1555349.1555371
http://doi.acm.org/10.1145/1555349.1555371


BIBLIOGRAPHY 61

of Systems Architecture, 55(5-6):332 – 343, 2009. ISSN 1383-7621. doi:
10.1016/j.sysarc.2009.03.005. URL http://www.sciencedirect.com/

science/article/pii/S1383762109000356.

[17] Annie P. Foong, Bryan Veal, and Frank T. Hady. Towards SSD-ready
enterprise platforms. In International Workshop on Accelerating Data
Management Systems Using Modern Processor and Storage Architec-
tures - ADMS 2010, pages 15–21. VLDB Endowment, 2010.

[18] T. Frankie, G. Hughes, and K. Kreutz-Delgado. A mathematical model
of the trim command in NAND-flash SSDs. In 50th Annual Southeast
Regional Conference, ACM-SE ’12, pages 59–64, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1203-5. doi: 10.1145/2184512.2184527.

[19] A. Gartner, A. Kemper, D. Kossmann, and B. Zeller. Efficient bulk
deletes in relational databases. In 17th International Conference onData
Engineering, 2001., pages 183 –192, 2001. doi: 10.1109/ICDE.2001.
914827.

[20] G. Graefe. B-tree indexes for high update rates. SIGMOD Rec., 35
(1):39–44, 2006. ISSN 0163-5808. doi: 10.1145/1121995.1122002. URL
http://doi.acm.org/10.1145/1121995.1122002.

[21] Goetz Graefe. Write-optimized B-trees. In 30th International Con-
ference on Very Large Data Bases - Volume 30, VLDB ’04, pages
672–683. VLDB Endowment, 2004. ISBN 0-12-088469-0. URL http:

//dl.acm.org/citation.cfm?id=1316689.1316748.

[22] J. Gray and B. Fitzgerald. Flash disk opportunity for server applica-
tions. Queue, 6(4):18–23, 2008. ISSN 1542-7730. doi: 10.1145/1413254.
1413261. URL http://doi.acm.org/10.1145/1413254.1413261.

[23] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: A flash translation layer
employing demand-based selective caching of page-level address map-
pings. In ASPLOS’09, 14th International Conference on Architectural
Support for Programming Languages and Operating Systems, Washing-
ton, DC, USA, 2009. ACM. ISBN 978-1-60558-406-5.

[24] K. Hoffmann, K. Mehlhorn, P. Rosenstiehl, , and R.E. Tarjan. Sorting
Jordan sequences in linear time using level-linked search trees. Informa-
tion and Control, 68(1):170–184, 1986.

[25] Scott Huddleston and Kurt Mehlhorn. A new data structure for repre-
senting sorted lists. Acta informatica, 17(2):157–184, 1982.

http://www.sciencedirect.com/science/article/pii/S1383762109000356
http://www.sciencedirect.com/science/article/pii/S1383762109000356
http://doi.acm.org/10.1145/1121995.1122002
http://dl.acm.org/citation.cfm?id=1316689.1316748
http://dl.acm.org/citation.cfm?id=1316689.1316748
http://doi.acm.org/10.1145/1413254.1413261


BIBLIOGRAPHY 62

[26] J. Jannink. Implementing deletion in B+-trees. Technical Report 1995-
19, Stanford InfoLab, 1995. URL http://ilpubs.stanford.edu:8090/

85/.

[27] C. Jermaine, A. Datta, and E. Omiecinski. A novel index supporting
high volume data warehouse insertion. In VLDB’99, 25th International
Conference on Very Large Data Bases, September 7-10, 1999, Edin-
burgh, Scotland, UK, pages 235–246. Morgan Kaufmann, 1999.

[28] T. Johnson and D. Shasha. Utilization of B-trees with inserts, deletes
and modifies. In 8th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, PODS ’89, pages 235–246, New York,
NY, USA, 1989. ACM. ISBN 0-89791-308-6. doi: 10.1145/73721.73745.
URL http://doi.acm.org/10.1145/73721.73745.

[29] D. Kang, D. Jung, J-U. Kang, and J-S. Kim. µ-tree: an ordered in-
dex structure for NAND flash memory. In 7th ACM & IEEE inter-
national conference on Embedded software, EMSOFT ’07, pages 144–
153, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-825-1.
doi: 10.1145/1289927.1289953. URL http://doi.acm.org/10.1145/

1289927.1289953.

[30] J-U. Kang, H. Jo, J-S. Kim, and J. Lee. A superblock-based flash trans-
lation layer for NAND flash memory. In EMSOFT ’06, 6th ACM &
IEEE International conference on Embedded software, pages 161–170,
New York, USA, 2006. ACM. ISBN 1-59593-542-8.

[31] J. Kim, J.M. Kim, S.H. Noh, S.L. Min, and Y.Cho. A space-efficient
flash translation layer for CompactFlash systems. IEEE Transactions
on Consumer Electronics, 48(2):366 –375, May 2002. ISSN 0098-3063.
doi: 10.1109/TCE.2002.1010143.

[32] D. Koo and D. Shin. Adaptive log block mapping scheme for log buffer-
based FTL (flash translation layer). In International Workshop on Soft-
ware Support for Portable Storage (IWSSPS’09), Scottsdale, Arizona,
USA, 2009.

[33] T-W. Kuo, C-H. Wei, and K-Y. Lam. Real-time access control and
reservation on B-Tree indexed data. Real-Time Systems, 19:245–
281, 2000. ISSN 0922-6443. URL http://dx.doi.org/10.1023/A:

1008191111512. 10.1023/A:1008191111512.

[34] H-S. Lee, H-S. Yun, and D-H. Lee. HFTL: Hybrid flash translation layer
based on hot data identification for flash memory. IEEE Transactions on

http://ilpubs.stanford.edu:8090/85/
http://ilpubs.stanford.edu:8090/85/
http://doi.acm.org/10.1145/73721.73745
http://doi.acm.org/10.1145/1289927.1289953
http://doi.acm.org/10.1145/1289927.1289953
http://dx.doi.org/10.1023/A:1008191111512
http://dx.doi.org/10.1023/A:1008191111512


BIBLIOGRAPHY 63

Consumer Electronics, 55(4):2005 –2011, November 2009. ISSN 0098-
3063. doi: 10.1109/TCE.2009.5373762.

[35] S-W. Lee, T-S. Chung D-J. Park, D-H. Lee, S. Park, and H-J. Song.
A log buffer-based flash translation layer using fully-associative sector
translation. ACM Transactions on Embedded Computing Systems, 6(3),
2007. ISSN 1539-9087. doi: 10.1145/1275986.1275990. URL http:

//doi.acm.org/10.1145/1275986.1275990.

[36] S-W. Lee, B. Moon, C. Park, and J-M. Kimand S-W. Kim. A case for
flash memory SSD in enterprise database applications. In 2008 ACM
SIGMOD international conference on Management of data, SIGMOD
’08, pages 1075–1086, New York, NY, USA, 2008. ACM. ISBN 978-
1-60558-102-6. doi: 10.1145/1376616.1376723. URL http://doi.acm.

org/10.1145/1376616.1376723.

[37] S.W. Lee and B. Moon. Design of flash-based DBMS: an in-page logging
approach. In ACM SIGMOD International Conference on Management
of Data, SIGMOD 2007, Beijing, China, June 2007. ACM. ISBN 978-1-
59593-686-8.

[38] Y. Li, B. He, Q. Luo, and K. Yi. Tree indexing on flash disks. In IEEE
25th International Conference on Data Engineering, 2009. ICDE ’09.,
pages 1303 –1306, 29 2009-april 2 2009. doi: 10.1109/ICDE.2009.226.

[39] T. Lilja, R. Saikkonen, S. Sippu, and E. Soisalon-Soininen. Online bulk
deletion. In IEEE 23rd International Conference on Data Engineering,
2007. ICDE 2007., pages 956–965. IEEE, 2007.

[40] Timo Lilja. Interval deletion in B-trees. Master’s thesis, Helsinki Uni-
versity of Technology, 2005.

[41] D. Ma, J. Feng, and G. Li. Lazyftl: A page-level flash translation layer
optimized for NAND flash memory. In ACM SIGMOD International
Conference on Management of Data, SIGMOD 2011, Athens, Greece,
2011. ACM. ISBN 978-1-4503-0661-4.

[42] C. Mohan. ARIES/KVL: A key-value locking method for concurrency
control of multiaction transactions operating on B-Tree indexes. In
16th International Conference on Very Large Data Bases, August 13-
16, 1990, Brisbane, Queensland, Australia, Proceedings, pages 392–405.
Morgan Kaufmann, 1990.

http://doi.acm.org/10.1145/1275986.1275990
http://doi.acm.org/10.1145/1275986.1275990
http://doi.acm.org/10.1145/1376616.1376723
http://doi.acm.org/10.1145/1376616.1376723


BIBLIOGRAPHY 64

[43] C. Mohan. An efficient method for performing record deletions and
updates using index scans. In 28th International Conference on Very
Large Data Bases, VLDB ’02, pages 940–949. VLDB Endowment, 2002.
URL http://dl.acm.org/citation.cfm?id=1287369.1287452.

[44] S. Nath and A. Kansal. FlashDB: dynamic self-tuning database for
NAND flash. In 6th International Conference on Information Processing
in Sensor Networks, IPSN ’07, pages 410–419, New York, NY, USA,
2007. ACM. ISBN 978-1-59593-638-7. doi: 10.1145/1236360.1236412.
URL http://doi.acm.org/10.1145/1236360.1236412.

[45] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil.
The log-structured merge-tree (lsm-tree). Acta Informatica, 33(4):351–
385, 1996. ISSN 0001-5903. doi: 10.1007/s002360050048. URL http:

//dx.doi.org/10.1007/s002360050048.

[46] J. Ousterhout and F. Douglis. Beating the I/O bottleneck: a case for
log-structured file systems. SIGOPS Operating Systems Review, 23(1):
11–28, January 1989. ISSN 0163-5980. doi: 10.1145/65762.65765. URL
http://doi.acm.org/10.1145/65762.65765.

[47] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, and J-S. Kim. A re-
configurable FTL (flash translation layer) architecture for NAND flash-
based applications. ACM Transactions on Embedded Computing Sys-
tems (TECS), 7(38), July 2008.

[48] K. Pollari-Malmi. Batch updates and concurrency control in B-trees.
Master’s thesis, Helsinki University of Technology, April 2002.

[49] K. Pollari-Malmi, E. Soisalon-Soininen, and T. Ylonen. Concurrency
control in B-trees with batch updates. IEEE Transactions on Knowledge
and Data Engineering, 8(6):975 –984, December 1996. ISSN 1041-4347.
doi: 10.1109/69.553166.

[50] J.R. Driscoll S.D. Lang and J.H. Jou. Batch insertion for tree struc-
tured file organizations–improving differential database representation.
Information Systems, 11(2):167 – 175, 1986. ISSN 0306-4379. doi: 10.
1016/0306-4379(86)90005-0. URL http://www.sciencedirect.com/

science/article/pii/0306437986900050.

[51] T. Shinohara. Flash memory card with block memory address ar-
rangement, May 18 1999. URL https://www.google.com/patents/

US5905993. US Patent 5,905,993.

http://dl.acm.org/citation.cfm?id=1287369.1287452
http://doi.acm.org/10.1145/1236360.1236412
http://dx.doi.org/10.1007/s002360050048
http://dx.doi.org/10.1007/s002360050048
http://doi.acm.org/10.1145/65762.65765
http://www.sciencedirect.com/science/article/pii/0306437986900050
http://www.sciencedirect.com/science/article/pii/0306437986900050
https://www.google.com/patents/US5905993
https://www.google.com/patents/US5905993


BIBLIOGRAPHY 65

[52] J. Srivastava and C.V. Ramamoorthy. Efficient algorithms for main-
tenance of large database indexes. In Fourth International Confer-
ence on Data Engineering, 1988., pages 402 –408, February 1988. doi:
10.1109/ICDE.1988.105484.

[53] C-H. Wu, T-W. Kuo, and L.P. Chang. An efficient B-tree layer im-
plementation for flash-memory storage systems. ACM Transactions on
Embedded Computing Systems (TECS), 6(19), July 2007.

[54] A.C-C. Yao. On random 2-3 trees. Acta Informatica, 9:159–170, 1978.
ISSN 0001-5903. URL http://dx.doi.org/10.1007/BF00289075.
10.1007/BF00289075.

http://dx.doi.org/10.1007/BF00289075

	1 Introduction
	2 Flash memory
	2.1 Flash memory
	2.2 Flash Translation Layer
	2.3 Measurement of the flash disk used in experiments

	3 Bulk operations
	3.1 B-tree
	3.2 Bulk search
	3.3 Bulk insertion
	3.4 Bulk deletion
	3.5 Showcase: Buffer tree
	3.6 Showcase: Y-tree

	4 Tree structures on flash
	4.1 Principles of flash B-tree design
	4.2 B-tree implementations
	4.3 Showcase: The FD-tree
	4.4 Showcase: Lazy Adaptive Tree

	5 Indexing bulks
	5.1 Structure
	5.2 Bulk search
	5.3 Bulk insertion
	5.4 Bulk deletion
	5.5 Complexity analysis
	5.6 Optimization

	6 Experimental results
	6.1 Bulk insertion
	6.2 Range search
	6.3 Bulk deletion
	6.4 Discussion of results

	7 Conclusion
	Bibliography

