
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Eetu Kupiainen

Reasons and Effects of Metric Use in
Industrial Agile Teams

A Systematic Literature Review

Master’s Thesis
Espoo, April 7, 2014

Supervisor: Prof. Casper Lassenius
Instructors: Juha Itkonen D.Sc. (Tech.)

Mika Mäntylä D.Sc. (Tech.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80712345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Eetu Kupiainen

Title:
Reasons and Effects of Metric Use in Industrial Agile Teams A Systematic Liter-
ature Review

Date: April 7, 2014 Pages: 73

Major: Software Engineering Code: T3003

Supervisor: Prof. Casper Lassenius

Instructors: Juha Itkonen D.Sc. (Tech.)
Mika Mäntylä D.Sc. (Tech.)

Agile development methods are increasing in popularity, yet there are limited
studies on the reasons and effects of metrics use in industrial agile development.

This paper presents results from a systematic literature review. Based on the
study, the results indicate that the reasons for the use metrics are focused on the
following areas: Planning, Progress tracking, Understand and improve quality,
and Identify problems. Similarly, the effects of metric use are focused on the
following areas: Planning actions, Reactive actions, Motivate people and Create
improvement ideas. Furthermore, this study identifies important metrics based
on statements and amount of evidence.

The results are mapped against agile principles and it seems that the use of
metrics supports the principles with some deviations. Also, the study shows a lot
of evidence on the use of planning and tracking metrics. Furthermore, the study
identifies the use of situative metrics. Finally, the dysfunctional use of metrics
and the negative effects of metric use can be an interesting future research topic.

Keywords: agile, metrics, measurement, systematic, literature, review

Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Eetu Kupiainen

Työn nimi:
Mittareiden käytön syyt ja seuraukset ketterissä tiimeissä teollisuudessa Syste-
maattinen kirjallisuuskatsaus

Päiväys: 7. huhtikuuta 2014 Sivumäärä: 73

Pääaine: Ohjelmistotuotanto ja -
liiketoiminta

Koodi: T3003

Valvoja: Prof. Casper Lassenius

Ohjaajat: Tkt Juha Itkonen
Tkt Mika Mäntylä

Ketterät ohjelmistokehitysmenetelmät ovat lisänneet suosiotaan, mutta tutki-
muksia, joissa tutkittaisiin syitä mittareiden käytölle ja niiden vaikutuksille, on
varsin rajallisesti teollisen ketterän kehityksen osalta.

Tämä tutkimus esittää tuloksia systemaattisesta kirjallisuuskatsauksesta. Perus-
tuen tähän tutkimukseen, tulokset esittävät, että syyt mittarien käytölle keskit-
tyy seuraaviin alueisiin: suunnittelu, etenemisen seuranta, laadun ymmärtäminen
ja parantaminen, ja ongelmien tunnistaminen. Lisäksi, mittareiden vaikutukset
keskittyvät seuraaviin alueisiin: suunnittelutoimet, reaktiiviset toimet, ihmisten
motivointi ja parannusideoiden luominen. Tämä tutkimus myös listaa tärkeitä
mittareita, jotka tunnistettiin kuvauksien sekä esiintymismäärien avulla.

Tuloksia verrataan ketterän kehityksen periaatteisiin ja näyttää siltä, että mit-
tareiden käyttö tukee ketteriä periaatteita lukuuottamatta muutamia poikkeuk-
sia. Lisäksi, tämä tutkimus osoittaa, että suunnittelu- ja seurantamittareiden
käytöstä on paljon näyttöä. Tutkimus tunnistaa myös tilannesidoksisia mittarei-
ta, joita käytetään yleensä ongelmien korjaamiseksi. Lopuksi, mittareiden käytön
negatiiviset vaikutukset voi olla mielenkiintoinen tulevaisuuden tutkimusalue.

Asiasanat: ketterä, kehitys, mittarit, mittaus, systemaattinen, kirjalli-
suuskatsaus

Kieli: Englanti

3

Acknowledgements

I want to thank my instructors D.Sc. Juha Itkonen and D.Sc. Mika Mäntylä for
their invaluable feedback, tangible guidance and tireless attitude towards my
questions. Also, I want to thank B.Sc Kim Dikert and M.Sc. Timo Lehtinen
for relaxing and thoughtful discussions. Furthermore, I would like to express
my thanks to L.Sc Kristian Rautiainen and D.Sc Jari Vanhanen for all their
help. Finally, I would like to thank my supervisor Prof. Casper Lassenius
for bringing up improvement ideas in this thesis. This work has been funded
by EU FP7 Grant 318082 (U-QASAR, http://www.uqasar.eu/).

Espoo, April 7, 2014

Eetu Kupiainen

4

Abbreviations and Acronyms

KPI Key Performance Indicator
LeanSD Lean Software Development
SLR Systematic literature review
WIP Work in progress
XP Extreme Programming

5

Contents

Abbreviations and Acronyms 5

1 Introduction 8
1.1 Structure of the thesis . 9

2 Background 10
2.1 Agile software development 10
2.2 Software measurement . 12
2.3 Systematic Literature Review 13

3 Review method 14
3.1 Protocol development . 14
3.2 Search and selection process 14
3.3 Data extraction . 15
3.4 Data synthesis . 17

4 Results 19
4.1 Overview of studies . 19
4.2 Quality evaluation of the primary studies 22
4.3 Metrics . 24
4.4 Why are metrics used? . 29

4.4.1 Planning . 29
4.4.2 Progress tracking . 30

4.4.2.1 Project progress 30
4.4.2.2 Simplify complexity and increase visibility . . 31
4.4.2.3 Accomplishing project goals 31
4.4.2.4 Balance workflow 32

4.4.3 Understand and improve quality 32
4.4.3.1 Understand level of quality 33
4.4.3.2 Increase quality 33
4.4.3.3 Ensure level of testing 33

6

4.4.4 Identify problems . 34
4.5 What are the effects of metric use? 36

4.5.1 Planning actions . 36
4.5.2 Reactive actions . 37
4.5.3 Motivate people . 38
4.5.4 Create improvement ideas 40

4.6 Important metrics . 42
4.6.1 Important metrics in terms of statements 42
4.6.2 List of important metrics 44

5 Discussion 46
5.1 Focus of metrics in agile development 46
5.2 Findings on effects and reasons of metric use 47

5.2.1 Negative effects of metric use 47
5.2.2 Situative metrics . 48
5.2.3 Reasons for metric use 48

5.3 Important metrics . 51
5.3.1 Characteristics of important metrics 51
5.3.2 Important metrics . 51

5.4 Mapping metric use to agile principles 52
5.5 Limitations . 53

6 Conclusions 55

References 56

Primary studies 61

A Search strings 65

B Inclusion and exclusion criteria 67

C Quality assesment questions 68

D Definions of metrics 69

7

Chapter 1

Introduction

Software metrics have been studied for decades and several literature reviews
have been published. Yet, the literature reviews have been written from
an academic viewpoint. For example, Catal and Diri (2009) review fault
prediction metrics, Purao and Vaishnavi (2003) review metrics for object
oriented systems and Kitchenham (2010) performs a mapping of most cited
software metrics papers. According to the researcher’s knowledge there are
no systematic literature reviews on the actual use of software metrics in the
industry.

Agile software development is becoming increasingly popular in the soft-
ware industry. The agile approach seems to be contradicting with the tradi-
tional metrics approaches. For example, the agile emphasizes working soft-
ware over measuring progress in terms of intermediate products or docu-
mentation, and embracing the change invalidates the traditional approach
of tracking progress against a pre-made plan. However, at the same time
agile software development highlights some measures that should be used,
e.g., burndown graphs and 100% automated unit testing coverage. However,
metric research in the context of agile methods remains scarce.

The goal of this study is to review the literature of actual use of software
metrics in the context of agile software development. This study lays out the
current state of metrics usage in industrial agile software development based
on literature. Moreover, the study uncovers the reasons for metric usage as
well as highlights the effects of metric use. Furthermore, this study is part of
an EU funded project U-QASAR1. The goal in the U-QASAR project is to
develop an analysis tool for software development projects with heavy focus
on metrics. This study aims to support the tool development by providing
understanding about metric usage in industrial agile software development,

1http://www.uqasar.eu/

8

CHAPTER 1. INTRODUCTION 9

and by providing suggestions for metrics used in the tool. This study covers
the following research questions:

• Research Question 1: What metrics are used in industrial agile soft-
ware development?

• Research Question 1.1: What are the entities measured in industrial
agile software development?

• Research Question 1.2: How do the metrics found in industrial agile
software development compare with those suggested by agile literature?

• Research Question 2: Why are metrics used in industrial agile soft-
ware development?

• Research Question 3: What are the effects of metric use in industrial
agile software development?

• Research Question 4: What metrics are important in industrial agile
software development?

1.1 Structure of the thesis

This thesis is structured as follows.Chapter 2 provides background informa-
tion about related concepts regarding this study. Chapter 3 describes how
the systematic literature review was conducted. Chapter 4 reports the results
of the study. Chapter 5 discusses the findings and how they map to agile
principles. Chapter 6 concludes the study.

Chapter 2

Background

This chapter describes the key concepts used in this study. First, section 2.1
describes agile software development. Second, section 2.2 describes the ben-
efits of software measurement. Third, section 2.3 describes the used research
method, Systematic Literature Review.

2.1 Agile software development

Agile development methods have emerged to the software world ruled by
traditional heavyweight methods. In agile methods, the focus is in lightweight
working practices, constant deliveries and customer collaboration over long
planning periods, heavy documentation and inflexible development phases.

Agile manifesto created by agile enthusiasts (Beck et al., 2007) lists four
core agile values:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

Furthermore, popular agile development methods include Scrum (Schwaber
and Beedle, 2002), Extreme Programming (Beck and Andres, 2004), Lean
Software Development (Poppendieck and Poppendieck, 2003) and Kanban
(Anderson, 2010). Scrum (Schwaber and Beedle, 2002) got its name from
rugby, where the team groups up and plans its next move. Similarly in soft-
ware development, the scrum team has daily meetings where they see what
has been done and what should be done next. On high level, the development

10

CHAPTER 2. BACKGROUND 11

is constructed from multiple subsequent sprints, where an increment of the
software is developed. Sprints are planned by selecting items from a back-
log and estimating the effort needed to complete each item selected for the
sprint. During sprints, the team groups up every day for the daily meeting
where the status of the tasks is tracked. At the end of the sprint, a sprint
review is organized where all the tasks are reviewed. Learning is emphasized
every sprint with a sprint retrospective meeting where issues related to work
practices are discussed and improvements are suggested.

Extreme Programming (XP) (Beck and Andres, 2004) got its name from
a set of principles and practices that were emphasized to the extreme. For
example, if you think testing is a good practice then test all the time with
automated unit tests. Similarly, if you think code reviews are beneficial, then
do constant code reviews by programming in pairs. Additionally, XP aims
at embracing change. This is achieved in XP by continuously refactoring
the code base, creating and maintaining a comprehensive unit test suite and
designing simple. Changes in business requirements can then be flexibly
developed. Communication is also very important in XP. Communication is
handled with unit tests, pair-programming and having a customer available
to answer business questions.

Lean Software Development (LeanSD) (Poppendieck and Poppendieck,
2003) contains many attributes from Scrum and XP, but it also utilises prin-
ciples from Lean manufacturing, which Toyota used to build their competitive
edge Womack et al. (2007). The modified lean principles used in LeanSD are:

1. Eliminate Waste

2. Amplify Learning

3. Decide as Late as Possible

4. Deliver as Fast as Possible

5. Empower the Team

6. Build Integrity In

7. See the Whole

The aforementioned agile methods are often well defined and they require
their practices to be used comprehensively. Kanban (Anderson, 2010) on the
other hand is more of an evolutionary process model that allows each Kanban
implementation to be different, suited for each context. Some principles,
however, are the same in Kanban. For example, Kanban systems are always

CHAPTER 2. BACKGROUND 12

pull-systems. Work is pulled to development only when there is capacity,
compared with some other systems where work is pushed to development
according to demand. The pull system is enabled by limiting work in progress
(WIP). For example, if the WIP limit is set to two for development and there
are already two work items under development then no more work can be
started before either of them is completed.

Many different agile software development methods conforming to similar
principles comprise agile software development. The agile methods emphasise
short development cycles, frequent face-to-face communication and continu-
ous learning. In this Systematic Literature Review, only studies that are of
agile software development are considered.

2.2 Software measurement

“If you can not measure it, you can not improve it. . . ” said Lord Kelvin,
a mathematical physicist and engineer. Similarly, according to Fenton and
Pfleeger (1998), we use metrics every day to understand, control and improve
what we do and how we do it. According to Jones (2008), who is a founder
of Software Productivity Research with a knowledge base of thousands of
software projects, the top performing software companies such as IBM and
Microsoft extensively use metrics in their business, while the lower performing
teams do not. Furthermore, measurement is a key technology for successful
software development and maintenance. Pulford et al. (1995) describe the
following benefits of metric use:

• Improved project planning and management of projects.

• Alignment of software development to business objectives.

• Cost-effective improvement programmes.

• Improved project communication.

Similarly, Grady (1992) lists reasons for metric use for practitioners and
managers:

• A basis for estimates.

• To track project progress.

• To determine (relative) complexity.

CHAPTER 2. BACKGROUND 13

• To help us to understand when we have achieved a desired state of
quality.

• To analyze defects,

• and to experimentally validate best practices.

• In short: they help us to make better decisions.

There are many benefits to software metrics, for example being able to
improve many aspects of software projects, and in general, make better deci-
sions. This study tries to collect software metrics and understand the reasons
and effects for metric use. Additionally, this study tries to distinguish im-
portant metrics.

2.3 Systematic Literature Review

Systematic Literature Review (SLR) is a research method originated from
the field of medicine (Kitchenham, 2004). There are three main reasons
for conducting an SLR (Keele, 2007). First, to aggregate and synthesise
existing knowledge regarding a research topic. Second, identify gaps in earlier
research. Third, provide background information to start investigating a new
research topic. Moreover, SLR provides a repeatable research method, a
method that when applied properly, should provide the exactly same results
irrespective of the person who is performing it. Furthermore, the detailed
documentation of steps in SLR allows in-depth evaluation of the rigorousness
of the conducted study. However, SLR requires considerably more effort than
traditional reviews. Usually, SLRs are conducted by researchers and PhD
students.

SLR is an audible and trustworthy research method for multiple purposes.
In this study, SLR is used to understand why metrics are used and what are
the effects of metric use in agile software development. Furthermore, SLR is
used to collect the used metrics, and distinguish important metrics.

Chapter 3

Review method

Systematic literature review (SLR) was chosen as a research method because
the study is more about trying to understand a problem instead of trying to
find a solution to it. Also, there was already existing literature that could
be synthesized.

3.1 Protocol development

A guide for SLRs by Kitchenham (2004) was used as a basis for developing
the review protocol. Additionally, an SLR on agile development (Dyb̊a and
Dingsøyr, 2008) and an SLR on SLR (Kitchenham and Brereton, 2013) were
used to further understand the challenges and opportunities of SLRs. The
protocol was also iterated in weekly meetings with the instructors, as well as
in a pilot study.

3.2 Search and selection process

The strategy for finding primary studies was following:

• Stage 1: Automated search

• Stage 2: Selection based on title and abstract

• Stage 3: Selection based on full text. Conduct data extraction and
quality assessment.

Table 3.1 shows the selection funnel in terms of the number of papers after
each stage. Scopus database 1 was used to find the primary studies with

1http://www.scopus.com

14

CHAPTER 3. REVIEW METHOD 15

Table 3.1: Paper selection funnel

Stage Amount of papers

Stage 1 774
Stage 2 163
Stage 3 30

automated search. Keywords include popular agile development methods
and synonyms for the word metric. The search was improved incrementally
in three phases because some key papers and XP conferences were not found
initially. The search strings, hits and dates can be found in appendix A.

The selection of the primary studies was based on inclusion criteria: pa-
pers that present empirical findings on the industrial use and experiences of
metrics in agile context. The papers were excluded based on multiple criteria,
mainly due to not conforming to requirements regarding empirical findings
and agile and industrial context. Full criteria are listed in appendix B.

In stage 1, Scopus was used as the only search engine as it contained the
most relevant databases IEEE and ACM. Also, it was able to find Agile and
XP conference papers. Only XP Conference 2013 was searched manually
because it could not be found through Scopus.

In stage 2, papers were included and excluded by the researcher based on
their title and abstract. As the quality of abstracts can be poor in computer
science (Kitchenham, 2004), full texts were also skimmed through in case
of unclear abstracts. Unclear cases were discussed with the instructors in
weekly meetings and an exclusion rule was documented if necessary. The
validity of the selection process was analysed by performing the selection for
a random sample of 26 papers also by the second instructor. The level of
agreement was ’substantial’ with Kappa 0.67 (Landis and Koch, 1977).

Stage 3 included multiple activities in one workflow. Selection by full
text was done, data was coded and quality assessment was done. Once
again, if there were unclear papers, they were discussed in the meetings.
Also, selection of 7 papers was conducted by the second instructor with an
’almost perfect’ agreement, Kappa 1.0 (Landis and Koch, 1977).

3.3 Data extraction

Integrated coding was selected for data extraction strategy (Cruzes and
Dyba, 2011). Integrated coding includes having a start list of codes as well as

CHAPTER 3. REVIEW METHOD 16

creating new codes if necessary (ground-up). It provided focus for research
questions but flexibility regarding findings. Deductive coding would have
been too restraining and inductive coding might have caused too much bias.
Integrated coding made it possible to create a sample list of code categories:

• Why is the metric used?

• What is the effect of metric use?

• Metric

• Importance related to the metric

• Context

The coding started with the researcher reading the full text and marking
interesting quotes with a temporary code. After, reading the full text the
researcher checked each quote and coded again with an appropriate code
based on the built understanding. In weekly meetings with the instructors,
a rule set for collecting metrics was slowly built:

• Collect metric if team or company uses it.

• Collect metric only if something is said about why it is used, what
effects it causes or if it is described as important.

• Do not collect metrics that are only used for the comparison and selec-
tion of development methods.

• Do not collect metrics that are primarily used to compare teams. (There
were cases where a researcher or management uses a metric to compare
teams. We wanted to find metrics a team could use.)

Atlas.ti Visual QDA (Qualitative Data Analysis), version 7.1.x was used
to collect and synthesize the qualitative data. The amount of found quotes
per code can be seen in Table 3.2. To evaluate the repeatability of finding the
same metrics, second instructor coded metrics from three primary studies.
Capture-recapture method (Seber, 2002) was then used which showed that
90% of metrics were found.

A quality assessment form adopted from (Dyb̊a and Dingsøyr, 2008) was
used to evaluate the quality of each primary study. A detailed list of quality
assessment questions can be found in appendix C. Additionally, a relevancy
factor was added to the same assessment to describe how useful a primary
study was for this study. The scale for the relevancy factor is:

CHAPTER 3. REVIEW METHOD 17

Table 3.2: The amount of found quotes

Code Amount of quotations

Why is the metric used? 151
What is the effect of metric use? 61

Metrics 102
Importance related to the metric 45

Context 158

• 0 = does not contain any information regarding metrics and should
already be excluded

• 1 = only descriptions of metrics with no additional info

• 2 = some useful information related to metrics

• 3 = a good amount of relevant information regarding metrics and metric
use

3.4 Data synthesis

Metrics were grouped based on similarity to enable categorization in Table 4.5
and Table 4.9. For example, burndown is grouped under velocity and faults
per iteration is grouped under defect count. For the reasons and effects, the
data synthesis followed the steps recommended by Cruzes and Dyba (2011).
The process started by going through all quotes within one code and giving
each quote a more descriptive code describing the quote at a high level. Then
the descriptive codes were organized in groups based on their similarity, see
e.g., Figure 3.1 These groups were then given high level codes which are seen
as categories in Table 4.7 and Table 4.8.

CHAPTER 3. REVIEW METHOD 18

Figure 3.1: Reason for metric use category named ’Progress tracking’ was
formed by organizing descriptive codes in to a group based on their similarity

Chapter 4

Results

This chapter presents the results of the systematic literature review and
provides the answers to the research questions. Section 4.1 describes the
overview of studies. Section 4.2 describes the results of the quality evalua-
tion of the primary studies. Section 4.3 presents the found metrics (RQ1),
categorizes them based on the entity that is measured (RQ1.1) and com-
pares them with metrics suggested by agile literature (RQ1.2). Section 4.4
describes the reasons for using metrics (RQ2). Section 4.5 describes the ef-
fects of metric use (RQ3). Section 4.6 describes important metrics (RQ4) by
statements from the primary studies as well as by the amount of evidence
from primary studies.

4.1 Overview of studies

This section gives an overview of the primary studies. Table 4.1 shows the
distribution of primary studies by publication channel. Table 4.2 lists the
primary studies by context factors.

The study identified 30 primary studies. Primary studies were published
in 12 different journals, conferences or workshops, see Table 4.1. A large
share of primary studies (43%) was published in Agile Conference. Rest
of the studies were published in a wide range of journals, conferences and
workshops.

Primary studies and their context information can be seen in Table 4.2.
The earliest study is from 2002 and the rest of the studies are quite evenly dis-
tributed from 2002 to 2013. Single-case was the most used research method
with 18 studies, then experience report with 8 studies, multi-case with 3
studies and finally survey with 2 studies.

Agile method for the studies was identified based on the assessment of

19

CHAPTER 4. RESULTS 20

Table 4.1: The publication distribution of primary studies

Publication channel Type # %

Agile Conference Conference 9 43
HICCS Conference 3 14
ICSE SDG Workshop 2 10
XP Conference Conference 2 10
Agile Development Conference Conference 1 5
APSEC Conference 1 5
ASWEC Conference 1 5
ECIS Conference 1 5
Elektronika ir Elektrotechnika Journal 1 5
Empirical Software Engineering Journal 1 5
EUROMICRO Conference 1 5
ICSE Conference 1 5
IST Journal 1 5
IJPQM Journal 1 5
JSS Journal 1 5
PROFES Conference 1 5
Software - Prac. and Exp. Journal 1 5
WETSoM Workshop 1 5

CHAPTER 4. RESULTS 21

the researcher. A specific method was chosen if it seemed to be a primary
method in the case. If it was unclear what agile method was used, then ’NA’
was set as the agile method. Based on the results, Scrum was the most used
agile method (35%) in primary studies. XP was the second most used agile
method (20%) while LeanSD and Kanban were used in 5% of the cases. In
33% of the cases, the used agile method was unclear.

Telecom was the most represented domain with 10 cases, enterprise in-
formation systems was the second with 7 cases and web applications with 4
cases. There were 15 cases that were other domains or cases without domain
information.

Table 4.2: Overview of primary studies

ID Year Resear. meth. Agile
method

Team size Domain

[S1] 2010 Survey NA NA NA
[S2] 2005 Experience r. MSF v4.01 NA NA
[S3] 2009 Multi-case NA/Scrum/

Scrum
2-10/2-7/4-
8

ERP/Graphic
design plug-
in/Facility man-
agement

[S4] 2013 Experience r. Scrum 25 teams Software for oil
and gas industry

[S5] 2005 Single-case XP 15 Enterprise infor-
mation system

[S6] 2002 Experience r. XP 50 Enterprise re-
source solution
for the leasing
industry

[S7] 2011 Survey Scrum 26 teams Desktop and SaaS
products

[S8] 2010 Experience r. Scrum 5-9 NA
[S9] 2006 Single-case XP 15-20 Broadband order

system
[S10] 2004 Multi-case XP/Scrum 4-18/6-9 b-2-b e-

commerce so-
lutions/Criminal
justice system
development

[S11] 2007 Single-case Scrum 500 Security services

1Microsoft Solutions Framework v4.0

CHAPTER 4. RESULTS 22

[S12] 2010 Single-case Scrum NA E-commerce
[S13] 2011 Single-case LeanSD 5±2 Information and

communication
software develop-
ment

[S14] 2012 Experience r. XP NA Web application
development

[S15] 2006 Multi-case NA/NA/
NA/NA

2-5/12-
15/1-10/6-7

NA/NA/NA/NA

[S16] 2012 Single-case Scrum 6-8 Web page devel-
opment

[S17] 2007 Single-case NA Comp. 160
devs

Various

[S18] 2010 Single-case LeanSD Dev site 600 Telecom
[S19] 2010 Single-case XP 6-7 Telecom
[S20] 2010 Single-case NA NA Telecom
[S21] 2011 Single-case Scrum Dev site 500 Telecom
[S22] 2012 Single-case NA NA Telecom
[S23] 2011 Experience r. Scrum /

Kanban
9 and 6 Casino games

[S24] 2011 Single-case Kanban 6-8 Telecom mainte-
nance

[S25] 2010 Single-case NA project size
100

Telecom

[S26] 2011 Single-case NA project size
200

Telecom

[S27] 2006 Single-case XP 15 Enterprise infor-
mation system

[S28] 2009 Single-case XP 15 Enterprise infor-
mation system

[S29] 2006 Experience r. NA NA Telecom
[S30] 2013 Single-case NA 5 Space mission

control software

4.2 Quality evaluation of the primary studies

The quality evaluation was done by the researcher after the data extraction
of each primary study. Each category was evaluated with a scale from 0
to 1. The evaluation form was adopted from (Dyb̊a and Dingsøyr, 2008).
The detailed list of quality evaluation questions can be found in appendix C.

CHAPTER 4. RESULTS 23

Table 4.3: Quality evaluation of primary studies

Study Res-
earch

Aim Con-
text

R.d-
esign

Sam-
pling

Ctrl.
grp

Data
coll.

Data
anal.

Re-
flex.

Find-
ings

Val-
ue

Tot-
al

Rele-
vancy

[S1] 1 1 1 1 1 0 1 1 1 1 1 10 2
[S2] 0 0 0 0 1 0 0 0 0 0 1 2 2
[S3] 1 1 0 1 0 0 0 0 0 0 0 3 2
[S4] 0 0 0 0 1 0 0 0 0 0 1 2 3
[S5] 1 1 1 1 1 0 1 1 0 1 1 9 3
[S6] 0 0 1 0 1 0 0 0 0 0 1 3 2
[S7] 0 0 0 0 0 1 1 1 0 1 1 5 2
[S8] 0 0 0 0 0 1 0 0 0 1 1 3 3
[S9] 1 1 1 1 0 0 1 1 1 1 0 8 2
[S10] 0 0 1 0 1 1 0 0 0 1 1 5 2
[S11] 0 0 1 0 0 0 0 0 0 1 1 3 3
[S12] 0 0 1 0 0 0 0 0 0 0 0 1 3
[S13] 0 0 0 0 0 1 0 0 0 1 1 3 3
[S14] 0 0 0 0 0 0 0 0 0 0 0 0 2
[S15] 1 1 0 1 1 1 1 1 0 1 1 9 2
[S16] 1 0 1 0 1 0 0 0 0 0 0 3 2
[S17] 1 1 1 1 1 0 1 0 0 1 1 8 3
[S18] 1 1 1 1 1 0 1 1 0 1 1 9 3
[S19] 1 1 1 1 1 0 1 1 1 1 1 10 2
[S20] 1 1 0 1 0 0 0 0 0 1 0 4 2
[S21] 1 1 1 1 1 0 1 1 1 1 1 10 2
[S22] 1 1 1 1 1 0 1 1 1 1 1 10 2
[S23] 0 0 1 0 0 1 0 0 0 1 1 4 2
[S24] 0 0 1 0 1 0 0 0 0 1 1 4 2
[S25] 1 1 1 1 1 0 1 1 1 1 1 10 3
[S26] 1 1 1 1 0 0 1 1 1 1 1 9 2
[S27] 1 1 1 1 1 0 1 1 0 1 1 9 2
[S28] 1 1 1 1 1 0 1 1 0 1 1 9 3
[S29] 0 0 0 0 0 0 0 0 0 0 1 1 3
[S30] 0 0 1 0 1 0 0 0 0 0 1 3 2
Total 16 15 20 15 18 6 14 13 7 21 24

CHAPTER 4. RESULTS 24

Additionally, a relevancy factor was assigned for each study describing its
relevancy for this study. The scale for the relevancy can be found in sec-
tion 3.3.

The perceived quality of the studies varied a great deal (from 0 to 10).
Even though there were many low scoring studies, they were included since
they still provided valuable insight. For example, in some cases an experience
report [S4] provided more valuable data than a high scoring research paper
[S25].

According to the quality evaluation, control group and reflexivity had the
lowest total scores while value for research, context and findings scored the
highest. There were 13 primary studies with a total score of 8, 9 or 10, and
11 primary studies with a total score of 1, 2 or 3.

4.3 Metrics

This section lists, categorizes and compares the found metrics from the SLR.
First, the found metrics are listed by primary study in Table 4.4 answering
Research Question 1: What metrics are used in industrial agile software
development?. Second, the metrics are categorized according to the catego-
rization by Fenton and Pfleeger (1998) in Table 4.5, answering Research
Question 1.1: What are the entities measured in industrial agile software
development?. Third, the found metrics are compared with the metrics sug-
gested by agile methods in Table 4.6, answering Research Question 1.2:
How do the metrics found in industrial agile software development compare
with those suggested by agile literature?. Metrics were only collected if their
reason of use, effect of use or importance was described. A total of 102 met-
rics were found in the primary studies. Definitions of metrics can be found
from appendix D.

Table 4.4: RQ1: Metrics by primary studies

ID Metrics

[S1] Business value delivered, customer satisfaction, defect count after test-
ing, number of test cases, running tested features

[S2] Velocity
[S3] Critical defects sent by customer, open defects, test failure rate, test

success rate, remaining task effort, team effectiveness
[S4] Technical debt board, build status, technical debt in effort

CHAPTER 4. RESULTS 25

[S5] Burndown, check-ins per day, number of automated passing test steps,
faults per iteration

[S6] Velocity, story estimates
[S7] Burndown, story points, # of open defects, # of defects found in system

test, defects deferred, Net Promoter Score
[S8] Story points, task effort, velocity, operations’ velocity
[S9] Effort estimate
[S10] # of defects/velocity
[S11] Revenue per customer
[S12] Task’s expected end date, effort estimate, completed web pages, task

done
[S13] Fix time of failed build, story flow percentage, percentage of stories

prepared for sprint, velocity of elaborating features, velocity of imple-
menting features

[S14] Build status, test coverage, test growth ratio, violations of static code
analysis, # of unit tests

[S15] Effort estimate / effort estimate / effort estimate / effort estimate
[S16] Sprint burndown, release burndown, cost performance index, schedule

performance index, planned velocity
[S17] Common tempo time, number of bounce backs, cycle time, work in

progress, customer satisfaction (Kano analysis), effort estimate kits
[S18] Lead time, processing time, queue time
[S19] Change requests per requirement, fault slips, implemented vs wasted

requirements, maintenance effort, lead time
[S20] Number of requests from customers, inventory of requirements over time
[S21] Rate of requirements per phase, variance in handovers, requirement’s

cost types
[S22] # of requirements per phase, lead time
[S23] Average velocity / work in progress, cycle time, pseudo velocity
[S24] Lead time, work in progress
[S25] Defect trend indicator, # of defects in backlog, predicted # of defects
[S26] Throughput, queue
[S27] Burndown, check-ins per day, number of automated passing test steps,

number of new and open defects
[S28] Burndown, number of automated passing test steps, check-ins per day
[S29] Story estimate, story complete percentage
[S30] Progress as working code

According to the categorization in Table 4.5, metrics were used to mea-
sure products, test plans, code, builds, features, requirements and defects.
Most of the entities in Products class were measured internally, except the
products entity, which was measured mostly externally. Furthermore, test-

CHAPTER 4. RESULTS 26

Table 4.5: RQ1.1: Metric categorization based on Fenton and Pfleeger (1998)

Entities Attributes

Products Internal External
Products Running tested features [S1], build status [S4,

S14]
Customer satisfaction [S1,
S3, S7, S17, S19, S20],
progress as working code
[S30]

Test plans Number of test cases [S1]
Code Technical debt in categories [S4], technical debt

in effort [S4], violations of static code analysis
[S14]

Features task’s expected end date [S12], task done [S12],
effort estimate [S7, S8, S8, S9, S12, S15, S15,
S15, S15, S17, S29], story complete percentage
[S29]

Business value delivered
[S1]

Require-
ments

Requirement’s cost types [S21], Percentage of
stories prepared for sprint [S13]

Defects Defect trend indicator
[S25], predicted number of
defects [S25]

Processes
Testing defect count [S1, S3, S5, S7 ,S7, S10, S25,

S27], test success rate [S3], test failure rate [S3],
defects deferred [S7], test coverage [S14], test
growth ratio [S14]

Number of bounce backs
[S17], fault slips [S19]

Implementa-
tion

Velocity [S1, S2, S3, S5, S6, S8, S8, S10, S13,
S16, S16, S16, S23, S27, S28], number of unit
tests [S1, S5, S14, S27, S28], completed web
pages [S12], cost performance index [S16], sched-
ule performance index [S16], planned velocity
[S16], common tempo time [S17], check-ins per
day [S5, S27, S28], fix time of failed build [S13]

Story flow percentage [S13]

Requirements
engineering

velocity of elaborating features [S13]

Whole de-
velopment
cycle

cycle time [S17, S23], lead time [S18, S19, S22,
S24], processing time [S18], queue time [S18],
maintenance effort [S19], work in progress [S17,
S20, S21, S22, S23, S24], variance in handovers
[S21], throughput [S26], queue [S26], imple-
mented vs wasted requirements [S19]

Resources
Team Team effectiveness [S3]
Customer Revenue per customer [S11]

CHAPTER 4. RESULTS 27

ing, implementation and the whole development cycle were measured mostly
internally in the Processes class. Only two metrics are related to measuring
Resources class.

Table 4.6: RQ1.2: Comparison of metrics found in agile lit-
erature compared to the metrics found in this study

Metrics suggested
by literature

Method Scrum XP Kanban LeanSD NA

Effort estimate Scrum,
XP,
LeanSD

2[S7]2,
1[S8],
2[S8],
3[S12]

1[S9] 1[S15],
2[S15],
3[S15],
4[S15],
6[S17],
1[S29]

Velocity3 Scrum,
XP,
LeanSD

3[S8],
2[S10],
4[S8],
1[S16],
2[S16],
5[S16],
1[S23]

1[S6],
1[S5],
1[S27],
1[S28]

4[S23] 5[S13] 1[S2],
5[S3]

Written and
passed unit tests

XP,
LeanSD

3[S5],
3[S27],
2[S28],
5[S14]

5[S1]

Actual develop-
ment time

XP

Load factor XP

Work in progress Kanban 1[S21] 2[S23],
2[S24]

4[S17],
2[S20],
1[S22]

Lead time Kanban 5[S19] 1[S24] 1[S18] 2[S22]

Due date perfor-
mance

Kanban

Throughput Kanban 1[S26]

Issues and
blocked work
items

Kanban

2Number prior to study reference is the index in the list of metrics for the reference in
question in Table 4.4

3Includes total work remaining from Scrum and effort left from Scrum and XP.

CHAPTER 4. RESULTS 28

Flow effiency Kanban

Initial quality Kanban,
LeanSD

3[S7],
4[S7]

4[S5],
1[S10],
4[S27]

3[S1],
2[S3],
2[S25]

Failure load Kanban 2[S17]

Cycle time LeanSD 3[S23] 3[S17]

Value Stream
Maps (Work
time, wait time)

LeanSD 2[S18],
3[S18]

Amount of writ-
ten and passed ac-
ceptance tests per
iteration

LeanSD 4[S1],
3[S3],
4[S3]

Not suggested 1[S4],
2[S4],
3[S4],
4[S7],
5[S7],
1[S11],
1[S12],
3[S12],
4[S12],
3[S16],
4[S16],
2[S21],
3[S21]

2[S5],
2[S27],
3[S28],
1[S14],
2[S14],
3[S14],
4[S14],
1[S19],
2[S19],
3[S19],
4[S19]

1[S13],
2[S13],
3[S13],
4[S13]

1[S1],
2[S1],
1[S3],
6[S3],
1[S17],
5[S17],
1[S20],
1[S25],
3[S25],
2[S26],
2[S29],
1[S30]

Metrics found in the primary studies are compared with the metrics
suggested by agile literature in Table 4.6. The metrics found in litera-
ture come from Scrum (Schwaber and Sutherland, 2013), XP (Beck and
Andres, 2004), Kanban (Anderson, 2010) and LeanSD (Poppendieck and
Poppendieck, 2003). Four rightmost columns in Table 4.6 are describing the
agile method used in the primary studies. In some primary studies it was
hard to identify a specific agile method, thus ’NA’ is used to describe those
cases. The number before primary study reference defines the index of the
metric in Table 4.4.

Actual development time (XP), load factor (XP), due date performance
(Kanban), issues and blocked work items (Kanban) and flow efficiency (Kan-
ban) were not described in primary studies. Many metrics (40 of 102, 39%)
found in the primary studies were not suggested in agile literature.

CHAPTER 4. RESULTS 29

4.4 Why are metrics used?

Research Question 2: Why are metrics used in industrial agile software
development?

The following sections describe the reasons for the use of metrics. Table 4.7
lists the categories for reasons of metric use by sources. Some of the de-
scriptions for the reasons of metric use might seem to be incomplete. This
is because the effects of metric use are described in the following section 4.5.
Also, some reason categories might seem to be describing more the effect than
the reason, e.g., Balance workflow in section 4.4.2.4. However, the reasons
for metric use are described here for Balance workflow and then the actual
actions and effects are described in the next section 4.5.

Table 4.7: Reasons for the use of metrics by sources

Categories Sources

Planning [S6, S8, S9, S11, S12, S16, S17, S21,
S23, S24, S25, S29]

Progress tracking [S2, S4, S5, S7, S8, S12, S13, S16, S17,
S20, S21, S22, S23, S25, S27, S28]

Understand and improve quality [S3, S4, S5, S7, S14, S17, S19, S22, S28,
S29]

Identify problems [S2, S13, S16, S18, S20, S21, S22, S25,
S29]

4.4.1 Planning

Prioritization of tasks was one of the main activities metrics were used for.
At Objectnet, effort estimates were used to prioritize the features for the next
release and as basis for resourcing [S9]. Teams at Adobe Systems used effort
estimates to prioritize activities based on relative value and relative effort
[S8]. At Verisign Managed Security Services, they used revenue per customer
to prioritize their backlog [S11]. At Timberline Inc, they used Kano analysis
as a ’voice of customer’ so that prioritization decisions could be based on
facts instead of political power [S17]. Practitioners at Ericsson used cost
types, rate of requirements over phases and variance in handovers for short
term decisions related to requirements’ prioritization, staff allocation and
planning decisions [S21].

CHAPTER 4. RESULTS 30

Metrics were used to estimate the size and amount of features that could
be taken under development. Velocity was used to improve effort estimates
for next the planning session, which helped to estimate the scope for the next
iteration [S16]. Scrum master and product owner at a Korean e-commerce
company used estimates to check if the planned scope would be possible
to complete during the next iteration [S12]. At WMS Gaming, they used
pseudo-velocity and average velocity to plan their releases [S23]. At Ericsson
product maintenance team, lead time was used to understand if all planned
corrections can be completed before release date [S24]. At Avaya Commu-
nications, they used story estimates to predict the iteration where a feature
would be completed [S29].

Other planning uses for metrics were resourcing decisions and develop-
ment flexibility. At Timberline Inc, they broke down requirements into
smaller pieces that were estimated in effort to understand what skills are
needed to complete the work [S17]. At a Korean e-commerce company, they
marked tasks done and undone which made it possible to take undone tasks
for the next iteration [S12]. Also, they marked expected end date for tasks so
the next person in workflow could plan their own work as effectively as pos-
sible thus reducing idle time. At ThoughtWorks, stories were used to break
down new functionality, and effort estimates of the stories were summed to
understand the needed resources [S6]. At Ericsson, predicted number of de-
fects was used to plan the removal of defects [S25]. If the removal of defects
would not be well planned, it could cause delays for the release and thus
increase costs for the project.

4.4.2 Progress tracking

Reasons for metrics use in progress tracking are divided into project progress,
increase visibility, accomplishing project goals and balance workflow.

4.4.2.1 Project progress

Metrics were used to monitor the progress of the project. Completed web
pages metric was used as a measure of progress at Korean e-commerce com-
pany [S12]. Number of automated passing test steps was used as a measure
of progress in terms of completed work at Mamdas [S5]. At Timberline
Inc, breaking down tasks to ’kits’ between two to five days enabled progress
monitoring [S17]. Set of metrics (burndown, check-ins per day, number of au-
tomated passing test steps, number of new and open defects) was developed
to manage risks and provide timely progress monitoring [S27]. Developers at
Avaya Communications used story percent complete metric to give an assess-

CHAPTER 4. RESULTS 31

ment of progress [S29]. However, a team at NASA Ames Reserch Center did
not want to spend resources on estimating features and instead they focused
on designing and developing their software solution [S30]. Every six weeks
they demonstrated their progress to the customer with working code.

Metrics were also used to give a higher level understanding about progress.
Release burndown showed project trends and could be used to predict com-
pletion date [S16]. Also, release burndown could reflect addition or removal
of stories. At Ericsson, cost types, rate of requirements over phases and vari-
ance in handovers were used to provide overview of progress [S21]. Metrics
(burndown, check-ins per day, number of automated passing test steps) were
used to communicate progress to upper management [S5] and ensure good
progress to external observers and ensure that key risks were under control
[S5,S27,S28].

4.4.2.2 Simplify complexity and increase visibility

Metrics were used to simplify complex aspects of software development, and
increase visibility for all stakeholders. Cost types, rate of requirements over
phases and variance in handovers were used to increase the transparency of
end-to-end flow in a complex system [S21]. Similarly at Petrobras, techni-
cal debt board was used to make technical debt issues visible and easier to
manage [S4]. Metrics (burndown, check-ins per day, number of automated
passing test steps, number of open and new defects) were used to replace
individual perception with facts [S27].

Metrics were used to keep the team informed. At Ericsson, defect trend
indicator was used to monitor defect backlog and spread the information to
project members [S25]. At WMS Gaming, cycle time metric was used to let
the team track their performance [S23]. At Avaya Communications, story
percent complete metrics were generated automatically when tests were run
and thus kept everyone on the same page and eliminated schedule surprises
[S29]. Additionally, the metric results were required to be reported periodi-
cally.

4.4.2.3 Accomplishing project goals

Metrics were used to understand if project goals can be achieved. At Tim-
berline Inc, there was a need for a simple indicator that would quickly tell if
a project was under control [S17]. They used common tempo time to under-
stand if project was in target for delivery. At Microsoft Corporation, they
monitored work in progress to predict lead time which in turn would predict
project schedule [S2]. At Adobe Systems, sprint burndown was used to tell

CHAPTER 4. RESULTS 32

the team if they were on track regarding the sprint commitments [S7]. Sim-
ilarly at Mamdas, burndown was used to see whether the team could meet
their goals, and if not, what could be done [S5]. Burndown was also used to
mitigate the risk where developers spend too much time perfecting features
over finishing all tasks of the iteration [S28]. Furthermore at a Slovenian
publishing company, release burndown made the correlation clear between
work remaining and team’s progress in reducing it [S16]. Story flow percent-
age was used so that a developer could finish a story in a steady flow [S13].
Story implementation flow metric describes how efficiently a developer has
been able to complete a story compared with the estimate.

4.4.2.4 Balance workflow

Metrics were used to balance workflow to prevent overloading people. At
Ericsson, inventory of requirements over time was used to identify large han-
dovers of requirements that would cause overloading situations to employees
[S20]. The aim was to have a steady flow of requirements. Similarly at Cit-
rix Online, operations department was overloaded so they decided to start
evaluating incoming work with Ops story points to level the workload [S8].
Moreover, people should be respected by having a balanced workload to avoid
overload situations [S22]. This could be achieved by measuring the number of
requirements per phase which would notice the peaks of the workload. Tim-
berline Inc tried to pace work according to customer demand [S17]. However,
too much work was pushed to development, which caused many problems,
including developers feeling overworked. They started using common tempo
time to make sure there would be balance of workflow.

At Ericsson, variance in handovers was used to guarantee that require-
ments would flow evenly [S21]. Mamdas was measuring check-ins per day
metric, which measured how often code was committed to the main trunk
[S5]. The point was to avoid people from committing only at the end of the
iteration, and instead verify that work is spread evenly across iterations. At
WMS Gaming, they had problems with large tasks blocking other work, so
they set a rule that only certain size of tasks (8 story points) can be taken
for development [S23].

4.4.3 Understand and improve quality

The following sections describe how metrics were used to understand the
quality of the product both before and after release. Also, the sections will
describe that metrics were used to improve the quality of the product and
ensure that the product will be tested thoroughly.

CHAPTER 4. RESULTS 33

4.4.3.1 Understand level of quality

Metrics were used to understand the level of quality after the release. Number
of change requests from the customer was used as an indicator of customer
satisfaction [S19]. Maintenance effort was used as an indicator of overall
quality of the released product [S19]. Number of maintenance requests was
used as an indicator of built-in quality [S22].

Metrics were also used to understand the level of quality before the re-
lease. At Adobe Systems, they measured pre-release quality with Net Pro-
moter Score which was measured from pre-release customer surveys [S7]. Net
Promoter Score measures how willing a customer is to recommend the prod-
uct to another potential customer. They also measured defects found in the
system test which was used to measure the quality of software delivered to
the system test process. Additionally, they measured defects deferred, which
was used to predict the quality customers would experience. Defects deferred
were defined as the defects that are known but are not fixed for a release,
usually due to time constraints. At Mamdas, faults per iteration were used
to measure the quality of the product [S5].

4.4.3.2 Increase quality

Metrics were used to increase the level of quality. Governance mechanisms,
which included a set of metrics (burndown, check-ins per day and number of
automated passing test steps), were used to increase product quality [S28]. At
T-Systems International, they used a set of metrics(build status, number of
unit tests, test coverage, test growth ratio, violations of static code analysis)
to improve the internal software quality of the project [S14]. Build status
was measured to prevent defects reaching production environment. Similarly,
violations of static code analysis metric was used to prevent the existence
of critical violations. Furthermore, critical defects sent by customers were
tracked and fixed to prevent losing customers [S3]. Finally, technical debt
board was used to reduce technical debt [S4].

4.4.3.3 Ensure level of testing

Metrics were used to make sure the product is tested thoroughly. At T-
Systems International, test coverage was used to evaluate how well the code
was tested [S14]. However, in Brown-field (legacy) projects it is better to
measure test-growth-ratio since there might not be many tests in the ex-
isting code base. At Timberline Inc, work in progress was measured so it
could be minimized [S17]. Large amount of work in progress would contain
many unidentified defects which would need to be eventually discovered. At

CHAPTER 4. RESULTS 34

Mamdas, using number of automated passing test steps decreased the risk
that the product would be unthoroughly tested [S5]. Similarly, number of
automated passing test steps was used to make sure regression tests are ran
and passed every iteration. Finally, story percent complete metric supported
test driven development by requiring unit tests to be written for progress
tracking [S29].

4.4.4 Identify problems

Metrics were used to identify problems, bottlenecks and waste in the process.
Cumulative number of work items over time metric was used to identify
bottlenecks in the development process [S22]. Similarly, monitoring work
in progress was used to identify blocked work items and the development
phase where the blockage occurred [S2]. Cost types, rate of requirements
over phases and variance in handovers were used for process improvement
by spotting bottlenecks and uneven requirement flows [S21]. For example,
many requirements were transferred to System Test phase, but only a small
amount of requirements were transferred to Ready for Release phase, see
Figure 4.1.

Metrics were able to identify waste, as in development phases where no
value is added, in software processes. At Ericsson, Value Stream Maps (VSM)
were used to spot waste in the development process [S18]. In another case at
Ericsson, long lead times led to the identification of waste of waiting [S22].
Similarly, measuring story flow percentage allowed the identification of waste
related to context shifts [S13].

Metrics were used to identify problems and find improvement opportu-
nities. Defect trend indicator was used to provide the project manager an
ISO/IEC 15939:2007 compatible indicator for problems with the defect back-
log [S25]. Basically, the indicator showed if the defect backlog increases, stays
the same or decreases in the coming week. The project manager could then
use the information to take necessary actions to avoid possible problems. At
a Slovenian publishing company, schedule performance index and cost perfor-
mance index were used to monitor for deviances in the progress of the project
and providing early signs if something goes wrong [S16]. Developers at Avaya
had issues with the 80/20 rule, where the last 20% of iteration content takes
80% of the time [S29]. With the metrics that their tool T3 provided (e.g
story percent complete) they were able to see the early symptoms of various
problems that can cause delays, and thus react early.

Metrics were also used to find improvement opportunities. Number of
work items per phase and lead time was used to spot instabilities in the
process [S20]. They had set control limits to the metrics and if a measured

CHAPTER 4. RESULTS 35

Figure 4.1: Rate of requirements identified a bottleneck in System Test phase
[S21]

CHAPTER 4. RESULTS 36

value was outside the control limits it meant that there was some kind of
instability.

4.5 What are the effects of metric use?

Research Question 3: What are the effects of metric use in industrial agile
software development?

The following subsections describe the effects of metric use. Table 4.8 lists
the effect categories by sources. Some of the categories for the reasons and
the effects of metrics are close to each other so sometimes it can be hard to
understand why some categories are listed under the reasons and not under
the effects. For example section 4.4.2.4 describes that the purpose of metrics
was the balancing of workflow and then the actual actions and effects are
described under section 4.5.

Table 4.8: Effects of metric use by sources

Categories Sources

Planning actions [S2, S11, S12, S23]
Reactive actions [S3, S5, S10, S14, S16, S17, S28]
Motivate people [S3, S4, S6, S13, S14, S17, S25]

Create improvement ideas [S8, S10, S13, S14, S17, S18, S20, S21,
S22, S26, S27, S28]

4.5.1 Planning actions

This section describes the planning actions that happened due to the use of
metrics.

Product owners at WMS Gaming used lead time to schedule high priority
features and plan demo dates with customers [S23]. Similarly, at Verisign
Managed Security Services they used revenue per customer metric to allow
higher valued features to be prioritized higher in the backlog [S11].

Velocity / 2 metric was used as a scoping tool for a release [S23]. The
team had enough work not to sit idle, but there was still enough time to
fix high priority defects. Similarly, effort estimates were used to scope the
iteration and if there were tasks that could not be completed before a release
date then they were excluded from the backlog [S12]. Furthermore, velocity
was used to define a minimum delivery level for the iteration where ’must

CHAPTER 4. RESULTS 37

have’ requirements are assigned, and a stretch goal where lower priority re-
quirements are assigned [S2].

Expected date of task completion was used so that other team members
could plan their own work [S12]. For example, a developer could know when
she can start implementation because the designer had informed the expected
date of completion for the design.

4.5.2 Reactive actions

This section describes reactive actions that occurred due to the use of metrics.
Metrics were used to cut down the scope of an iteration or to add more

resources if it did not seem that all tasks could be completed with current
pace. When component level burndown was used to notice that a compo-
nent was behind schedule at Mamdas, resources were added and scope was
reduced for the release [S5]. Similarly, release burndown showed that work
remaining was not decreasing fast enough so the scope of the release was
decreased [S16]. Furthermore, if common tempo time would indicate too
much planned work, then the tasks would be cut or more resources would
be added [S17]. Similarly, employees were trained with multiple skills, e.g.,
customer support did testing and documentation engineers were taught how
to input their material into the system, so in case of imbalanced workload
the work could be reorganized to achieve more balanced workflow. Similarly,
if team effectiveness is not high enough to complete tasks, resources from
other teams can be used [S3]. Other actions that were suggested in case of
low team effectiveness were reduction of tasks and working overtime.

Metrics were also used to react to quality information. At Timberline
Inc, monitoring cycle times revealed high time consumption on manual test-
ing [S17]. The cause was an unmotivated person who was then moved to
writing automated test scripts which he preferred over manual testing. At
Escrow.com, number of defects was used to delay a release when too many
defects were noticed in a QA cycle [S10]. At T-Systems International, qual-
ity manager interpreted the results of static code analysis from the build
tool and he would then make plans for necessary refactorings [S14]. When
amount of written and passed unit tests was not increasing, an alarm was
raised at Mamdas [S28]. The issue was discussed in a reflection meeting
where they understood that too much work was put to a single tester writing
the tests and once she was doing work for another project, no tests were
written. The team then started to learn to write the tests themselves, and
later, a dedicated tester was assigned to write the tests.

CHAPTER 4. RESULTS 38

4.5.3 Motivate people

This section describes the motivating effects that the metrics had on people.
Metrics were used to motivate people to react faster to problems. Number

of defects was shown in monitors in hallways which motivated developers
to fix the defects [S3]. Similarly, total reported defects, test failure rate
and test success rate were also shown throughout the organization which
motivated people to avoid problems and fix the problems fast. At Systematic,
they measured fix time of broken build and showed the time next to the
coffee machine. It provoked discussion on the reasons for long fix times, and
eventually, the developers fixed the builds faster [S13]. The metric was later
declared mandatory for all projects. Also, the reasons for long fix times were
investigated. Similarly at Petrobras, build status was visible in minutes after
commits, which helped to create a culture where developers react with high
priority to broken builds [S4]. This helped to keep the main branch to be
closer to a deployable state at all times. Build status was used to motivate
people to fix the build as fast as possible [S4]. Moreover, violations of static
code analysis caused developers to immediately fix the issue because the
violations could cause a broken build status [S14]. Additionally, developers
could get faster feedback on their work. Furthermore, developers could have
more confidence in performing major refactorings with the safety net the
violations of static code analysis metric provided.

Metrics were used to change the behavior of people. At Petrobras, they
used a technical debt board to discuss technical debt issues in their projects,
see Figure 4.2. In the meetings, team members agreed which technical debt
issues they would focus in solving until the next meeting [S4]. Additionally,
team members sought help from the architecture team for reducing technical
debt, e.g., by implementing automatic deployment systems and improving
source code unit testability. At Mamdas, measuring the number of auto-
mated passing test steps changed the team’s behaviour to write more unit
tests [S5]. Metrics were also used to prevent harmful behaviour such as cherry
picking features that were the most interesting to the team [S17]. Measuring
work in progress (WIP) and setting WIP limits prevented cherry picking by
enforcing working on only two features at a time, and thus preventing them
from working on lower priority, but more interesting, features. Finally, at
Ericsson defect trend indicator created crisis awareness and motivated the
developers to take actions to avoid possible problems [S25].

There can also be negative effects in using metrics. Using velocity met-
ric had negative effects such as cutting corners in implementing features to
maintain velocity with the cost of quality [S6]. For example, the managers
excused the developers from writing tests and the testers cut on the thor-

CHAPTER 4. RESULTS 39

Figure 4.2: Technical debt board was used to discuss technical debt issues
[S4]

CHAPTER 4. RESULTS 40

oughness of the testing in hopes to maintain the velocity. Similarly, [S14] also
hints towards dysfunctional use of metrics, for example developers causing a
broken build if broken build is used as a KPI (Key Performance Indicator).

4.5.4 Create improvement ideas

This section describes improvement ideas that were created based on metrics.
At Ericsson, lead time, processing time and queue time metric were used

to identify waste of extra process - (a requirement would wait for long time
before a full specification) requirement specification [S18]. Solution idea was
created where a quick high level proposal would be sent to the customer
without the need for an in-depth specification. The customer could then use
the high level proposal to evaluate if they want to pursue that requirement
further. Furthermore, long processing times for the solution proposal phase
indicated a waste of motion, where requirements are clarified between the
marketing and the development unit. The solution idea was to increase close
collaboration between marketing unit and development unit at least for the
more complex requirements. Finally, there was a waste of waiting in the
design phase which could be improved by starting real work only when the
purchase order is received, not when requests are received.

Lead time, processing time and queue time metric were used to identify
waste of waiting in testing phases [S18]. The improvement suggestion was
to provide an earlier beta version and making testing phases parallel. Many
of the improvement ideas came from meetings where Value Stream Maps
(VSM) were used as a base for discussion.

Cost types, rate of requirements over phases and variance in handovers
were used to identify bottlenecks at Ericsson [S21]. They noticed that focus-
ing on deadlines caused many requirements to be transferred to the system
test phase close to the deadline. The improvement suggestion was to focus
more on continuous delivery instead of focusing on market driven deadlines.
Furthermore, Kanban was suggested as a development method in order to
accomplish the continuous delivery capabilities. Similarly at another case at
Ericsson, throughput and queue time metrics were used to identify a bottle-
neck in the network integration test phase which led to using other testing
practices in future projects [S26].

Rate of requirements over time was used to identify problems in the de-
velopment process [S20]. One improvement suggestion was to change from
push to pull-approach so that the team could adjust the workload to enable
a more continuous delivery. Another improvement suggestion was to add
intermediate release versions so that integration and testing would happen
more often and problems could be identified earlier than close to the actual

CHAPTER 4. RESULTS 41

release. Similar solution was applied at Timberline Inc. where requirements
inventory was kept low which meant that design, implementation and test-
ing could start earlier and problems in requirements would get caught sooner
[S17].

Citrix Online started measuring velocity for their Operations department
as well [S8]. This led to development departments trying to decrease their
products’ Operations story points to enable faster releases. The reduction in
story points was possible by creating hot deployment strategies and providing
better documentation.

At an Israel Air force IT department, Mamdas, they were using burn-
down to follow their progress [28]. However, when they noticed that work
remaining was not decreasing according to remaining resources they had to
make changes. In their iteration summary meeting, they decided to pursue
senior engineers to help them create optimal development environments and
continuous build systems. Also, they decided to evaluate customer requests
in more detail to avoid over polishing features.

A team working on automating workflows in a criminal justice system
noticed that their velocity estimations were inaccurate which led to dividing
work items into smaller pieces to improve the accuracy of the estimates [S10].
The division of work items meant that the team needed to perform more
analysis of the features during planning.

When story implementation flow metric showed a drop and project man-
agers complained about clarifications about features from the customer were
late, a root cause analysis meeting was held [S13]. Also, after starting to
use the implementation flow metric new policies were stated to keep the flow
high: percentage of stories ready for sprint must be 100% and implementa-
tion flow must be at least 60%. Moreover, both of the metrics need to be
reported monthly. Root cause analysis was also conducted at Timberline Inc
to decrease the amount of bounce backs [S17].

The reasons for the values of metrics (burndown, check-ins per day, num-
ber of automated passing test steps, number of new and open defects) were
discussed in iteration summary meeting because it can be hard to analyze
metrics without understanding the context [S27]. Similarly at Ericsson, num-
ber of work items per phase was used to ask development unit about the
values of the metric and the development unit confirmed that people felt
overloaded as the metric suggested [S20]. Furthermore in another case at Er-
icsson, if the values of number of work items were outside the control limits
one could discuss with the developers about the workload [S22].

At Systematic, after analyzing long fix times for broken builds the team
added automatic static code analysis checks to code check-in to catch de-
fects earlier [S13]. Similarly at T-Systems International, Quality manager

CHAPTER 4. RESULTS 42

could change coding style guide and code standards based on the results of
violations to static code analysis metric [S14].

4.6 Important metrics

Research Question 4: What metrics are important in industrial agile soft-
ware development?

The following subsections describe first which metrics were described as im-
portant, and then second, list important metrics based on the amount of
evidence and an importance factor.

4.6.1 Important metrics in terms of statements

This section describes metrics that were described as important. Metrics were
considered important if the author of the primary study, or case employees
praised the metric. Also, metrics were considered important if there were
signs of continuous use of the metric. Furthermore, if metrics had positive
correlation to project success in surveys, they were considered important.

Progress as working code was considered as one of the cornerstones of
agile [S30]. Story flow percentage and velocity of elaborating features were
considered as key metrics for monitoring projects [S13]. Also, a minimum of
60% for story flow percentage was identified as a key limit. Similarly, velocity
for elaborating features should be as fast as velocity of implementing features.
Also, they said that using both aforementioned metrics “drive behaviors to
let teams go twice as fast as they could before”.

Story percent complete metric was considered valuable since it embraces
test driven development - no progress is made before a test is written [S29].
Also, story percent complete metric was considered more accurate than previ-
ously used metric - however that metric was not mentioned. Moreover, story
percent complete metric gave a normalized measure of progress compared to
developer comments about progress. Additionally, story percent complete
metric leveraged the existing unit testing framework and thus required only
minimal overhead to track progress. Furthermore, team members seemed to
be extremely happy about using the story percent complete metric. Prac-
titioners at Ericsson valued the transparency and the overview of progress
that the metrics (cost types, rate of requirements over phases and variance
in handovers) were able to provide to the complex product development with
parallel activities [S21].

CHAPTER 4. RESULTS 43

Effort estimates were considered important in release planning especially
in terms of prioritization [S9]. According to a survey [S7], top performing
teams at Adobe Systems estimated backlog items with relative effort esti-
mates. Similarly, pseudo-velocity, which was used by a Kanban team, was
considered essential for release planning [S23]. Moreover, burndown was
valuable in meeting sprint commitments [S7]. Furthermore, managers said
burndown was important in making decisions and managing multiple teams
[S5]. However, developers did not consider burndown important [S5]. Ac-
cording to a survey [S1], project success had a significant positive relationship
with the following metrics: team velocity, business value delivered, running
tested features, defect count after testing and number of test cases. However,
there were no detailed descriptions of these metrics.

At another case at Ericsson, Value Stream Maps (VSM) were used to
visualize problem areas, and facilitate discussion for possible improvements
[S18]. Practitioners valued how the maps were easy to understand. Metrics
that were used to build VSM were lead time, processing time and queue time.
Similarly, technical debt board, which visualized the status of technical debt,
was considered important because it gave a high level understanding about
the problems [S4]. Moreover, the technical debt board was then used to plan
actions to remove the technical debt. Furthermore, it was proven to be useful
in their context.

Net Promoter Score, which measures the probability of a customer rec-
ommending the product to another potential customer, was said to be “one
of the purest measures of success” [S7]. Similarly, projects that were said
to be definitely successful 77% measured customer satisfaction often or al-
ways. Also, the more often customer satisfaction would be measured the
more likely it would be that the project would have good code quality and
the project would succeed. Similarly, defects deferred metric was seen as a
good predictor of post-release quality because it correlated with issues found
by the customers [S7].

Defect prediction metrics predicted number of defects in backlog and de-
fect trend indicator were seen important to decision making, and their use
continued after the pilot period [S26]. The key attributes of the metrics were
sufficient accuracy and ease of use.

The following metrics were considered very useful in agile context: num-
ber of unit tests, test coverage, test-growth ratio and build status [S14]. The
benefit for the number of unit tests was not well described except that it pro-
vided “first insights”. Test coverage provided information on how well the
code was tested. Test-growth ratio was useful in projects where old codebase
was used as a basis for new features. Finally, fixing broken builds prevented
defects reaching customers.

CHAPTER 4. RESULTS 44

4.6.2 List of important metrics

Important metrics are listed in Table 4.9 sorted by the amount of evidence
and an importance factor. The amount of evidence is based on the amount
of cases describing the metric. Metrics that were only mentioned by name
without any reasons of use, effect of use, or importance were not taken into
account. The importance factor is an assessment of the metric’s importance
by the researcher from 1 (low) to 3 (high) based on the statements in sec-
tion 4.6.1. Importance factor is not given to metrics that were not described
as important. The list includes only metrics that were described as important
in section 4.6.1 or metrics that were described in two or more cases.

Velocity and effort estimate metrics were the most described metrics with
15 and 12 occurrences, and they were both considered important. Defect
count, customer satisfaction and work in progress metrics occurred 8, 6 and
6 times respectively. Number of unit tests, lead time and check-ins per
day occurred 5, 4 and 3 times. Technical debt, build status and cycle time
occurred 2 times.

CHAPTER 4. RESULTS 45

Table 4.9: RQ4: Important metrics based on the amount of evidence and an
importance factor

Metric Amount of evidence Importance factor

Velocity [S1, S2, S3, S5, S6, S8,
S8, S10, S13, S16, S16, S16,
S23, S27, S28]

15 3

Effort estimate [S3, S7, S8, S8,
S9, S12, S15, S15, S15, S15,
S17, S29]

12 3

Defect count [S1, S3, S5, S7
,S7, S10, S25, S27]

8 2

Customer satisfaction [S1, S3,
S7, S17, S19, S20]

6 3

Work in progress [S17, S20,
S21, S22, S23, S24]

6 1

Number of unit tests [S1, S5,
S14, S27, S28]

5 1

Lead time [S18, S19, S22, S24] 4 2
Check-ins per day [S5, S27,
S28]

3 NA

Technical debt [S4, S4] 2 3
Build status [S4, S14] 2 3
Cycle time [S17, S23] 2 NA
Progress as working code [S30] 1 3
Story flow percentage [S13] 1 2
Velocity of elaborating fea-
tures [S13]

1 2

Story percent complete [S29] 1 2
Number of test cases [S1] 1 2
Queue time [S18] 1 2
Processing time [S18] 1 2
Defect trend indicator [S25] 1 2
Cost types [S21] 1 1
Variance in handovers [S21] 1 1
Deferred defects [S7] 1 1
Predicted number of defects in
backlog [S25]

1 1

Test coverage [S14] 1 1
Test-growth ratio [S14] 1 1

Chapter 5

Discussion

This chapter discusses findings based on the results. The findings are com-
pared with existing knowledge, and further implications are explored. Fi-
nally, the limitations of the study are discussed.

5.1 Focus of metrics in agile development

Research Question 1: What metrics are used in industrial agile software
development?

Research Question 1.1: What are the entities measured in industrial agile
software development?

Based on the results of this study, in agile development, target for mea-
surement is the product and the process, but not the people. Based on the
metric categorization by Fenton and Pfleeger (1998) in Table 4.5, measure-
ment is focused towards Products and Processes, but not Resources. This
implies that measuring resources is not important. One implication is that
agile development assumes a capable team, which can improve themselves
without metrics. Boehm and Turner (2003) acknowledge that agile projects
require people with higher methodological skills than plan-driven projects.
Also, agile methods are more suitable to be used in smaller products and
teams while plan-driven methods are better for larger products and teams
boehm2003using. Based on the results of this study and prior work, the re-
searcher hypothesises that measuring people becomes more important when
the product and team is large.

Another possibility for the lack of measuring people is that measuring re-
sources, especially people, can lead to dysfunctional behaviour, as discussed

46

CHAPTER 5. DISCUSSION 47

in section 5.2.1. Another observation from the metric categorization in Ta-
ble 4.5 is that documentation is not measured, e.g., design specifications.
Instead, the focus is on the actual product and features, which aligns with
the first agile principle “Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.” (Beck et al., 2007).

Based on the metric categorization by Fenton and Pfleeger (1998) in Ta-
ble 4.5, the following processes are measured the most: implementation,
testing and the whole development cycle. This indicates that requirements
engineering, specification and design are not measured in agile development.
One possibility is that aforementioned processes are not considered impor-
tant in agile development. Another possibility is that they are completely
tied within ’implementation’ so that they are not separated.

Research Question 1.2: How do the metrics found in industrial agile soft-
ware development compare with those suggested by agile literature?

According to this study, industrial agile teams use metrics suggested by
agile literature, but they also use custom metrics. Based on the metric
comparison in Table 4.6, it seems that agile industry is using most of the
metrics suggested by agile literature. Although, Kanban and LeanSD metrics
were not extensively used, but that is likely due to low number of cases using
Kanban or LeanSD. There were also many metrics that were not suggested in
agile literature. This implies that industrial agile teams tend to add custom
metrics on top of the metrics suggested by agile literature.

5.2 Findings on effects and reasons of metric

use

Research Question 2: Why are metrics used in industrial agile software
development?

Research Question 3: What are the effects of metric use in industrial
agile software development?

5.2.1 Negative effects of metric use

This study shows that use of metrics can have negative effects. Based on the
results in section 4.5.3, metrics can be used to cause negative effects and drive

CHAPTER 5. DISCUSSION 48

dysfunctional behaviour. Based on the results, the researcher hypothesises
that agile methods do not provide any special protection from the dysfunc-
tional use of metrics even when using the core metrics of agile development,
e.g., velocity [S6]. Hartmann and Dymond (2006) also discuss similar expe-
riences of improper metrics that waste resources and skew team behaviour in
counter-productive ways. Similarly, Grady (1992) has experienced problems
with metrics and people, thus he had written a software metrics etiquette,
for example advising against measuring individuals, and not using metrics
against the people who are reporting the data. Furthermore, Goldratt (2006)
said “Tell me how you measure me, and I will tell you how I will behave”,
which highlights the complexity of measuring people.

5.2.2 Situative metrics

Based on the results of this study, industrial agile teams use situative metrics.
Situative metrics are created and used based on a need, e.g., as a solution to
a problem. At Systematic, they had issues with build’s long fix times. They
started measuring fix time of broken build and showed the time next to the
coffee machine. It provoked discussion on the reasons for long fix times, and
eventually, the developers fixed the builds faster [S13]. Similarly, they had
issues with preparations for sprints. They started measuring percentage of
stories prepared for sprint supported with a checklist. At Petrobras, they
had problems with customers related to rework and delays. They started
measuring technical debt with a technical debt board that visualised the
state of different technical debt categories in their projects. This helped to
create awareness and address various technical debt issues [S4].

Hartmann and Dymond (2006) also identified short-term context driven
’diagnostics’. ’Diagnostics’ seem to be the same as the situative metrics
described in this study. Based on the results of this study and prior work
the researcher hypothesises that short term context driven ’diagnostics’ or
’situative metrics’ could be something more unique to agile development.

5.2.3 Reasons for metric use

The categories for reasons for metric use can be seen in Table 4.7. This
answers the question why metrics are used in industrial agile development.
The found reasons are compared with reasons found by others in Table 5.1.

According to Jones (2008), software productivity and quality are mea-
sured accurately by the most successful software companies. In this study,
there were a great deal of evidence on the use of velocity, which could be
seen as a measure of productivity. Sutherland et al. (2009) defines velocity

CHAPTER 5. DISCUSSION 49

Table 5.1: Comparison of found reasons for metric use in this study compared
with reasons found by others

Reasons for met-
ric use from this
study

Benefits / reasons for metric use from other sources

Planning Project estimation (Grady, 1994), Improved project
planning (Pulford et al., 1995)

Progress track-
ing

Progress monitoring (Grady, 1994), improved project
communication (Pulford et al., 1995), management of
projects (Pulford et al., 1995)

Understand and
improve quality

Evaluation of work products (Grady, 1994), Measure-
ment is necessary for quality control and assurance
(Zuse, 1998)

Identify prob-
lems

Process improvement through failure analysis (Grady,
1994), Cost-effective improvement programmes (Pulford
et al., 1995), Process improvement Hartmann and Dy-
mond (2006)

Not found Experimental validation of best practices (Grady, 1994),
Alignment of software development to business objec-
tives (Pulford et al., 1995), Measurement is important
for prediction. We want to predict products and pro-
cesses at the stages of the software life-cycle. (Zuse,
1998), The software development process should be de-
signed by measurable objectives, which leads to a precise
definition of software quality attributes. (Zuse, 1998)

CHAPTER 5. DISCUSSION 50

as a measure of productivity, but identifies that it does not give a very ac-
curate picture, since velocity does not capture the amount of business value
very well. Quality was measured with defect count metrics and customer
satisfaction metrics.

Jones (2008) argues that successful software companies plan and estimate
software projects accurately. Based on the results of this study (section 4.4.1
and section 4.5.1), there was a lot of emphasis on the planning and estimation
of software projects. The equivalence the results of this study to Jones’ points
for successful companies implies that industrial agile teams are doing the right
things to be successful.

In literature, there were also reasons for metrics use that were not found
in this study, see Table 5.1. First, “Experimental validation of best practices”
(Grady, 1994) means using metrics to decide if a practice is worth using or
not. This type of metrics were not in the scope this study. This study
was more focused to find metrics that would bring immediate benefits for
the team. Second, “The software development process should be designed by
measurable objectives, which leads to a precise definition of software quality
attributes.” (Zuse, 1998). Instead of defining precise quality attributes, agile
developers tend to measure the end product quality with customer based
metrics (section 4.4.3.1) instead of the traditional quality models, such as
ISO/IEC 25010 (ISO/IEC, 2010). Third, “Measurement is important for
prediction. We want to predict products and processes at the stages of the
software life-cycle.” (Zuse, 1998). In this study, prediction was mostly fo-
cused to predicting post-release quality by using pre-release quality metrics,
see section 4.4.3.1. The researcher hypothesises that prediction is less used
in agile software development due to the uncertainty of development. Fur-
thermore, accurate predictions would be very hard to achieve.

Regarding the found effects of metric use in this study, a quote from Jones
(2008) can be analysed: “The goal of applied software measurement is to give
software managers and professionals a set of useful, tangible data points for
sizing, estimating, managing, and controlling software projects with rigor and
precision”. Those statements are then mapped to the found effects of metric
use (Table 4.8) in this study. “Sizing and estimating” could be seen as
“Planning actions”, “managing and controlling” could be seen as “Reactive
actions”. Researcher was not able to find similar effects of metric use as
“Motivate people” would suggest. Maybe this is something more unique to
agile development. Maybe the development in agile is more centered on the
people, and metrics are used as a tool to drive appropriate behaviour.

CHAPTER 5. DISCUSSION 51

5.3 Important metrics

Research Question 4: What metrics are important in industrial agile soft-
ware development?

5.3.1 Characteristics of important metrics

This study identifies characteristics of important metric. This study describes
important metrics based on descriptions of importance and the amount of
evidence, see section 4.6.2. There are some characteristics of important met-
rics that can be pointed out: ease of use and ability to utilise existing tools.
Also, based on the effects of metric use, it seems that the ability to pro-
voke discussion is a characteristic for important metrics. Value Stream Maps
and number of bounce backs initiated root cause analysis meetings [S3, S17].
Moreover, metrics were analysed in a reflection meeting where a problem and
an improvement were identified [S28]. Furthermore, technical debt board pro-
vided visibility on technical debt issues and it helped to create discussion to
decrease technical debt [S4]. Hartmann and Dymond (2006) also list as one
of their agile metric heuristics that metrics should provide fuel for meaningful
conversation.

5.3.2 Important metrics

This study identified important metrics: velocity, effort estimate, defect
count and customer satisfaction being top 4 in terms of amount of evi-
dence and described importance. Based on the found important metrics,
the researcher argues that industrial agile teams value planning (effort es-
timate), progress tracking (velocity), pre-release quality (defect count) and
post-release quality (customer satisfaction).

Hartmann and Dymond (2006) emphasize that creation of value should
be the primary measure of progress - which was also seen in this study [S30].
Hartmann and Dymond (2006) also propose to have one key metric to mea-
sure business value, preferably agreed with the business unit. They give
examples for the key metric: Return of Investment (ROI), Net Present Value
(NPV) and Internal Rate of Return (IRR). However, those were not seen
in this study. One reason for the lack of aforementioned metrics in this
study could be the focus of this study to team metrics instead of metrics
of the whole organization. Furthermore, Hartmann and Dymond (2006) do
not provide any specific agile metrics but rather describe how agile metrics
should be chosen and how they should be introduced to the organization.

CHAPTER 5. DISCUSSION 52

5.4 Mapping metric use to agile principles

To evaluate the agility of the found metrics and their use, the results are
mapped to the principles of agile software development Beck et al. (2007)
categorized by Patel et al. (2006). For each paragraph the naming by Patel
et al. is used and references to the principles of agile software development
are provided by numbers.

Communication and Collaboration (4th and 6th agile principles (Beck
et al., 2007)) was reflected by metrics providing a basis for discussion. Value
Stream Maps and number of bounce backs initiated root cause analysis meet-
ings [S3,S17]. Moreover, metrics were analysed in a reflection meeting where
a problem and an improvement were identified [S28]. Furthermore, technical
debt board provided visibility on technical debt issues and it helped to create
discussion to decrease technical debt [S4].

Team involvement (5,8) was reflected in metrics that motivated team to
act and improve, see section 4.5.3. Also, to promote sustainable develop-
ment metrics were targeted to balance the flow of work, see section 4.4.2.4.
Furthermore, people were not measured (Table 4.5), which indicates trust.

Reflection (12) was directly visible in metrics that were used to identify
problems, see section 4.4.4. Furthermore, metrics helped to find improvement
ideas, see section 4.5.4.

Frequent delivery of working software (1,3,7) was directly identified in
one of the studies, where the team measured progress by demonstrating the
product to the customer [S30]. Additionally, there were cases where, e.g.,
completed web-pages [S12] were the primary progress measure. Also, many
metrics focused on progress tracking, see section 4.4.2.1, and timely com-
pletion of project goals, see section 4.4.2.3. However, some other measures
from section 4.4.2.1 show that instead of working code agile teams followed
completed tasks and velocity metrics.

An integral part of the concept of working software is measuring post-
release quality, see section 4.4.3.1. This was measured by customer satis-
faction, feedback, and customer defect reports. It was also common to use
pre-release data to predict post-release quality. Agile developers tend to
measure the end product quality with customer based metrics instead of the
traditional quality models, such as ISO/IEC 25010 (ISO/IEC, 2010).

Managing Changing Requirements (2) was seen in the metrics that sup-
port prioritization of features, see section 4.4.1 and section 4.5.1. This al-
lowed the rapid development of features important for the customer’s busi-
ness at a given time. Also, metrics like technical debt board provided a better
codebase for further development.

CHAPTER 5. DISCUSSION 53

Design (9,10,11) was directly seen in focus for measuring technical debt
and using metrics to enforce writing tests before actual code, see section 4.4.3.3.
Additionally, the status of the build was continuously monitored, see sec-
tion 4.4.3.2. However, the use of velocity metric had a negative effect on
technical quality, see section 4.5.3. Many metrics focused on making sure
that the right features were selected for implementation, see section 4.4.1,
thus avoiding unnecessary work. Moreover, metrics were used to identify
waste (processes where no value is added to the product), see section 4.4.4.

There were also metrics, or their use, which were not agile in nature.
For example, maintaining velocity by cutting corners in quality instead of
dropping features from that iteration [S6]. Also, adding people to a project to
reach a certain date [S5, S17] does not seem that agile compared to removing
tasks. Furthermore, adding people can have a negative impact to progress,
considering the lack of knowledge and training time required. Moreover, the
use of number of defects to delay a release [S10] is against agile thinking as
one should rather decrease the scope to avoid such a situation. Furthermore,
developers at Avaya used effort estimates to predict the iteration where a
feature would be completed [S29], which contradicts the idea of completing
a feature within an iteration.

Some agile metrics that work well for an agile team, such as tracking
progress by automated tests [S28], or measuring the status of the build [S14]
can turn against the agile principles if used as an external controlling mech-
anism. The fifth agile principle requires trust in the team, but if the metrics
are enforced outside of the team, e.g., from upper management there is a risk
that the metrics turn into control mechanisms and the benefits for the team
itself suffer.

5.5 Limitations

The large shares of specific application domains in the primary documents are
a threat to external validity. Seven out of 30 studies were from the enterprise
information systems domain and especially strong was also the share of ten
telecom industry studies out of which eight were from the same company,
Ericsson. Also, Israeli Air Force was the case organization in three studies.

The threats to reliability in this research include mainly issues related
to the reliability of primary study selection and data extraction. The main
threat to reliability was having a single researcher performing the study selec-
tion and data extraction. It is possible that researcher bias could have had an
effect on the results. This threat was mitigated by analysing the reliability of
both study selection and data extraction as described in chapter 3. Another

CHAPTER 5. DISCUSSION 54

threat to reliability is the chosen research method, SLR. There is a great
deal of industrial metric use in agile teams that is not reported in scientific
literature. So choosing another research method, e.g., a survey targeted to
companies practicing agile methods could have produced different results.

Due to iterative nature of the coding process, it was challenging to make
sure that all previously coded primary documents would get the same treat-
ment, whenever new codes were discovered. In addition, the researcher’s
coding ’sense’ developed over time, so it is possible that data extraction ac-
curacy improved during the analysis. In order to mitigate these risks a pilot
study was conducted to improve the coding scheme, get familiar with the
research method and refine the method and tools.

Some data from low scoring papers, e.g [S3], are not explained very de-
tailed, which could have caused incorrect interpretations. Also, only the
researcher conducted the quality evaluation, which could have an impact on
the actual quality scores.

Deciding which agile method was used in the cases was difficult. But on
the other hand it is quite natural that cases use many aspects from multiple
agile methods.

Chapter 6

Conclusions

This study presents the results of a systematic literature review of 30 pri-
mary studies. According to the researcher’s knowledge there are no previous
systematic reviews of metric use in the context of industrial agile software
development. This study makes four contributions. First, this study catego-
rizes metrics found in empirical agile studies and compares the found metrics
with the metrics suggested by agile literature. Second, this study provides
descriptions of why metrics are used to support agile software development.
Third, this study describes the effects metrics have for agile software devel-
opment. Fourth, this study identifies important metrics based on statements
and amount of evidence.

The results indicate that the reasons for the use metrics are focused on
the following areas: Planning, Progress tracking, Understand and improve
quality, and Identify problems. Similarly, the effects of metric use are focused
on the following areas: Planning actions, Reactive actions, Motivate people
and Create improvement ideas.

This study provides researchers and practitioners with an overview of the
metric use in agile context and documented reasonings and effects behind
the proposed metrics. This study can be used as a source of relevant studies
regarding researchers’ interests and contexts.

Finally, this study identified a few propositions for future research on
measuring in agile software development. First, the applicable quality met-
rics for agile development and the relationship between pre-release quality
metrics and post-release quality are important directions of future research.
Second, this study found that planning and tracking metrics for iteration
were often used indicating a need to focus future research efforts on these
areas. Third, use of metrics for motivating and enforcing process improve-
ments can be an interesting future research topic. Fourth, the use of situative
metrics in industrial agile context should be further investigated. Finally, the

55

CHAPTER 6. CONCLUSIONS 56

dysfunctional use of metrics and the negative effects of metric use provide
interesting future research topics.

To conclude, metrics can be used to improve aspects of agile software
development but they can also have negative effects. One needs to have a
holistic understanding of metrics in order to successfully apply them.

References

D. J. Anderson. Kanban. Blue Hole Press, 2010.

K. Beck and C. Andres. Extreme programming explained: embrace change.
Addison-Wesley Professional, 2004.

K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Mar-
ick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas.
Manifesto for agile software development, 2007.

B. Boehm and R. Turner. Using risk to balance agile and plan-driven meth-
ods. Computer, 36(6):57–66, 2003.

C. Catal and B. Diri. A systematic review of software fault prediction studies.
Expert Systems with Applications, 36(4):7346–7354, 2009.

D. S. Cruzes and T. Dyba. Recommended steps for thematic synthesis in
software engineering. In Empirical Software Engineering and Measurement
(ESEM), 2011 International Symposium on, pages 275–284, 2011.

T. Dyb̊a and T. Dingsøyr. Empirical studies of agile software development:
A systematic review. Information and Software Technology, 50(9):833 –
859, 2008.

N. E. Fenton and S. L. Pfleeger. Software metrics: a rigorous and practical
approach. PWS Publishing Co., 1998.

E.M. Goldratt. The Haystack Syndrome: Sifting Information Out of the Data
Ocean. North River Press Publishing Corporation, 2006.

R. B. Grady. Practical software metrics for project management and process
improvement. Prentice-Hall, Inc., 1992.

R. B. Grady. Successfully applying software metrics. Computer, 27(9):18–25,
Sept 1994.

57

REFERENCES 58

D. Hartmann and R. Dymond. Appropriate agile measurement: using metrics
and diagnostics to deliver business value. In Agile Conference, 2006, pages
6 pp.–134, July 2006.

ISO/IEC. Iso/iec 25010 - systems and software engineering - systems and
software quality requirements and evaluation (square) - system and soft-
ware quality models. Technical report, 2010.

C. Jones. Applied software measurement: global analysis of productivity and
quality, volume 3. Mcgraw-hill New York, 2008.

Staffs Keele. Guidelines for performing systematic literature reviews in soft-
ware engineering. Technical report, EBSE Technical Report EBSE-2007-
01, 2007.

B. Kitchenham. Procedures for performing systematic reviews. Keele, UK,
Keele University, 33:2004, 2004.

B. Kitchenham. What’s up with software metrics? - a preliminary mapping
study. Journal of Systems and Software, 83(1):37–51, January 2010.

B. Kitchenham and P. Brereton. A systematic review of systematic review
process research in software engineering. Information and Software Tech-
nology, 55(12):2049–2075, 2013.

J. R. Landis and G. G. Koch. The measurement of observer agreement for
categorical data. Biometrics, 33(1):159–174, 1977.

C. Patel, M. Lycett, R. Macredie, and S. de Cesare. Perceptions of agility
and collaboration in software development practice. In System Sciences,
2006. HICSS ’06. Proceedings of the 39th Annual Hawaii International
Conference on, volume 1, pages 10c–10c, 2006.

M. Poppendieck and T. Poppendieck. Lean software development: An agile
toolkit. Addison-Wesley Professional, 2003.

K. Pulford, A. Kuntzmann-Combelles, and S. Shirlaw. A quantitative ap-
proach to software management: the AMI handbook. Addison-Wesley
Longman Publishing Co., Inc., 1995.

S. Purao and V. Vaishnavi. Product metrics for object-oriented systems.
ACM Computing Surveys (CSUR), 35(2):191–221, 2003.

K. Schwaber and M. Beedle. Agile software development with Scrum, vol-
ume 1. Prentice Hall Upper Saddle River, 2002.

REFERENCES 59

K. Schwaber and J. Sutherland. The scrum guide. Scrum. org, July, 2013.

G. A. F. Seber. The Estimation of Animal Abundance and Related Parame-
ters. Blackburn Press, 2002.

J. Sutherland, G. Schoonheim, and M. Rijk. Fully distributed scrum: Repli-
cating local productivity and quality with offshore teams. In System Sci-
ences, 2009. HICSS ’09. 42nd Hawaii International Conference on, pages
1–8, Jan 2009.

J. P. Womack, D.T. Jones, and D. Roos. The machine that changed the
world: The story of lean production. Simon and Schuster, 2007.

H. Zuse. A Framework of Software Measurement. Walter de Gruyter, 1998.

60

REFERENCES 61

Primary studies

[S1] N. Abbas, A. M. Gravell, and G. B. Wills. The impact of organization, project
and governance variables on software quality and project success. In Proceedings
- 2010 Agile Conference, AGILE 2010, pages 77–86, Orlando, FL, 2010

[S2] D. J. Anderson. Stretching agile to fit cmmi level 3-the story of creating msf
for cmmi R© process improvement at microsoft corporation. In Agile Conference,
2005. Proceedings, pages 193–201. IEEE, 2005

[S3] T. H. Cheng, S. Jansen, and M. Remmers. Controlling and monitoring agile
software development in three dutch product software companies. In Proceedings
of the 2009 ICSE Workshop on Software Development Governance, SDG 2009,
pages 29–35, Vancouver, BC, 2009

[S4] P. S. Medeiros dos Santos, A. Varella, C. Ribeiro Dantas, and D. Borges. Visu-
alizing and managing technical debt in agile development: An experience report.
In Agile Processes in Software Engineering and Extreme Programming, volume
149 of Lecture Notes in Business Information Processing, pages 121–134, 2013

[S5] Y. Dubinsky, D. Talby, O. Hazzan, and A. Keren. Agile metrics at the israeli
air force. In Proceedings - AGILE Confernce 2005, volume 2005, pages 12–19,
Denver, CO, 2005

[S6] A. Elssamadisy and G. Schalliol. Recognizing and responding to ”bad smells” in
extreme programming. In Proceedings - International Conference on Software
Engineering, pages 617–622, Orlando, FL, 2002

[S7] P. Green. Measuring the impact of scrum on product development at adobe
systems. In Proceedings of the Annual Hawaii International Conference on
System Sciences, Koloa, Kauai, HI, 2011

[S8] D. R. Greening. Enterprise scrum: Scaling scrum to the executive level. In
Proceedings of the Annual Hawaii International Conference on System Sciences,
Koloa, Kauai, HI, 2010

REFERENCES 62

[S9] N. C. Haugen. An empirical study of using planning poker for user story esti-
mation. In Proceedings - AGILE Conference, 2006, volume 2006, pages 23–31,
Minneapolis, MN, 2006

[S10] P. Hodgetts. Refactoring the development process: Experiences with the in-
cremental adoption of agile practices. In Proceedings of the Agile Development
Conference, ADC 2004, pages 106–113, Salt Lake City, UT, 2004

[S11] P. Hodgkins and L. Hohmann. Agile program management: Lessons learned
from the verisign managed security services team. In Proceedings - AGILE
2007, pages 194–199, Washington, DC, 2007

[S12] N. Hong, J. Yoo, and S. Cha. Customization of scrum methodology for out-
sourced e-commerce projects. In Proceedings - Asia-Pacific Software Engineer-
ing Conference, APSEC, pages 310–315, Sydney, NSW, 2010

[S13] C. R. Jakobsen and T. Poppendieck. Lean as a scrum troubleshooter. In
Proceedings - 2011 Agile Conference, Agile 2011, pages 168–174, Salt Lake City,
UT, 2011

[S14] A. Janus, R. Dumke, A. Schmietendorf, and J. Jager. The 3c approach for agile
quality assurance. In Emerging Trends in Software Metrics (WETSoM), 2012
3rd International Workshop on, pages 9–13, 2012

[S15] S. Keaveney and K. Conboy. Cost estimation in agile development projects.
In Proceedings of the 14th European Conference on Information Systems, ECIS
2006, Goteborg, 2006

[S16] V. Mahnic and N. Zabkar. Measuring progress of scrum-based software projects.
Electronics and Electrical Engineering, 18(8):73–76, 2012

[S17] P. Middleton, P. S. Taylor, A. Flaxel, and A. Cookson. Lean principles and
techniques for improving the quality and productivity of software development
projects: A case study. International Journal of Productivity and Quality Man-
agement, 2(4):387–403, 2007

[S18] S. Mujtaba, R. Feldt, and K. Petersen. Waste and lead time reduction in a
software product customization process with value stream maps. In Proceedings
of the Australian Software Engineering Conference, ASWEC, pages 139–148,
Auckland, 2010

REFERENCES 63

[S19] K. Petersen and C. Wohlin. The effect of moving from a plan-driven to an
incremental software development approach with agile practices: An industrial
case study. Empirical Software Engineering, 15(6):654–693, 2010a

[S20] K. Petersen and C. Wohlin. Software process improvement through the lean
measurement (spi-leam) method. Journal of Systems and Software, 83(7):1275–
1287, 2010b

[S21] K. Petersen and C. Wohlin. Measuring the flow in lean software development.
Software - Practice and Experience, 41(9):975–996, 2011

[S22] K. Petersen. A palette of lean indicators to detect waste in software mainte-
nance: A case study. Lecture Notes in Business Information Processing, 111
LNBIP:108–122, 2012

[S23] R. Polk. Agile & kanban in coordination. In Proceedings - 2011 Agile Confer-
ence, Agile 2011, pages 263–268, Salt Lake City, UT, 2011

[S24] M. Seikola, H. M. Loisa, and A. Jagos. Kanban implementation in a tele-
com product maintenance. In Proceedings - 37th EUROMICRO Conference on
Software Engineering and Advanced Applications, SEAA 2011, pages 321–329,
Oulu, 2011

[S25] M. Staron, W. Meding, and B. Söderqvist. A method for forecasting defect
backlog in large streamline software development projects and its industrial
evaluation. Information and Software Technology, 52(10):1069–1079, 2010

[S26] M. Staron and W. Meding. Monitoring bottlenecks in agile and lean software
development projects - a method and its industrial use. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 6759 LNCS:3–16, 2011

REFERENCES 64

[S27] D. Talby, O. Hazzan, Y. Dubinsky, and A. Keren. Reflections on reflection in
agile software development. In Proceedings - AGILE Conference, 2006, volume
2006, pages 100–110, Minneapolis, MN, 2006

[S28] D. Talby and Y. Dubinsky. Governance of an agile software project. In Proceed-
ings of the 2009 ICSE Workshop on Software Development Governance, SDG
2009, pages 40–45, Vancouver, BC, 2009

[S29] V. Trapa and S. Rao. T3 - tool for monitoring agile development. In Proceedings
- AGILE Conference, 2006, volume 2006, pages 243–248, Minneapolis, MN, 2006

[S30] J. Trimble and C. Webster. From traditional, to lean, to agile development:
Finding the optimal software engineering cycle. In Proceedings of the Annual
Hawaii International Conference on System Sciences, pages 4826–4833, Wailea,
Maui, HI, 2013

Appendix A

Search strings

The first search string was:
TITLE-ABS-KEY(software AND (agile OR lean OR ”crystal method”

OR ”crystal clear” OR dsdm OR ”dynamic systems development method”
OR fdd OR ”feature driven development” OR ”agile unified process” OR ”ag-
ile modeling” OR scrumban OR kanban OR scrum OR ”extreme program-
ming” OR xp) AND (measur* OR metric OR diagnostic OR monitor*)) AND
(LIMIT-TO(SUBJAREA, ”COMP”)) AND (LIMIT-TO(LANGUAGE, ”En-
glish”))

It found 512 hits 19 September 2013.

The second search string was:

TITLE-ABS-KEY(software AND (agile OR lean OR ”crystal method”
OR ”crystal clear” OR dsdm OR ”dynamic systems development method”
OR fdd OR ”feature driven development” OR ”agile unified process” OR ”ag-
ile modeling” OR scrumban OR kanban OR scrum OR ”extreme program-
ming” OR xp) AND (measur* OR metric OR diagnosticOR monitor*)) AND
(LIMIT-TO(LANGUAGE, ”English”)) AND (LIMIT-TO(SUBJAREA, ”ENGI”))
AND (EXCLUDE (SUBJAREA, ”COMP”) OR EXCLUDE(SUBJAREA,
”PHYS”) OR EXCLUDE(SUBJAREA,”MATE”) OR EXCLUDE (SUBJAREA,
”BUSI”) OR EXCLUDE(SUBJAREA, ”MATH”) OR EXCLUDE(SUBJAREA,
”ENVI”) OR EXCLUDE (SUBJAREA, ”EART”) OR EXCLUDE(SUBJAREA,
”DECI”) OREXCLUDE (SUBJAREA, ”ENER”))

It found 220 hits 7 November 2013.

65

APPENDIX A. SEARCH STRINGS 66

The third search string was:

TITLE-ABS-KEY(software AND (agile OR lean OR ”crystal method”
OR ”crystal clear” OR dsdm OR ”dynamic systems development method”
OR fdd OR ”feature driven development” OR ”agile unified process” OR ”ag-
ile modeling” OR scrumban OR kanban OR scrum OR ”extreme program-
ming” OR xp) AND (measur* OR metric OR diagnosticOR monitor*)) AND
(LIMIT-TO(LANGUAGE, ”English”)) AND (LIMIT-TO(SUBJAREA, ”BUSI”))
AND (EXCLUDE (SUBJAREA, ”ENGI”) OR EXCLUDE(SUBJAREA, ”COMP”))

It found 42 hits 10 December 2013.

Appendix B

Inclusion and exclusion criteria

Inclusion criteria

• Papers that present the use and experiences of metrics in an agile in-
dustry setting.

Exclusion criteria

• Papers that do not contain empirical data from industry cases.

• Papers that are not in English.

• Papers that do not have agile context. There is evidence of clearly non-
agile practices or there is no agile method named. For example, paper
mentions agile but case company has only three releases per year.

• Paper is only about one agile practice, which is not related to measur-
ing.

• Papers that do not seem to have any data about metric usage. Simi-
larly, if there are only a few descriptions of metrics but no other info
regarding reasons or usage.

• Papers that have serious issues with grammar or vocabulary and there-
fore it takes considerable effort to understand sentences.

• Papers where the setting is not clear or results cannot be separated by
setting, for example surveys where there is data both from academia
and industry.

• Papers where the metrics are only used for the research. For example,
author measures which agile practices correlate with success.

67

Appendix C

Quality assesment questions

Based on the quality evaluation form by Dyb̊a and Dingsøyr (2008).

1. Is this a research paper?

2. Is there are a clear statement of the aims of the research?

3. Is there an adequate description of the context in which the research
was carried out?

4. Was the research design appropriate to address the aims of the re-
search?

5. Was the recruitment strategy appropriate to the aims of the research?

6. Was there a control group with which to compare treatments?

7. Was the data collected in a way that addressed the research issue?

8. Was the data analysis sufficiently rigorous?

9. Has the relationship between researcher and participants been consid-
ered adequately?

10. Is there a clear statement of findings?

11. Is the study of value for research or practice?

68

Appendix D

Definions of metrics

Table D.1: Definitions of found metrics

Primary
study

Metric Definition

[S10] # of defects Issues found from quality assurance cycle in-
cluding differences from expected behavior.

[S7] # of defects found
in system test

Number of defects found in system test
phase.

[S25] # of defects in
backlog

All known and unresolved defects in the
project.

[S7] # of open defects Number of open defects on the current release
per day.

[S22] # of requirements
per phase

Number of requirements (work
items/features) per phase.

[S14] # of unit tests Number of unit tests.
[S23] Average velocity Not clearly defined in primary study.
[S4, S14] Build status Build broken or not.
[S5, S27,
S28]

Burndown Remaining human resource days versus the
remaining work days.

[S7] Burndown Not defined in primary study.
[S1] Business value de-

livered
Not defined in primary study. Probably
means delivered features per timeframe.

[S19] Change requests
per requirement

Amount of change requests from customer
per requirement.

[S5, S27,
S28]

Check-ins per day Number of commits (code, automated test,
specification) per day.

69

APPENDIX D. DEFINIONS OF METRICS 70

[S17] Common tempo
time

Net working days available per number of
(work) units required.

[S12] Completed web
pages

Completed web pages.

[S16] Cost performance
index

Not defined in primary study.

[S3] Critical defects
sent by customer

No detailed definition in primary study.

[S1] Customer satis-
faction

Not defined in primary study.

[S17] Customer sat-
isfaction (Kano
analysis)

Not clearly defined in primary study.

[S17] Cycle time Not defined in primary study.
[S23] Cycle time Time it takes for x size story to be completed.
[S1] Defect count after

testing
Not defined in primary study. Probably
means amount of defects after first round of
testing.

[S25] Defect trend indi-
cator

Indicates if amount of defects in the coming
week will increase, stay the same or decrease
from this week.

[S7] Defects deferred Not defined in primary study. Probably
means the amount of defects that are known
but are not fixed for the release.

[S9] Effort estimate Estimated effort per story in ideal pair days.
[S12] Effort estimate Not clearly defined in primary study.
[S15,
S15,
S15,
S15]

Effort estimate Not defined in primary study.

[S17] Effort estimate
kits

Tasks are broken down into kits of two to five
staff-days of work.

[S19] Fault slips Amount of issues that should have been
found already in the previous phase.

[S5] Faults per itera-
tion

Faults per iteration.

[S13] Fix time of failed
build

Fix time of failed build.

[S19] Implemented vs
wasted require-
ments

Ratio of implemented requirements and
wasted requirements. Not all requirements
are always implemented but some work is put
into them, e.g., in the form of technical spec-
ification.

APPENDIX D. DEFINIONS OF METRICS 71

[S20] Inventory of re-
quirements over
time

Amount of requirements (features/work
items) in specific work phase over time.

[S18] Lead time The average time it takes for one request to
go through the entire process from start to
finish.

[S19,
S22]

Lead time Time it takes for requirement to go through
a sub-process or the whole process.

[S24] Lead time Not clearly defined in primary study.
[S19] Maintenance

effort
Costs related to fixing issues that have been
found and reported by customers.

[S7] Net Promoter
Score

Not defined in primary study. Probably mea-
sures how likely customers will recommend
the product to another customer.

[S5, S27,
S28]

Number of au-
tomated passing
test steps

Number of automated passing test steps.

[S17] Number of
bounce backs

Not defined in primary study. Probably the
amount of defects that should have not oc-
curred anymore if a root cause would have
been fixed earlier.

[S27] Number of new
and open defects

Number of new and open defects.

[S20] Number of re-
quests from
customers

Not defined in primary study.

[S1] Number of test
cases

Not defined in primary study.

[S3] Open defects Not defined in primary study.
[S8] Operations’

velocity
Not defined in primary study. Probably Op-
erations department’s completed story points
per time unit.

[S13] Percentage of sto-
ries prepared for
sprint

Percentage of stories prepared for sprint.

[S16] Planned velocity Not clearly defined in primary study.
[S25] predicted # of de-

fects
Predicted number of defects in backlog in the
coming week.

[S18] Processing time The time the request is being worked on by
one person or a team.

[S30] Progress as work-
ing code

Product is demonstrated to the customer
who then gives feedback.

[S23] Pseudo velocity Not clearly defined in primary study.

APPENDIX D. DEFINIONS OF METRICS 72

[S26] Queue Number of units remaining to be devel-
oped/processed by a given phase or activity.

[S18] Queue time The average time between sub-processes that
the request sits around waiting.

[S21] Rate of require-
ments per phase

Rate of requirements flow from a phase to
next phase.

[S16] Release burn-
down

Amount of work remaining till the release.

[S3] Remaining task
effort

Not defined in primary study.

[S21] Requirement’s
cost types

Cost distribution of a requirement.

[S11] Revenue per cus-
tomer

Amount of revenue from customer per fea-
ture.

[S1] Running tested
features

Not defined in primary study. Probably
means amount of features delivered to cus-
tomer that are passing unit tests.

[S16] Schedule perfor-
mance index

Not defined in primary study.

[S16] Sprint burndown Amount of work remaining till the end of
sprint.

[S29] Story complete
percentage

Not clearly defined in primary study.

[S29] Story estimate Estimated days to complete the story.
[S6] Story estimates Estimated time to develop a story.
[S13] Story flow per-

centage
Estimated implemention time per actual im-
plemention time * 100.

[S7] Story points Not defined in primary study.
[S8] Story points Estimated effort to complete the story in pro-

grammer days.
[S12] Task done Task done.
[S8] Task effort Estimated effort to complete the task in pro-

grammer hours.
[S12] Task’s expected

end date
Date when a task is estimated to be finished.

[S3] Team effective-
ness

Not defined in primary study.

[S4] Technical debt
board

Shows the status of each technical debt cat-
egory per team.

[S4] Technical debt in
effort

Technical debt in amount of hours it would
take to fix all the issues increasing techni-
cal debt calculated by third party tool called
Sonar.

APPENDIX D. DEFINIONS OF METRICS 73

[S14] Test coverage How much Source Code executed during Test
Execution.

[S3] Test failure rate Not defined in primary study.
[S14] Test growth ratio Difference of amount of tests per difference of

amount of Source Code.
[S3] Test success rate Not defined in primary study.
[S26] Throughput Number of units processed by a given phase

or activity per time.
[S21] Variance in han-

dovers
Changes in amount of handed over require-
ments.

[S2] Velocity Amount of developed scenarios per developer
per week.

[S6] Velocity Not defined in primary study.
[S8] Velocity Not defined in primary study.
[S10] Velocity Feature points developed per iteration.
[S13] Velocity of elabo-

rating features
Not clearly defined in primary study. Proba-
bly the time it takes to clarify a feature from
customer into requirements that can be im-
plemented.

[S13] Velocity of imple-
menting features

Not clearly defined in primary study. Proba-
bly the time it takes to implement a feature.

[S14] Violations of
static code analy-
sis

Amount of violations to static code analy-
sis rules from tools like Findbugs, PMD and
Checkstyle.

[S17] Work in progress Amount of features or feature level integra-
tions team is working on.

[S23] Work in progress Amount of stories per work phase.
[S24] Work in progress Amount of work items per phase.

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Structure of the thesis

	2 Background
	2.1 Agile software development
	2.2 Software measurement
	2.3 Systematic Literature Review

	3 Review method
	3.1 Protocol development
	3.2 Search and selection process
	3.3 Data extraction
	3.4 Data synthesis

	4 Results
	4.1 Overview of studies
	4.2 Quality evaluation of the primary studies
	4.3 Metrics
	4.4 Why are metrics used?
	4.4.1 Planning
	4.4.2 Progress tracking
	4.4.2.1 Project progress
	4.4.2.2 Simplify complexity and increase visibility
	4.4.2.3 Accomplishing project goals
	4.4.2.4 Balance workflow

	4.4.3 Understand and improve quality
	4.4.3.1 Understand level of quality
	4.4.3.2 Increase quality
	4.4.3.3 Ensure level of testing

	4.4.4 Identify problems

	4.5 What are the effects of metric use?
	4.5.1 Planning actions
	4.5.2 Reactive actions
	4.5.3 Motivate people
	4.5.4 Create improvement ideas

	4.6 Important metrics
	4.6.1 Important metrics in terms of statements
	4.6.2 List of important metrics

	5 Discussion
	5.1 Focus of metrics in agile development
	5.2 Findings on effects and reasons of metric use
	5.2.1 Negative effects of metric use
	5.2.2 Situative metrics
	5.2.3 Reasons for metric use

	5.3 Important metrics
	5.3.1 Characteristics of important metrics
	5.3.2 Important metrics

	5.4 Mapping metric use to agile principles
	5.5 Limitations

	6 Conclusions
	References
	Primary studies
	A Search strings
	B Inclusion and exclusion criteria
	C Quality assesment questions
	D Definions of metrics

