
AALTO UNIVERSITY

School of Electrical Engineering
Department of Communications and Networking

Jaakko Rantamäki

Implementing Fast Feedback Response in Agile Software 
Development

Master’s Thesis submitted in partial fulfillment of the requirements for the degree of 
Master of Science in Technology.

Helsinki, 28th April 2014

Supervisor: Prof. Raimo Kantola
Instructor: M.Sc. Teemu Arvonen



i

         AALTO UNIVERISTY
         SCHOOL OF ELECTRICAL ENGINEERING            Abstract of the Master’s Thesis

Author: Jaakko Rantamäki

Title: Implementing Fast Feedback Response in Agile Software Development

Date: 28.4.2014                         Language: English                    Number of pages: 10 + 67

Department: Department of Communications and Networking

Professorship: Networking Technology                                                                Code: S-38

Supervisor: Prof. Raimo Kantola

Instructor: M.Sc. Teemu Arvonen

Receiving  rapid  feedback on software  functionality  in  the  agile  software  development 
methods is important. Traditionally, the test methods for measuring software functionality 
are  based  on simulated  test  tools  and test  environments.  These  methods  can  be  time-
consuming  and  do  not  always  reveal  problems  that  may  arise  when  the  software  is 
integrated into the target hardware.

In the scope of this research, a study is conducted whether a time efficient fast feedback 
response test process can be created to ensure the software functionality in target hardware 
level  in  initial  testing.  Thus,  making  more  efficient  troubleshooting  and  fault  finding 
possible  by using a  fast  feedback test  in  a  continuous  integration  environment.  These 
methods  can  lead  to  decreased  software  development  costs  and  increased  software 
development efficiency.

In  this  study,  a  fast  feedback  test  process  is  created  for  the  software  development 
environment of the Ericsson Mobile Media Gateway. The feasibility of the test process is 
determined  by  analyzing  the  performance  of  the  test  process  in  the  development 
environment.  A  study  on  the  efficiency  of  the  agile  software  development  methods 
compared to the waterfall development methods is also conducted by using the Ericsson 
Mobile Media Gateway development organization as an example.

In conclusion, the initial testing of the fast feedback test indicates that it could be applied 
to the Ericsson development environment. It is recommended to examine the possibility to 
use this fast feedback test methodology also in other agile software development projects. 
There  are  strong indications  that  the  agile  software  development  methods  at  Ericsson 
Mobile Media Gateway development organization are more effective than the previous 
waterfall development methods.

Keywords: Agile software development methods, continuous integration, rapid software 
testing, fast feedback, early fault finding, media gateway



ii

         AALTO-YLIOPISTO
         SÄHKÖTEKNIIKAN KORKEAKOULU               Diplomityön tiivistelmä

Tekijä: Jaakko Rantamäki

Työn nimi: Nopean vasteen implementointi ketterässä ohjelmistokehityksessä

Päivämäärä: 28.4.2014                      Kieli: Englanti                             Sivumäärä: 10 + 67

Laitos: Tietoliikenne- ja tietoverkkotekniikan laitos

Professuuri: Tietoverkkotekniikka                                                                      Koodi: S-38

Valvoja: Professori Raimo Kantola

Ohjaaja: DI Teemu Arvonen

Nopean  vasteen  saaminen  ohjelmiston  oikean  toiminnallisuuden  varmistamiseksi  on 
tärkeää ketterässä ohjelmistokehityksessä. Perinteiset testimetodit alustavien testituloksien 
saamiseksi on ollut käyttää simuloituja ympäristöjä ja testityökaluja. Nämä metodit voivat 
olla  hitaita,  eivätkä  ne  aina  paljasta  ongelmia,  joita  voi  esiintyä,  kun  ohjelmisto 
integroidaan kohdelaitteistoon. 

Tässä tutkielmassa selvitetään voidaanko luoda nopean testivasteen prosessi, ohjelmiston 
oikean  toiminnallisuuden  varmistamiseksi,  käyttämällä  alustavassa  testauksessa 
kohdelaitteistoa.  Käyttämällä  nopean  testivasteen  prosessia  jatkuvan  integraation 
ympäristössä,  mahdollistetaan  tehokkaammat  vianetsintä-  ja  vianmääritysmenetelmät. 
Nämä  metodit  voivat  johtaa  edullisempiin  ohjelmistokehityskustannuksiin,  sekä 
tehokkaampiin ohjelmistokehitysmenetelmiin.

Tässä  tutkimuksessa  kehitetään  nopean  testivasteen  prosessi  Ericsson  Mobile  Media 
Gateway:n  kehitysympäristöön.  Testiprosessin  soveltuvuutta  Ericssonin  jatkuvan 
integraation  ympäristöön  tutkitaan  analysoimaalla  testiprosessin  suorituskykyä 
ympäristössä. Tässä tutkielmassa verrataan myös ketterien ohjelmistokehitysmenetelmien 
tehokkuutta  vesiputsousmallin  ohjelmistokehitysmenetelmiin,  käyttäen  esimerkkinä 
Ericsson Mobile Media Gateway:n kehitysorganisaatiota. 

Johtopäätöksenä,  nopean  testivasteen  prosessin  alustava  validointi  viittaa  siihen,  että 
prosessi  soveltuisi  toteutettavaksi  Ericssonin  kehitysympäristöön.  Tämän 
testimetodologian käytön mahdollisuuttaa suositellaan tutkittavaksi myös muissa ketterän 
ohjelmistokehityksen  projekteissa.  Vahvoja  indikaatioita  saatiin  siitä,  että  ketterät 
ohjelmistokehitysmenetelmät  ovat  tehokkaampia  Ericsson  Mobile  Media  Gateway:n 
kehitystyössä, kuin aikaisemmin käytetyt vesiputousmallin kehitysmenetelmät.

Avainsanat: Ketterät ohjelmistokehitysmenetelmät, jatkuva integrointi, nopea 
ohjelmistotestaus, varhainen vian havainnointi, media gateway



iii

Acknowledgements 

I  would  like  to  give  special  thanks  to  my  thesis  instructor  Teemu  Arvonen  who  continuously 
encouraged in the creation,  making and finishing of  this  thesis.  Thanks also to  Teemu for all  the 
valuable input for this thesis.

I would like to also thank my professor for his valuable feedback for the thesis and all the people who 
gave their interviews for this research. Last but not least, I would like to thank my family and friends 
for their support in the long road called the Master's Thesis. 

Helsinki, 28.4.2014.

Jaakko Rantamäki



iv

Contents

Acknowledgements ................................................................................................................................iii

Abbreviations .........................................................................................................................................vi

List of Figures.......................................................................................................................................viii

List of Tables...........................................................................................................................................ix

1 Introduction ..........................................................................................................................................1

1.1 Problem Description........................................................................................................................1

1.2 Objectives and scope.......................................................................................................................2

1.3 Outcomes of the Research...............................................................................................................3

1.4 Structure of the Thesis.....................................................................................................................4

2 Ericsson Mobile Media Gateway ........................................................................................................5

2.1 Physical Structure............................................................................................................................5

2.2 Functional structure.........................................................................................................................7

2.3 Media Gateway in core network ....................................................................................................9

3 Software development process models .............................................................................................11

3.1 The waterfall software development.............................................................................................11

3.2 Agile software development methods...........................................................................................13

3.2.1 The principles of agile development......................................................................................13

3.2.2 Agility in context of software engineering............................................................................15

3.2.3 Human factors in agile development.....................................................................................16

3.2.4 The Scrum method.................................................................................................................17

4 Software testing ..................................................................................................................................20

4.1 Overview of software testing........................................................................................................20

4.1.1 Functional testing..................................................................................................................20

4.1.2 Fault versus failure................................................................................................................21

4.2 Levels of testing............................................................................................................................22

4.2.1 Unit testing............................................................................................................................23

4.2.2 Integration testing..................................................................................................................23



v

4.2.3 System testing........................................................................................................................24

4.2.4 Acceptance testing.................................................................................................................25

4.2.5 Regression testing..................................................................................................................25

5 Continuous Integration ......................................................................................................................26

5.1 Requirements in human behavior..................................................................................................27

5.2 Scaling up continuous integration.................................................................................................28

5.3 Multi-stage continuous integration system....................................................................................30

6 Evolution of the Ericsson Mobile Media Gateway development ...................................................33

6.1 M-MGw agile transformation motivation.....................................................................................33

6.2 M-MGw agile transformation process..........................................................................................34

6.3 Differences between waterfall and agile way of working.............................................................37

6.4 Waterfall test strategy....................................................................................................................38

6.4.1 Branching in the waterfall test strategy.................................................................................39

6.5 Continuous integration test strategy..............................................................................................40

7 Fast feedback response test ...............................................................................................................43

7.1 Fast feedback test case description................................................................................................43

7.2 Test environment setup and components......................................................................................46

7.3 Evaluation process ........................................................................................................................48

7.3.1 Test process for faulty load module injection........................................................................49

7.3.2 Test process for automated testing of development packets.................................................51

8 Results & analysis of the fast feedback test case .............................................................................54

8.1 Test results and analysis of faulty load module injection tests.....................................................54

8.2 Test results and analysis of automated development packet testing ............................................55

8.3 Conclusions of analysis.................................................................................................................56

9 Conclusions .........................................................................................................................................58

9.1 Future research..............................................................................................................................60

References ..............................................................................................................................................62

Appendix A – The Twelve Principles of Agile Software ....................................................................66

Appendix B – Error trace of M-MGw Fast Feedback Test ..............................................................67



vi

Abbreviations 

2G 2nd Generation
3G 3rd Generation
AAL Asynchronous Transfer Mode Adaptation Layer
ATM Asynchronous Transfer Mode
BICC Bearer Independent Call Control
BSSAP Base Station Subsystem Application Part
CI Continuous Integration
CPP Ericsson Cello Packet Platform
CT Component Test
DSDM Dynamic Systems Development Method
DSP Digital Signal Processor
ET Exchange Terminal Board
GCP Gateway Control Protocol
GPB General Purpose Board
ISUP ISDN User Part
IMS IP Multimedia Subsystem
IP Internet Protocol
ISDN Integrated Services Digital Network
Llog List error log
M-MGw Mobile-Media Gateway
MATE Media Gateway Automated Test Environment
MeSC Media Stream Controller
MSB Media Stream Board
MSC Mobile Switching Center
MSC-S Mobile Switching Center Server
PBX Private Branch Exchange
PLMN Public Land Mobile Network
PMD Post Mortem Dump
PRA Primary Rate Access
PSTN Public Switched Telephone Network
RANAP Radio Access Network Application Part
RNC Radio Network Controller
SCB Switch Core Board
SCM Software Configuration Management
SH Shipment
SIP Session Initiation Protocol
SIP-I SIP with encapsulated ISUP
SPB Special Purpose Board
SXB Switch Extension Board
TDM Time-Division Multiplexing



vii

TE Trace & Error
TUB Time Unit Board
UMTS Universal Mobile Telecommunications System
UTMS UMTS Traffic Model Simulator
VMGw Virtual Media Gateway
VoIP Voice over IP



viii

List of Figures

Figure 1: Example configuration of media gateway [FHP00].............................................6

Figure 2: Functional architecture of the M-MGw [FHP00].................................................8

Figure 3: Mobile Media Gateway in Core network [Eri01]................................................9

Figure 4: The Waterfall development process [Som11]....................................................12

Figure 5: Scrum process [ASR02].....................................................................................18

Figure 6: Functional black box testing [SIN12]................................................................21

Figure 7: Software Testing Levels (redrawn) [Tha05]......................................................22

Figure 8: Continuous Integration system [LV10]..............................................................26

Figure 9: Dynamics of broken builds [LV10]....................................................................29

Figure 10: Scaled Continuous Integration system [LV10]................................................31

Figure 11: Agile transformation process at Ericsson Finland............................................35

Figure 12: Employee motivation development at Ericsson Finland..................................36

Figure 13: Employee survey about the productivity at Ericsson Finland..........................36

Figure 14: Waterfall test strategy at Ericsson Finland [IL11]...........................................38

Figure 15: Branching in Waterfall test strategy [IL11].....................................................40

Figure 16: Continuous integration strategy at Ericsson Finland [IL11]............................41

Figure 17: MATE test case reporting system....................................................................44

Figure 18: Fast feedback test case process........................................................................46

Figure 19: Test environment for Fast feedback test...........................................................48

Figure 20: Load module injection test process..................................................................50

Figure 21: Automated test process of Node development packets....................................52

Figure 22: MATE error reporting summary after faulty load module injection................54

Figure 23: MATE test session view for automated development packet tests..................56



ix

List of Tables

Table 1: The Principles of Agile Development (redrawn) [Som11]........................................................15

Table 2: Main differences between the Waterfall and Agile working methods (redrawn) [Kiv11a]......37



1

1 Introduction 

Choosing the right  software development  process for a company or project  is  important.  Different 
software development models can have significant advantages over others in terms of quality, time and 
efficiency in  product  development.  The  most  widely  adopted  methods  are  the  waterfall  and agile 
software development  models.  The trend in  software delivery in  recent  years  has been to  develop 
software using the agile software development model. Every software project is different and therefore 
the most suitable development model must be chosen accordingly. Thus, both the agile and waterfall 
development models have their demand in software development.

The  waterfall  process  is  a  sequential  and  plan-driven  process,  where  every  phase  from  defining 
requirements to testing and maintenance, has to be completed before moving to the next phase. The 
agile software development method is less rigid than the waterfall method and focuses on agility and 
adaptability.  In  the  agile  development  method,  the  software  is  developed  using  multiple  iterative 
development cycles, where each iteration improves the product. 

The Waterfall development model suits for predictable and stable programs. The rigidity of the model 
however  causes  difficulties,  if  late  changes  in  design or  requirements  need to  be made.  The agile 
development  methods  are  well  suited  for  development  in  uncertain  environments.  Due  to  their 
adaptability  and  iterative  nature,  rapid  development  of  functioning  software  and  late  changes  are 
possible. These features have made the use of agile methods more popular than the use of waterfall  
methods in today's fast paced and unpredictable software development environment.

1.1 Problem Description

The software development process at Ericsson Finland has been transformed from waterfall to agile 
way of working. The agile methods have increased the amount of required testing and tightened the 
requirements for response speeds and automation of test processes. The increased time and automation 
demands of test processes have not been properly addressed at Ericsson Finland. Currently the test 
process for testing the developed software can take a considerable amount of time. In the development 
of the Mobile Media Gateway or any software product, it is crucial to receive rapid feedback on the 
functionality of new and legacy code.

The existing test methods, in the development of Mobile Media Gateway, provide sufficient feedback 
on the functionality of new software, but response times with these methods are not ideal to be able to 
efficiently respond to emerging problems in the software. In the current continuous integration system, 
the time and amount of new and changed code integrated into the main software track, can grow to a 
relatively high level, before the automated test system is able to give feedback and to test again a new 
batch of code. The likelihood of finding new faults and the complexity of troubleshooting these faults 
increases  as  the  time  and amount  of  integrated  code between the  tests  increases.  High amount  of 



2

integrated code between tests can increase the difficulty to efficiently troubleshoot possible emerging 
problems,  as  the  amount  of  changes  in  the  code  is  high.  Difficulties  can  emerge  relating  to  the 
functionality of new code or incompatibilities with legacy code, other components of the software or 
with the hardware. Therefore, a need has emerged to offer the developers a test process that provides a 
rapid response concerning the functionality of legacy and new software. 

The Mobile Media Gateway (M-MGw) operates in the core network of mobile systems and acts as a 
bridge  between  different  networks  by  connecting  various  transmission  technologies  and  protocols 
together. The Mobile Media Gateway is developed by Ericsson, a global leader in telecommunication 
solutions.

1.2 Objectives and scope

The main objective in this thesis is to examine and improve the current agile software development 
methods in the Ericsson Mobile Media Gateway development organization. The Performance can be 
increased by improving the continuous integration method with the development of a fast feedback test 
process that provides rapid detection of software functionality. Continuous integration is a part of the 
agile software development methods. It is crucial in agile development that feedback time for receiving 
information on the functionality of software is minimal. 

To support the main objective,  the performance of the agile  development  methods is examined by 
comparing it with the waterfall methodology. This examination is conducted by studying the past and 
the present  software development  methods of the Mobile  Media Gateway organization at  Ericsson 
Finland. This will provide information about why and how the change to agile methods was made and 
how to develop the processes further by taking advantage of the fast feedback test system presented in 
this thesis. The outcomes, methods and processes examined in this thesis could also be applied to other 
agile software engineering projects.

The  first  task,  to  reach  the  main  objective,  is  to  examine  the  history  and  the  current  software 
development  methods  in  the  Ericsson  Mobile  Media  Gateway  organization.  This  is  conducted  by 
interviewing  experts  from  the  Media  Gateway  organization  and  by  examining  related  technical 
documentation. This study should provide information about the potential benefits and motivation for 
the change from waterfall  methods to agile methods in the organization and it  should also provide 
information about the current software development environment. This information will be used as the 
basis for developing the current agile methods further.

The second task, to enable the fast feedback response, is to develop a new fast feedback test process 
that suits the agile software development methods used in the Media Gateway organization. The agile 
software development methods are examined and the test will be created based on the examination to 
suit the environment. The aim of the test is to provide software developers with a significantly faster 
feedback cycle compared to the current test methods. The test should provide sufficient feedback for 



3

detecting potential new problems within the equipment as the software evolves. The scope of the test  
will be designed to be able to provide feedback from the most common indicators of faults in the 
software. The test process is not designed to be a comprehensive fault check. The test is designed to run 
in conjunction with other, more thorough tests that also find faults in the equipment and the software. 
The fast feedback response should then enable developers to trace root causes of problems faster by 
following  latest  code  commits  made  to  the  software.  The  benefits  can  result  in  reduced  software 
development costs in the organization.

The goals of this thesis can be summarized into five questions: 

1) How to enable fast feedback response in the M-MGw development? 
2) Is the fast feedback test process capable of detecting faults?
3) Is the test process feasible to be used in the development environment of the M-MGw?
4) Does the test process increase the efficiency of fault finding and troubleshooting?
5) Can the findings be applied to the agile development of other software products?

To answer these questions, this thesis can be summarized into four objectives:

A) Examining the theory and practice of the waterfall and agile software development methods. 
B) Determining the requirements for a fast feedback test process according to the examination.
C) Designing and developing a functioning fast feedback test according to the requirements.
D) Evaluating  the  performance  of  the  fast  feedback  test  in  the  agile  software  engineering 

environment.

1.3 Outcomes of the Research

The research demonstrates that it is possible to enable a fast feedback response by developing a test 
process that tests the developed software directly on the system level using real hardware, which in this 
case is the Mobile Media Gateway. The analysis shows that the developed fast feedback test process is 
capable of quickly detecting  major  faults  in  the software.  The simulated test  environment  analysis 
indicates  that  it  would be feasible  to  implement  the test  as part  of  the M-MGw development  test 
processes.  Also  the  feedback  provided  by  the  test  process  should  be  sufficient  for  efficient 
troubleshooting of detected faults. Combining these outcomes of the analysis conducted here, it can be 
assumed that the test process would increase the efficiency of fault finding and troubleshooting. The 
idea and other details presented in this thesis, for generating a fast feedback response, could be used in 
other agile software projects as well. 

To be able to verify the suitability and capability of the test to perform in the software development  
environment,  more  research  and  testing  on  the  subject  should  be  conducted.  The  developed  test 
analysed  here  was  tested  in  a  simulated  environment.  The  test  process  should  be  analysed  by 
implementing the test process into the production test environment to be able to give a final verdict on 



4

the capability  of  the  test.  The  study conducted  here  shows strong positive  indications  for  the  test 
process  to  be  able  to  perform  satisfactory  in  the  environment  and  encourages  to  research  the 
implementation of this further.

1.4 Structure of the Thesis

Chapter 2 introduces the Ericsson Mobile Media Gateway. This thesis wraps around the development 
and software of the Mobile Media Gateway. This chapter briefly describes what the Mobile Media 
Gateway is and what is the function of the equipment. 

Chapter 3 introduces the theory of the waterfall and agile software development methods. Chapter 4 
describes  the  fundamentals  of  software  testing  and  introduces  the  different  levels  recognized  in 
software testing. In Chapter 5, the continuous integration method is described. These chapters provide 
the background information for the study of the software development methods used in the Media 
Gateway development organization and for development of the fast feedback test. These are examined 
in Chapters 6 and 7. 

In Chapter 6, the previously used waterfall development method and the currently used agile methods 
in the Media Gateway development organization are examined. Also the motivation for change and a 
study of the benefits brought by the agile methods is researched. This chapter provides the background 
information for developing the current agile methods further with the fast feedback test introduced in 
Chapter 7.

Chapter 7 describes the fast feedback response test, which is the main objective in this thesis. The fast  
feedback test is analysed in Chapter 8 and final conclusions are presented in Chapter 9.



5

2 Ericsson Mobile Media Gateway 

Ericsson Mobile Media Gateway (M-MGw) operates in the mobile core network and acts as a bridge 
between different transport networks by connecting various transmission technologies and protocols 
together.  M-MGw operates on a common hardware platform called Ericsson Cello Packet Platform 
(CPP). Ericsson Cello Packet Platform is a fully redundant and scalable telecommunications platform 
that is used as a basis for different Ericsson Network equipment. This chapter explains the Cello Packet 
Platform, physical and functional structure of the M-MGw and the operation of the M-MGw in the core 
network. 

Cello Packet Platform

The Ericsson Cello Packet Platform (CPP) is a common hardware platform that is used as a platform 
for different  Ericsson network equipment  like the M-MGw and Radio Network Controller  (RNC). 
Core, 2G and 3G network applications operate on CPP, which consists of application programming 
interfaces, software and of hardware components. The Cello Packet Platform is flexible and allows the 
building  of  various  different  sizes  of  nodes.  The  modular  platform allows  scalability  in  terms  of 
processing and payload capacity and in number of routes and physical links. [KLM02, FHP00, Kuu08]

2.1 Physical Structure

Customers  have  varying  needs  and  the  M-MGw  must  be  configured  to  almost  every  customer 
accordingly.  The  flexibility  requirements  in  the  CPP  are  met  with  a  small  amount  of  common 
components that can be assembled and configured to a node in a variety of ways. The basic structure of 
each  CPP is  the  same.  They consist  of  cabinets  including air  flow units  and different  number  of 
common components,  which  are  interconnected  via  a  switch  fabric,  which is  attached  to  different 
subracks. Figure 1 demonstrates an example configuration of M-MGw. [FHP00, Eri07]



6

The main subrack contains central processing functions and high-speed physical interfaces.  The main 
subrack  handles  signalling,  call  control  and  node  coordination  activities.  The  interface  extension 
subrack is used in large media gateway nodes and it also contains high-speed physical interfaces to 
control traffic. Circuit  subracks contain high or low-speed interfaces and suitable number of media 
stream boards  to  handle  the  traffic.  IP  traffic  is  terminated  and  controlled  in  the  packet-switched 
services subrack.

The subracks consist of a varying amount of different boards depending on customer requirements. 
Each board is built to specialize in optimal processing of specific tasks. The most important boards in 
the M-MGw include: 

Media Stream Board (MSB) which processes media streams. The MSB consists of several digital 
signal processors which perform the actual processing. Almost all of the media streams are processed 
on this board. 

General-Purpose Board (GPB) does the main processing in the M-MGw. GPB is used, for example, 
in operation and maintenance, signalling and call control. 

Special-Purpose  Board  (SPB) handles  protocol  termination.  The  board  consists  of  several 
microprocessors, which handle media framing components. 

Figure 1: Example configuration of media gateway [FHP00]



7

Switch  Core  Board  (SCB) is  responsible  for  providing  connectivity  inside  the  M-MGw  node. 
Communication between different subracks travels through SCB.

Exchange Terminal Board (ET) is  the input/output  interface for the node.  Different types  of ET 
boards exist according to the type of traffic they handle. The traffic types include IP, ATM and TDM 
traffic. 

Time Unit Board (TUB) provides an internal clock for the M-MGw. The clock can be synchronized 
using an external source.

Switch Extension Boards (SXB) are required if the M-MGw needs to be extended with additional 
subracks. Basically SXB provides the same functions as the SCB.

2.2 Functional structure

The M-MGw operates as an application on the CPP. The Cello Packet Platform provides application 
programming interfaces, robustness, a real-time control system and a cell transport system that supports 
time-division multiplexing, asynchronous transfer mode (ATM), Internet protocol (IP) transmission for 
applications operating on the CPP. The functional architecture of the M-MGw application can be split 
into control logic and resource component parts. Figure 2 illustrates the functional architecture of the 
M-MGw. [FHP00, Kuu08]



8

                   Figure 2: Functional architecture of the M-MGw [FHP00]

Transmission  interface  boards  in  the  M-MGw  are  the  only  transmission  technology  specific 
components in the node. This makes the architecture of the M-MGw flexible as the resources using the 
boards can be divided into small pieces and used efficiently where they are needed. Three types of 
different resources exist in the M-MGw. These are the media framing, media streaming and processing 
components. They belong to a common pool from where they can be flexibly used, for example in 
handling of different calls where one call consumes a certain amount of resources from the resource 
pool.

The software of the Mobile Media Gateway can be divided into components called load modules. The 
software of the Media Gateway consists of a few dozens of load modules. Each load module provides a 
specific function or set of functions in the Media Gateway. The load modules interact with other load 
modules using interfaces. Thus, the operation of the Mobile Media Gateway software is based on the 
signaling between the load modules.



9

2.3 Media Gateway in core network 

The dotted lines in Figure 3 represent signalling including Bearer Independent Call Control (BICC), 
Base Station Subsystem Application Part (BSSAP), Gateway Control Protocol (GCP), Radio Access 
Network Application Part (RANAP), Session Initiation Protocol (SIP) and SIP with encapsulated ISDN 
User Part (SIP-I) protocols. These are the protocols that the M-MGw operates with in signalling with 
different networks and network equipment. [Eri01, Kuu08, GPP01, GPP02]

The solid lines represent the possible transport technologies that the M-MGw can handle inbound and 
outbound  to  different  networks.  The  transport  technologies  consist  of  time-division  multiplexing 
(TDM),  Asynchronous  transfer  mode  (ATM),  Internet  Protocol  (IP)  and  primary  rate  access 
implementation  of  ISDN (PRA).  Control  layer  functions  are  handled  by Mobile  Switching  Center 
server (MSC-S) which controls the M-MGw using the GCP protocol. 

Figure 3: Mobile Media Gateway in Core network [Eri01]

The connectivity and transport between the public switched telephone network (PSTN) and public land 
mobile networks (PLMN) is handled by the M-MGw. A private branch exchange (PBX) can be used to  
create  an  internal  network  for  a  company.  A  PBX  is  connected  to  the  M-MGw  using  a  PRA 
connection. The M-MGw then acts as a gate, connecting the PBX to the PSTN or PLMN networks. The 



10

3G Radio Access provides  connectivity  via  Radio Network Controller  to  UMTS Terrestrial  Radio 
Access  Network.  Voice  over  IP  (VoIP)  network  connection  can  also  be  used  in  the  form of  IP 
Multimedia Subsystem (IMS) network connection. From the 2G Radio Access, network connectivity is 
provided by base station controller from which GSM access network can be reached. 



11

3 Software development process models 

Several different process models for software development have been created. This chapter describes 
the agile and the waterfall software development methods. The use of these two methods in practice is 
examined in a case study in Chapter 6, where it is explained how a transformation from waterfall to 
agile development  methods was performed in the case study company.  The creation of a new test  
process for agile software development method is explained in Chapter 7.

3.1 The waterfall software development

This section shortly introduces the waterfall  software development model.  The section will provide 
background information on the case study described in Chapter 6. The waterfall model is an example of 
a plan-driven process where all of the activities in the process must be planned and scheduled before 
starting to work on them. This model was named as the waterfall model because of the cascade from 
one phase to another. Figure 4 illustrates the waterfall development process. [Som11, Doo11, Sch11]



12

The development activities in the waterfall model as shown in Figure 4 consist of:

1. Requirements definition:  System's services, constraints and goals are defined in detail  and 
they act as a system specification. These are gathered by consulting the users of the system. 

2. System and software design: In software design, the fundamental software system abstractions 
and  their  relationships  are  identified  and  described.  In  system  design,  an  overall  system 
architecture is designed by allocating the requirements to either hardware or software systems.

3. Implementation and unit testing:  The software in this stage is realized as a set of program 
units or programs. Unit testing verifies that defined specifications for each unit are met.

4. Integration and system testing: The program units or programs are integrated as a complete 
system. The system is then tested to ensure that the requirements for the system are met. If the 
testing is successful, it is delivered to the customer.

5. Operation and maintenance: In this phase the system is installed and put into operational use. 
The maintenance part involves correcting errors that were not detected in the previous stages. 
The system is also enhanced and implementations are improved as new requirements for the 
system are created.

Figure 4: The Waterfall development process [Som11]



13

In the waterfall development, the following stage should not be started before the previous has finished. 
In practice, the stages overlap and feed information to each other. For example during program design, 
problems  with  requirements  can  be  detected  and problems  with  program design  can  be  identified 
during program coding. The software development process includes feedback between phases and is 
not, therefore, a simple linear model. Produced documents may also have to be changed in each phase 
according to the changes made. 

Iterations  can  include  high  amount  of  rework and they can  be  expensive  because  of  the  costs  of  
producing and approving documents. It is normal to freeze parts of the development after a number of 
iterations  and  to  continue  with  the  later  development  phases.  Possible  problems  are  ignored, 
programmed around or left for later resolution. Because of this premature freezing of requirements, the 
system may not operate as the user requires. As design problems are circumvented by implementation 
tricks, it may lead to badly structured systems. 

In the operation and maintenance phase, the software system is put into operation. Errors in the original  
software requirements can be found, program and design errors can emerge,  and the need for new 
functionality can be identified. Repeating the previous process phases may be required to develop and 
implement these changes. 

3.2 Agile software development methods

This section introduces the agile software development.  The ideas that form the basis for the agile 
approach are explained and the main characteristics of agile software development are described. The 
agile  software  development  offers  a  professional  approach  to  software  development  including 
organizational, human and technological aspects of software development processes. The main ideas of 
agile software development are, first, introduced by describing the Agile Manifesto and, second, by 
describing how agile should work on a team level. Finally the Scrum method is explained describing in 
detail  one  implementation  of  agile  practices.  This  introductory  section  forms  the  basis  for 
understanding the upcoming chapters in this research. [HD08]

3.2.1 The principles of agile development

In the early 1980s and in 1990s, the best way to develop software was considered to be achieved with 
careful project planning, controlled and rigorous software development processes, formalized quality 
assurance and the use of analysis and design methods. Significant amount of overhead is involved in 
planning, designing and documenting the software product in this plan-driven approach. The amount of 
overhead is justified when software system under development  is critical  of nature,  involves many 
development teams that have to be coordinated or when maintaining the software requires multiple 
different people. In the 1990s, a number of software developers proposed new 'agile methods' due to 
dissatisfaction with the heavy plan-driven approaches to software engineering. [Som11]



14

In  2001,  17  representatives  from  Extreme  Programming,  SCRUM,  DSDM,  Adaptive  Software 
Development, Crystal, Feature-Driven Development, Pragmatic Programming, and others sympathetic 
to the need for change, gathered together (later referred to as the “Agile Alliance”). The result from this 
gathering  was  the  “Manifesto  for  Agile  Software  Development”,  which  was  signed  by  all  the 
participants. The manifesto states that [Agi01]: 

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan 

That is, while there is value in the items on
the right, we value the items on the left more.

The manifesto was born out of the need for an alternative to documentation driven and heavyweight 
software development processes.

The agile methods allow the software development team to focus on the software itself rather than on 
its design and documentation. The methods are best suited to projects where the system requirements 
change  rapidly  during  the  software  project  development.  Incremental  approach  to  software 
specification, development and delivery are the foundations of agile methodology. Working software is 
intended to be delivered quickly to customers who can then propose changed or new requirements to 
the software in its later versions. Agile method aims to cut down process bureaucracy by eliminating 
documentation that will never be used and by avoiding work that cannot be seen as having any long-
term value. Table 1 illustrates the principles of agile development. Agile methods were developed to 
overcome perceived and actual weaknesses in conventional software engineering,  but despite of its 
benefit, it does not fit into all projects, situations, products and people. [Som11, Pre01]



15

Principle Description

Customer involvement Customers should be closely involved throughout the 
development process. Their role is to provide and 
prioritize new system requirements and to evaluate
the iterations of the system.

Incremental delivery The software is developed in increments with the 
customer specifying the requirements to be included in 
each increment.

People not process The skills of the development team should be recognized 
and exploited. Team members should be left to develop 
their own ways of working without prescriptive 
processes.

Embrace change Expect the system requirements to change and so design 
the system to accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed 
and in the development process. Wherever possible, 
actively work to eliminate complexity from the system.

Table 1: The Principles of Agile Development (redrawn) [Som11]

3.2.2 Agility in context of software engineering

Agility in software engineering means the ability to respond to changes. In agile software engineering, 
everyone is agile on individual and team level. Agile teams must be able to respond to changes in the 
team itself  and also to  changes  around the team.  Different  changes  can include  a change in team 
members, in the software being built and in the product itself. Also all kinds of variation involving the 
project for which the product is being built or changes due to new technology are possible. [Pre01, 
Jac01]

Agility  also  means  more  than  just  being  able  to  effectively  respond  to  change.  It  includes  the 
philosophy described in the Agile Manifesto that was introduced in the beginning of Section 3.2. In 
agility, it is encouraged to form teams and attitudes so that they render communication more effortless 
between  team  members,  business  and  technologists,  engineers  and  managers.  Rapid  delivery  of 
operational software is emphasized and intermediate work products are de-emphasized. Customer is 
adopted  as  part  of  the  development  team,  which eliminates  “us  versus  them” thinking.  To enable 
agility, it must be recognized that project plans are flexible as uncertain world has its limits.

Any software process can be performed with agile methods, but to accomplish this, it is essential that 
the process is designed in a way that allows certain tasks to be performed. The project team must be 



16

allowed to adapt  tasks  and streamline  them and to  conduct  planning using the  agile  development 
approach. The team must be able to eliminate all but the most essential work products and to emphasize 
an incremental delivery method that delivers software as quickly as possible to the customer. The Agile 
Alliance has defined 12 principles for achieving this agility. These principles are listed in Appendix A 
– The Twelve Principle of Agile Software. [Agi01b, Pre01, Jac01]

3.2.3 Human factors in agile development

In successful agile  development,  different  “people factors” are  important  parts  of the development 
process. It is important that the process molds to the needs of the people and the team and not the other  
way around. There are a number of key traits that must exist among the people in an agile team and in 
the  team  itself.  These  key  traits  can  be  divided  into  seven  different  factors:  common  focus, 
collaboration,  competence,  decision-making ability,  self-organization,  fuzzy problem-solving ability 
and mutual trust and respect. [CH01, Pre01] 

Common focus of the team is important. Different members of the agile team may focus on different  
tasks and they bring different skills to the team. Nevertheless, all team members should focus on one 
goal which is to deliver a working increment of the software being developed to the customer and 
within the agreed time. 

Collaboration within the team, with the customer and business managers is important because software 
engineering  is  about  assessing,  analyzing  and  using  the  information  that  is  communicated  to  the 
software team. This information can then be utilized to provide business value to the customer. 

Competence in agile software engineering means specific software related skills and overall knowledge 
of the process that the team has chosen to apply. Skill and knowledge should be taught to all members 
of the agile team. 

Decision making and, thus, the ability to control the team's own destiny must be allowed to software 
teams. Decision making authority regarding both technical and project issues should be granted. 

Self-organization implies three things: 1) the agile team organizes itself for the work to be done, 2) the 
team organizes the process to best accommodate its local environment, 3) the team organizes the work 
schedule, to best achieve the delivery of each software increment.

Fuzzy problem-solving ability means that the team has to constantly deal with ambiguity and change, 
which requires special problem solving ability from the team. The team must accept that the problem 
they are solving may not be the problem they need to solve tomorrow. 

Mutual trust and respect should exist among the team members. This is required to be able to have so 
strongly knit team that the whole is greater than the sum of its parts. 



17

3.2.4 The Scrum method

The launch of agile process model introduced a wide array of different agile process methods such as 
Extreme Programming,  Scrum,  Crystal  family of methodologies,  Feature  Driven Development  and 
Rational  Unified  Process.  The differences  between these  methods  are  in  the  characteristics  of  the 
software development process. All of the agile process methods conform to the Manifesto for Agile 
Software  Development.  In  this  section,  the  Scrum  agile  process  method  is  introduced.  [ASR02, 
DBG12, Hun06]

The Scrum method was developed for controlling systems and software development process. It applies 
ideas from industrial process control in terms of adaptability, productivity and flexibility. The Scrum 
method does not define any specific methods for development, but concentrates on how the members in 
a development team should function in order to develop the system flexibly in a constantly changing 
environment.  The assumption  in  Scrum is  that  the  software  development  process  includes  several 
different variables that are likely to change during the process (for example time frame, resources, 
requirements and technology). The target in the Scrum development process is to develop a system, 
which is operable when delivered. 

Abrahamsson, Salo, Ronkainen and Warsta [ASR02] suggest that the Scrum process can be divided 
into three distinctive parts: the pre-game, development and post-game parts. Figure 5 illustrates the 
Scrum process.



18

 
 
 
 
 
 

 
 

 
 
 



19

Sprints of the development phase (such variables include requirements, resources, time frame, quality, 
development  methods  and  implementation  technologies  and  tools).  Scrum  aims  to  control  these 
variables constantly to be able to adapt flexibly to possible changes.

The software is developed in Sprints in the development phase. Sprints are iterative cycles where new 
increments are produced as new functionality is developed or the current system is enhanced. Multiple 
teams can be involved in developing an increment. Each Sprint includes requirements, analysis, design, 
evolution and delivery phases. One sprint is usually planned to last from one week to one month. 

The post-game phase includes  the closure of  the release.  When an agreement  has  been made that 
environmental variables, such as the requirements are completed, the post-game phase is entered. In 
this phase no new issues or items can be created. The system is ready for the release, and preparation  
tasks for the release, which include integration, system testing and documentation, are conducted. 



20

4 Software testing 

This chapter describes the basics of software testing and introduces the different levels of testing. Also 
the  concepts  of  fault  and  failure  are  defined  and  the  functional  testing  method  is  described.  An 
examination into software testing is conducted in Chapter 8.

4.1 Overview of software testing

Software testing is an important part in the software development life cycle. Testing can be described 
as the process of testing the software under development, prior to its deployment. The objectives in 
software testing are to detect failures in the operation of the software and to verify that the failures have 
been corrected. The program to be tested is basically executed with the desired input, and the operation 
and the output of the program is observed and compared with the expected operation and output. If the 
operation of the program meets its operational criteria and the output of the program is the same with 
the  expected  output,  the  program can be  stated  to  be  operating  correctly.  If  an  anomaly  is  found 
regarding  the  required  operational  functionality  of  the  program or  the  output  of  the  program,  the 
program is not working correctly and the cause for the problem must be identified. Testing is expensive 
and it can consume from one-third up to one-half of the cost of a typical software development project.  
Software testing is largely a systematic process but also partly an intuitive one. A good software testing 
process includes more than just  executing a  program few times to determine its  correct  operation. 
[Sin12]

4.1.1 Functional testing

Functional testing techniques aim to develop test cases that most probably will cause the software to 
fail. The technique attempts to test every possible function of the software. In functional testing, the  
internal structure of the software is ignored and the focus is on designing the test cases on the basis of 
the program's functionality. Selected inputs for the program should result in certain expected outputs. 
The expected outputs are compared with the observed outputs generated by the program. The software 
in functional testing is treated as a black box and, therefore, it is called black box testing. Functional 
black box testing is shown in Figure 6. [Gus02, Sin12]



21

The dots in the input domain represent a set of inputs for the software, and the dots in the output  
domain represent the corresponding outputs for the set of inputs. The test cases are designed based on 
user requirements, and it is not required to consider or to know the internal structure of the program. 
This black box knowledge is sufficient in order to be able to design a good variety of different test  
cases. Many real life activities like calling with a mobile phone or driving a car are performed with 
only black box knowledge. 

The execution of a program is essential in functional testing and these testing techniques fall under the 
category of validation. The behavior of the program is observed by using both valid and invalid inputs 
for the program. These techniques  can be used at  all  levels of software testing.  Different software 
testing levels are described in detail in Chapter 4.1. These techniques also help the test designer to 
develop more efficient and effective test cases in finding faults from the software. 

4.1.2 Fault versus failure

It is important to clarify the terms “fault”, “error” and “failure” to fully understand the concept of  
software  testing.  The terms  are  strictly  related,  but  there  are  important  differences  between  them. 
[Tha05, Wat09]

A failure is the inability of the program to perform a required function. This is manifested by a system 
malfunction,  which  shows  as  abnormal  termination,  incorrect  output  or  as  unmet  space  and  time 
constraints. The cause for a failure can be, for example, a missing or incorrect piece of code, which 
itself is a fault. A fault can remain undetected for long periods of time until a certain event activates it.  
When this happens, the program enters into an unstable state called error. The error state causes the 
program to propagate an output which eventually causes the failure. The failure process can therefore 
be summarized into the following process chain: 

Figure 6: Functional black box testing [SIN12]



22

Fault → Error → Failure

Testing reveals a failure and an analysis is required to identify the fault that caused the failure. The 
notion of fault is ambiguous and difficult to grasp. No precise criteria exist to determine the cause of an 
observed failure. It would be, therefore, preferable to speak about failure-causing inputs, meaning the 
sets of inputs that, when used, can result in a failure.

4.2 Levels of testing

During the development life cycle of a software product, software testing is performed on different 
levels.  The  testing  can  involve  whole  levels  or  parts  of  it.  Depending  on  the  selected  software 
development  method,  software  testing  can  be  separated  into  different  phases,  where  each  phase 
addresses the specific needs of the different parts of the system. In software testing, whichever software 
development method is chosen, unit, integration and system test levels can be distinguished at least in 
principle. These test levels are the test phases in a traditional phased software development process 
such as the waterfall  method. However, the three levels can also be distinguished in more modern 
software development methods, including the agile software development method. The levels remain 
useful in emphasizing the three logically different phases in the verification of a complex software 
system.  None of  the  test  levels  are  more  important  than  the  other,  and as  each level  addresses  a  
different type of failure, one test level cannot be substituted with another. Figure 7 shows the different 
levels of software testing. [Tha05, CG08]

Figure 7: Software Testing Levels (redrawn) [Tha05]

Unit Test Integration Test
System Test

Acceptance Test

Regression Test



23

4.2.1 Unit testing

Software is developed in small units. Every unit is expected to have a defined functionality. A unit may 
be called a module, procedure, function or component etc. and can be developed independently and 
simultaneously and will have its own purpose. A. Bertolino and E. Marchetti have defined a unit as 
[BM04, Sin12]:

”A unit is the smallest testable piece of software, which may consist of hundreds or even just a few  
lines of source code, and generally represents the result of the work of one or few developers. The unit  
test  cases'  purpose is  to  ensure that  the unit  satisfies  its  functional  specification  and /  or  that  its  
implemented structure matches the intended design structure.”

Interfaces, local data structures and boundary conditions could also be tested in unit testing [Tha05]. 
Issues may arise in unit testing, if the unit to be tested cannot be run independently. A unit may need 
other units to function. In this case, additional source code may have to be written. A 'driver', which 
calls the unit to be tested, may have to be developed. Also 'stubs', which are used by the unit to be  
tested, may have to be developed. [Sin12]

4.2.2 Integration testing

Integration is the process of combining the pieces, components or units of the software together to 
create a larger component. Integration testing aims at detecting possible faults that can occur at this 
stage.  Even though the  units  are  individually  tested  in  isolation  in  the  previous  unit  testing  step, 
combining the units together may reveal new faults. When units of a program are combined together, 
they interact with each other, and as more units are integrated together, the more complex the created 
component becomes. The units interact with each other through communication interfaces. Integration 
testing focuses on the communication interfaces in order to verify that the units interact with each other 
according to the specifications defined during preliminary design. [Tha05, Bur02]

There are two integration testing approaches that have been substantially used when testing traditional 
systems.  The first  approach method in  integration  testing  is  the  non-incremental  approach.  In  this 
approach, all the components of the program are integrated and tested at once. This is also called “big-
bang” testing. The other method is the incremental approach which includes “top-down” and “bottom-
up” integration and testing strategies. In the “top-down” strategy, the components are integrated from 
the main program down to the subordinate ones, one component at a time, to construct the system. In  
the “bottom-up” strategy, the components are integrated and tested starting from the components in the 
lowest hierarchical  level and progressively linking the components by moving up in the hierarchy. 



24

Usually a mixed approach is used. The approach is usually determined by external project factors such 
as availability of modules and/or testers and release policy.

The “top-down” and “bottom-up” integration approaches are not usable in modern object-oriented and 
distributed systems, as “classical” hierarchy cannot be identified between software components. In this 
case, other criteria for integration testing are used, and the integration of software components is based 
on identified functional threads. Testing is focused on the classes used in response to a particular input 
or system event. This is also called thread-based testing. Another method is to test together the classes 
that contribute to a particular use of the system. 

Another approach to integration testing is to focus on testing of units with high amount of coupling. 
The relationship between two or more units is represented with interfaces. The closer the relationship 
of the two units  is,  the higher  is  their  interdependence.  Coupling is  the measure of the degree of 
interdependence between units. In this approach, integration testing is focused on interfaces of units 
with high amount of coupling between them. [Sin12]

4.2.3 System testing

System testing is performed after the completion of unit and integration testing. Complete software is  
tested along with the expected environment that it is used in. Generally functional testing techniques 
are used, but also a few structural testing techniques may be used. [Gus02, Sin12]

A system is defined as a combination of the software, hardware and other associated parts. Together  
they  provide  the  product  features  and  solutions.  In  system testing,  it  is  ensured  that  each  system 
function works as expected.  Also tests  for non-functional  requirements  like reliability,  stress,  load, 
security, performance, etc. are conducted. System testing is the only testing level where both functional 
and non-functional requirements of the system are tested. Also all associated manuals and documents 
of the software are reviewed. 

A proper analysis should be done for the defects found in the system testing level. Before fixing the 
found defect, a proper impact analysis of the problem should be conducted. Sometimes found defects 
are documented and mentioned as known limitations instead of fixing them. This could be the case if 
correcting the fault would be time consuming or technically impossible to conduct. After the system 
testing phase, customer(s) is invited to test the software in the acceptance testing phase. 



25

4.2.4 Acceptance testing

Acceptance  testing  is  the  extension  of  system testing.  When  the  software  product  has  passed  the 
previous stages of testing and is ready for the customer, the product is demonstrated to the customer. 
After  the  demonstration,  the  customer  usually  wants  to  use  and  test  the  product  to  assess  their  
satisfaction  and  confidence.  This  may  range  from a  systematic  and  well-planned  usage  to  totally 
random use of the product. The testing can be done by the customer or by person(s) or an organization  
authorized by the customer. This type of testing is essential before accepting the final product. The 
testing done for the purpose of accepting a product is called acceptance testing. [Sin12, Bur02]

Acceptance testing is  conducted only when the software is  developed for a particular  customer.  If 
software is developed for a large amount of anonymous users (for example operating systems, case 
tools,  compilers,  etc.),  then acceptance  testing is  not feasible.  In this  case,  potential  customers  are 
identified to test the software. This type of testing is called alpha or beta testing. Alpha testing is done 
by some potential customers at the developer's site under the supervision of the developers. Beta testing 
is done by a large amount of potential  customers at  their  own sites without the supervision of the 
developers. 

4.2.5 Regression testing

After the software under development has been modified, it must be retested to ensure that new faults  
have not been introduced. This type of retesting is called regression testing. Regression testing is not a 
separate level of testing, but it refers to the retesting of a unit, combination of components or a whole 
system after modification. [Tha05, CG08]

Regression testing is the dominant part in testing effort in the industry because today the developed 
software is  constantly  in evolution  due to  technical  advancements  and demands  by market  forces. 
Rerunning all  the previously used test cases after each modification would be time consuming and 
expensive. Therefore, various testing techniques have been developed to reduce the costs of regression 
testing and to make it more efficient. For example, selective testing techniques help in selecting the 
minimal set of test cases by examining the modifications and only testing the modified or affected parts 
of the software. Other approaches prioritize the used test cases with other criteria, such as maximized 
fault detection power or the amount of structural coverage. The test cases judged the most important 
according to the selected criteria can then be prioritized and selected to be used, up to the available 
budget. 



26

5 Continuous Integration 

This chapter introduces the continuous integration method. Continuous integration methods are further 
examined  in  Chapters  6  and  7.  In  these  chapters,  a  continuous  integration  system  in  a  software 
development organization is examined and a test process is developed for the continuous integration 
environment. 

Continuous integration is a development practice where software is grown in small increments until it 
meets the set requirements. The practice emphasizes on building software by splitting the work into 
small components and then assembling them together. Small parts of the software, when finished, are 
tested and integrated directly on the mainline or trunk. Figure 8 illustrates a continuous integration 
system. [LV10]

Figure 8: Continuous Integration system [LV10]

To be able to scale lean and agile development, it is essential to use the continuous integration method. 
In continuous integration, a stable system is grown gradually by working in small batches and short 
cycles. This enables teams to work on shared code, and it also increases visibility of the development 
and quality of the system. Building the software in small increments is important because large changes 
will break the system in large ways, and the larger the change, the more time it takes to repair the 
system. 



27

A classic paper by Martin Fowler on continuous integration states [Fow12]: 

Continuous Integration is a software development practice where members of a team integrate their  
work frequently, usually each person integrates at least daily - leading to multiple integrations per  
day. Each integration is verified by an automated build (including test) to detect integration errors as  
quickly  as possible.  Many teams find that  this  approach leads to significantly  reduced integration  
problems and allows a team to develop cohesive software more rapidly.

5.1 Requirements in human behavior

Adoption of the continuous integration (CI) method requires changes in human behavior. Continuous 
integration is not only about tools and automation but also about developer practice, so developers need 
to  have  the  discipline  to  integrate  their  changes  on  a  regular  basis  or  to  maintain  the  continuous 
integration environment in a working condition. This requires changes to daily habits to all developers, 
which can be hard for many people. It takes time to be able to change daily habits and it requires  
coaching. [LV10, HWS10, Ras10]

Fear of breaking the build can inhibit developers from integrating code. The developers should not be 
shamed for breaking the build. Fear would result in developers delaying their integrations.

Large changes should be avoided in continuous integration. Large changes to a working system will 
destabilize the system, and the system can break in a large way. It then takes more time to get the 
system back to a working state. Instead, each change should be broken into small changes. Each change 
can be then integrated to the system easily. 

In continuous integration, the frequency of continuous integration means as frequently as possible. This 
can be limited by: the ability to split large changes, speed of integration or speed of feedback cycle. 

The ability to split large changes into smaller ones, while maintaining the old working functionality, is 
a skill that must be learned. The better the developers are at splitting, the more frequently they can 
integrate. 

The  speed  of  integration  should  be  high.  The  longer  it  takes  to  integrate  changes  into  the  code 
repository, the less frequently the developers will integrate. Process overhead impacts the integration 
effort if approval and reviews are needed before developers are allowed to integrate. This overhead 
should  be reduced.  For  example,  code reviews  can be done on already integrated  code without  it 
delaying the integration.

The speed of the feedback cycle should be high. Changes that do not break existing tests should only be 
integrated by the developer. In an ideal situation, the developers run all the tests before integrating. 
This requires that the tests run very fast. If the tests are slow, the developer will delay the integration in 



28

order  to  “work  more  efficiently”.  Running  all  the  tests  in  a  short  time  is  hard  for  large  systems 
however.  Therefore,  developers  only  run  a  subset  of  tests  before  checking  in,  and  a  continuous 
integration system runs the remaining tests. The continuous integration system acts as a safety net by 
giving the developer feedback about the tests he did not run. If the continuous integration (CI) system 
is slow, there will be many changes during one integration cycle. This increases the possibility that the 
build breaks. This causes the developers not to integrate in the broken build and the developers rather  
batch  them.  Finally,  when the  build  is  eventually  fixed,  all  the  developers  integrate  their  batched 
changes,  which  leads  to  a  high  chance  that  the  build  will  break  again.  Therefore,  the  continuous 
integration  feedback cycle  has  to be fast.  This  decreases  the chance that  the build will  break and 
increases the ability to check in more frequently.

Branching  should  be  avoided  during  development  because  it  breaks  the  purpose  of  continuous 
integration. Making changes on a separate branch means that the integration with the main branch is 
delayed. The current status is not visible, so the developer does not know, if everything works together. 
Therefore, developers integrate on the mainline or trunk. There are a few exceptions where branching 
can be useful however. For example, in a situation where a customer wants the latest patches but does 
not want to upgrade their product. Branching can be useful also when scaling up a CI system where 
very short-lived branches can be useful.  

Branching for customization should also be avoided. This branching  should be managed through a 
configurable design or parametrized build instead of using the Software Configuration Management 
(SCM) system. It can be very difficult and time consuming to merge separate branches in the trunk if  
the branches have been developed for a long time. 

5.2 Scaling up continuous integration

To be able to scale up a continuous integration (CI) system, the basic requirement is that the build and 
the tests need to be fully automated. After these are automated, the scaling of a CI system enables more 
people producing more code and tests. First, the probability of breaking the build increases with more  
people checking in code. Second, an increase in size of the code leads to a slower build and therefore to 
a  slower  CI  feedback  loop.  These  can  together  lead  to  continuous  integration  failure.  Figure  9 
illustrates the dynamics of broken builds. [LV10, HWS10, Ras10]



29

There are several techniques to speed up the build in scaling up a continuous integration system. These 
techniques include adding hardware, parallelizing, changing tools, incremental building, incremental 
deployment, dependency management and test refactoring. 

Adding hardware is the easiest way to speed up the build. This requires investing in more hardware 
such as new computers, extra memory or a faster network connection. Hardware upgrade only requires 
investment and minimum effort, which makes it the easiest and best choice. 

Parallelizing and distributing the build is another way of speeding up the build. Build scripts, new tools 
or changing tools are often required to achieve this and it requires more effort compared to adding 
hardware. For example, the speed of a build of a large telecom product was increased by building every 
component on a separate computer. 

Changing or upgrading tools can speed up a build significantly. Larman C. and Vodde B. state that by 
simply switching compilers, they accomplished a 50 percent improvement in compile time [LV01]. 
According to Larman C. and Vodde B. IBM Rational ClearCase is the most common, problematic and 
slow tool making real continuous integration impossible because it forces code ownership. Every time 
ClearCase  has  been  switched  by  a  product  group  to  another  good  and  free  open  source  System 
Configuration Management system, multiple  benefits have been achieved.  First,  the build has been 
speeded up (up to 25% - 50% improvement). Second, the company has saved significant amount of 
money with  the  elimination  of  licenses.  Third,  the  developers’  lives  have  been improved  because 
ClearCase is often the most hated development tool. 

Figure 9: Dynamics of broken builds [LV10]



30

You can build incrementally by only compiling changed components and running tests only for those 
components.  This  can  be  a  difficult  task  because  of  dependencies  between  different  components, 
incompatible binaries or changes in interfaces. Finding all the tests related to a changed component can 
be difficult. Incremental builds are prone to corruption and rarely reliable. That is why it is also a good 
idea to keep a clean daily build.

Incremental deployment can speed up tests when the deployment is done incrementally by using only 
the changed components.  It  can take a long time to install  or deploy software on large embedded 
products. Incremental deployment can be difficult because it may require dynamic upgrading ability 
which  requires  changes  to  the  system.  Dynamic  upgrading  ability  is  important  for  example  in 
telecommunication industries where downtime is expensive. 

Managing dependencies by reducing them can speed up the build and improve the structure of the 
product.  A common reason for slow builds is unmanaged dependencies.  For example,  header files 
including many other header files or multiple link cycles to resolve cyclic link dependencies increase 
build times.

Test code refactoring can significantly speed up build. According to Larman C. and Vodde B. build 
speed has been increased as much as 60% by test code refactoring alone. Often it is the case that many 
developers care less about test code than production code. [LV10]

5.3 Multi-stage continuous integration system

A  multi-stage  continuous  integration  system  splits  the  build  and  executes  the  build  in  different 
feedback cycles.  A very fast  CI build system runs at  the lowest level of the system. The CI build 
system contains unit tests and some functional tests. When this CI build succeeds, a higher-level build 
that  contains  slower  system-level  tests  is  triggered.  Large  products  have  more  stages  in  their  CI 
systems. Figure 10 demonstrates an example of a multi-stage CI system. [LV10, HWS10, Ras10]



31

When  building  a  multi-stage  CI  system,  the  following  issues  should  be  taken  into  consideration: 
developer build, component or feature focus, automatic or manual promotion, event or time triggers 
and the number of stages.

A developer build: A developer should be able to work with a subset of the system and to be able to  
run unit test for it. This verification of changes before checking in is required for developers practicing 
CI. This should be taken into account when building automated build systems.

Component or feature focus: Traditionally multi-stage continuous integration systems are structured 
around components. The lowest level builds a single component, the next level builds a subsystem, and 
the highest level builds the whole product. Teams are organized around components and each team 
takes care of the CI system they use. An alternative is to structure the CI system around features. In this 
system, all the feature related continuous integration systems are triggered when a developer checks in 
code. Tests are now run in parallel, but a component is compiled multiple times.

Figure 10: Scaled Continuous Integration system [LV10]



32

Automatic or manual promotion: All stages of a CI system should not listen to the main branch, as 
this will create disorganization. In such a case, all of the stages fail when a developer makes a mistake.  
An announcement is required that triggers a higher-level CI system indicating that the component can 
be  used.  This  announcement  is  called  a  promotion  and  it  is  done  by  labeling  the  component. 
Component promotion can be done manually or automatically. In manual promotion, the component is 
promoted manually by developers, when certain criteria for the component have been met. In automatic 
promotion, a lower-level CI system promotes a component after it has passed.

Event or time triggers: All of the CI systems are triggered by either time or by an event. The low-
level CI systems are always triggered by an event, for example a code check-in. The trigger for higher-
level CI systems is either time or the promotion of a component. A promotion trigger is faster than a 
time trigger, but for slow builds, the amount of required configuration and maintenance is too high for 
promotion trigger to be feasible. In this case, a higher-level build could perform adequately.

The number of stages: The size and amount of legacy code in the product determine how many levels 
of CI systems are needed. Common CI stages are: fast component level, slow component level, product 
stability level, feature level and stability performance level. 

The fast component level in the continuous integration system is a very fast level for receiving fast 
feedback.  The fast  component  level  runs  unit  tests,  code  coverage,  static  analysis  and complexity 
measurements. The slow component level is a slower low-level CI system. The slow component level 
runs component level or integration tests. The product stability level is a very fast product level CI 
system for receiving fast feedback on the basic product stability. This level runs fast functional tests, 
for example smoke tests. The feature level is a slow, high-level CI system. The feature level executes 
system level tests that can last for hours. The stability performance level is a slower high-level CI 
system that continuously runs performance and stability tests. The duration of these tests can take days 
or weeks.



33

6 Evolution of the Ericsson Mobile Media Gateway development 

The organization developing Ericsson Mobile Media Gateway at Ericsson Finland has evolved from 
the waterfall way of working to the agile way of working. This chapter explains the previous and the 
current M-MGw development methods, how the organization has evolved to the current state and the 
motivation behind the process.  

6.1 M-MGw agile transformation motivation

The main motivation for M-MGw agile transformation at Ericsson Finland derived from the desire to 
reduce redundant work, to create more organizational value and value to the employees and customers. 
Though projects in the past were successful, a strong feeling existed in the organization, that it was 
mature  enough to  take  the  next  step.  A simple  rule  of  thumb target  was set,  which  was  that  the 
organization should only perform value adding activities. Activities that do not add value should be 
recognized  and  eliminated.  No  value  adding  activities  were  recognized  including,  for  example, 
unnecessary task swapping, waiting, hand-offs, team internal trouble reports, unused documentation 
and partially done work, which has no guarantee that the customer will ever apply. [Kiv11a, Kiv11b, 
Arv11]

Second  motivational  reason  to  change  to  the  agile  way  of  working  was  the  improvement  of 
responsiveness. Rapid deliveries would allow customers to delay software related decisions. Software 
could then be produced rapidly once the customer made the necessary decisions. Another benefit from 
the improved of responsiveness is that software can be delivered before customers change their mind 
about the requirements of the software. Using this type of delivery method will eventually lead the 
organization to continuous deployment thinking, which has benefits on business level.

Third motivational reason for agile transformation was the ability to force quality into the software. In 
the past, very long periods of time were spent testing the quality of the software before the release.  
Now with the agile way of working, cross functional teams who are capable of both developing and 
testing the software use continuous integration and short feedback loops to detect faults and measure 
software quality. The benefits of the agile way of working can be seen in improved software quality.

 

Fourth reason for agile transformation was the gained benefits from people empowerment. People in 
the organization were granted extended permissions to organize themselves and to determine how co-
operation is done and what skills need to be learned so that the people are able to carry out the needed 
and right operations in achieving a successful outcome. Empowering people means that everyone is 



34

involved in the operation,  and using this type of self-organization method, the full  potential  of the 
people in the organization is utilized.

6.2 M-MGw agile transformation process

In 2008, Ericsson Finland made the initial step towards transformation to the agile way of working. The 
transformation was initiated from management level by an early wake-up in the beginning of 2008 
when the benefits of the agile way of working were discovered at Ericsson Finland. Years 2008-2009 
followed with reading and studying the agile way of working and planning the implementation steps 
needed for the change. [Kiv11a, Kiv11b, Arv11]

There were two fundamental differences in the way that the whole agile transformation process was 
carried out compared to how projects were typically executed. The first fundamental change was the 
transparency of the project. Individuals from all different levels of the organization could participate 
and affect the outcome of the process. The second change was the difference in planning of the agile 
transformation process. Instead of making precise plans for the change, while still following a high 
level vision, the difficulties were confronted by implementing the change and observing the outcome 
and making necessary changes as they were required. 

By October 2009, the first team started using the new agile way of working. A development task of a  
familiar product was chosen and people with the right competences were selected to the team. The 
availability to choose a suitable project and the right people made the first trial of the agile way of 
working simpler to understand. The first agile team encountered different difficulties especially with 
the development environment, as it did not suite the agile way of working well enough. However, after 
overcoming these challenges, the first agile team trial was a success, and the new way of working was 
decided to be scaled up to four teams. 

Eventually the whole organization had transformed into the agile way of working by the middle of 
2010. The work still continues in 2014, as methods are implemented to increase the efficiency of the 
agile way of working. Figure 11 illustrates the agile transformation process at Ericsson Finland. 





36

Figure 13: Employee survey about the productivity at Ericsson Finland

4,9% 4,1%
15,5%

12,9%
25,2%

21,7%
25,2%

40,7%22,4%

28,8%

13,8%

16,1%

14,1%

7,3%

1,9%

1,8%

8,9%

22,4%
12,3%

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

M-MGw/April 2010 M-MGw/December 2010 LMF/August 2011

NA

No answer/No opinion

Much less

Less

About the same

More

Much more



37

6.3 Differences between waterfall and agile way of working

Many differences exist between the previous waterfall working method and the current agile working 
method. The main differences between these two methods in the Ericsson Finland organization are 
summarized in Table 2. [Kiv11a, Kiv11b, Arv11]

The main differences in the agile way of working compared to the waterfall method at Ericsson Finland 
are in the agility and flexibility of the agile method. Previously big projects were undertaken with a 
goal of achieving a major software release. Now the development is decoupled from big projects, and 
the software releases are flexible, meaning that smaller software releases are done and done more often. 
The previously existing barriers between system, development and test organizations are broken down, 
and people from different organizations now work in the same teams. This enhances communication 
and co-operation between people working in different phases of the software development. Individual 
offices no longer exist and people work in team spaces where teams share the same work space and 
tables.  This  also  increases  the  level  of  co-operation  and  communication  between  team  members. 
Specialized and narrow competences are no longer emphasized. Instead, the emphasis is on individuals 
being able to carry out multiple different tasks from development to testing and continuously learning 
new skills as the development is carried out. Individual developers and accomplishments are rewarded 
on team level. Individuals are encouraged to help the team accomplish its goals, rather than succeeding 
on an individual level. Agile and lean thinking focusing on flexibility in every level of the organization 
is  emphasized  instead  of  strictly  following  detailed  processes.  Top  down  control  of  managing 
everything hierarchically from the top level down is no longer part of the organization’s practices.  

Table 2: Main differences between the Waterfall and Agile working methods (redrawn) [Kiv11a]

 Waterfall model  Agile Development model

 Big projects  Decoupled development and flexible releases

 System/development/test silo organization  Cross functional teams

 Individual offices  Team spaces

 Narrow and specialized competences  Broader competences and continuous learning

 Individual accomplishment  Team success

 Following a defined and detailed processes  Agile and Lean thinking

 Top down control  People initiative and self-organization



38

Initiatives and responsibility for being able to carry out tasks and initiate changes should come from 
individuals themselves from every level of the organization. [Kiv11a, Kiv11b, Arv11]

6.4 Waterfall test strategy

In the past, the testing of M-MGw software was conducted using waterfall test strategy. This testing 
strategy is  presented in  Figure 14.  The numbers  on the right-hand side of the figure illustrate  the 
differences  between the  amount  of  time  it  takes  to  execute  each task  (in  weeks  and days)  in  the 
waterfall test strategy compared to the continuous integration test strategy. The left-hand side numbers 
represent times for tasks in the waterfall strategy. The right-hand side numbers represent times for tasks 
in the continuous integration strategy. The continuous integration strategy can be seen as consuming 
significantly less time on each task. [Irm11, Lin11, Arv11]

Figure 14: Waterfall test strategy at Ericsson Finland [IL11]



39

The waterfall test integration strategy presented in Figure 14 starts from low level unit testing executed 
by a developer. In unit testing, a developer evaluates and designs the needed tests himself to test a sub-
function that he is currently working on. Depending on the function being worked on and from the 
developer, unit testing is not always performed. In this case, the first testing step is component testing.

Unit testing is followed by component testing. Component testing is done in component testing teams 
where each team specializes on a certain component. Component testing includes tests on functions 
themselves and on internal interfaces of functions in a load module. Load modules are described in 
Section 2.2.

Function test phase includes load module testing. Load modules are tested together with other load 
modules. The functionality of a load module's external interfaces to other load modules are tested, and 
also load module group tests are conducted together with control plane load modules. 

Early system test and function test on target are the first phases where testing is conducted with real 
hardware, which in this case consist of the M-MGw. The functionality of the software is tested in the 
M-MGw, where possible hardware conflicts with software are tested. Traffic is also generated to the 
M-MGw to test the functionality of different call cases. 

The final step in the testing process is the system level test, where characteristics, software upgrade and 
speech quality of the M-MGw with the new software is tested. The functionality of software upgrade 
paths from previous versions are verified before delivery. Speech quality of different call cases are also 
checked, so that their quality meets set standards.

6.4.1 Branching in the waterfall test strategy

In the previously used waterfall working method, each developed new feature is designed on a snapshot 
of the currently available version of the main software track of the M-MGw. Using this snapshot of the  
main software track, to develop new features on, is also called branching. The process can be seen from 
Figure 15. The branch does not evolve with the main software track of the M-MGw. The development 
and testing of a new feature can therefore take a significant amount of time. As the feature is developed 
on the branch, the main software track of the M-MGw could have evolved many steps compared to the 
main software track version used in the branch. Branching at Ericsson Finland is illustrated in Figure 
15. [Irm11, Lin11, Arv11] 



40

Figure 15: Branching in Waterfall test strategy [IL11]

Using branching in developing new features can lead to many problems. First, the version differences 
between the main track version of the M-MGw and the branched main track version of the M-MGw 
could be significant. This can make the integration of the new feature back to the main track difficult  
and time consuming. Second, each branch has a separate own test track, which leads to the same faults 
being  found  from  different  branches.  This  increases  unnecessary  testing,  as  the  same  tests  are 
conducted  to  different  branches.  Third,  fixes  for  the  same faults  have  to  be  made  to  each of  the 
branches and to the main track separately. This increases the amount of required work since the same 
faults are corrected many times to the different shipment (SH) tracks.  

6.5 Continuous integration test strategy

Currently continuous integration test strategy is used at Ericsson Finland. This method does not utilize 
branching in the development of new M-MGw features like the previously used waterfall test strategy 
did. In continuous integration test strategy developers make constant integrations of new code to the 
main track. Automated CI system takes care of building and integrating the code to the main software 
track of the M-MGw and initializing the testing of the main track with the integrated code. Tests for the 
integrated code are conducted in a simulated environment and also on the target hardware, that is to 
say,  on  the  M-MGw.  Automated  processes  perform  integration,  building  and  testing  of  the  new 



41

software several times a day. The lead time in receiving test feedback from the process is few hours. 
This is  a significant  improvement  compared to the previous waterfall  test  strategy where reaching 
target hardware tests could take several weeks or months. [Irm11, Lin11, Arv11, IL11]

In the continuous integration process, the development  and testing are done in an incremental  and 
iterative manner. The process includes developer, team, common and system levels. Each level has a 
certain set of tasks and the tasks are performed iteratively through a repeated cycle. The cycle of tasks 
is iterated until all of the tasks at the level are performed successfully or one of the tasks fails in a way 
that  it  requires  iteration  from a  previous  level  of  the  CI  process  flow.  Multiple  teams  and  their  
developers perform this continuous integration process continuously and simultaneously. The software 
is developed and tested in small increments at each level. The CI process is presented in Figure 16.

Figure 16: Continuous integration strategy at Ericsson Finland [IL11]

The developer level includes tasks performed by a single developer.  The developer creates a sub-
function  using  Test-Driven  Development  method,  where  the  tests  for  the  sub-function  are  written 
before the sub-function itself.  Once the developer has cycled between the development and testing 



42

phases  and has  achieved  a  sub-function  that  meets  the  functionality  demands,  the  sub-function  is 
integrated into a team build for further testing. 

The team level includes tasks performed to the team build. The team build is an internal build intended 
only for the team’s internal use. New functionalities implemented by team members are tested together 
in the team build. The team build is integrated into a simulated load module for smoke testing. If the 
smoke tests  are  performed  successfully,  the  sub-function  code developed by the team members  is 
integrated into the main track of the M-MGw. 

The common level includes test automation that essentially enables the possibility to use continuous 
integration method and agile way of working at Ericsson Finland. Automated CI system takes care of 
integrating fresh code into the main track of the M-MGw software and building of a new target build. 
Simulated legacy tests and smoke function tests on target hardware are performed simultaneously. The 
legacy tests  perform thorough tests  for load modules  that  are  affected  by the new software.  Load 
modules are tested together with other load modules in an environment that simulates a real M-MGw. 
Smoke function tests on target hardware include tests for the new software on real M-MGw hardware.  
Depending on the reports of the automated CI tests, a new iteration of the CI process is done for the 
software to repair it, or if the tests are successful, the load modules are sent for further testing to the 
system level. 

The system level includes tests for the load modules on the M-MGw hardware which is connected to a 
real  network  with  other  hardware  that  communicates  with  the  M-MGw. Load,  characteristics  and 
quality of service tests are performed for the load modules in the M-MGw to determine whether they 
meet the performance requirements under heavy traffic with other network equipment. Also upgrade 
tests  are  performed  at  this  level  to  determine  whether  the  new  software  meets  the  performance 
requirements for upgrades and that all the required upgrade paths function correctly.



43

7 Fast feedback response test 

The previous chapter described the past and present test strategies and processes at Ericsson Finland 
and how and why the transformation to the agile way of working and to the current processes was 
performed.  The objective of the fast  feedback response test,  described in this  chapter,  is to further 
improve the current test methods and the agile way of working. 

7.1 Fast feedback test case description

The purpose of the fast feedback response test process is to provide the developers with rapid feedback 
on the functionality of software in the M-MGw. The aim is to reduce the time of the feedback cycle of  
the code functionality tests by 80% compared to the current test processes. Therefore, the  maximum 
amount of time for the test process to provide feedback is 15 minutes. The objective of the test process 
is to test that the new developed software functions properly in the node and that it does not break the 
legacy software in the M-MGw. The test is not intended to be a comprehensive M-MGw examination, 
but to check the most common indicators of faults in the functionality of the M-MGw, and to be able to 
perform the task automatically,  without the need for human interaction,  in the Ericsson continuous 
integration environment.  The selected M-MGw fault  indicator checks and call  cases in the test  are 
based on interviews made with several Ericsson M-MGw experts, covering all the main functions, most 
relevant interfaces (ATM, TDM, IP) and call codecs. [AAT11, Arv11].

The fast feedback test case is developed as part of this thesis. The test case is written using the Java 
programming  language  and  compiled  using  specially  designed  Media  Gateway  Automated  Test 
Environment (MATE) platform specific Java compiler. MATE test platform is used to run the test case. 
The platform is used in the system verification phase of the M-MGw testing, where regression and 
robustness  tests  are  conducted  on  the  M-MGw. The  platform provides  functions  such as  resource 
handling, test executor for Java test cases, graphical and command line interface for the test execution 
and connectivity and command line interfaces to MSC-S and M-MGw. 

The purpose of the fast feedback test case is to test the main functionality of the M-MGw, that is to say,  
the ability to transmit traffic correctly. The test case is therefore built accordingly to be able to detect  
the areas where errors are expected to occur during traffic transmission process. The fast feedback test 
case can be divided into three parts: pre-check, traffic generation and post-check parts. In the pre-check 
part, error indicator counters, alarms, trace error log and the amount of dumps are stored for comparing  
differences in the post-check part. In the traffic generation part, traffic is generated to the M-MGw to 
determine the functionality of different call cases in the M-MGw.  The post-check part contains all the 
analysis in determining whether the test case will return a pass or a fail verdict. 

Differences in error indicator counters, alarms and the amount of dumps are compared between the 
values collected in the pre-check part and the values collected in the post-check part. Also the different,  
generated call types are tested to detect their functionality. If any difference between post- and pre-



44

check parts or a failed call type is found, the test case will be flagged as failed. The specific changed 
counter or produced error message is printed to the test logs, and MATE platform specific threshold for 
the counter or the message is set to “Error” or “Warn”. This enables the threshold level filtering to 
detect errors using the MATE platform specific web based log reader. Figure 17 shows an example of 
the fast feedback test case reporting on the MATE platform. 

Figure 17: MATE test case reporting system

Figure 18 illustrates  the fast  feedback test  case process and the checks included in it.  The checks 
selected  for  the  test  case  are  based  on expert  interviews  and cover  the  most  crucial  and relevant  
elements of the M-MGw operations [AAT11, Arv11]. The checks included in the test are:

 Calls check: UTMS Traffic load generator is used to generate traffic to the M-MGw. A total of 
105 different call types were selected to be generated to the M-MGw in the test case. The call  
types  to  be  generated  and  tested  were  selected  according  to  M-MGw  expert  interviews 
[AAT11]. UTMS analyzes the success of each individual call. A call is determined successful if 
an end-to-end connection is established successfully with the appropriate messages and if the 
disconnection process is also done accordingly with the appropriate messages. UTMS generates 
a call  statistics  report  which is fetched by the fast  feedback test  case using communication 
interface  provided  by  MATE.  The  different  call  types  in  the  generated  traffic  are  run 
simultaneously. One call per call type is generated to the M-MGw. Hold time for each call is  
one minute. In the time frame of three minutes, each call is therefore conducted three times, 
which should be sufficient to detect the functionality of the different call types.

 PMD dump check: Post Mortem Dump is created if a program crashes in the M-MGw. Several 
programs run in the M-MGw providing the main service functions of the M-MGw. Information 



45

about the error is saved in the Post Mortem Dump area, and then saved into a file. A check is 
conducted  to  determine  whether  new  PMD  dumps  were  created  during  the  test  process. 
[DMP12] 

 DSP  dump check: Digital  Signal  Processor  dump  is  created  every  time  a  Digital  Signal 
Processor crashes. A DSP is a processor executing special purpose software on a device board. 
A typical task is processing user plane data. A check is conducted to determine whether new 
DSP dumps are created during the test process. [Tro12]

 General  MeSC counters check: General  Media Stream Controller  (MeSC) counters  check 
performs different external communication interface related error counter checks. [Dat12]

 Mesc  counters  AAL  check: MeSC  counters  AAL  check  performs  counter  checks  for 
Asynchronous Transfer Mode Adaptation Layer 2 (AAL2). [Dat12] 

 Mesc counters IP check: MEsC counters IP check performs error counter checks for IP Bearer 
Control Protocol which is applied to establish IP bearer connections between M-MGw nodes. 
[Dat12]

 Mesc counters device check: MeSC device check performs error counter checks for different 
services provided by the M-MGw, such as echo canceling and tone sending. [Dat12]

 Mesc counters GCP check: Checks the amount of sent and received Gateway Control Protocol 
(GCP) commands, including the number of failed commands with information about the used 
error codes. [MeS12]

 Command handler (Ch) counters check: Checks GCP message related statistics for all of the 
Virtual  Media Gateways  (VMGws).  One physical  M-MGw can function as  multiple  Media 
Gateways which are called Virtual Media Gateways.  [Ch12]

Some errors are printed to logs called the “List error log” (Llog) and the “Trace & Error log” (TE log).





47

Test  automation  tool  (Tatool) is  an  automated  software  upgrade  tool  for  the  M-MGw.  Tatool 
performs the automatic insertion of new software to the M-MGw and initiates the fast feedback test 
case using MATE client. Tatool is written in the Perl programming language.

Managed object shell (Moshell) is a command line shell interface for operation & maintenance of the 
M-MGw. Moshell is the main interface used in the operation of the M-MGw. 

Media  Gateway  Automated  Test  Environment  Client  (MATE  Client) is  the  graphical  and 
command line user interface for executing test cases. MATE Client controls the MATE server.

Media Gateway Automated Test Environment Server (MATE Server) processes the fast feedback 
test  case.  The MATE server  software runs  on a  server operating on Solaris  8/9 operating system.  
MATE server is controlled by MATE client.

The fast feedback test case is written using Java language. It tests the functionality of the M-MGw by 
performing several checks and initiating traffic to the M-MGw. The test case is executed using the 
MATE client. The fast feedback test case is described in more detail in Section 8.1. 

The  UMTS  Traffic  Model  Simulator  (UTMS) simulates  network  components,  such  as  User 
Equipment  (UE),  Base  Station  Controllers  (BSC)  and  Radio  Network  Controllers  (RNC).  This 
simulated environment is used to generate MSC-S controlled traffic to the M-MGw. UTMS Control 
part runs in a Solaris server and it controls the UTMS Control Client which is located in the Genesis 
node. UTMS also detects failing call types, generates error reports and transmits this information to the 
MATE server. [UTM01]

Genesis node is a Cello Packet Platform (CPP) based standalone node used for control plane and user 
plane traffic generation.  Genesis node is essentially a scaled down version of the M-MGw. UTMS 
Control Client software resides in the Genesis node and controls user plane generator software in the 
Genesis node in generating traffic to the M-MGw. The CPP is described in Chapter 2. [Gen01]

The  Mobile  Switching  Center  Server  (MSC-S) provides  centralized  control  of  the  distributed 
switching provided by the Mobile Media Gateway (M-MGw). The MSC-S provides functions, such as 
call control for circuit-based services, including bearer services, supplementary services, and charging 
and security.  The MSC-S also provides  functions  for  user-plane resource control  for  circuit-based 
services in the M-MGw, mobility and connection management,  with capabilities to support mobile 
multimedia control of different transport networks including TDM, ATM and IP. [MSC01]

The Mobile Media Gateway (M-MGw) provides distributed switching by connecting mobile calls 
locally to other mobiles and landlines [MGW08]. The M-MGw is described in more detail in Chapter 
2. 



48

 
 
 
 
 
 
 
 
 
 
 

 
 



49

the M-MGw continuous integration environment. Parts of the ideal test process are performed manually 
or by using an alternative process. The two test phases are designed to answer these two questions:
 

1) Can the test case detect obvious faults in the M-MGw?
2) Can the test case perform in an automated test environment? 

An obvious fault is defined as a critical fault that has a degrading effect on a main service provided by 
the M-MGw. Results  from the two phases are analyzed to determine whether the test  case can be 
implemented as part of the continuous integration system.

In the first phase, load modules, which cause the M-MGw to fail, will be injected into the node to  
determine  if  the  test  can  detect  any  obvious  faults.  In  the  second  phase,  local  M-MGw  node 
development packets will be tested in an automated environment to determine if the test can perform in 
an automated test environment and detect known faults in the development packets. 

7.3.1 Test process for faulty load module injection

In the first phase of the evaluation study, the performance of the test case in detecting obvious faults in  
the M-MGw is examined. Faulty load modules were produced to test the performance of the test case.  
A load module is a software component in the M-MGw that performs a service provided by the M-
MGw. Faulty load modules were injected to the M-MGw manually and the fast feedback test case was 
executed after the injection. The faulty load modules replace the correctly functioning load modules in 
the M-MGw. 

The test was conducted in two phases with two versions of a load module where different faults were 
introduced in them. The load module where the faults are introduced is the MeSC load module which 
processes incoming and outgoing traffic in the M-MGw. The load modules are designed to work with 
the latest software version (R6.2.2.0) of the M-MGw. Both of the injected MeSC load modules will 
replace the existing MeSC load module in the node. The injection will be done using MOShell software 
which  is  a  command line  shell  for  controlling  Ericsson M-MGw’s.  The fast  feedback test  case is 
manually initiated after a successful load module injection.  Figure 20 illustrates the process of the 
faulty load module injection and testing. 





51

conference calls because they require more than two terminations per context. Other call types should 
function normally. Different MeSC errors should also occur in the MeSC load module. 

The second MeSC load module to be injected into the M-MGw should cause software crashes when 
any traffic is generated to the M-MGw. The M-MGw should not be able to transmit any traffic, and 
different MeSC errors should occur in the M-MGw. 

Repeated  test  runs  on  both  of  the  load  modules  and  also  with  a  fully  functioning  M-MGw  are 
conducted. The test  process is conducted ten times consecutively on both of the faulty MeSC load 
modules and on a functioning MeSC load module to verify the test results and to test the stability of the  
test case. Therefore, a total of thirty test runs will be conducted in this experiment. 

This test process does not meet the automation requirements for the fast feedback test. The desired test 
process should be able to perform autonomously for a period of time testing multiple load modules 
without the need for human interaction. However, this test process is used to verify that the test case 
can detect faults in the M-MGw and that it is possible to execute the test process from load module 
injection to receiving a response within the required 15 minute time criteria. The manual load module 
injection method used in this test is similar to what a desired automated load module injection program, 
in the test  process,  would do automatically.  The desired automatic  load module injection  program 
would execute the same commands in the MOShell and inject load modules into the M-MGw. 

7.3.2 Test process for automated testing of development packets

In the  second phase  of  the  evaluation  study,  the  feasibility  of  the  fast  feedback test  case  will  be 
determined by the ability of the test case to detect faults from the local M-MGw node development 
packets  and  to  evaluate  the  performance  of  the  test  case  in  an  automated  environment.  The 
development  packets  are  used  in  internal  testing  in  the  M-MGw  development  organization. 
Consecutive versions of the local node development packets are tested in the automated testing process. 
Ten Consecutive versions of the local node development packets, which include over two months of 
software development, will be tested in the automated testing process. The test will be repeated ten 
times to verify the results of the tests. Figure 21 illustrates the automated test process.  





53

process with another development packet or ends the process if there are no more development packets 
to be tested. The program reads a file where a set of upgrade jobs and fast feedback test case initiations 
are defined. 

This test process does not meet the requirement of the maximum duration of 15 minutes for the fast  
feedback test.  The upgrade phase,  with a duration of 30 minutes,  is the bottleneck in the process. 
However, the duration of the test process is not a constraint in this test phase, as the purpose of this test  
process is to simulate an automated CI environment. The objective of this test phase is to determine the 
ability of the fast feedback test to function in the Ericsson environment, and the ability of the test to 
detect faults in the development packets. 





55

Counter AAL2 is related to the last error: “Mesc counters GCP NOT OK”.  Parts of the messages 
causing the “Mesc counters GCP NOT OK” error can be seen below: 
 
“GCP Error SubtractRsps_Errorcode_411_(Transaction refers to unknown CtxtId)_Originating from MeSC at 
location 12 was received 3 times (1159 OK) in board/vmgw: 000600/0 during the test case.
GCP Error MoveRsps_Errorcode_434_(Max nr of Terminations in a Ctxt exceeded)_Originating from MeSC at 
location 353 was received 3 times (438 OK) in board/vmgw: 000900/0 during the test case.”

The messages indicate that the maximum limit of terminations per context is being constantly reached.  
The whole “Mesc counters GCP NOT OK” error message report can be seen in Appendix B – Error 
Trace of M-MGw fast feedback test. 

The received GCP errors, failing conference calls, the restriction of maximum terminations per context 
and the requirements of the conference calls indicate to the fact that the test has detected the introduced 
fault in the load module. The maximum terminations per context in the load module was set to two. 
Successful conference calls require more than two terminations per context. This would explain the 
received GCP errors for exceeding the maximum terminations per contexts, as the M-MGw tries to 
reserve more terminations for the conference calls per context than the number of available 
terminations. Only the conference calls are being detected as failed in the test. This can be presumed to 
be caused by the restriction in the maximum terminations per context. The evidence presented here has 
strong indications that the test case has detected the introduced fault correctly. The test case should, in 
this case, provide sufficient information to a developer to be able to troubleshoot the problem.

The test case also detected errors in the (R6.2.2.0) software with the injected second load module. The 
load module had a fault introduced in it which prevents all traffic from being transmitted in the M-
MGw, and it should cause a program crash. The test produced similar results as with the previous load 
module but with the difference that 100 % of the generated calls were detected as failed and a PMD 
dump creation was detected. A PMD dump is created and saved in to a file if a program in the M-MGw 
crashes. The dump should provide sufficient information about the crashed program and reasons for the 
crash. A developer should be able to troubleshoot the root of the problem by using an appropriate 
parser to extract information from the PMD dump file. 

8.2 Test results and analysis of automated development packet testing 

In this test phase, the fast feedback test case performed as designed considering the ability for the test 
process to perform in an automated environment, but it did not detect any faults from the development 
packets used in the testing. Test runs on all of the ten different development packets returned a pass 
verdict on all of the ten test runs. The logs gathered by the fast feedback test case were examined to 
detect any indication of detected but ignored faults by the test case. However, no indications of faults in 
the logs by manual inspection were found. Figure 23 shows parts of the MATE test session view for the 
automated development packet tests.



 



57

Fail verdicts were returned on both of the load modules on all of the test runs. The test case correctly 
returned error or warning messages from the failed checks. The test runs from the first load module, 
which concerned failing conference calls, reported the failed calls and produced error reports that could 
be linked to the fault. The second tested load module designed to prevent traffic transmission and to 
cause a software crash in the M-MGw was reported as failure of all calls by the system and produced 
error reports and a PMD dump. These were detected and could be linked to the introduced fault. The 
repeated test runs on both of the faulty load modules produced the same results on each test run. The 
repeated test runs on the functioning M-MGw software produced repeated pass verdicts on each test 
run. 

The detail level of the feedback from the load module tests should be sufficient for troubleshooting. 
Considering the target environment of the test case where the test should be conducted several times 
per hour, the amount of code integrations to the main software track of the M-MGw should consist only 
of a few code integrations. Therefore, a developer should be able to trace the root cause of the problem 
by examining his latest code integration and the feedback provided by the test case. 

The fast feedback test failed to find any of the known faults in the development packets. This does not 
conclude that the test case itself would not perform on a satisfying level, but it indicates that the testing 
process already performed on these packets is able to detect major faults in the M-MGw, and that the 
quality of the software development and testing is on a sufficient level. The fast feedback test case is 
designed to be executed before this test automation process, where severity of faults introduced to the 
M-MGw is on a scale where it is possible for the test to detect them. The performance of the test case, 
considering the ability of the test case process to perform in the automated test environment, was 
satisfactory. No error situations were encountered concerning the test process itself.

According to the test results analysis, assumptions can be made that the test case is able to perform in 
the current form in the target environment. No definitive answer whether the test case can perform 
satisfactory in the Ericsson continuous integration environment can be concluded with the tests 
conducted here. The conducted tests and the received results should be treated as preliminary test 
results. They give positive indications of the performance level of the test process. More thorough 
testing is required to be able to give a definitive judgement of the performance level of the test process. 
This requires many more faulty software packets to be tested with the test case. Due to the amount of 
time that would be consumed by manual packet testing, this would require the test to be analyzed in an 
automated test environment with a constant flow of new software packets to be continuously processed. 
This type of environment would be the target Ericsson CI environment itself. 



58

9 Conclusions 

The main purpose of this thesis was to develop a method for improving the agile software development 
methods.  The purpose was  to  improve  continuous  integration,  which  is  part  of  the  agile  software 
development methods, by developing an additional fast feedback test process. The objective of the test 
process is to offer additional value by providing software developers with rapid feedback on software 
functionality. This should then enable a more efficient detection and troubleshooting of software faults.

The study, conducted on the basis of the case example at Ericsson Finland, comparing the efficiency of 
the agile way of working with the waterfall way of working, indicates that the agile way of working is 
more efficient.  The results  from examining the past and present  software development  methods at 
Ericsson Finland support  the fact  that  transforming to the agile  way of working has increased the 
efficiency  of  software  development  at  Ericsson  Finland.  The  employee  survey  and  the  decreased 
amount of redundant work support this fact. The transformation to the agile way of working study was 
conducted as a background study to support the main objective of this thesis. Therefore, due to the 
limited scope of this study, the conclusion can be postulated as follows: there are strong indications that 
the agile way of working is more efficient than the waterfall way of working at Ericsson Finland. A 
definitive answer to the matter would require more research.

The fast feedback test case was developed by examining the continuous integration environment of the 
Ericsson Mobile Media Gateway (M-MGw) development and by conducting expert interviews. The 
requirements for the test case were that the maximum duration for the test process to respond does not 
exceed 15 minutes and that the test case should be able to detect major faults in the M-MGw. Major 
faults were defined as failures to provide the main service of the M-MGw, that is, the ability to transmit 
traffic. The test case should also be able to give sufficient information about the nature of the detected 
faults.

In the first evaluation study of the fast feedback test case, the ability of the test case to detect obvious 
faults was analyzed. The tests conducted on faulty software were successful and the results of the study 
indicate that the developed fast feedback test case is capable of detecting faults in the M-MGw. The 
test case detected the introduced faults from the software, and the amount of information provided by 
the test case in the tests was sufficient for a developer to be able to troubleshoot the introduced faults.

In the second evaluation study, the performance of the test case in an automated test environment with 
software that has passed the Ericsson continuous integration (CI) machinery and has only minor faults 
was examined. The experiment indicated that the fast feedback test case was unable to detect minor  
faults  in  an  automated  test  environment  using  development  packets.  The  test  process  itself  was, 
however, able to perform satisfactory in the automated test environment. This study shows that the 
performance of the current continuous integration test machinery is satisfactory. The test machinery is 
capable of detecting major faults in the M-MGw software, although the response time for the feedback 
is considerably high.



59

These  studies  suggest  that  the  test  case created  for  this  research  could  be  able  to  perform in  the 
continuous integration environment where it was designed for. However, more performance studies on 
the test case are required to be able to definitively evaluate its performance in its current form with the 
incorporated checks. These test results should be treated as preliminary performance studies of the test 
case. Reliable evaluation of the performance of the test case would require evaluation of tests on a 
much higher amount of different faulty software packets. This was not possible to do, with the tests  
presented in this thesis. This would require an automated test environment  and a test  process with 
constant flow of faulty software packets. This type of environment would be the target continuous 
integration environment. Due to time and scope limitations of this study, this type of testing was not 
possible to conduct. 

Considering the target environment where the fast feedback test case would execute the initial tests for 
the  integrated  code,  assumptions  can  be  made  that  the  test  would  provide  additional  value  to  the 
continuous integration environment. Initial phase of testing, in this case, is defined as the common level 
phase in the Ericsson CI environment immediately after the code integration. The faults in the software 
in the initial phase of testing are more likely to be severe, so that the fast feedback test case would be  
able to detect them. Therefore, it would be feasible to implement the test process to the continuous 
integration system. Worth noticing is that in the current form of the test process, the implementation 
and maintenance of the test would be expensive, as it also requires an MSC-S in addition to the M-
MGw.

On the basis of these results, it can be assumed that the fast feedback response test would increase the 
efficiency of fault finding and troubleshooting. The results indicate that the test is capable of detecting 
faults and providing detailed feedback of the faults in a short time period. Considering that the test 
would be conducted continuously, where it provides feedback in short repeated cycles, the amount of 
changes  in  the code in  that  time period  would  be minimal.  This  would increase  the  efficiency of 
troubleshooting  faults.  The  troubleshooting  of  detected  faults  could  be  conducted  by  using  an 
alternative method, by examining only the recent changes in the code. This method is presumed to be 
more effective than the traditional troubleshooting methods where investigation to the problem itself is 
conducted.

This thesis demonstrates that it is possible to develop a fast feedback test process for verification of 
software  functionality based  on  tools  used  in  function  verification  level  of  software  testing.  By 
conducting the initial testing of software on the target level and using system verification tools to detect 
faults, the time of receiving feedback on software functionality can be drastically decreased. In the case 
of  the  M-MGw  testing,  by  generating  and  testing  different  call  types  simultaneously,  the  time 
efficiency of the test process in providing feedback can be further increased. 

The methods introduced in this thesis in enabling fast feedback response could also be applied to the 
agile  development  of  other  software  products.  A definitive  answer  whether  the  methods  could  be 
applied to the development of any other software product cannot be concluded. A further examination 
needs to be conducted in order to specify what tools and methods are available in the way that was 



60

demonstrated in this study. This study shows that it is recommended to examine the system verification 
tools and methods in enabling fast feedback response in agile software development projects. 

A conclusive answer,  to all  of the objectives  presented in this  thesis,  cannot  be given,  due to  the 
ambitious goals, the scope and the time frame of this thesis. However, there are positive indications  
from the research, which point out to the following facts:

1) The agile way of working is more efficient in the Ericsson Mobile Media Gateway organization 
than the waterfall way of working.

2) Fast  feedback  response  can  be  enabled  in  the  M-MGw  development  by  creating  a  target 
hardware test process to initial software testing.

3) The developed fast feedback test process is capable of finding faults. 
4) The fast feedback test process would be feasible to be implemented into the Media Gateway test 

environment.
5) The test process increases the efficiency of fault finding and troubleshooting.
6) The findings in this research can be applied to the agile development of other software products.

More research on these subjects is required to be able to conclusively verify these claims. Section 9.1 
describes how to further research these objectives. 

9.1 Future research

To determine the efficiency of the agile way of working in the Ericsson Media Gateway organization, 
more research should be conducted on the subject. For example a survey from the M-MGw developers 
could reveal more information about the efficiency of the agile methods. Another way of studying this  
is to analyze data from the time spent on troubleshooting detected faults in the M-MGw in the current 
agile methods. The time spent could be then compared with the time spent on troubleshooting in the 
previous waterfall methods.

To be able to conclusively verify the feasibility and capability of the fast feedback test to perform in the 
M-MGw  development  environment,  the  test  process  should  be  integrated  into  the  continuous 
integration environment. Thorough studies should then be conducted by collecting data and analyzing 
what faults the test has detected and what faults it has missed. Also a survey should be conducted to 
determine, if the fast feedback response adds value to the troubleshooting efficiency of detected M-
MGw faults. This survey should be conducted with the M-MGw developers.

More  research  is  also  required  to  be  able  to  integrate  the  fast  feedback  test  case  to  the  current 
continuous  integration  system.  Additions  to  the  continuous  integration  system  are  required.  For 
example the upgrade time for official insertion of new software to the M-MGw is too long to be used  
with the fast feedback test. A method for fast software injection to the M-MGw is known, but a new 



61

tool that utilizes the fast software injection method properly would have to be developed. The tool 
should be able to automatically fetch and inject the software to the M-MGw. 

Parts of the continuous integration system should be modified to be able to implement the fast feedback 
test. For example, the CI system would have to be modified for a more frequent package creation and 
delivery to provide fast delivery of the integrated code to the fast feedback test. The current rate is too 
slow for the fast feedback test to operate efficiently. 

The expenses of implementing the fast feedback test process should also be addressed. The expenses 
could be reduced by simulating parts of the hardware required in the test process. For example, the 
MSC-S could  be  replaced  with  a  simulated  version.  This  would  significantly  reduce  the  costs  in 
implementing the fast feedback test process.



62

References 

[AAT11] M. Ahola, T. Arvonen, and, R. Troberg, Fast Feedback meeting at Ericsson, 
Kirkkonummi, 20th September 2011.

[Agi01] The Agile Manifesto, The Agile Alliance Home Page, 
http://agilealliance.org/the-alliance/the-agile-manifesto/, 2001. Referenced July 2013.

[Agi01b] The Twelve Principles of Agile Software, The Agile Alliance Home Page, 
http://agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-
software/, 2001. Referenced July 2013.

[Arv11] T. Arvonen, Program Manager, Expert interview about Agile transformation and 
Continuous Integration at Ericsson, Kirkkonummi, 19th December 2011.

[ASR02] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, Agile software development 
methods: Review and analysis, VTT, VTT Publications 478, Espoo, 2002.

[BM04] A. Bertolino and E. Marchetti,  A Brief Essay on Software Testing, Technical Report:  
2004-TR-36, 2004.

[Bur02] I. Burnstein, Practical Software Testing: a process-oriented approach, Springer-Verlag 
New York, New York, 2003.

[CG08] L. Crispin, J. Gregory, Agile Testing: A Practical Guide for Testers and Agile Teams, 
Addison-Wesley, Boston, 2008.

[CH01] A. Cockburn and J. Highsmith, “Agile Software Development: The People Factor”, 
IEEE Computer, vol. 34, no. 11, November 2001, pp. 131–133.

[Ch12] Ch Counters  Command manual,  Ericsson Customer  Product  Information  document.  
Referenced January 25th 2012.

[Dat12] Data Collection Guideline, Ericsson Customer Product Information document. 
Referenced January 25th 2012 .



63

[DBG12] P. Deemer, G. Benefield, C. Larman, B. Vodde, The Scrum Primer: A Lightweight 
Guide to the Theory and Practice of Scrum, www.scrumprimer.org, 
http://scrumprimer.org/scrumprimer20_small.pdf, 2002. Referenced July 2013.

[Dia08] Ericsson AB, LMF R&D Dialog results 2008, Employee feedback poll, 25 th September 
2008.

[Dia09] Ericsson AB, LMF R&D Dialog results 2009, Employee feedback poll, 28 th October  
2009.

[Dia10] Ericsson AB, LMF R&D Dialog results 2010, Employee feedback poll,  3 rd October  
2010.

[Dia11] Ericsson AB, LMF R&D Dialog results 2011, Employee feedback poll, 23rd Novemeber 
2011.

[DMP12] Dump Manual Page,  Ericsson Customer Product Information document.  Referenced  
January 25th 2012.

[Doo11] J. Dooley, Software Development and Professional Practice, Apress, New York, 2011.

[Eri01] Ericsson Technical Product Description, M-MGw R6, December 2010.

[Eri07] Ericsson Product Description, Ericsson Media Gateway for Mobile Networks R4, 2007.

[FHP00] M. Fyrö, K. Heikkinen, L. Petersen, P. Wiss, Ericsson Review no. 4, 2000.

[Fow12] M. Fowler, ”Continuous Integration”, The official Agile Manifesto website, 
http://martinfowler.com/articles/continuousIntegration.html. Referenced January 2012.

[Gen01] Generic Userplane Verification System, Ericsson System Architecture Description, 
Genesis HW SW AI, July 2011.

[GPP01] 3GPP Technical  Specification 23.002 V8.2.0. Network Architecture (Release 8).  3rd 
Generation Partnership Project, December 2007.

[GPP02] 3GPP Technical  Specification  23.205 V8.1.0.  Bearer  Independent  Circuit-Switched  
Core Network (Release 8). 3rd Generation Partnership Project, December 2007.

[Gus02] D.  Gustafson,  Schaum's Outline  of  Theory  and Problems of  Software  Engineering,  
McGraw-Hill, 2002.



64

[HD08] O. Hazzan and Y. Dubinsky, Agile Software Engineering, Springer, United Kingdom, 
2008.

[Hun06] J. Hunt, Agile Software Construction, Springer, London, 2006. 

[HWS10] B. Holtsnider, T. Wheeler,  G. Stragand, and J. Gee,  Agile Development & Business  
Goals: The Six Week Solution, Elsevier, Burlington, 2010.

[IL11] J. Irmola,  K. Lindroos, “Experiences from Continuous Integration in Mobile Media  
Gateway”, Presentation, Ericsson Agile Conference 2011, Kirkkonummi, 
20th September 2011.

[Irm11] J. Irmola, Section Manager, Expert interview about Continuous Integration at Ericsson, 
Kirkkonummi, 25th November 2011.

[Jac01] I. Jacobson, A Resounding ‘Yes’ to Agile Processes – But Also More, Cutter IT Journal, 
vol. 15, no. 1., pp. 18-24, January 2002.

[Kiv11a] H. Kivioja, “M-MGw Agile Transformation: Experiences and Learnings”, Presentation, 
Ericsson Agile Conference 2011, Kirkkonummi, 20th September 2011.

[Kiv11b] H.  Kivioja,  Head Agile  Coach,  Expert  interview about  Agile  practices  at  Ericsson,  
Kirkkonummi, 28th October 2011.

[KLM02] L. Kling, Å. Lindholm, L. Marklund, and G. Nilsson, Ericsson Review no. 2, 2002.

[Kuu08] T. Kuusimurto,  Open Source Code Business Models for Mobile Media Gateway Node 
Manager, MSc thesis, Helsinki University of Technology,  Kirkkonummi, November  
2008.

[Lin11] K Lindroos, Section Manager, Expert interview about Continuous Integration at 
Ericsson, Kirkkonummi, 15th December 2011.

[LV10] C. Larman and B. Vodde, Practices for Scaling Lean & Agile Development: Large, 
Multisite, and Offshore Product Development with Large-Scale Scrum, Addison-
Wesley, Boston, January 2010.

[MeS12] MeSC Counters GCP manual, Ericsson Customer Product Information document. 
Referenced January 25th 2012.



65

[MGW08] Media Gateway for mobile networks, Ericsson product description, 2008.  

[MSC01] Mobile Switching Center MSC, Ericsson Product Portfolio, 
http://www.ericsson.com/ourportfolio/products/mobile-switching-center-msc?
nav=fgb_101_189. Referenced 17th January 2012.

[Pre01] R. Pressman, Software Engineering: A practitioner’s Approach, 6th edition, McGraw-
Hill Education, New York, 2005.

[Ras10] J. Rasmusson,  The Agile Samurai: How Agile Masters Deliver Great Software,  The  
Pragmatic Programmers, United States of America, September 2010.

[Sch11] S. Schach, Object-oriented and Classical Software Engineering, 8th Edition, McGraw-
Hill, New York, 2011.

[Sin12] Y. Singh, Software Testing, Cambridge University Press, New York,  2012.

[Som11] I. Sommerville, Software Engineering, 9th Edition, Addison-Wesley, 2011, Boston.

[Tha05] R. Thayer, M. Christensen, Software Engineering Volume 1: The Development process, 
John Wiley & Sons Inc., New Jersey, 2005.

[Tro12] M-MGw Troubleshooting Guide, Ericsson Customer Product Information document.  
Referenced January 25th 2012.

[UTM01] UTMS  Design  Description,  Ericsson  System  Architecture  Description.  Referenced  
January 17th 2012.

[Wat09] J. Watkins, Agile Testing: How to Succeed in an Extreme Testing Environment, 
Cambridge University Press, Cambridge, 2009.



66

Appendix A – The Twelve Principles of Agile Software 

The Agile Alliance has defined 12 principles for achieving agility [Agi01b]: 

 Our highest priority is to satisfy the customer through early and continuous delivery of 
valuable software.

 Welcome changing requirements, even late in development. Agile processes harness change 
for the customer's competitive advantage.

 Deliver working software frequently, from a couple of weeks to a couple of months, with a 
preference to the shorter timescale.

 Business people and developers must work together daily throughout the project.

 Build projects around motivated individuals. Give them the environment and support they 
need, and trust them to get the job done.

 The most efficient and effective method of conveying information to and within a 
development team is face-to-face conversation.

 Working software is the primary measure of progress.

 Agile processes promote sustainable development. The sponsors, developers, and users 
should be able to maintain a constant pace indefinitely.

 Continuous attention to technical excellence and good design enhances agility.

 Simplicity--the art of maximizing the amount of work not done--is essential.

 The best architectures, requirements, and designs emerge from self-organizing teams.

 At regular intervals, the team reflects on how to become more effective, then tunes and 
adjusts its behavior accordingly.



67

Appendix B – Error trace of M-MGw Fast Feedback Test 

GCP Error SubtractRsps_Errorcode_411_(Transaction refers to unknown CtxtId)_Originating from MeSC at 

location 12 was received 3 times (1159 OK) in board/vmgw: 000900/0 during the test case.

GCP Error SubtractRsps_Errorcode_411_(Transaction refers to unknown CtxtId)_Originating from MeSC at 

location 12 was received 3 times (1159 OK) in board/vmgw: 000600/0 during the test case.

GCP Error MoveRsps_Errorcode_434_(Max nr of Terminations in a Ctxt exceeded)_Originating from MeSC at 

location 353 was received 3 times (438 OK) in board/vmgw: 000900/0 during the test case.

GCP Error MoveRsps_Errorcode_434_(Max nr of Terminations in a Ctxt exceeded)_Originating from MeSC at 

location 353 was received 3 times (438 OK) in board/vmgw: 000600/0 during the test case.

GCP Error AddRsps_Errorcode_434_(Max nr of Terminations in a Ctxt exceeded)_Originating from MeSC at 

location 353 was received 22 times (542 OK) in board/vmgw: 000900/0 during the test case.

GCP Error AddRsps_Errorcode_434_(Max nr of Terminations in a Ctxt exceeded)_Originating from MeSC at 

location 353 was received 22 times (542 OK) in board/vmgw: 000600/0 during the test case.


	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 Problem Description
	1.2 Objectives and scope
	1.3 Outcomes of the Research
	1.4 Structure of the Thesis

	2 Ericsson Mobile Media Gateway
	2.1 Physical Structure
	2.2 Functional structure
	2.3 Media Gateway in core network

	3 Software development process models
	3.1 The waterfall software development
	3.2 Agile software development methods
	3.2.1 The principles of agile development
	3.2.2 Agility in context of software engineering
	3.2.3 Human factors in agile development
	3.2.4 The Scrum method


	4 Software testing
	4.1 Overview of software testing
	4.1.1 Functional testing
	4.1.2 Fault versus failure

	4.2 Levels of testing
	4.2.1 Unit testing
	4.2.2 Integration testing
	4.2.3 System testing
	4.2.4 Acceptance testing
	4.2.5 Regression testing


	5 Continuous Integration
	5.1 Requirements in human behavior
	5.2 Scaling up continuous integration
	5.3 Multi-stage continuous integration system

	6 Evolution of the Ericsson Mobile Media Gateway development
	6.1 M-MGw agile transformation motivation
	6.2 M-MGw agile transformation process
	6.3 Differences between waterfall and agile way of working
	6.4 Waterfall test strategy
	6.4.1 Branching in the waterfall test strategy

	6.5 Continuous integration test strategy

	7 Fast feedback response test
	7.1 Fast feedback test case description
	7.2 Test environment setup and components
	7.3 Evaluation process
	7.3.1 Test process for faulty load module injection
	7.3.2 Test process for automated testing of development packets


	8 Results & analysis of the fast feedback test case
	8.1 Test results and analysis of faulty load module injection tests
	8.2 Test results and analysis of automated development packet testing
	8.3 Conclusions of analysis

	9 Conclusions
	9.1 Future research

	References
	Appendix A – The Twelve Principles of Agile Software
	Appendix B – Error trace of M-MGw Fast Feedback Test

