
Jukka Asikainen

OPC UA Java History Gateway with
Inherent Database Integration

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of

Science in Technology.

Espoo 2.4.2014

Thesis supervisor:

D.Sc.(Tech.) Ilkka Seilonen

Thesis advisor:

M.Sc.(Tech.) Jouni Aro

aalto university

school of electrical engineering

abstract of the

master's thesis

Author: Jukka Asikainen

Title: OPC UA Java History Gateway with Inherent Database Integration

Date: 2.4.2014 Language: English Number of pages:7+62

Department of Automation and Systems Technology

Professorship: Information and Computer Systems in Automation Code: AS-116

Supervisor: D.Sc.(Tech.) Ilkka Seilonen

Advisor: M.Sc.(Tech.) Jouni Aro

OPC Uni�ed Automation is a highly-developed information modelling and
managing framework in use in the automation industry. OPC UA takes into
account the communication, data modelling and security aspects w.r.t informa-
tion exchange between devices in the factory �oor. In practice the information
exchange is done between server and client instances. Of these, servers hold the
process data, and clients access it. An intermediate gateway is developed, which
accesses (and allows managing) several other servers from a single instance.

The storing of process data within the OPC UA framework is another main topic
of this thesis. The thesis presents an SQL data model to storing time series
process data acquired from multiple servers. The data itself is modelled using
the OPC UA semantics. Additionally, the connectivity and data mapping to few
SQL implementations is solved.

A solution addressing both the storing and integration aspects is introduced in
the form of the OPC UA History Gateway. The OPC UA History Gateway
illustrates capabilities of the OPC UA framework in the data acquisition and
device integration in the modern automation environment. The implemented
(prototype) solution is shown to aggregate and store plant �oor device informa-
tion. The OPC UA History Gateway also provides trend data to clients, making
more re�ned data analysis possible.

Keywords: OPC UA Gateway, Java, SQL, OPC UA History Data

aalto-yliopisto

sähkotekniikan korkeakoulu

diplomityön

tiivistelmä

Tekijä: Jukka Asikainen

Työn nimi: OPC UA Java Historia-Gateway ja tietokantaintegraatio

Päivämäärä: 2.4.2014 Kieli: Englanti Sivumäärä:7+62

Automaatio- ja systeemitekniikan laitos

Professuuri: Automaation tietotekniikka ja -järjestelmät Koodi: AS-116

Valvoja: TkT. Ilkka Seilonen

Ohjaaja: DI Jouni Aro

OPC Uni�ed Automation on automaatioteollisuudessa käytetty määrittely tiedon
mallintamiseen ja hallintaan. Määrittely kuvaa mm. kommunikoinnin, tiedon
mallintamisen ja turvallisen tiedonsiirron automaatiolaitteiden välillä. Tiedonsi-
irto tapahtuu palvelimien ja näihin yhteydessä olevien asiakassovellusten välillä.
Työssä toteutetaan eräänlainen välityspalvelin (gateway) tiedon kokoamiseen.
Välityspalvelin on yhteydessä useisiin muihin palvelimiin, joiden tietoja voi
käsitellä sen kautta.

Työn toinen tärkeä osa-alue on prosessitiedon tallentaminen SQL tietokantaan.
Tähän tarkoitukseen työssä esitellään tietokannan rakenne, joka mahdollistaa
OPC UA:lla mallinnetun tiedon tallentamisen (ja palauttamisen). Työssä myös
toteutetaan prosessitiedon tallennus ja luku tietokannasta Javaa ja OPC UA:ta
käyttäen. Samalla ratkaistaan osittainen OPC UA tietomallin esittäminen SQL
tietokannassa.

Työn ratkaisuna on prototyyppi OPC UA historiavälityspalvelimesta. Palvelin
kokoaa useiden OPC UA palvelimien tietoja yhteen palvelimeen ja kykenee
näin yhdistämään laitetietoja laajalta alalta. Palvelin myös tarjoaa aikasarjoja
(pysyvästi) tallennetusta prosessidatasta, mikä mahdollistaa kehittyneemmän
tiedon analysoinnin.

Avainsanat: OPC UA välityspalvelin, OPC UA historiadata, Java, SQL

iv

Preface

This thesis is fruit of long labour in the Helsinki University of Technology, lately part
of the Aalto University under the name of School of Electrical Engineering. Dawning
of a day, which contains my completed Master's Thesis, has not been self-evident
throughout the years.

Thus, for the completion of this thesis, I want to thank my instructor Jouni Aro
for guidance, advice and the vast amount of mentoring needed in the completion of
this thesis. I want also to thank all the colleagues in Prosys PMS Ltd for creating
friendly and easy-going atmosphere to work in (bad jokes included, for which I may
also be held responsible), and for the ideas regarding this thesis. My gratitude goes
also to Ilkka Seilonen, my supervisor, for helpful advice, comments and requirements
on the thesis in progress and in the �nal stages. Finally, I want to thank mother for
everlasting support and encouragement.

The most general precept I tried arduously to keep in mind through all of the
writing of this thesis, is a quote by certain Ludwig Wittgenstein: 'Everything that
can be said can be said clearly'. I can only hope to have achieved a tiny fraction of
this in the following pages.

Otaniemi, 2.4.2014

Jukka Asikainen

v

Contents

Abstract ii

Abstract (in Finnish) iii

Preface iv

Contents v

Symbols and Abbreviations vii

1 Introduction 1
1.1 Background . 1
1.2 Objectives . 2
1.3 Research Methods . 3
1.4 Structure of Work . 3

2 OPC Uni�ed Architecture 5
2.1 Introduction and History . 5
2.2 OPC UA System Architecture . 6

2.2.1 Client-Server Pattern . 6
2.2.2 Aggregating Server . 7

2.3 OPC UA Application Architecture 7
2.4 OPC UA Speci�cation . 8

2.4.1 Address Space . 8
2.4.2 Services . 10
2.4.3 Data Access . 11
2.4.4 Events . 13
2.4.5 Historical Access . 13

2.5 Conclusion . 15

3 Structured Query Language (SQL) Framework 16
3.1 Relational Model . 16

3.1.1 Relation and Structure . 16
3.1.2 Integrity Constraints . 16
3.1.3 Transaction . 17

3.2 Standardized SQL . 17
3.2.1 Schema . 18
3.2.2 Data Types . 18
3.2.3 Statements . 19

3.3 SQL Concepts . 20
3.3.1 Index . 20
3.3.2 Normalization . 21

vi

4 Comparison of Database Management Solutions 22
4.1 Introduction . 22
4.2 SQL Server . 22
4.3 MySQL . 24
4.4 PostgreSQL . 26
4.5 Full-�edged Solutions . 26
4.6 Conclusion . 28

5 Database Connectivity and Object Persistence in Java 30
5.1 Introduction . 30
5.2 Object-Relation Mapping Problem 30
5.3 Hibernate . 31

5.3.1 Architecture . 31
5.3.2 Hibernate Solutions to Object-Relation Mapping Problem . . 33

5.4 Java Database Connectivity (JDBC) 34
5.5 Conclusion . 35

6 OPC UA History Gateway 37
6.1 Introduction . 37
6.2 Use Cases . 37
6.3 Requirements . 37
6.4 Solution Foundation . 38
6.5 Solution Overview . 38
6.6 Relaying of OPC UA Service Calls 40
6.7 SQL Integration . 42

6.7.1 JDBC-based Interface and Database Con�guration 43
6.7.2 SQL Data Model . 43

6.8 Future Possibilities and Features . 47

7 Conclusions 49

References 51

Appendix A: Create MonitoredItem Service Implementation 55

Appendix B: Loading and Storing SQL Commands 59

Appendix C: History Gateway Data Type Casting 62

vii

Symbols and Abbreviations

Abbreviations

A&E Alarms & Events
ANSI American National Standards Institute
API Application Programming Interface
COM Component Object Model
DA Data Access
DBMS Database Management Systems
DCOM Distributed Component Object Model
DDL Data De�nition Language
DML Data Manipulation Language
ER Entity-Relationship
ERP Enterprise Resource Planning
HA High Availability
HTTP Hypertext Transfer Protocol
IEC International Electrotechnical Commission
ISA International Society of Automation
ISO International Organization for Standardization
JDBC Java Database Connectivity
MES Manufacturing Execution System
ODBMS Object Database Management Systems
OLE Object Linking and Embedding
OPC OLE for Process Control
O/RM Object-Relational Mapping
PCMS Process Control Monitoring System
PLC Programmable Logic Controller
RDBMS Relational Database Management Systems
RM/V2 Relational Model: Version 2
SOA Service-oriented Architecture
SOAP Simple Object Access Protocol
SCADA Supervisory Control and Data Acquisition
SDK Service Development Kit
SQL Structured Query Language
TCP Transmission Control Protocol
UA Uni�ed Architecture
UML Uni�ed Modelling Language
URI Uniform Resource Identi�er
XML Extensible Markup Language

1 Introduction

1.1 Background

The �ow of information between layers of automation devices is vital to the e�ective
management and control of the modern industrial environment. As the data that
automation devices gather from their environment increases, so does the need to
integrate this information into higher levels of the plant management infrastructure.
With the rise of the manufacturing management systems (e.g. ERP (Enterprise
Resource Planning), MES (Manufacturing Execution Systems), and SCADA (Su-
pervisory Control and Data Acquisition) etc.), this information can be e�ectively
used to maintain a real-time status of plant activities, ultimately enabling decision-
making processes based on accurate data.

Figure 1: The hierarchical representation of layers in a typical industrial scheme [1,
p. 334]

Figure 1 illustrates the typical hierarchy and operations of the aforementioned
industrial environment. [2] In the schema the environment is divided into �ve levels:
Level 0 represents the physical reality in which the process operates. Level 1 de�nes
available methods to a�ect and observe that process. Level 2 de�nes the control
of the process and is highly intertwined with level one. Levels 1 and 2 together
usually form the automation system, which is controlled by PLC (Programmable
Logic Controller) and SCADA systems. Level 3 contains the coordination of the
production resources at the scale of single items and is often managed by MES.
Finally, Level 4 describes business functions used to capitalize the end product.
ERP systems are designed to handle operations at this level.

2

With the help of the OPC UA (OPC Uni�ed Architecture; details and de�nition
of the framework are introduced in Section 2), the environment can be modelled more
extensively in the lower levels of the hierarchy, and the management of the industrial
plant in much �ner detail becomes feasible. Thus integration of the levels from two
upwards (cf. Figure 1) is eased. OPC UA is a powerful information modelling
framework: it handles communication between devices, contains a highly developed
semantic information model and acts as a speci�cation to building software. The
communication is handled with specialized service calls in the same manner as in
modern Web Services, using modern network protocols.

The integration of the industrial environment is handled in practice with software
such as OPC UA History Gateway. Gateways in general gather automation device
data into a single container, which can be easily accessed from other parts of the
organization hierarchy. Gateways can be also used to make legacy systems part of
the current information infrastructure by wrapping them into up-to-date containers.
Main part of this thesis re�ects upon the implementation of the OPC UA History
Gateway software using Java. The results of this thesis show the viability of the
OPC UA approach in realizing device integration.

After the information is modelled, it is imperative to store this information in
a permanent manner, especially if any kind of process history is needed. Thus the
second main theme of this thesis is SQL (Structured Query Language) databases
and their integration into the OPC UA. In many cases, the process variables and
their values persist (or are needed to persist) in some kind of a database. It is
bene�cial to synchronize data from the logic controller level with this database as
early as possible, at the same time minimizing errors in the transfer process. SQL
was selected for its predominant status in the current DBMS (Database Management
Systems) market, even though alternatives exist. In any case, databases are essential
to managing any even modestly large industrial process, and the integration of the
device data (in useful manner) into existing project management systems is often
a costly and large operation. This thesis illustrates general database integration
implemented in the lower levels of the organizational hierarchy.

1.2 Objectives

The main objective of this thesis was to develop a prototype of the OPC UA History
Gateway which contains an integrated database functionality, showing the viability
of the OPC UA framework in industrial device integration. To ful�l the purpose
of the History Gateway, service calls in the OPC UA framework were needed to be
relayed. Thus the operation of services within the OPC UA framework was one of
the most essential topics of this thesis.

The objective of storing data into an SQL database using object-oriented pro-
gramming language (such as Java) also provided its own di�culty. Thus one ob-
jective was the evaluation of the technologies solving the SQL connectivity. Use of
SQL required a functional and e�cient SQL database structure to be solved, along
with all the implementation details of the selected technologies.

As the main objective of the work was to create functional software, an optimal

3

design of the software needed to be devised. The design process itself was kept
informal in order to be as e�ective as possible. Also, the existing OPC UA Java SDK
(Service Development Kit) was taken as a starting point for the design and provided
a mature framework into which incorporate the solution. This also minimized the
need for extensive design paradigms.

Considerations presented above can be condensed into the following research
questions, ordered from problem de�nitions to solving them in practice:

1) What are the di�culties in relaying service calls in the OPC UA framework?
2) What are the di�culties in integrating industrial process data into an SQL

database using OPC UA framework and Java?
3) What is a suitable software structure to accommodate the relaying of service

calls and SQL database integration
4) What is a suitable SQL database structure for storing data modelled in the

OPC UA framework?
5) How can the relaying of service calls and SQL database integration be implemented

in Java?

1.3 Research Methods

The main research methods in the writing and implementation part of the thesis have
been literature review and few common computer science tools. More speci�cally,
the central references have been the OPC Uni�ed Architecture by Mahnke et al. and
The Relational Model for Database Management: Version 2 by E. F. Codd, along
with SQL standards. [3, 4, 5, 6]

Of the computer science tools, UML (Uni�ed Modelling Language) diagrams
were used in the design of the software. UML diagrams also structured the de-
velopment process by providing a concrete scope of all the needed changes. ER
(Entity-Relationship) diagrams were used in the design of the database structure.
Microsoft based tools including Visio and SQL Server Management Studio were used
to create the illustrations.

Other viable sources of information have been numerous conversations with fel-
low employees in Prosys PMS Ltd and all the source code and documentation avail-
able in the Prosys Java SDK. Also, the many-faceted process of creating a functional
software provided many insights into the OPC UA and SQL, main frameworks of
the thesis.

1.4 Structure of Work

This work is divided into seven main structures. In the �rst section the concepts,
scope and motivation of the work are introduced together with some necessary back-
ground information. The second and third sections explore the theoretical back-
grounds of the OPC UA and SQL frameworks, respectively. These sections lay the
foundation from which the research questions can be answered. The fourth section
compares few vendors of SQL based database management systems. The �fth section

4

presents possibilities to solving the database connectivity in the Java environment.
These two sections de�ne and answer research questions regarding the di�culties in
SQL integration. In the sixth section the implemented solution is �nally presented
along with some practical issues and notes. This section also contains de�nite an-
swers to most research questions. Lastly, the seventh section contains the summary
and discussion of the obtained results.

5

2 OPC Uni�ed Architecture

2.1 Introduction and History

OPC UA (OPC Uni�ed Architecture) is the latest development of the OPC (OLE
for Process Control) standard. This standard is widely used in the communication
between di�erent entities and layers of industrial automation devices. The main
philosophy is based on the well-known client-server paradigm (developed in Xerox
PARC as early as 70's [7, p. 297]), in which servers contain the data and clients
access this data by reading and writing operations. For example, a PLC program
can write its data into an OPC UA server, from which the data can then be read by
any OPC UA client positioned further in the organizational hierarchy (cf. Figure
1).

Historically, OPC UA is the most recent development of an older OPC standard
also used as a communication interface for automation devices. The fundamental
di�erence between these standards lies in the communication protocol used: the
traditional OPC standard is based on the Microsoft developed OLE (Object Link-
ing and Embedding) protocols, originally designed to allow the exchange of objects
between di�erent software. This technology then evolved into the Microsoft COM
(Component Object Model) and DCOM (Distributed Component Object Model),
still quite early (mid 90's) Microsoft approaches to sharing and binding to compo-
nents and objects. OPC UA, for one, uses modern network protocols such as TCP
or HTTP/SOAP as its communication protocol.

The traditional OPC is an aggregate of several standards taking into account
di�erent needs of the end user, containing such components as the OPC DA (Data
Access) and OPC A&E (Alarms & Events). As these standards were created sep-
arately within a several year time span, the end result was somewhat patchwork
collection of features, which also forced the separate development of essential fea-
tures for the OPC client and server software. Even more shackling is the limitation
to the COM and DCOM communication, as the latter is the only way of trans-
mitting data over networks and is irreparably outdated with the modern network
protocols and �rewalls, especially in the domain of the network security.

OPC UA on the other hand is (as the name suggests) a uni�ed approach to
both the data modelling and communication, encompassing the relevant aspects of
the industrial automation device handling. In more general terms, OPC UA can be
seen as a change to SOA (Service-Oriented Architecture), a software design pattern
used in the implementation of the modern Web Services, among other things. SOA
emphasizes the use of separate, self-contained services, which contain no service
calls directly into each other. Instead, services use de�ned protocols with metadata-
laden information to pass and receive messages. Such an architecture is ideal for a
modular data exchange between programs and parts of programs, also easing the
implementation of the security features between these programs. [8, 9]

6

2.2 OPC UA System Architecture

OPC UA System Architecture describes the general patterns used in the OPC UA
framework. These concepts help understand the high-level concepts used in the OPC
UA. The main interest of this thesis, the OPC UA History Gateway, is already partly
introduced in the architecture speci�cation.

2.2.1 Client-Server Pattern

The most basic pattern of the OPC UA framework is the already mentioned Client-
Server Pattern. In this pattern servers o�er services to clients, which consume
these services to complete tasks. Services themselves are standalone concepts which
contain no calls into each other. [3, Ch. 9, p. 265]

The communication is made possible by strictly de�ned requests and responses
that use service calls de�ned in the OPC UA Speci�cation (de�nitions relevant to this
thesis are found in section 2.4.2). Clients send requests to servers which return well-
formed responses back to clients. The communication is in practice e�ected using
the OPC UA Stack (cf. section 2.3), which, for one, uses TCP, HTTP/SOAP or
HTTPS protocols to transfer the information over networks, as already mentioned.
[3, Ch. 6] These protocols are widely used in modern Web Services to exchange
information and can be used e�ectively through �rewalls.

Figure 2: Concept of Aggregating Server (modi�ed from [3])

7

2.2.2 Aggregating Server

An aggregating server is principally an entity containing both the server and client
implementations, and is the most relevant concept for this thesis, describing the
basic functionality of the History Gateway (cf. Figure 2).

The aggregating server contains an embedded client, which can send requests
to variable number of other servers con�gured into the Aggregating Server. The
data received from these servers is shown in the aggregating server and can be
accessed with any client: thus the aggregating server concentrates information. With
these properties, the aggregating server is ideal for the History Gateway, as it in
e�ect relays requests from a common client to multiple servers further down in the
automation environment.

2.3 OPC UA Application Architecture

Application Architecture clari�es boundaries within and between software. Appli-
cation Architecture can be de�ned by the level of Application, SDK and Stack, in
descending order of functionality visible to the end user of the software. Figure 3
gives an overview and hierarchy of the concepts.

Figure 3: Overview of OPC UA Application, SDK and Stack layers

The Application Layer conforms mostly to the Client-Server Pattern (or an Ag-
gregating Server in the case of the History Gateway), and normally uses the SDK
layer as an interface for all the OPC UA speci�c functionality. All the use case spe-
ci�c functionality is implemented in the Application Layer. In the case of the Server,
the Application is in contact with the underlying system or device and uses the OPC
UA SDK to model the system in question. The OPC UA acts then as a conduit
transporting the modelled information further. In the case of Client, Application is
the user's access to the system modelled with the OPC UA.

8

SDK Layer holds the Server and Client speci�c APIs (Application Programming
Interfaces) in addition to the implementation of the OPC UA concepts described
in section 2.4. APIs need to be Client and Server speci�c, as only Servers process
requests and send responses, and vice versa within Clients. SDK eases the Appli-
cation development considerably by implementing general parts of the somewhat
extensive OPC UA framework, along with creating a simpli�ed API to using the
Stack. This frees the application developer to concentrate on the features needed
in the application (e.g. business or control speci�c). For example, the Prosys Java
SDK was heavily used in creating the History Gateway prototype for this thesis: its
use shortened the development time immensely.

OPC UA Stack makes sure that requests from a Client Application are trans-
ported to the Server Application and that the responses are sent back to the Client
(i.e. that API calls in the SDK layer work). The Stack can be divided into several
layers partly shown in Figure 3. The APIs correspond directly to the ones in SDK
and act as interfaces to the SDK. Stacks are language speci�c, and currently there
are .NET, Java and ANSI C Stacks available. .NET Stack holds implementations in
C# and C++. The implementation of the OPC UA concepts di�er somewhat per
Stack basis. [10]

2.4 OPC UA Speci�cation

OPC UA is wholly de�ned by a list of speci�cation documents maintained by the
OPC Foundation. Speci�cations range from basic concepts to the information mod-
elling and network security. [11, 12, 13] Additionally, there are speci�cations to ac-
commodate the Field Device Integration using OPC UA, a �eld which is currently
divided between few competing standards. [14] Speci�c solutions to using OPC
UA in the Field Device Integration have also been presented. [15] Next subsections
go through the OPC UA speci�cations in more detail, laying out the basics of the
Address Space browsing, Event handling, Historical Access and Services. These
concepts are essential to understanding what was done in the solution part of the
thesis.

2.4.1 Address Space

The Address Space of the OPC UA server de�nes the structure and data of the
modelled system and consists of di�erent types of Nodes. Nodes can be classi�ed by
their function and adhere to speci�c NodeClasses. All NodeClasses hold a speci�c
set of mandatory and optional Attributes, values of which contain the actual data
of the Node (and thus the modelled environment). NodeClasses include Object,
ObjectType, Variable, VariableType, DataType, ReferenceType, Method and View.
NodeClasses and their Attributes are illustrated in Figure 4.

The Address Space is made up of a tree-like structure of Nodes which represent
meaningful units in the modelled system. Object Nodes are the most general struc-
ture in the Address Space and can be used to represent parts of the modelled system.
ObjectType is abstraction of a concrete object and is thus instanced into an Object.

9

Figure 4: NodeClasses, BaseType and attributes of BaseType [16, p. 84]

The semantics and structure of the Address Space are described using references
between Nodes, each reference with a speci�c ReferenceType. Each ReferenceType
in part describes a relation between a source and a target Node. Variables hold the
data values of the system and are instances of VariableTypes. Each value of a Vari-
able has a speci�c DataType. Methods represent callable procedures in the modelled
system with de�ned input and output arguments. Views are visible con�gurations
of the Address Space, in a way snapshots, tailored for a speci�c purpose. This way
only the essential information e.g. to a maintenance operator can be �ltered from
the Address Space using a View.

The most important Attribute found on each Node (as shown in Figure 4) is
NodeId, as it uniquely identi�es each Node. Address Space is divided into enumer-
ated namespaces having unique URI (Uniform Resource Identi�er) values. Names-
paces can be thus accessed either using URI or index value. NodeIds themselves also
consists of two parts: the �rst part holds the namespace enumeration and the second
part holds String value unique within the namespace. First part can be either the
namespace URI or namespace index value. Identifying Nodes from several servers is
essential in History Gateway implementation, and is thus a very important aspect
of this thesis.

Another important aspect of Address Space is the type hierarchy, which de�nes
the types of Objects, Variables, Data types, Events and References. Types describe
the Attributes, Standard Properties and References applicable to the Node in ques-
tion, making possible the proper use of the Nodes.

The creation of the Address Space in a large environment can be quite complex

10

and time-demanding task, requiring a lot of manual coding. Some tools to help
modelling and implementing the Address Space are presented e.g. by Palonen in his
Master's Thesis, which devised a strategy to load the Address Space automatically
using XML �les. [10] To use such automatically created Nodes, however, one needs
to resort to manual coding. Laukkanen took the work further in his Master's Thesis
by addressing the design of the type instantiation and automatic Java source code
generation in the OPC UA framework, alleviating the above problem. [17]

2.4.2 Services

Services handle the actual functionality within OPC UA framework and are used to
complete tasks set by users. Services are invoked with a service request and always
return a service response. The services reimplemented for the solution of this thesis
are covered in this section. Note, however, that Service Sets are not necessarily
covered in exhaustive manner.

Generally, all requests contain a RequestHeader, which de�nes parameters com-
mon to all service requests. Examples of these are a time-stamp, authentication
token and handle assigned by the client to the request. In the same vein, all re-
sponses contain a ResponseHeader, which contains e.g. a time-stamp and result
code of the attempted operation. Responses also almost always include diagnostic
and result �elds.

View Service Set allows browsing the server Address Space for the client.
Browsing is done by Browse and BrowseNext services. Browse returns references of
a single Node in the Address Space, from which the next level of the Address Space
can be constructed. BrowseNext service is used when browsing a Node with more
references than can be handled in a single request. BrowseNext e�ectively divides
the original request into one Browse and multiple BrowseNext requests.

Attribute Service Set handles the actual reading and writing of the Node
Attributes. These are done using Read, Write and HistoryRead services. The read
service is used to read one or more Attributes of one or more Nodes. Write service
conversely allows the client to write one or more Attributes of one or more Nodes.
Generally, these are useful when the information within large number of Nodes is
accessed. HistoryRead service works in similar fashion with Read service, the di�er-
ence being that results for each Node span the time interval speci�ed in the request.
The historical data structure is de�ned in more detail in section 2.4.5.

Method Service Set de�nes the way to use Method Nodes, which are essen-
tially functions with de�ned input and output arguments. Methods are used with
the Call service, which returns output values and diagnostics information of the
Method called in its CallResponse.

MonitoredItem Service Set is used to keep track of changes in Attributes,
Values or Nodes via special MonitoredItems. Figure 5 illustrates the use of the

11

Figure 5: Subscription with assigned MonitoredItems [18, p. 67]

MonitoredItems. In it each MonitoredItem is assigned to a speci�c Subscription
(de�ned in the following Service Set). Each MonitoredItem has also properties such
as a SamplingInterval, MonitoredMode, Filter and Queue Parameters. These prop-
erties de�ne e.g. the frequency by which values are collected and what triggers the
change of the value in the Server. MonitoredItem Service Set de�nes services to
Create, Modify and Delete MonitoredItems within a Subscription. MonitoredItems
themselves use DataItems and Events to handle the di�erent kind of data in Nodes
(cf. sections 2.4.3 and 2.4.4).

Subscription Service Set is used to create Subscriptions for sending Noti�-
cations to Clients. As already mentioned, the Subscription holds MonitoredItems
assigned by a Client. The Subscription has de�ned publishing interval, which de-
termines the execution cycle of the Subscription (i.e. checking the value of Moni-
toredItems). Also, publishing interval determines the default SamplingInterval used
for the MonitoredItems. Noti�cations are, however, only sent as a response to a
PublishRequest by the Client (via a Publish service). If there are no Noti�cations
to send in a response to the PublishRequest (or within certain number of received
PublishRequests), the Subscription sends keep-alive message to the Client instead
(which has zero Noti�cations). The Noti�cation contains the data in question (e.g.
value of MonitoredItem) and uses di�erent data structures for DataItems, Events
and Subscription status changes.

For an exhaustive list of services and their parameters, reader is suggested to
delve into Service Part of the OPC UA Speci�cation. [18]

2.4.3 Data Access

Data Access de�nes the representation of the data in the OPC UA framework.
The data consists mainly of DataItems, a generic description of an entity with
speci�c data type and value changing over time. All DataItems are derived from
BaseVariableType.

12

The standard also de�nes AnalogItems, DiscreteItems and ArrayItems to serve
as containers for di�erent kinds of measurements present in the automation envi-
ronment. EngineeringUnits are de�ned for AnalogItems to show the unit of the
measurement and to avoid any (costly) confusion regarding it. Figure 6 depicts a
typical use of DataItems along with Object in the Address Space. In the Figure
pressure information is being held in the Value Attribute of a Pressure Variable of
an AnalogItem type. [19]

Figure 6: Usage of DataItems within Address Space [19, p. 14]

The Value of DataItems is always the latest measurement received from the de-
vice, and is de�ned by a DataValue type. The type consists of a Value, StatusCode,
SourceTimestamp and ServerTimestamp. The Value �eld holds the data of mea-
surement. A StatusCode states the trustworthiness of the Value and is roughly
categorized into a Good, Uncertain and Bad state. A SourceTimestamp is the time
in which the value was stored in the device. ServerTimestamp is the time when it
was acquired in the server.

DataItems are also used with MonitoredItems to track changes in the value of
the variable. What is considered change depends on a DataChangeFilter created
separately for each MonitoredItem. Parameters of the DataChangeFilter de�ne the
triggering method of the MonitoredItem, i.e. whether a status, value or time-stamp
modi�cation (or any combination of above) triggers the sending of the Noti�cation.

13

The Noti�cation is sent to the Client listening the MonitoredItem via a Subscrip-
tion. A deadband range of the monitored value is also de�ned, i.e. the range in
which no changes are triggered. The deadband type can be none, absolute or per-
cent. In essence deadband value determines the precision by which the changes are
monitored. [18]

2.4.4 Events

Event is a general term for interesting occurrences in the system modelled by the
OPC UA framework. [11, Ch. 3.1.10] The purpose of each Event is to report a
ful�lment of a prede�ned rule, which somehow needs to be acknowledged by the
user. The data of the Event is contained in its �elds. Events can be subscribed to
and send Noti�cations of interesting occurrences via Subscriptions to the Client.

EventFilter is important concept used to select Events in a Subscription, as
only the Events matching the EventFilter are sent to the Client. (EventFilters are
de�ned by the Client.) EventFilter de�nes whereClauses and selectClauses in order
to discriminate wanted Events. WhereClauses contain BrowsePath for the Event,
de�ning the identity of the Event. WhereClauses can contain complex criteria for
the selection of the Event, and are de�ned by a ContentFilter type. SelectClauses
de�ne wanted �elds of the Event, which in most cases is the value of the Event
variable. [18, Ch. 7.16.3]

The standard divides Events into Conditions and Alarms (among other types),
both of which inherit themselves from the BaseEventType. The distinction between
them is that Conditions contain state information, as opposed to every other type.

BaseEventType de�nes some mandatory �elds describing the most important
aspects of the Events. These identify a type, source Node, Message and Severity of
the Event. The Message is intended to be a localized, human-readable description
of the Event. The Severity describes the importance or urgency of the Event in
numerical range of 0...1000. The BaseEventType also de�nes the time of the Event
in a similar fashion as was done in the DataValue type, i.e. the time Event was
raised and the time Event was received in the server.

Events form somewhat complex hierarchy, part of which is depicted in Figure 7.
This complexity, however, makes possible to model the environment with a greater
detail without the need to create myriad user- or vendor-speci�c Event types for
the purposes of every application. On the downside, complex hierarchy may confuse
someone new to OPC UA framework. [20]

2.4.5 Historical Access

The Historical Access is involved in storing and retrieving data with a temporal
dimension. Historical data is divided quite naturally into Event and Data histories,
as both have somewhat conceptually di�erent properties: Events track discrete,
qualitative changes in the state of the system, while Data Access typically describes
the system quantitatively in the form of the process variables.

Historical Data Access involves creating a time series representation of the DataItem
data. To this e�ect, Server wide properties of e.g. a MinimumTimeInterval and Ex-

14

Figure 7: Overview of Event type hierarchy [20, p. 12]

ceptionDeviation are de�ned, which all historical Nodes adhere to. These de�ne the
minimum time di�erence between data points, and the level of the change needed in
order to record a new value into a database. The actual implementation of the per-
sistence is left to the Server (or Client) developer. This thesis concentrates mainly
in the issues with storing this type of quantitative data.

Historical Event Access describes the mechanism of accessing and de�ning Event
histories. An Event history Node needs to contain a special HistoryEventFilter,
which is of the EventFilter type, describing the �elds available in the Server history.
This is di�erent from the EventFilters described in the previous section: only the
availability of �eld history is speci�ed, not necessarily the availability of the �elds
in real-time processing (e.g. via MonitoredItems).

AccessLevel and Historizing Attributes are the main indicators of the historical
capabilities of a Node. The AccessLevel indicates whether the Node is readable,
writable, history readable or history writable, or any combination of the above. The
Historizing Attribute indicates whether the Node is currently collecting History data
in the server. [16, p. 27]

HistoryRead Service is used by the Client to access historical data of a Node.
Di�erent types of the data are accessed by giving di�erent parameters to this Service.
Parameters specify e.g. Read Raw and Read Event functionalities (among others),
which allow the reading of the Data and Events, respectively. The Read Raw has

15

a parameter de�ning a time range, for which DataValues of a number of Nodes are
returned by the Server (if available). The Read Event has additionally an EventFilter
parameter (used in the same manner as was described in section 2.4.4) specifying the
wanted Event. Events matching the time range and the EventFilter are returned as
a list by the Server. Other HistoryRead Service functions include reading aggregate
values or reading data values at speci�c time points. In the latter case the server
may need to implement an interpolation functionality to o�er data exactly at the
requested time points.

The speci�cation also de�nes a HistoryUpdate Service to be used in inserting
values to an underlying history database. Current generic clients, however, do not
use this feature much, and mostly case-speci�c databases and con�gurations are
built to the server- or client-side.

2.5 Conclusion

OPC UA is a powerful information modelling and managing framework, the possi-
bilities of which are the main interest of this thesis. The concepts of the OPC UA
de�ne architecture, communication, security and data modelling capabilities of the
system or application: OPC UA is a comprehensive and highly-developed solution
to managing the factory �oor device space.

The main blocks of the framework are client and server applications, which ex-
change information between each other via di�erent services. The information model
de�nes an Address Space, which contains Nodes in hierarchical, tree-like layers.
Nodes contain references to each other, through which the contents of the Address
Space can be browsed. Nodes model the relevant aspects of the underlying system
or device. Tools to help this modelling process in a large environment are available.
[10, 17]

Applications making use of the bene�ts of the OPC UA framework are in increase
in the industry slowly but surely, and this trend is bound to continue. The main
bene�t of the framework is the standardized way in which the data is exposed to
further processing, already with the semantic information intact. This is especially
helpful when integrating the device etc. information into the upper layers of the
industrial management systems. [21]

16

3 Structured Query Language (SQL) Framework

Databases based on Structured Query Language have been around for decades and
are still the most widely used solution to storing data in a permanent manner. This
is also the case in the automation industry, which motivates their exploration in this
thesis.

3.1 Relational Model

The relational model for databases, which was conceived by E. F. Codd in 1970, is
now accepted as the standard model for the design of RDBMS (Relational Database
Management Systems). [22, p. 1-1] Codd's �nal book, The Relational Model For
Database Management: Version 2, describes theoretical (and at times practical)
requirements of a fully realized relational model in the database design, although
omitting the actual implementation and syntax completely. [4] This allows the
database vendors to create and compete with the underlying implementation, using
the relational model as a reference and design document.

3.1.1 Relation and Structure

A relation is de�ned mathematically using set theory: relation R over sets {S1, S2, ..., Sn}
is a subset of their Cartesian product, i.e.

R ⊆ S1 × S2 × ...× Sn, (1)

with degree of n. [4, p. 2] It is notable that the resulting set of a relation is also a
relation, and can be processed further using same operators as was done with the
original set. This gives the theoretical basis to the nesting of relational commands.

The data source is addressed as a catalog, and can be thought of as a table (or a
collection of tables) for the visualization purposes. The catalog (table) has a number
of tuples (rows) and attributes (columns), which contain the actual information of
the database. Each column should have a speci�c meaning, i.e. be a part of some
semantically relevant domain. Each row then holds all the pertinent information
with regards to the type of the table in question (and forms a single record).

3.1.2 Integrity Constraints

Integrity constraints ensure the incorruptibility and consistency of the information
contained in the database. Codd formulated �ve constraints in his RM/V2 (Re-
lational Model: Version 2) to uphold these properties: Domain integrity, Column
integrity, Entity integrity, Referential integrity and User-de�ned integrity. [4, p. 246]
Of these the Entity and Referential integrity are the most important. [4, p. 244]

Entity integrity constraints disallow duplicate rows from the database catalog.
This is accomplished by using primary keys which are forced to be unique and not
unknown, e�ectively making all the rows of the table unique. Primary keys can also

17

be formed by combining the values of several columns into a unique identi�er. These
are called composite keys.

Referential integrity constraints make sure that references between tables stay
incorrupt. These references are created, for example, with foreign keys; keys that
point to (and actually are) primary keys in some other table. This creates a reference
to the other table, e�ectively linking the two tables. Referential integrity constraints
state that no primary keys, which also act as foreign keys, may be removed. [4, p.
23] If this would be allowed, the foreign keys would point to a nonexistent value,
and the reference would be corrupted.

Domain integrity constraints ensure that once a domain is speci�ed, all columns
part of it must adhere to its properties. Examples of properties might be: the length
or range of the value; the default value; or whether the value can be unknown.

Column integrity was introduced to limit the need to create an extensive amount
of domains which actually are subsets of other domains. Column integrity is there-
fore a narrowly de�ned constraint a�xed on a domain.

User-de�ned integrity constraints allow the database manager to create custom
constraints (i.e. to the force business logic on applications).

3.1.3 Transaction

The concept of the transaction de�nes operations available to changing the state
and contents of a database. These are signalled to the database using Begin trans-
action and Commit transaction commands. The procedure is two-phased for the
option to undo changes in case something unexpected happens. This is called a
Rollback command and can be initiated any time between begin and commit com-
mands, e�ectively returning the database to the state before the Begin transaction
command.

Codd formulated high level commands to access and modify the content of a
catalog. These were Retrieve, Insert, Update and Delete. Commands are quite self-
explanatory: Retrieve returns the relation according to the search criterion used;
Insert inserts information into a new row; Update updates existing values in a row;
and Delete deletes contents of a row.

The commands themselves are put into e�ect using set theoretic operations of a
Select, Project, Join, Product, Union, Intersection, Di�erence and Divide. [4, Ch.
4] Operations are illustrated in Figure 8.

3.2 Standardized SQL

SQL is currently a standard by ISO (International Organization for Standardization)
and IEC (International Electrotechnical Commission) organizations, which maintain
up-to-date references of the relevant design and implementation aspects of the SQL
framework. The actual delivery of these properties depends on the compliance of
the providers of RDBMS software (some providers mentioned in section 4).

18

Figure 8: Set theoretic operations used to manipulate relations in relational
databases [4, p. 78]

3.2.1 Schema

Schema describes the structure of the database by de�ning the table names, columns
of tables and relations between tables. These are contained in the Information
Schema and can be accessed using normal SQL-syntax. The De�nition Schema is
a hypothetical schema de�ning possible entities in the Information Schema and in
itself. It is de�ned mostly to be the basis of views in the Information Schema.
[5, 6, 23] Schemas are made concrete by tables. Tables consist of columns each with
a speci�c data type, and with one and only one value in each row. [5, Ch. 4.3]

3.2.2 Data Types

SQL Data Types are either prede�ned, constructed or user-de�ned. [5, Ch. 4.4]
Every data type can contain an unknown value, a keyword for which in most cases
is NULL. No comparison can be made between NULL values, even though they can
be grouped together using search clauses, for example to �nd any non-NULL data.
The SQL Data Types are of especial importance when the data in object-oriented
language is mapped into rows in the relational database. This mapping can be quite
complex and its solution is partly addressed in section 5.4.

Prede�ned types are atomic and can be divided into Numeric, Character string,
Binary string, Boolean, Datetime, Interval and XML types. The exact implemen-
tation and keywords for each data type vary per vendor, each however ful�lling the
functionality of the type. [5, Ch. 4.4]; [6, Ch. 4.2-4.6] In most cases these data
types have a straightforward mapping into the data types of the object-oriented

19

programming language, and vice versa.
Constructed types can be atomic or composite. Reference types are the only

atomic type, their values pointing to a location containing the value of the referenced
type. [6, Ch. 4.9] Composite constructed types consist of Collection, Field and Row
types. [6, Ch. 4.10, Ch. 4.8]

User-de�ned types can be Distinct or Structured types, with a user-speci�ed type
name. The values of the Distinct types are based on prede�ned or collection types.
Structured types are fully user-de�ned and contain attributes, sub- and supertyping
which adhere to substitutability: properties more traditionally found in the object-
oriented programming languages. [5, Ch. 4.6.4]; [6, Ch. 4.7]

For a more in-depth view of the SQL data types, the reader is suggested to
familiarize oneself with ISO/IEC 9075-2:2011 and vendor-speci�c references. [6]

3.2.3 Statements

The contents of the database are in practice accessed and modi�ed by writing SQL
statements, executing them and possibly processing the resulting set. Statements
are classi�ed by their function, e.g. whether the statement targets general schema
of the database or contents of the table(s). The former statements are in some
instances abbreviated as DDL (Data De�nition Language) and latter as DML (Data
Manipulation Language). [22, 6] SQL standard uses more �ne-grained division by
the functions of the statements, reporting e.g. Control, Session, Diagnostics and
Dynamic statements. [6, Ch. 4.33]

The basic data manipulation is done with statements having structures like:

SELECT * FROM [table] WHERE [column] = [value]

INSERT INTO [table] VALUES ([x] [y] [z])

UPDATE [table] SET [columnA] = [valueA] WHERE [columnB] = [valueB]

DELETE FROM [table] WHERE [column] = [value]

Commands are quite self-explanatory and were described in section 3.1.3. As the
select command only retrieves data from the database without modifying it in any
way, it is generally addressed as a query. The schema of a database can be changed
by commands:

CREATE TABLE

DROP TABLE

ALTER TABLE,

where CREATE creates a new table, DROP destroys an existing table, and ALTER
modi�es the columns of an existing table. Meta-data of the database (e.g. column

20

names and data types of speci�c table) can be accessed using the Information Schema
existing in most database implementations.

Domains and constrains can be formulated with CREATE DOMAIN and CON-
STRAINT keywords. Keywords are used to de�ne checks which specify the invalid
values of the domain or column. These in practice force business logic on an appli-
cation, e�ectively disallowing any prohibited operations.

For a more comprehensive account of the manipulation of database contents (e.g.
subqueries, aggregates, SQL functions, triggers and query optimization), the reader
is suggested to turn to many reference and text books on the subject. The syntax of
these commands also varies more per provider compared to the basic functionality
described above.

3.3 SQL Concepts

3.3.1 Index

Index is a hugely important concept in the context of the relational databases, which
speeds up retrieving the table contents considerably. This is e�ected by a dictionary
type of implementation, where imposing searches on indexed columns need not to
go through the whole table, which in worst case contains hundreds of thousands of
rows. [24, p. 11] Instead, index keeps records of the indexed content separately from
the table and points to the corresponding rows in the table. This way table rows
meeting search criteria are known before accessing the table itself and no traversing
of the table is needed.

The index architecture can be clustered or non-clustered : Non-clustered means
that the physical order of rows has nothing to do with the indexed order of the rows.
This causes no slowdown of the insertion speed as no extra operations regarding the
whole structure of the table are needed during the insertion.

Clustered approach, conversely, ensures that the physical order in the disk follows
the order of rows in the table. Depending on the ordering of the columns, the
clustered approach can speed up the retrieval of the range data signi�cantly. If, for
example, the ordering ensures that all the data values of a single Node are ordered
beside each other in the table and in the disk, certain range of values reside in a
logically ascending or descending order within the disk and the table. Only one
continuous block from the table (and disk) is then returned as a resulting set to a
this kind of query.

Index types de�ne the data structure of the index and can also a�ect the perfor-
mance of the queries depending on the type of data inserted into table. Few most
used index types include bitmap, dense, and reversed indices.

Again, for more comprehensive treatment on the principles and design decisions
on indexes, the reader is suggested to turn to other resources, which can easily span
whole books. [24]

21

3.3.2 Normalization

Another important design concept with regards to the relational databases is nor-
malization. A database in a normalized form contains the minimal amount of re-
dundancies and dependencies. The objective of the normalization is to make the
database free of insert, update and delete anomalies.

The normalization is put into e�ect by so-called normalized forms developed
mainly by Codd in 1970s, although newer formulations exist. [25, 26] In the normal-
ized form data is stored to a number of tables, which are linked together by relations,
in an e�ort to create a logical (in all meanings of the word) separation of the data.
This ensures that in the case of inserting data, only appropriate table (containing
only one small part of the whole database) needs to be updated, speeding up the
insertion process. Another advantage is the easier extension of the database in order
to accommodate new types of data often needed in the lifetime of a database, as
extensions can be in most cases done simply by adding new tables to the database
schema.

However, in the fully normalized form extensive queries can be costly as the
data is separated into many tables, the contents of which need to be joined to
create a result set for these comprehensive queries. Thus, for performance reasons,
the database can be left somewhat denormalized at the discretion of the database
administrator.

22

4 Comparison of Database Management Solutions

4.1 Introduction

Some of the more prominent database products and vendors are: MySQL, SQLite
(open source, for now, rights held by Oracle); SQL Server (Microsoft); Oracle
Database (Oracle); D2 (IBM); and postgreSQL (open source). [24] These solu-
tions in fact implement the SQL (as depicted in ISO/IEC 9075:2011), and can be
used in a wide variety of situations from online web stores to industrial process
auditing. This means that a somewhat large amount of work is needed to create
a fully functional product relevant to each speci�c case. An other option is to use
a provider with an already working analysis and database software that is either
designed speci�cally to a task or is more general in nature. In the latter option the
software might still need some integration work to operate fully in the case-speci�c
production environment. All options have their merits and depend largely on the
scale and needs of the customer.

There is also a rising interest in a multitude of object-oriented databases (as a
counterpoint to the relational approach) stirring in the web service world, mainly for
the need to increase the scalability to unprecedented heights. The process industry,
on the other hand, has somewhat di�erent needs, as the most important factor is
the reliability of the operations and fast-enough insertion times. Thus the rigor of
the many SQL products in maintaining the database integrity and the possibility to
optimize speci�c SQL operations are highly appreciated. Mainly for these reasons
the object-oriented approaches are not covered in the thesis.

MySQL, SQL Server and PostgreSQL were selected to be put under closer
scrutiny for their wide use in the industry and in the products developed by Prosys
PMS Ltd. Few complete solutions to combine the database and process handling
are also introduced in the conclusion-preceding-section.

Few important aspects to consider are e.g. licensing options, additional tools
provided for analysis, replication and clustering options and scalability possibili-
ties. The replication and clustering are the main components of creating HA (High
Availability) solutions, i.e. ensuring maximal up-time of the database services. The
rigorous quantitative assessment of the criteria mentioned may be di�cult, however,
due to few independent assessors: much information comes from the providers of
the databases themselves, which need to be taken with a grain of salt.

4.2 SQL Server

Microsoft's SQL Server and its various instances are still quite widely in use, accord-
ing to Gartner and other sources. This section addresses only the latest incarnation,
SQL Server 2012.

The mainstream editions of the SQL Server are Enterprise, Standard and Busi-
ness, all intended for various production environments and needing commercial li-
censes. The one free edition, SQL Server Express, is heavily downgraded in its
performance, and is intended to be used as a testing and learning environment.

23

(Still, in small and non-performance-critical cases it is perfectly suitable for other
uses as well.)

The Standard Edition is suitable for small- to medium-sized cases and contains
the features su�cient for a majority of use cases, i.e. core database engine along with
reporting and analytic options. The Business Edition contains the features of the
Standard Edition enlarged with business intelligence operations, concentrating on
the large-scale data management and data analysis. These editions also have basic
HA capabilities with 2-node fail-over clustering. The Enterprise Edition is intended
for large use cases, coming with the most comprehensive clustering and replication
capabilities, in addition to containing all the features of the previous editions.

The licensing options of the Microsoft's SQL Server are based either on the
number of cores on the server holding the installation of the database engine, or on
the Server+CAL (Client Access License) packages. CAL licenses can be assigned
either to a device or a user. This means that either the number of devices or the
number of users accessing the SQL Server instance are limited.

Figure 9: SQL Server enterprise level replication strategy [27, p. 24]

The clustering and replication options in the SQL Server di�er somewhat per
edition basis. The basic idea is to use active and passive servers, where the state of
the active database is mirrored in the passive one. The passive server then becomes
active if the currently active server goes down for any reason. The new feature
introduced to the SQL Server 2012, AlwaysOn Availability Groups, is intended to
answer the HA demands in large enterprise cases. The scheme is illustrated in

24

Figure 9, in which the replicated SQL Servers in primary datacenter provide the HA
capabilities, while the secondary datacenter takes care of recovery in case primary
cluster goes down.

All the mainstream editions of the SQL Server come with a somewhat wide tool
package called Analysis Services. Analysis Services contain an assortment of data
mining tools such as one-layered neural networks, clustering algorithms (Expectation
Maximization and K-Means), naive Bayesian algorithms to creating simple Bayesian
networks, and time-series prediction (Autoregressive Tree models and Autoregres-
sive Integrating Moving Average models). The problem of these advanced methods
lies in that to understand their limitations (and therefore use) one needs extensive
experience in the data analysis or machine learning, in which case the tools might
be too rigid and black-box oriented to be of any real use (to the professional in the
�eld). [27]

4.3 MySQL

MySQL was originally a fully open-source software, until Oracle bought its developer
company MySQL AB. MySQL is now distributed under commercial and free licenses
(free with GNU General Public License).

The licences are sold per server basis (each with 1-4 sockets), following a some-
what simpler pattern than the Microsoft case. Commercial editions are known as the
MySQL Enterprise Edition and the MySQL Cluster CGE (Carrier Grade Edition).
The commercial editions come with a wider technical support and improved feature
base, concentrating on the High Availability, scalability and monitoring tools impor-
tant for maintaining large-scale business operations. The free editions still contain
the core database features, including basic replication and partitioning features.

The standard (non-cluster) editions use either InnoDB or MyISAM database
engines, of which the InnoDB is the default (and newer) one. The main di�erence
between the engines is the locking principle, which in InnoDB is row-based and
in MyISAM is table-based. This means that the concurrency (i.e. the number of
simultaneous read and write operations) handling is better in InnoDB, as a smaller
amount of the data is in a locked state at any given time. Despite this, InnoDB is
still ACID (Atomicity, Consistency, Isolation, Durability) compliant.

The cluster edition is targeted to mission critical operations. Figure 10 illustrates
the architecture of the solution. The architecture is designed to survive the loss of
any single part of it and still maintain the online status of the business operations.

The cluster database engine di�ers from the ones used in standard editions, which
means that certain operations possible in the standard editions fail in the cluster
edition. The cluster database engine is also partly restricted when compared to
the standard editions, and some loads are handled more e�ectively by the standard
editions. E.g. maintaining a very large amount of data is not as e�ective, even
though clustering is a good way to scale amount of write operations (as the writes
are distributed to multiple disks).

The replication in MySQL is done asynchronously in both the cluster and stan-
dard editions, the cluster case being more complex due to a larger amount of de-

25

Figure 10: The high-availability architecture of MySQL Cluster implementation [28,
p. 2251]

tails in the con�gurations. Generally, the replication architecture consists of master
and slave servers, where the master writes the database operations into a binary
log, which is sent to the slave server and from which the slave server updates its
state. The asynchronous replication means that the slave(s) need to be connected
to the master, but on the other hand the master cannot be completely sure that the
commits are being replicated and received. To alleviate this, a semi-synchronous
option can be used, in which the master ends the transaction only when the slave
acknowledges that the binary log has been received (slowing down the operations
somewhat).

The replication can be either statement- or row-based, meaning that either the
SQL statement or every changed row per statement is replicated. The row replication
ensures that all the changes to the database are replicated in all cases, as long as
the log �les can be transmitted. The statement based replication produces less log
(using signi�cantly less disk space in some cases), but some states of the database
cannot be determined solely from the statement parameters.

Additionally, to support a large amount of read operations, memcached is often
used in the MySQL architecture (available by default in the distribution). It works
by introducing RAM-operated (Random Access Memory) bu�er, which loads por-
tions of the database to the memory for a read-only access in the client end. This
means that if the wanted data is already in the memcached bu�er, access is sped up
hugely compared to normal queries going through disk I/O. [28]

26

4.4 PostgreSQL

PostgreSQL is an another open-source database solution, even though there is also a
commercial edition (PostgreSQL Plus) available. The latter promise e.g. increased
caching capabilities and technical support on its use.

Figure 11: PostgreSQL Plus In�niteCache architecture [29]

The caching options are somewhat similar to the ones used in MySQL, speeding
up the select queries considerably. The commercial edition comes with In�nite-
Cache, which uses con�gurable amount of RAM to boost the memory in the cache.
The architecture uses primary cache (handled by pg_pool-II) and secondary cache
(In�niteCache) in addition to the data compression to make better use of the valu-
able RAM. The setup is illustrated in Figure 11. The open-source edition uses
memcached as a caching option in the same manner as the MySQL.

The PostgreSQL replication options contain a single master to a single slave or a
single master to multiple slaves architectures. In general the options are more limited
than those used in the MySQL. The architecture, however, is somewhat more fault-
tolerant, as the database operations are immediately (synchronously) replicated to
the passive server (rather than in asynchronous manner as in the standard edition of
MySQL). The PostgreSQL also has many open-source additions answering various
replication and scaling out needs (such as previously mentioned pg_pool-II).

PostgreSQL has the smallest following of the general database providers ad-
dressed in this section, for which reason it has invested considerably to the migra-
tion strategies from the larger database providers. This includes various wizard tools
for creating a PostgreSQL database out of an Oracle, SQL Server or MySQL one.
[30, 31]

4.5 Full-�edged Solutions

To obtain even a crude view of the spectrum of the more re�ned solutions available
to storing and analyzing process data, this section introduces brie�y few commercial
products to the task. Most of the following systems are intended to handle operations
presented in Figure 12, i.e. monitoring and managing the manufacturing process
intelligently.

OSIsoft PI System is a large-scale integration solution to managing the in-
dustrial environment. The PI System is at the heart of the OSIsoft RtPM (Real-

27

Figure 12: Typical manufacturing operations management functions [1, p. 337]

time Performance Management) system, which conforms to the organizational view
presented in Figure 1. The system promises to implement some Level 3 (MES)
functions, focusing on the production tracking and data collection (cf. Figure 12).
The vertical integration is also taken into account regarding ERP systems such as
SAP. PI System also contains basic fail-safe mechanisms and a replication between
its interface (client) nodes and servers. [32, 33]

Aspen InfoPlus.21 family is a comprehensive solution to Level 3 functionality,
promising to ful�l the operations speci�ed in Figure 12. This is accomplished with a
multitude of modules taking care of the integration to the plant �oor and analysing
the gained data. The post-processing is done e.g. with Real-Time Statistical Process
Control Analyzer, which promises to detect the deviation from the output quality
in an early stage, along with reducing the waste factor. The tool uses acknowledged
SPC (Statistical Process Control) methodology in ascertaining and analysing the
process state. All in all, the family contains comprehensive package to process
management. [34, 35]

ABB RTDB is the ABB's solution to storing process oriented data in a multi-
tude of �elds (from pulp and paper to metal and petrochemical industries). The solu-
tion contains its own database implementation named RTDB (Real-time Database),
which allegedly is 10 to 100 times faster than the generic solutions presented above.
This is needed if a very large amount of tags, e.g. hundreds of thousands, are stored
in a real-time fashion (on the scale of one value update per second). To access exter-
nal data stores, ODBC (Open Database Connectivity) and JDBC (Java Database

28

Connectivity) drivers are used (cf. section 5). The solution also contains OPC based
communication interface for data acquisition, along with extensive analysis and vi-
sualization tools implemented using various .NET technologies. The replication and
fail-safe mechanisms are not discussed in the software description. [36]

Full-�edged solutions are di�erentiated somewhat in the comprehensiveness of
the o�ered solution, i.e. if the solution is an all-encompassing MES product or
more of a data historian. The technical details of the interfaces to the factory �oor
level were not addressed in great detail, however, most likely at least the traditional
OPC is supported. Similar software that are not explored here come also from
Siemens (SIMANTIC Process Historian) and GE (Pro�cy Historian and Pro�cy
Plant Applications).

As an alternative to the solutions presented above, custom, case-speci�c modules
to data acquisition can be developed, whose out-going messages satisfy the exact
protocol used in the company ERP software. This is often the case if full-�edged
solutions are not cost-e�ective, or their comprehensive features are not needed.

4.6 Conclusion

The search for the optimal solution is made somewhat di�cult by the lack of hard
facts about all the possible options. As the most solutions are products sold and
maintained by corporations interested in making pro�t, the complete performance
pro�les and technical decisions are not divulged to the public. However, as the
objective of the thesis is to �nd out possible di�culties in implementing the database
integration, the decision will be limited to the general frameworks.

The main di�erence between the database solutions is the cost-e�ectiveness, e.g.
MySQL and PostgreSQL are fully functional even with the open-source licenses.
Judged by the amount of long-term use, MySQL and SQL Server are proven tech-
nologies in the industry. SQL Server also has a largish package of general data
analysis tools provided in the Analysis Services. The replication features speak on
behalf of the MySQL as the replication can be e�ectively done using the open-source
versions, with components already included in the distribution. The PostgreSQL has
multiple solutions for replication, if additional third-party components are used (in-
cluding compatibility for several database products). However, on the basis of these
general notions alone, it is somewhat hard to unambiguously determine the optimal
solution: a more re�ned analysis would have required rigorous performance tests per
provider.

As it is, all the general solutions are viable and contain the needed, quite simple
functionality (cf. section 6.3) required of the History Gateway. Thus proven viability
of the database engine and the available replication and clustering properties were
main criteria considered. To that e�ect, Microsoft SQL Server and MySQL Commu-
nity Server were used in the History Gateway. Even if PostgreSQL has somewhat
good integration capabilities, its use is still quite marginal. Supporting MySQL
(Community Server) also ensured cheap deployability of the History Gateway, a
cluster case included.

The presented full-�edged solutions pave way for the answer to the research

29

question, What are the di�culties in integrating industrial process data into SQL
database using the OPC UA framework and Java, by de�ning the speci�c needs
of the process industry: the ability to save large amounts of near real-time data.
Solutions also highlight the need for vertical integration in the systems, as in a full-
scale solution the interfaces to ERP (and possibly other MES) systems are vital.
An another important aspect is the amount of analysis tools provided by the system
and the actual ability to manage the manufacturing process.

30

5 Database Connectivity and Object Persistence in

Java

5.1 Introduction

Accessing a database from any other source than the database management console
needs to address the connectivity problem between the application and the database.
Some general solutions to connectivity include ADO.NET, ODBC (Open Database
Connectivity) and OLE-DB (Object Linking and Embedding, Database), which are
middle-ware APIs to accessing a database (or possibly other) content in an analogous
way. The technical details of the connection and the capabilities of each of these
connection strategies di�er somewhat: these di�erences, however, are not discussed
here. There are also some Java-speci�c ways to solving the connectivity issue. Two of
these, full O/RM (Object-Relational Mapping) solution Hibernate and driver-based
JDBC (Java Database Connectivity), are examined in this section.

5.2 Object-Relation Mapping Problem

Generally, mapping relational database content into an object-oriented language
like Java (and vice versa!) is no straightforward task. [37] There always exists some
discrepancy between relations in a database and objects in a programming language,
even though in simple cases (e.g. a single object-oriented class with primitive �elds),
the mapping can be quite trivial to solve. In such case the �elds of the primitive
data types can be mapped into the columns of a single table, which then contains
the data of a single class. This, however, is a very unlikely scenario in an application
development.

More generally, the problem can be approached either from the perspective of
the relations, which forces the object-oriented application developer to adhere to
the data model of the relational database; or vice versa, which forces the relational
database to be modelled after the object-oriented classes. In most cases the object-
oriented classes contain the business logic in addition to the data. This makes it
somewhat natural to use the objects as a starting point for the mapping.

When seen from the viewpoint of the object-oriented classes, the mapping prob-
lem includes a representation of class hierarchies (i.e. polymorphism) with some
kind of a table structure. General schema solutions are available, however, they
produce a large amount of tables and associative tables, which store classes, class
hierarchies and attributes within the classes to di�erent tables. With a large class
hierarchy, querying such a database becomes very ine�cient quickly due to a mas-
sive amount of join-operations needed to read the necessary data. Few more speci�c
strategies suitable for di�erent cases exist (cf. section 5.3.2).

In addition to the general class hierarchies, objects hold various relationships or
links between each other. These can be divided by their multiplicity into cases of
one-to-one, one-to-many and many-to-many.

One-to-one is a straightforward relationship, in which one object is related only
to one other object. For example, in the case of a one room �at, one �at holds only

31

one person and one person holds only one �at, i.e. one address.
One-to-many relationship is illustrated by a case of detached house (if we follow

the previous example). In it one house holds several people, and each person holds
only one �at, or one address.

Many-to-many can be seen as a situation, where one person lives in several
addresses, and each house holds several people. This kind of relationship cannot be
modelled without the help of an association table, which dissects the many-to-many
relation into two one-to-many relations.

Relations between objects can be enriched by association mappings, in which
objects have references into each other. These can be illustrated by a parent-child
analogy, where the parent has access to the child element and the child element
optionally to the parent element. Thus these associations can be unidirectional or
bidirectional, and describe whether objects "know" of each other.

More complex situation arises, when the persistent object is of a composite
type, e.g. a collection or set. (Some support for these kind of objects may come
available with newer versions of SQL, as was brie�y described in 3.2.2.) For instance,
a case of modelling a collection which contains objects that themselves contain
collections might illustrate a case needing quite sophisticated tools in order to allow
a straightforward solution.

In general case the problem may surpass mere technical aspects of the mapping:
large organizations probably hold quite diverse professionals in the application de-
velopment and the database management, in which case the problem is also partly
interpersonal. The database administrator may have very di�erent ideas on a suit-
able database architecture than the application developer interested in the object
persistence and/or business logic. These types of relations, however, are somewhat
out of the scope of this thesis, even if their importance cannot be in any way ignored.

To return to the technical side, Hibernate (by JBoss) promises to solve the
mapping issues (some of which were described above) by introducing an abstraction
layer between the application and the database. JDBC is a low-level solution mainly
solving the connectivity issue, leaving all the mapping to be done by hand by the
application developer.

5.3 Hibernate

Hibernate is a somewhat abstract solution for persisting objects in Java, which in an
extreme case hides the database completely from the application. Hibernate de�nes
a persistence context, which handles the necessary operations in making the object
data persistent in the database.

5.3.1 Architecture

Figure 13 gives an overview of the full Hibernate architecture. The database is
generally an SQL one (few were introduced in section 4), and holds the data of the
persistent objects. SessionFactory abstracts the properties of the connection into
the database, and is meant to be used from one instance (initialized in the launch

32

of the application). SessionFactory also contains the object-relation mappings to
the database used. Session is used for doing the actual work regarding the data of
the persistent objects and can be obtained from the SessionFactory. Hibernate uses
JDBC as a default underlying connection to the database (cf. section 5.4).

Figure 13: Complete Hibernate persistence architecture [38]

The Java objects in the application are given speci�c states in order to discern
whether the data of an object is up-to-date in relation to the database. These states
are transient, persistent and detached, and are modi�ed using the Hibernate loading
and saving methods. The transient state means that no persistence is associated
with the object. Persistent means that the object is associated with a Session (i.e.
used in Save or Load-methods) and is within its scope. The detached state means
that the object is out of the scope of any Session, even though it has been associated
with one in the past.

Transaction management is a very important aspect of the database access, as
on it depends the locking state of the database. Transaction was already de�ned
in section 3.1.3, and is brie�y de�ned as a continuous unit of work done by the
database (which can be cancelled while in progress, i.e. within the transaction). In
the Hibernate context, transactions are acquired from the Session object, and can be
used in managed or unmanaged ways. One option is to use the JTA (Java Transac-
tion API) in Java EE, which provides implementation to handling the transactions
(de�ned e.g. by UserSession interface). If, on the other hand, plain Java SE is used,
the Hibernate Transaction API is needed for the handling and demarcation of the
transactions.

The environment, in which the Hibernate is used, can also be a somewhat com-
plex entity. Modern corporate IT-systems often contain many layers of abstraction

33

where high level programming frameworks are used (possibly) in abundance. As
such, the con�guration options in the Hibernate are somewhat complex, and the
usage of the Hibernate depends largely on the frameworks in use in the environ-
ment. Hibernate integrates into Java environments such as Java EE (which might
include Enterprise JavaBeans) by being an implementation of the JPA (Java Persis-
tence API). JPA is a speci�cation of annotations and interfaces, which de�ne how
persistence is used in the modern versions of Java.

All the considered details regarding the transaction, session, environment and
other scope issues are de�ned in the con�guration, written in XML format. [38]

5.3.2 Hibernate Solutions to Object-Relation Mapping Problem

The Hibernate tackles the mapping of the class hierarchies into relations with a
threefold strategy: table per class, table per subclass and table per concrete class
hierarchy. The general solution mentioned in the problem description section is
omitted altogether by the Hibernate.

Table per class hierarchy means mapping the whole class hierarchy, i.e. all the
classes, into one table. This is in practice done by adding the needed amount of
columns per class into a table, so that the columns of a single table describe all the
properties in all the classes. In the case of the class holding complex objects or lists,
the single table structure may become hard to maintain and quite ine�ective in the
terms of the used space. The table also grows quite quickly even with moderate-sized
class hierarchy. Querying such a database is simple, however, as all the properties
of the classes are found in a single table. (The problem might lie in discerning what
data belongs to a what class, though.)

Table per subclass hierarchy means that every class is mapped to its own table.
This con�guration is simple to understand, as it generally generates one-to-one map-
ping between the classes and tables. The properties spanning class hierarchies, i.e.
properties found in the superclass, are then modelled with foreign key references.
This approach keeps the redundancy of the database in the minimum, as the data
is in theory normalized in the process. The querying operations are then somewhat
slowed down due to the separation of the data into many tables. (This approach is
a toned down version of the general solution, which also maps all the metadata and
properties of the class into separate tables.)

Table per concrete class hierarchy is a crossover of the above two strategies, as
only the concrete (i.e. instantiated) classes are mapped into a database. However,
if the subclasses are not hugely di�erent from each other, the database schema
becomes quite redundant by storing the superclass properties over and over again
for each concrete class. The advantage of the approach is similar to a moderate
denormalization, as the properties of a single class are always found within a single
table. The problems of the approach lie in maintaining the data integrity and the
large amount of work needed per change in the superclass properties.

The mapping itself between the objects and the database can be done by various
techniques, namely with programmatic Java annotations, Java deployment descrip-
tors or XML mapping �les. The exact syntactic format depends on the technique

34

used and handles in practice the many-to-many, association, complex object and
collection etc. cases. These syntactic details, however important, are not discussed
here.

Generally, even with a highly-developed tool such as the Hibernate, the mapping
problem is by no means trivial. As can be seen from the large amount of details
and possible approaches, there is no single solve-it-all solution applicable to each
and every case. This complexity has given the OR/M-solutions somewhat of a bad
name. Still, the mapping problem regarding SQL databases is present in many
industry cases and its solving cannot be escaped.

5.4 Java Database Connectivity (JDBC)

JDBC (Java Database Connectivity) solves the connectivity issue to the database
by a driver-based solution to writing and reading the database content through an
API-like Java functionality. The architecture of the JDBC is illustrated in Fig-
ure 14. Compared to the previously introduced Hibernate, JDBC solves only the
connectivity issue.

Figure 14: JDBC overall architecture [39, p. 24]

JDBC Drivers can be classi�ed to several types shown in Figure 15. Type 1
drivers are a bridging solution using middle-ware APIs (e.g. ODBC) doing the ac-
tual database access. Type 2 drivers contain Java code calling native C or C++
methods provided by the database vendor, i.e. use native API calls. Type 3 drivers
are a network solution translating the API calls to database speci�c calls in the
server layer, which in part connects to the database with speci�c API calls. Type
4 drivers are a pure Java solution communicating with the database directly using
database speci�c protocols. These drivers are mostly supplied and developed specif-
ically by the database provider. Of the drivers presented above, type 4 drivers are
most e�ective, as they contain no intermediate layers in the communication and

35

are completely managed within the Java Virtual Machine. This, at the same time,
elicits a platform independence based on Java.

Figure 15: JDBC driver options [39, p. 27]

In practice the access to the database is done using Statement and ResultSet
objects in Java. The idea is to write database implementation dependant SQL
commands into a Statement object and process the possible results using a ResultSet
object. Going through the ResultSet object makes it possible to populate other
objects with data. This assumes that the drivers are installed correctly, and that
the access to the database is established correctly.

Additionally, all the issues regarding the object-relation-mismatch still remain,
leaving the problem-solving regarding it to be coded manually and in case speci�c
manner by the application developer. [39]

5.5 Conclusion

The two technologies here are quite di�erent in their scope and in the solution
promised, which makes their evaluation di�cult. The Hibernate is a full O/RM-
solution solving the mapping problem from the viewpoint of the object-oriented
developer. JDBC gives the access only to the database, needing many case-speci�c
solutions to be hand-coded. In the Hibernate the work is done mainly in the con�g-
uration, which naturally is case-speci�c, but can be easily modi�ed to accommodate
more complex data schema, if needed. Updating JDBC solution in such case re-
quires most likely modi�cations to the database saving and loading modules as well,
in addition to the considerable modi�cations to the database itself.

However, since the mapping problem in this thesis is mainly in the level of OPC
UA data types (of which some are primitive Java data types, others derivatives of
primitive types) versus SQL data types, a straightforward solution with the JDBC
was opted for. The data consisted mainly of MonitoredDataItems, which are com-
posed of a data value, status code, time-stamp and ID used in the server (cf. section
2.4.3). Thus there was no need to accommodate rich class objects in the database
schema, and really no need for a full-�edged O/RM in the form of the Hibernate.
Also, as the main interest in the process industry is keeping the database up-to-
date, i.e. high enough insertion speed, the overhead of mapping objects to tables

36

through XML could be a disadvantage, even though probably a small one. Still, the
considerable time increase in the development process and the possible optimization
of a new technology spoke negatively of the Hibernate (in the scope of this thesis).

This section also answered the general part of the question What are the di�cul-
ties in integrating industrial process data into an SQL database using the OPC UA
framework and Java, i.e. what are the general di�culties using SQL databases from
the viewpoint of the Java (cf. section 5.2). The answer is also valid in most modern
(object-oriented) programming environments. Additionally, the section presented
Java-speci�c solutions (via Hibernate) to the de�ned problem (cf. section 5.3.2).

37

6 OPC UA History Gateway

6.1 Introduction

The integration of the information from the factory �oor to the upper levels of the
industrial organization can be done using the OPC UA framework and OPC UA
History Gateway. In practice this is done by mediating information between the
di�erent OPC UA clients and servers. The History Gateway server can contain the
contents of many underlying servers, acting as an aggregate server, from which data
of many normal OPC UA servers can be managed simultaneously. [3, p. 268] Within
the OPC UA framework, the History Gateway resides between the Application and
SDK Layer, as a generic OPC UA client can use the History Gateway as its interface
into a multitude of OPC UA servers.

More generally, the History Gateway resides between Levels 2 and 3 in the indus-
trial scheme (cf. Figure 1). In theory, however, many of the functionalities needed in
the Level 3 (cf. Figure 12) could be implemented in the History Gateway or directly
on top of it. Still, in the context of this thesis, the History Gateway is seen more as
a data acquisition and storing system than a �ne-grained analysis and management
system.

6.2 Use Cases

One of the main problems of creating an advanced PCMS (Process Control Moni-
toring System), which monitors a whole industrial plant and calculates performance
metrics, is the lack of sophisticated trend data. [40] The main use case of the History
Gateway is to create such trends out of the process data, as early as possible in the
organizational hierarchy. Any advanced analysis software needs data to function,
making the acquisition part the �rst problem to be solved.

In a more simple use case, the History Gateway can be utilized in managing
multiple OPC UA servers using a single interface (as it is possible to con�gure
several servers into the Gateway). This makes the plant management more e�ective
e.g. for control engineers, and in fact brings about the device space integration.
This is also a starting point to reducing time delays in the vertical control loops up
to the ERP level. [41]

Both above goals assume that the plant is using OPC UA (i.e. there is device
information available in an OPC UA server), which currently is not the case in
many environments. This problem, however, can be alleviated for most parts by
wrapping traditional OPC servers (which are a somewhat de facto standard in the
industry) into OPC UA ones. The remaining option of devices not supporting any
communication through OPC is exceedingly rare.

6.3 Requirements

To answer the above use cases, requirements for the History Gateway were the
ability to process and handle essential Service Requests to the underlying servers

38

and return valid results. Other main functionality was the application's ability to
access some SQL database directly, in order to store and retrieve di�erent kinds of
History data.

More speci�cally, the most essential OPC UA services to be implemented were
the View Service Set, Attribute Service Set, Method Service Set, MonitoredItem
Service Set and Subscription Service Set (refer to section 2.4.2 for the descriptions
of the above Sets).

The requirements for the database integration included solving all the practical
connectivity and mapping issues raised in section 5 in e�ective manner. Connectivity
was required to the SQL implementations evaluated and selected in section 4.

Software design requirements were the ability to use Prosys Java SDK, in ad-
dition to allowing the e�cient relaying of service calls and database integration.
Requirements for the SQL Information Schema were small to none data redundancy
accompanied with fast query and update capabilities (as was applicable). The In-
formation Schema also needed to incorporate OPC UA DataValue data.

6.4 Solution Foundation

As mentioned in the introduction, the Prosys OPC UA Java SDK was taken as a
starting point for the implementation of the History Gateway. The SDK already
contained sample implementations of the OPC UA client and server software. These
were fully utilized in the development of the History Gateway, and provided along
with the rest of the SDK a framework to which implement the novel features. This
way the OPC UA framework could be easily utilized in the History Gateway solution.
Still, OPC UA Java Stack functions were used extensively to create the needed
features of the Gateway (refer to section 2.3 for details of Stack functionality).

6.5 Solution Overview

One main question, What are the di�culties in relaying service calls in the OPC UA
framework, is de�ned by keeping track of the communication between one OPC UA
Gateway server and multiple underlying OPC UA servers. (This general schema
was already illustrated in Figure 2.) Connections between servers are abstracted
with namespace maps, where each namespace in the History Gateway is mapped
into a namespace of another OPC UA server down the chain. The connection itself
is made by an OPC UA client instance, which further uses the OPC UA Stack to
communicate with the wanted server instance.

Figure 16 illustrates the main problems which the History Gateway solves in
the initialization of the software. These problems are mainly about the access and
uni�cation of multiple UA Server namespaces. First, the History Gateway reads
a list of UA Server endpoints, whose Address Spaces it incorporates. An equal
number of UA clients are created for accessing the UA servers. Address Spaces
are not intended to be stored fully, as the relaying is done per namespace basis.
Namespaces per server are stored in the database and a uni�ed namespace for the
History Gateway Address Space is created. If any new UA server is encountered, a

39

Figure 16: Uni�cation of Several UA Server namespaces

�xed server ID is created for it in the database. Any changes in the already read
namespaces need to be taken into account, possibly changing the stored associations
between servers and namespaces in the database. Finally, HashMaps of the essential
database mappings are created (the SQL Data Model is introduced in section 6.7.2).
At this point the History Gateway accepts connections from UA clients, allowing
the Browsing of its uni�ed Address Space.

Another important aspect of the solution is the structure which makes possible
to complete all the above procedures. Figure 17 presents the software structure of
the History Gateway in the form of an UML diagram (only key �elds and methods
included). The diagram illustrates the answer to the research question What is a
suitable software structure to accommodate the relaying of service calls and SQL
database integration. The design adapted as much as possible to the structures
present in the SDK to allow seamless use of the SDK in the History Gateway. This
allowed, for example, to use the already implemented structures to handling the
communication through OPC UA Stack, and to keep the solution in the level of the
Service Requests and Responses.

The idea of the design is to allow GatewayUaClient class to keep track of all
the underlying UA servers (accessed via generic UA clients), and save the values
of the MonitoredDataItems into the database (via a HistoryDatabase instance).
GatewayUaServer class holds the implementations of the UA Service Sets, through
which the History Gateway is used by any generic UA client. These Services then

40

Figure 17: Architecture of History Gateway

use the GatewayUaClient class in order to relay all the service calls. This makes the
History Gateway server and client implementations deeply coupled, which, however,
is quite inevitable in the gateway scheme.

6.6 Relaying of OPC UA Service Calls

The software design per Service Set and ServiceHandler (which do the actual com-
munication in the OPC UA framework) is shown in Figure 18, and follows the OPC
UA speci�cation quite closely. (Some interfaces were combined into a single Service-
Handler in order to keep their amount in check.) Each Service Set (and Service) had
to be overridden in order to create the functionality needed for relaying the Service
calls (e.g. divide the original Service Request into smaller requests, one for each of
the underlying servers). Practical decisions regarding the most important Service
Sets are brie�y described next, and answer the �rst part of the research question

41

Figure 18: Overview of the implementation of OPC UA Services

How can the relaying of service calls and SQL database integration be implemented
in Java.

View Service Set was combined into a NodeManagement Service Set in the
Prosys Java SDK interfaces, as seen in Figure 18. Browse and BrowseNext are
thus implemented in the NodeManagementServiceHandler. Browse and BrowseNext
functionalities were straightforwardly relayed into a single server, as one branch of
the Address Space contains only one server. The main level contained placeholders
for the root of the each underlying server, from which their contents could be browsed

42

further. The Services �rst modi�ed NodeIds to match the underlying server (before
sending the Service Request), and then modi�ed the returned References to match
Gateway namespaces (in the Service Response).

Attribute Service Set holds Read, Write and HistoryRead Services, which are
implemented in the AttributeServiceHandler. Each Service needed to be modi�ed
so that NodeIds conformed to the namespace used in the History Gateway, however,
at the same time showing the data from the correct underlying source. To this
e�ect, every NodeId is modi�ed into a correct one (in underlying server context)
before the Request is sent and then modi�ed back to show a correct NodeId (in the
Gateway context) in the Response. Also, the HistoryRead Service was set to use
the database implementation in showing the trend data of the wanted Nodes. The
database implementation returned an array of DataValues for each Node from which
the time series were constructed. Service also needed to implement Service Request
splitting and merging in order to handle a request containing Nodes from multiple
underlying servers.

Method Service Set was also combined into the NodeManagementServiceHan-
dler as it consisted only of a single Call Service, which was straightforwardly relayed
to an underlying server. One method call can point only to a one server.

MonitoredItem Service Set was combined into the SubscriptionServiceHan-
dler as all the MonitoredItems need to be assigned into a Subscription in any case.
Create and Delete MonitoredItem Services were implemented to take into account
the mapping between the shown MonitoredItem (in the Gateway server) and the
MonitoredItem being monitored in the underlying server (via the Gateway client).
These mappings needed to keep track of the SubscriptionIds and MonitoredItemIds
in both realisations along with the correct namespaces of the NodeIds. Because
of myriad details concerning the MonitoredItems (i.e. DataItems and Events, their
�lters, server and client Subscriptions etc.), this functionality proved to be the hard-
est to implement. Appendix A contains an example of the Create MonitoredItem
Service implementation (the server part).

Subscription Service Set was implemented in the SubscriptionServiceHandler
by adding Create and Delete Subscription services into it. The implementation
created Subscriptions in the Gateway server and client in order to make the link from
the client to underlying servers possible. This meant that items in a Gateway Server
Subscription were possibly mapped to the several Gateway client Subscriptions,
mapping of which was done in the Create MonitoredItem Service implementation.
This is also illustrated in Appendix A.

6.7 SQL Integration

This section answers the second part of the question How can the relaying of service
calls and SQL database integration be implemented in Java. First of all, the database
is accessed using a single database class within the History Gateway. The instance of
the class is accessed by a MonitoredDataItemListener to save the data values of the
MonitoredItems into the database when they change (cf. Figure 17). To this e�ect,
a DataChangeFilter is used to detect changes in the DataValue (as was described in

43

section 2.4.3). As pointed earlier, DataValues are loaded from the database using
the HistoryRead service.

6.7.1 JDBC-based Interface and Database Con�guration

As section 4 argued, the main connectivity was opted for the MySQL and SQL
Server. For these RDBMS, the JDBC drivers were used to access the SQL databases.
These were of the type 4 (cf. section 5.4) and were provided by the database vendors.
The interface was implemented by writing SQL commands to JDBC objects and
executing them. To support both the MySQL and SQL Server, two sets of SQL
commands were needed to be written, one for each database type. Examples of the
storing and retrieving commands are found in Appendix B (cf. section 6.7.2 for the
used SQL Data Model).

A clustered index was used in the data value table as most of the time user
is interested in values within a certain time interval. Thus the values are stored in
order and the range retrieval is sped up. The Node and source time-stamp were used
as indices, which e�ectively inserts data values of each unique Node in continuous
lumps ordered by their time signature.

It is notable, though, that the index con�guration should depend on the most
common operation on the database. If the contents of the database are not read
often, or reads are not time critical, non-clustered index would probably suit the
database better. In that case the saving of the new values, i.e. insertion, is not
hindered (this was discussed in section 3.3.1).

6.7.2 SQL Data Model

Figure 19 depicts the ER (Entity-Relationship) diagram of the SQL database data
model. The schema is separated into tables identifying the underlying UA servers,
uni�ed namespace, NodeIds and all the stored values of the NodeIds. The tables are
normalized to ensure the uniqueness of the servers and NodeIds along with enforcing
data integrity: primary keys with foreign key references between the tables are in
use.

In the scheme above, servers are identi�ed by their Server Application URI and
Server Endpoint URI, of which the Server Application URI should be unique iden-
ti�er for a single piece of software [42]. The Server Application URI combined with
the Server Endpoint URI can identify servers even in the case of multiple instances
of the same software within a single machine. ServerId is a database speci�c sur-
rogate key simplifying references to the servers. ServerId is in turn mapped to the
varying con�guration of UA clients in the History Gateway.

Namespace URIs are stored in the schema to discern changes in the con�gu-
ration of the underlying servers. The ServerIds and namespace URIs are mapped
through association table, which is updated at the software start-up. This makes
the database independent of the changes in the uni�ed namespace index values.
Also, new namespaces URIs can be added to underlying servers without database
corruption.

44

Figure 19: Entity-Relationship diagram of History Gateway database data model

NodeIds are identi�ed with the namespace URI and NodeId String value, whose
combination is unique. The NodeIds are also given a surrogate key in the database
to separate the database key from the possible changes in the NodeId identi�er value.
Lastly, the ValueTable holds the data values of all the Nodes, which are indexed by
the surrogate Node key and the source time-stamp. A HashMap implementation is
used in identifying the Nodes from the ValueTable. This gets rid of the slow joining
of the Uni�edNamespace and NodeId tables each time the data values are accessed.

The UA data types were handled through Java type casting (some types speci�c
to the OPC UA) with all the values residing as the text data type in the SQL
table. The casting implementation is presented in Appendix C. It is worth noting,
however, that in the case of the more complex data types (e.g. arrays, XML and any
composite types in general), the value tables need to be data type speci�c, resulting
in as many value tables as there are data types. Event histories were also left
out from the data model in the prototype phase, which simpli�ed the data model
considerably. Section 6.8 addresses features transcending the prototype status of
History Gateway, including the amount of the supported data types.

All in all, the schema answers the research question What is a suitable SQL
database structure to storing data modelled in the OPC UA framework. Even if the
answer covers only a small part of the OPC UA data model, it is applicable to a
large part of the process data, namely the continuous process variable data. The
used solution combined a normalized database with the exclusion of the join queries,
which was possible due to the somewhat simple nature of the (object) data model.
The few attributes identifying the Nodes can be easily held in HashMaps during the
application runtime.

Figures 20 and 21 show the functionality of the History Gateway when accessed
by a generic OPC UA client (by Uni�ed Automation). Figures show the uni�cation
of several OPC UA Address Spaces along with the acquired trend data spanning
several OPC UA servers.

45

Figure 20: The uni�ed History Gateway Address Space and Namespace Table as
seen by a generic UA client

46

Figure 21: History Gateway trend data from multiple UA servers as seen by a generic
UA client

47

6.8 Future Possibilities and Features

The future development of the software would need to take into account the sup-
ported data types, Event histories, pre-con�guration of the MonitoredItems, among
other things. A sketch of the new features and their update schedule is illustrated
in Table 1. Supported types could include e.g. arrays, matrices (of varying dimen-
sions) and range types. The con�guration of the servers would be ideally done by
XML �les, needing the implementation of the XML serialization.

Table 1: History Gateway current (prototype) and future feature list

Also, the OPC UA history read functions (such as reading minimum, maximum
or average aggregate values; reading at interpolated time points etc.) would need
to be implemented. Currently only the ReadRaw-parameter is used, which returns
the data values at exact time points for which the data is available.

HistoryUpdate Service would also be a natural place to handle the database
storing operations. This would possibly involve developing an UA client supporting
the Service. In any case the NodeIds of the saved data items should be con�gurable
somehow. An another option would be to develop a small con�guration utility,
which would accept lists of NodeIds to be saved in various formats (XML, CSV).
Con�guration could be even done in an interactive graphical fashion depending on
which Nodes are read from the underlying servers.

Other improvements might include increasing the integration capabilities of the
software, for example the ability to access (or wrap) traditional OPC DA servers.
However, wrapping is already possible using the Uni�ed Automation UaGateway,
which could be employed per OPC DA server basis. Vertical integration to the upper
layers of hierarchy is quite ERP (or MES) speci�c and general solution to that the
problem is somewhat hard to devise.

Another large-scale update would be to allow the browsing of the History Gate-
way Address Space (and Node) contents without online access to the underlying

48

UA servers. This could be done, for example, with the help of the latest history
database values. A representation of the underlying Address Spaces would need
to be created in addition to the logic of handling the di�erences in online/o�ine-
functionality. The user should also be clearly noti�ed that the data is only from
the database, which might not be evident simply by browsing the Address Space.
The o�ine functionality would essentially replicate the Address Space of the un-
derlying server(s), along with the Type hierarchy. This would be a somewhat large
undertaking.

To scale the solution up, a hierarchical deployment of the History Gateways
would be possible. In this scheme, a small number of Gateways would be deployed
in the lowest level, whose Address Space would then be read by a single Gateway in
the upper tier. In this way, a very large number of Nodes residing in multiple UA
servers could be read by dividing the Nodes to di�erent Gateways. The database
functionality would then be divided into multiple servers reducing the load per
server. The uppermost Gateway could still show the full Address Space containing
all the Nodes, with some delay. The uppermost Gateway would also need to turn o�
its database functionality for the improvements to ensue, turning it into a normal
OPC UA Gateway.

49

7 Conclusions

The vertical (as well as horizontal) integration of the information and its analysis
are key elements in the modern industrial process management. This thesis has
illustrated the viability of the OPC UA History Gateway with inherent database
functionality in making that integration reality.

The History Gateway can be seen as an upgrade to low-level data acquisition
software, closing to the functionality of the full-�edged solutions presented in section
4.5. However, in its current form, the History Gateway is really standing between
Levels 2 and 3 (cf. Figures 1 and 12) of the industrial schema: the History Gateway
can publish and store structured data spanning most of the plant �oor, easing the
integration of the process variables and devices to the MES level and beyond.

To accomplish the modelling, storing and integration of the process data, several
strategies need to be used. The modelling part has been addressed extensively in the
theses by Palonen and Laukkanen, this thesis addresses the rest. [10, 17] Multitude
of challenges presented by above tasks is re�ected in the research questions, answers
to which are found throughout the thesis. In sum, the answers de�ned di�culties
in the process data integration and persistence in conjunction with the OPC UA,
SQL and Java.

The �rst research question, What are the di�culties in relaying service calls in
the OPC UA framework, is answered by the need to form links between the History
Gateway server and several OPC UA servers. The di�culties lie in unifying multiple
Address Spaces into a single one in the History Gateway server. Also, a custom OPC
UA client is needed to handle the communication to the underlying servers. All the
OPC UA service requests in the History Gateway need to go through the custom
OPC UA client with an access to the underlying servers. Also, the obtained results
need to be modi�ed to conform to the uni�ed Address Space of the History Gateway.
Di�culties and solutions per Service Set are addressed in detail in section 6.6.

The second research question, What are the di�culties in integrating industrial
process data into an SQL database using the OPC UA framework and Java, is an-
swered by the objective of storing a large amount of real-time process data into a
database. Thus possible di�culties lie in the e�ciency of the database solution.
Also, the general di�culties in using an object-oriented programming language to
store data in an SQL database is known as an OR/M (Object-Relation Mapping)
problem and is addressed in detail in section 5.2. The problem is about storing
the objects, object associations and class hierarchies into a relational database table
structure. The OPC UA related problems are about representing the OPC UA data
in the SQL data model.

The answer to the third research question,What is a suitable software structure to
accommodate the relaying of service calls and SQL database integration, is illustrated
mainly by Figures 17 and 18. The software structure makes possible to solve the
issues raised by the �rst research question, mainly by coupling the OPC UA client
and server implementations. The design relies on the Prosys Java SDK to take the
full advantage of the OPC UA communication implemented in the Stack level along
with the already implemented service framework.

50

The answer to the fourth research question, What is a suitable SQL database
structure to storing data modelled in the OPC UA framework, is illustrated by Figure
19. The database data model allows the storing of the OPC UA DataValues (cf.
section 2.4.3) to the database, along with the namespaces which de�ne the Address
Space of the History Gateway. This way the design also addresses the problems
raised by the second research question.

The �fth and �nal research question, How can the relaying of service calls and
SQL database integration be implemented in Java, is answered most thoroughly
in the Appendices and in section 6. In sum, the solution utilizes the database
data model along with some HashMap implementations to solve the Address Space
uni�cation problem (by unifying the namespaces of the underlying UA servers). The
implementation issues regarding the namespace uni�cation are illustrated in Figure
16. The storing part is shown to be solved using the MySQL and SQL Server, along
with JDBC drivers and objects within Java. The solution also answers the OR/M
problem regarding the OPC UA DataValue data. All in all, the developed prototype
as a whole illustrates an answer to the �nal research question.

In conclusion, this thesis has shown OPC UA to be the future of interoperability
in the industrial automation world, a fact which is hopefully evident in the OPC
UA History Gateway solution.

51

References

[1] V. L. Trevathan, A Guide to the Automation Body of Knowledge, 2nd ed. In-
ternational Society of Automation, 2006.

[2] American National Standards Institute and International Society of Automa-
tion, ANSI/ISA-95.00.03-2005: Enterprise-Control System Integration, Part 3:
Models of Manufacturing Operations Management, 2005.

[3] W. Mahnke, S.-H. Leitner, and M. Damm, OPC Uni�ed Architecture.
Berlin: Springer Berlin Heidelberg, 2009. [Online]. Available: http:
//www.springerlink.com/index/10.1007/978-3-540-68899-0

[4] E. F. Codd, The relational model for database management: version 2.
Addison-Wesley Longman Publishing Co., Inc., 1990.

[5] International Organization for Standardization and International Elec-
trotechnical Commission, �ISO/IEC 9075-1:2011 Part 1: Framework
(SQL/Framework),� 2011.

[6] ��, �ISO/IEC 9075-2:2011 Part 2: Foundation (SQL/Foundation),� 2011.

[7] P. Ceruzzi, A History of Modern Computing, 2nd ed. The MIT Press, 2003.

[8] V. Tan and M.-J. Yi, �Flexibility and Interoperability in Automation Systems
by Means of Service Oriented Architecture,� in Advanced Intelligent Computing
Theories and Applications. With Aspects of Arti�cial Intelligence, ser. Lecture
Notes in Computer Science, D.-S. Huang, X. Zhang, C. Reyes Garcia, and
L. Zhang, Eds. Springer Berlin Heidelberg, 2010, vol. 6216, pp. 554�563.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-14932-0_69

[9] H. R. H. Renjie, L. F. L. Feng, and P. D. P. Dongbo, �Research
on OPC UA security,� pp. 1439�1444, 2010. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5514836

[10] O. Palonen, �Object-oriented implementation of OPC UA information models
in Java,� Master's Thesis, Aalto University, School of Eletrical Engineering,
Espoo, 2010.

[11] OPC Foundation, �OPC Uni�ed Architecture Speci�cation, Part 1:
Overview and Concepts, Release 1.02,� 2012. [Online]. Available: http:
//opcfoundation.org/UA/Part1

[12] ��, �OPC Uni�ed Architecture Speci�cation, Part 2: Security Model,
Release 1.01,� 2009. [Online]. Available: http://opcfoundation.org/UA/Part2

[13] ��, �OPC Uni�ed Architecture Speci�cation, Part 5: Information Model,
Release 1.02,� 2012. [Online]. Available: http://opcfoundation.org/UA/Part5

http://www.springerlink.com/index/10.1007/978-3-540-68899-0
http://www.springerlink.com/index/10.1007/978-3-540-68899-0
http://dx.doi.org/10.1007/978-3-642-14932-0_69
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5514836
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5514836
http://opcfoundation.org/UA/Part1
http://opcfoundation.org/UA/Part1
http://opcfoundation.org/UA/Part2
http://opcfoundation.org/UA/Part5

52

[14] D. Grossmann, K. Bender, and B. Danzer, �OPC UA based Field Device Inte-
gration,� in SICE Annual Conference, 2008, 2008, pp. 933�938.

[15] V. Tan, D.-S. Yoo, and M.-J. Yi, �Device Integration Approach to OPC UA-
Based Process Automation Systems with FDT/DTM and EDDL,� in Emerging
Intelligent Computing Technology and Applications. With Aspects of Arti�cial
Intelligence, D.-S. Huang, K.-H. Jo, H.-H. Lee, H.-J. Kang, and V. Bevilacqua,
Eds. Springer Berlin Heidelberg, 2009, pp. 1001�1012.

[16] OPC Foundation, �OPC Uni�ed Architecture Speci�cation, Part 3:
Address Space Model, Release 1.02,� Jul. 2012. [Online]. Available:
http://opcfoundation.org/UA/Part3

[17] E. Laukkanen, �Java source code generation from OPC UA information mod-
els,� Master's Thesis, Aalto University, School of Eletrical Engineering, Espoo,
2013.

[18] OPC Foundation, �OPC Uni�ed Architecture Speci�cation, Part 4: Services,
Release 1.02,� 2012. [Online]. Available: http://opcfoundation.org/UA/Part4

[19] ��, �OPC Uni�ed Architecture Speci�cation, Part 8: Data Access, Release
1.02,� 2012. [Online]. Available: http://opcfoundation.org/UA/Part8

[20] ��, �OPC Uni�ed Architecture Speci�cation, Part 9: Alarms and Conditions,
Release 1.02,� 2012. [Online]. Available: http://opcfoundation.org/UA/Part9

[21] V. Tan and M.-J. Yi, �OPC UA Based Information Modeling for
Distributed Industrial Systems,� in Advanced Intelligent Computing Theories
and Applications, ser. Lecture Notes in Computer Science, D.-S. Huang,
Z. Zhao, V. Bevilacqua, and J. Figueroa, Eds. Springer Berlin Heidelberg,
2010, vol. 6215, pp. 531�539. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-14922-1_66

[22] Oracle, Oracle Database: SQL Reference, 10th ed., 2003. [Online]. Available:
https://www.stanford.edu/dept/itss/docs/oracle/10g/server.101/b10759.pdf

[23] International Organization for Standardization and International Electrotech-
nical Commission, �ISO/IEC 9075-11:2011 Part 11: Information and De�nition
Schemas (SQL/Schemata),� 2011.

[24] A. Hovi, SQL-Opas, 1st ed. Jyväskylä: Docendo Finland Oy, 2004.

[25] E. F. Codd, �A Relational Model of Data for Large Shared Data Banks,�
Commun. ACM, vol. 13, no. 6, pp. 377�387, 1970. [Online]. Available:
http://doi.acm.org/10.1145/362384.362685

[26] ��, �Further Normalization of the Data Base Relational Model,� IBM Re-
search Report, San Jose, California, vol. RJ909, 1971.

http://opcfoundation.org/UA/Part3
http://opcfoundation.org/UA/Part4
http://opcfoundation.org/UA/Part8
http://opcfoundation.org/UA/Part9
http://dx.doi.org/10.1007/978-3-642-14922-1_66
http://dx.doi.org/10.1007/978-3-642-14922-1_66
https://www.stanford.edu/dept/itss/docs/oracle/10g/server.101/b10759.pdf
http://doi.acm.org/10.1145/362384.362685

53

[27] R. Mistry and S. Misner, Introducing Microsoft SQL Server 2012, H. Anne,
M. Devon, and D. Carol, Eds. Microsoft Press, 2012.

[28] Oracle, �MySQL 5.6 Reference Manual,� 2014. [Online]. Available: http:
//dev.mysql.com/doc/refman/5.6/en/

[29] EnterpriseDB, �Breaking the Scalability Barrier with In�nite Cache,� 2009.
[Online]. Available: www.enterprisedb.com

[30] ��, �A Comparison of PostgreSQL 9.0 and MySQL 5.5,� 2011. [Online].
Available: www.enterprisedb.com

[31] ��, �Comparing MySQL and Postgres 9.0 Replication,� 2010. [Online].
Available: www.enterprisedb.com

[32] OSIsoft Inc., �ISA 95 and the RtPM Platform,� Tech. Rep., 2005. [Online].
Available: http://www.osisoft.com/resources/white_papers/White_Papers.
aspx

[33] ��, �High Availability PI,� 2006. [Online]. Available: http://www.osisoft.
com/resources/white_papers/White_Papers.aspx

[34] Aspentech, �aspenONE MES,� 2013. [Online]. Available: http://aspentech.
com/products/aspenONE-MES/

[35] H. Meyr, J. Rohde, M. Wagner, and U. Wetterauer, �Architecture of Selected
APS,� in Supply Chain Management and Advanced Planning, H. Stadtler and
C. Kilger, Eds. Springer Berlin Heidelberg, 2005, pp. 341�353. [Online].
Available: http://dx.doi.org/10.1007/3-540-24814-5_19

[36] ABB, �Industrial IT Process Data Management,� 2006.
[Online]. Available: http://www.abb.�/industries/db0003db001873/
c12570c30026b341c12570c10042dba8.aspx

[37] S. W. Palmer, �The Object-Relational Impedance Mismatch,� 2013. [Online].
Available: http://www.agiledata.org/essays/impedanceMismatch.html

[38] JBoss, �Hibernate Reference Documentation,� 2014. [Online]. Available:
http://docs.jboss.org/hibernate/orm/4.3/manual/en-US/html/

[39] G. Reese, Database Programming with JDBC and Java, 2nd ed. O'Reilly &
Associates, Inc., 2000.

[40] L. Desborough and R. Miller, �Increasing customer value of industrial control
performance monitoring - Honeywell's experience,� in Preprint of Chemical Pro-
cess Control, CPC-6, Tucson, Arizona, 2002, pp. 153�186.

[41] T. Gerber, A. Theorin, and C. Johnsson, �Towards a seamless integration
between process modeling descriptions at business and production levels: work
in progress,� Journal of Intelligent Manufacturing, pp. 1�11, 2013. [Online].
Available: http://dx.doi.org/10.1007/s10845-013-0754-x

http://dev.mysql.com/doc/refman/5.6/en/
http://dev.mysql.com/doc/refman/5.6/en/
www.enterprisedb.com
www.enterprisedb.com
www.enterprisedb.com
http://www.osisoft.com/resources/white_papers/White_Papers.aspx
http://www.osisoft.com/resources/white_papers/White_Papers.aspx
http://www.osisoft.com/resources/white_papers/White_Papers.aspx
http://www.osisoft.com/resources/white_papers/White_Papers.aspx
http://aspentech.com/products/aspenONE-MES/
http://aspentech.com/products/aspenONE-MES/
http://dx.doi.org/10.1007/3-540-24814-5_19
http://www.abb.fi/industries/db0003db001873/c12570c30026b341c12570c10042dba8.aspx
http://www.abb.fi/industries/db0003db001873/c12570c30026b341c12570c10042dba8.aspx
http://www.agiledata.org/essays/impedanceMismatch.html
http://docs.jboss.org/hibernate/orm/4.3/manual/en-US/html/
http://dx.doi.org/10.1007/s10845-013-0754-x

54

[42] R. Armstrong and P. Hunkar, �The OPC UA Security Model For
Administrators,� 2010. [Online]. Available: http://www.opcfoundation.org/

http://www.opcfoundation.org/

55

Appendix A: Create MonitoredItem Service Imple-

mentation

Source code of Create MonitoredItem Service implementation within Subscription-
ServiceHandler is presented below.

@Override

protected void createMonitoredItems(ServiceContext serviceContext,

CreateMonitoredItemsRequest request,

CreateMonitoredItemsResponse response,

List<ReadValueId> itemsToRead, List<MonitoredDataItem> items)

throws ServiceException {

NodeId nodeId = request.getItemsToCreate()[0].getItemToMonitor()

.getNodeId();

// use gateway logic if gateway client contains the nodeId

if (myGateway.hasNodeId(nodeId)) {

MonitoredItemCreateRequest[] itemsToCreate = request

.getItemsToCreate();

checkRequestLength(itemsToCreate);

// throws Bad_SubscriptionIdInvalid

UnsignedInteger clientIndex = null;

Subscription serverSubscription = getSessionManager().getServer()

.getSubscriptionManager()

.getSubscription(request.getSubscriptionId());

// create new subscription, if subscription not created for nodeid

for (int i = 0; i < itemsToCreate.length; i++) {

nodeId = itemsToCreate[i].getItemToMonitor().getNodeId();

clientIndex = myGateway.getClientIndex(nodeId);

if (myGateway.getClientSubscriptionId(clientIndex,

serverSubscription.getSubscriptionId()) == null) {

try {

com.prosysopc.ua.client.Subscription clientSub = myGateway

.getClient(clientIndex).addSubscription(

myGateway.createSubscription(Integer

.parseInt(clientIndex

.toString())));

myGateway.putIntoSubscriptionMap(

serverSubscription.getSubscriptionId(),

clientIndex, clientSub.getSubscriptionId());

56

} catch (StatusException e) {

e.printStackTrace();

}

}

}

UnsignedInteger clientSubscriptionId = myGateway

.getClientSubscriptionId(clientIndex,

serverSubscription.getSubscriptionId());

final TimestampsToReturn timestampsToReturn = request

.getTimestampsToReturn();

// initialize result and diagnostic info structures

MonitoredItemCreateResult[] results =

new MonitoredItemCreateResult[itemsToCreate.length];

DiagnosticInfo[] diagnostics = new DiagnosticInfo[itemsToCreate.length];

// go through all the items needed to be created

for (int i = 0; i < itemsToCreate.length; i++) {

try {

results[i] = new MonitoredItemCreateResult();

NodeId itemNodeId = itemsToCreate[i].getItemToMonitor()

.getNodeId();

// get necessary gateway client and namespace indices

// along with subscriptionId

Integer[] clientIndices = myGateway

.getClientIndices(itemNodeId);

clientIndex = UnsignedInteger

.parseUnsignedInteger(clientIndices[0].toString());

clientSubscriptionId = myGateway.getClientSubscriptionId(

clientIndex, request.getSubscriptionId());

// create item in the gateway server

MonitoredItem item = getSessionManager()

.getServer()

.getSubscriptionManager()

.createMonitoredItem(serviceContext,

serverSubscription, timestampsToReturn,

itemsToCreate[i]);

// set nodeId to comply with namespace in underlying server

itemsToCreate[i].getItemToMonitor().setNodeId(

NodeId.get(itemNodeId.getIdType(),

57

clientIndices[1], itemNodeId.getValue()));

// create item in the gateway client

UnsignedInteger clientMonitoredItemId = myGateway

.createMonitoredItem(

myGateway.getClient(clientIndex)

.getSubscriptionById(

clientSubscriptionId),

itemsToCreate[i].getItemToMonitor()

.getNodeId(), itemsToCreate[i]

.getItemToMonitor()

.getAttributeId(),

item.getFilter(), itemNodeId);

if (clientMonitoredItemId == null) {

results[i].setStatusCode(new StatusCode(

StatusCodes.Bad_NodeIdExists));

} else {

// ensure that new items are updated to item hashmaps

// so they can be linked to gateway client itemid

myGateway.putIntoMonitoredItemIdMap(clientIndex,

clientSubscriptionId, clientMonitoredItemId,

item.getMonitoredItemId());

// set results to show to the outside client

results[i].setRevisedQueueSize(UnsignedInteger

.valueOf(item.getQueueSize()));

results[i].setRevisedSamplingInterval(item

.getSamplingInterval());

results[i].setStatusCode(StatusCode.GOOD);

results[i]

.setMonitoredItemId(item.getMonitoredItemId());

final MonitoringFilterResult filterResult = item

.getFilterResult();

// set filter to item

if (filterResult != null) {

results[i].setFilterResult(ExtensionObject

.binaryEncode(filterResult));

}

// finally add item to monitoredItems list,

if (item instanceof MonitoredDataItem) {

itemsToRead

.add(itemsToCreate[i].getItemToMonitor());

items.add((MonitoredDataItem) item);

58

}

}

} catch (ServiceException e) {

getLogger().debug(e);

results[i].setStatusCode(e.getServiceResult());

diagnostics[i] = e.getDiagnosticInfo();

} catch (StatusException e) {

getLogger().debug(e);

results[i].setStatusCode(e.getStatusCode());

diagnostics[i] = e.getDiagnosticInfo();

} catch (EncodingException e) {

results[i].setStatusCode(e.getStatusCode());

diagnostics[i] = new DiagnosticInfo(e.getMessage(), null,

null, null, null, null, null);

}

}

// set modified results to response result field

response.setResults(results);

// set diagnostic information to response diagnostic field

response.setDiagnosticInfos(diagnostics);

} else {

// use the unmodified functionality, i.e. normal node in gateway server

super.createMonitoredItems(serviceContext, request, response,

itemsToRead, items);

}

}

59

Appendix B: Loading and Storing SQL Commands

Loading of DataItems from SQL schema with JDBC Statements, ResultSet and SQL
syntax is presented below.

public synchronized void loadDataItems(DateTime startTime, DateTime endTime,

List<DataValue> history, NodeId nodeId) throws SQLException {

try {

// get node identifier used in the database

int node = getDatabaseNode(nodeId);

// timestamps stored as integer in the database

long st = startTime.getValue();

long et = endTime.getValue();

String cmd = "";

ResultSet rs;

// select all values within certain time range into result set

switch (databaseType) {

case SQLServer:

cmd = String.format(

"SELECT * FROM [dbo].[%s] WHERE ((Node = '%d') AND "

+ "(SourceTimestamp BETWEEN %d AND %d))",

dataTableName, node, st, et);

break;

case mySQL:

cmd = String.format(

"SELECT * FROM %s WHERE ((Node = '%d') AND "

+ "(SourceTimestamp BETWEEN %d AND %d))",

dataTableName, node, st, et);

break;

}

// execute statement into result set

rs = stat.executeQuery(cmd);

// process result set

while (rs.next()) {

String value = rs.getString("Value");

String statusCode = rs.getString("StatusCode");

long sourceTimeStamp = (long) rs.getObject("SourceTimestamp");

long serverTimeStamp = (long) rs.getObject("ServerTimestamp");

// store database row into single datavalue

DataValue dataValue = new DataValue();

// use stored timestamps

dataValue.setSourceTimestamp(new DateTime(sourceTimeStamp));

dataValue.setServerTimestamp(new DateTime(serverTimeStamp));

// cast value into correct datatype as datatype for NodeId is known

// set value into value of datavalue

60

dataValue.setValue(new Variant(castAsUaType(value, nodeId)));

// StatusCodes are inherently identified by UnsignedInteger and

// same format is used in the database

if (statusCode != null) {

dataValue.setStatusCode(UnsignedInteger

.parseUnsignedInteger(statusCode));

} else {

dataValue.setStatusCode(value == null ?

StatusCode.BAD : StatusCode.GOOD);

}

// finally add value into history value list used by the HistoryRead

// service

history.add(dataValue);

}

} catch (SQLException e) {

e.printStackTrace();

}

}

Saving of DataItems into SQL schema.

public synchronized void saveDataItem(DataValue dv, NodeId nodeId)

throws SQLException {

try {

// get the serverId used in the database using hashmap implementation

int node = getDatabaseNode(nodeId);

// use integer timestamps

DateTime sourceTimeStamp = dv.getSourceTimestamp();

DateTime serverTimeStamp = dv.getServerTimestamp();

long dtSrc = sourceTimeStamp.getValue();

long dtSrv = serverTimeStamp.getValue();

// initialize SQL command

String cmd = "";

// check if nodeId is new, assumes nodeid_datatype_map

// is up-to-date, update accordingly

if (!(nodeId_to_datatype.containsKey(nodeId))) {

saveNodeId(nodeId);

updateNodeIdDatatypeMap();

}

// use different commands regarding database in use

switch (databaseType) {

case SQLServer:

cmd = String.format(

61

"INSERT INTO [dbo].[%s] VALUES ('%d','%d','%d','%s','%s')",

dataTableName, node, dtSrc, dtSrv,

dv.getStatusCode().getValue().toString(),dv.getValue());

break;

case mySQL:

cmd = String.format(

"INSERT INTO %s VALUES ('%d','%d','%d','%s','%s')",

dataTableName, node, dtSrc, dtSrv,

dv.getStatusCode().getValue().toString(),dv.getValue());

break;

}

// update value table

stat.executeUpdate(cmd);

} catch (SQLException e) {

e.printStackTrace();

}

}

62

Appendix C: History Gateway Data Type Casting

Type casting procedure in History Gateway database implementation.

private Object castAsUaType(String value, NodeId nodeId) {

String datatype = nodeId_to_datatype.get(nodeId);

if (datatype.equals("Boolean")) {

return Boolean.valueOf(value);

}

if (datatype.equals("Byte")) {

return Byte.valueOf(value);

}

if (datatype.equals("UnsignedByte")) {

return UnsignedByte.valueOf(Integer.parseInt(value));

}

if (datatype.equals("Short")) {

return Short.valueOf(value);

}

if (datatype.equals("UnsignedShort")) {

return UnsignedShort.valueOf(Integer.parseInt(value));

}

if (datatype.equals("Integer")) {

return Integer.valueOf(value);

}

if (datatype.equals("UnsignedInteger")) {

return UnsignedInteger.valueOf(Long.parseLong(value));

}

if (datatype.equals("Long")) {

return Long.valueOf(Long.parseLong(value));

}

if (datatype.equals("UnsignedLong")) {

return UnsignedLong.valueOf(Long.parseLong(value));

}

if (datatype.equals("Float")) {

return Float.valueOf(value);

}

if (datatype.equals("Double")) {

return Double.valueOf(value);

}

if (datatype.equals("String")) {

return value;

}

return null;

}

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Symbols and Abbreviations
	Introduction
	Background
	Objectives
	Research Methods
	Structure of Work

	OPC Unified Architecture
	Introduction and History
	OPC UA System Architecture
	Client-Server Pattern
	Aggregating Server

	OPC UA Application Architecture
	OPC UA Specification
	Address Space
	Services
	Data Access
	Events
	Historical Access

	Conclusion

	Structured Query Language (SQL) Framework
	Relational Model
	Relation and Structure
	Integrity Constraints
	Transaction

	Standardized SQL
	Schema
	Data Types
	Statements

	SQL Concepts
	Index
	Normalization

	Comparison of Database Management Solutions
	Introduction
	SQL Server
	MySQL
	PostgreSQL
	Full-fledged Solutions
	Conclusion

	Database Connectivity and Object Persistence in Java
	Introduction
	Object-Relation Mapping Problem
	Hibernate
	Architecture
	Hibernate Solutions to Object-Relation Mapping Problem

	Java Database Connectivity (JDBC)
	Conclusion

	OPC UA History Gateway
	Introduction
	Use Cases
	Requirements
	Solution Foundation
	Solution Overview
	Relaying of OPC UA Service Calls
	SQL Integration
	JDBC-based Interface and Database Configuration
	SQL Data Model

	Future Possibilities and Features

	Conclusions
	References
	Appendix A: Create MonitoredItem Service Implementation
	Appendix B: Loading and Storing SQL Commands
	Appendix C: History Gateway Data Type Casting

