
Arturo Romero Blanco

Spanish Emotional Speech Synthesis

School of Electrical Engineering

Espoo 02.04.2014

Project supervisor:

Prof. Paavo Alku

Project advisor:

M.Sc. (Tech.) Tuomo Raitio

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80711932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


aalto university

school of electrical engineering

abstract of

the final

project

Author: Arturo Romero Blanco

Title: Spanish Emotional Speech Synthesis

Date: 02.04.2014 Language: English Number of pages:8+51

Department of Signal Processing and Acoustics

Professorship: Acoustic and audio signal processing Code: S-89

Supervisor: Prof. Paavo Alku

Advisor: M.Sc. (Tech.) Tuomo Raitio

In this project a text-to-speech (TTS) HMM-based speech system (HTS) has been
used to create emotional synthetic speech in Spanish. Nowadays the synthetic
voices have high quality, but this is not enough, they must be able to capture
the natural expressiveness of the human speech. Giving this expressiveness to the
synthetic voices will lead to a much more natural voice, that is the goal of these
systems.
To achieve this, both male and female voices will be used and two di�erent tech-
niques will be applied: dependent models and average voice models with adapta-
tion.
In this TTS system di�erent vocoders can be used. For this project GlottHMM
has been used and then three perceptual test have been carried out to compare it
with STRAIGHT vocoder.
The results of the perceptual tests shows that STRAIGHT is very robust and
that GlottHMM is not yet at its level regarding the emotional speech synthesis.
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1 Introduction

Speech synthesis is the arti�cial production of human speech. One of the biggest
challenges in this �eld is the production of naturally sounding synthetic voices. This
means that is not enough that the synthetic voices have high quality, they must also
be able to capture the natural expressiveness that the human speech has.

With the introduction of the human-machine interfaces, the interest in this �eld
have grown up, because the speech synthesis play an important role on them. Dif-
ferent applications such as as telecommunication services, language education, help
to people with disabilities, etc can be easily found. Thanks to this, studies on how
to improve its quality, naturalness, expressiveness, etc. have been done.

Expressive speech synthesis is a sub-�eld of speech synthesis that has been draw-
ing a lot of attention lately. So assign expressiveness (e.g. emotions or speaking
styles [1]) to the synthetic voices will lead, if succeeded, to a much more natural
voice, increasing the overall satisfaction of the end users of the applications.

One of the emotional speech synthesis main problems a few years ago was to
�nd a data base with enough data to train a robust model because emotional speech
is not easy to �nd, so it has to be recorded on purpose and in good conditions
So techniques like transplanting the emotions or the styles [1] to another speakers
have been tried in order to give emotions to speakers that have not an expressive
database.

Of the two main speech synthesis techniques (unit selection [2] and HMM based)
HMM based synthesis has been used in this project due to its parametric nature is
much more adaptable and adaptations techniques can be applied on them, so a big
amount of data is not required.

This project is focused on the production of emotional speech synthesis in Span-
ish, and it is focused on four emotions (anger, happiness, sadness and surprise) plus
the neutral speech. This will be done using a text-to-speech (TTS) system, where
the input is text with a special format (label) and the system generates the speech
waveform. The TTS system is composed by a vocoder (analysis/synthesis tool like
STRAIGHT or GlottHMM) and a training module.

This is not the �rst attempt to do such a thing, emotional speech synthesis has
been tried before and with the STRAIGHT vocoder. So the goal in this project
is the use of the GlottHMM vocoder developed in Helsinki, that has been proved
to be good in expressive speech recognition [3] and in resynthesis [4] and compare
it with STRAIGHT regarding the naturalness in emotional speech synthesis using
two di�erent techniques: dependent models and adaptation. In the �rst one each
emotion will be treated separately to produce synthetic voice meanwhile in the
second one all the data will be treated together to build and average model and
then an adaptation with the desired output emotion will be carried out.

The project is organized as follows:
The history of the speech synthesis is presented in Section 2. To understand the
complexity of a de�nition for emotion, emotional theory is explained in Section 3.
Information about the theory used in this project is presented in Sections 4 to7. In
Section 8 can be found the experiments that have been done and the steps followed
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to accomplish them. In Section 9 the results of the test performed with the synthesis
samples achieved in the experiment can be found and in Section 10 the discussion
and conclusion of this project are exposed.
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2 Speech Synthesis History

The earliest successful attempts to produce speech synthesis were made over two
hundred years ago [5]. For example, in 1779 by Professor Kratzensteint build some
apparatus that represented the human vocal tract to produce �ve long vowels due
to the physiological di�erences between the vowels. The apparatus were acoustic
resonators similar to the human vocal tract and he activated them with reeds like
the one used in musical instruments.

The �rst recorded success in connected speech synthesis was achieved by Wolf-
gang von Kempelen in 1791 when he completed the construction of his "Acoustic-
Mechanical Speech Machine" which was a ingenious pneumatic synthesizer (see Fig-
ure 1). The machine had a pressure chamber for the lungs, a vibrating reed to act

Figure 1: Kempelen Acoustic-Mechanical Speech Machine [6]

as vocal cords and a leather bag for the vocal tract action. Changing the shape
(by hand) of the leather bag di�erent vowel sounds were produced. Constants were
simulated by four separate constricted passages that were controlled by the �ngers.
There were also a couple of hiss whistles to allow the simulation of fricatives and
a pair of openings to simulate the nostrils. For plosive sounds a model of a vocal
tract that included a hinged tongue and movable lips was employed. To produce a
sequence of sounds that seems like speech a lot of practice was needed.

The connection between a speci�c vowel sound and the geometry of the vocal
tract was found in 1838 by Willis, who synthesized di�erent vowels with tube res-
onators and discovered that the quality of the vowel depended only on the length
of the tube and not on its diameter. Also in the late 1800's Alexander Graham
Bell constructed with his father same kind of speaking machine as the Wheastone's
speaking machine that was a reproduction of the Kempelen speaking machine with
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a few changes.
With the 20th century came the development of electronics and later of elec-

tronic resonators. There were a few attempts early in the century to use electronic
resonators in such a way that they could produce steady state vowels. An example
of this is the electrical synthesis device created by Stewart in 1922. The synthesizer
had a buzzer as excitation and two resonant circuits to model the acoustic reso-
nances of the vocal tract. The machine was able to generate single static vowels
sounds with two lowest formants, but not any consonants or connected utterances.
Obata and Teshima discovered the third formant in vowels. It is considered that
the three �rs formants are enough for intelligible synthetic speech. It was �nally in
the late 1930's when the work of Homer Dudley at the Bell Laboratories produced
the �rst electrical connected speech synthesizer.

Dudley developed two devices. One of them, the 'Voder' (Figure 2) was basically
a parallel array of ten electronic resonators arranged as contiguous band-pass �lters
spanning the important frequencies of the speech spectrum. It consisted of a wrist
bar for selecting a voicing or noise source and a foot pedal to control the fundamental
frequency. The source signal was routed through ten band-pass �lters whose output
gain were controlled via keyboard. A considerable skill was needed to play a sentence
on the device and the quality was not good, so in the end it was consider of little
practical value, but after the demonstration of the Voder the scienti�c world became
more and more interested in speech synthesis.

The other device Dudley made was called 'channel vocoder'. This channel
vocoder and all subsequent vocoders are basically analysis/synthesis devices. They
are divided into two halves, an analysis half and a synthesis half. The �st one anal-
yses an incoming speech signal and obtains certain parameters from that natural
signal. These parameters are passed as codes to the second half (synthesis) and
there they are used to resynthesize a synthetic version of the incoming speech. The
channel vocoder is the simplest of the vocoders. It is divided in two branches, one
of them determines if the signal is voice or unvoiced and if voiced it determines the
pitch. This information is used to produce a synthetic source. The other branch is a
bank of electronic resonators acting like band-pass �lters which measure the level of
the signal in each frequency band at each point in time. With this information the
synthetic source is produced (in the synthesis half of the vocoder) and is mixed with
a spectral envelope reconstituted from the �lter level values to produce synthetic
version of the original signal.

The vocoders were originally developed at the Bell Telephone Labs as devices
which allowed a signal to be coded more e�ciently and thus allowed more conversa-
tions at the same time in the telephone network. More other vocoder con�gurations
have been developed with simply �lter banks and rely on complex mathematical
transforms of the data (e.g Linear Prediction Coe�cient vocoders) or on the detec-
tion of the formants in the speech signal.
In 1951 the pattern play-back machine (Figure 3) was developed by Cooper, Liber-
man and Borst. It reconverted recorded spectrogram patters into sounds, either
original or modi�ed form.

In 1953 Walter Lawrence introduced the �rst formant synthesizer, PAT, which
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Figure 2: Dudley's Voder speech synthesizer [6]

looked similar to the pattern playback. It consisted of three electronic formant res-
onators connected in parallel and the input signal was either a buzz or noise. A
moving glass slide was used to convert painted patterns into six time functions to
control the three formant frequencies, voicing amplitude, fundamental frequency and
noise amplitude. At that time Gunnar Fant introduced the �rst cascade formant
synthesizer OVE I which consisted of formant resonators connected in cascade. Ten
years later he introduced an improve (OVE II) with Martony, which consisted on
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Figure 3: Pattern play-back machine [6]

separated parts to model the transfer function of the vocal tract for vowels, nasal,
and obstruent consonants.
In 1958 the �rst articulatory synthesizer (The DAVO) was introduced at the Mas-
sachusetts Institute of Technology by George Rosen. In mid 1960's the �rst exper-
iments with Linear Predictive Coding (LPC) were made, but it was �rst used in
low-cost systems and its quality was poor. With some modi�cations this method
has been found very useful.

In 1979 Allen, Hunnicutt and Klatt demonstrated the MITalk laboratory text to
speech system. Two years later Klatt introduced his Klattalk system, which used a
new sophisticated voicing source.

The �rst reading aid for blind people with an optical scanner was introduced in
1976 by Kurzweil. This system was capable to read quite well multiform written
text.

In the late 1970's a lot of commercial TTS and speech synthesis products were
introduced. The �rst integrated circuit was probably the Votrax chip which consisted
of cascade formant synthesizer and simple low-pass smoothing circuits. In 1980 The
LPC based Speak-n-Spell synthesizer based on low cost linear prediction synthesis
chip was introduced by Texas Instruments and it was used for an electronic reading
aid for children.

Modern speech synthesis technologies involve quite complicated and sophisti-
cated methods and algorithms. One of the methods applied "recently" in speech
synthesis is Hidden Markov Models (HMM, Section 4).
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3 Emotions

One of the biggest problems found in research about speech is its variability. The
intelligibility of the speech synthesizers is similar to the human one, but they do not
have the variability of human speech which makes synthetic voice sound no natural.

The emotion is not a simple phenomenon, a lot of factors contribute to this.
Emotions are experienced when something unexpected happens and the emotional
e�ects start to have control in those moments. So emotion can be also described as
the interface of the organism with the outside world, pointing three main emotion
functions:

• Re�ect the evaluation of the importance of a particular excitation in terms of
the organism necessities, preferences, etc.

• Prepare physiologic and physically the organism for the appropriate action.

• Notify the state of the organism and its intentions to other organisms that
surround it.

Emotion and mood are two di�erent concepts, while emotions happen suddenly
in response of a determined excitation and last seconds or minutes, the mood is
more ambiguous in its nature and can last hours or days.

A lot of the words used to de�ne emotions and its e�ects are necessary di�use
and are not clearly de�ned. This can be explained due to the di�culty for expressing
with words abstract concepts that can not be quanti�ed. For that reason, to describe
the characteristic of the emotions a group of emotive words are used, but most of
them are selected for personal choice.

The �rst researches about how the emotions a�ect to the behavior and the lan-
guage of the animals were brie�y described by Darwin in his book The Expression
of Emotion in Man and Animals [7]. Lately, the e�ects of the emotions in speech
have been studied by acoustic researchers that have analyzed the speech signal,
by linguist, that have studied the lexical and prosody e�ects, and by psychologist.
Thanks to them a lot of components present in emotions have been identi�ed. The
more important are: pitch, duration and voice quality.

The pitch (F0) is the fundamental frequency at which the vocal cords vibrates.
The characteristic of the pitch are some of the main source of information about
emotions. For example:

• The average value of F0 express the level of excitation of the speaker, so a
high average of F0 means a higher level of excitement.

• The range of F0 is the distance between the maximum and minimum value of
the F0. It also re�ects the level of excitation of the speaker.

• Fluctuations in F0, de�ned as the speed of the �uctuation between high and
low values and if they are blunt or soft.
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The duration is the component of prosody described by the speed of the speech
and the situation of the accents, and which e�ects are the rhythm and the speed.
Emotions can be distinguish for some features as:

• Speech speed: usually an excited speaker will reduce the duration of syllables.

• Number of pauses and its duration: an excited speaker will tend to speak
faster, with less and shorter pauses, while a depressed speaker will speak slower
and with bigger pauses.

• Quotient between speak and pauses time.

The quality of the speech can be distinguish by:

• Intensity: is related with the perception of the volume.

• Voice irregularities: the speech jitter re�ects the �uctuations of F0 of a glottal
pulse to the other (like in angry emotion) or the disappearance of speech in
some emotions (like sadness).

• The quotient between high and low frequencies: a big amount of energy in
high frequencies is associated with the angry emotion, while low amount of
energy is related with sadness.

• Breathiness and larynx e�ects re�ects the characteristics of the vocal tract
that are related with the customization of each voice.

Di�erent classi�cations have been given to the emotion: The emotions can be
divided into primary and secondary emotions [8].

• Primary emotions are those that are considered no acquired through experience
but through evolutionary processes. In this group the happiness, sadness, fear,
anger, surprise and disgust are found.

• Secondary emotions, are those that derive from previous ones through experi-
ence and cognitive modulation.

Joel Davitz and klaus Scherer classi�ed the emotions and its e�ects using three
edges of the semantic �eld:

• Power or Strength: corresponds to the attention or rejection, di�erentiating
between emotions started by a subject to the ones that appear of the environ-
ment.

• Pleasure or evaluation: according to the pleasant or unpleasant of the emotion.

• Activity: presence or absence of energy or tension
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Thank to some research it has been discovered that emotions with a same lever
of activity are easier to confuse that the ones that have a similar level of strength
or pleasure. So the activity is more related with simple hearing variables as tone or
intensity.

Some researchers have divided the emotions into two groups, so an emotion can
be:

• Active: which qualities are a low speech speed, low volume, low tone and a
more resonant timbre.

• Passive: which qualities are a high speech speed, high volume, high tone and
a "turned on" timbre.

Another classi�cation more simple and natural is divide the emotion in positive
or negative. Di�erent levels inside this classi�cation can be found.

More information about emotions like biological reasons can be found in [9].
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4 HMM

The Hidden Markov Model (HMM) is one the statistical time series model most
used in di�erent �elds. It has been used in speech recognition for years with great
success and also TTS systems has made substantial progress in the last years using
HMM.

A HMM is a �nite state machine which generates a sequence of discrete time
observations. At each time unit, the HMM change the state at Markov process with
a state transition probability and the generates observational data in accordance
with an output probability distribution of the current state.

A N-state HMM machine is de�ned by the state transition probability (A), the
output probability distribution (B) and initial state probability (Π). Typical HMM
structures can be seen in Figure 4.

Figure 4: Typical HMM structures [10]

The structure on the left of Figure 4 is a 3-state ergodic model, in which all
states can be reached by the others in a single transition. The structure on the right
is a 3-state left to right model, in which the state index simply increases or stays
depending on the time increment. This last model is often used as speech units to
model speech parameter sequences since they can appropriately model signals whose
properties successfully change.
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5 HMM-Based Speech Synthesis

Here an HMM-based text-to-speech system is described. In the HMM-based speech
synthesis, the speech parameters of a speech unit are statistically modeled and
generated using HMMs based on maximum likelihood criterion [10].

The main goal of the TTS system is to produce natural synthetic speech sound
including di�erent types of speaking styles and emotions. In order to achieve this
the system can be divided into two main parts: training and synthesis, as it is
illustrated in Figure 5. The analysis is considered as part of the training and is
where the features are extracted from the speech database. These features are then
modeled by HMM. In the synthesis part, the HMMs are concatenated according
to the analyzed input text (label) and speech parameters are generated from the
HMM, then the synthesis module transforms them into a speech waveform.

Figure 5: TTS overview [11]
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5.1 Training Part

As it has been seen in Section 5, this training part is divided into two stages: the
parametrization or feature extraction and the HMM training.

In the parametrization stage the input speech signal is compressed into a few
parameters. These parameters have to describe the characteristics of the signal as
accurately as possible. This stage is done in a di�erent ways depending on the
vocoder that is being used and will be explained in Section 6. For more detail see
[12] [4].

In the HMM training stage the features obtained are modeled simultaneously
by HMM. First of all monophone HMM models are trained in a 7-state left-to-right
structure with 5 emitting states (similar to Figure 4). All the parameters except
the F0 are modeled with continuous density HMMs by single Gaussian distributions
with diagonal covariance matrix. F0 is modeled with by a multi-space probabil-
ity distribution (MSD-HMM) [10] due to the conventional continuous or discrete
HMMs models can not be applied to F0 pattern modeling because F0 consist of
one-dimension continuous values and a discrete symbol that represents the unvoiced.
The state duration for each HMM are modeled with multidimensional Gaussian dis-
tributions [13]. For GlottHMM each feature is modeled in an individual stream and
for the F0 due to the MSD-HMM three streams are used, so the model has eight
streams. In order to smooth transitions between states in parameter generation the
delta and delta-delta coe�cients of each feature are calculated, so the total feature
order is 171.

After the training of the monophone HMMs, the monophone models are con-
verted into context dependent models. As the number of contextual factor increase,
their combination increase exponentially. This is a problem because with limited
training data the model parameters can not be accurately estimated and it is impos-
sible to cover all the combinations of contextual factors even with a prepared speech
database. To solve this, the models for each feature are clustered independently by
using a decision-tree based context clustering (Figure 6). In order to generate syn-
thesis parameters for new observations vectors that are not included in the training
data the clustering is also required.

5.2 Synthesis Part

In the synthesis part, the model created in the training part is used to generate
speech parameters according to a text input (label). With these parameters the
synthesis module is able to generate a speech waveform. So the synthesis part has
two stages: the parameter generation and the synthesis as is illustrated in Figure 7.

In the parameter generation stage, the text input is �rst converted into to a
context based label sequence by performing phonological and high level linguis-
tic. According to the decision trees generated in the training stage and the label
sequence, a sentence HMM is generated by concatenating the context dependent
HMMs. The state durations of the sentence HMM are determined so that they
maximize the likelihood of the state duration densities. With the sentence and the



13

Figure 6: Example of decision-tree based context clustering for some features [11]

state durations, a sequence of speech features are generated and then used by the
synthesis module to generate the speech waveform.

In the synthesis stage, as it has already been said, the speech waveform is gen-
erated according to the features generated in the �rst stage of the synthesis part.

The synthesis part also di�ers depending of the vocoder used, so it will be ex-
plained in Section 6.
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Figure 7: HMM-based generation process of speech parameters [12]
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6 Vocoders

Many di�erent vocoders have been developed to be applied with HMM-based speech
synthesis [4]. In this section two of them will be explained: GlottHMM and STRAIGHT
due to that they are the ones that are being compared in this project.

6.1 GlottHMM

The GlottHMM was proposed by Tuomo Raitio in [12] and [14]. GlottHMM esti-
mates the real glottal pulse signal G(z) an the vocal tract �lter V(z) associated with
it. So the speech signal can be represented as:

S(z) = G(z)V (z)L(z) (1)

where L(z) represents the lip radiation. All parts are estimated of real physical
properties. For example the glottal pulse signal can be divided into the source part
E(z) an the �lter containing the spectral envelope of the glottal pulse FG(z):

G(z) = FG(z)E(z) (2)

and so the vocal tract �lter can be expressed as:

V (z) =
F (z)

FG(z)L(z)
(3)

6.1.1 Analysis

To extract the parameters (analysis) of the speech signal GlottHMM follows this
steps:

• First, the speech signal is high-pass �ltered and windowed into �xed length
rectangular frames, from which the signal log energy is calculated as a feature
parameter.

• Second, the Iterative Adaptive Inverse Filtering (IAIF) algorithm illustrated
in Figure 8 and explained in [4], is applied to each frame and results in the
LPC representation of the vocal tract spectrum and and the waveform repre-
sentation of the voice source.

• The LPC spectral envelope estimate of the voice source is calculated , and
along with the LPC estimate of the vocal tract spectral envelope, is converted
into LSF representation.

• The glottal �ow waveform is used also for the acquisition of the F0 value as well
as the Harmonic-to-Noise Ratio (HNR) values for a predetermined amount of
sub-bands frequency.
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Figure 8: IAIF algorithm block diagram [12]

The output of the IAIF algorithm g(n) (estimated glottal �ow signal) is used to
generate the rest of the analysis parameters. A voicing decision is made based on the
amount of zero-crossing and low-band energy. For voiced frames, the autocorrelation
method is used to estimate the F0 value of the frame. The HNR is calculated from
g(n). For unvoiced frames the HNR and F0 are set to zero. To model the excitation
signal that is �ltered by the vocal tract �lter, the F0, HNR and the source LSF are
used .
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The �nal analysis vector of GlottHMM consists of single parameters for the F0
and log energy, around 5 parameters for HNR, 10-20 parameters for the glottal
source LSF parameters and 20-30 parameters for the vocal tract LSF parameters.

6.1.2 Synthesis

To perform the synthesis, GlottHMM uses a method for the excitation generation
based on the voiced/unvoiced decision instead of using a traditional mixed excitation
model. The synthesis block diagram is illustrated in Figure 9.

Figure 9: Synthesis block diagram for GlottHMM vocoder [4]

For the voiced frames, a �xed library pulse is obtained by glottal inverse �ltering
a sustained vowel signal. The library pulse is interpolated to match the target F0
value using cubic spline interpolation, and its energy is set to match the target gain
obtained from the analysis vector.

Next, a HNR analysis is done to the library pulse. For each sub-band, noise is
added to the real an imaginary parts of the FFT vector according to the di�erences
between the obtained and the target HNR values.

The spectrum of the library pulse is matched to the spectrum of the target
glottal pulse obtained from the analysis vector. The spectral matching is done
by performing LPC analysis to the library pulse, and then �ltering the obtained
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residual with the target synthesis �lter. Finally, the lip radiation e�ect is added to
the excitation by �ltering it with a �xed di�erentiator.

For unvoiced frames, the excitation is generated as white Gaussian noise whose
gain is set by the energy parameter of the analysis vector.

The excitation is combined in the time domain by overlap-adding target frames,
and the �nal synthetic signal is generated by �ltering the excitation with the vocal
tract �lter derived from the vocal tract LSFs obtained from the analysis vector.

6.2 STRAIGHT

STRAIGHT (Speech Transformation and Representation using Adaptive Interpola-
tion of weiGHT spectrum) is the more established of the more sophisticated vocoding
methods. Proposed by Kawahara in 1977, it has gone through extensive research
and development since then. Is often the main reference to which other vocoders in
HMM-based synthesis are compared, like in the case of this project.

For using HMM synthesis with STRAIGHT some modi�cations were made be-
cause of the high dimensionality of the parameters, and now the spectral envelope
is represented as mel-frequency cepstral coe�cients, and the corresponding aperiod-
icity measurements are averaged over �ve sub-bands frequency.

6.2.1 Analysis

In the parameter extraction (analysis) the main idea behind STRAIGHT is the ex-
traction of a smoothed spectral envelope, which minimized the e�ect of periodicity
interference in the analysis frames. So the spectral envelope is essentially inde-
pendent of the speech excitation, which is a great feature with respect to speech
transformation. The extraction of the spectral envelope can be found in [4].

The spectrum is represented as mel-frequency cepstral representation for the
purpose of statistical modeling. The aperiodicity measurements are also transformed
into a compressed representation.

The acquired analysis vector for STRAIGHT consists of the F0 value, 5 aperi-
odicity coe�cients and 20-40 spectral MFC coe�cients (MFCCs).

6.2.2 Synthesis

STRAIGHT synthesis is done in frame-by-frame basis by creating a mixed excitation
signal of the length of two pulse periods based on the F0 and aperiodicity measure-
ments. The harmonic pulse train is all-pass �ltered with a randomized group-delay
�lter, which reduces the buzziness of the resultant synthesis. The acquired mixed
excitation signal is convolved with the minimum phase Mel Log Spectrum Approxi-
mation (MLSA) �lter derived from the frame's spectral MFCCs. Finally, the Pitch-
Synchronous Overlap-Add (PSOLA) algorithm is applied to the synthesized frames
to get the speech waveform signal [4].

As illustrated in Figure 10, the components for the mixed excitation are gener-
ated by sub-band �ltering the voiced (impulse train) and unvoiced (white Gaussian
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Figure 10: Synthesis block diagram for STRAIGHT vocoder [12]

noise) parts separately in the frequency domain. The band-pass �lters used are de-
termined by the aperiodicity coe�cients so that the resultant sub-bands will have the
same average lower-to-upper envelope ratio as the respective aperiodicity coe�cient.

To adjust the phase characteristics of the excitation after the sub-band weighting,
the pulse train component is all-pass �ltered.
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7 Adaptation

There are several styles of adaptation which a�ect both the possible application and
the method of implementation. Firstly adaptation can be supervised in which case
accurate transcriptions are available for all the adaptation data, or unsupervised in
which case the required transcriptions must be hypothesis. Secondly, adaptation can
be incremental, where adaptation data becomes available in stages or batch-mode,
where all of the adaptation data is available from the start.

For cases where the adaptation data is limited, linear transform based schemes
are currently the most e�ective form of adaptation. These approaches use the acous-
tic model parameters and require a transcription of the adaptation data.

7.1 Maximum Likelihood linear Regression

In maximum likelihood linear regression (MLLR), a set of linear transformations are
used to map and existing model set such that the likelihood of the adaptation data
is maximized.

There are two main variants of MLLR:

• Unconstrained MLLR: where separate transforms are trained for the means
and variances. The e�ect of these transformations is to shift the component
means and alter the variances in the initial system so that each state in the
HMM system is more likely to generate the adaptation data.

• Constrained MLLR (CMLLR): where the transform for the mean and the
variance is the same. The e�ect of these transformations is to shift the feature
vector in the initial system so that each state in the HMM system is more
likely to generate the adaptation data.

CMLLR is the form of linear transform most often used for adaptive training even
with little amount of adaptation data[15]. For both forms of linear transformation,
the matrix transformation may be full, block-diagonal, or diagonal. CMLLR is only
implemented within HTK for diagonal covariance, continuous density HMMs due to
computational reasons.

7.2 Regression Class Trees

A powerful feature of linear transform-based adaptation is that it allows all the
acoustic models to be adapted using a variable number of transforms. When the
amount of data is limited, a global transform is applied to all the Gaussian com-
ponent in the model set, but as the amount of data increases, the HMM state
components can be grouped into regression classes with each class having its own
transform.

The number of transforms to use for any speci�c set of adaptation data can be
determined automatically using regression class trees as illustrated in Figure 11.
Each node represents a regression class (a set of Gaussian components that will



21

Figure 11: Regression class tree example [16]

share a single transform), the terminal nodes are called base classes. Then, for the
given set of adaptation data, the tree is descended and the most speci�c set of nodes
is selected for which there is enough data.

7.3 Maximum a Posteriori

It is possible to use standard statistical approaches to obtain robust parameter esti-
mates rather than looking for a form of transformation to represent the di�erences
between speakers. This is what maximum a posteriori (MAP) adaptation does. In
MAP a prior over the model parameters is used to estimate the model parameters
in addition to the adaptation data.

MAP adaptation e�ectively interpolates the original prior parameter values with
those that would be obtained from the adaptation data alone. As the amount of
adaptation data increases, the adaptation gets better and closer to the adaptation
domain.

A variation of this technique exist and it is called Structural MAP (SMAP) [17].
It improves the MAP estimates obtained when the amount of adaptation data is
small.

7.4 Adaptive Training

In the case of speaker independent, the training data includes large number of speak-
ers. Therefore, training an acoustic model with di�erent speakers "waste" a large
number of parameters encoding the variability between speakers rather than the
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variability between spoken words which is the true aim. So what it can be done
is to use adaptation transforms during the training step. This is known as speaker
adaptive training (SAT).

Figure 12: Speaker adaptive training example [16]

An example of this is illustrated in Figure 12. For each training speaker a
transform is estimated and then the canonical model is estimated given all of these
speaker transforms. The complexity of this method depend of the nature of the
adaptation transform that can be split in three groups [16]:

• Model independent: These schemes do not make explicit use of any model
information.

• Feature transformation: These transforms also act on the features but are
derived, normally using ML estimation, using the current estimate of the model
set.

• Model transformation: The model parameters, mean and possibly variances,
are transformed.

The most common version of adaptive training uses CMLLR, since it is the
simplest to implement.
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8 Experiments

In this section, the work that has been done will be explained.
The experiments has been carried out with both male and female voices, and two

di�erent methods have been applied (Dependent models, Section 8.1, Adaptation,
Section 8.2) in order to get the synthesized voices (Section 8.3).

Rergarding the vocoder, GlottHMM has been used and then the results have
been compared with the ones obtained with STRAIGHT (see Section 9).

8.1 Dependent models

The �rst step in this project was to build dependent models for each emotion, but
before some signal processing needed to be done, like sampling the audio �les from
44KHz to 16KHz. Once this is done, the process for building the dependent models
can be started.

In order to get these models the next steps were followed:

• Adjust GlottHMM con�guration �le (Section 8.1.1)

• Adjust HTS con�guration �le (Section 8.1.2)

• Extract features of the audio �les (Section 8.1.3)

• Train the voice (Section 8.1.4)

8.1.1 Con�guration File

GlottHMM use a con�guration �le to extract the features of an audio �le (see Section
6.1), and it is very important have a good con�guration to obtain good results after
the training.

To try the con�guration �le, what it is done is to extract the features of a �le
and then synthesize it without any training, this is usually called resynthesis. The
synthesized �le must be very similar to the original one.

A con�guration �le has been created for each emotion and for some of them the
result was better than with others, that is the reason why not all the emotions have
the same �nal quality. For example, with the anger emotions the synthesized �le is
not as similar to the original as the sad one, and this is re�ected in the �nal quality
of the voice after the training. This is illustrated in Figures 13, 14.

Looking into the di�erent con�guration �les for the di�erent emotions, some
little changes can be seen between them. These changes can be found in the f0
estimation of the analysis, where part of the emotion is located (see Section 3). The
rest of the con�guration �le is the same for all the emotions and it can be also �nd
the parameters that can be extracted in the analysis (can be true or false) or the
ones that will be used in the synthesis. An example of a con�guration �le can be
found in Appendix B.

In this f0 estimation some values can be tuned:
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Figure 13: Spectrogram for the angry emotion of the original �le (above) and the
synthetic �le after resynthesis (below)

• F0_MIN: Minimum fundamental frequency

• F0_MAX: Maximum fundamental frequency

• VOICING_THRESHOLD: Voicing threshold with respect to gain in the low-
frequency band, so the speech frames under this value will be classi�ed as
unvoiced

• ZCR_THRESHOLD: Zero-crossings threshold. Speech segments that have
more zero crossings than the threshold value are classi�ed as unvoiced

For the male voice the minimum f0 is between 30 and 50 Hz and the maximum
f0 is between 260 and 300 Hz, the voicing threshold is between 70 and 90, and
zero-crossing threshold is 110 or 120. For the female voice these values are totally
di�erent than for the male, for example the maximum f0 is bigger than in the case
of the male voice.
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Figure 14: Spectrogram for the sadness emotion of the original �le (above) and the
synthetic �le after resynthesis (below)

If all the f0 values obtained after the feature extraction (Section 8.1.3) of all the
�les used for training are plot, the di�erent f0 for each emotion can be plot. Some
examples for the male voice can be found in Appendix A.

8.1.2 HTS Con�guration File

In this con�guration �le the path where the features are going to be extracted is
given, and also the streams of features that are going to be used in the training. In
the experiment the next streams have been used:

• f0: fundamental frequency

• lsf1: spectral envelope LSFs

• gain1: gain

• �ow: source LSFs

• hnr_i: harmonic to noise ratio with bands

Looking into this �le or in the training script it can be seen that the dimension
(or size) of these streams is 31 for the lsf (10 for lsf, 10 for the delta coe�cients, 10
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for the delta-delta coe�cients and 1 for the gain), 10 for the �ow, 5 for the hnr and
1 for f0.

8.1.3 Feature Extraction

The next step is the feature extraction of the audio �les that are going to be used
in the training. The features that are going to be extracted can be selected in the
GlottHMM con�guration �le.

The streams that contains the features will be used in the training for building
the voice model, so the features have to represent the voice.

In the last step of the feature extraction, the cmp binary �les will be created.
These �les are vectors that contain the information extracted for each �le and will
be used in the training.

8.1.4 Training

Once the feature extraction is done the training step can be started. For this, a
folder with the features (cmp �les) and a folder with the time alignment labels is
needed.

The time alignment labels can be extracted using a front-end. For this a question
�le will be needed.

The training is HMM based with �ve states Gaussian and leaf nodes for the
di�erent trees (see Section 5). For each training two models are generated due to
a reclustering is applied to obtain better results. Once the training is done and
the models are created, one thing that can be done is to realign the training labels
using the model that has been created with the training step and train a new model
with this realigned labels. This can be done as much times as wanted, and in the
case of this project it has be done two times (so we have three rounds) with the
male voice in both cases (dependent models and average model) and with the female
voice just with the dependent models due to that with the female average model a
lot of computation time is needed (several weeks). For realigning the labels the tool
HSMMAlign was used.

So in the end a lot of models are generated due to the reclustering and the
realignment. For the dependent models 6 models are created, 2 for reclustering in
each training, and 3 trains are performed. In the case of the male average model
the same 6 models are created but the adaptation is done for each emotion with the
last one of the reclusterings models so in the end 3 models are generated for each
emotion ,so 15 models for the male average model.

As a test is going to be done some new utterances for it need to be synthesized
(see Section 9.1) and they have to be the best ones, so before the synthesis of these
utterances, one of the generated models has to be chosen as the best one. This has
been done as explained in Section 9.1.
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8.2 Adaptation

The adaptation consist of transfer the capabilities of one sepeaker to an average
voice model (in speaker adaptive training, sat) as is explained in Section 7. So
basically the steps that has to be followed are the same that with the previous
method (Section 8.1), with the di�erence that this time an average voice model has
been build with all the emotions to have a more robust model.

In order to do this, all the extracted features (cmp �les) for the previous method
will be placed in the same folder, and the same goes for the time alignment labels,
and the SAT �ag (Section 7.4) has to be set to one in the training script, so there
will be only one model (the average).

At this point is where the method di�ers from the previous one. Now is where
the adaptation take place. So an adaptation to this model has been done with every
emotion which generates a new model for each emotion. For doing the adaptation
the features of the �les used in the adaptation have to be extracted.

According to what was told in Section 7 the type of adaptation is supervised
and batch-mode, so di�erent adaptation techniques could have been applied here
like MLLR, CMLLR, MAP (see Section 7) or a combination of some of them. One
of these combinations is the one called CSMAPLR [18], that is a combination of
CMLLR, MAP and SMAP.

CSMAPLR make use of the information contained in the connections of the tree
structure of the HMMs, which leads into more stable prior information transference
into the adapted models. CMLLR do not do this as Figure 15 illustrates.

Figure 15: Di�erences between CMLLR and CSMAPLR [18]

The adaptation technique that has been used in this project is the CSMAPLR
adaptation followed by a MAP adaptation. For the CSMAPLR 256 regression tree
nodes have been used.

Two rounds of CSMAPLR have been used, followed by a MAP adaptation. Doing
this, the log probability per frame improves, which leads in a better adaptation.

The CSMAPLR adaptation can be tuned a little bit with some thresholds which
can change the depth of the adaptation, so the emotion level can be tuned with
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these thresholds. Also changing the regression tree nodes can a�ect the adaptation.
As the adaptation has been done using a good amount of data the regression trees
can be big, so a better node will be selected.

For the adaptation all the data of the training for one emotion have been used
to replicate the experiment that were done with STRAIGHT, but a big amount of
data is not required for a good adaptation using this technique.

8.3 Synthesis

Once the model are created the process for synthesis is the same in both cases with a
little exception when synthesizing labels that have not been seen during the training.
In the case of the dependent models (Section 8.1) the models has to be changed to
know these new labels, in the case of the adaptation these labels are given when
adapting, so the new models are created new them. For this change a HTK tool is
used and it is called HHEd [19].

When this is done, the �rst step is to extract the features of the label that is
going to be synthesized, as it was explained in 6.1, using the models created during
the training. This extraction is done with another tool called HMGenS. This tool
extracts the lsf, �ow,logF0 and hnr of the label �le.

The next step is to extract information of the extracted features to generate the
F0, LSF, LSFsource, HNR and GAIN to use the synthesis tool of GlottHMM to
generate the audio �le. When synthesizing, the global variance [20] (GV) can be
used or not. It compensates the over-smoothing e�ect.

Also for the synthesis the HTS engine can be used but it requires some transfor-
mations to the models.
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9 Results

In this section the results for the experiments explained in Section 8 will be showed.
Di�erent perceptual test has been carried out for male and female voiced evaluating
the two methods used for building the models (see Sections 8.1, 8.2).

9.1 Training and Test Data

For the di�erent methods and genres the amount of data have been di�erent.

9.1.1 Male voice

In both cases the speech data base used was recorded with a single male professional
voice actor. It is called SEV (Spanish Emotional Voices) and it consists of the four
emotions and the neutral speech.

For the di�erent techniques the amount of data for the male voice is:

• Dependent model (Section 8.1): the same amount of data has been used for
each emotion. The total amount of data per emotion is 489 utterances (around
one hour of recording speech)

• Adaptation model (Section 8.2): in this case the amount of data used for
the training was all the data of the dependent models, which is 2445 utter-
ances, and then all the data for each emotion (489 utterances) to perform the
adaptation.

Before synthesizing the test labels one of the created models has to be chosen
as the best, for that reason a validation test has been done with 15 utterances of
other speaker. Once the model has been chosen 20 utterances from the Albayzin
evaluation have been used for the perceptual test.

9.1.2 Female voice

For the female voice, a database with professional speech actors was used for building
the dependent models and for the average model the same database plus other two
amateur and two professional databases were used. In both cases the data used
contains four emotions and neutral speech. For the di�erent techniques the amount
of data for the female voice is:

• Dependent model (Section 8.1): with the female voice the amount of data is
not the same for each emotion, for the neutral emotion less utterances (504)
are used than with the other emotions (around 605 utterances).

• Adaptation model (Section 8.2): for the female voice, as it has less quality
and with the average model a more robust model is wanted, a lot of data was
used: all the data of the dependent models (2922 utterances) plus the data of
other databases (2808 utterances) , which makes a total of 5730 utterances.
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For the female voice no so many models have been created due to that in the
adaptation the amount of data is too big and it takes more than a week to perform
one training. In the dependent models the same models than in the male voice were
obtained but the realignment did not have good results in this case. The validation
and test utterances are the same as for the male voice. All this information is
compacted in Table 1.

PPPPPPPPPVoice

#utt
anger happiness neutral sadness surprise average validation test

Male 489 489 489 489 489 2445 15 20
Female 605 603 504 605 605 5730 15 20

Table 1: Number of utterances used in training, validation and test

9.2 Test

A perceptual test following the Latin Square testing strategy [21] has been done
through a web interface hosted in the Speech Technology Group (GTH) and dis-
tributed among family and friends without knowledge of the system details. It has
been recommended the use of headphones when doing the test.

As the purpose of the test is to compare GlottHMM with STRAIGHT the test
has been divided into two parts. In each part 20 sample utterances are presented. In
the �rst one the quality, the naturalness and the emotional strength of the vocoder
are tested, so two audio �les are showed (A and B) and the next questions are asked
in the test:

• Choose the �le that represent better the emotion (A or B)

• Choose the �le that is more natural (A or B)

• Choose for both �les the level of emotion (from very poor to very high)

• Choose for both �les the speech quality (from very poor to very high)

In the second one, the test is focused on the speaker voice, so it is asked to choose
the �le (A or B) with the voice more similar to the original speaker. In this second
part 4 reference audios with the original voice of the speaker are given to compare
with the synthetic voices.

In the test the listeners are not going to listen to all the audio �les, thanks to
the Latin Square strategy, so nobody has control over the test.

In order to obtain enough results, three test have been performed: one for the
male voice using the dependent models, another one for the female voice using the
dependent models and the last one for both male and female voices using the average
models with adaptation. The reason for doing the adaptation test together was the
di�culty to �nd listeners for the test.
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9.3 Perceptual Test Results

Here the results of the perceptual test for the two genres and the di�erent techniques
used are exposed. The tables with the values can be found in Appendix C.

9.3.1 Preference, Naturalness and Similarity

In this section three results will be studied:

• Preference: which of the �les (A or B) represent better the emotion.

• Naturalness: which of the �les (A or B) is more natural.

• Similarity: which of the �les (A or B) is more similar to the original speaker.

These results are illustrated in Figures 16, 17, 18 and 19 where PREF denotes
the preference of the �le, NAT the naturalness of the �le and SIM the similarity of
the �le (ST for STRAIGHT and Gl for GlottHMM) chosen by the listener.

Figure 16: Preference, Naturalness and Similarity for the male voice

As it can be seen in Figure 16, for all the emotions STRAIGHT is preferred over
GlottHMM, with the exception of the sadness emotion, where GlottHMM is close to
STRAIGHT regarding the preference. For the neutral speech GlottHMM is preferred
regarding the preference and tied with STRAIGHT regarding the naturalness and
the Similarity.

For the average male voice the situation is worst in general, excluding that in the
Similarity with happiness and sadness emotions GlottHMM is closer to STRAIGHT
that with the dependent model but below it.
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Figure 17: Preference, Naturalness and Similarity for the average male voice

Figure 18: Preference, Naturalness and Similarity for the female voice

Figure 18 shows that the situation for the female voice is worst than with the
male voice, GlottHMM in not even close to STRAIGHT. But in this case it seem
that the use of an average voice model helps, this can be seen in Figure 19, where
there is not preference between STRAIGHT and GlottHMM regarding the neutral
speech, although in the naturalness and the Similarity STRAIGHT is chosen, and
also in the sadness emotion there is not so much di�erent in the Similarity as in the
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Figure 19: Preference, Naturalness and Similarity for the average female voice

dependent model.

9.3.2 Emotional Strength

Here the emotional strength level will be compared for the two vocoders.

Figure 20: Emotional Strength for the male voice

Looking at Figure 20 it can be seen that the level of emotional strength is bigger
for the dependent models although the di�erence is greater for GlottHMM. For the
dependent model, the di�erence between the vocoders is practically non-existent for
both sadness and surprise emotions and for the neutral speech but in the average
voice model the di�erence is bigger and the two vocoders are similar only in the
neutral speech.



34

Figure 21: Emotional Strength for the female voice

For the female voice it can be seen in Figure 21 that the situation for STRAIGHT
is more or less the same for the dependent model and better in some emotions
comparing with the male voice. It can be also appreciated that the anger emotion is
stronger in the female voice. Of the two methods for the female voice just the neutral
speech of the dependent model is similar in both vocoders and in the emotions
STRAIGHT has higher level of strength.

More information can be obtained from the boxplots (appendix D), where it
can be seen the median for all the emotions and neutral speech, and also where is
the 95% of the data concentrated. Also the maximum and minimum values as the
outliers (represented as circles) can be seen.

9.3.3 Speech Quality

In this section the Mean Opinion Score (MOS) is presented in Figures 22 and 23
and also in the boxplots that can be found in Appendix D.

In a �rst look at Figures 22 and 23 it can be seen that STRAIGHT has a
better speech quality than GlottHMM, and that it is in general good. In this case
GlottHMM only evens STRAIGHT in the neutral speech of the male dependent
model. It can also be appreciated that the speech quality of the female voice is
worst in GlottHMM. In STRAIGHT this di�erence between genres is not big, and
as it can be seen is just for the sadness emotion, that improves in the average voice
model.

The speech quality of GlottHMM is acceptable according to the results of the
test for the male voice, and for the female voices is not always acceptable, but it is
known that the GlottHMM works better with male voices.

The bloxpots for the speech quality can be found in Appendix D.
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Figure 22: Speech Quality for the male voice

Figure 23: Speech Quality for the female voice



36

10 Discussion and Conclusion

10.1 Discussion

Although the test said that STRAIGHT is better regarding the emotional strength,
one thing that can be appreciated listening the synthetic voices for both vocoders
is that the STRAIGHT voices have more gain (they are louder) that GlottHMM
ones, and this can make the test listeners think that in some cases the emotional
strength is higher, or it can help to select STRAIGHT in the similarity test when
the decision is not clear enough. This di�erence is bigger in the female voices.

As it has been told in this project a lot of data have been used to match the
experiments that were done with STRAIGHT, but the main point of adaptation is
that it does not need as much data to perform a good adaptation. Similar quality
can be obtained with less adaptation data.

10.2 Conclusion

The main conclusion that can be extracted of this project given the results of the
perceptual test is that regarding the emotional speech synthesis GlottHMM is not
yet at the level of STRAIGHT that has been proved very robust in all the situations.

The neutral speech is very similar or even better in GlottHMM that STRAIGHT
for the dependent models and the male voice. For this dependent models in male
voices GlottHMM emotional strength is similar to the STRAIGHT (not for the anger
and happiness emotions), but in the speech quality is better STRAIGHT regarding
the emotions.

As it was already known, the results for the male voice with GlottHMM are better
than the ones with the female voice. This is due to the higher the frequency the less
important the glottal pulse becomes, and female voices have a higher frequency.
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A F0 examples

Figure A1: Male F0 representation
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B GlottHMM Con�guration File Example

The GlottHMM con�guration �le showed in this section corresponds to the sadness
emotion.

1 #########################################################
2 # Sadness c on f i g u r a t i on f i l e f o r GlottHMM ( v . 1 . 0 . 7 ) #
3 #########################################################
4

5 # Analys i s and Syn the s i s : Common parameters :
6 SAMPLING_FREQUENCY = 16000;
7 FRAME_LENGTH = 25 . 0 ;
8 UNVOICED_FRAME_LENGTH = 20 . 0 ;
9 F0_FRAME_LENGTH = 45 . 0 ;
10 FRAME_SHIFT = 5 . 0 ;
11 LPC_ORDER = 30 ;
12 LPC_ORDER_SOURCE = 10 ;
13 WARPING_VT = 0 . 0 ;
14 WARPING_GL = 0 . 0 ;
15 HNR_CHANNELS = 5 ;
16 NUMBER_OF_HARMONICS = 10 ;
17 SEPARATE_VU_SPECTRUM = f a l s e ;
18 DIFFERENTIAL_LSF = f a l s e ;
19 LOG_F0 = f a l s e ;
20 DATA_FORMAT = "ASCII" ; #

Choose between "ASCII" / "BINARY"
21

22 # Noise reduc t i on
23 NOISE_REDUCTION_ANALYSIS = f a l s e ;
24 NOISE_REDUCTION_SYNTHESIS = f a l s e ;
25 NOISE_REDUCTION_LIMIT_DB = 2 . 0 ;
26 NOISE_REDUCTION_DB = 30 . 0 ;
27

28 # Analys i s :
29 # Analys i s : General parameters :
30 PITCH_SYNCHRONOUS_ANALYSIS = true ;
31 INVERT_SIGNAL = true ; #

Remember to s e t t rue e . g . f o r MV vo i ce (
i t ' s i n v e r t e d )

32 HP_FILTERING = true ;
33 HPFILTER_FILENAME = "/home/

romeroa2/GlottHMM/glott_anasyn/hp_16khz" ;
34

35 # Analys i s : Parameters f o r F0 es t imat i on :
36 F0_MIN = 30 . 0 ;
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37 F0_MAX = 300 . 0 ;
38 VOICING_THRESHOLD = 90 . 0 ;
39 ZCR_THRESHOLD = 120 . 0 ;
40 USE_F0_POSTPROCESSING = true ;
41 RELATIVE_F0_THRESHOLD = 0 . 0 0 5 ;
42 F0_CHECK_RANGE = 10 ;
43 USE_EXTERNAL_F0 = f a l s e ;
44 EXTERNAL_F0_FILENAME = " f i l ename . F0

" ;
45

46 # Analys i s : Parameters f o r e x t r a c t i n g pu l s e
l i b r a r i e s :

47 MAX_NUMBER_OF_PULSES = 10000;
48 PULSEMAXLEN = 45 . 0 ;
49 RESAMPLED_PULSELEN = 10 . 0 ;
50 WAVEFORM_SAMPLES = 10 ;
51 MAX_PULSE_LEN_DIFF = 0 . 0 5 ;
52 EXTRACT_ONLY_UNIQUE_PULSES = true ;
53 EXTRACT_ONE_PULSE_PER_FRAME = true ;
54

55 # Analys i s : Parameters f o r s p e c t r a l modeling :
56 USE_IAIF = true ;
57 LPC_ORDER_GL_IAIF = 8 ;

# Order o f the LPC ana l y s i s f o r
vo i c e source in IAIF

58 USE_MOD_IAIF = true ;
# Modif ied ve r s i on o f IAIF

59 LP_METHOD = "LPC" ;
# Se l e c t between "LPC" / "WLP" /

"XLP"
60 LP_STABILIZED = f a l s e ;
61 LP_WEIGHTING = "GCI" ;

# Se l e c t between "STE" / "GCI"
62 FORMANT_PRE_ENH_METHOD = "NONE" ;

# Se l e c t between "NONE" / "LSF" /
"LPC"

63 FORMANT_PRE_ENH_COEFF = 0 . 8 ;
64 FORMANT_PRE_ENH_LPC_DELTA = 20 . 0 ;

# Only f o r LPC−based method
65

66 # Analys i s : S e l e c t parameters to be e x t r a c t e d :
67 EXTRACT_F0 = true ;
68 EXTRACT_GAIN = true ;
69 EXTRACT_LSF = true ;
70 EXTRACT_LSFSOURCE = true ;
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71 EXTRACT_HNR = true ;
72 EXTRACT_HARMONICS = true ;
73 EXTRACT_H1H2 = true ;
74 EXTRACT_NAQ = true ;
75 EXTRACT_WAVEFORM = f a l s e ;
76 EXTRACT_INFOFILE = true ;
77 EXTRACT_PULSELIB = f a l s e ;
78 EXTRACT_SOURCE = f a l s e ;
79

80 # Syn the s i s :
81 # Syn the s i s : General parameters :
82 SYNTHESIZE_MULTIPLE_FILES = f a l s e ;
83 SYNTHESIS_LIST = "

syn the s i s_ l i s t_ f i l ename " ;
84 USE_HMM = f a l s e ;
85

86 # Syn the s i s : Choose e x c i t a t i o n t echn i que and r e l a t e d
parameters :

87 USE_PULSE_LIBRARY = f a l s e ;
88 GLOTTAL_PULSE_NAME = "/home/

romeroa2/GlottHMM/glott_anasyn/ gpu l se " ;
89 PULSE_LIBRARY_NAME = "/home/

t r a i t i o /Desktop/ pu l s e l i b r a r y /
pu l s e_ l i b r a r i e s / lpc5 / lpc5 " ;

90 NORMALIZE_PULSELIB = f a l s e ;
91 USE_PULSE_CLUSTERING = f a l s e ;
92 USE_PULSE_INTERPOLATION = true ;
93 AVERAGE_N_ADJACENT_PULSES = 1 ;
94 ADD_NOISE_PULSELIB = f a l s e ;
95 MAX_PULSES_IN_CLUSTER = 2000 ;
96 NUMBER_OF_PULSE_CANDIDATES = 200 ;
97 PULSE_ERROR_BIAS = 0 . 3 ;
98 MELSPECTRUM_CHANNELS = 22 ;
99 CONCATENATION_COST = 0 . 1 ; # 2.0
100 TARGET_COST = 1 . 0 ;
101 PARAMETER_WEIGHTS = [ 0 . 2 , 0 . 2 ,

0 . 0 , 0 . 05 , 0 . 1 5 , 0 . 4 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ] ;
102 #PARAMETER_WEIGHTS = [0 . 0 , 1 .0 ,

1 .0 , 2 .0 , 3 .0 , 5 .0 , 1 .0 , 1 .0 , 1 .0 , 0 . 0 ] ;
103 # Parameter names [LSF SRC

HARM HNR GAIN F0 WAV H1H2 NAQ PCA/
ICA]

104

105 # Syn the s i s : S e l e c t used parameters :
106 # F0 , Gain , and LSFs are always used
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107 USE_LSFSOURCE = true ;
108 USE_HNR = true ;
109 USE_HARMONICS = f a l s e ;
110 USE_H1H2 = f a l s e ;
111 USE_NAQ = f a l s e ;
112 USE_WAVEFORM = f a l s e ;
113 USE_MELSPECTRUM = f a l s e ;
114 USE_PULSE_PCA = f a l s e ;
115

116 # Syn the s i s : Set l e v e l and band o f vo i ced no i se :
117 NOISE_GAIN_VOICED = 0 . 0 1 ;
118 NOISE_LOW_FREQ_LIMIT = 2400 . 0 ;

# Hz
119

120 # Syn the s i s : Smoothing o f parameters f o r ana l y s i s−
s yn t h e s i s :

121 LSF_SMOOTH_LEN = 5 ;
122 LSFSOURCE_SMOOTH_LEN = 3 ;
123 GAIN_SMOOTH_LEN = 5 ;
124 HNR_SMOOTH_LEN = 15 ;
125 HARMONICS_SMOOTH_LEN = 5 ;
126

127 # Syn the s i s : Gain r e l a t e d parameters :
128 GAIN_UNVOICED = 1 . 0 ;
129 NORM_GAIN_SMOOTH_V_LEN = 0 ;
130 NORM_GAIN_SMOOTH_UV_LEN = 0 ;
131 GAIN_VOICED_FRAME_LENGTH = 25 . 0 ;
132 GAIN_UNVOICED_FRAME_LENGTH = 20 . 0 ;
133

134 # Syn the s i s : P o s t f i l t e r i n g :
135 POSTFILTER_METHOD = "LSF" ; #

Se l e c t between "NONE" / "LSF" / "LPC"
136 POSTFILTER_COEFFICIENT = 0 . 6 ;
137

138 # Syn the s i s : U t i l s :
139 USE_HARMONIC_MODIFICATION = f a l s e ;
140 HP_FILTER_F0 = f a l s e ;
141 FILTER_UPDATE_INTERVAL_VT = 0 . 3 ;
142 FILTER_UPDATE_INTERVAL_GL = 0 . 0 5 ;
143 WRITE_FFT_SPECTRA = true ;
144 WRITE_EXCITATION_TO_WAV = f a l s e ;
145

146 # Syn the s i s : Voice adap ta t ion :
147 PITCH = 1 . 0 ;
148 SPEED = 1 . 0 ;
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149 JITTER = 0 . 0 ;
150 ADAPT_TO_PULSELIB = f a l s e ;
151 ADAPT_COEFF = 1 . 0 ;
152 USE_PULSELIB_LSF = f a l s e ;
153 NOISE_ROBUST_SPEECH = f a l s e ;
154

155 # Syn the s i s : Pulse l i b r a r y PCA/ICA:
156 USE_PULSELIB_PCA = f a l s e ;
157 PCA_ORDER = 12 ;
158 PCA_ORDER_SYNTHESIS = 12 ;
159 PCA_SPECTRAL_MATCHING = true ;
160 PCA_PULSE_LENGTH = 400 ;
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C Test Details

In this appendix the tables used to build the graphics of Section 9 are shown.

C.1 Male Dependent Model Tables

STRAIGHT MOS GlottHMM MOS STRAIGHT ES GlottHMM ES

Happiness 3.98 3.1 3.95 3.29
Anger 3.89 2.85 3.87 2.66
Neutral 3.83 3.66 3.66 3.78
Surprise 4.07 3.02 3.82 3.47
Sadness 3.94 3.19 3.28 3.33

Table C1: Male MOS and ES

PREF-ST PREF-Gl NAT-ST NAT-Gl SIM-ST SIM-Gl

Happiness 87% 13% 77% 23% 73% 27%

Anger 93% 7% 78% 22% 62% 38%

Neutral 44% 56% 51% 49% 50% 50%

Surprise 75% 25% 81% 19% 75% 25%

Sadness 53% 47% 73% 27% 71% 29%

Table C2: Male Preference, Naturalness and Similarity

C.2 Male Average Model Tables

STRAIGHT MOS GlottHMM MOS STRAIGHT ES GlottHMM ES

Happiness 3.77 3.05 3.57 2.8
Anger 3.75 3.02 3.57 2.55
Neutral 3.56 3.16 3.56 3.38
Surprise 3.8 2.89 3.56 2.65
Sadness 3.69 3.04 3.53 2.8

Table C3: Average Male MOS and ES

PREF-ST PREF-Gl NAT-ST NAT-Gl SIM-ST SIM-Gl

Happiness 84% 16% 82% 18% 59% 41%

Anger 93% 7% 80% 20% 64% 36%

Neutral 56% 44% 56% 44% 73% 27%

Surprise 89% 11% 78% 22% 69% 31%

Sadness 75% 25% 80% 20% 53% 47%

Table C4: Average Male Preference, Naturalness and Similarity
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C.3 Female Dependent Model Tables

STRAIGHT MOS GlottHMM MOS STRAIGHT ES GlottHMM ES

Happiness 4.17 2.78 4.01 2.89
Anger 3.79 3.04 3.71 3.19
Neutral 4.10 2.95 3.71 3.42
Surprise 3.95 2.82 3.95 3.08
Sadness 3.40 2.18 3.64 2.99

Table C5: Female MOS and ES

PREF-ST PREF-Gl NAT-ST NAT-Gl SIM-ST SIM-Gl

Happiness 93% 7% 88% 12% 80% 20%

Anger 77% 23% 74% 26% 65% 35%

Neutral 68% 32% 82% 18% 68% 32%

Surprise 83% 17% 83% 17% 86% 14%

Sadness 79% 21% 77% 23% 77% 23%

Table C6: Female Preference, Naturalness and Similarity

C.4 Female Average Model Tables

STRAIGHT MOS GlottHMM MOS STRAIGHT ES GlottHMM ES

Happiness 3.89 2.8 4.09 2.41
Anger 3.55 2.84 3.37 2.82
Neutral 3.61 2.89 4.02 3.33
Surprise 3.96 2.69 3.58 2.64
Sadness 3.09 2.64 3.69 2.8

Table C7: Average Female MOS and ES

PREF-ST PREF-Gl NAT-ST NAT-Gl SIM-ST SIM-Gl

Happiness 94% 6% 85% 15% 69% 31%

Anger 96% 4% 71% 29% 67% 33%

Neutral 50% 50% 63% 37% 80% 20%

Surprise 96% 4% 89% 11% 75% 25%

Sadness 78% 22% 73% 27% 56% 44%

Table C8: Average Female Preference, Naturalness and Similarity
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D Boxplots

Figure D1: Boxplot Representation for male ES

Figure D2: Boxplot Representation for male MOS
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Figure D3: Boxplot Representation for average male ES

Figure D4: Boxplot Representation for average male MOS
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Figure D5: Boxplot Representation for female ES

Figure D6: Boxplot Representation for female MOS
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Figure D7: Boxplot Representation for average female ES

Figure D8: Boxplot Representation for average female MOS
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