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In this thesis work, a software tool for quickly and easily defining a mobile vehicle
is presented. Vehicles are defined through a simple, intuitive 3D graphical user
interface. Based on the vehicle definition, a kinematic model is generated for
the vehicle. The kinematics calculations use state-of-the-art knowledge on the
kinematics of different vehicle types.

The generated kinematic models can be used in a separate simulator module, also
created for this thesis work, to simulate arbitrary vehicle configurations. Sup-
ported vehicle types include the most common mobile industrial vehicles, such as
car-like, tracked, center-articulated or passively linked vehicles. Simulated vehicles
can also be combinations of these types.

Kinematic models generated with this software are tested against data sets gained
from different real-world vehicle configurations. The models are found to be ac-
curate and suitable for various purposes requiring a kinematic model of a vehicle.
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Tassé tyossi esitelldan mielivaltaisten liikkuvien tyokoneiden nopeaan ja helppoon
madrittelyyn tarkoitettu ohjelmisto. Kayttdja maérittelee tyokoneen yksinker-
taisen, intuitiivisen 3D-kayttoliittymén avulla. Tyokoneen méaritelmén perus-
teella generoidaan sen kinemaattinen malli. Kinemaattisissa laskuissa kdytetdan
uusimpia tutkimustuloksia erilaisten ajoneuvojen kinematiikasta.

Generoiduilla kinemaattisilla malleilla voidaan simuloida mielivaltaisia konekon-
figuraatioita erillisessd simulaattorimoduulissa, joka luotiin osana téata tyota. Sim-
ulaattori tukee yleisimpia teollisuudessa kaytettyja liikkkuvia konetyyppejé, kuten
automaisia, telaketjullisia, runkonivellettyja tai passiivisesti yhdistettyja koneita.
Simuloidut ajoneuvot voivat my6s yhdistelld eri konetyyppeja.

Ohjelmistolla generoiduilla kinemaattisilla malleilla simuloidaan erilaisia tosi-
maailman ajoneuvokonfiguraatioita. Simulaatiotuloksia verrataan oikeista
koneista saatuun dataan. Mallien havaitaan olevan tarkkoja ja sopivia erilaisiin
tarkoituksiin, jotka vaativat ajoneuvon kinemaattisen mallin.

Avainsanat: liikkkuvat tyokoneet, kinematiikka, simulaatio, robotiikka,
mallintaminen
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1 Introduction

Automation has emerged as the primary method of increasing productivity and
efficiency in industrial processes. Different manufacturing processes have already
been automated to various degrees for decades. In contrast, the automation of
mobile industrial vehicles is a relatively young field. Industrial processes involving
the use of automated vehicles have begun to surface only in recent years though more
and more vehicle types are being automated. The level of automation in mobile
vehicles ranges from safety systems that help human drivers to fully autonomous
fleets of vehicles.

The rate at which new applications for autonomous vehicles are developed is
increasing. Already a wide variety of different autonomous mobile machines are uti-
lized in a number of automated engineering tasks. Autonomous vehicles have many
potential benefits e.g. in mining (Fig. [la), cargo hauling (Fig. [1b]), construction
(Fig. , warehousing and forest work, among others. Autonomous vehicles offer
numerous benefits for these tasks, such as improved safety and working conditions
for vehicle operators. Examples of mobile industrial machines that have been auto-
mated include cargo transporters with four-wheel steering [3] and load-haul-dumpers
with an articulated body [4].

Automating a heterogeneous fleet of mobile vehicles is not a trivial task. It
consists of multiple phases from system specification to deployment, each of which
is complex in its own right. The end result should be both efficient and safe while also
minimizing system costs by e.g. using pre-existing machinery or by minimizing the
size of the work site. At the same time, the automated vehicles need to co-operate
both with other machines and, in the future, human operators. It can be difficult
and time consuming to experiment with different vehicle types, fleet configurations,
traffic routes and rules to create an automated system suitable for any specific task.

Often the processes of system specification and simulation require working with
many different, complex tools that at times may work poorly together. It may be
necessary to simulate multiple different vehicles to test their suitability for a given
task or to better match those tasks to the vehicles, or the work site may involve
multiple vehicle types working together, each requiring their own simulator models
for development purposes. Simulator models are not readily available for most
vehicles and their creation is often slow, difficult and needlessly complex considering
the relatively simple nature of their use. Thus the creation of a quick and easy to
use, abstract vehicle definition and kinematic model export tool would speed up the
system design, task planning and simulation phases of the automation process.

The goal for this thesis work was the creation of a software tool that can be
used to quickly and easily define kinematic models for both common and arbitrary
vehicle configurations. A kinematic model describes the motion of a vehicle without
considering its causes and can be used to estimate said motion over time when given
certain control inputs. The tool would thus define certain key parameters for a
vehicle, which can then be used to calculate its kinematics. Supported vehicle types
are limited to ground-based ones, as most industrial vehicles operate solely on the
ground.



(c) Avant 320 loader (b) Straddle carrier. Photo: Konecranes [2]

Figure 1: Mobile machines that have been automated in the past.

As a proof of the suitability of the tool and the vehicle models defined with it for
the purpose of kinematics calculations, the secondary goal for this work was the cre-
ation of a kinematic simulator model for generic mobile vehicles. The model would
read the parameters generated with the definition tool to calculate the kinematics of
a defined vehicle, which would then be simulated in a two-dimensional multi-machine
environment. The simulator would need to support multiple different vehicle types
running at the same time in the same simulation. Simulated vehicles would need to
be controllable using specific control interfaces and communications infrastructure.
The simulator component together with the definition tool would allow a user to
rapidly define and then experiment with different vehicle configurations.

To meet these goals, an abstract vehicle definition tool was created. With it,
vehicles are defined using an intuitive graphical user interface that allows models
of the vehicles to be exported for use in other software. Vehicle models are built
using a simple, building block type design system that allows the user to freely place
components representing common vehicle parts such as the chassis, axles or sensors
of the vehicle. An existing kinematic simulator environment was expanded with a
generic kinematic model for the arbitrary vehicle configurations defined with the
tool.

The software created for this thesis work will be used to e.g. support research
on path planning and controlling heterogeneous groups of vehicles as well as the
creation of traffic rules for such groups. Testing how individual vehicles behave
when given certain control inputs is not one of the intended uses of the software.



As such, generalizability and quick deployment are more important than the overall
accuracy of the simulation model of a vehicle. Kinematic models will thus provide
sufficiently accurate motion estimates for any vehicles given the intended uses of the
software.

The following chapters will cover the main features and algorithms of the vehicle
definition tool and its accompanying simulator component. First, their requirements
are discussed in detail in Chapter 2l Chapter [3] compares different existing software
solutions for defining a vehicle and explores different file formats that could be used
for storing or exporting a vehicle model. A literature study on the state-of-the-art
research of the kinematic models of different vehicle configurations is presented in
Chapter [l These models will then be used in the actual simulator software. The
structure and features of the created machine definition tool are presented in Chap-
ter 5| Chapter [6] covers the implemented generic mobile machine simulator model
and its features. It also presents the main features of the machine interface and
communications infrastructure used to control the simulated vehicles. In Chapter
[7, several models of mobile machines are created with the new definition tool and
then simulated using the model for generic vehicles. The results of these simulations
are compared with data gathered from actual real-world machines to analyse the
accuracy of the generated kinematic models and the viability of the system as a
whole. Finally, the thesis work and its results are summarized in Chapter [§]



2 Background and system requirements

This work is a part of the Motti multi-machine information control research project
[5]. Motti aims to develop a machine-system interface that enables fleets of hetero-
geneous vehicles to operate together. This involves the development of tools e.g.
for machine task management and execution, traffic control and routing as well as
generic components for multi-machine control. The developed tools are intended as
a part of the Motti’s tool chain as shown in Figure 2] The tool chain aims to mini-
mize the amount of time and work needed to deploy a new autonomous multi-vehicle
system and to automate as much as possible of the work involved.

Currently, the majority of autonomous vehicle fleets operate based on pre-defined,
hand-crafted rule sets. Rule definition is time consuming and the resulting rule sets
are difficult to test comprehensively. The current Motti tool chain in Figure 2] shows
the different stages involved as well as their interdependencies. The process starts
with models of both the operating vehicles as well as the work site. These are used
to generate a network of routes the vehicles are capable of traversing, which in turn
form the basis for a set of traffic rules the autonomous vehicles are to follow to
ensure safe and efficient operations. Finally, tasks and missions are specified for
the work site and distributed to vehicles either in the real world or in a simulated
environment. This thesis work contributes to the vehicle definition and simulation
phases of the Motti tool chain.

— Machine definition Area model —

.

Route network
generation

—

Traffic rules -

4

Mission control

Simulator/machines

Figure 2: The Motti tool chain with the areas this thesis work contributes to high-
lighted.



The main goal for this thesis work is the creation of a software tool that can de-
fine the dimensions and other principal characteristic of an arbitrary mobile vehicle.
With the tool, an abstract graphical representation of the vehicle can be designed
quickly and easily. The kinematics of the vehicle can then be deduced from the
abstract model and exported for use in other software. To demonstrate the suit-
ability of the models created with the definition tool for the purpose of kinematics
calculations, a simulator component capable of reading models exported from the
tool and generating kinematic models based on them will also be created. This will
require the creation of a functioning kinematic model for generic mobile machines.
All of the software created for this thesis work are to be parts of the tool chain of
the Motti project, shown in Figure [2|

2.1 Requirements for the definition tool

This section covers in detail the requirements for the definition tool. The require-
ments are divided into functional, user interface and system interface requirements.
Functional requirements

R1. The definition tool will be used to define the structure of arbitrary vehicles.
It must therefore support creating and modifying objects representing at least
the vehicle body as well as its axles and joints.

R1.1. The tool must be able to distinguish between each object type.

R1.2. Tt should have the functionality to add range scanners to vehicle models.
R2. The software shall have the functionality to define

R2.1. a top speed, both forwards and backwards, and rates of acceleration and
deceleration for vehicles.

R2.2. maximum angles and turn rates for the joints and axles.
R2.3. whether joints and angles are actuated, i.e. steering.

R2.4. fields of vision and ranges for the range scanners.

R3. The dimensions and location of each object must be modifiable after creation.
R4. The software should support copying and pasting objects.
R5. It should also support undoing and redoing any actions related to objects.

R6. The tool must support saving vehicle models in a commonly used, portable
format.

R7. Tt must also support loading previously saved models afterwards with no loss
of data.



R8. As a critical requirement, vehicle models must be exportable in a form that
can be used by the chosen simulator framework to generate a kinematic model
for the vehicle.

R8.1. Generating a kinematic model shall require no additional input from the
user after the vehicle definition is finished.

User interface requirements

R9. The tool shall have a three-dimensional graphical user interface (GUI).
R10. The GUI shall show

R10.1. a design view with a visual representation of the current vehicle model.
R10.2. the available design tools.
R10.3. the properties of any objects the user has selected.

R11. Vehicle parts shall be defined using the mouse.

R11.1. The user must be able to create at least three-dimensional geometric
primitives such as boxes and cylinders, which shall represent the vehicle
body and axles respectively.

R11.2. Creating a single object must not require more clicks of the mouse than
the object has vertices.

R12. All of the tools and functions of the software shall be accessible from the GUI.

System interface requirements

R13. The Motti tool chain is primarily Linux-based and as such, all of its tools
must be Linux-compatible. Thus, all tools and libraries used and created in
this work must function on Linux.

R13.1. Cross-platform compatibility is not required.

2.2 Requirements for the simulator component

This section covers in detail the requirements for the simulator component that is
used to create kinematic models for the vehicles defined with the definition tool.
The requirements are divided into functional and interface requirements.



Functional requirements

R14.

R15.

R16.

R17.

R18.

R19.

The multi-machine simulator called StageMaCI or Motti Simulator is already
a part of the Motti tool chain. It shall be used as the basis for the simulator
component.

The simulator component shall consist of a functioning kinematic model for
generic mobile machines. In other words, it must be able to generate a kine-
matic model for and simulate any vehicle exported from the definition tool.
This will mean calculating the kinematics for at least the most common in-
dustrial mobile vehicle types.

The kinematic calculations used by the generic model must be based on es-
tablished research.

The generic kinematic model used by the simulator component shall support
vehicles with any number axles or joints along their body. Both the axles and
the joints can be actuated, i.e. steering.

The simulator must be able to simulate at least ten generic vehicles at the
same time. The vehicles can be of different types.

The simulator component and the simulated vehicles should support an arbi-
trary number of range scanners.

Interface requirements

R20.

Simulated vehicles must be controllable both directly by giving them speed
and steering commands, and by giving them lists of coordinates to drive to.

R20.1. Coordinates on the list will consist of a target velocity as well as a loca-

R21.

R22.

tion; If the target velocity is negative, the vehicle shall drive in reverse
to the location.

The simulator component shall make the current position of its origin and
axles in world coordinates available for use in other software.

Data from any range scanners shall be accessible for other software as well.



3 Existing software infrastructure

3.1 Generic design software

This chapter takes a look at different tools capable of creating a suitable model of a
vehicle. The main focus is on design tools that can easily draw a model of a vehicle
and be modified to export suitable simulator models. The purpose is to determine
whether an entirely new program will need to be created for this work or not.

For a program to be considered for use in this task, it must either fulfil the
requirements for the definition tool listed in Chapter [2] as is, or support plug-ins to
add any missing features. Thus, the different software tools that will be covered
in this chapter fall into several categories. These include CAD software, graphical
design tools and computational software.

Traditionally engineering-oriented graphic design has been done using CAD soft-
ware such as AutoCAD [6]. They are powerful tools for designing components or
even entire machines, sometimes offering support for kinematics calculations out of
the box. CAD software are in such wide-spread use that for many real-world vehi-
cles, a CAD model has likely already been made. However, the availability of such
models may be limited. If a CAD model for a vehicle is available, it can be a major
benefit, eliminating any need for any further vehicle definition. CAD programs have
the downside of being complex, difficult and time consuming to use, as CAD mod-
els are normally created with a high level of detail before they are used elsewhere.
Commercial CAD software can also be highly expensive, while the few free CAD
programs that are available are often limited in their features. CAD software also
have very limited support for Linux, breaking requirement

Graphical design software comes in many different variations. Most of them
meet at least the stated requirements for the user interface of the definition tool
(R9HR12) and many of the functional ones well. For instance, the open source 3D
computer graphics tool Blender 7] has many functionalities that make it attractive
for a task similar to this one. Aside from being intended for the creation of 3D
models right from the start, it supports many different XML-based file formats such
as Collada or X3D . It can also be extended with Python plug-ins to add any
required features that are not originally supported. In addition, Blender provides its
own physics engine which could conceivably be used to simulate any vehicles defined
with it.

While the goal is to create 3D models of vehicles, this does not necessarily mean
that only 3D design tools should be considered. 2D vector graphics editors such
as Inkscape [8] can also be used to quickly create the sorts of abstract, geometric
drawings of vehicles that will be used to generate simulation models. While the 2D
nature of such editors is a limitation, it can be circumvented by e.g. drawing an
object from two viewpoints, top and side, and then linking these different views of
the same object together. Inkscape, for example, supports extensions through plug-
ins and XML-based, extendible file formats, making the creation of custom tools for
these purposes possible.

Many commercially available software tools provide graphical design capabilities,



some even supporting simulations on created models by themselves. On the other
hand, computational software such as Matlab [9] and its Simulink toolbox [10] can
be used to create simulations of virtually any conceivable vehicle configuration,
Simulink also allowing block-based graphical simulation model creation. However,
they lack a dedicated graphical design functionality, violating one of the stated user
interface requirements .

A comparison of the covered different generic design and simulation tools relative
to the requirements in Chapter [2]is shown in Table[I] For existing software, the most
important requirements are a design view and support for 3D primitives
. Another important requirement is support for commonly used, XML-based
formats . As the use of StageMaCl for simulations had already been decided,
out of the box support for the creation of Stage models would also have been
a major benefit. Each of the considered software could be extended to support
Stage model creation, though, making this a less important feature. It is unlikely
that any one existing software tool fulfils every requirement in Chapter [2, making
it important for the tools to be extensible. Any existing software should also be
openly available for further development.

Although all of the discussed software tools have a number of good qualities and
match certain of the requirements such as and [R6] well, they each also have
significant drawbacks. The high price of commercial CAD software makes them
unappealing, while their complexity makes them unsuited for rapid vehicle defining.
Free CAD software also lack important features. While many vehicles have existing
CAD models, one cannot assume that such a model is available.

Blender and other programs like it require a lot of practice before they can be
used efficiently. They also have many features that will be entirely unnecessary for
this task, resulting in a user interface that is cluttered with data and functionalities
that serve no purpose in terms of vehicle model creation. Thus, the 3D graphical
design tools currently available are unsuitable for the purposes of this thesis work
as well.

Vector graphics editors require the creation of so many new extensions, tools and
plug-ins, while still being less suitable for this task than a purpose-built tool, that it
is simply impractical to use one. Alternatively, a lengthy tutorial on specifically how
to draw vehicles would be required. This would make the software more unintuitive
and more difficult to use.

AutoCAD | Blender | Inkscape | Matlab / Simulink
Design view (1510.1 Yes Yes Yes No
3D primitives (R11.1 Yes Yes No No
XML support (R6)) No Yes Yes Yes
Stage support No No No No
Extensible Yes Yes Yes Yes
Open source No Yes Yes No

Table 1: Comparison of different generic design and simulation tools
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While Matlab and Simulink are powerful simulation tools, neither of them are
particularly easy or quick to use, requiring programming, in-depth understanding
about the mathematics behind any vehicle model and possibly separate hand-crafted
simulation models for every vehicle. Their lack of a design view is also a significant
drawback, making them the only considered software to break requirement [R10.1]
Thus, computational software is not suitable in this case.

It is clear that a design tool suitable for the quick and easy creation of abstract
3D models of mobile vehicles, capable of creating simulator models based on them,
does not exist previously. As such, it is necessary to create an entirely new, purpose-
built vehicle definition tool with all of the required features. It will be supported by
extending StageMaCl with a generic vehicle class for required the simulations and
kinematics calculations.

3.2 File formats

Another important requirement for the tools to be designed as part of this thesis was
the possibility to store and export vehicle models in some widely used file format
(See and [R8). To this end, different commonly used file formats suitable for
the task were studied. In this chapter, different formats suitable for this work are
discussed.

If the intention is to generate a kinematic model based on a stored file of a
vehicle, the format itself does not need to be complex. Usually, kinematic models
depend on fairly few parameters, most of which are related to the physical locations
and dimensions of specific vehicle parts. This means that as long as the position of
the parts in relation to one another can be deduced from the file, it is possible to
generate a kinematic model for the described vehicle. While such information could
be stored in virtually any format, there are benefits to using pre-existing formats.
Portability, one of the stated functional requirements for the definition software
(R6), is one such benefit.

XML-based file formats are a flexible way of storing vehicle models and are well
suited for the needs of this thesis work. XML has the enormous benefits of being
text based, highly expandable and easily understandable and modifiable even when
using just a text editor [II]. Many XML-based formats are in wide-spread use,
making them highly portable. These qualities make XML-based formats well suited
in terms of requirement [R6] A number of binary file formats for storing 3D models
exist, such as the CAD format DWG, but they tend to be proprietary or otherwise
commercial. This limits support for them especially in free software.

Several XML-based file formats created specifically for storing graphic data exist.
Of these, formats such as Collada [12] and X3D [13] are meant for 3D data storage.
Both offer diverse features ranging from object materials to scene lighting. Collada
also supports defining physical attributes for objects, making it suitable for storing
information on more than just graphics. For example, Collada can be used to define
kinematic parameters for objects.

Software support for Collada and X3D varies, with Collada being supported by
numerous software tools such as Blender or the robotics development environment
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OpenRAVE [14] while X3D use is currently mainly limited to open source tools.
The downside to Collada is its complex structure. X3D, on the other hand, is
structurally very simple and easy to understand. It is especially well-suited for
representing simple geometric primitives. Although its use is currently somewhat
limited, it aims to become integrated in HTML5 [13].

While the models needing to be stored will be three-dimensional, the file format
used to store them does not have to be. SVG [15] is a 2D vector image format
supported by a huge number of different programs. While potentially limiting its
usefulness, the two-dimensionality can be overcome by e.g. using two different view-
points per object to be stored as mentioned previously. Different views of the same
object can be linked to each other with for instance object attributes. Most graphic
design tools support SVG to some extent, at the very least being able to export
it, and SVG images can be viewed even in web browsers. Its XML representation
is simple and can be easily understood even by a human. There are some binary
alternatives to SVG, such as PDF and the Flash format SWF, but their creation
requires additional resources and functionalities.

There is of course a huge amount of different file formats related to graphic
design currently available. Aside from the ones discussed here, however, they tend
to be either intended for a more specialized by nature, obsolete or in little use. As
such, the graphical file formats discussed here represent the most important ones
with regard to the thesis work. However, file formats need not be intended for use
in graphic design to be viable. Essentially, any format that can store the physical
structure of a vehicle can also be used both by the tool. Several more specialized
XML-based file formats intended for storing information on complex physical scenes
and machines also exist.

An example of formats intended for specialist use is the Robot Modeling Lan-
guage (SDF) that the dynamic robot simulator Gazebo uses [16]. The SDF format
is particularly geared towards describing complex physical objects with support for
a number of physical parameters ranging from inertial parameters (e.g. mass) to
collision detection using three-dimensional geometry data. However, SDF has the
same downsides as Collada, namely its complexity.

A comparison of the features of different file formats is shown in Table 2] As
portability between different software was considered one of the requirements for the
definition tool (See and proprietary formats are in limited use, the most impor-
tant feature in this case was the openness of the format. Similarly, being text based
would increase the number of tools that could be used to at least view stored vehi-
cle models. As the formats will be used to store three-dimensional vehicle models,
support for three-dimensional objects would be a benefit though not a requirement.
While being able to define kinematic parameters for objects on the file format level
is not a requirement, it may be a beneficial feature.

The choice to limit the considered file formats mainly to XML-based ones is well
founded. Most binary formats suitable for storing a vehicle model are in relatively
little use when compared with XML-based ones, because binary formats tend to be
proprietary. Using more commonly available text-based formats ensures compatibil-
ity with other software as well as making file handling easier to program and debug.
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DWG | Collada | X3D | SVG | SDF
Open source No Yes Yes | Yes | Yes
Text based No Yes Yes | Yes | Yes
Three dimensional Yes Yes Yes | No | Yes
Kinematics support | No Yes No No | Yes

Table 2: Comparison of different file formats

Based on Table [2] the most obvious choices for formats would seem to be Collada
and SDF. However, there are complicating factors that need to be considered.

Many of the XML-based formats come packed with a multitude of features. Some
features such as scene lighting settings in X3D and Collada are unnecessary for the
purposes of this thesis task and needlessly complicate created files. However, thanks
to the flexibility inherent to all XML-based formats, any unnecessary features can
be safely left out of any such files. Despite this feature, Collada and other more
specialized formats such as SDF remain very complex. For example, in Collada
describing even simple geometric shapes requires a complicated mesh notation. This
complexity makes Collada more difficult to use than for example X3D.

The two-dimensional nature of SVG can be a factor limiting its usefulness. Al-
though having to store two SVG elements for each object leads to somewhat more
complex SVG files, this would allow a 3D model to be viewed and edited even in
a 2D vector graphics program such as Inkscape. The clear, simple structure of the
SVG format makes it a very attractive choice.

In the end, it was decided to focus on the relatively simple X3D and SVG formats.
Both of them are very light weight and easy to understand, as well as being supported
by a number of other software tools. As the primary intention is to use them to store
vehicle models consisting of simple geometric primitives, support for more complex
features was not considered necessary.
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4 Kinematic models

Kinematics is a very fundamental part of the design, analysis, control, simulation
and path planning of a vehicle. Kinematics is the study of the motion of a machine
without taking into account the forces that cause that motion [17]. The kinematic
model of a mobile machine usually describes how its pose in two dimensions, i.e.
its XY-location in the world coordinate system and its heading 6, changes over
time. By leaving out the forces and torques causing the motion, the result is a
relatively simple way of estimating the movement of a machine while ignoring any
complex, hard to model dynamics involved in its environment. The downside is
that it is difficult to create an accurate kinematic model for machines that interact
dynamically with their environments to any significant degree. For example, uneven
or slippery terrain is a dynamic environment and thus any machine operating in it
is subjected to a high degree of dynamic behaviour. Thus, such environments are
difficult to take into account in the kinematic model of a vehicle.

A kinematic model is dependent on the machine it is created for and its features,
e.g. what it uses for locomotion. As such, different machine types have very different
kinematic models. Once a kinematic model for a machine has been formed, it can
be used for example to design a machine capable of navigating in a certain area,
to optimize the trajectory of a robot, to analyse the capabilities of a machine or to
control its pose.

Kinematic models for mobile vehicles most often calculate the current velocity of
a vehicle in the X and Y directions and angular velocity about the current center of
rotation of the vehicle. The models use certain variables as control input to produce
pose estimates. The exact variables used depend on the configuration of the vehicle
being modelled, but there are certain common ones used in many of the kinematic
models. Commonly used variables include the current forward velocity and heading
of the vehicle measured at a known point on its body, the current angles of steering
vehicle parts such as axles and joints, as well as the distances between them. In
general, any variables that affect the trajectory of a vehicle are also used in its
kinematic model.

The alternative to kinematics is dynamics, which focuses on the forces and
torques causing the motion of a machine to estimate acceleration and trajectories,
as opposed to kinematics [I8]. Dynamics tends to be much more computationally
intensive than kinematics, as there are usually a number of forces and torques acting
on a machine at any given time. On the other hand, dynamics is better suited than
kinematics for estimating certain types of motion, such as lateral slipping or colli-
sions between objects. On the whole, dynamic models can be more accurate than
kinematic models in situations where accurate information is available on the inter-
actions of a specific vehicle with its environment. However, in the generic case such
information is not available, making kinematics more suitable. Dynamic models will
not be covered in this work.

In this chapter, the kinematic models of the most common ground-based vehicle
types used today are presented. Different mobility configurations are first introduced
briefly to give a general look at the technology available. State-of-the-art research
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on the kinematic models of the most common vehicle types is then presented. These
kinematic models include common car-like vehicles with a given number of (steering)
axles, center-articulated vehicles such as the ones used in mining operations by
Sandvik (Fig. [1a)), differential drive and skid-steered (Fig. or tracked vehicles.
While the kinematic models of more specialized vehicles such as the straddle carrier
with eight steerable wheels in Figure [1b| will not be covered, their kinematics can
be approximated e.g. using a model for car-like vehicles.

4.1 Mobility configurations

For ground-based industrial vehicles, there are three basic types of locomotion avail-
able: Wheels, tracks or limbs. These are in effect what define how the vehicle moves.
They can be placed on the vehicle in different configurations that affect what tra-
jectories the vehicle is capable of, how hard it is to control, and how well-suited
it is for certain environments. In this chapter, several possible configurations are
introduced.

Wheels are by far the most common method of locomotion in industrial vehicles.
They are simple, reasonably robust and easy to use. Wheeled vehicles are often
also more energy efficient and faster than tracked or limbed ones [19]. Wheels
can be placed on a machine in a vast number of different configurations, ranging
from the classic two-axle car-like configuration with one steering axle to different
omnidirectional drive systems.

In industrial vehicles, the most common wheel configuration is to have the wheels
placed on a number of axles, some of which are steering, that are symmetrical along
the central axis of the vehicle. These car-like vehicles are often controlled using a
combination of the Ackerman steering geometry and the bicycle model of kinematics.
Ackerman steering ensures a single center of rotation for the vehicle and eliminates
lateral slipping from its motion, thus improving control accuracy [20, p. 21|. For
example, the straddle carrier in Figure [1b|is in practice controlled using Ackerman
steering even though it is not strictly car-like, as this reduces wear on its wheels.
The bicycle model, on the other hand, simplifies the geometry of the vehicle and
thus the resulting kinematic model [21) p. 67-69].

Some vehicles, such as the load-haul-dump truck in Figure use an articulated
joint somewhere on their structure for steering instead of the wheeled axles. Steering
in this manner gives the vehicle a tighter turn radius [22]. Other times, the joint
may be passive, as with a vehicle pulling a trailer behind it. While the kinematic
models for vehicles with actuated joints are relatively similar to those for car-like
vehicles, passive joints are relatively dynamic in nature and vehicles that have them
require more complex models.

Differential drive is another very common wheel configuration, often used by
smaller robots and older AGVs. A differential drive machine has two wheels placed
on a single axis. The wheels have independent motors, allowing them to be controlled
separately. The trajectory of the machine is determined by the velocity differential
of its two wheels [20], p. 20]. For example, differential drive vehicles turn by rotating
one wheel faster than the other. Additional castor wheels may be used to improve
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Figure 3: A synchronous drive system [20)].

the stability of the machine.

Skid steered vehicles can be considered a variation of the differential drive con-
figuration. Skid steering uses either a number of non-steering wheel axles or a set
of tracks to move the machine; the wheels or tracks on either side of the vehicle are
controlled separately. The main difference between these machines and differential
drive systems is the increased ground contact area caused by the tracks or the larger
number of wheels. This makes lateral slippage upon turning an inevitability for skid
steered vehicles. Thus, skid steered vehicles are dynamic in nature and difficult to
model accurately using kinematics [23, p. 49]. A skid steered vehicle is shown in
Fig. [Id

There are also a number of lesser used or more experimental wheel configurations,
at least when it comes to mobile vehicles used in actual real-world engineering
tasks. These include vehicles with synchronous or omnidirectional drive. As such
configurations are mainly experimental in industry, they will be covered only briefly
here.

Synchronous or synchro drive is a configuration where each wheel can both drive
and steer [23, p. 43]. The wheels are mechanically coupled together so that they
always turn and drive in unison. Synchro drives require a complex mechanical
assembly of drive belts, for example, to achieve synchronization. This can be prone
to faults or flaws such as degradation over time [20, p. 23|. A synchronous drive
system is shown in Figure

Omnidirectional drive is a highly maneuverable and increasingly popular type
of locomotion for robots. Machines with omnidirectional drive have enough degrees
of freedom to e.g. roll sideways without changing their heading. Controlling such a
robot can be relatively easy, but it can also suffer from increased slippage. There are
different ways to make a robot omnidirectional, from using special omnidirectional
wheels that allow rolling in multiple directions [23], p. 47|, to machines with multiple
degrees of freedom that e.g. control each wheel separately [24]. The straddle carrier
in Figure[Ih|is an omnidirectional vehicle even though it is not commonly controlled
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Figure 4: KUKA youBot, an omni-wheeled mobile platform [27]

like one, as each of its wheels can be controlled separately. An example of an omni-
wheeled robot is the KUKA youBot, shown in Figure

Limbed locomotion has been perfected in nature over the course of hundreds of
millions of years. From an engineering point of view, limbs have many attractive
features, such as their ability to cope with rough, uneven terrain [25]. Unfortunately,
limbs are a much more complex locomotion method than wheels or tracks. Vehicle
stability becomes a much larger problem when using limbs [23], p. 49-51]. Different
limb configurations have been researched for use in robotics, but currently their
usage in mobile vehicles is limited. There has been some research on larger limbed
outdoor vehicles, as e.g. with Mecant [25].

In addition to pre-existing forms of locomotion, entirely new types of movement
are being developed for use in robotics. One such method is "rolking’, a hybridisation
of wheeled and limbed locomotion [26]. The use of powered wheels gives the robot
increased stability and speed, while having actuated, leg-like limbs as well allows it
to move in difficult terrain or to climb over obstacles.
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4.2 Ackerman steering and the bicycle model

Ackerman steering is a very common steering configuration used by virtually every
car on the roads today. It has been in use at least since the 19th century [21], p. 69].
Ackerman steering is designed so that when turning, the inner steering wheels of a
vehicle (the wheels closer to its center of rotation) are rotated at a slightly sharper
angle than the outer ones. The angle of each wheel is calculated based on the
steering angles so that when a line is drawn through the roll axis of the wheel, they
all intersect at a common point. This is done to eliminate lateral tire slippage [20,
p. 21|. However, while Ackerman steering is most commonly used in vehicles with
only one steering axle (e.g. cars), it is valid for four-wheel steered vehicles as well
[3]. With suitable control, it can also be used with vehicles that have more than two
steering axles [2§)].

The Ackerman steering geometry for a vehicle with two steering axles is shown
in Figure )| Here, d is the axle width of the vehicle and [ is its wheelbase. 6p and
Or are the steering angles for the front and rear axles. 0r,, 0r;, Or, and Og; are the
Ackerman angles required for the outer and inner front and rear wheels respectively
to make the vehicle follow the intended trajectory with no lateral tire slippage. The
instantaneous center of rotation ICR of the vehicle is the point around which the
vehicle travels on a circular path when there is no lateral slippage to its wheels, i.e.
a point around which the motion of the vehicle can be described as a rotation with
no translation. P; and P, are the midpoints of each axle. In this manner, each wheel
in the vehicle lies tangential to concentric circles with their center points at ICR.

Assuming the steering angles for each steering axle, i.e. 0r and g, are known,
the Ackerman angles for the outside and inside wheels of those axles can be solved
geometrically [20), 28]:

lpyr = rtan(Op/R) .
d

cot(Opi ; ri) = cot(Op/r) — ST (2)
d

cot(0ro ) ro) = cot(fp/r) + T (3)

where 7 is the perpendicular distance from the center of rotation at ICR to the
central axis of the vehicle and [ and [ are the distances from the imaginary wheels
to the point where r intersects the body. The perpendicular distance r can be solved
e.g. by calculating the ICR in the coordinates of the machine using the well-known
formulas for the intersection of two lines, in this case the extended imaginary axles
from P; and P;.

Ackerman steering is often used in conjunction with the so-called bicycle model
of kinematics. In this model, the geometry of the vehicle is simplified by using imag-
inary wheels located on the central axis of the vehicle instead of the actual wheels
as shown in Figure 5] Here the imaginary wheels are at P; and P,. This approx-
imation is accurate when used together with Ackerman steering, as the Ackerman
angles ensure that the vehicle has a single center of rotation. Assuming that the
velocity v and heading ¢ of the vehicle are known, the bicycle kinematic model for
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Figure 5: Ackerman steering geometry with a bicycle approximation for a vehicle
with two steering axles. Adapted from [20} p. 22].
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e.g. a vehicle with two axles as in Figure [5| becomes [3]:

= wvcos(9) (4)
= wsin(¢) (5)
& = J(tan(0p) + tan(fy) (6)

The bicycle model has a nonholonomic constraint that states that the wheels of
a vehicle can roll forward unimpeded but cannot slide laterally [21], p. 69]:

jcos() — i sin(g) = 0 (7)

The bicycle model can be accurately used to estimate the kinematics of a vehicle
with an arbitrary number of steering axles with some reservations. For vehicles with
more than two axles, it is possible to have the axles intersect at more than one point,
causing some amount of slipping in the vehicle [28]. In this case, the nonholonomic
constraint is no longer observed. This can be prevented by using suitable control to
ensure that the lines through the roll axis of the axles always intersect at a single
common point.

4.3 Articulated vehicles

Articulated vehicles are basically divided into two or more parts by joints somewhere
on their body. The joints can be either actuated, as with load-haul-dump (LHD)
-trucks (e.g. Fig. , or non-actuated, as would be the case e.g. with a tractor
pulling a trailer. In the actuated case, the joint can be used to steer the vehicle
instead of a steering axle as with car-like vehicles, giving such vehicles an improved
turning radius over car-like vehicles [22]. The nonholonomic constraint in Equation
also applies to articulated vehicles [4].

Figure [6] shows a kinematic model of an LHD truck. Here, [; and [5 are distances
from the corresponding axles to the joint, P, and P, are their Cartesian coordinates,
0, and 6, are the headings of both vehicle sections, 7 is the joint angle and ry, 7o
and d are the distances from the axles and the joint to the center of rotation of
the vehicle at ICR respectively. As is apparent from the figure, articulated vehicles
can in the ideal case be treated as an extended type of bicycle model: with suitable
control, the roll axes of each axle can be made to intersect at the same point, even if
some of the axles are steering [29]. Scheding et al. [30] use a bicycle-like kinematic
model for an articulated LHD similar to the one in Figure [6] where 6, is considered
the heading of the machine. This gives the following kinematic model for Ps:

T = wcos(by) (8)
y = v sin(ég) 9)
0, — vsin(7y) (10)

ly + 1y cos(7)
Altafini [22] suggests an alternate model for the turn rate of the articulated
vehicle:
: vsin(y) — 17
b = ———— (11)
ly + 1y cos(7y)
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" SICR

Figure 6: A kinematic model of an articulated load-haul-dump -truck. Adapted
from [4].

Both of these models are for a vehicle that has a pair of axles and an actuated
joint between them. An important difference between them is that in Scheding’s
model 6, is predicted to be zero when v = 0, meaning that in this model it would
be impossible to articulate the vehicle while it is stationary [4]. In practice this is
generally not the case if the joint is actuated. Because of the 4 term in the numerator
in Equation [T} the Altafini model allows for articulation even when stationary.

An articulated vehicle with more than two axles can also have more than one
center of rotation as in Figure [7] where the tractor has one at ICR; and the trailer
another at ICR, |31, 29]. As with car-like vehicles using the bicycle model, this
breaks the nonholonomic constraint from Equation [7} If the joints of the vehicle
joints are actuated, it is possible to prevent this with suitable control. In the case of
a non-actuated joint, such control is not possible. Sampei et al. [31] seek to avoid
this problem by focusing only on simple paths consisting of lines and arcs and by
describing the kinematics of a tractor with a semi-trailer as a function of distance
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Semitrailer

Figure 7: A kinematic model for a tractor with a semi-trailer connected by passive
articulation. Adapted from [31].

travelled instead of time, giving the following for P:

d 1

£(7+92) = Ztan(a) (12)
d
dinz = cos(6s) (13)
W2 Gy (14)
dn
do, 1
o l2tan(7) (15)

where z is the distance travelled by the tractor, n is the distance travelled by the
trailer, o is the steering angle of the tractor and the other variables are as be-
fore. This model was originally intended for a very specific type of tractor-trailer-
configuration, shown in Figure . A similar approach is used by Bolzern et al. [29]
for a more generalized vehicle.

Another alternative for articulated vehicles with passive linkage is given by Lars-
son et al. [32]. They suggest a generalized kinematic model for a vehicle with an
arbitrary number of axles and joints. The model for one link in a chain of axles and
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Figure 8: A generalized kinematic model for articulated vehicles. Adapted from
[32].

joints is shown in Figure [§ Their model describes the kinematics of each axle:

Tn, = wvyco8(6,) (16)
Un = vpsin(f,) (17)
On = wn (18)

which gives the kinematic equations for the nth axle in the vehicle. w,, is the angular
velocity of the nth axle around its center of rotation, while v, is its velocity. This
model has a non-slipping assumption similar to Equation [7, because of which v, is
perpendicular to the wheel axis. The velocities can be calculated using [32]:

[vnﬂ} [1 0 ]_1 [cos(fyn) — sin(fyn)] [1 0 } [vn}

= . (19)
Wnt1 0 bnt1 sin(y,)  cos(y) | |0 —an| |wa

where a,, is the distance from the nth axle to the next point of interest at A,, i.e.
a joint or the next axle. The distance from the next axle to B, is b,11; Bpi1 is
the point of interest at A,, in the coordinate system of the n + 1 axle. Finally, v, is
the angle between nth axle and the n + 1 one. In other words, if there is no joint
between two consequent axles m and m + 1, then a,, = b,,,1; if there is a joint, a,,
and b, are the distances from the axles to the joint. Each of these variables is in
the coordinate system of that specific axle.

In general, there are several problems related to the control of articulated vehicles
as opposed to other vehicle types, especially if the joints of the vehicle are not
actuated. For example, a common problem when reversing with an actuated vehicle
is the vehicle jackknifing at the joint [31]. However, because these types of vehicles
are quite common in industrial applications, further research into their kinematics
is important.
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Figure 9: Differential drive kinematics. Adapted from [23] p. 39].

4.4 Differential drive

Differential drive is one of the simplest methods of locomotion used by mobile robots.
Differentially driven robots use a pair of wheels mounted on a common axis but
controlled by separate motors [23, p. 39]. Thus the wheels can be rotated at different
speeds or in opposite directions from one another to move the robot in the desired
manner. Because of this, differentially driven robots have a very simple control
scheme that requires only the rotational velocities for each wheel as input. It is
assumed that the wheels are ideal in nature, meaning that there is no lateral slipping
and that they have exactly one point of contact with the ground. The basic geometry
of a differential drive system is shown in Figure [0

There are a number of other advantages to differential drive as well. The simple
nature of a differential drive system makes it both easy and cheap to manufacture.
Differentially driven machines can turn in place, which makes them an attractive
solution for narrow or cluttered environments [23, p. 39]. For the same reason, the
obstacle-free area around the robot can be easily calculated. However, the accuracy
of the differential drive model is especially sensitive to variations in the ground
plane, as a momentary loss of contact with the ground for just one wheel results
in erroneous trajectory estimates [23, p. 40]. The ideal wheel assumption will also
cause some inaccuracies, as in practice the contact area of the wheels with the ground
varies dynamically. Finally, differential drive robots can only move bidirectionally
[19].

In Figure[d] the forward velocity of the robot is v while the velocities for the left
and right wheels are v; and v, respectively. The angular velocity of the robot around
its center of rotation is w. The ICR for a differentially driven robot depends upon
its wheel velocities. The robot has a heading # and the distance distance between its
wheels is [. The kinematics for a differentially driven robot can be calculated using
the assumption that the forward velocity of the robot is the average of its wheel
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velocities 20, 23]:

i o= “”2””” cos(0) (20)
g = ”’;”T sin(0) (21)
i = szerr (22)

In practice, a robot with only two wheels would not be very stable. Because of
this, differentially driven robots often make use of castor wheels for additional sup-
port, removing the need for dynamic balancing control [19]. In terms of kinematics,
their effect on the motion of the robot is normally ignored [23] p. 40].

4.5 Skid steering and tracks

Skid steering is another relatively simple form of locomotion at least in terms of
electromechanics. In principle it is similar to the differential drive configuration
described in the previous chapter [33]. As with differential drive, skid steering uses
two control inputs, the linear velocities of the left and right sides of the vehicle, to
steer. However, unlike in differential drive, skid steering uses a number of powered
wheels or tracks as opposed to the two on differential drive systems. One example
of a skid steered vehicle is shown in Fig. [Id

With differential drive, the assumption of a single point of contact for the wheels
of the machine is usually adequate even with non-ideal wheels. With skid steered
machines, on the other hand, the contact surface the machine has with the ground is
much larger due to having many smaller separate contact areas from a larger number
of wheels or a few large ones from tracks [34]. Different wheel or track configurations
slip differently, further increasing the difficulty of accurately estimating skid steer
systems.

A skid steered vehicle can be approximated using the differential drive kinematics
(Equations . However, this ignores several important differences between skid
steered and differentially driven vehicles, chiefly that because of the larger ground
contact area of skid steered vehicles, they always have noticeable lateral slipping
when turning. Because of these differences, motion estimates made of skid steered
vehicles using differential drive kinematics tend to be inaccurate [23], p. 48]. Kine-
matic models for skid steered vehicles are in general difficult due to complex dynamic
interactions with the environment of the machine. Error sources range from how
slippery or soft the ground is to the state of the wheels or tracks of the vehicle [33].

Figure[10]shows a kinematic model for skid steered vehicles proposed by Nagatani
et al. [35]. Comparing it with the differential drive model in Figure[J] the similarities
are obvious. The main difference is the inclusion of the slip angle o caused by the
lateral slip of the vehicle. Because of lateral slipping, the center of rotation of the
vehicle is not necessarily on the central axis of the vehicle, nor is the direction of
motion always the same as the heading of the vehicle [33]. The center of the machine
moves at velocity v, in the direction # — «. The kinematic equations for the model
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Figure 10: A kinematic model for skid steered vehicles. Adapted from [35].

in Figure |10 expand the ones for differential drive [35]:

o — (Y] ; u (23)

4, = Uy v_ 'U:" (24>
. _ vl-a)tul-a)

ro= 2 cos(a) ® ) )
. wl-a)tull-a) o

y = 2 cos(a) (0= a) .
g _ wll—a) ;- u(l—a) (27)

where a; and a, are slip ratios for the left and right tracks, v; and v, are their theo-
retical velocities determined from the angular velocities and radii of the sprockets of
the tracks, and v; and v, are the ground speeds of the tracks. The axle width of the
vehicle is [. Nagatani et al. reached considerably accurate estimates for trajectory
and orientation using this method although the slip angle a has to be estimated
separately [35].

A different approach to calculating skid steering kinematics is presented in [33],
focusing on the ICRs of the skid steered vehicle instead of its slip angle. A diagram
for this model is shown in Figure [[I} The left and right sides of the vehicle have
their own ICRs because they can be modelled as separate rigid bodies. The entire
vehicle is a rigid body following a circular path around /CR,. Each ICR is on the
same line parallel to the X axis of the vehicle. The kinematic model of the vehicle
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Figure 11: The instantaneous centres of rotation (ICR) of a skid steered vehicle.
Adapted from [34].

is calculated using the coordinates of the ICRs in the local frame of the vehicle:

—U
Tick = - . (28)
Vv — U
viem = — (29)
WZ
Up — U
Ticrr = . (30)
wz
Uy
Yicrv = YICRI = YICRt = — (31)

z

where (x;crr, Yicrr) and (ziori, Yior) are the coordinates for the left and right ICRs,
v, and v, are the velocities of the vehicle along the corresponding axes in the local
frame, v; and v, are the rolling speeds of the left and right sides of the vehicle and
w, is its angular velocity. Using these coordinates, the kinematics can be estimated
[33]:

. Uy — Vg
r = ———————VYICRy (32)
LICRr — TICRI
) U + Uy U — Uy Zicrr + TICcRI
y = - ( ) (33)
2 TI1CRr — TICRI 2
§ o o VrTu (3)

TICRr — LICRI

Skid steering intentionally relies on dynamic slippage caused by its operating
principle. Due to this inherently dynamic nature, it is challenging to create accurate
kinematic models for skid steered vehicles. Research into the subject is still very
much ongoing, as shown by the work done by Martinez et al. [33] and Nagatani
et al. [35] among others. Alternatively, the inaccuracies inherent to skid steered
vehicles can be compensated for by partially teleoperating the vehicles [20] p. 28|.
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5 Generic mobile machine definition software (MaDe)

A software tool for defining generic mobile machines is one of the two main results
for this thesis work. The tool, named Machine Definer (MaDe), allows a user to
quickly construct an abstract representation of a vehicle out of simple geometric
building blocks. A kinematic model for the vehicle can then be generated based
on the representation. This in turn can be further refined into a Stage simulator
model, producing a fully functioning simulated vehicle in a short time. As the
kinematics themselves depend mainly on certain key parameters such as axle width
and wheelbase, a simple, low detail, highly abstract model is entirely sufficient to
deduce them. As such, the main purpose of MaDe is the rapid definition of the
key kinematics parameters of a vehicle, while the actual kinematics calculations are
handled by external software, in this case StageMaCI. StageMaCl will be introduced
in Chapter [6]

MaDe was created in its entirety during this thesis work and was programmed
using C++. It uses the open source wxWidgets library [36] for windowing and
OpenGL [37| for graphics rendering. In addition, it features an implementation of
the Command behavioral design pattern [38, p. 233| to allow certain functional-
ities. This chapter describes the structure of MaDe and its various components,
functionalities and features.

5.1 Overview

The MaDe program window consists mainly of a large view area surrounded by
various tools. In design mode, the view screen is split into two equally sized, or-
thographic top and side views showing the same section of the workspace from two
different viewpoints. MaDe also has a perspective view mode, which allows the
user to see a three-dimensional view of the current vehicle model from a movable
viewpoint. The user can move the camera or zoom in and out in both view modes.
MaDe’s main design view is shown in Figure 12| and perspective view in Figure [13]

In its current version, MaDe comes with 11 different tools. In order from top
to bottom (see the panel on the left-hand side in Figure , they are the selection,
move, box selection, box, polygon, polygon modification, axle, track, joint, sensor
and link tools. Not shown are MaDe’s various drop-down menus, through which
models are saved, loaded and exported, objects are copied, pasted or deleted, and
various features such as grid lines or whether to draw objects solid are toggled. The
color palette in the lower left corner of the screen allows the user to set the color of
objects while the information bar below it shows the current XY Z-coordinates of
the mouse cursor. The program is mainly mouse operated though many actions also
have keyboard short-cuts. Actions such as copying, pasting, saving and undoing
use the same common short-cuts that hundreds of other software use while different
tools can be quickly selected with the number keys. The tool set in MaDe fulfils the
Requirements [RTHRA4]

The selection and move tools work very similarly to each other. They can both
be used to move the camera in the design view or to select individual or multiple
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Figure 12: MaDe’s main design view consisting of orthographic top and side views,
with a toolbar on the left-hand side. The pictured vehicle is used as an example
throughout this thesis.

objects. Selected objects or object groups can be moved or resized using a tool bar
that appears in the bar below the view screen once an object is selected. The move
tool can additionally be used to drag objects around the screen. When an object
is moved, any objects linked to it are moved as well, though this can be modified
to include only the ancestors, descendants of the object or neither with the shift
and control meta keys. The box selection tool is essentially a bulk version of the
selection tool, allowing the user to drag a three-dimensional box in the design area.
Any objects inside the box will be selected.

The box, polygon, axle and track tools are all used to create the main structural
parts of a vehicle. The box and polygon tools create objects that are considered
the body of a vehicle while axles and tracks are its means of motion. Boxes, axles
and tracks are created by clicking and dragging on either of the design view ports,
whereas polygons are created point by point on the top view port. For the sake
of simplicity, polygons are limited to 2D surfaces extruded along the Z axis to a
certain height. Boxes and axles are geometric primitives, with axles being cylinders
with their length along the Y axis, whereas tracks are rounded boxes. Axles also
have operational parameters for whether they are steering or not, allowing the user
to define their maximum turn angle and rate.

Like its name implies, the polygon modification tool is used to modify existing
boxes and polygons. With it, new vertices can be added to polygons and existing
ones can be moved on the XY -plane or removed. If the removal of a vertex reduces
the number of vertices in a polygon to less than three, the polygon is removed
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Figure 13: MaDe’s perspective view.

entirely.

Both the joint and range sensor tools require a pre-existing vehicle body (i.e.
boxes or polygons) before they can be used. The joint tool adds a hull joint to
the vehicle body, splitting it along the joint position into two polygonal segments.
The segments are linked to the newly-created joint object so that a tree structure is
formed with joints forming each non-terminal vertex and objects as the leaves. This
makes it easy to divide the vehicle into sub-models for simulation purposes. The
joints can be actuated or not, and in the actuated case the user can set parameters
for their maximum turn angle and rate similar to axles. Also similar to axles, joints
are depicted as cylinders with their length along Z.

Range sensors are a special type of box object with parameters for the facing
direction, range and field of vision. The default dimensions of the sensors are based
on commonly used laser range scanners. Sensors can be attached to anywhere on
the vehicle body, i.e. on any box or polygon. For example, the vehicle in Figure
has two light blue sensors at its front and rear attached to its central body object as
indicated by the lines representing linkage. While sensors serve no function from a
kinematics point of view, they were included in MaDe as they are a fundamentally
important tool in robotics. As models generated with MaDe are used in simula-
tions, support for range sensors allows the models to be used in e.g. mapping and
localization tools.

Finally, the link tool allows users to manually edit the linkage between different
objects. It can both add and remove connections to structure the object tree as the
user sees fit. To maintain tree validity, it is not possible to link two objects if a
relation between them already exists through their ancestors or descendants.
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MaDe consists of a number of classes that together implement its various function-
alities. Its class structure is shown in Figure [[4 The main program window class,
MaDeMainFrame, keeps track of all the commands given by the user and the ob-
jects currently on the canvas. Different object types are implementations of the
MObject virtual object class, while commands are similarly implementations of the
MCommand class. MaDe consists of the following classes:

MaDeMainFrame: The main window class in MaDe, implementing the
wxFrame class of wxWidgets. Keeps track of all the objects on the canvas
as well as undo and redo stacks of commands given by the user. Contains an
instance of an OpenGL canvas widget and calls different saving, loading and
exporting features through its menus.

MaDeDisplay: An implementation of the wxWidgets wxGLCanvas widget,
it handles all graphics rendering operations in its own process thread. De-
pending on view mode, it renders either the design or the perspective view. It
calls the rendering function for each object and handles any event callbacks
for the keyboard and the mouse not handled by MaDeMainFrame.

MODbject: A virtual base class for objects, i.e. vehicle parts. The base class
implements functions related to object colour and position handling as well as
object linking. The position of an object is defined as its center coordinate.
Each object knows its parent and any children connected to it. Object type
specific rendering and dimension calculation functions are implemented in the
inheriting classes. Because it is possible for a single object class to be used
to represent different parts, each object has a type attribute to specify their
actual function. The base class also contains a unique identifier for each object.
The current version of MaDe has the following object types:



31

MBox: The simplest object type, it represents a cuboid defined by length,
width and height values along the X, Y and Z axes respectively.

MSensor: A special type of box object, extending it with range, field of
vision and facing.

MTrack: A special type of box object representing a pair of tracks. In
essence, it is a box object with rounded ends. It has the same parameters
as a box object, but implements a custom render function.

MCylinder: A cylindrical object type. It is used to represent both axles
and joints. Cylinders are defined by their height and radius as well as
the axis along which they extend, defined by a rotation value about the
X axis. Cylinder objects have parametrised values for whether they can
be steered as well as their maximum turn rates and turn angles.

MPolygon: Polygons are a more complex type of object for depicting the
body of a vehicle. Polygons mainly consist of a list of coordinate points
for each of their vertexes and a height value. MPolygon also implements
a range of helper functions to add or remove points or to calculate a
triangulation of the polygon upon its creation or when its points are
modified.

MCommand: Similar to MObject, MCommand is a virtual base class for
various commands recognized by MaDe. The command classes are a part of
MaDe’s implementation for the command pattern. Their main purpose is the
implementation of an undo/redo-functionality. Every command that can be
undone has its own command class, instances of which are added to undo/redo
stacks in the main frame object instance when the commands are called. Each
command contains a vector of the objects it affects. The command pattern
and the structure of commands are covered more thoroughly in Chapter [5.4]
Currently, the different commands are:

Add and Del: Two commands that complement each other, AddCom-
mand is used to add new objects to the design canvas, while DelCommand
is used to remove existing ones.

Move: MoveCommand is used to move objects by a given amount in any
direction.

Replace: ReplaceCommand swaps an object on the design canvas with
another.

Split: This command takes a coordinate point as one of its parameters.
Affected objects are split into two new polygons along a plane that inter-
sects that point.

Colour: A command that changes the colour of affected objects.

Resize: This command takes length, width and height ratios as its pa-
rameters and resizes all affected objects accordingly. When resizing a
group of objects, the objects retain their relative positions.
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Link: A command used to link or unlink two objects together. It first
ensures that the two objects are not already linked before linking them.

Azle and SensorParamChange: Two very similar commands used to
change the parameters of axles or joints in the first case and sensors
in the second.

PolyPointAdd/Rm/Move: These commands are all related polygon mod-
ification, either adding, removing or moving vertices on a polygon.

MaDeSaveDialog: An implementation of wxDialog, this class represents a
pop-up window for saving a vehicle model. The user chooses a file name and
location, as well as a file format for the saved model file.

MaDeOpenDialog: An implementation of wxDialog, this class represents a
pop-up window for opening an existing vehicle model. The user chooses a file
of a supported type and MaDe attempts to read a vehicle model from it.

MaDeExportDialog: An implementation of wxDialog, this class represents
a pop-up window for exporting a model as a simulator model. The user selects
a file name and location, as well as setting some parameters such as top speed
and acceleration for the vehicle.

ModelGenerator: ModelGenerator reads the object data from an instance
of MaDeMainFrame and generates a Stage simulator model of a vehicle based
on it. The model is written into a specified file with certain parameters gained
from an instance of MaDeExportDialog used by the main frame.

To make the vehicle model easier to perceive in the perspective mode, MaDe
uses the lighting features of OpenGL. For each planar surface, e.g. the sides of a
box, a surface normal is calculated. OpenGL uses the normal vector to efficiently
deduce how light falls on the surface when it arrives from a given source. In MaDe,
the light source is always at the location of the perspective camera. Objects are
rendered using the built-in functions of OpenGL for geometric primitives though
polygons and the round areas of cylinders and tracks require construction from
multiple triangle primitives. For circular surfaces, this is a simple matter of rendering
a suitable number of triangle primitives arranged in a circle. Polygons, on the other
hand, require triangulation to find the triangles making up their structure. The
triangulation algorithm used in MaDe is described in the next section.

Object selection also utilizes OpenGL by writing the ID value of each object to
each pixel of the stencil mask of OpenGL covered by the object. When the user
tries to select an object, the value in the stencil mask at the mouse coordinates is
retrieved and set as the active object.

The two viewpoints shown in the design view (see Figure show orthographic
projections of the top and side of the model. While these views may appear two-
dimensional, they are in fact complete three-dimensional renders of the vehicle.
As the vehicle is thus rendered twice, the design view may become computation-
ally heavy with extremely complex models. However, it was determined that with
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MaDe’s current settings on a regular office computer, MaDe can render hundreds of
objects without significant slowdowns. Similarly, having to calculate lighting effects
on a large number of multi-faceted objects may slow down the perspective view.
To help MaDe run on slower computers, lighting can be disabled. MaDe’s compu-
tational requirements were also reduced by e.g. reducing the number of facets on
round objects such as axles. Currently, cylindrical objects are in most cases the
most computationally intensive objects supported, as each cylinder is rendered by
drawing a large enough number of facets to appear circular.

5.3 Polygon triangulation using ear clipping

Polygons can be highly complex structurally and thus cannot be trivially rendered
using simple geometric primitives the same way e.g. boxes can. Instead of drawing a
polygon as a single solid shape, it needs to be divided into triangles which are then in
turn rendered on-screen, filling the polygon shape out. In MaDe, this triangulation
is done using the ear clipping method [39].

Ear clipping is relatively simple and effective, provided that the polygons that
are triangulated are not self-intersecting or degenerate as defined in [39]. While
these days triangulation algorithms faster than ear clipping exist, MaDe is used
on regular computers and with such highly abstract, simplified shapes that it was
assumed that computational speed was not an issue. An example of triangulation
by ear clipping is shown in Figure

The ear clipping algorithm begins by picking three consecutive vertices, v;_1, v;
and v;,1, from the polygon. These vertices form an ear, i.e. one of the triangles
used to fill the polygon, if:

1. v; is a convex vertex, i.e. if the internal angle formed by these vertices is less
than 180°

2. the segment consisting of these vertices does not intersect any of the edges of
the polygon

3. a triangle formed from these vertices does not contain any of the other vertices
of the polygon

If the segment < v;_1,v;,v;41 > is an ear, the vertex v; (the ear tip) is removed
from the polygon and another set of vertices is selected from the reduced polygon.
If it is not, 7 is incremented to select the next three consecutive vertices. This is
repeated until it is no longer possible to form new triangles from the polygon. In
a valid, non-self-intersecting and non-degenerate polygon, this will always produce
a triangulation of the polygon. The triangulation results depend to some extent on
which vertex of the polygon the algorithm is started from. [39]

In the case shown in Figure [I5] the polygon in question is a star shape with ten
vertices. The algorithm starts from the vertex labelled A at the top point of the
star and proceeds from there in the clockwise direction. The first possible triangle
is therefore AABC', which however is not a valid choice as it is not inside the star
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Figure 15: A polygon and one possible triangulation using ear clipping.

polygon. The algorithm moves on and considers the triangle ABCD next. This
time, all the requirements for an ear are met. The vertex C is removed from the
list of unused vertices and ABCD is marked as one of the triangles making up the
triangulation of the polygon. The algorithm resets back to A, but the first triangle
of this round, AABD, is again invalid. The next ear to be found is ABDFE, even
if it is flat enough to be indiscernible from the figure. Thus the algorithm goes on,
eliminating vertices one at a time, until it finishes with the ear AAFJ, producing
eight distinct triangles.

As triangulation is a relatively expensive operation, MaDe tries to perform it on
each polygon as few times as possible. Polygons need to be re-triangulated every
time points are modified, added to or removed from them. MaDe allows polygons
to be modified using a specific tool.

5.4 Command pattern

The Command pattern is a behavioral design pattern, where all the information
necessary to perform an action is encapsulated in an object |38, p. 233|. This allows
the action to be performed at a later time, repeated as often as necessary or, as in
MaDe, to perform undo and redo operations for specific commands. The pattern
functions by using so-called command, receiver, invoker and client objects.

The command object is a container for the action to be done itself. It knows
all the parameters necessary to perform a certain action within the program. As
is shown in Figure [14] in MaDe every action that can be undone has its own cor-
responding MCommand object class. The command object also has a pointer to
a receiver object, which is in practice the target of the action the command per-
forms. Commands consist mainly of their parameters and an execute function that
performs a specific set of actions and function calls on the receiver object using said
parameters. To undo the command, it also has an unexecute function that performs
the exact opposite actions on the receiver to revert it to its state prior to the exe-
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cution of the command. Depending on the type of the command, this may require
storing additional data of the initial state of the receiver in the command object.
138]

Representing each reversible action with a separate command class is also the
downside of the pattern. As the number of functions that can be undone increases,
so too does the number of command classes required. This is a fairly negligible prob-
lem, as using inheritance and pointers to the base command class ensures proper
functioning. However, this does complicate the required program code and its up-
keep.

In MaDe, most of the commands can have multiple receivers, which are different
MObject instances (Figure . This allows the user to e.g. move multiple objects
around the design canvas or to recolour a batch of objects at once. This also makes
it easier to e.g. maintain the relative positions of different objects during a resizing.

The invoker is the object that at some point during the execution of the program
creates new commands and asks for them to be executed. It is often the same object
as the client object, which is usually that part of the program which contains the
receiver [38]. The terminology for the command pattern is somewhat vague for
these objects, as clients and invokers are at times used as synonyms for each other.
In MaDe’s implementation of the Command pattern, the client is always the main
frame object of the program while the invoker is either the main frame or its OpenGL
canvas component.

MaDe stores commands in undo and redo stacks. When a command is executed,
it is pushed onto the undo stack, making it the first to be undone. Omnce this
happens, the command is moved from the undo stack to the redo stack. The redo
stack is emptied if a new command is executed while there are commands in it. Thus
the Command pattern functionality gives MaDe a multi-level undo-redo-mechanism
that can remember a very large number of recent actions performed by the user.

This fulfils Requirement [R5]

5.5 Saving and Exporting

After considering the alternatives (see Chapter , it was decided that MaDe shall
initially support the XML-based X3D and SVG as its chosen formats for storing
vehicle models. Both are open source file formats and especially SVG is in wide-
spread use. A number of open-source editors are available that support them. Both
of them also feature simple, easy to understand syntax. This makes models created
with MaDe easily portable and modifiable. Using these formats meant that only
minor modifications needed to be made to them to correctly store the models. The
modifications will not affect the functioning of the files in software other than MaDe.

Saving vehicles in the X3D format is very straightforward. The vehicle model
is represented by a single X3D Scene element. In X3D, a Scene contains all the
relevant information for a specific X3D model ranging from individual objects to
lighting settings. As each geometric shape supported by MaDe is also supported by
the X3D schema, storing shape data is trivially easy.

Objects in X3D form a branch in the XML element tree. At the lowest level
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of the branch is the three-dimensional representation of the object, such as a box,
a cylinder or, for polygons, an extruded cross section. These are defined by their
attributes, such as height or a list of points for the cross section. The geometric
form of the object is coupled with an Appearance element that defines its color and
material. Together they form a Shape element. Shapes are positioned on the canvas
by appending them as children to Transform elements consisting of a translation and
a rotation along the XY Z axes. Finally, on the highest level of the branch is the
Group element, which can be used to link a number of different shapes. Each Group
is named using the unique identifier of the corresponding vehicle part, ensuring that
upon loading from the save file, the loaded parts have the same ID as the original
ones. The type of an object is preserved using the class attribute for Group elements.

Because of this high level of compatibility, the only additions to the X3D schema
required to store a vehicle model are the properties of special parts such as axles,
joints and sensors. They are written as attributes for the Group element corre-
sponding to the object. Also, links between objects are stored by giving the Group
element a parent attribute, with the unique identifier of the parent as the value of
the attribute. While these attributes are not recognized as valid X3D, they should
not cause any errors in other software. Usually, software that does not recognize
certain XML attributes, for example, will simply ignore them instead. X3D also
has a number of features not supported by MaDe, such as scene lighting. If MaDe
encounters any unfamiliar elements or attributes, it simply ignores them.

The resulting X3D file can be imported as is into Blender, for instance. However,
it is important to remember that not all programs handle data importing in the same
way. Blender, for example, seems to discard any data it does not use such as the
ID values, and X3D files exported from Blender do not use the same X3D standard
features to e.g. export box primitives as MaDe. Thus, while it is possible to view
and even edit vehicle models made with MaDe, it may not be possible to load the
modified models back into MaDe. A X3D representation of the example vehicle used
in e.g. Figure[12]is shown in Appendix [A]l

As mentioned in Chapter [3.2] the two-dimensional vector graphics format SVG
can also be used to represent a three-dimensional object. In MaDe, this is done by
describing each vehicle part with two SVG graphic objects, one showing the part
from the top, the other from the side. Thus any three-dimensional object can be
described using two two-dimensional ones; For example a cylinder can be described
with a circle and a rectangle. The end result is a vehicle shown from two viewpoints
similar to MaDe’s orthographic design view in Figure The two SVG objects are
grouped together and given the ID and type of the part as identifiers. The two views
are separated from each other along the Y axis of the SVG image by a known value
to make the resulting image more informative for the human viewer.

Structurally the SVG file is very similar to its X3D counterpart. As with the
X3D format, SVG supports MaDe’s part types well right from the start. The only
non-standard SVG attributes required are the axle, joint and sensor parameters
and the ID of the parent object. The resulting SVG files are actually simpler than
the X3D ones, as the same vehicle can be described using far fewer XML elements
without losing any information. However, this approach requires that certain factors
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such as the magnitude of the separation between the two views are known. This
can be problematic when attempting to modify the files with software other than
MaDe.

An example SVG image representation of a vehicle model, generated by MaDe
from the vehicle used throughout this thesis, is shown in Figure [[6] The SVG pre-
sentation of the same vehicle is shown in Appendix [B] While there is some unwanted
overlap between different parts of the vehicle, the vehicle itself is immediately rec-
ognizable and because of the widespread use of SVG, can be viewed e.g. in a web
browser. The SVG image can also be freely scaled, due to it being in a vector graphic
format. The only restriction to scaling is that MaDe assumes a certain scale ratio
is used when it opens an SVG file. Similar to the X3D files, the SVG files created
by MaDe can be viewed and edited in other software, but doing so may make them
incompatible with MaDe.

Currently, vehicles can only be exported as models for the StageMaCI simulator.
In practice, this means that MaDe generates a Stage model file for the vehicle,
defining the structure of the vehicle in Stage’s own syntax. Such a model file is
required by Stage for each object in the simulation. Because of this, the SVG or
X3D save files cannot be used in the simulator software as they are. Stage model
generation is not a trivial, straightforward operation, as Stage does not normally
support e.g. articulated vehicles or parametrised, steering axles. However, once the
Stage model file has been created, users need only to include it in a Stage world file
and create an instance of it to simulate the vehicle.

To simulate vehicle articulation, the vehicle model needed to be split into a
tree-like structure of sub-models in the same way that MaDe splits jointed objects.
Each non-terminal vertex of the sub-model tree is a joint, whereas the body, wheels
and other components of the vehicle form larger sub-models at the leaves of the
tree. This makes it possible to manipulate individual sections of the vehicle in
StageMaCl according to a kinematic model. Axles and sensors are exported as sub-
models regardless of whether the model has joints or not, as they have their own
special functionalities in the simulator software and use specific Stage features. A
Stage model file for the example vehicle is shown in Appendix [C]

To pass various machine and part parameters on to StageMaCI, MaDe creates
an additional parameter file upon exporting. The file contains the parameters for
each of the axles and joints of the vehicle, ranging from whether they can steer to
their maximum angle and turn rate. It also specifies a top speed and acceleration
for the vehicle. Parameter files use regular comma-separated value (CSV) syntax.

The saving, loading and exporting functionalities in MaDe fulfil the Require-
ments [R6HRE At this point, it has been demonstrated that MaDe fulfils all of the
requirements set for it in Chapter [2]



Figure 16: An example SVG image of a MaDe vehicle model.
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Figure 17: A vehicle defined with MaDe in the Stage simulator environment.

6 Model of a generic mobile machine

The machine definition tool MaDe is meant to be used in conjunction with the
modified version of the Stage simulator environment called StageMaCI or Motti
Simulator. While the ground work for StageMaCI was done in [40], this thesis
contributes to it with the creation of a simulator model for generic mobile machines,
which is in practice a generic kinematic model. In essence, the generic model is
a single C++ class extension to the StageMaCl software. The model is used to
estimate the kinematics for the vehicles defined in MaDe. This model is one of the
main results of this thesis work alongside the MaDe program. A simulated version
of a vehicle defined in MaDe is shown in Figure [I7

A separate, more general purpose module for generating kinematic models for
vehicles defined in MaDe is currently in development. The module will allow the
kinematic models to be used even without StageMaClI. In practice, it will be a stan-
dalone generic kinematic model class that will make use of the model files generated
by MaDe to calculate kinematics based on velocity and angular velocity given as
inputs. It will use the same kinematic models as the generic StageMaCI model.

Like MaDe, the generic kinematic model is a part of the tool chain of the Motti
project. With the help of MaDe, it can be used to quickly generate kinematic models
for arbitrary vehicle configurations. Kinematic models are useful in a wide range
of tasks from the generation of viable routes for a vehicle to task planning, mission
control and overall system simulation. As defining kinematic models by hand can
be time consuming, having a generic one can also reduce the time required to deploy
an automated vehicle fleet.

In this chapter, the generic mobile machine model, the algorithms it uses and the
pre-existing software it depends on are presented in detail. First, a brief introduction
to both the GIMnet communications framework and the machine control interface
MaClI is given. A second brief introduction is given to the StageMaCI simulator
environment. Finally, an in-depth description of the generic mobile machine model
is presented.
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Figure 18: The structure of GIMnet. GIMnetAPs are data hubs, while GIMI is the
interface through which application nodes communicate with them. [41]

6.1 GIMnet and MaCI

GIMnet and MaClI are both part of a control interface for fleets of generic machines.
By using them, it is possible to connect and control a machine or even a fleet
of machines that are unknown in advance. GIMnet handles the communication
between various machines and their human operators while MaClI is a hardware
abstraction layer on top of GIMnet. The StageMaCl simulator environment, as its
name implies, uses MaClI for abstracting simulated machines.

GIMnet is a service-based communication middleware that essentially combines
aspects of peer-to-peer and server-client communication architectures [41]. A GIM-
net network consists of a number of GIMnet Access Points through which different
services and applications send data to each other. The network topology is hidden
from the user. All the application nodes can see and communicate with each other if
their access points are connected despite real network topology or firewalls between
them [42]. The basic structure of GIMnet with access points and application nodes
is shown in Figure [18|

MaClI defines a number of interfaces as abstract representations of different ma-
chine components, such as range scanners, position, speed control and joint control.
Using MaCl interfaces it is possible to control a generic machine through GIMnet. A
machine is usually represented as a group of components that provide several MaClI
interfaces [43]. In addition to controlling individual machines, it is also possible to
connect to and control entire fleets of different types of machines through MaCI [44].
In this work MaClI interfaces are used in the StageMaCl simulator to describe the
machine to the network and to enable controlling it in a generic way.
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6.2 StageMaClI

Stage [45] is a lightweight, 2D kinematic simulator for multiple robots. It features
support for very large maps, huge numbers of robots of different types and a number
of ready-made models for different devices and sensors. Machine motions are esti-
mated using one of three different drive modes, namely differential drive, holonomic
drive or car-like drive. Stage uses simplified, low fidelity, computationally cheap
kinematic models for each drive mode. This makes the models cheap to simulate
but limits their ability to represent more complex real-world machines. Interaction
between objects is limited to three-dimensional collision detection. While lacking
the ability to simulate dynamic interactions between robots and objects, Stage is a
useful tool e.g. for designing robot control.

Stage uses its own syntax to define both maps and the models populating them.
The maps are highly modifiable, as Stage allows the user to e.g. read map layouts
from image files, define the height and width in the simulation world of each map
pixel or adjust the pose of the map. Models are constructed primarily from simple
extruded polygons. A model can contain other models, making it possible to render
objects with varying degrees of fidelity. As models can have specific functionalities
such as representing robots or sensors, this can also be used to create increasingly
complex machines.

Stage has been previously modified to work with MaClI as StageMaCl, also known
as Motti Simulator [40]. In addition to connecting Stage simulations to the MaCI
control interface, StageMaCl can be expanded with more complex, customized vehi-
cles. Any new vehicles can be controlled through MaCI once they were set up for it.
The original version of StageMaClI has the downside that each new vehicle requires
its own C-++ vehicle class that defines the kinematics and properties of the vehicle
before it is recognized by StageMaCl. Each of these classes is highly complex, as
they are required to define every important feature of the vehicle from steering to
sensor data handling.

In this thesis work, StageMaCl is further expanded with the addition of a generic
vehicle class. The main purpose of this is the elimination of the costly, time-
consuming creation of separate classes for each individual vehicle configuration.
Instances of the class make deductions based on the structure of a Stage vehicle
model to estimate kinematics. The generic vehicle class also supports vehicles with
multiple rotating axles or joints (Requirement [R17)), an arbitrary body structure and
any amount of range sensors (R19). Thus, various common vehicle types and con-
figurations can be simulated using just one class of vehicles. Each MaDe-generated
vehicle can be controlled manually or given a path of coordinate points which it will
follow autonomously. The only thing a user needs to do manually for these vehicles
to be simulated in StageMaCl is to include them in a Stage world file.

Upon initialization, instances of the generic vehicle class connect to GIMnet
and set up MaClI servers for parts of the vehicle. Another server is set up for the
coordinate drive mode of the vehicle to pass path points through MaCI. MaClI servers
providing positional data are created for the center point of the vehicle as well as
the center of each track or axle it has. To pass sensor data to MaClI, each sensor
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Figure 19: Controlling the example vehicle through MuRo. The circles represent
the midpoint of the vehicle and its two axles, both of which have been rotated 45°.

is connected to a MaClI ranging server. Finally, separate rotational joint control
servers are specified for axles and joints. Any steerable axles or joints are connected
to their corresponding control servers, allowing their poses to be controlled through
MaClI. The MaCI connection also makes it possible for a user to manually control
the simulated vehicles e.g. through the MuRo control program as shown in Figure
by passing velocity and angular velocity control values through MaCl. Using MaClI
also fulfils Requirements R20HR22]

After experimenting with a number of different vehicle configurations, it was de-
termined that StageMaCl is capable of simulating at least 50 and up to 100 instances
of the generic vehicle class at the same time on a regular desktop computer without
slowing down significantly. The processor load of each simulated vehicle depends
upon its complexity, with vehicles that have multiple range scanners being the most
taxing for the CPU. While the generic vehicle class with its MaCI compatibility can
be heavier to simulate than regular Stage models, these numbers of vehicles easily
cover the needs of most work sites. Multiple types of generic vehicle configurations
can be simulated in the same simulation instance. This is easily enough to cover the

needs of Requirement [R18§]

6.3 Kinematic model

To support different vehicle types, the generic vehicle model has to have the capa-
bility to accurately estimate the kinematics for the large number of different vehicle
configurations that can be generated with MaDe. The model created for this thesis
work supports at least the most common vehicle types: car-like vehicles with N
axles, differential drive machines and articulated vehicles with either passive or ac-
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tive articulation, fulfilling Requirement [R15] Simulating an unknown vehicle with a
highly variable structure poses challenges in terms of simulation accuracy, especially
as the Stage simulator sets its own constraints for the simulation. Accurately esti-
mating the motion of a vehicle with multiple centres of rotation is not a trivial task
though the model developed for this thesis attempts to limit the number of centres
by e.g. controlling axle positions so that extended imaginary axles always intersect
at a single point as described in Chapter

The simulator model for generic vehicles was designed from the ground up to
function together with MaDe. At the start of the simulation, the vehicle model is
read from the Stage model file. Different sub-models and special components such
as axles are recognized either by their model name or by their name attribute. It
is assumed that any articulated vehicles are constructed as a tree of sub-models
in the way used by MaDe as described previously. Some of the parameters of the
vehicle such as its top speed are read from a separate file created by MaDe, whereas
attributes related to the structure of the vehicle such as its wheelbase are derived
from the Stage model.

Once the Stage model of the vehicle has been processed, a rough estimate is made
of the drive type of the vehicle. Based on the number of steerable and non-steerable
axles as well as joints, the vehicle is categorized as being either differentially driven,
skid steered, car-like or joint steered. In essence, if a vehicle only has one axle, it is
assumed to have differential drive. Vehicles with more than one non-steering axle
or set of tracks are marked as skid steered, whereas if the vehicle has more than
one axle or track and some of them are steering, it is considered car-like. If the
vehicle has any actuated joints, it is joint steered. Vehicles with passive joints are
a special case, as the poses of passive joints are calculated separately. For these
vehicles, their type is derived from the parts in the first vehicle section attached to
the first passive joint, which is assumed to be the driving front section of a vehicle.
An example of such a vehicle is a tractor-trailer combination with passive linkage,
where the tractor is the front section.

The estimate for the drive type of the vehicle is used to decide which kinemat-
ics calculations are performed on the vehicle. Here, Stage’s model for differentially
driven vehicles is used extensively, because its simplicity allows for easy modifica-
tions. In practice, the generic vehicle model needs to mainly focus on calculating the
center of rotation and the forward and angular velocities for the vehicle, as Stage is
capable of estimating its motion once these values are known.

For a generic mobile vehicle, the kinematic model requires the heading, velocity
and angular velocity of the vehicle measured at some known point in vehicle coor-
dinates as well as some information on the pose of each component used to steer
it. As such, the current poses of each axle and joint on the vehicle are used in the
generic kinematic model when calculating the trajectory of a vehicle. The generic
kinematic model uses several of the kinematic models covered in Chapter {4 to con-
struct a model for a specific vehicle; the models used depend on the estimate for the
drive type of the vehicle. This fulfils the Requirement [R16]

Differentially driven vehicles are the simplest group of mobile machines supported
by the generic vehicle model. Since Stage already supports differential drive, all that
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remains for the generic vehicle model to do is deducing the point around which the
machine revolves. Because differentially driven vehicles are assumed to only have
one wheeled axle, this point is naturally the center point of that axle.

As covered in Chapter [4] skid steering is very similar to differential drive. The
main difference between the two is the fact that skid steering always has a certain
amount of lateral slippage when turning, which cannot be modelled properly with a
kinematic model. The amount and direction of slippage depend largely on driving
conditions and is dynamic in nature. Since Stage is a kinematic simulator, skid
steered vehicles use the same model as differentially driven ones as information on
the environment is not available in the generic case. The sole difference between
the models used for differential drive and skid steering is that with skid steered
vehicles, the center of rotation is placed at the midpoint of all the axles and tracks
on the vehicle. Essentially, the skid steering model assumes that the vehicle operates
in a highly ideal environment. While this means the skid steering model is more
inaccurate than e.g. the differential drive model, the difficulties of modelling skid
steered vehicles are well known.

Car-like vehicles and those with actuated joints use the common bicycle model
for calculating their centres of rotation. The biggest challenge here is that as stated,
vehicles with more than two axles can have more than one center of rotation, while
Stage only supports one center per vehicle. This problem is overcome by estimating
a single center of rotation for the vehicle using the equations to find an intersection
of N lines, the lines being the imaginary continuations of the axles of the vehicle. As
it is unlikely for more than two lines to intersect at a common point, a least-squares
approach is used with the sum of squared distances as the cost to find a point at
a minimum distance from at least two of the lines. The used model also supports
driving vehicles diagonally by turning each axle by the same amount.

To solve the N line intersection problem, each line 7 is represented as a point p;
and a unit normal vector n;. In this case, the problem is two-dimensional in nature,
as Stage is a 2D simulator. Given two points along the line, x;; and x;5, the normal
vector becomes:

R 0 -1
n; = {1 0 } (:171-2 — 33;1)/”3712 - mzl“ (35)

In the generic model, the ends of the ¢th axle in vehicle coordinates were chosen
as x;; and x;5. The model also takes into account changes in axle pose and location
caused by any joints along the body of the vehicle. As p; is a point along the 7 line,
let p; = x;1. The squared distance from a given point x to the line (p,7n) is:

d(z, (p,7))* = (z—p)T(AAT)(z —p) (36)

This leads to the cost function E(z). It can be minimized to solve the point z,
which is the least-squares solution to the NN line intersection problem:

E(z) = ) (z—p)"(d])(z — pi) (37)

i
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The N line intersection produces a good estimate for a single center of rotation
and, as will be shown in Chapter[7] the estimate remains good even for vehicles with
multiple centers of rotation. To further minimize inaccuracies caused by using such
an estimate, whenever the StageMaCI model is in manual or coordinate drive mode,
steerable axle and joint poses are controlled so that vehicles always have as few
centres of rotation as possible. This is done by calculating suitable Ackerman angles
for each steerable axle. For certain vehicles, such as ones with only steering axles,
the number of centres of rotation can thus be reduced down to just one. Naturally,
if this is the case, the equations for N line intersection produce that point.

Vehicles with passive joints require the most complex kinematics calculations of
the vehicle types supported by this model, making use of two separate models. The
first is one of the models for differential drive, car-like or articulated vehicles, used to
calculate the motion of the front section of the vehicle. The second is the generalized
model for a vehicle consisting of a chain of passively linked sections by Larsson et
al. [32] (see Chapter [4.3)). It is used to calculate the poses for each passive joint
on the vehicle based on the motion of the front section. The movement of passive
joints is naturally limited by their physical maximum angle.

Axles or tracks connected with passive linkage to the driving front section of
the vehicle are not considered for the purpose of determining the center of rotation,
unless the linkage has reached its maximum angle. It is assumed that each passive
joint has zero friction and thus does not affect the trajectory of the vehicle as
long as the joint can still rotate in the required direction. This is of course an
idealization, but the dynamic forces involved in such a situation in the real world
cannot be reliably modelled with kinematics alone. Sections connected to the front
of the vehicle by joints that have reached their maximum angle are included in the
kinematics calculations of the front section. This is to account for their effect on the
motion of the vehicle configuration. As such joints cannot turn further, they would
essentially behave like non-articulated vehicle sections at a fixed angle relative to
the front, thus becoming a part of the regular kinematics calculations.

Initially, the only variables the chain model needs to know are the velocity and
the angular velocity of the driving front section and the distances between each
link in the chain of vehicle sections. These are all known from calculations made
prior to updating passive joint poses. Because the actual motion of the vehicle in
the simulator is dependent upon the front section, the algorithm aims to solve the
current angle for each passive joint based on the velocities of any parts immediately
before and after its position in the part chain. Said velocities can be solved using
Equation (19| and the joint angles from the previous time step. The algorithm starts
from the front-most passive joint on the vehicle and moves from there towards the
rear of the vehicle while updating the poses for the joints. This makes it possible
to simulate indefinitely long vehicles with an arbitrary number of passive joints, as
demonstrated in Figure [20]



Figure 20: Driving a vehicle with 7 passive joints in StageMaCI.
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7 Simulation results

As with any simulated system, it was important to ensure that the kinematic models
generated with MaDe and StageMaCl were accurate enough to be useful. In this
case, this meant a generally realistic behaviour for different vehicle types. Cumu-
lative errors in the trajectory were expected, as the StageMaCl simulations would
be incapable of matching the dynamic behaviour of their real-world counterparts.
In actual use cases, such cumulative errors would be either compensated for with
suitable control or ignored as unimportant. For example, one of the planned uses
for the generic kinematic model is in route generation, where it is more important
that the resulting routes are drivable for the modelled vehicle than it is to follow a
certain trajectory with high accuracy.

To verify the kinematic models, three real-world vehicles were first defined in
MaDe and then simulated in StageMaCl using datasets gained from the real-world
counterparts of the vehicles. The first vehicle was a differentially driven robot used
in indoor research. The second was a four-wheel steered radioactive waste deposition
vehicle while the third was a tractor-trailer combination. These last two vehicle con-
figurations are comparable to the majority of mobile vehicles in use today, as car-like
vehicles with or without trailers are easily the most common vehicle configuration
in the world.

Although it would have been preferable to make comparisons between simulated
and real data with more than three vehicle configurations, unfortunately this was not
possible due to lack of datasets. In an ideal scenario, simulations would have been
run at least once for each of the most common steering configurations. Especially
the lack of datasets for center-articulated vehicles was unfortunate.

7.1 Test case 1: Differential drive robot

As the first exercise of the developed tools, a relatively simple differential drive
robot called J2B2 was defined in MaDe and simulated. J2B2 is an example of a
very common mobile robot configuration, consisting of a cylindrical body supported
by two differentially driven wheels and a third castor wheel. J2B2 has been used in
both education and research, as a result of which a number of datasets were available
for it. The robot is shown in Figure [21]

The dataset used here was compiled using J2B2’s on-board sensors while the
robot was teleoperated around an indoor laboratory track. Estimates for the velocity
and angular velocity of the robot were provided by its odometry sensors while its
position was estimated using its laser range scanner. The robot was operated in an
indoor laboratory. As J2B2 was differentially driven, the only control variables it
required were its velocity and angular velocity. The state of the real-world robot
was logged every 50 ms while the simulator is updated every 100 ms. Because of
this, the simulated robot was steered by using the average of two consequent control
commands. The results of the J2B2 simulation are shown in Figures [22] and

Figure [23| shows the trajectory of the simulated and real vehicles, the trajectory
estimated from the odometry data of the robot as well as its heading over time.
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Figure 21: The J2B2 differential drive robot.
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Figure 22: J2B2’s control input over time.
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Figure 23: J2B2’s trajectory and heading.

It is apparent that the trajectory and heading of the simulated vehicle match the
odometry estimates very well, while differing by a large amount from the behaviour
of the real robot. This was expectable, as the control input of the robot, shown
in Figure was gained from its odometry measurements. As is apparent, the
odometry data has a high degree of noise and inaccuracy. The real robot also had a
number of mechanical error sources, such as a tendency to over steer when turning
due to a limited breaking capability in its wheels, as well as the castor wheel which
could affect steering. These error sources together with the inherently inaccurate
nature of odometry measurements lead to the odometry estimates differing by quite
a large amount from the real-world behaviour of the robot.

As a measure of the accuracy of the kinematic model for the J2B2 robot, the root
mean square error (RMSE) for the heading of the simulated robot was calculated.
The RMSE represents the standard deviation between the predicted and real values.
In this case, the RMSE of the heading is the average rate of growth of the difference
between the simulated and real headings; in other words, it is the rate of growth of
the heading error. It is calculated using:

IESSON

Oy
oVt — o 7
where o; is the RMSE, N is the total number of data samples, 0; is the simulated
heading in the ¢ sample and 6; is the real heading. o is the rate of growth of the
difference. Because o, the variance of the heading, is relative to the square root
of the simulation time ¢, o is gained by dividing o, with the root of the simulation
time.

For J2B2, the difference between the simulated and real headings grew at an
average rate of 0.0044 rad/s (0.25°/s) throughout the 166 second long simulation.
At such a slow rate of difference growth, the simulated heading would have remained

(39)

O =

(40)

oy =
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reasonably close to the real value even with much longer simulations. This is further
indication of the high accuracy of the model generated for J2B2.

Despite the mismatch between simulated and real world trajectories, these results
show that the kinematic model for the differential drive robot was very accurate.
When given the control input resulting in the odometry estimate for trajectory,
a very closely matching simulated trajectory was produced. The simulated robot
matches the heading changes of the odometry estimate almost step for step as shown
in Figure 23] Some of the remaining difference can be explained with the filtering
nature of averaging the control input.

It would be interesting to see how the model performs with more accurately
measured control input. Unfortunately, no accurate measurements of J2B2’s velocity
or angular velocity were available. However, it is reasonable to conclude that if the
simulated robot had been given control input more closely matching what the real
robot used, the resulting trajectory would have been very close to that of the real
robot as well. The generated kinematic model could definitely be used with good
results to simulate the robot in other situations. In the other test cases, more
accurate control input measurements were available for simulation purposes.

7.2 Test case 2: Radioactive waste deposition vehicle

The second test case for models generated with MaDe was for Magne, a radioactive
waste deposition vehicle designed to drive in narrow underground tunnels. The
vehicle carries sealed canisters of waste to a repository deep within a network of
tunnels before depositing them inside previously prepared holes [46]. Magne is
shown in Figure The vehicle in question was equipped with four-wheel steering
and drive as well as two laser range scanners, one at the front and one at the rear
of the vehicle. It is the same vehicle used as the example in Figure

Datasets for the vehicle were provided by Navitec Systems Ltd. [47], a partner
in the Motti project, who are working on automating the vehicle in question. The
datasets were created by driving the real-world vehicle slowly along a test track.
Unfortunately, the datasets are somewhat limited in scope, as the work using the
Magne vehicle is still in its initial stages with a planned start of operations in the
mid-2020s [46]. The data consists of the control input given to the vehicle as well as
measurements of its position and velocity. The position of the vehicle was calculated
using laser measurements from two range scanners on the vehicle itself.

Parameters for the dimensions and performance of the vehicle were gained from
both real-world measurements and the specifications of the vehicle. Using these
parameters, a version of the vehicle was defined in MaDe as shown in Figure [12]
This vehicle was then simulated in StageMaCl and the results were logged. As
Magne is a relatively simple four-wheeled, car-like vehicle, the generated kinematic
model for the vehicle was essentially the bicycle model (see Chapter with two
steering axles, using Magne’s dimensions as parameters.

As control input, the simulated vehicle was provided the same target control
values as its real-world counterpart. Because the vehicle had four-wheel steering,
this meant separate target angle values for both its front and rear axles as well as a



51

target driving speed. The same input had been given to the actual Magne vehicle
during a real-world autonomous driving exercise. Data was logged once every 100
ms, the same frequency as used by the real-world vehicle. The total durations of
the dataset and thus the simulation were 2.7 minutes. Simulation results are shown
in Figure

As is often the case, the simulated version of the vehicle reaches the target input
values immediately and with perfect accuracy, whereas there is considerable noise
and variation in the real-world response. This is especially apparent in the velocity
values shown in Figure 25d, where the simulated vehicle matches target velocities
almost instantly while the real-world velocity varies considerably. These differences
in response naturally lead to further differences in the vehicle trajectory.

However, while the simulated axles match the reference input angle value very
well, it is apparent from Figure that for some unknown reason, the front axle
in the real vehicle data became stuck in the same position during the 20-80 s time
frame. It is safe to assume that this causes a larger than normal difference between
the simulated and real-world trajectory of the vehicle. By simulating the vehicle
again, this time giving the model exactly the same steering and velocity values as
used by the real world vehicle as input, the simulation accuracy improves as shown
in Figure 20]

The performance of the simulated vehicle now matches more closely that of its
real-world counterpart. The remaining differences between the simulated and real-
world results can be explained at least in part with inaccurate measurements of the
dimensions of the vehicle and possibly some small amount of dynamic interaction
with the environment of the vehicle. There was a mismatch between the measured
and specified dimensions of the vehicle and it was not possible to verify them with
new measurements. Dynamics in this case would have been minimized, though, due

Figure 24: The radioactive waste deposition vehicle Magne. [47]
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to the low driving speeds of the vehicle. Unfortunately, no lengthier, more complex
datasets were available for the Magne vehicle at the time of the writing of this thesis.

As in the previous test case, the RMSE for the heading of Magne was calculated.
Using the improved results, the average rate of growth for the difference between the
simulated and real headings was 0.016 rad /s (0.92°/s). While it is apparent that this
model is less accurate than the one for J2B2, the rate of difference growth remains
small despite the uncertainties encountered while modelling and simulating Magne.
The value is certainly low enough for the model to remain reasonably accurate even
during longer simulations.

The simulation results for the Magne vehicle show that the kinematic models
generated by MaDe and StageMaClI are reasonably accurate. This shows that the
tools can be used to quickly provide a reliable kinematic model for at least the most
common type of mobile vehicle in the world. Accurate kinematics support for car-
like vehicles is already enough to make MaDe and the generic kinematic model useful
in a wide variety of scenarios such as predictive safety features or path planning.

7.3 Test case 3: Tractor-trailer combination

The third vehicle to be simulated was a tractor-trailer combination previously stud-
ied by Backman et al. for path tracking purposes [48]. The vehicle configuration
consisted of a standard tractor and a seed drill. The seed drill was attached to the
tractor with two separate joints, one of which was actuated. Thus, this vehicle was
rather more complex structurally than the relatively simple, car-like vehicle in the
second test case. Several datasets gained from field research were graciously pro-
vided for use in this thesis by the original research team. The vehicle configuration
and its simulated counterpart are shown in Figure

The datasets are largely similar to the one used in the previous test case, con-
taining the control input values for vehicle velocity, the front steering angle of the
tractor as well as the target angle for the actuated joint. Additionally, the posi-
tion of the vehicle was estimated using GPS and laser measurements. The vehicle
configuration also included a method for estimating the passive joint angle and the
position of the trailer as explained in [48§].

While a kinematic model for the vehicle was presented in [48], it was somewhat
different from the one used in the simulation. It included the addition of a slipping
factor for the front steering wheels of the tractor, whereas the generated simulator
model could not make any assumptions of slippage and thus used a regular bicycle
model for the tractor. As explained in Chapter[6.3] the simulated trailer section used
the generalized model for passive articulation presented by Larsson et al. [32]. Unlike
in the previous test case, this vehicle was not automated, instead being operated by a
human driver. Thus, no precise reference values for control were available. Instead,
the control values given to the simulated vehicle were the measured velocity and
front wheel steering angle of the real vehicle over time. All of the parameters and
physical constraints for the vehicle configuration were taken from [48§].

The dataset used in this test case was of a simple driving exercise with the real
vehicle driving a single back and forth run as when ploughing a field. For this case,
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Figure 27: The tractor-trailer used in the second test case. [4§]
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Figure 28: Initial tractor-trailer simulation results.

the actuated joint was set at a constant zero angle, effectively removing it from
consideration. The vehicle was simulated using a slightly simplified model with the
actuated joint removed. The simulation results are presented in Figures 28] and 29

As is apparent from the figures, the simulated model of the tractor-trailer con-
figuration is relatively accurate. However, due to cumulative error over time and
e.g. lack of position correction in the steering behaviour, the end location of the
simulated vehicle differs by a large amount from that of the real vehicle. Errors are
caused by a number of sources, such as a certain amount of inherent inaccuracy in
the simulation model itself, and the dynamics affecting the real-world vehicle as it
drives around in an uneven, somewhat slippery field. The simulated vehicle has a
tighter turn radius than the real-world one and ends up turning too much during the
turnaround midway in the drive. This is caused by the behaviour of the simulated
trailer section; It does not affect the motion of the vehicle until the passive joint
reaches its maximum angle, which happens fairly late into the turn. The simulated
vehicle also appears to react strongly to slight corrective movements made over time
by the real vehicle, which cause the largest cumulative trajectory errors.
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The model for the passive joint pose is quite accurate, as can be seen in Figure
29] Ouly the tighter turn radius of the simulated vehicle causes any real difference
between the simulated and real joint poses. This is apparently caused by a difference
in specified and actual maximum angles for the passive joint: While the real-world
joint never reaches its stated maximum value of 7 rad (90°), instead being quite
clearly limited to roughly 1.1 rad (63°), the simulated joint quickly reaches its speci-
fied maximum. However, once the vehicle straightens out the model quickly returns
close to the real-world values aside from a small offset in poses. As the simulated
joint returns close to zero angle when driving straight while the real one does not,
it is likely the difference is caused by the driving conditions of the real vehicle.

After the initial simulation, it was clear that by reducing the maximum joint
angle to the value displayed by the real vehicle, i.e. roughly 1.1 rad (63°), the
accuracy of the simulation could be improved. By lowering the maximum, the joint
reaches its maximum angle sooner into the turn and thus alters the behaviour of the
vehicle, leading to increases in simulation accuracy. The results from this altered
simulation are shown in Figures 30 and [31]

As can be seen from Figure the passive joint is still simulated quite accurately
even after the reduction in maximum angle. The most significant improvement in
simulation accuracy is apparent in vehicle heading during the clockwise turn. Once
the passive joint is locked in its maximum pose, the behaviour of the vehicle very
closely follows that of the real vehicle. The locking occurs about 85 seconds into the
simulation as shown in Figure [30}

Figure [31) shows that the amount of deviation from the performance of the real-
world vehicle was drastically reduced though a distinct curve to the left in the
trajectory of the simulated vehicle is still apparent during the straight section. Given
the consistency of the curve, this could be explained by slippage or a slight sloping



0.8

0.6

0.4F

0.2r

Joint angle (rad)
)
nN

57

— Simulated
Real

~0.4
~06 ’
|
~0.8 5
1k
_12 1 1 1 1 1 1 1 1 J
0 20 40 60 80 100 120 140 160 180

Time (s)

Figure 30: Tractor-trailer passive joint angle over time with a reduced maximum
joint angle.

40

201

-100

-90

Vehicle trajectory 5-

Simulated
Real

Simulated
Real

- | 3t

/,

Heading (rad)
N

-1

L L L
-80 -70 -60

| | . . . L 1 1 1 . 1 I I . )
-50 -40 -30 -20 -10 0 10 0 20 40 60 80 100 120 140 160 180
X (m) Time (s)

Figure 31: Tractor-trailer trajectory and heading with a reduced maximum joint

angle.

of the field used to test drive the vehicle. The human driver operating the real world
vehicle would have compensated by steering suitably. As the control input used by
the driver was given as input to the simulation model, the compensatory steering
would show up as deviation in the simulated trajectory. Indeed, the steering angle
of the tractor is non-zero in the direction of the curve throughout the dataset as can
be seen in Figure 28d Remaining errors can likely be explained with inaccuracies
in the model; while it is quite accurate, the model is still a simplified estimate of
dynamic conditions.

The RMSE for the heading of the tractor-trailer combination was 0.02 rad/s
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(1.15°/s). Considering the relative complexity of the vehicle, it is a good indicator
of the accuracy of the model that the rate of difference growth between the headings
was in this case very close to that in the previous test case, where the simulated ve-
hicle was considerably less complex. This makes this model arguably more accurate
than the one for Magne in the previous test case, as Magne operated in a signifi-
cantly less dynamic environment. In this case, the consistent curve in the trajectory
is the single largest source of heading error in this model. It is likely that in less
dynamic conditions, the growth rate of the heading error would have been signifi-
cantly smaller. Despite the differences in the simulated and real-world behaviours
caused by environmental dynamics, the model for the tractor-trailer remained quite
accurate.

These results show that aside from cumulative errors caused by indeterminate
dynamics, the kinematic model generated for the tractor-trailer configuration is quite
accurate. Even without the reduction in the maximum angle of the passive joint,
the model is accurate enough to be useful in virtually any situation requiring one.
Further refining of vehicle parameters to better match real-world scenarios may also
be used to improve simulations when possible. Out of the three test cases, this one
took place in the most dynamic conditions. The susceptibility of kinematic models
to dynamic events shows in a moderate degree of error in the vehicle trajectory.
Despite this, the model for the tractor-trailer is accurate enough to be usable in
most situations requiring one especially in less dynamic conditions.
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8 Summary and future work

In this thesis, a software tool for quickly and easily defining a kinematic model of
a generic mobile vehicle was presented. Such a tool was necessary because despite
their usefulness in a number of tasks such as path planning, kinematic models for
specific vehicles are rarely available. The tool needed to support the definition of
the most common mobile vehicle types used in industrial tasks, such as car-like,
skid-steered or articulated vehicles. No tool suitable for this task was found, thus
requiring the creation of new software.

Because calculating the kinematics for such a varied collection of vehicle types
requires a number of different kinematics equations, a literature study of up-to-
date research on mobile machine kinematics was presented. The study covered
a number of different kinematics solutions for the vehicle types supported by the
software. Some of them were then used to calculate the kinematics for certain vehicle
configurations generated with the software.

The machine definition tool MaDe allows a user to define the basic structure and
configuration of a vehicle through a simple, intuitive 3D user interface. The vehicle
definition itself is done using two orthographic views from the top and side of the
design canvas. It is also possible to view a 3D perspective presentation of the vehicle
model. The tool supports the creation of boxes and point-to-point polygons as the
chassis of a vehicle and a number of special parts such as axles, joints and range
scanners to provide the main operational parameters of the vehicle. Many of the
standard user commands supported by common design software, such as copying,
pasting, undo and redo, are also supported by MaDe. These were programmed using
the Command design pattern.

A number of different file formats were studied to find ones suitable for storing
vehicle model data. MaDe stores its own models as XML-based X3D or SVG files,
allowing for small file sizes, easy portability and viewing models in software other
than MaDe. It is also possible to export vehicles from MaDe into the StageMaClI
simulator environment as functioning kinematic simulator models.

The actual kinematics calculations for vehicles defined with MaDe are handled
by a StageMaCl simulator component created as a part of this thesis work. The
component is essentially a generic kinematic model that deduces the main features of
the structure of a vehicle based on the model generated with MaDe and then forms a
suitable kinematic model for it. This makes it possible to simulate arbitrary vehicle
configurations in StageMaCI. Vehicle pose and range scanner data are broadcast
over the GIM network and can be used in other software. Vehicles can be controlled
through the MaCl interface.

The generic kinematic model is based on well-established kinematics knowledge.
It uses a number of separate kinematic models for specific vehicle types to construct
models for generic vehicles. The use of previously studied kinematics in the generic
model makes it and its simulation results reliable in at least those cases where vehi-
cles use a common vehicle configuration. Although the generic model also supports
more complex configurations with e.g. multiple passive joints, the accuracy of the
model in such cases could not be verified due to a lack of suitable datasets. While
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it is possible that other similar generic kinematic models exist, open-source models
or tools suitable for defining them or their parameters were not found during this
thesis work, making it necessary to create the tools presented in this work.

A separate module for calculating kinematics for generic vehicles defined in MaDe
is in development. It will be a standalone component not dependent on Stage.
It will have all the same kinematics features as the StageMaCl component. A
standalone generic kinematic model is necessary as decoupling the generic model
from the StageMaCl simulator will make it useful in a wider range of applications
than currently.

Kinematic models generated for three different real-world vehicle configurations
were verified using datasets collected from field exercises conducted with said vehi-
cles. The vehicles in question were a differential drive robot called J2B2, a car-like
radioactive waste deposition vehicle called Magne and a tractor-trailer configuration
with passive linkage. The kinematic models were found to be accurate in all cases,
making them suitable for any work requiring such models. In each case, the rate of
growth for vehicle heading error was low enough to keep trajectory errors reason-
ably small over fairly long periods of time. The downside of the models is a limited
tolerance to dynamic environments with e.g. slippery or uneven terrain.

The examined test cases covered common vehicle configurations that are similar
to those used in a large percentage of mobile industrial applications. It can be
assumed that similar levels of accuracy can be achieved for other vehicles that use
the same configurations. As such, the results are quite generalizable.

Unfortunately, suitable datasets were available only for the three vehicles cov-
ered in this thesis. Therefore it will be necessary to further verify kinematic models
generated for vehicle configurations that were not covered. While these three cases
cover the most commonly used mobile industrial vehicles, models for other common
vehicle types such as center articulated vehicles were not verified. Further develop-
ment may be required to add more support for vehicles that combine features from
different vehicle configurations, such as vehicles with a mix of both actuated and
passive joints.

The high level of accuracy in the kinematic models defined with MaDe and
generated using the simulator component makes the models usable in a wide range
of applications. Some planned uses for the MaDe and the generic model aside from
vehicle simulations include route network and traffic rule generation for arbitrary
vehicles. Additionally, the generic kinematic models could be used e.g. to predict
vehicle trajectories in a certain time frame. This has many potential uses ranging
from predictive safety systems aboard vehicles to making state predictions in Kalman
filters. The models are also accurate enough to be used in any simulated scenario
for the vehicles.

While the current version of MaDe fulfils all of its requirements, there are certain
features missing from MaDe that could improve its usability. MaDe could benefit
from certain additional tools, such as a tool for reshaping or resizing objects. It may
also be useful to expand the file format support of MaDe to cover formats specifically
intended for kinematics calculation. In the generic case kinematics parameters can
already be deduced from suitable X3D or SVG representations of machines, but
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support for more specialized formats could offer some benefits.

The stated goals for this thesis work were the creation of a tool for defining the
kinematic parameters of generic vehicles as well as a generic kinematic simulator
model that can calculate the kinematics for the vehicles using the defined parameters.
As has been shown, both of these goals were met entirely and with good results.
Both tools also fulfil all of their requirements.

MaDe and its accompanying generic kinematic model component allow for the
quick and easy generation of kinematic models for arbitrary vehicle configurations
as required. With MaDe, it is entirely possible to define and simulate a given vehicle
within minutes. The tools eliminate the need for highly detailed CAD models and
individual kinematic models for vehicles, leading to potentially considerable time
saving whenever kinematic models for vehicles are required.
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A An example vehicle in X3D format

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE X3D PUBLIC "ISO0//Web3D//DTD X3D 3.3//EN"
"http://www.web3d.org/specifications/x3d-3.3.dtd">
<X3D profile="Interchange" version="3.3"
xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance"
xsd:noNamespaceSchemalocation=
"http://www.web3d.org/specifications/x3d-3.3.xsd">
<!-- X3D model generated by MaDe -->
<Scene>
<Group DEF="0" class="box">
<Transform translation="0 2.5 0" rotation="0 1 0 0">
<Shape>
<Box size="14.3 1 3"/>
<Appearance>
<Material diffuseColor="0.937255 0.74902 0.27451"/>
</Appearance>
</Shape>
</Transform>
</Group>
<Group DEF="1" class="axle" canTurn="1"
turnRate="0.698132" turnAngle="0.785398">
<Transform translation="-4.3 1 0" rotation="1 0 0 1.5708">
<Shape>
<Cylinder radius="1" height="2.6" top="true"/>
<Appearance>
<Material diffuseColor="0.286275 0.258824 0.247059"/>
</Appearance>
</Shape>
</Transform>
</Group>
<Group DEF="2" class="axle" canTurn="1"
turnRate="0.698132" turnAngle="0.785398">
<Transform translation="4.2 1 0" rotation="1 0 0 1.5708">
<Shape>
<Cylinder radius="1" height="2.6" top="true"/>
<Appearance>
<Material diffuseColor="0.286275 0.258824 0.247059"/>
</Appearance>
</Shape>
</Transform>
</Group>
<Group DEF="3" parent="0" class="sensor" fov="3.14159" range="80">
<Transform translation="7.2275 2 0"
rotation="0 1 0 0">
<Shape>
<Box size="0.155 0.19 0.155"/>



<Appearance>
<Material diffuseColor="0.368627 0.631373 0.803922"/>
</Appearance>
</Shape>
</Transform>
</Group>

<Group DEF="4" parent="0" class="sensor" fov="3.14159" range="80">

<Transform translation="-7.2275 2 0" rotation="0 1 0 3.14159">
<8hape>
<Box size="0.155 0.19 0.155"/>
<Appearance>
<Material diffuseColor="0.368627 0.631373 0.803922"/>
</Appearance>
</Shape>
</Transform>
</Group>
<Group DEF="5" class="box">
<Transform translation="-6.25 1.5 0" rotation="0 1 0 0">
<Shape>
<Box size="1.7 1 3"/>
<Appearance>
<Material diffuseColor="1 0.909804 0.686275"/>
</Appearance>
</Shape>
</Transform>
</Group>
<Group DEF="6" class="box">
<Transform translation="6.2 1.5 0" rotation="0 1 0 0">
<Shape>
<Box size="1.8 1 3"/>
<Appearance>
<Material diffuseColor="0.937255 0.74902 0.27451"/>
</Appearance>
</Shape>
</Transform>
</Group>
<Group DEF="8" class="box">
<Transform translation="-0.05 1.5 0" rotation="0 1 0 0">
<Shape>
<Box size="6.3 1 3"/>
<Appearance>
<Material diffuseColor="1 0.909804 0.686275"/>
</Appearance>
</Shape>
</Transform>
</Group>
<Group DEF="17" class="box">
<Transform translation="6.05 3.75 0" rotation="0 1 0 0">
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<Shape>
<Box size="2.1 1.5 3"/>
<Appearance>
<Material diffuseColor="1 0.909804 0.686275"/>
</Appearance>
</Shape>
</Transform>
</Group>
<Group DEF="18" class="box">
<Transform translation="0 4 0" rotation="0 1 0 0">
<8hape>
<Box size="2 2 3"/>
<Appearance>
<Material diffuseColor="1 0.909804 0.686275"/>
</Appearance>
</Shape>
</Transform>
</Group>
<Group DEF="19" class="box">
<Transform translation="-3 3.5 0" rotation="0 1 0 0">
<Shape>
<Box size="4 1 3"/>
<Appearance>
<Material diffuseColor="0.937255 0.74902 0.27451"/>
</Appearance>
</Shape>
</Transform>
</Group>
</Scene>
</X3D>
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B An example vehicle in SVG format

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:svg="http://wuw.w3.o0rg/2000/svg"
xmlns="http://www.w3.0rg/2000/svg" width="292.2" height="200"
viewBox="-146.1 -112.5 292.2 200" version="1.1">
<!-- SVG model generated by MaDe -->
<g class="box" id="0" stroke="black" fill="#efbf46">
<rect class="xy" x="-71.5" y="-65" width="143" height="30"/>
<rect class="xz" x="-71.5" y="20" width="143" height="10"/>
</g>
<g class="axle" id="1" stroke="black" fill="#49423f"
canTurn="1" turnRate="40" turnAngle="45">
<circle cx="-43" cy="40" r="10"/>
<rect class="xy" x="-53" y="-63" width="20" height="26"/>
</g>
<g class="axle" id="2" stroke="black" fill="#49423f"
canTurn="1" turnRate="40" turnAngle="45">
<circle cx="42" cy="40" r="10"/>
<rect class="xy" x="32" y="-63" width="20" height="26"/>
</g>
<g class="sensor" id="3" parent="0" stroke="black"
fill="#bealcd" fov="180" range="80">
<rect class="xy" transform="rotate(0, 72.275, -50)"
x="71.5" y="-50.775" width="1.55" height="1.55"/>
<rect class="xz" x="71.5" y="29.05" width="1.55" height="1.9"/>
</g>
<g class="sensor" id="4" parent="0" stroke="black"
£fill="#bealcd" fov="180" range="80">
<rect class="xy" transform="rotate(180, -72.275, -50)"
x="-73.05" y="-50.775" width="1.55" height="1.55"/>
<rect class="xz" x="-73.05" y="29.05" width="1.55" height="1.9"/>
</g>
<g class="box" id="5" stroke="black" fill="#ffe8af">
<rect class="xy" x="-71" y="-65" width="17" height="30"/>
<rect class="xz" x="-71" y="30" width="17" height="10"/>
</g>
<g class="box" id="6" stroke="black" fill="#efbf46">
<rect class="xy" x="563" y="-65" width="18" height="30"/>
<rect class="xz" x="53" y="30" width="18" height="10"/>
</g>
<g class="box" i1d="8" stroke="black" fill="#ffe8af">
<rect class="xy" x="-32" y="-65" width="63" height="30"/>
<rect class="xz" x="-32" y="30" width="63" height="10"/>
</g>
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<g class="box" id="17" stroke="black" fill="#ffe8af">
<rect class="xy" x="50" y="-65" width="21" height="30"/>
<rect class="xz" x="50" y="5" width="21" height="15"/>
</g>
<g class="box" id="18" stroke="black" fill="#ffe8af">
<rect class="xy" x="-10" y="-65" width="20" height="30"/>
<rect class="xz" x="-10" y="0" width="20" height="20"/>
</g>
<g class="box" id="19" stroke="black" fill="#efbf46">
<rect class="xy" x="-50" y="-65" width="40" height="30"/>
<rect class="xz" x="-50" y="10" width="40" height="10"/>
</g>
</svg>



C The Stage model of an example vehicle

define test_machine position

(

gui_nose 1
obstacle_return 0O
ranger_return 1
blob_return 1
fiducial_return 1

localization "gps"

localization_origin [0 O O 0]

color_rgba [ 0.97311 0.84090 0.50980 1 ]
origin [ 0.00000 0.00000 0 O ]

size [ 14.30000 3.00000 5.00000 ]

test_scannerl( pose [ 7.22750 0.00000 -3.09500 0.00000 1 )
test_scannerl( pose [ -7.22750 0.00000 -3.09500 180.00001 1 )
test_axlel( pose [ -4.30000 0.00000 -5.00000 0 1 )
test_axlel( pose [ 4.20000 0.00000 -5.00000 0 ] )

block

(
points 4
point[0] [ -7.15000 -1.50000 1]
point[1] [ 7.15000 -1.50000 ]
point[2] [ 7.15000 1.50000 1]
point[3] [ -7.15000 1.50000 ]
z [ 2.00000 3.00000 ]

block

(
points 4
point[0] [ -7.10000 -1.50000 ]
point[1] [ -5.40000 -1.50000 ]
point[2] [ -5.40000 1.50000 ]
point[3] [ -7.10000 1.50000 1]
z [ 1.00000 2.00000 ]

block

(
points 4
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point[0] [ 5.30000 -1.50000 ]
point[1] [ 7.10000 -1.50000 ]
point[2] [ 7.10000 1.50000 ]
point[3] [ 5.30000 1.50000 1]
z [ 1.00000 2.00000 ]

block

(
points 4
point [0] [ -3.20000 -1.50000 ]
point[1] [ 3.10000 -1.50000 ]
point[2] [ 3.10000 1.50000 ]
point[3] [ -3.20000 1.50000 ]
z [ 1.00000 2.00000 ]

block

(
points 4
point[0] [ 5.00000 -1.50000 ]
point[1] [ 7.10000 -1.50000 ]
point[2] [ 7.10000 1.50000 ]
point[3] [ 5.00000 1.50000 ]
z [ 3.00000 4.50000 ]

block

(
points 4
point[0] [ -1.00000 -1.50000 ]
point[1] [ 1.00000 -1.50000 1]
point[2] [ 1.00000 1.50000 ]
point[3] [ -1.00000 1.50000 ]
z [ 3.00000 5.00000 ]

block

(
points 4
point[0] [ -5.00000 -1.50000 ]
point[1] [ -1.00000 -1.50000 ]
point[2] [ -1.00000 1.50000 ]
point[3] [ -5.00000 1.50000 ]
z [ 3.00000 4.00000 ]
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define test_sensorl sensor

(

obstacle_return O

range [ 0.0 80.00000 ]

pose [ 0000 ]

fov 180.00000

samples 361.00000

color_rgba [ 0.36863 0.63137 0.80392 0.15 ]

define test_scannerl ranger

(

obstacle_return 0O
color_rgba [ 0.36863 0.63137 0.80392 1 ]
size [ 0.15500 0.15500 0.19000 ]

block

(
points 4
point[0] [ -0.07750 -0.07750 ]
point[1] [ -0.07750 0.07750 ]

point[2] [ 0.07750 0.07750 ]
point[3] [ 0.07750 -0.07750 ]
z [ 0 0.19000 ]

test_sensorl()

define test_axlel model

(

name "test_axlel"

obstacle_return 0

color_rgba [ 0.28627 0.25882 0.24706 1 ]
size [ 2.00000 2.60000 2.00000 ]

block

(
points 4
point[0] [ 0 0 ]
point[1] [ 0 2.60000 ]
point[2] [ 2.00000 2.60000 1]
point[3] [ 2.00000 O ]
z [ 0 2.00000 ]
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