
Aalto University

School of Science

Degree Programme of Computer Science and Engineering

Matias Piispanen

Simulating timing and energy consump-
tion of accelerated processing

Master’s Thesis
Espoo, May 11, 2014

Supervisor: Professor Heikki Saikkonen
Instructor: D.Sc. Vesa Hirvisalo

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80712356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Matias Piispanen

Title:
Simulating timing and energy consumption of accelerated processing

Date: May 11, 2014 Pages: 73

Professorship: Software Technology Code: T-106

Supervisor: Professor Heikki Saikkonen

Instructor: D.Sc. Vesa Hirvisalo

As the increase in the sequential processing performance of general-purpose cen-
tral processing units has slowed down dramatically, computer systems have been
moving towards increasingly parallel and heterogeneous architectures. Modern
graphics processing units have emerged as one of the first affordable platforms
for data-parallel processing. Due to their closed nature, it has been difficult for
software developers to observe the performance and energy efficiency character-
istics of the execution of applications of graphics processing units.

In this thesis, we have explored different tools and methods for observing the
execution of accelerated processing on graphics processing units. We have found
that hardware vendors provide interfaces for observing the timing of events that
occur on the host platform and aggregated performance metrics of execution
on the graphics processing units to some extent. However, more fine-grained
details of execution are currently available only by using graphics processing unit
simulators.

As a proof-of-concept, we have studied a functional graphics processing unit sim-
ulator as a tool for understanding the energy efficiency of accelerated processing.
The presented energy estimation model and simulation method has been vali-
dated against a face detection application. The difference between the estimated
and measured dynamic energy consumption in this case was found to be 5.4%.
Functional simulators appear to be accurate enough to be used for observing
the energy efficiency of graphics processing unit accelerated processing in certain
use-cases.
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Suorittimien sarjallisen suorituskyvyn kasvun hidastuessa tietokonejärjestelmät
ovat siirtymässä kohti rinnakkaislaskentaa ja heterogeenisia arkkitehtuureja. Mo-
dernit grafiikkasuorittimet ovat yleistyneet ensimmäisinä huokeina alustoina
yleisluonteisen kiihdytetyn datarinnakkaisen laskennan suorittamiseen. Grafiik-
kasuorittimet ovat usein suljettuja alustoja, minkä takia ohjelmistokehittäjien
on vaikea havainnoida tarkempia yksityiskohtia suorituksesta liittyen laskennan
suorituskykyyn ja energian kulutukseen.

Tässä työssä on tutkittu erilaisia työkaluja ja tapoja tarkkailla ohjelmien kiih-
dytettyä suoritusta grafiikkasuorittimilla. Laitevalmistajat tarjoavat joitakin ra-
japintoja tapahtumien ajoituksen havainnointiin sekä isäntäalustalla että gra-
fiikkasuorittimella. Laskennan tarkempaan havainnointiin on kuitenkin usein
käytettävä grafiikkasuoritinsimulaattoreita.

Työn kokeellisessa osuudessa työssä on tutkittu funktionaalisten grafiikkasuori-
tinsimulaattoreiden käyttöä työkaluna grafiikkasuorittimella kiihdytetyn lasken-
nan energiantehokkuuden arvioinnissa. Työssä on malli grafiikkasuorittimen ener-
gian kulutuksen arviontiin. Arvion validointiin on käytetty kasvontunnistusso-
vellusta. Mittauksissa arvioidun ja mitatun energian kulutuksen eroksi mitat-
tiin 5.4%. Funktionaaliset simulaattorit ovat mittaustemme perusteella tietyissä
käyttötarkoituksissa tarpeeksi tarkkoja grafiikkasuorittimella kiihdytetyn lasken-
nan energiatehokkuuden arviointiin.

Asiasanat: GPU, CUDA, OpenCL, rinnakkaislaskenta, energiatehokas
suorittaminen, korkean suorituskyvyn sulautettu laskenta,
grafiikkasuoritinlaskenta, GPGPU
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Abbreviations and Acronyms

API Application programming interface
CISC Complex instruction set computing
CPU Central processing unit
CTA Cooperative thread array
CUDA Compute unified device architecture
DMA Direct memory access
DSP Digital signal processor
DVFS Dynamic voltage and frequency scaling
FIFO First in, first out
FPGA Field-programmable gate array
GPU Graphics processing unit
GPGPU General-purpose graphics processing unit computing
HPEC High performance embedded computing
ioctl intout/ouput control
ISA Instruction set architecture
JIT Just-in-time
MIMD Multiple instruction, multiple data
MISD Multiple instruction, single data
OpenCL Open Computing Language
RISC Reduced intruction set computing
SIMD Single instruction, multiple data
SIMT Singe instruction, multple thread
SISD Single instruction, single data
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Chapter 1

Introduction

The time of continuous increase in the serial execution performance of pro-
cessors has come to an end. It is no longer possibly to simply crank up the
clock speeds of processors to gain more performance. We have reached the
limits imposed by physical laws. It is increasingly more difficult to cool down
modern high-end processors, which is why it is important to decrease their
energy consumption. The problem chip manufacturers now face is not how
to make faster processors but how to make more efficient ones.

The landscape of high-performance computing is inevitably changing. A
clear paradigm shift is taking place from sequential processing towards par-
allelism. The first step was the introduction of multi-core processors in the
form on symmetric multiprocessing, but this approach has proven not to be
scalable. While there are fields where domain specific many-core accelerators
have already been used, it was not until recently when many-core processing
truly hit the mainstream. This was made possible by the realisation that
there already is a many-core accelerator present in most modern computers,
the graphics processing unit (GPU).

The programming models available for graphics processing unit program-
ming were understandably meant for the rendering of graphics. The first
attempt to bring more general-purpose computing to GPUs was to map com-
putation to graphical primitives and performing computation by essentially
drawing the primitives on the screen. This was a very tedious and ineffec-
tive way to perform computation, which led to more suitable programming
models and languages, such as the CUDA and OpenCL standards.

The problem with developing GPU accelerated programs lies in the closed
nature of GPUs. It is difficult to get meaningful feedback of the execution.
Essentially GPUs are treated as a black box system that is given program
code and data for execution and after a while you receive some sort of an
output. Recently GPU vendors have improved the support for program pro-
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CHAPTER 1. INTRODUCTION 10

filing, but these tools and performance counters are meant for debugging
system performance only. Especially in the field of embedded computing,
programmers are often interested in other matters as well, such as the en-
ergy efficiency of processing.

The focus of this thesis is exploring different tools and methods for ob-
serving both the host platform and GPU execution. These tools make it
possible to profile and instrument GPU accelerated programs to learn more
about the timing and energy consumption of program execution. In many
cases the only solution is to rely on simulation tools, which may even be
desirable for developers as they may not have access to the real hardware
they are developing for. We also present a power model that allows the esti-
mation of energy consumption of GPU accelerated programs. The model is
validated by comparing it against the energy consumption of real GPU hard-
ware running a real-world application benchmark from the field of computer
vision.

We will start off by describing the background information related to this
thesis in Chapter 2 that consists mostly of basic concepts of parallel pro-
cessing, computer architecture and energy consumption of electronics. In
Chapter 3 we explain the current computation and programming models of
desktop GPUs, as well as explain the structure of software components re-
lated to GPU accelerated computing on the host platform, and present some
program profiling tools and methods. Then, in Chapter 4 we explore the
methods needed to instrument GPU execution, which is needed for the es-
timation of the energy efficiency of execution. The instrumentation must
be generally done by using simulators. The chapter focuses on presenting a
number of GPU simulators with a different focus, including a state-of-the-
art parallel GPU simulator that is being developed. In Chapter 5 we present
the benchmarks needed for configuring and validating the power model pre-
sented in Chapter 6. On top of the power model this chapter also presents
the measurement setup and the obtained estimated and measured energy
consumption results. Finally, in Chapter 7 we discuss the overall landscape
of estimating energy consumption of GPU accelerated computing by means
of simulation before wrapping up our finding in the summary in Chapter 8.



Chapter 2

Background

This section describes the general background of this thesis. The topics cov-
ered in this chapter include basic concepts of parallel processing, computer
architecture, simulation, and power and energy consumption of electronics.
A well informed reader may skip this section. As a reference to the gen-
eral concepts and problems of parallel computing you can use the report by
Asanovic et al. [2006] on the landscape of parallel computing.

2.1 Parallel computing

2.1.1 Trends in parallel computing

For many years the increase in performance followed the so called Moore’s
law [Moore, 1965] that states that the number of transistors on integrated
circuits tends to increase by the factor of two approximately every two years.
Many other characteristics of computers, such as capacities of hard drives,
clock speeds of processors and even the overall computational performance,
seemed to follow this trend for a long time. It is clear that this sort of
exponential growth cannot continue forever due to the laws of physics. In
his article ”The Free Lunch Is Over” Sutter [2005] famously declared that
the time of growth of the serial processing performance of microprocessors
is now over, which will force manufacturers and developers to focus on more
parallel computing solutions. In case of mobile devices, the available battery
power is the limiting factor that will likely force them towards multi-core,
and eventually many-core, architectures [van Berkel, 2009].

The trend in recent years has been to increase the number of processing
cores in processors instead of raising the clock speeds of processors. It seems
that the four gigahertz clock frequency is becoming a glass wall that main-
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CHAPTER 2. BACKGROUND 12

stream processor manufacturers are not able to exceed without unorthodox
cooling methods. Modern computers also usually contain other domain spe-
cific processing elements such as graphics processing units and digital signal
processors. As the amount of processing elements increases, so does the total
potential computing power of computers.

The consensus seems to be that parallel processing will be come more
important in the future. Research is already focusing on microprocessors
that have hundreds, if not thousands, of low-power cores on the same chip.
It is likely that as the price of manufacturing many-core chips decreases, the
cores will become more and more specialized cores so that only parts of the
chip are active at any given time. Current heterogeneity in systems is mostly
limited to having different kinds of processing elements in the system.

2.1.2 Granularity of parallelism

There are many possible ways to achieve parallelism in computing. Paral-
lelism can occur at different levels of granularity. Coarse-grained parallelism
is usually more visible to the programmer than fine-grained parallelism. Dif-
ferent types of parallelism are typically divided into classes of instruction-
level parallelism, task parallelism and data parallelism.

2.1.2.1 Instruction-level parallelism

Execution on general purpose central processing units (CPU) at a high level
of abstraction can be said to consist of three separate phases: instruction
fetch, instruction decode and instruction execute. In practice these phases
can be further split into multiple stages, such as memory operations, mathe-
matical or logical operations, or other intermediate stages inside a processor.
Each of these stages can take one or more clock cycles to execute. The typical
length of an execution pipeline in current CPUs can range from two to even
thirty stages. [Patterson and Hennessy, 2007, p. 370–374]

The stages in the execution pipeline are ordered and typically different
stages use different functional units on the CPU. This makes it possible to
have multiple instructions in execution simultaneously on the same processor
as long as they are all in a different stage of execution and there are no
dependencies between instructions. A new instruction can be issued every
cycle as long as the instruction does not depend on the results of any of the
instructions currently being executed. The pipeline length also affects how
long it takes to fill a pipeline to reach maximum utilization. [Patterson and
Hennessy, 2007, p. 370–374, 412–415]
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Time (cycles)

DecodeFetch Read Execute Write

Figure 2.1: Example of pipelined execution. Squares of the same colour
represent the execution of the same instruction.

Figure 2.1 shows an example of pipelined execution on a processor that
has a five stage execution pipeline. The five stages are instruction fetch, in-
struction decode, read memory, instruction execute and write-back to mem-
ory. The x-axis represents time as clock cycles and y-axis represents the five
pipeline stages. Boxes of the same colour represent the execution of a single
instruction overtime. If a new instruction can be issued every clock cycle, a
processor with five pipeline stages can be executing five different instructions
at every given time. If new instructions cannot be issued due to for example
data dependencies, it creates a so called bubble in the pipeline and maximum
parallelism cannot be reached. In figure 2.1 the last instruction has to wait
for one cycle before it can be issued for execution which creates a bubble in
the pipeline.

2.1.2.2 Task parallelism

Splitting up a program so that different computational units execute differ-
ent tasks is called task parallelism. Task parallelism is a more coarse-grained
form of parallelism. It is the task of the programmer to write task parallel
code by splitting the execution of the program into multiple processes or
threads. An example of task parallelism would be dividing the work so that
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one thread handles the rendering of graphics on the screen independently
and in parallel to other threads in the process. Writing scalable task par-
allel code is very challenging, especially in presence of communication and
synchronization between threads. [Chapman et al., 2007, p. 192]

2.1.2.3 Data parallelism

Often there is a need to perform an identical operation for all the data items
in a dataset. The difference to task parallelism is that the work partitioning
is such that the same operation is performed concurrently and in parallel, but
on different data, instead of performing completely different tasks. [Chapman
et al., 2007, p. 191–192] It is usually the responsibility of the programmer
to partition the program execution for data parallelism, but under some
circumstances a compiler can find opportunities for data parallelism and
compile the program for parallel execution.

2.1.3 Flynn’s taxonomy

Flynn’s taxonomy [Flynn, 1972] is a traditional classification system for com-
puter processor architectures. The taxonomy is used to classify processors
into four categories on two axes, the amount of data being processed and the
number of instruction streams being executed. The table of classifications is
shown in figure 2.1.

Single instruction Multiple instruction
Single data SISD MISD

Multiple data SIMD MIMD

Table 2.1: Flynn’s taxonomy.

Flynn’s taxonomy classifies processors into following categories:

• Single instruction, single data (SISD) processors are typical se-
quential processors. A single instruction stream is being executed that
operates on a single set of data. Currently high-performance processors
are moving towards more parallel architectures.

• Single instruction, multiple data (SIMD) processors execute a
single instruction stream on multiple processing elements in lockstep,
but each processing element operates on its own data. An example
of SIMD processing is vector operations that are executed on special
vector processing elements on processors. The SIMT execution model
presented in 3.1.2 has a close relation to the SIMD model.
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• Multiple instruction, single data (MISD) processors execute mul-
tiple instruction streams on separate processing elements, but they all
operate on the same data. In reality there are very few consumer pro-
cessors of this category. MISD architecture processors are generally
used in systems that require high fault tolerance.

• Multiple instruction, multiple data (MIMD) processors execute
multiple instruction streams on separate processing element and they
all operate on their own data. This sort of execution is typically task
parallel as described in section 2.1.2.2. [Wolf, 2007, p. 68]

2.1.4 Amdahl’s law

It is usually very difficult, if not impossible, to write completely parallel
programs. In some cases parts of the program simply must be executed
sequentially. For example, synchronization events may cause some threads
to stall and wait for other threads to finish their task. The sequential parts of
execution often dominates the overall execution time which results in often
surprisingly bad overall performance. The guideline for finding the maximum
expected improvement through parallelism is called Amdahl’s law. [Amdahl,
1967]

Amdahl’s law is presented in the formula

Speed-up =
1

(1 − P ) + P
N

, (2.1)

where P is the proportion of the program that can be made parallel, (1−P )
is the proportion of the program that is sequential and N is the number of
processing elements available.

As an example, let’s observe the speed-up of a program where 75% of the
program can be made parallel and it is processed on a four core processor.
The expected maximum speed-up in such case given by Amdahl’s law is as
follows:

1

(1 − 3
4
) +

3
4

4

= 2.286. (2.2)

The performance of such program can only be expected to double on a four
core processor through parallelization.

2.1.5 Multithreading on symmetric multiprocessors

One of the most common ways for a programmer to achieve parallelism in
an application is to write a multithreaded application. Multithreading refers
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to applications that consist of multiple instruction streams, called threads,
that are executed concurrently and potentially in parallel. The creation and
context switching of threads is much faster than those of processes, which is
why they are preferred for concurrent computing. Parallelism can be achieved
by executing threads on multiple processing elements. [Stallings, 2008, p.
161–165]

The most straightforward use for threads is to exploit task parallelism in
applications [Wolf, 2007, p. 82]. In such programming model one task is
usually assigned to one thread. Regular threads can also be used for data
parallel computation. Data parallel computing models such as OpenMP
follow a so called fork-join programming model, where the initial sequential
thread creates a team of worker threads, or forks, and the parallel work
is divided between the worker threads [Chapman et al., 2007]. When the
parallel region ends, computation returns to the original sequential thread.

All threads belonging to the same process share the same resources. This
introduces a need for synchronization between threads. Threads should
not for example be allowed to write to the same location simultaneously.
[Stallings, 2008, p. 166–167] The stalls in execution caused by synchro-
nization essentially make processing sequential, which dramatically affects
performance negatively, as stated by Amdahl’s law in section 2.1.4

2.1.6 SIMD computation

Many modern processors contain special hardware that can perform SIMD
style vector operations. In SIMD computation, a single instruction performs
an operation on multiple data items simultaneously. Vector operations are
useful because many real-world applications contain computation that are
prime candidates for SIMD computation. For example, most operations than
manipulate pixel colour values are a good fit for SIMD computation, because
pixel colours are typically represented as four separate 8-bit values (red,
green, blue and alpha) and the same operation is applied to all four values.
Special vector instructions are used for vector operations and it is often the
programmers duty to explicitly declare vector operations in the code. [Wolf,
2007, p. 80–81]
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2.2 Efficient accelerated processing

2.2.1 Accelerators

Accelerators are computational units in computer systems that are designed
to extend the functionality of the primary processor of the computer. Ac-
celerators are designed to perform specific tasks, or at least specific types of
tasks, more efficiently than the general-purpose host CPU. In the acceler-
ated computing model, the host CPU offloads parts of the computation to
accelerators. The motivation behind using accelerators is gaining either a
considerable performance increase or reaching better energy efficiency.

Many different topologies are possible for accelerated systems. Accelera-
tors may locate on the same chip as the primary processor or be on a separate
chip attached to the CPU via a bus. Accelerators may either share memory
with the primary processor or have their own memory.

Traditionally accelerators have been used to perform relatively simple
fixed-function functionality. Examples of domains where accelerators have
been widely used are accelerating complex mathematical operations, such as
floating point arithmetic, signal processing and computer graphics. Recent
trend has been to develop accelerators with more general-purpose computa-
tional capabilities. Examples of such processors are modern graphics process-
ing units, the Cell microprocessor and most recently Intel’s x86 many-core
coprocessor Xeon Phi. The previously mentioned accelerators are mainly
focused on exploiting data parallelism.

2.2.2 Energy efficient computing

For a long time, improving performance was the most important goal for
commercial processor manufacturers. Since hitting the so called power wall,
manufacturers have turned their focus on improving the efficiency of pro-
cessors. Instead of plain performance, metrics of performance per watt and
performance per area have become increasingly important.

There are two different viewpoints to improving the efficiency of pro-
cessors. Power consumption directly affects the amount of heat processors
generate [Wolf, 2007, p. 21]. Heat generation is one of the biggest reasons
for the rise of CPU clock speeds declining [Sutter, 2005]. Sequential perfor-
mance can only be increased by improving the performance per watt ratio.
On the other hand we can talk about energy efficiency when we want to stress
the fact that embedded systems are often powered with batteries. Efficient
computation increases the battery life of the whole system. [Wolf, 2007, p.
21]
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Dynamic voltage and frequency scaling (DVFS) is a technique for lowering
the power consumption of processors by scaling the clock speed and voltage
of processors dynamically. There is a quadratic relationship between the
energy consumption and operating voltage of a processor. In an ideal setting
this would mean that by halving the clock speed and the operating voltage of
a processor, you would get to one fourth of the original energy consumption.
In practice there is a significant static component in the energy consumption
of a processor that does not depend on the operating speed and voltage,
which is often called leakage power. [Wolf, 2007, p. 86–87]

Simply adding more cores to CPUs feels intuitively like a good solution,
but in practice it has been shown that this method does not scale well.
Large portions of computer programs consist of sequential execution and
writing completely parallel programs is difficult, if not impossible. Growing
the number of cores also makes hardware design and memory management
increasingly more difficult. A more realistic approach is to add more spe-
cialized processing units on computers, such as the accelerators discussed in
section 2.2.1. Specialized hardware is usually simpler in design, which lowers
the energy consumption and often leads to better performance. Heteroge-
neous computing, where parts of computation are offloaded to specialized
processing units, tries to address the need for high performance and low
energy computing. [Wolf, 2007, p. 267–275]

2.3 Execution timing

2.3.1 Dynamic program analysis

Dynamic program analysis means the analysis of programs by observing their
execution either on a real processor or in a simulated environment. Program
execution can be observed by either instrumenting the program by injecting
code into the program that records desired information, or by explicitly mon-
itoring the state of the real or virtual processor or memory during execution.
There is usually a considerable amount of overhead associated with dynamic
program analysis. The more often the state of execution is observed and
logged, the bigger the overhead is.

Software profiling is a form of dynamic program analysis that aims to
count the occurrences of different types of events, such as the number of
times a function, basic block or instruction has been executed. Software
profiling is typically used for optimizing program performance and identifying
bottlenecks. [Ball and Larus, 1994]

Software tracing is a more detailed form of dynamic program analysis that
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does not only count the number of different events, but records the sequence
of events that have occurred during execution. Like with software profiling,
execution tracing can be performed at different levels of granularity. A full
execution timing model can be constructed by adding a timestamp to each
event in the trace. [Ball and Larus, 1994]

2.3.2 Simulators

GPUs are much more closed systems compared to general-purpose CPUs.
It is not possible to generate as thorough traces of programs that are being
executed on the GPU. Vendors provide some tools that generate traces that
allow developers to evaluate the performance of their applications. We are in-
terested in building an estimated power model based on the execution traces,
which requires more detailed tracing. Currently the only way to inspect the
execution of GPU accelerated programs at the required level of detail is to
use a GPU simulator.

The terms emulator and simulator are often used interchangeably. Both
can be used to execute programs in place of an abstract or real machine.
The difference between the terms lies in the model they are mimicking. The
term emulator is used when the aim is to reproduce the behaviour of a real
system. The term simulator is used when the system executes an abstract
model. [Hirvisalo and Knuuttila, 2010, p. 2]

Simulators have numerous different use cases. Most commonly they are
used to analyze the performance or the energy consumption of programs.
Simulators can also be used to analyze the behaviour of processors before
there is an actual physical processor available. Simulators can also be used for
software debugging purposes. Simulation can be done by directly executing
on the host processor and keeping track of the state of the guest processor, or
by implementing an explicit simulator program that performs the execution
and tracks the state of the guest processor. [Wolf, 2007, p. 126–130]

There is a clear trade-off between the speed of simulation and the accuracy
with respect to the the characteristic of execution that is under analysis.
Functional simulators simulate the instruction set of a processor, but they
do not model the microarchitecture of processors. A more accurate, but also
much slower, simulator type is a so called cycle-accurate simulator. Cycle-
accurate simulators model the state of the processor at microarchitecture
level at the temporal granularity of a clock cycle. They also often keep
track of processors resources, such as registers and memory, more accurately.
The cost of cycle accuracy is a significant loss in performance. For accurate
power modeling with simulation it is often necessary to also simulate other
components of the computer, such as memory buses and memory. [Wolf,
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2007, p. 131–132]
There are two basic methods for executing code in a simulator. Binary

interpretation and binary translation. Interpreting code in a simulator works
much like a fetch-decode-execute loop in a real processor. This results in
quite poor performance. A faster method is to translate the binary into
the instruction set architecture (ISA) of the host processor either statically
ahead of time or dynamically in blocks just-in-time (JIT) before the code is
executed. While binary translation has a significant overhead, it is usually
a much faster method compared to binary interpretation. [Hirvisalo and
Knuuttila, 2010]

2.4 Linux device driver

Device drivers are computer programs that work as an interface between
user programs and hardware. They provide a set of operations related to
the hardware device they govern to user programs and manage the hardware
resource so that it cannot be accessed in an illegal way. In Linux device
drivers are typically implemented as a part of the kernel. User programs can
invoke device services through a set of system calls. It is also the duty of the
device driver to handle interrupts raised by the device.

Graphics processing units are typically character devices, meaning they
are accessed as a stream of bytes like files. The typical system calls provided
by a character device driver are open, close, read and write. Non-standard
operations and hardware control operations are usually handled using the
ioctl (input/output control) system call. Devices can have a large set of
operations that are accessed through the ioctl system call, and they are
typically device specific operations. [Corbet et al., 2005, p. 1–7, 135–140]
Typically user applications do not access device services directly through
the system call interface, but they call functions of user-mode libraries that
provide a higher level interface for applications.

Most hardware devices need to notify the kernel about certain events
that have occurred on the device. Devices can interact with the kernel using
interrupts, that signal that there is an event that may require immediate
attention. It is the duty of the device driver to implement functionality
to handle interrupts raised by the hardware. There interrupt handlers are
often split into kernel and user mode parts, often called the top and bottom
halves. The kernel mode interrupt handler routine is run when an interrupt
has been caught. The kernel mode interrupt handler routines should execute
in a minimum possible amount of time because the execution blocks all other
processes. What is actually required to be done in an interrupt handler
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depends on the nature of the interrupt. The handler should at least make
sure the device can continue normal operation and that the interrupt will be
handled appropriately. If the interrupt handling requires long computations,
it can be split into one or more tasklets, that are user mode processes that
will handle the computation. Tasklets are schedules like regular processes,
so they do not interfere with regular execution of processes. [Corbet et al.,
2005, p. 258–278]

2.5 Energy consumption

2.5.1 Power and energy

Energy and power are terms that in everyday speech are often used inter-
changeably. Energy means the amount of work that a physical system is able
to do on another system. The SI unit of energy is joule (J). In this thesis we
are especially interested in the energy efficiency of computation, because en-
ergy consumption has a direct effect of battery lifetime in embedded systems.
Power on the other hand is used to describe the rate of energy dissipation.
The SI unit of Power is watt (W), which is joules per second. [Young et al.,
2006]

We can describe the relationship between power and energy by defining
instantaneous power as follows:

P = lim
t→0

∆E

∆t
=
δE

δt
. (2.3)

In this thesis we are interested in the electromagnetic energy dissipation
of the computation of many-core processors such as GPUs. However, we
cannot measure energy or power consumption directly. We can, however,
measure the current (I) and voltage (V) of electronic circuits. Instantaneous
power can be described as a function of voltage and current by using Ohm’s
law and Joule’s first law, as defined in for example physics handbooks [Young
et al., 2006]. Ohm’s law is defined as:

I =
V

R
. (2.4)

Joule’s first law is:

P = I2 ·R. (2.5)

By substitution, instantaneous power can be defined as a function of voltage
and current at a given point in time t as follows, assuming a constant supply
voltage:



CHAPTER 2. BACKGROUND 22

P (t) = I(t) · V =
V 2

R
. (2.6)

Energy dissipation over a time interval T can be then defined through inte-
gration:

E =

∫ T

0

I(t) · V dt. (2.7)

2.5.2 Power consumption

The overall power consumption of a processor can be described with the
following equation:

Power = Dynamic power + Static power (2.8)

Dynamic power is caused by the switching of transistors during execution of
programs. As the name suggests, dynamic power consumption varies based
on the nature of execution and the workload of the processor. Static power
is the result of hardware architecture design and operating temperature, and
it can be considered to be more or less constant, unless execution affects the
operating temperature. [Hong and Kim, 2010]

Dynamic power in the above equation can be described to be proportional
to the following formula:

P = ACV 2f, (2.9)

where A is the activity factor, C is total capacitance, V is operating volt-
age and f is the frequency of the clock. The above formula explains why
power-saving techniques such as DVFS, described in Section 2.2.2, can yield
significant energy savings. It if more efficient to ”race to idle” by complet-
ing a task at a high peak frequency and then running at a reduced clock
frequency and operating voltage during idle states.



Chapter 3

GPU computation environment

In this chapter we present both the hardware and software platforms related
to GPU accelerated processing. The GPU compute model differs quite dra-
matically from typical program execution on CPUs. Section 3.1 presents the
abstract hardware architecture of graphics processing units and the program-
ming models for GPU accelerated processing. After that we take a look at
the software stack on the host platform. Finally, we look at some methods on
how it is currently possible to instrument and profile the execution of GPU
accelerated programs.

3.1 GPU accelerated processing

3.1.1 Graphics processing unit architectures

3.1.1.1 General graphics processing unit architecture

Graphics processing units are high throughput processors. Their processing
power is achieved by having a large number of simple processing elements that
perform computations in parallel. Originally graphics processing units were
designed specifically for rendering of graphics, but as the graphics rendering
pipeline became more programmable, the structure of GPUs became more
suitable for general-purpose computing.

Figure 3.1 shows the high-level architecture of current desktop graphics
processing units. A GPU consists of multiple processing cores. Typically
the number of cores can vary from just a few up to a few dozen cores per
GPU. The processing cores each execute their own stream of instructions.
The actual computation is performed by the processing elements (PE) on
the processing cores. Recent consumer GPUs have had up to 48 processing
elements on each processing core. The trend on both mobile and desktop

23
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Figure 3.1: High-level GPU architecture

GPUs has been to increase the total number of processing elements on the
GPU to achieve higher throughput.

Current desktop GPUs contain a small cache, that can also be used as
a programmable shared memory, on each processing core [NVIDIA, e, p.
10–11]. In the first generation GPUs that were used for general-purpose
computation, only a smaller shared memory was available on the processing
cores. The main method for hiding memory access latency is having a large
number of threads ready to run and having a fast thread switching mechanism
implemented in hardware. [Wang, 2010, p. VI-620] The current generation
GPUs also have a larger L2 cache shared by all the processing cores for hiding
global memory access latency.

Graphics processing units have a much larger number of registers com-
pared to general-purpose processors. Each processing core typically has thou-
sands of registers. The registers allocations are divided between a large num-
ber of threads to avoid the need of context switches in the sense they are
performed on CPUs. Having a fixed allocation of registers for each thread
that is ready to be executed on a processing core simplifies the hardware
needed for scheduling. [Kanter, 2009, p. 5–6]

Scheduling logic is located on the processing cores. Instructions are dis-
patched to the core’s processing elements that execute the same instruction
in parallel operating on their own data. This makes the execution funda-
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mentally SIMD-style computation as described in 2.1.6. [Kanter, 2009, p.
5–7]

Dispatch port

Operand collector

ALU FPU SFU

Result queue

Processing Element

Figure 3.2: Abstract processing element architecture

Processing elements on the processing cores consist mostly of functional
units. The number of different functional units may differ. GPUs that are fo-
cused on graphics rendering performance typically have high single-precision
floating point performance, while GPUs aimed for general-purpose computa-
tion and scientific computing may have more double-precision floating point
units. [Kanter, 2009, p. 5–7] GPUs capable of general-purpose computation
also have integer arithmetic logic units and Special Function Units (SFU)
that are responsible for performing special math operations such as square
root, sine and cosine [Wong et al., 2010]. There may be other units on
the processing element that aim to reduce memory operation latencies, such
as the operand collector and result queue units in the example processing
element structure presented in figure 3.2 [Kanter, 2009, p. 5–7].

3.1.1.2 Mobile graphics processing units

Graphics processing units on mobile devices such as mobile phones are very
similar to desktop GPUs. They are expected to perform mostly similar tasks,
although their performance is not on par with modern desktop GPUs. Mobile
GPUs need to be extremely energy efficient, because they are powered by
batteries and there is typically no active cooling elements such as fans cooling
them down. [Akenine-Moller and Strom, 2008]

The high-level memory architecture of a typical mobile system on a chip
(SoC) can be seen in figure 3.3. The biggest difference between mobile and
desktop GPUs is that mobile GPUs are typically located on the same chip as
the host CPU processor. The CPU and GPU also often share the system main
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Figure 3.3: Memory architecture of a typical mobile chip. [Akenine-Moller
and Strom, 2008]

memory which is located off the chip. Sharing memory eliminates the need for
explicit memory transfers between CPU and CPU memories. Mobile devices
usually have domain specific accelerators for multimedia operations, such as
video encoding and decoding. The accelerators aim to improve performance
and energy efficiency. [Akenine-Moller and Strom, 2008]

3.1.2 Parallel compute model on graphics processing
units

The parallel compute model on GPUs, originally called general-purpose graph-
ics processing unit computing (GPGPU), is a data parallel computing model.
A commonly used term for the execution model is single instruction, multi-
ple thread (SIMT), which is a marketing term coined by NVIDIA. The slight
difference compared to SIMD vector computing is that the threads in the
SIMT model perform the computations on the data items of the given vector
lane sequentially one by one as scalar operations. While the threads execute
the same instructions simultaneously, each thread can still have their own
logical control flow by masking out computations in divergent branches. The
GPU compute model is close to the single program, multiple data (SPMD)
model where data is partitioned for parallel execution on different proces-
sors [Algorithms and of Computation Handbook, 1999].

In the current compute model it is the responsibility of the programmer
to manage memory on the GPU and explicitly handle memory transfers
between host and device memories. The input data needs to be transferred
to the GPU before computation can be done, and the results usually must
be transferred back to the host memory. A typical application that uses the
GPU as an accelerator takes the following steps:

• Allocate buffers in host and device memories.
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• Copy data from host to device buffers.

• Launch compute kernel for computation on the GPU device.

• Copy results back from device to host buffers.

• Deallocate buffers. [Gaster et al., 2011, p. 16–26]

The parallel regions of code that can be efficiently executed on a GPU
are typically loop nests that iterate over a large amount of data. These
parallel regions are implemented as so called kernel functions. The kernels
are offloaded to the GPU for execution using a large number of threads which
are all executing the same kernel function. The only difference between
the threads is that they all have a unique index number which is used to
determine their control flow and the data the thread will be working on.
[Gaster et al., 2011, p. 16–19]

In addition to specifying the number of threads that perform the com-
putation, the programmer needs to explicitly divide the threads into blocks
called cooperative thread arrays (CTA) or workgroups [Gaster et al., 2011,
p. 17–19]. GPUs schedule threads of the same CTA for computation on the
same processing core. The motivation behind dividing threads into blocks is
to avoid context switches in the traditional sense during computation. As
presented in section 3.1.1.1, GPUs hide memory access latency by having a
large number of threads ready to run. When a CTA is scheduled for execu-
tion on a processing core, registers and shared memory are allocated for all
the threads in the CTA so that they are all potentially ready to be executed.
On the other hand, the amount of threads in a CTA limits the amount of
registers and memory that can be allocated to a single thread. Finding the
optimal CTA size is an application specific problem.

Another reason for dividing threads into blocks explicitly is to achieve
scalable computation. CTAs can be scheduled to any processing core for
computation, because by definition the computation of one CTA must be able
to be done independently of others. The block structure makes it possible
to accelerate the execution efficiently on GPUs with a different number of
processing cores. [Gaster et al., 2011, p. 17–19]

As the threads of the same CTA are executing on the same processing
core, they also share the same memory local to the core. This also allows
the threads belonging to the same CTA to synchronize. However, synchro-
nization between threads in different blocks is possible only by exiting the
kernel execution and returning to sequential host code for synchronization.
[NVIDIA, e, p. 6]
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A more fine-grained scheduling unit in the execution model is what NVIDIA
calls a warp and AMD calls wavefront. A warp is a group of threads of the
same CTA, in current compute model 32 threads, that are scheduled for exe-
cution on a processing core in parallel. The threads in the same warp always
execute the same instruction with their own data in lockstep. Branching is
handled by masking out the computation of threads that are not taking the
branch currently in execution. [Wong et al., 2010]

3.1.3 Programming models for GPU accelerated pro-
cessing

General-purpose computing on graphics processing units (GPGPU) emerged
as an exploitation of vertex and pixel shader programs used for computer
graphics. In the shader based GPGPU programming model, input data was
represented as a texture and it was drawn into a scene on a plane facing the
camera so that each pixel colour value on the view plane represented a data
item in the input data array. Pixel shaders were written to sample the input
data texture, perform computation and write the output to another texture
that could be read back to the host. While it was possible to get noticeable
speedups, the programmability of shader based GPGPU computation was
really low.

The first programming model actually designed for general-purpose GPU
accelerated processing to emerge was NVIDIAs CUDA (Compute Unified
Device Architecture) [NVIDIA, a]. In CUDA, the kernel functions, described
in section 3.1.2, are implemented using CUDA C or CUDA C++. CUDA
C/C++ are subsets of C and C++ languages. Compared to shader program
based programming, the programmability of CUDA programs is dramatically
better. However, the kernel functions are still written using a relatively low
level language. CUDA programs can only be executed on NVIDIA’s graphics
processing units.

As a response to CUDA, an open framework called OpenCL [Khronos
Group] was developed. OpenCL is governed by Khronos Group. OpenCL
resembles the functionality of CUDA very closely. Kernel functions are writ-
ten using OpenCL C, which is a subset of C99 language. The host side
library also has a very similar interface. The biggest difference to CUDA is
that OpenCL programs can be executed on GPUs of multiple vendors, CPUs,
field-programmable gate arrays (FPGA) and other accelerator hardware.

Recently, other parallel processing programming models have also emerged.
There is a growing need for a high-level programming model that would al-
low widespread adoption of accelerated parallel processing. OpenACC [Ope-
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nACC] is one standard that aims to provide an easy and familiar program-
ming model that would still reach performance that is comparable to lower
level computation models. OpenACC uses a similar compiler directive based
approach as OpenMP, an existing parallel processing framework aimed for
shared-memory parallelism on CPUs.

On mobile devices there are currently at least two programming models
that have expressed the intent of supporting parallel computation on mobile
GPUs, OpenCL and Renderscript [Google] on the Android platform. There
are already multiple OpenCL comformant mobile GPUs on the market. GPU
compute support was included to Renderscript in Android version 4.2.

3.1.4 GPU execution context and scheduling

Computation is scheduled on GPUs hieracrhically with different levels of
granularity. On the coarsest level the global scheduler schedules blocks of ker-
nels for execution on the processing cores. Processing cores may be scheduled
to execute blocks belonging to different kernels simultaneously on modern
GPUs. [Kanter, 2009, p. 4] However, it is not possible to have kernels from
different streams executing at the same time [Kato et al., 2012]. Executing
multiple kernels simultaneously can improve utilization.

Finer grained scheduling is performed by the processing cores. The cores
issue instructions from warps that are ready to run. GPUs do not perform
context switching like traditional CPUs. They rely on having enough warps
ready to run so that there are always instructions ready to be issued for
execution.

Another big difference compared to traditional CPUs is that GPU compu-
tation in current generation GPUs is non-preemptive. Once a compute kernel
has been launched for computation, the GPU will keep processing the kernel
until all threads belonging to the kernel launch have finished computation.
[Kato et al., 2012]

3.2 Host platform for GPU accelerated pro-

cessing

3.2.1 Program compilation workflow

This section presents the compilation flow of NVIDIA’s LLVM based CUDA
and OpenCL compiler called nvcc. Other vendors, such as AMD, may have
different terminology and they may use different intermediate languages and
compiler frameworks for compilation, and they ultimately target a different
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ISA, but the overall structure of the workflow still mostly applies to them.
This section considers NVIDIA’s implementation because most of the GPU
simulators are based on the PTX intermediate language used by them. The
compiler is open source as a part of the LLVM compiler project up to the
PTX code generation phase. The final ISA code generation is performed by
a closed source library.

.cu

CUDA front-end

LLVM optimizer

PTX code generation

PTX

PTXAS

CUBIN

n
vc
c

Figure 3.4: Workflow of the nvcc compiler. [NVIDIA, f]

The nvcc compiler workflow for a CUDA application has multiple steps
as shown in figure. Kernels written with CUDA C or OpenCL C are first
separated from the host code by the language specific front end. The kernels
are then translated to the NVVM intermediate representation. NVVM IR is
based on the LLVM intermediate language. NVVM extends the LLVM IR
with a set of rules and intrinsics related to the parallel compute model, but it
is fully compatible with existing LLVM IR tools. Standard LLVM optimizer
passes also work on the NNVM IR. [NVIDIA, f]

The last phase of the open source part of the nvcc compiler is the PTX
intermediate language code generation phase. The PTX code is already gen-
erated to match the targeted GPU architecture, which makes the generation
of native ISA binaries easier. Final ISA code generation is performed by a
separate proprietary host assembler PTXAS which can either compile the
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binary offline or just-in-time as a part of the CUDA runtime. PTX represen-
tation is embedded with the binaries enabling JIT compilation. [NVIDIA,
f]

Using a virtual ISA that is fairly close to the final ISA has some benefits.
While the generated PTX code is optimized for the targeted hardware ar-
chitecture, the PTX IR itself is machine independent. This makes the PTX
representations backwards compatible and it can be used to generate binaries
for different generations of hardware and even for hardware of different man-
ufacturers. From the vendor’s point of view it gives other parties a virtual
ISA to target without releasing the specifications of their hardware’s ISA.

3.2.2 Runtime library and GPU device driver

3.2.2.1 GPU device driver and CUDA runtime library

Currently the device drivers for the graphics processing units of major GPU
manufacturers are closed source and little documentation related to their
functionality and interfaces are provided. There has been some efforts to
reverse engineer the NVIDIA device driver and to implement open source
alternatives. The Nouveau [Nouveau] open source drivers are already widely
used as alternative graphics drivers for NVIDIA’s proprietary binary drivers.
pscnv [PathScale] is a project forked from the Nouveau project, developed
by PathScale, that aims to provide an open source driver for graphics and
GPGPU computing.

The NVIDIA GPU driver is split into user-mode and kernel parts [NVIDIA,
b]. Communication between the user-mode module and the kernel module
occurs using system calls. GPU drivers generally use a large number of dif-
ferent ioctl system calls to invoke different operations. The ioctl calls used by
GPU device drivers are not documented, but the previously mentioned open
source projects have backwards engineered some of them. In facts, there is
nothing that stops user applications from sending ioctl calls directly to the
kernel driver to invoke GPU operations [Kato et al., 2012].

NVIDIA’s GPU driver offers a low level interface called CUDA driver
API for directly configuring the GPU and launching compute kernels. CUDA
driver API is an alternative to the higher level API provided by the runtime
library giving slightly finer grained control over the GPU. The runtime library
is built on top of the driver API. [NVIDIA, b]

A higher level interface compared to the Driver API is provided by the
CUDA runtime library. The CUDA runtime library allows programmers
to perform the basic GPU operations described in 3.1.2 without having to
initialize the GPU explicitly. The runtime also allows native bindings for
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other programming languages. [NVIDIA, b]

3.2.2.2 Task scheduling

GPU operations, such as memory copy operations and compute kernel launch-
ing, are issued to channels that are called command queues or streams. Cur-
rent generation GPUs do not allow multiple channels to access the GPU
simultaneously, but channels can coexist and the GPU can switch from one
channel to another. Streams are essentially First In, First Out (FIFO) queues
of operations. [Kato et al., 2012]

Memory transfer operations are performed as either synchronous or asyn-
chronous DMA transfers. Typically data transfers are performed synchronously,
because the results of the data transfer are often needed either on the GPU
or CPU before further computation can be performed. Asynchronous mem-
ory transfers can overlap compute operations on the GPU. [Kato et al., 2012]
Compute kernels are usually launched to the GPU asynchronously.

Proper synchronization in current GPU accelerated computing can be
performed only on the host CPU. An explicit synchronize call waits for all
commands that have been sent to the GPU to finish. Alternatively synchro-
nization can be performed by using events that are defined in both CUDA and
OpenCL programming models. Compute kernels for example can be queued
so that their computation will not start before a set of specified events have
been received. Events can be dispatched at the start and end of operations.
[Kato et al., 2012]

3.3 Tracing of accelerated computing

The host and the accelerator have a different view of the processing of an
application. The host sees accelerated blocks of computation and memory
transfers as a set of operations. The accelerator performing the computation
has a more detailed view of the execution. If we want to follow the overall
execution of an application, we need to be able to combine the host and
device views.

For following the execution from the host’s point of view, we need to track
the start and end times of operations. The timing of operations can be done
using different methods. Operations can either be measured indirectly from
the host’s point of view, or directly on the accelerator if hardware support for
such measurements is implemented. Measurements made on different devices
using different clocks must be synchronized.
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3.3.1 Tracing of host operations

Programs initiate accelerated compute operations by calling functions in the
runtime libraries. Some of these operations, such as allocating buffers in host
memory, take place on the host platform. The parameters of the function
calls may also reveal details of operations that may not be observable on the
accelerator device. Host events can be observed by library wrapping of the
runtime API [Malony et al., 2011]. The library wrapper can then intercept
function calls before calling the actual runtime library.

3.3.2 Tracing of operations on GPU

The operations we wish to observe on the accelerator are the start and end
times of the computation of compute kernels and memory transfers between
host and accelerator memories. It would be desirable to also track host
CPU events related to the accelerator operations. For example, launching
a compute kernel on the accelerator actually consists of multiple different
function calls to the driver API [Malony et al., 2011].

There are different methods for observing the start and end times of
CUDA and OpenCL compute kernels. Execution can be observed using the
synchronous, event or callback methods. Support in both hardware and
software may limit which instrumentation methods can be used.

Synchronous method is the simplest way to instrument compute kernel ex-
ecution. By launching computer kernels for execution in a blocking manner,
the host can measure the execution time using its own clock. The synchro-
nized method is inaccurate because there is a delay between launching a
kernel and when the execution actually starts, and also between the end of
execution and when the host’s synchronization point. [Malony et al., 2011]

Event method relies on the event feature that is specified in both the
CUDA and OpenCL language specifications. In the event method special
event kernels are queued to execute immediately before and after the mea-
sured compute kernel. The event kernels record the state of the accelerator,
meaning the event method uses the device clock for measurement. The event
method at least in theory gives a more accurate measurement of the compute
kernel execution time. The measured timestamps need to be synchronized
with the CPU clock to obtain full system timing information. The event
method needs support from hardware, which means that especially older
hardware cannot use events for instrumentation. [Malony et al., 2011]

Callback method is the most accurate method for instrumenting accel-
erator operations. Callbacks are defined in the recent versions of both the
CUDA and OpenCL specifications. Like with the event method, the callback
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method requires support from hardware and the device driver. The accel-
erator triggers callback functions on the host when certain types of events
occur. For timing, the events are the start and end events of compute ker-
nels, but callback functions can be used to gather and handle performance
measurements of other types too. [Malony et al., 2011]

On NVIDIA’s GPU hardware, CUDA Performance Tool Interface (CUPTI)
provides an API for event and callback based instrumentation. CUPTI can
be used to also read GPU device counters containing different performance
metrics. [Malony et al., 2011] In CUDA toolkit versions prior to version five,
there was a limitation that compute kernels could not be executed concur-
rently when instrumenting execution using CUPTI.

3.3.3 Tracing with TAU Parallel Performance System

TAU Parallel Performance System [Shende and Malony, 2006] is a profiling
and tracing tool for parallel programs. It is capable of instrumenting pro-
grams ranging from regular multi-threaded applications to distributed com-
puting at different levels of granularity. The recent versions of TAU have also
included the capability to instrument GPU accelerated CUDA and OpenCL
applications.

TAU implements heterogeneous computing instrumentation by wrapping
CUDA and OpenCL libraries and dynamically preloading the wrapped li-
braries [Malony et al., 2011]. TAU was recently updated to use CUPTI
fo instrumentation, which makes it possible to instrument kernel execution
using any of the three instrumentation methods described in section 3.3.2.

Figure 3.5: A visualisation of a TAU trace



CHAPTER 3. GPU COMPUTATION ENVIRONMENT 35

Figure 3.5 shows an example of a trace output from the TAU tool vi-
sualised with the Jumpshot visualisation tool that is distributed with TAU.
The application that was being traced was a modified face detection applica-
tion using the OpenCV computer vision library. The application is presented
in detail in Section 5.2.2. The coloured rectangles represent the execution
of different functions over time. The upper row represents execution on the
CPU and the lower row execution on the GPU. Keep in mind that execution
of a function on the GPU in this context means a kernel launch of hundreds
of threads executing the same function.

3.3.4 Profiling of GPU accelerated processing

3.3.4.1 CUDA Profiling Tools Interface (CUPTI)

CUDA Profiling Tools Interface (CUPTI) is a set of APIs that enable the
creation of profiling and tracing tools, such as the TAU tool presented in
the previous section. The four APIs provided by CUPTI are Activity API,
Callback API, Event API and Metric API. Together they allow the tracing
of calls to the CUDA runtime libraries, timing of the execution of CUDA
kernels and collecting performance counter metrics of kernel execution.

The Metric API provides access to a set of metrics collected from actual
execution of applications on a GPU. The set of reported metrics include
metrics about number of instructions issued and executed, cache behaviour
metrics and memory throughput metrics. The metrics are mostly suitable
for evaluating the utilisation of the GPU. [NVIDIA, c]



Chapter 4

Measuring and simulating GPUs

This section covers some methods that are currently available for observing
the execution of GPU accelerated programs. We are especially interested
in observing the timing and energy consumption of program execution. As
GPUs are relatively closed systems, we have no choice but to use simulators
to unveil details of the execution. At the end of this chapter we present a
number of different parallel processing and GPU simulators that can be used
to instrument parallel processing.

4.1 Instrumentation

4.1.1 Timing and energy model

It is often not convenient, or even possible, to measure the energy consump-
tion of a processor directly during execution. To overcome this observability
issue, simulators are often used to trace the execution of a program. Ex-
ecution traces can be used for building an abstract energy model for the
system.

Power consumption consists of two parts: dynamic power and static
power. Static power does not depend on the execution. It is a direct conse-
quence of the chip design and operating temperature of the processor. Dy-
namic power is the part that changes with runtime events of execution. Ba-
sically each component that is activated on the processor consumes power.
Static power, including power needed for the GPU memory, typically domi-
nate the overall power consumption of a GPU. [Hong and Kim, 2010]

Accurate energy models are usually constructed using a cycle-accurate
simulator that also simulates the memory and cache hierarchy. Such simula-
tors are currently too slow to be used for software development purposes. Ac-
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cording to Miettinen and Hirvisalo [2009] the power consumption is roughly
proportional to the cycle count of the processor. This makes it viable to use
fast functional simulators for constructing approximate energy models if we
can verify that the loss in accuracy is within acceptable bounds.

Different instructions take a varying time to execute and they consume
different amount of energy. In practice we can group instructions into classes
such as integer operations, floating point operations or memory load and
store operations [Hirvisalo and Knuuttila, 2010]. For the energy model, we
should count the amount of instructions belonging to each instruction class
during execution. This can be done quite trivially during the execution loop
in simulators. The power consumption of instruction classes can be calibrated
through microbenchmarking which we will present in section 5.1.

Memory accesses have a significant impact on the overall power consump-
tion. Simulating the full memory and cache hierarchies is fairly difficult and
slow. Functional simulators often use abstractions of the memory hierarchy
and simulate only a part of the cache hierarchy, if at all. For our purposes,
it would be desirable to have at least the L1 cache simulated as there is a
considerable difference between accessing L1 cache compared to other levels
of the hierarchy.

Instruction counting is only applicable for estimating the power consump-
tion of a single processor. For a many-core processor like a GPU, we must
also keep track of where the computation takes place. Collange et al. [2009]
have shown that the power consumption of a GPU rises piecewise linearly as
the amount of active processing cores is increased.

4.1.2 Instrumentation

We wish to generate traces of the execution of kernels on GPUs. A trace
is a record of a sequence of events that occurred during the execution of a
program. We need to be able to count the number of executed instructions
of different types and the number of different types of memory accesses.

The most common techniques for generating execution traces are instru-
mentation and using simulators. Instrumentation generally means injecting
code that emits events related to the execution. Simulators can generate
executiong traces as they perform the execution of the program. For GPU
accelerated programs, it is more convenient to generate traces of executed
instructions by using a simulator.

It should be noted, that generating traces typically always slow down
the execution of programs. Since the speed of execution even in a simulated
environment is important to us, we should make sure that the overhead
caused by tracing is as low as possible.
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4.2 GPU Simulators

The motivation for using GPU simulators is that it is otherwise not possi-
ble to trace the execution of GPU accelerated programs at a fine-grained
level of detail. Profiling tools released by GPU vendors are only suitable for
application performance analysis and tuning. In this section we cover the
current state of state of the art GPU simulators. In section 4.2.1 we present
the typical structure of popular GPU simulators and reasoning behind it. In
section 4.2.2 we present some state of the art GPU simulators.

4.2.1 GPU simulator structure

There are two major hurdles GPU simulators need to overcome. The first fol-
lows from the sheer number of processing units on graphics processing units.
Simulating a many-core processor that has hundreds, if not thousands, of
processing units on a multi-core processor with up to 6 physical cores with
sufficient performance is intuitively a difficult problem to overcome. In real-
ity simulators often work as sequential applications, which makes things even
worse. The second problem is that the instruction set architecture of GPUs
is not publicly available knowledge. While the ISAs have been partially
backwards engineered, in practice simulators often work on the intermedi-
ate language representations of programs instead of binaries. Emulating an
intermediate language results in a loss in accuracy.

The simulators can be split into two different categories. Some simula-
tors aim for purely functional simulation. Functional simulators model the
execution at instruction level. They do not keep track of the internal state
of the simulated GPU. Functional simulators also usually do not simulate
memory or cache behaviour. The other category is architectural simulators
that try to model the internal state of GPUs at the granularity of a clock
cycle. Architectural simulators also usually have at least L1 level cache sim-
ulation and some sort of a device global memory simulation. Architectural
simulators are usually aimed for timing and energy analysis and they can be
an order of magnitude or more slower than functional simulators.

Most of the found simulators are aimed for analysing programs written
with NVIDIA’s CUDA framework. Some of them also had support for the
OpenCL standard. All the simulators included a software component that
basically replaces the CUDA or OpenCL runtime library that intercepts the
IO requests made by the application running on the host processor.
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4.2.2 GPU simulator survey

4.2.2.1 Barra

Barra is a functional simulator built on top of the UNISIM simulator frame-
work [August et al., 2007]. The execution model of the simulator is based on
NVIDIA’s older G80-based GPUs. The simulator can run unmodified CUDA
binaries. [Collange et al., 2010] Barra does not appear to be under active
development.

Barra differs from other GPU simulators by simulating programs at as-
sembly language level. The simulator works with the Tesla ISA, which is
an older version of the ISA used on NVIDIA’s GPUs. The Tesla ISA spec-
ification is based on the work done by the decuda project [van der Laan]
and extended by the authors of the simulator. Collange et al. [2010] claim
that by using the native assembly language instead of the PTX intermediate
language, Barra can simulate real hardware more accurately.

4.2.2.2 GPGPU-sim

GPGPU-sim is a GPU simulator that can perform both functional and cycle-
accurate simulation. Its focus is on cycle-accurate microarchitecture simula-
tion. The functional simulation is mostly supported for software debugging
purposes. The simulators execution model tries to follow NVIDIA’s GPUs
execution model. It is also possible to modify the topology and other char-
acteristics of the simulated GPU architecture. [Bakhoda et al., 2009]

GPGPU-sim takes NVIDIA’s PTX intermediate language as its input.
Unlike other GPU simulators, GPGPU-sim can execute programs written
with both CUDA and OpenCL. [Bakhoda et al., 2009]

4.2.2.3 Multi2Sim

Multi2Sim is a simulation framework that has a couple of notable differences
compared to other simulators presented in this section. First of all it is the
only simulator targeting AMDs GPUs as its simulation model. Multi2Sim
also works as a simulator for multi-core x86 CPUs. By combining the sim-
ulated execution of CPU and GPU code Multi2Sim can potentially reach
better accuracy in estimating the performance and energy efficiency of exe-
cuted software. [Ubal et al., 2012]

Similar to Barra, Multi2Sim can run unmodified binaries and perform
simulation at assembly language level, which is claimed to improve simula-
tion accuracy. The simulator can execute programs compiled to the AMD
Evergreen ISA. The simulator can perform both functional and architectural
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simulation. The simulator currently supports execution of programs written
with OpenCL. [Ubal et al., 2012]

4.2.2.4 GPU Ocelot

GPU Ocelot is a dynamic compilation framework for heterogeneous systems.
The framework can take programs in PTX intermediate representation as
input and compile them just-in-time for execution on multiple platforms.
Currently GPU Ocelot supports execution on AMDs and NVIDIA’s GPUs,
general purpose x86 processors through translation to LLVM’s intermediate
language and execution on Ocelot’s own PTX emulator. The emulator can
be used to analyze the fine grained details of execution on GPUs.

Compared to other GPU simulators, Ocelot is the least concerned with
simulating the fine-grained microarchitecture of real life GPUs. Ocelot’s PTX
emulator can be used to retrieve detailed instruction traces of execution and
exploring the state of the simulated abstract GPU model at different stages
of execution. The program can also be augmented with instrumentation code
before dynamic translation and execution on real hardware.

GPU Ocelot’s strength is that it has a modular structure which makes
it easy to write custom trace generators for it. Trace generators for the
emulator can be written as event-handlers that receive an event after the
execution of every instruction that allows the observation of the state of the
emulated GPU.

4.3 Parallel GPU simulation framework

4.3.1 Parallel simulation

There are several existing sequential emulators that have reached a good
maturity level. There has been some attempts to extend their functionality to
make them suitable for the emulation of multi-core and many-core processors.
Efficient emulation of many-core guest processors on a host that has a smaller
number of cores is difficult. Ensuring the correctness of parallel execution in
such parallel simulator is even more difficult and easily affects the emulation
performance negatively.

QEMU [Bellard, 2005] is a popular and fairly mature open source sequen-
tial emulator. QEMU’s strengths are its relatively good emulation perfor-
mance through binary translation. It can function as a full system simulator
or as a process emulator. The difference is that full system simulators sim-
ulate also the hardware of the system. To run user-mode processes, the
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simulator must also execute an operating system on top of the simulated
hardware. Process simulators also simulate the operating system by for-
warding the system calls of the processes to the host operating system.

Sequential emulators typically emulate multi-core guest processors by
time-slicing the execution of different cores in round-robin fashion. In QEMU
this time-slicing occurs at the granularity of basic blocks which makes syn-
chronization and atomic operations are easy to handle. Parallelizing existing
sequential emulators requires the implementation of proper synchronization
mechanisms to enable parallel programs to function correctly. [Wang et al.,
2011]

Projects such as COREMU [Wang et al., 2011] and PQEMU [Ding et al.,
2011] have attempted to extend QEMU for multithreaded emulation on
multi-core processors. They both map the emulation of virtual processors
to different cores on the host processor. The actual emulation is still han-
dled using QEMU for sequential emulation. Thread safety has been accom-
plished by implementing lightweight mechanisms for atomic operations and
serializing signal handling. Parallel execution also complicates the sched-
uler required for parallel emulation. Virtual cores executing a thread that is
currently holding a spin-lock should not be preempted, because that could
potentially interfere with the execution of other threads and have a signif-
icant impact on performance. COREMU has solved this by modifying the
scheduler to detect when guest processes are holding a lock and not allowing
their preemption until they have released the lock. [Wang et al., 2011]

Both of the parallel emulators based QEMU were able to scale efficiently
to emulate a few dozen of virtual cores [Wang et al., 2011; Ding et al., 2011].
However, they do not scale efficiently beyond that so that the emulation of
many-core processors with hundreds or thousands of cores would be viable.
Even if they did scale, emulating hundreds of cores of a guest processor on a
small number of of host processor cores would be really slow.

4.3.2 GPU accelerated many-core simulator

Existing CPU simulators are not a good fit for the simulation of many-core
processors. Intuitively the only way to reach parallel simulation of many-
core processors is to run the simulation on a comparable number of process-
ing units. There have been attempts to parallelize simulation by using dis-
tributed computing. Such solutions do not scale well due to synchronization
overhead. A logical approach would be to use a many-core processor for the
simulation of guest many-core processors. GPGPU computing is currently
the easiest way to take advantage of many-core processors.

The state of the art of using GPUs to accelerate simulation of many-core
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processors is the simulator infrastructure developed by Raghav et al. [2012b]
called SIMinG-1k. Their simulator is implemented as a CUDA kernel run-
ning on a GPU where every virtual core is mapped to an individual thread.
The simulator aims to provide fast and scalable functional simulation. The
trade-off is that the simulator does not track the state of the processor at
microarchitecture level. SIMinG-1k currently supports ARM and x86 in-
struction sets, but it is designed to be able to model a variety of different
architectures. This is achieved by using an offline compiler to translate the
instructions in the original ISA to a set of simple micro-operations that are
executed in the parallel simulator.

The simulation loop of each thread follows the steps taken by a classical
processor. The loop fetches the bytecode of the next micro-operation in-
struction, decodes the instruction and executes its semantics. The usage of
the micro-operation instruction set makes it possible to perform the decode
phase as a simple look-up in one step. The execution phase is implemented as
a switch-case construct, where the instruction that is being executed decides
which branch is taken. [Raghav et al., 2012b]

There is a number of challenges that must be taken into account when
implementing GPGPU software. Raghav et al. [2012b] identified some chal-
lenges for their simulator implementation and presented possible solutions
for them. The challenges are a direct consequence of the CUDA program-
ming model and the structure of GPU hardware that all GPGPU programs
need to take into account. The first issue follows from the so called SIMT
execution model of GPUs. Diverging control flow within a warp can have
a dramatic effect on performance. The worst case where all threads take
a different branch leads to completely serial execution. The second issue
that can have a huge impact on performance is inefficient use of memory.
Threads should exploit data locality as much as possible by using the shared
programmable cache on each processing core. Programs should also aim to
minimize memory accesses and memory bank conflicts. The last challenge is
to minimize interaction between CPU and GPU as it is a very costly process.

The previous version of SIMinG-1k’s implementation suffered from con-
trol flow divergence during the instruction decode phase of complex instruc-
tion set computing (CICS) ISA instructions, such as x86 ISA [Raghav et al.,
2010]. This follows from the need to decode CISC instructions in multiple
conditional stages. The complex decode structure has been avoided by trans-
lating the instructions ahead of execution to micro-operations that can be
decoded in single step with a simple table look-up. Control flow divergence
cannot be avoided when executing task parallel programs where each thread
has a separate instruction stream. Executing data parallel programs, such
as programs meant to be executed on a GPU in the first place, can be ex-
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ecuted efficiently on the simulator because efficient GPU programs should
have mostly coherent control flow. [Raghav et al., 2012b]

Global memory operations are very costly. Performance can be increased
dramatically by exploiting data locality by moving often accessed data to
the on-chip shared memory. SIMinG-1k utilises shared memory by copying
the virtual processor context structures to shared memory. Copying data to
shared memory should be optimized by coalescing memory operations so that
the threads in the same warp are copying a contiguous area in memory. This
way the copy operation can be performed using a small number of actual
memory operations as threads are accessing data on the same memory line.
[Raghav et al., 2012b]

Synchronization across threads is an important feature needed for shared
memory parallel programming. The GPU execution model only offers syn-
chronizations for blocks belonging to the same cooperative thread array.
Hardware synchronization primitives such as test-and-set, spin locks, wait-
for-event and signal-event can be implemented using CUDA atomic oper-
ations and using global memory for communication and messaging. Naive
busy waiting implementations can lead to deadlocks if there are less pro-
cessing elements available on the host GPU than there are simulated vir-
tual processors. This occurs because the busy waiting threads do not allow
blocked threads to begin execution. Proper inter-thread synchronization is
needed for yielding the simulation for other threads, which is possible only
by halting the execution of the GPU simulator and returning to host code
for synchronization. As this is a very costly operation in terms of perfor-
mance, synchronization should be avoided if possible. Raghav et al. [2012b]
have proposed to solve this issue by preempting the execution of a virtual
processor through synchronization only when a synchronization instruction
has been detected during execution or alternatively after some thread has
been busy waiting for an event for a certain time period.

In their benchmark tests Raghav et al. [2012b] have found that it is pos-
sible to reach good scalability by simulating many-core processors on GPUs.
SIMinG-1k simulation scales well up to 2048 simulated cores and can match,
or even outperform, state-of-the-art simulators such as OVPSim [OVP] that
use binary translation as their simulation method when simulating processors
with over one thousand cores.

4.3.3 Extending QEMU with a parallel simulator

The SIMinG-1k parallel many-core simulator described in section 4.3.2 de-
scribes the implementation methods of a many-core processor simulator that
is executed on a GPU. Raghav et al. [2012a] describe how this parallel simu-
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lator can be paired together with QEMU, an existing sequential full system
simulator. The goal is to allow the sequential simulator to offload the simu-
lation of the parallel regions in program code for simulation on the parallel
simulation running on the GPU, just as in native execution the parallel re-
gion would be offloaded for execution on the GPU. In should be noted that
this method differs fundamentally from the parallelization efforts of QEMU
described in section 4.3.1 as the simulation in QEMU itself remains sequen-
tial.

The implementation relies on a feature called semihosting [ARM] for ex-
tending QEMU with the parallel simulator. Semihosting is a feature orig-
inally developed for ARM guest processors for redirecting IO system calls
to host’s debugger interface. The semihosting feature is used to intercept
IO calls meant for the simulated accelerator and triggering the execution of
the external GPU simulator process. The software component that handles
the forwarding of semihosting calls to the host processor is a device driver
for linux that is called everytime an application wishes to use the simulated
GPU device. The driver calls a special semihostring interrupt and sets the
associated parameters which the QEMU process running on the host will
intercept. [Raghav et al., 2012a]

Another software component that is needed in order to write programs
that can offload computation to an accelerator is a parallel programming API
library. Raghav et al. [2012a] have implemented a custom API library called
libGPUSim that roughly resembles the functionality of OpenCL, but a direct
replacement for CUDA or OpenCL runtime library would be possible too.
The library needs to perform all the necessary calls to the device driver. The
library also needs to construct the required parameter structures for the IO
calls, such as providing pointers to the parallel function entry or to a data
region. The different operations that a parallel API library should be able
to perform in current GPU computing model is summarized in the following
list:

• Allocate and deallocate device buffers.

• Transfer data between host and device memories.

• Offload kernel execution to the device.

• Wait for execution to finish.

• Release the accelerator when computation is finished.

The QEMU process needs to be modified with capability to intercept
and handle semihosting calls directed for the external GPU simulator. It is
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also the responsibility of QEMU to transfer required parameters and data
between the guest and host environments. Upon the first request directed
at the parallel simulator QEMU forks a daemon process that launches the
GPU simulator kernel and starts waiting for incoming commands. [Raghav
et al., 2012a]



Chapter 5

Benchmarks

A set of different benchmarks were used to calibrate and evaluate our mea-
surement setup. In this chapter we present three different types of bench-
marks and explain the motivation behind the selections. First we present
microbenchmarks, which are used to analyse the microarchitecture of the
hardware. After that we present a real world application benchmark to
demonstrate how our system can be used to evaluate real world software.

5.1 Microbenchmarks

Microbenchmarks are used to stress different parts of architectural compo-
nents on hardware. Microbenchmarks can be used to assess different char-
acteristics of hardware, such as the performance or energy consumption of
individual hardware components. A common use for microbenchmarks is for
calibrating power and energy models by implementing a programs that con-
tinuously stress a single architectural component of a device and measuring
the power consumption during execution.

Another use-case for microbenchmarks is to verify the information given
by hardware vendors and explore the functionality of hardware in more detail.
Since GPUs are typically very closed devices, using microbenchmarks is a
good way to gain information about the hardware. As an example, Wong
et al. [2010] used microbenchmarking to gain detailed information about the
hardware architecture of NVIDIAs GT200 GPU. They managed to extract
information about the hardware that was not documented by the vendor.

The microbenchmarks implemented for finding out per instruction energy
consumption execute the same instruction in a loop continuously, counting
the number of loop iterations. Each loop contains 500 statements of the
same type. The benchmarks were implemented for the integer type and both
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32- and 64-bit floating point types. Benchmarks were implemented for the
following instruction types:

• Arithmetic instructions (Multiply and addition)

• Division

• Special instructions (Square root, sine, cosine)

• Control operations (Comparison, branch)

Memory operations were tested with similar benchmarks that copied
memory around between variables either in global or shared memory.

5.2 Application benchmark

5.2.1 Motivation

As a proof of concept, we want to test and demonstrate our setup with
an application benchmark that behaves similarly to a real world application.
Many of the benchmarks included in benchmark suites are algorithms that are
typically used in applications running on desktop computers, or even super
computers and computing clusters. We are more interested in examining
algorithms that are more likely to be used in mobile applications and devices.

5.2.2 Computer vision

We have chosen to evaluate our setup using an algorithm from the field of
computer vision. Face and object recognition is being used increasingly much
on mobile devices as the processing power rises. Currently most computer
vision algorithms are implemented as sequential applications. This limits
the complexity and accuracy of the algorithms that can be used on devices
with limited processing power, such as mobile phones. However, computer
vision and image processing algorithms are a prime candidate for accelerated
data parallel computation as they are by definition so called embarrassingly
parallel algorithms.

There are many use cases for object recognition algorithms. Face detec-
tion and recognition is already used in many camera applications on mobile
phones and stand-alone cameras. Augmented reality applications also rely
on object recognition and tracking. Face recognition is also used as an alter-
native phone unlocking mechanism on some platforms. All these algorithms
are currently implemented using fairly simple and inaccurate algorithms.



CHAPTER 5. BENCHMARKS 48

We have chosen a simple face detection algorithm as our application
benchmark. Face detection is an algorithm that detects human faces in an
image, but it cannot recognise who that person is. A face detection algorithm
tries to find characteristics and shapes that are typical for human faces, such
as eye, nose and mouth shapes, that are arranged in a certain way related to
each other. Our implementation is based on the face detection sample appli-
cation included in the OpenCV computer vision library. The application has
been modified to use the CUDA implementations of the image processing and
pattern recognition functions included in the GPU module of OpenCV. As
an input the application takes an image or a video stream. The application
detects one or many faces in the input image and tries to also detect eye
positions within every subimage containing a detected face.

Computer vision algorithms perform rather simple calculations on the
pixel colour of nearby algorithms. As such, they can be implemented to
use caches and memories close to processors efficiently. As pixel colours are
described using integer values, the benchmark is expected to stress the integer
arithmetic and comparison units more than their floating point counterparts.

5.2.2.1 Software modifications

Some modifications were required for accelerating the face detection algo-
rithm on a GPU. The Mat data structure used for representing matrices of
data in OpenCV was changed for the GpuMat data structure included in the
GPU module of OpenCV. The GPU module also contained GPU accelerated
versions of all the OpenCV functions used in the face detection application
implemented with CUDA.

GPU Ocelot, the simulation tool we chose for tracing the execution of
GPU accelerated applications, was initially not able to execute the face de-
tection application. Some changes were required in the simulator framework
and the OpenCV library to work around bugs and unimplemented features.

NVIDIA’s CUDA compiler nvcc version 4.2 generated PTX code that
was not fully compliant with the PTX language specification. The rounding
modifiers for the floating-point division, square root and reciprocal operations
were in some cases ordered incorrectly in the statements. We overcame this
problem by modifying the PTX language grammar definition of the parser
of GPU Ocelot.

As GPU Ocelot currently has not implemented asynchronous memory
transfer operations, its source code was modified so that those operations
were forwarded to the synchronous memory transfer functions. Performing
the memory transfers synchronously affects the performance of the applica-
tion negatively.
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The execution of the application also crashed when being executed by
GPU Ocelot’s emulator when a memory transfer operation to constant device
memory was issued. Constant memory was used in one kernel function in
OpenCV. The constant memory array was changed into a shared memory
array, which allowed the application to work correctly. As shared memory is
slower than constant memory, this affects the performance of the application
negatively.



Chapter 6

Evaluation

In this chapter we present the mathematical model that we will use to esti-
mate the energy consumption of GPU accelerated program execution. The
model assumes that different architectural components are either on or off,
and thus have discrete levels of power consumption over time. After pre-
senting the model, we describe the measurement setup and trace analysis
methods used for estimating the energy consumption. Finally we present the
results from the microbenchmarks and validate the results and the power
model against the face detection benchmark.

6.1 Energy estimation method

6.1.1 Power model

In this thesis, we aim to model the energy consumption of a computing plat-
form offloading data parallel computation to a many-core accelerator, which
in our case is a GPU. The energy consumption of the accelerated computa-
tion can be split into two parts, execution of compute kernels on the GPU
and data transfers over a PCI Express bus. We can consider the sequential
execution of the program to form the third component of the total energy
consumption Etotal. We can thus describe the total energy consumption with
the following formula:

Etotal = ECPU + EGPU + Edata transfer (6.1)

In the following sections, we describe a power model used for estimating
the energy consumptions of the compute kernel execution, EGPU , and PCI
Express data transfers, Edata transfer. Energy estimation of sequential execu-
tion on CPUs using similar methods, namely using fast instruction-accurate
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simulators, has already been shown to be feasible [Miettinen and Hirvisalo,
2009].

6.1.1.1 GPU computation power model

As described in Section 2.5.2, the total power consumption is split into static
and dynamic parts. Isci and Martonosi [2003] demonstrated a way to esti-
mate the overall power consumption of a processor based on performance-
counter metrics. Their model describes power consumption as a sum of the
power consumption of architectural components of the processor. The power
model is expressed as:

Power =
n∑

i=0

(AccessRate(Ci) × ArchitecturalScaling(Ci) ×MaxPower(Ci)

×NonGatedClockPower(Ci)) + IdlePower.

(6.2)

AccessRate describes how often an architectural unit is accessed over time.
The other components in the equation, such asMaxPower andArchitecturalScaling
are determined heuristically.

Equation 6.2 was used to express the power model of a traditional Pen-
tium 4 CPU. Hong and Kim [2010] extended this model for expressing the
power model of a GPU. Their GPU power model can be described as:

GPU power = RuntimePower + IdlePower (6.3)

RuntimePower =
n∑

i=0

RP Componenti

= RP SMs+RP Memory

(6.4)

The above power model expresses power as the sum of the power consump-
tions of all the processing cores (RP SMs), or streaming multiprocessors
(SM) and the power consumed by the memory (RP Memory).

The power consumption caused by operations by processing cores, RP SMs,
can be expressed with the following equation:

RP SMs = Num SMs×
n∑

i=0

SM Componenti, (6.5)
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where the SM Component term describes the power consumption of indi-
vidual architectural components, such as integer or floating-point units, on
a processing core and Num SMs is the total number of processing cores.

The dynamic power consumption RP Memory can be described with the
following equation:

RP Memory =
n∑

i=0

Memory componenti

= RP GlobalMemory +RP LocalMemory.

(6.6)

Modeling the dynamic power consumption of memory operations is done
identically to other types of operations.

Since current generation GPUs do not employ clock gating, Hong and Kim
[2010] propose that the architectural component power can be described with
the following equation:

RPcomp = MaxPowercomp × AccessRatecomp. (6.7)

The above equation can be interpreted so that an architectural compo-
nent consumes a certain amount of dynamic power when active, defined by
MaxPower, and it consumes only idle power when it is inactive.

The MaxPower component in equation 6.7 can be determined by con-
structing microbenchmarks that stress a certain architectural unit and mea-
suring the power consumption during execution. For example, floating-point
unit power consumption can be observed with a benchmark that performs
floating-point operations repeatedly in a loop. Similar microbenchmarks can
be constructed for other architectural units.

The access rates are computed by using the emulator in the GPU Ocelot
framework described in Section 4.2.2.4 to count instructions that are exe-
cuted by different architectural components. The different instruction classes
categorized by the implemented kernel profiler are:

• Integer arithmetic

• Integer division

• Integer logical

• Integer comparison

• Float arithmetic

• Float division
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• Combined float and double comparison

• Double arithmetic

• Double division

• Transcendental and other special operations

• On-chip memory accesses

• Off-chip memory accesses

• Control flow operations

• Parallelism operations

• Other operations.

The contents of most of the instruction classes in the above list should be in-
tuitively apparent. The parallelism operations class contains reduction, vote
and barrier instructions. The other operations class consists currently of a
single cvta instruction, which is used to convert addresses between different
address spaces. Division operations have been separated from other arith-
metic operations as it is a much more expensive operation. In the analysis
phase the control flow, parallelism and other operations are grouped together
with logical operations as they are difficult to microbenchmark separately and
they are assumed to have similar energy consumption characteristics. This
may cause some inaccuracy to the model.

The access rate of architectural component i can be described using the
following equations:

TotalCycles =
n∑

i=0

InstructionCounti × CyclesPerInstructioni (6.8)

AccessRatei =
InstructionCounti × CyclesPerInstructioni

TotalCycles
, (6.9)

where InstructionCounti is the number of instructions executed on the ar-
chitectural unit i and CyclesPerInstructioni is the duration it takes to ex-
ecute those instructions in clock cycles. CyclesPerInstructioni depends on
the modeled hardware.
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6.1.1.2 PCI Express memory transfer power model

Data transfers over PCI Express consume a significant ratio of the total
energy consumption of GPU accelerated computing. The data transfers ac-
tivate many different components of the system, including GPU and CPU
memories, DMA controller and the PCI express bus components. It if not
possible to directly measure the effects of data transfers on the power con-
sumption of these components. However, we can measure and model the
effect of the data transfers on the total power consumption of the system.

The time of PCI Express data transfers depends on the amount of data
to be transferred. There is also a fixed latency associated with every data
transfer operation. The bandwidth may also depend on the size of data.
[Hovland, 2008] The time of PCI Express data transfers can be estimated
with the Hockney model [Hockney, 1994], which can be expressed as:

Time = Latency +Bandwidth×DataSize. (6.10)

The increase in power consumption during PCI Express data transfers is
assumed to be more or less constant. The power consumption is measured by
implementing a simple program that transfers memory between device and
host memories and comparing that to the idle power consumption.

6.1.1.3 GPU operating state modeling

Current generation GPUs do not employ clock gating, but they do employ
a coarse grained DVFS functionality. GPUs can operate at a small number
of discrete performance levels. NVIDIAs Fermi cards for example can oper-
ate at three different performance levels with differing clock frequencies and
operating voltages. The lowest operating level can perform typical operat-
ing system user interface tasks, but when more computing performance is
needed, the GPU driver immediately raises the operating level to the max-
imum performance operating level. There is additionally a third operating
level that sets the clock frequency to such level that the GPU is capable of
encoding and displaying high-definition video.

The GPU remains in the current operating state for some time even after
GPU load has dropped to such level that moving to a more energy saving
operating state would be possible. This is done for hysteresis reasons, be-
cause switching between operating states is a costly operation and especially
operations that draw graphics to the screen tend to occur cyclically. These
tails states can be quite long in desktop GPUs. For example, NVIDIAs Fermi
generation cards with current Linux drivers (version 304.54) take 10 seconds
to drop from the highest operating level to the middle one and further 5
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seconds to switch to the lowest operating level. Similar behaviour has been
observed in mobile GPUs

Because static power consumes a significant portion of the total power
consumption, power consumption at these operating levels must be measured
and modeled. Measuring the power consumption is very straightforward.
The GPU simply must be stressed with a short compute load and then
measure the power consumption as the GPU switches down to the lowest
operating level.

6.1.2 Measurement setup

The measurements are done using a Corsair AX760i power supply that is
capable of measuring and logging instantaneous power consumption. The
power supply is connected to a separate measuring computer with a USB
cable that handles logging of the results. The measurement setup is pictured
in Figure 6.1.

Data

12V

5V

3,3V

12V 12V

Data

12V3,3V

Target
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Mainboard

GPU Node GPU

CPU

Observer

12V

Figure 6.1: Measurement setup.

The power supply is capable of measuring the voltages and currents of
power rails separately. However, the current values are only reported if the
current exceeds 3A current. Instantaneous power consumptions are reported
at all time for the PSU input and output power. By using a separate GPU
Node the PSU also reports the instantaneous power consumption for the
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auxiliary PCI-Express power inputs of the graphics processing unit. The
power consumption can be logged at the frequency of one second.

The energy consumption of the implemented microbenchmarks described
in Section 5.1 is measured over a period of 10 minutes. A warm-up period of
one minute is used to make sure the system reaches a steady state before the
measurement begins. Additionally the idle energy consumption of the system
is measured similarly with the GPU set to run at the different operating states
that were presented in Section 6.1.1.3.

6.1.3 Trace analysis

The instrumented traces from all instrumentation tools output a plaintext
trace that were parsed using a custom-made Python script. The implemen-
tations consisted of rather basic CSV, or similar format, parsing. The figures
and charts were visualised using Matplotlib plotting library.

GPU Ocelot was used to simulate and trace the GPU program execution.
The implemented trace generator counts instructions of certain types per
kernel and at the end of kernel executions it prints out the counters. The
following is an example of the GPU Ocelot trace format:

Kernel name: _Z9transposeIjEvPT_jS1_j10NcvSize32u

Integer_arithmetic: 9041472

Integer_logical: 828432

Integer_comparison: 1378080

Memory_offchip: 526338

Memory_onchip: 2724930

Control: 1943793

Parallelism: 278784

The instantaneous power consumption traces generated by the Corsair
Link software are in simple comma-separated list format. Note that the
decimal point in the following format is also comma. The data on each line
was selected to be date and time, PSU efficiency, power in, power out, and
GPU supplementary PCI-E power. The following line is an example of the
output format of the trace:

15.7.2013 11:36:16,20,7W,89,8766315921014,151,9921875,136,605458408151



CHAPTER 6. EVALUATION 57

Instruction Total (nJ) Main (nJ) Supplementary (nJ) Main (%)
Integer arithmetic 0.11 0.03 0.08 27 %
Integer division 2.08 0.30 1.78 15 %
Integer SFU 1.99 0.54 1.44 27 %
Integer other 0.62 0.17 0.45 27 %
Float arithmetic 0.08 0.01 0.07 19 %
Float division 4.67 0.77 3.90 17 %
Float SFU 1.72 0.52 1.20 30 %
Float other 0.83 0.24 0.59 29 %
Double arithmetic 0.79 0.25 0.54 31 %
Double division 12.94 3.59 9.35 28 %
Double SFU 1.75 0.55 1.20 31 %
Double other 0.97 0.26 0.71 27 %
Global memory 17.95 4.55 13.40 25 %
Local memory 0.20 0.05 0.15 25 %

Table 6.1: Per instruction dynamic energy consumptions

6.2 Results

6.2.1 Microbenchmarks

The per instruction dynamic energy consumption of different instruction
classes are listed in Table 6.1 and visualised in the following figures. The
table shows the total energy consumption per instruction as well as energy
consumptions through the main PCI-E bus and the supplementary power
input to the GPU. It also shows the ratio of energy drawn through the main
power input. Figure 6.2a shows the per instruction energy consumption for
integer operations. It was discovered empirically that the division operation
is a much more expensive operation than other arithmetic operations for all
data types, which is the reason for measuring it separately. The division op-
eration turns out to consume an order of magnitude more energy than other
arithmetic operations.

The energy consumption of 32-bit integer and floating point operations
appear to be rather close to each other except for the division operation
which was measured to consume about twice the energy of integer division.
Special functions and the other instruction class energy consumptions were
observed to be similar for all data types. This makes sense as the special
functions are typically implemented using look-up tables which makes the
execution similar for different data types.



CHAPTER 6. EVALUATION 58

(a) Integer instruction energy (b) Float instruction energy

(c) Double instruction energy (d) Memory instruction energy

Figure 6.2: Energy consumption per instruction

Arithmetic operations for double-precision floating point data type were
measured to be an order of magnitude more expensive than single-precision
operations. The magnitude of this difference is rather notable. The cost
of double precision operations may be the reason why the double precision
performance of NVIDIA’s GPUs have been lagging behind up until Kepler
GPUs. The energy consumption of control instructions is also similar for all
data types, which is to be expected. The similarity of energy consumptions
for these instruction types add confidence for the sanity of the measurements.

Overall, these energy consumption figures seem believable and logical.
NVIDIA [d] has said that the Fermi GPUs consume about 200 picojoules
of energy per instruction, including static power, which is more or less in
agreement with our results. Lucas et al. [2013] measured 40 pJ for integer
instructions and 75 pJ for floating point operations for an older Tesla series
GPU. Our measured results are in the same vicinity.

As expected, accessing the main memory of the GPU is the most energy
consuming operation. As a rule of thumb, the farther away memory is in
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the memory hierarchy, the more energy is consumed when accessing it. The
actual energy consumption of accessing the global memory is probably higher
than the measured value due to cache hits in the benchmark. Shared memory,
which resides on the chip, is much cheaper to access. The difference of energy
consumption per memory access is visualised in Figure 6.2d.

The power consumption of continuous host-device memory transfer over
the PCI-Express bus can be seen in Figure 6.3. The instantaneous power
consumption is about 40 watts, which is a significant addition to the total
power consumption of the system. It should be noted that memory transfers
can occur concurrently with computation on the GPU. Supplementary power
in the figure refers to the power draw through the supplementary 6-pin PCI-
Express power cables and main power refers to power consumption increase
in the rest of the measured system that includes power drawn through the
PCI-Express bus, host memory activation and the DMA controller power
consumption.

Figure 6.3: Power consumption of continuous host-device memory transfer.

Figures 6.4a and 6.4b show how the number of active processing cores
or processing elements affect the overall power consumption of the GPU. In
both cases it seems that when the number of active elements is increased,
the power consumption rises linearly. The difference between one active
processing core versus all eight cores actively processing data in this case
is about 20 watts. The used benchmark performs a mixture of different
arithmetic operations on data. The number of active processing elements
per processing core due to thread branching has a much smaller effect on the
power consumption. The difference between one thread in a warp actively
executing versus all 32 threads in a warp actively executing is only about 3
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(a) Power consumption of SMs (b) Power consumption of PEs

Figure 6.4: Power consumption with respect to SM and processing element
activations

watts with this benchmark. The small difference can be explained by the fact
that even the threads that have not taken the branch execute the instructions
inside the branch, but the results of the execution are not written to memory.
The results were still a bit surprising. It is quite easy to see that the static
power dominates the energy consumption even under moderately heavy load.
The linear growth of energy consumption has also been observed by others
[Wang and Ranganathan, 2011; Hong and Kim, 2010].

6.2.2 Face detection

The face detection application presented in Section 5.2.2 was used to evalu-
ate our power model and the measured architectural component base power
consumptions. The base powers and the access rates obtained by simulating
the execution of the application with GPU Ocelot were fed into the equations
we presented in Section 6.1.1. The power model predicts an increase of 46.1
watts over the idle power consumption with the GPU in the highest power
state. The overall predicted power consumption of the whole system is 147.0
watts. The measured power consumption for the whole system was 144.5
watts. The difference between the predicted and measured power consump-
tion was 2.5 watts, which is 5.4% of the predicted dynamic power increase.
The predicted and measured power consumptions are also visualised in Fig-
ure 6.5a.

Figure 6.5b shows the breakdown of the contributions of different types of
instructions to the predicted dynamic power consumption. Arithmetic integer
instructions and the other instructions class contribute most to the power
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(a) Estimated and measured power con-
sumption

(b) Dynamic power consumtion per in-
struction type

Figure 6.5: Power consumption of the face detection application

consumption. Global and local memory operations also have a significant
impact on the predicted power consumption. DMA memory transfers do not
seem to affect the power consumption a lot in this case, which is explained
by the small size of the used input image and the relatively low frequency of
DMA memory transfers.



Chapter 7

Simulating GPU energy consump-
tion

The focus of this thesis so far has been in measuring and estimating the
energy consumption of a real and existing graphics processing unit. The
preferred targets for energy consumption estimation are non-existing or un-
available GPUs. In this chapter we will try to discuss the suitability of the
presented model and explored simulation techniques in the energy estimation
of different GPU architectures.

7.1 GPU energy consumption observations

The measurements in Section 6.2 confirmed the rather obvious assumption
that the activations of different hardware components correlate with the over-
all energy consumption of GPUs. What was somewhat surprising was that
the effect of the activations of individual processing elements was relatively
small. The amount of computation performed by a processor mattered far
less than the time the processor was computing anything at all. Current
desktop GPUs do not employ very sophisticated energy saving mechanism.
The GPUs are typically running at the highest power state even when there
are pauses between computation. The static energy consumption of the high-
est power level is by far the biggest factor to the overall energy consumption
of GPU accelerated processing.

Since the activations of the whole GPU and its individual processors
correlate with the energy consumption, there is also a very direct relationship
between the time a program is executing on the GPU and the energy. On
existing systems finding out the timing can be done trivially by profiling the
program execution. If real hardware is not available, a simulator must be
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used.
The second most important factor to both performance and energy effi-

ciency is the efficient use of caches and shared memory and thus minimizing
accesses to global memory. The further away data must be fetched, the
more energy is spend during the operation. Memory accesses are also slow,
which may stall the execution of the program, which causes further energy
losses. The memory usage can be quite architecture dependent even for the
execution of the same program. Different GPUs have different memory con-
figurations that affect the energy consumption and the timing of the program
execution.

There are plenty of differences between GPUs as well that affect timing
and energy efficiency. For example, NVIDIA’s latest desktop GPU architec-
ture, Kepler, improved computational capabilities of each core significantly,
especially double floating point performance, but since the memory hierar-
chy did not get a similar boost the memory bandwidth has become more of a
bottleneck for general purpose computation loads [Kanter, 2012]. There can
also be more subtle architectural differences, for example differing scheduling
or power management practices, but such details are usually not published
by vendors and must be observed through reverse engineering means.

Mobile GPUs are fundamentally different due to much more severe energy
consumption restrictions. Traditionally the mobile GPUs have been focused
exclusively on graphics rendering, but recently the trend has been to include
general purpose computation capabilities as well. The biggest difference be-
tween current mobile and desktop GPUs is that mobile GPUs typically share
memory with the CPU, and that memory is usually slower than traditional
desktop GPU memory. Mobile GPUs are much more reliant on using local
shared memories and minimizing global memory accesses.

The trend seems to be that mobile and desktop GPU architectures are
becoming more and more similar with each other. The Heterogeneous Sys-
tem Architecture (HSA) [AMD] pushed by AMD and some other hardware
manufacturers promotes and architecture with stronger coupling of the CPU,
GPU and other accelerators. On the otherhand, NVIDIA has been demon-
strating a version of their Kepler GPU architecture that is also suitable for
mobile computing [Alben, 2013].

7.2 Simulating GPU energy consumption

One of the biggest issues with using GPU simulators to predict the energy
consumption of program execution is the performance of simulation. The
sheer amount of threads and processing elements on a GPU make the simu-
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lation very slow. Existing energy predicting simulators have been based on
cycle-accurate simulation, which is not even nearly fast enough for the use
of most software developers. We have found instruction-accurate simulation
to be accurate enough to give a good idea of the energy consumption of a
GPU. However, the approach we used is not without flaws.

Our energy estimation model relies solely on executed instructions. The
mostly unmodified version of the GPU Ocelot emulator we used uses a sim-
plistic execution model. Especially the estimation of the memory access
energy consumption could be improved greatly by simulating the cache be-
haviour as well. GPU Ocelot includes a simple L2 cache simulator, but it was
not used as it is based on an old GPU architecture and cannot be configured
to match more recent architectures. However, implementing a cache simula-
tor for the full cache hierarchy of GPUs would make the overall simulation
even slower.

However, since simple instruction counting is already sufficient for esti-
mating energy consumption at an acceptable accuracy, it may be possible
to simulate the program execution once and output energy consumption
estimates for multiple target platforms simultaneously. What is needed is
information about the execution times and architectural component energy
consumptions relative to a known and existing GPU. That way we would be
able to project the energy consumption data of a known platform to non-
existing GPU architectures.

Considering the real-time nature of a large portion of common GPU accel-
erated algorithms, increasing the GPU simulator performance is an essential
step for making the simulation techniques practically usable. Previous paral-
lelization efforts have proven the feasibility of parallel GPU simulation. Such
approaches should be applied to the more mature GPU simulators.

The performance and accuracy trade-off is always present when we talk
about simulation. However, as the performance counters of current GPU
architectures do not expose enough detail about the execution, we have no
choice but to rely on simulation to obtain more detailed information about
program execution on GPUs.

7.3 Simulating future GPU architectures

The flexibility of GPU simulators makes it possible to adapt them for future
GPU architectures. While current desktop GPUs have been following the
CUDA compute model quite religiously in their hardware design, this may
not be the case for mobile GPUs and future GPU generations. The modular
structure of GPU Ocelot is a good example of a framework that is a good fit
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for architectural exploration and can be easily modified to match the changes
in GPU architectures. The way GPUs are divided into processing cores
and processing elements varies a lot between different manufacturers and
GPU types. GPUs are also equipped with different memory architectures,
which affects the overall performance and timing of events. These are exactly
the sorts of effects that could be examined more easily with a configurable
simulator.

The problem with most current GPU simulators is that they simulate an
abstract GPU model. Simulators cannot be made fully accurate as long as
details about GPU execution are not known. It seems like manufacturers are
slowly reacting to this, and simulators such as Multi2Sim are starting to sup-
port the simulation of actual hardware instead of just abstract computation
models.

There is a clear trend that CPUs and GPUs are being brought both
physically and logically closer together. AMD has already introduced an
architecture for desktop computers where a high-performance GPU is inte-
grated to the same chip as the CPU. There is also plans to have a coherent
shared memory model for different computing elements on the same chip. In
such an architecture computing devices do not only shared the same phys-
ical memory, but also the same virtual address space. In the long run it is
not enough to observe the GPU characteristics in isolation of the rest of the
system. GPU simulation should be integrated into full system simulators.

General-purpose GPU computation on mobile platforms is an emerging
field and there is not a lot of information available about either the per-
formance or energy efficiency of executing programs on mobile GPUs. It
would be essential to implement mobile GPU models in existing simulators
and verifying the simulation results with real hardware. The first possible
hardware targets are the Mali-T604 and Adreno 320 mobile GPUs that have
had OpenCL drivers and libraries released on some devices.



Chapter 8

Summary

In this thesis we explored the platform operation, both on the host platform
as well as on the GPU device, of GPU accelerated processing. As the native
execution on the device is difficult to observe, we focused on presenting meth-
ods that were largely based on using GPU simulators for unveiling the more
fine-grained details of execution. We also found that the more coarse-grained
information can be obtained by observing the processing from the point of
view of the host platform by reading the performance counters reported by
the drivers.

As we saw in Chapter 4, there is a smorgasbord of different GPU simu-
lators available and they all approach the problem from a slightly different
angle. They are also generally speaking in the relatively early stages of
development with plenty of desired features missing. Basically the simula-
tors can be categorised either as detailed cycle-accurate simulators or faster
instruction-accurate ones. This thesis concentrated more on fast, but rela-
tively inaccurate, simulation which is more suitable for software developers’
needs.

The results we obtained by estimating energy consumption using the
power model presented in Chapter 6 were promising. We could show that
even when the simulator ignores some of the details of execution on the GPU,
we can still end up with a fairly accurate estimate. In the future, it would be
desirable to speed up the simulation speed by means of parallel simulation,
and improving the simulated GPU model to include functionality such as
cache hierarchy simulation to improve simulation accuracy.

The next step from the results of this thesis would be to try to utilise
the explored methods for other platforms, such as mobile GPUs. Estimat-
ing desktop GPU energy consumption is not very interesting, but using the
more powerful GPUs as a basis for estimating energy consumption of embed-
ded GPUs would be desirable. The recent emergence of mobile GPUs with
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general-purpose processing support would make such research possible.
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