

 Ma 70

 ACTA
 POLYTECHNICA
 SCANDINAVICA
 MATHEMATICS AND COMPUTING IN ENGINEERING SERIES No. 70

 Replicated Computations in a Distributed Switching Environment

 RAIMO KANTOLA

 Nokia Telecommunications
 P.O.Box 33
 FI-02601 Espoo, Finland

 Dissertation for the degree of Doctor of Technology to be presented with due permission for public
 examination and criticism in Auditorium E at Helsinki University of Technology on the 9th of
 December 1994, at 12 o'clock noon.

HELSINKI 1994

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80711826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

14-Apr-14

Kantola, R., Replicated Computations in a Distributed Switching Environment. Acta
Polytechnica Scandinavica, Mathematics and Computing in Engineering Series No. 70,
Helsinki 1994, 144 pages. Published by the Finnish Academy of Technology. ISBN 951-666-
430-X. ISSN 1237-2404.

Keywords: Fault-tolerance, replicated computations, migration of computations, switching.

ABSTRACT

Replication of computations in a distributed switching environment is studied. The first topics
discussed are the requirements and the other design goals that have to be met by replicated
computations in a distributed switching system. The requirements on the grade of service and
availability performance objectives are largely set out in the international standards. A
structured probability oriented software approach to building a kernel supporting replicated
computations is suggested and the functional as well as the probability properties of the
replication scheme are investigated. To aid the definition and investigation of the functional
properties of the replication scheme a model of computation based on the actor model of
Hewitt and Agha is defined and used. The overall replication scheme consists of a loose basic
scheme, the real-time computation migration tools, here designated as warm-up algorithms, and
the corrective replication tools augmenting the basic scheme. Language methods which
enhance the transparency of the replication scheme are also discussed. The work has been done
in connection with a redesign project of a distributed digital switching system and the results
have largely been implemented in that environment.

Edition 2

3

 ACKNOWLEDGEMENTS

The ideas concerning the work presented in this thesis started to take shape in the summer of
1987. About that time an ambitious specification project was launched to precede a major
redesign of the processor system and the switching matrix on the hardware side as well as the
basic software system of the DX 200 switching system. The DX 200 is a digital switching
system designed, produced and commissioned by a Finnish company, Nokia
Telecommunications.

A number of people from the company have contributed to the success of this work. The
complete list of the people to be thanked for their help is too long to be presented here, but it
includes many interested users, kernel implementors, tool experts and enthusiasts of switching
software architecture. I am sure that we all remember the enthusiastic team oriented atmosphere
of great fun without which any success in this work would hardly have been possible. Thank
you all. However, I wish to mention some of the persons here: To Mr. Martti Syväniemi I am
indebted for many stimulating discussions and ideas. Mr. K. Pasanen, Mr. Tero Peltola, Ms.
Eeva Hartikainen, Mr. Matti Oosi and Mr. Ari Muittari are responsible for the current
implementation, and especially Eeva has contributed to many details of the real-time
computation warm-up algorithms. To Mr. Erkki Ruohtula I am grateful for his contribution in
the language issues.

I also wish to thank the company and the management, especially Mr. Jussi Ilmarinen and Mr.
Kai Kurru, for the opportunity and support needed to work out and implement ideas which
arise from a background of working in different DX 200 design, specification and management
positions mostly in the areas of various aspects of fault-tolerance and ISDN call control and
signalling starting from 1981.

Coming from a practical engineering background a major effort for me has been the
formalisation of the results. This would not have been possible without the guidance from Prof.
Heikki Saikkonen and especially Dr. Markus Lindqvist. The idea of using an actor model to
describe the semantics of computations comes from Markus who has also provided many
valuable comments. Mikko Tiusanen PhD has provided invaluable criticism in finalising the
text. Mr. Harvey Bensson has adviced on the use of English. I also thank Prof. Leo Ojala and
Prof. Sulonen for their support.

Finally I want to thank my wife Natalia for endurance and motivation to finalise this work in
the form of this thesis.

Helsinki, October 1994,

Raimo Kantola

This work is dedicated to the Order of DX Knighthood and in particular to the Chastity
Committee of Kalkki.

4

14-Apr-14

 BACKGROUND

The history of the DX 200 system goes back to the emergence of microprocessor technology in
the early 1970's. Initially Intel's 8-bit microprocessors were used as the main processors and the
first fully digital local exchange in Europe was put into commercial service in 1982. Later, until
1990, the main processors were based on Intel´s 8086 and 80286 architectures. The system has
been developed in incremental stages called system releases. Each new release has increased
the functionality and applicability of the system to public telecommunication networks. So far,
over four million equivalent subscriber lines of the DX 200 technology have been
commissioned in a number of countries.

The system redesign project initiated in 1987 intended to take an advantage of the most recent
developments in microprocessor and VLSI-technology with the specific goals of

- upgrading the system capacity at least fourfold i.e. up to 400 000 BHCA and 10 000
erlangs, and creating a potential for further increase in capacity,

- preserving the possibility of upgrading all the existing DX 200 systems to the new system
release level,

- removing all the software architecture limitations and thus,

- creating a comprehensive core system for a number of new telecom applications, like the
Intelligent Network systems, Centrex, GSM mobile exchanges and other GSM network
elements, concentrators, etc,

- designing those applications, and

- reducing the cost of ownership, by integrating software and data package update support
features into the exchange system software and by wider use of random access memory for
storing the software as well as data.

The first public exchange delivery of the new system level took place in March 1990 and the
exchange was taken into commercial use in August 1990 as planned.

Intel 80386/486 processors1 were used to implement all the control computers. During the
implementation phase it turned out that with the 386 control processors, call processing
capacities of 600 000 BHCA could be achieved, while with plug-in compatible high end 486
control processors, call processing capacity of over 1 000 000 BHCA has been demonstrated.

The architectural development efforts involved more specifically:
- new operating system kernel,
- embedding replicated computations support into the kernel,
- redesign of the memory resident file system,
- new memory resident distributed database system,
- new call processing architecture, and
- separating program interfaces from the implementation.

This thesis concentrates on the replicated computations support problems. The ideas for this
thesis were worked out or at least inspired and largely implemented by the project described

1 8086, 80286, 80386, and 80486 are Intel microprocessor products.

5

above. My role was to be the initiator and the head of a task force working on replicated
computations as well as heading the System Maintenance software development team.

6

14-Apr-14

Contents

GLOSSARY OF SYMBOLS AND ABBREVIATIONS 9
PREFACE 11
1 Introduction 14

1.1 What is a switching system? 14
1.2 Computer architecture 15
1.3 Fault Tolerance and System Maintenance 16

1.3.1 Main Hardware Replication Schemes 17
1.4 Computing environment 18

1.4.1 The programming model 18
1.4.2 Memory resident file and database systems 21

1.5 The DX 200 system architecture 21
1.5.1 Examples of DX 200 systems 22
1.5.2 Real-time operating system 25
1.5.3 Additional Hardware Replication Schemes 26
1.5.4 Implementation of the System Maintenance 26

2 Definition of the Problem 28
2.1 The problem scope 28
2.2 Design goals 29
2.3 Requirement analysis 31

2.3.1 Availability and performance requirements 31
2.3.2 Availability vs. correctness for call processing 32
2.3.3 Permanence requirements 33
2.3.4 Charging requirements 34
2.3.5 MTP and Database requirements 35

2.4 Conclusions 36
3 Related Work 39

3.1 Design goals of fault-tolerant systems 39
3.2 Fault-tolerance implementation techniques 40

3.2.1 Software vs. Hardware for Fault-Tolerance 40
3.2.2 Computation replication schemes 41
3.2.3 Checkpointing vs. replicated active computations 42
3.2.4 The Auragen scheme 43
3.2.5 Circus 44

3.3 Transaction processing systems 44
3.4 Conclusion 45

4 Modelling Tools 46
4.1 Model of computation 46
4.2 Model of Failures 59

5 The Basic Replication Tools 62
5.1 The Replication Model 62
5.2 The Basic Replication Scheme 66

5.2.1 The replication group 66
5.2.2 The multicast delivery protocol 67
5.2.3 The service provider allocation protocol 68
5.2.4 The hand release protocol 70

7

5.3 State changes of a replication group 72
5.3.1 Changeover 72
5.3.2 Deletion of the hot-standby spare member 73
5.3.3 Creation of the hot-standby spare member 73

5.4 Analysis of the properties of the Basic Replication Scheme 75
5.4.1 Analysis of possible errors 77

5.5Implementation Issues 79
5.5.1 Time-out synchronisation 80
5.5.2 Logical address management 82
5.5.3 Message attributes 82

6 Warm-up of Computations 83
6.1 Requirements for active warm-up 83
6.2 Atomic warm-up entity and warm-up order 84

6.2.1 Message passing relations between processes 85
6.2.2 Relations between a process and a data unit. 86
6.2.3 Relations between two processes and a data unit 88
6.2.4 A simple read cycle 89
6.2.5 Relations between a process and a set of data units. 89
6.2.6 Generalisation 91

6.3 Active warm-up algorithm for a process 95
6.4 Warm-up algorithm for a set of separate data units 97
6.5 Warm-up implementation issues 98

6.5.1 Atomic warm-up entities 98
6.5.2 Warm-up order 99
6.5.3 Computer unit warm-up 100

6.6 Design rules imposed by warm-up services 101
7 Corrective Replication Tools 103

7.1 Coverage and Order of Correction 104
7.2 Replication Error Detection 106
7.3 Basic Error Correction Tool 107
7.4 Propagation of the corrective actions 108
7.5 An asynchronous error correction tool 109
7.6 Time-out triggered synchronisation 110
7.7 Safe Transitions 112

7.7.1 Properties of the safe transitions tool 114
7.8 Comparison of the correction algorithms 116

8 Reliability Modelling and Analysis 118
8.1 Basic Reliability Model 118
8.2 Reliability Model for the Schemes with Correction 120
8.3 Analysis 121

9 Language Issues 124
9.1 Replication class declarations 125
9.2Warm-up declarations 127

10 Evaluation of the Solution 130
10.1 Performance Cost of Replicated Computations 130
10.2 Design Rules Imposed on the Applications 131
10.3 Transparency of the Replication Scheme 132
10.4 Contribution to Knowledge 133
10.5 Further development 135
10.6 Conclusion 136

REFERENCES 137
Appendix 1: Resynchronisation 141

8

14-Apr-14

Appendix 2: Safe Synchronisation 143

9

GLOSSARY OF SYMBOLS AND ABBREVIATIONS

Symbols

= equals,

≠ is distinct from,

 approximately equals,

~ is isomorphic to,

 is a member of; e.g. a  A: a is a member of set A,

 is a subset of ; e.g. P  : P is a subset of .,

 a union of sets,

 intersection of sets,

 complementation of sets, e.g. A  B is the complement of B relative to A,

Æ an empty set,

f a function restricted to a sub domain,

 implies,

 not,

 all, for all,

 exists,

! exists as unique,

O(x) grows as expression x; e.g. O(n) grows linearly as a function of n,

<< substantially smaller than,

Abbreviations for functional unit states

WO working, synonym active,

SP spare,

SP-EX spare-executing, i.e. hot-standby state for 2N replicated units, ready for binding to
form a temporary pair for N+1 redundant units,

SP-UP spare-updating, an intermediate unit state for unit warm-up before it can become SP-
EX,

TE testing, a unit state dedicated to fault location,

BL blocked, a unit state in which no new tasks are allocated to the unit,

SE separated, a unit state for repair actions,

10

14-Apr-14

Other Abbreviations

BHCA Busy Hour Call Attempts, a measure of performance of a switching system,

CCITT Comite,´ Consultatif International Telegraphique et Telephonique. CCITT has
recently renamed itself as Telecommunication Standardisation Bureau of the
International Telecommunication Union,

CCS7 Common Channel Signalling System # 7,

CPU Central Processor Unit,

DX 200 a switching system developed and manufactured by Nokia Telecommunications,

DMX the real-time Operating System of the DX 200 Switching System,

FIFO first-in-first-out queue,

GSM Originally Groupe Spe,´cial Mobile, now Global System for Mobility, Digital
Mobile Network standard,

iff if and only if,

ISDN Integrated Services Digital Network,

I/O Input/output,

kbyte/s thousands of bytes per second,

Mbyte/s millions of bytes per second,

MTBF Mean time between failures,

MTP Message Transfer Part, lower layers of CCS7 specified in [Q.7XX],

MTTF Mean time to failure,

2N a redundancy principle which assumes that N active functional units share the
computing load created by an application and that each of these units has a spare
permanently bound to it,

N+1 a redundancy principle which assumes N active units share the computing load
created by an application and that there is one additional unit to recover from faults,

O&M Operation and Maintenance,

OMU Operation and Maintenance Unit,

OSI Open Systems Interconnection, a model of communications between open systems
specified by the International Standardisation Organisation,

SDL Specification and Description Language (defined by the CCITT),

SIG Signalling and Call Control Unit,

SU Service Unit.

11

 PREFACE

Fault-tolerance is the property of a computing system to perform in a satisfactory fashion in the
presence of faults. Faults are deviations from the intended behaviour of the system [Re84].
Ideally all computing systems should be fully fault-tolerant, but because of economic
considerations and because of some theoretical limitations, this is not so in practice.

The reliability of the computing system can be increased by adding redundant hardware.
Acceptable cost of redundant hardware varies in different application areas and depends on the
importance of fault-tolerance for the application. When human lives or the entire mission of the
system are at stake, a significant increase in the cost of the whole system because of
redundancy is usually acceptable. In switching, faults are more of a nuisance and a cost factor
than anything else. Faults in switching systems cause degradation of service provided by the
telecommunication network, but customers do accept a certain level of erroneous behaviour of
the network. A crash of a switching system causes the operator to loose revenues from the
customer connections and in a competitive environment both the switching system vendor and
the operator get bad publicity which does not help in gaining new business. The maintenance
costs of the systems also have to be taken into consideration.

Therefore, in switching system design the costs of increasing the reliability of the system have
to be compared and balanced with the economic losses of the operator and the vendor due to
failures of the systems. At the same time an acceptable grade of service, as defined by
international standardisation bodies like the CCITT and the network operators, has to be
maintained. For switching systems, an acceptable and sufficient level of redundancy seems to
be duplication or even a lower level of redundancy, as in our example, the DX 200 system. In
such systems normally some fault detection time is required before recovery actions can be
started. Under these conditions it is not possible to mask even all single faults. For this to be
possible, at least three concurrent computations or two self-checked computations executed by
different computers are needed [Re84]. Switching systems are manufactured in large numbers,
which is why  although massive hardware redundancy has to be ruled out  significant
design efforts are quite acceptable to come up with a good solution to problems in the area of
fault-tolerance.

In this thesis, we will study more thoroughly one of the problems in the design for fault-
tolerance, the organisation of replicated computations, under the external requirements
prevailing in a switching environment. The task can be formulated briefly as follows: we have
to suggest an organisation of replicated computations which would facilitate fast
implementation of new replicated applications and which does not bear significant cost
penalties in the control part of the targeted distributed switching system. This also excludes
solutions with a high performance penalty. A high performance solution is not important as
such but rather because poor performance costs money.

This study has been inspired by a redesign project of the DX 200 switching system starting
from 1987 and finished by 1991. The results of this study have been largely, although not
totally, implemented in the DX 200 system and in the tools used in the design process of that
system. The run-time replication tools were made available to the applications in 1991 and
have since been taken into commercial use by an increasing number of applications. The

12

14-Apr-14

implementation of the tools and their use in a large number of applications has now been
debugged and the tools are being further developed based on this experience. The tools have
been rather popular among application designers and experience shows that the target of fast
implementation of new replicated applications has been achieved although the debugging of
such applications constitutes a considerable effort. An example of applications using these run-
time and the corresponding design tools are Nokia's GSM network elements based on the
DX 200. Where bigger suppliers had considerable difficulties Nokia succeeded in the timely
introduction of the whole range of GSM network elements partially due to the language and
replication tools which will be the focus of this study.

In all Chapters of this thesis we have attempted to structure the material into general and
DX 200 specific where applicable, presenting first the general concepts and then specifics of
the DX 200 system separately. We have adopted the terminology from the DX 200 vocabulary
as such where the terms are well established. In some cases we have, however, deviated from
the current DX 200 term in favour of a more generally understandable word.

Our presentation in Chapter 1 will start with a description of the computing environment. In
particular we shall discuss distributed switching systems in general and review those features of
the DX 200 system which are relevant to the study of replicated computations. In Chapter 2 we
will look more thoroughly into the requirements to be met by our design and formulate our
design problem more precisely.

Chapter 1, together with the requirements analysis in Chapter 2, forms the basis of
requirements traceability, i.e. that we have correctly understood the basic needs and the
consequent realistic assumptions which we have to bear in mind while solving the fault-
tolerance problems and how those needs and assumptions are transformed into features of the
solution. This concept is fundamental and intended to direct any abstractions that we may wish
to adopt in such a way as to keep us strictly within practical engineering problems.

Chapter 3 covers different approaches in fault-tolerance design and especially in the area of
replicated computations. This study shows that there is a demand for a new design in the area
of replicated computations, which would be well suited for the needs of the applications in a
distributed switching system. The suggested approach is structured and is presented as a set of
replication tools provided by the kernel software to the applications.

Chapter 4 presents the basic modelling tools which will be enhanced and used in the following
chapters to formulate the properties of the replication scheme suggested in this thesis. Our
model of computations is based on the actor model suggested by Gul Agha [Ag, Ag86] and
used in [Lin91]. The model does not limit itself to message passing as the sole means to
communication between processes; the existence of a memory resident file system is modelled
by data units accessible by several processes. Chapter 5 first formulates a model of replicated
computations and then lays out the basic replication scheme on top of which a set of other
replication tools are developed. The intention of a replication scheme is to implement
requirements of the model of replicated computations. To our knowledge the suggested
replication scheme is a unique development of the approach based on eventual convergence,
i.e. the scheme does not aim at instantaneous correctness at the basic level. Due to this fact, as
we shall see in Chapter 10, high performance is achieved in the type of applications which are
typical in switching.

One of the specific replication problems, namely real-time migration of computations or
computation warm-up, as we have called it, from a computer unit to another is formulated and
a satisfactory solution is suggested in Chapter 6. The purpose of the suggested algorithms is to
allow for a graceful transfer of call control, signalling and statistic computations from a
computer unit to another in case of failure of the active unit or by an operator command. The
warm-up algorithms do not use roll back, i.e. are not based on re-executing any code by the

13

new active unit, and thus are well suited to real-time environments. Such real-time algorithms
for processes communicating by message passing and also using memory resident files have
not been presented before.

In Chapter 7 the results of the previous Chapters are used to define the sufficient conditions for
corrective actions in the case of an replication error in the spare computation as well as to
define more exactly the concept of conditional instantaneous correctness. These theoretical
results show the possibility and the goal of the additional replication tools that aim at a higher
level of correctness of the spare computation. The best of the tools, presented in Chapter 7, can
be applied selectively to important events by the programmer and thus do not destroy the
performance characteristics of the basic replication scheme. Markov's reliability modelling
techniques are used in Chapter 8 to study the probabilistic properties of the suggested
replication scheme. The reliability analysis makes it possible to compare different corrective
replication tools. Chapter 9 addresses the problem of transparency of the replication scheme.
Language tools which allow the use of the replication primitives of the run-time system in a
declarative fashion are described. These language tools increase the level of transparency of the
replication scheme.

Chapter 10 evaluates some properties of the suggested approach to replicated computations and
lays out the contribution of this thesis to the knowledge on fault-tolerance techniques.

14

14-Apr-14

1 Introduction

In this chapter we will first describe an abstract structure of a switching system and especially
our view on the computer architecture of the switching system. Next, we will discuss such
aspects of our abstract switching system as fault-tolerance and its implementation by software
methods and hardware redundancy. We will then look at the computing environment we
assume to prevail in our switching system. To conclude our introduction we will present some
specific characteristics of the DX 200 architecture in Section 1.5.

1.1 What is a switching system?

Public switched telecommunication networks are mainly composed of transmission systems
and switching systems. From the point of view of the end-customer, transmission systems
provide connectivity on layer one, the physical layer, of the Open Systems Interconnection
model while switching systems work on layers two, the link layer, and three, the network layer.
Consequently, switching systems provide dial-up connections.

In a switching system
architecture four principal
components are needed (see
Figure 1.1): the subscriber
interface, the trunk
interface, the switching
matrix and the control part.
The subscriber lines are
connected to the subscriber
interface and the trunks to
other exchanges of the
network are connected to
the trunk interface.
Subscriber lines may be
either copper pairs or
2Mbit/s connections.
Trunks are 64 kbit/s
connections carried in time-
slots of 2Mbit/s signals. The
term 'trunk' refers to the fact
that these connections, as
opposed to subscriber lines,
are used to carry calls to
and from any of the

subscribers of the system, the mapping being established at the call set-up. The switching
matrix allows the establishment of circuit switched connections on a call-by-call basis at least
on the 64 kbit/s level.

 Figure 1.1. An abstract switching system.

Switching
Matrix

Control Part

S
ub

sc
ri

be
r

In
te

rf
ac

e

T
ru

nk
 I

nt
er

fa
ce

Trunks
Subscriber
lines

15

The control part is connected with the network environment through the subscriber and the
trunk interface, and with the switching matrix. From the point of view of the control part, the
switching matrix is just a resource that has to be managed.

The control part is typically a distributed computing system running the control software. The
current public switched telecommunication networks have been built during several decades
and by using equipment from a large number of vendors. Consequently, it is not surprising that
a large number of different types of protocols for both the subscriber and the trunk side as well
as passing call control information, i.e. interworking, between all of them have to be supported
by the control part of the switching system. None the less important is the requirement that
accurate information on all calls has to be collected e.g. for charging purposes. To be able to
provide service, the control part has to incorporate a lot of data including the subscriber
database and a description of the surrounding network.

Sometimes we will also use the term exchange as a synonym of a switching system.

1.2 Computer architecture

A switching system has some application oriented hardware but above all it has a powerful
computing system and a lot of software. In our experience, some 80 to 90 per cent of the
continuous design effort goes into software development. Different switching systems have
adopted different computer architectures. Some systems are centralised, some are distributed.
Among distributed designs, both shared memory systems and multicomputers, i.e. processors
with their own memory have been used. Various communication mediums and structures
between the computer units in distributed switching systems have been used as well. These
include message switches, communication through the main switching matrix and bus

structures.

We will assume
that the computer
system is composed
of computer units
and a communi-
cation structure. For
short, we will often
use the terms unit
and computer as
synonyms of a
computer unit. The
computer units are
based on processors
with their own local
memory and there
is no shared
memory. We will
assume that the

communication
structure between

the processor units provides full connectivity, i.e. any processor can send messages to any other
computer, and that it is not the worst performance bottleneck in the system. In our experience
to achieve the call processing capacity of more than a million BHCA with commercially

 Figure 1.2. The Computing system.

SIG

SU

SIG SIG SIG SIG

SU SUSU OMU

I/O

0 1 2 3 n

0 1 2 m

Duplicated Bus

SIG

SU

OMU
I/O

 Signalling and Call Control Unit

 Server Unit

 Operation and Maintenance Unit
 Input /Output devices

16

14-Apr-14

available processors (e.g. 80486) this requires message passing delays of less than one
millisecond in the communication medium and a bandwidth of at least on the order of 8 Mbit/s.
We will also assume that the order of messages does not change in the communication medium
and that access delays to the communication medium are predictable if the communication
medium is shared. In practice such a communication medium can be e.g. a fast bus.
Incidentally, such a multicomputer structure is similar to a network of workstations and servers
connected by a local area network.

We will also assume that at least one of the computers has access to non-volatile memory and
to input/output devices. Such a computer is necessary to perform a system restart and to
provide a man-machine interface to the user (operator) of the system. Figure 1.2 presents such a
multicomputer system. In Figure 1.2 we have adopted a duplicated bus as the communication
medium although our reasoning is not limited to the system in which the communication
structure is a bus. We have named the computer with direct access to the I/O, the Operation
and Maintenance Unit (OMU). We have also assumed that not necessarily all the computers
are identical. In Figure 1.2 a server unit is a centralised computer providing a certain set of
centralised services e.g. the subscriber data base or charging and performance data collection
and management. The signalling units communicate with the network environment i.e. the
subscribers and other switching systems performing the appropriate communication protocols,
interworking and call control tasks. Our approach does not presume, however, that such a clear
functional distribution between the server units and the signalling units is adopted.

An important feature of our assumed computing system is that it is scalable and reconfigurable.
Scalability means that the system can be expanded by adding new processor units in step with
the growth of processing needs. Dynamic reconfiguration of the existing computers is used as a
means to recover from faults.

1.3 Fault Tolerance and System Maintenance

One of the functions performed by the control part of a switching system is system
maintenance. Its purpose is to handle all the fault situations and user initiated configuration
management tasks in the system hardware and software in such a way that all the availability
performance requirements for the whole system and for the individual customers are met. The
availability performance issues will be further discussed in Chapter 2.

Fault tolerance is a general requirement for all the software of a switching system, but above all
system maintenance is responsible for this system feature. The structure of system maintenance
is illustrated in Figure 1.3.

System maintenance contains functions for hardware and software fault detection, alarm
handling for analysing the fault information from different sources and informing the operator,
recovery for eliminating the effects of faults, and fault location to aid the operator with the fault
repair activities.

 Figure 1.3. The Structure of System Maintenance.

Fault Detection
Alarm Handling Recovery Fault Location
- analysis
- alarm reporting

- elimination
 of faults - repair

17

For maintenance purposes the system consists of functional units. Faults are pinpointed into the
functional units by the alarm system and replication of hardware is handled by the recovery on
the level of functional units. Physically functional units consist of replaceable plug-in units to
which faults are pin-pointed by the fault location function. Repairing the system means
changing the faulty plug-in unit.

Functional units have operating states and substates managed by the recovery. For simplicity
we will mostly adopt the DX 200 terminology for these operating states. The states are active
or working (WO), spare (SP), blocked (BL), testing (TE), separated (SE). Active units handle
the call traffic and run the other active application functions. SP units are the stand-by units
ready to take-over in case of a WO unit failure. When a unit fails, the recovery takes it to the
TE state and starts the fault location function. Before fault location, some units may be blocked
(BL) to stop the allocation of new tasks to them. Fault location runs all the diagnostics
programs for the unit and locates the fault into a replaceable plug-in unit or gives a list of
suspected plug-in units placed in the estimated probability order. The unit is taken to the SE
state for plug-in unit replacement by the operator. After replacement the operator verifies the
results by starting the diagnostics programs with an operator command.

The functional unit state is an important concept and enables the recovery system to control all
the applications running in one unit as a whole. In our view this is different from what seems to
be a common approach e.g. in transaction processing systems in which the basic model of
computation includes a recovery action, namely, abort. The functional unit concept is one of
the factors supporting the idea of a hierarchical recovery system instead of dealing with all the
recovery problems on the process level. The recovery from faults is considered a difficult task
and  as is most often the case  hard problems are tackled with a hierarchical approach. The
recovery subsystem is a three (in some cases four) level hierarchy, with components in all pre-
processors, in the control computers and with the central recovery control function, which is,
under normal conditions, located in the O&M unit, but may be dynamically relocated into a
pair of computers e.g. in the case of an O&M unit failure.

Fault detection may be based on software as well as hardware and all the applications should
inform the system maintenance about all the errors in their environment and about internal
inconsistencies. The design approach for applications should include being prepared for
practically any conceivable errors in their environment and to report those errors to the system
maintenance.

1.3.1 Main Hardware Replication Schemes

We will assume that at least two replication schemes are used in the switching system. In both
of them N units are needed for tasks of a certain type, where N is a small integer for a system
which the operator can change by installing new equipment and activating it by operator
commands. The schemes are:

2N
Two units execute the same task and one of the units is always active or in the working
state (WO) and the other unit is kept in the hot stand-by state or the spare (SP) state.

Replaceable N+1
There is just one or a few spare units and these are not used by the applications and are not
permanently bound to any of the N active units but can take over the load of any one of
them in case of an active unit failure or by an operator command.

18

14-Apr-14

When a spare unit is bound to an active unit by a changeover command, a pair is made up, the
spare unit is warmed-up to the hot stand-by state, i.e. the computational state of the active unit
is cloned to the spare when the spare is taken from the TE state to the SP state, and the
command initiated changeover can be completed without major service interruptions.

A common state diagram can
be adopted for both types of
replication schemes, shown
in Figure 1.4. Computer units
using any of the two
replication schemes can be
managed by the recovery
system by implementing the
common state diagram. The
state changes in Figure 1.4
are (1) unit changeover, i.e.
the active unit becomes spare
and the spare becomes active, and (2) the spare unit is handed over to the diagnostics system
for fault location or returned to the spare state after verification.

1.4 Computing environment

The computing environment consists of the programming model defining the program objects
that the programmer has to deal with and the common data services available to the
programmer. We will deal with each of them in turn.

1.4.1 The programming model

This model is needed to capture the programmer's view of the system and to target the issue of
application transparency.

The programming model is based on the message passing paradigm and the concepts of
extended finite state automata and communicating asynchronous processes. This model inherits
the message passing, state automata and process concepts from SDL [Z.100]. This basic
paradigm is augmented with the concept of a service [Lin91, TNS91] to facilitate the
description of the external behaviour of an object2 without the knowledge of its internal
structure. This programming model is supported by the TNSDL language [TNG, TNS91]
which implements a version of SDL, augmented with a model of the system and the concept of
a service.

2Objects may be processes, blocks, and asynchronous or synchronous procedures as defined in SDL.

 Figure 1.4. Basic state diagram of a computer unit.

WO SP TE

WO - active, or working

SP - spare, or standby

TE - testing

(1) (2)

19

Figure 1.5 presents the main
static and dynamic program
objects. The static code
objects, the program blocks,
have an interface and an
implementation. A program
block is a kind of load module
containing the executable code
of a process family or a library.
A process family contains at
least one process, called the
master process. Many process
families may be created on a
program block code which is
not a library. Creating the
process family, in the kernel
sense, means creating the
master process. A family may
also contain a number of hand

process3 types. The master may create and allocate hand processes for distinct computations,
which are instances of a hand process type. Depending on the nature of the computation, a hand
process may be permanently allocated to a task and always ready to function, or it may be
allocated for a certain period. The time initially requested may be prolonged with a new
request. The idea of the model is that a master process is simple and mainly allocates hand
processes for parallel computations and the hands do the actual work. Additionally the master
process may have other house-keeping tasks such as dealing with messages addressed to hands
that do not exist.

The requirements of modularity, ease of software maintenance, and ease of re-use lead to a
desire to decompose the signalling, call control, and other telecommunication applications into
a large number of processes. This implies that several hand processes may be allocated to a
call, each handling just a compact modular function, like incoming network layer signalling,
incoming call control, resource handling, outgoing call control, outgoing signalling etc.

A typical process has an initialisation routine after which it waits for a message or messages to
arrive. A typical process has only one point in code called the main receive point where it waits
for messages to arrive and where it always returns after having processed a message.
Processing a message may include changing the values of the state variables of the process and
sending some messages. Always, when a message e.g. an acknowledgement is expected to
arrive within a time period, a time limit is set. This ensures that the process is able to recover in
case of an error.

A process also has the kernel state variables which are set by the system rather than by the
application. The kernel state variables include scheduling state and the communication state.
The communication state of a process may be "reachable", i.e. incoming messages are normally
delivered to the process or "unreachable", i.e. incoming messages are discarded or e.g. they
may be delivered to the master process of the unreachable hand. We will assume that messages
are always received in the same order as they were sent by a single process. Two messages sent
by two different processes to the same destination may be received in a different order than
they were sent.

3We live in a democratic country but work hard, so our processes cannot be slaves nor children.

 Figure 1.5 Main program objects.

Master process

Hand
process

Program block

Hand
process

Hand
process

0

1 2 n

Process family

service

20

14-Apr-14

A very important feature
of any programming
model of a distributed
system is how messages

are addressed to their destinations. Here we shall present the basic solution and add details later
when they are needed. Each process instance in the system has a process identifier or Pid (see
Figure 1.6). From the point of view of the programmer, the Pids are unique. The Pid is used to
address the messages to the recipients. The Pid is composed of the computer address, the
family identifier, the local process identifier, and finally the focus differentiating the
subsequent lives of the process instance. The allocation of identities to computers and families
is static. However, computer address allocation is static only from the point of view of the
applications, while the recovery control may remap the computer addresses to the physical
computer units in a unit changeover. The local process identifier and focus allocation is
dynamic. The local process identifier of the master process in a family is always zero.

We can see that this addressing method does not support complete location transparency. This
is because a computer address is a structural part of the Pid. Complete transparency would
mean that the Pid should not have any structure but the operating system should map the Pids
directly to the processes of the system. It seems that complete location transparency in a
distributed system like ours with a very large number of processes would require either very
large addressing tables or elaborate kernel features for optimising such tables. The question is:
do we need complete location transparency? The benefit would be that arbitrary process
migration could be implemented transparently to the applications. It seems that in an embedded
switching system environment in which the task of the system is always the same, the need for
this level of dynamic behaviour of the system is not obvious. That is why the described simple
addressing mechanism allowing for effective implementation and for hiding the unit
changeovers from the applications seems to meet the switching system requirements and was
also chosen for the DX 200 system.

In a computation the initiator is called the service user, and the process requested to execute a
function is called the service provider. The identity of the service provider may not be known.
Then the corresponding master is requested to allocate a hand for the task. So, the initial
message to request a service may always be sent using the static address of the master process.
The possible subsequent messages of the service may be sent using dynamic addresses of a
hand process established at run-time. The identity of the service user is given to the provider
hand in the allocation, and the identity of the service provider is given to the user in the
acknowledgement which is usually sent by the service provider hand.

Our model differs from the client-server model in that asynchronous communication is
employed. We will not seek to describe services formally, although a suitable notation exists
[TNG, TNS91, Lin91] but will only adopt the service user - provider terminology for
describing relationships between objects in our environment. In an asynchronous
communication environment the roles of the user and the provider can be attached to processes
only in connection with a certain service.

When we talk about creating a process, we mean creating an instance of a process type. To
avoid the cumbersome `process instance´ we will in most cases use the word `process´ instead.
However, in formal presentation when the meaning is not obvious from the context we will
resort to the term `process instance´.

It should be noted that when a programmer defines a message, he defines a data type. When the
program is executed, a message is an instance of the corresponding data type. Reception or
sending of a message instance is called an event. For short and to avoid repetition we will often
use the word message instead of message instance.

 Figure 1.6. The Process Identifier.

21

This powerful programming model has shown its worth in the application design for the
DX 200 system. The design methodology and tools based on the model seem to increase the
productivity of a designer considerably, compared to using only a language like C, although
statistical data supporting this claim has not yet been collected [Sea91].

1.4.2 Memory resident file and database systems

In a switching system a large amount of exchange specific data is needed e.g. for describing the
network environment and usage, the subscriber service features, charging and different
measurement arrangements and the exchange itself. At the same time the exchange collects a
wide variety of different types of data about the process being controlled by the system. For
performance reasons most of the data has to be memory resident to give the signalling, call
control and charging functions a fast access to this data, and it is for this reason that a memory
resident file system is necessary in a switching system.

The memory resident file system is most efficient if the files are accessed by the applications
without buffering by means of a set of memory resident library routines. Consequently, they
form a kind of extension to the data areas allocated for the variables of the applications.

Although message passing is the main way of passing information between processes, the
existence of the memory resident file system means that data sharing through such files have to
be considered when devising algorithms for computation replication schemes. These problems
have not been considered before in the literature, e.g. in [Co85], [Bi85], or [Ch88].

Such features of transactions as the atomicity, serializability4 and permanence of data changes
are not tackled by the memory resident file system alone. These features can be partially
embedded in the operator command application programs, the file update system, the man-
machine interface and input-output systems. Alternatively, these important features of a
switching system can be implemented in a memory resident database system. The database
system should guarantee atomicity, serializability, and at least partial permanence of
transactions, be well suited to the distributed computer system architecture and have very high
performance. Permanence of the results of a transaction mean that they can not be undone.
Partial permanence means that transaction results are not updated to non-volatile memory at the
transaction commit time because of performance reasons. At commit time the results have to be
updated at least in two computer units and they are transferred to the disk asynchronously on
the background. Such a database system has been implemented e.g. in the DX 200 system and
is being used by a number of applications.

1.5 The DX 200 system architecture

The control part of the DX 200 system is a loosely coupled microcomputer network. The
processors have no common memory and are based on Intel´s 80386/486 microprocessors. The
control computers are connected with a proprietary fast parallel synchronous message bus.
Each of the control computers may have pre-processors at two levels e.g. for real-time signal
processing. Pre-processors are point-to-point connected with their particular control computers
and are managed using the master-slave scheme. The bulk of the software, which comprises
about five million lines of code, is concentrated in the control computers which are the focus of
our attention also in this thesis.

4For further discussion on atomicity and serializability, please see Section 3.3.

22

14-Apr-14

The DX 200 system and its computer subsystem are functionally distributed. This distribution
is implemented by the concept of functional unit types. A functional unit is an entity of
hardware or software and hardware, dedicated to a function or a task. The main attributes of the
functional unit abstraction are:

- the functional unit type,
- the functional unit index,
- the unit states and substates, and
- the addresses.

The functional unit type and index are used for unit identification throughout the system. The
overall functioning of the system is controlled by controlling the states of the functional units
of which the system is composed. The most important of the functional units are the control
computer units. The computer units have addresses, which are used for communication
between the units.

The unit typing is generic in nature: a feature classification scheme is used to implement the
unit type concept. The result is that new dedicated unit types required by new applications are
easily incorporated into the system architecture.

DX 200 is a loosely coupled distributed, fault-tolerant system with some centralised functions.
The DX 200 system maintenance functions conform to the idea of loose coupling of
autonomous control computers. This means e.g. that

- access to state control mechanisms does not depend on any centralised hardware,

- control computers control their own software and are able to restart on their own, requesting
the appropriate boot and loading services as needed,

- the control computer states are controlled from a centralised point which may, however, be
dynamically reallocated from the OMU to a pair of control computers e.g. in case of an
OMU failure,

- only the control computers are autonomous as described above, the pre-processors run
under the control of the master computer unit.

In line with these principles the following design objectives for the hierarchical recovery
system are set:

- an individual program block failure or a single hardware failure should have a minor effect
on the overall functioning of the whole system,

- very infrequently the fault situation should be so bad or complex that the whole system has
to be restarted. Most often, restarting a program block, a pre-processor or a single control
computer should be enough.

The achieved level of system availability confirmed by field experience reported e.g. in [PuAf]
and customer comments support our confidence that these objectives are met by the actual
design.

1.5.1 Examples of DX 200 systems

The hardware architecture of fixed network exchanges of the DX 200 system are shown in
Figures 1.7 and 1.8. These figures should be understood as examples of possible DX 200
systems. Another application, e.g. a DX 200 Mobile Switching Centre for the GSM network,
would have a different set of application specific computer unit types.

23

The control part (see Figure 1.7) consists of functional computer units for different types of
signalling and call control (SIG) as well as service functions (SU). A group of SIG units is
allocated for each of these main types of signalling. Computers in these groups are said to be of
a specific unit type and the unit type has a name. The SIG units in a fixed network DX 200
exchange take care of such functions as analogue and digital subscriber signalling and services
(SSU), primary access signalling and call control (PAU), common channel (CCSU), and
channel associated (LSU) signalling, etc. All computers of a specific unit type run identical
software. The system can be extended by creating new SIG units on-line as additional external
lines are connected to the system and more call processing capacity is required. In a switching
system this is necessary because expansion of the system is not a good enough reason for
planned system down-time.

In a given installation there may be service units such as the Statistical Unit (STU), the
Charging Unit (CHU), the Central Memory (CM) or the data base unit, etc. When more
processing capacity is required, additional units may be created by splitting the service unit
functionality or adding new specific functional unit types to the system. Two dedicated service
units, namely, the Marker (M) for switching matrix control and the Operation and Maintenance
Unit (OMU or O&M unit), are also part of the control system. The SUB is a dedicated
functional unit type to allow connecting subscribers to the system. The ET is an exchan-ge
terminal, a functional unit type supporting one 2Mbit/s connection to the system.

 Figure 1.7. DX 200 Hardware Architecture for a large exchange configuration.

I/O

OMU

MB

SSU PAU M

 .
 .
.

 .
 .
.

 .
 .
.

 .
 .
.

SUB

ET

ET

ET

Control Part

OMU

MB

ET

SUB

I/O

M

CCMU CM CHU STU

PAU CCSU LSU MFSUSSU

PAU CCSU LSU MFSU
CCSU LSU MFSU

SSU

PAU

CCSU

LSU

MFSU

CCMU

CM

CHU

STU

 Operation and Maintenance Unit

 Message Bus

 Exchange Terminal

 Subscriber Module

 Input/Output

 Marker Unit

 Subscriber Signalling Unit

 Primary Access Unit

 Common Channel Signalling Unit

 Line Signalling Unit

 Multi-Frequency Service Unit

 CCS7 Management Unit

 Central Memory

 Charging Unit

 Statistics Unit

24

14-Apr-14

Let us look at an example of a set-up of an originating outgoing call from a local subscriber and
see what functions are performed by different types of computer units. As the call originates
from a subscriber physically connected to the system, the off-hook condition is first recognised
by the subscriber module. The SUB performs analogue to digital conversion and adapts the
signalling on the subscriber line to the internal signalling on a point-to-point signalling link
through the switching matrix to an appropriate pre-processor of the subscriber signalling unit,
SSU, allocated to that subscriber line. The SSU takes care of the network layer signalling and
incoming call control, generates the charging information, and manages the circuits for the call.
The incoming call control requests subscriber data and number analysis services from the
Central Memory and passes charging and performance data to the charging and statistics units.
The incoming call control further requests the Marker, M to seize the necessary circuits and
make the connections e.g. to the auxiliary equipment such as tone generators and
announcement machines. At some point during the analysis it finds out the identity of the
outgoing circuit and consequently the identity of the outgoing call control computer. In our
case, we will assume that this is one of the common channel signalling units, CCSU. The
CCSU performs outgoing call control and outgoing network layer signalling. The CCSU also

performs the distributed
signal routing functions of
the message transfer part
of the CCS7 signalling
[Q.7XX]. The CCS7 link
layer protocol is performed
by a pre-processor of the
CCSU. The Common
Channel Management unit
is not involved directly in
call handling but controls
e.g. CCS7 link state
changes and link sets.
When the called party
answers, this condition is
recognised by the outgoing
call control and the
information is passed to
the incoming call control.
The incoming call control
requests the Marker to
make the through-
connection of the circuit

between the calling and called parties and initiates charging of the calling party. This completes
the set-up phase of the call.

As well as extended, the control system can be shrunk into e.g. three control computers. This
has been done in the small exchange configuration, presented in Figure 1.8 and called the
DX 210. In this configuration the Call Control Computer takes care of all functions of all the
signalling units (SIG) and service units (SU) of the previous configuration.

The trend for the need of different functional unit types in public switches is driven by several
factors. One is the continuing growth of the level of hardware integration. An example of this is
that new signal processing chips are widely applicable for all kinds of channel associated, as
well as message based signalling commonly used in public telecommunication networks. A
conflicting factor is that lots of different network element types are emerging in the public
telecommunication field, and to handle these new functional unit types will be needed in such a

 Figure 1.8 DX 200 Hardware Architecture of a small
 exchange.

I/O

MB

SUB

ET

ET

ET

Group Switch

Control Part

CAC

OMU

OMU
CAC

MB

ET

SUB

I/O

 Operation and Maintenance Unit

 Call Control Computer

 Message Bus

 Exchange Terminal

 Subscriber Module

 Input/Output

25

system architecture. This suits the architecture well, because new dedicated functional unit
types can be created by setting new values to parameter tables, if the new unit type falls within
the present internal classification scheme.

1.5.2 Real-time operating system

An example of how the programming model of Section 1.4.1 can be implemented is the real
time operating system kernel of the DX 200 computer system. The kernel scheduling the
DX 200 control computers and supporting asynchronous message passing is called DMX. The
kernel supports a kind of location transparency, because the message structures and primitives
are the same for messages inside a computer as well as between the control computers.

The kernel supports fault-tolerance in many ways, one of which is the memory segmentation
scheme. In this thesis we will, however, be mainly interested in the computer and process
replication support by the operating system kernel. We will not go into the details of kernel
implementation, but rather describe the computing, and replication models and the replication
scheme which lay behind the kernel implementation. About the implementation of the kernel
we will go only as far as to clarify that here we have used and will continue to use the term
kernel meaning both the operating system kernel itself, the kernel support library of the im-
plementation as well as a number of kernel processes, some of which will be discussed in this
thesis.

The DMX uses memory segments for memory protection and addressing. Each segment has a
selector containing the start address, the length and the access rights. For example, memory is
allocated dynamically for program blocks and the memory resident files during loading or
creation time. Consequently, e.g. the files may be located in different absolute memory
addresses in a pair of WO and SP computers. Each file is placed in a memory segment of its
own. The files are always accessed through the file handle, which contains e.g. the selector of
the segment. This scheme helps to control the access rights to the files and gives the possibility
to use memory protection for files.

With the create_hand kernel primitive the master process can create a large number of
hand processes. A process may be a heavy process or a lightweight process. A process family
is composed either of heavy or lightweight processes. Each process has its own block of control
data, called the control block, used by the kernel containing e.g. the kernel state variables of the
process, and its own data segment. The code segment is common for a program block. A heavy
process has its own stack segment and its own queue of incoming messages. This means that
heavy processes may be scheduled completely independently of one another. All the
lightweight processes of the program block have a common stack and a common queue. This
means that they use much less memory than heavy processes and a control computer is able to
run even tens of thousands of lightweight processes. Consequently, in a lightweight process
there should be one well-known point in code, called the main receive point, where the
processes of the family can be scheduled. In our experience this is not always a restriction but
rather a good programming practice, anyway. The difference between heavy and lightweight
process is transparent to the application code, given that certain design rules are followed,
because all the kernel primitives are the same for both types of processes. A process enters the
main-receive point by calling the main_receive kernel primitive.

Processes communicate by sending messages to each other asynchronously. The primitives
supporting message passing are send, receive, and main_receive. From the point of
view of a pair of a sender and a receiver process, the DMX kernel guarantees that messages are
always received in the same order as they were sent.

26

14-Apr-14

1.5.3 Additional Hardware Replication Schemes

In addition to the replication schemes (2N and replaceable N+1) presented in Section 1.3.1 the
DX 200 also supports additional hardware replication schemes which do not use replication of
computations and which do not have a unit changeover. Consequently, they will not be in our
focus of attention in this thesis and we will present them only for the sake of completeness. The
functional units employing these replication schemes are nevertheless controlled by their states,
which are: working, blocked, test and separated. The schemes are:

Complementary N+1
The computing load created by the application is shared between all available functional
units, normally N+1 of them. In the case of a unit failure the unit is blocked and taken to
the test state. The dimensioned load can as well be taken care of by the remaining units in
the case of one or even more of the units been taken out of service. The scheme is called
complementary N+1 or load sharing.

No replication
There is, in fact, no need to have any redundant units or any replication scheme for
functional units of certain types to comply with the availability performance requirements.
An example is the exchange terminal for a 2Mbit/s connection, where the probability of
failure on the transmission path is expected to be much greater than the probability of
failure of the exchange terminal. Consequently, even duplication of exchange terminal
hardware would not significantly increase the overall availability performance of the
connection. Instead this problem is easily solved by the transmission network and routing
arrangements.

1.5.4 Implementation of the System Maintenance

In this section we will present some additional information on the implementation of some of
the basic concepts of the DX 200 system architecture, which are necessary to describe the fault-
tolerance design of the system.

An additional attribute of the functional unit concept is the state control mechanisms. State
control mechanisms are mechanisms with which the unit states can be enforced upon the
system. They are used by the recovery. These mechanisms are based on hardware and software.
From the point of view of the recovery control system, a unit state can be defined in terms of
unit state control mechanisms and parameters of these mechanisms. From our point of view,
application oriented description of the different states presented in Section 1.3 is more useful
and more understandable.

Each functional unit type has its unit state diagram, which defines the possible states and state
transitions. To give an example, in Figure 1.9 the state diagram of the 2N redundant units (like
e.g. the Central Memory unit and the Statistics Unit) is presented. In addition to what already
has been said, the transitions between the WO state and testing are shown. They are possible by
operator command (from TE to WO) and in the case of an active unit failure (from WO to TE).
State transition from WO to SP or to TE always implies a unit changeover.

Of the substates in this thesis we will need the spare-updating (SP-UP) state which is
intermediate between a cold stand-by or testing state and the hot stand-by state. This is where
the unit is being warmed-up. The hot stand-by state is called spare-executing (SP-EX).

27

As mentioned in Section
1.3 the implementation of
the recovery is hierarchi-
cal in structure. The cen-
tral recovery control is
much like the conductor
and the functional unit
level recovery functions
are like the members of
the orchestra. The central
function synchronises
e.g. system restart actions
and phases ensuring that
the order and number of
parallel unit restarts is

optimal from the overall system point of view. However, if the central function is disabled, the
unit level recovery functions are able to attempt unit restart on their own, invoking all the
required external services as they are needed. The unit level recovery function controls and
supervises all the program families in its unit and orchestrates the recovery actions, like unit
restart and unit state transitions at the boundaries of the unit. Because the unit level recovery
function controls unit restart and loading, it can also be seen as a functional extension of the
operating system. Respectively, the pre-processor level recovery function controls and
supervises the processes of the pre-processor and e.g. orchestrates the pre-processor restart and
state transition actions.

In addition, applications may have recovery functions, which have to be executed e.g. before or
after a unit changeover. Most of these functions are invoked and their sequence is controlled by
the unit level recovery.

Not only is the recovery hierarchical by structure, but the recovery actions can also be placed in
a hierarchy called levels of recovery. The level of recovery is a measure of the amount of
disturbance to the system caused by a recovery action when eliminating a failure. There are
four levels of recovery which are no-harm recovery, no-premature release or minor recovery,
functional unit failure or major recovery, and system failure recovery. No-harm recovery
means that the recovery action does not cause any disturbance to calls, no-premature release
recovery that existing calls are not disturbed by the recovery action while calls in the set-up
phase may be lost. Major recovery means that all calls handled by the functional unit are lost
due to the recovery action, and system failure recovery that not less than 50 per cent of all calls
in the system are lost due to the recovery action.

 Figure 1.9 State Diagram of the 2N redundant units.

WO

SP

TE SE

WO - active, or working

SP - spare

TE - testing

SE - separated

28

14-Apr-14

2 Definition of the Problem

In this chapter we will first cover the background of the problems of replicated computations in
our target system and proceed from there to defining the overall design goals and assumptions
to be met by the solution. To justify our choice of the overall approach we will present the
relevant internationally accepted telecommunication requirements which we will use to derive
the requirements for replicated computations in a switching system. Based on this discussion
we will conclude by formulating our overall fault-tolerance approach. The background, the
design goals, all the quantitative requirements, and the presentation of many of the qualitative
requirements will be DX 200 specific by necessity.

2.1 The problem scope

When the design of the 16-bit DX 200 system started at the end of 1970´s, the spare control
computers were put into the hardware design, but at that time the way of their actual usage to
preserve the call traffic in the case of a failure of an active unit was not considered. For some of
the units the problem was rather simple, but this was not the case with the signalling and call
control computers. The issue was first tackled for the signalling units around 1983 and a
decision was made to solve the problem in the application code.

The solution was implemented but led to problems which were analysed to be as follows
[Ka87]:

 The modularity of the system was violated; the problem was solved similarly but not
identically in the different applications.

 Each of the signalling program blocks for subscriber, common channel, and channel
associated signalling had a complicated extended automaton structure with states identical
to the states of their host computers on the highest level and the signalling protocol states at
the lowest. These programs had code for checkpointing the dynamic call state data to the
spare computer, repressing charging impulses after the unit changeover, and the most
complicated of all, they had code to warm-up the spare. All of this meant that about 30
percent of the signalling program code was there just for the replication of computations.
This made the introduction of new software architecture ideas for the call control and
signalling applications anything but simple.

 The application development for the 16-bit environment had revealed that the signalling
applications were not the only ones that needed replicated computations. Other examples
were updating the alarm data to the spare CCS7 signalling unit, some internal protocol
applications, semi-permanent connections and the common channel signalling management.
The ISDN as well as GSM brought new signalling applications to be developed, also.

 Because of the differences in implementations of replicated computations, the complexity
of the system was unnecessarily increasing and thus restricting the ability of the design
organisation to generate new end-user applications. It was estimated that the complexity of
the software increased as O(n2), where n was the number of applications that needed
replication, instead of linear growth with the number of applications.

29

 A specific problem with the old implementation was that the signalling applications relied
on the statistical unit (STU) as a source of information about the calls to be warmed-up.
This tied the STU very closely to the real time and restricted the possibilities of redesigning
the statistical and charging data collection programs. This was another example of violation
of modularity on the system level.

2.2 Design goals

To solve the problems described in the previous section and to build a comprehensive core
system for future application design, the idea of a virtual machine was put forward [Ka87,
Ka88]. The virtual machine would offer services to all the applications that needed replication
of computations, would ensure instantaneous recovery in case of the failure of an active unit,
and would support graceful transfer of computations to the spare unit in case of a unit
changeover initiated by an operator command. The virtual machine should allow creating,
destroying and executing replicated processes. It should also provide for the creation of a hot
stand-by spare process for an active one and thus make graceful unit changeovers possible. A
graceful unit changeover is such that at least all the calls in the ringing or conversation phase
are preserved, but calls in the set-up phase may be released after the changeover.

The replicated applications use the services of the virtual machine and the virtual machine itself
is controlled by the recovery function of the system according to the fault situation and operator
commands. The role of the application designer is to decide whether and how the application
has to be replicated and to implement these design decisions using the services of the virtual
machine by high level, declarative language facilities.

The following general design goals were set:

1. The virtual machine design should support the signalling and call control applications
transparently, or at least clearly separate the minimally required replication code from the
actual application code. This requirement was of the highest priority because of the amount
of continuous design effort which could potentially thus be saved and because of the
potential gain in terms of calendar time spend on new signalling and call control
applications.

2. The solution should be modular in such a way as to enable changing the hardware
replication scheme at least within the existing main categories (2N and replaceable N+1)
transparently to the application code.

3. The solutions should apply to computing systems described in sections 1.2, 1.3 and Figure
1.2. This includes configurations starting from a single pair of computers up to more than a
hundred computer units. The solution should apply irrespective of whether the computer
system is functionally distributed or all computers execute similar tasks but share the load.

For the DX 200 system the following specific requirements were also put forward:

 It should be possible to start using the virtual machine services for computation replication
gradually. At first they would be used only in selected or new applications and only when
the overall project deadlines permitted would they be taken into use in the old applications.

 Solutions should also apply to the upgraded old exchanges. Upgrading the old exchanges
means that the processor and memory as well as the Message Bus interface plug-in units are
changed, but the hardware infrastructure of the exchange remains the same.

30

14-Apr-14

 The need to repress charging pulses in the call control applications after unit changeovers
should be eliminated by synchronising the real time clocks of all the units and thus making
the notion of real time identical in every unit. This would eliminate the problem, because
the charging pulses are generated in each of the call control computer units on the basis of
the local real time clock.

 The new principles should not rely on information retrieval from the statistical unit and thus
should gradually give the design freedom to statistical and charging functions.

 The level of gracefulness of unit changeovers remains at least the same as in the application
dependent solution. This means that the 2N replicated signalling units are capable of
graceful unit changeovers in case of the failure of an active unit or if the changeover is
initiated by the operator. Signalling units with the replaceable N+1 replication scheme have
the same kind of graceful changeover, but only if initiated by an operator command.

 Instantaneous recovery is an ultimate requirement in the real time environment of
switching, if stable calls are to be preserved in a fault situation. This is quite different from
what is required in the transaction processing field, where the recovery is enough to be
eventual and the systems may thus rely on e.g. roll-back algorithms. What instantaneous
means in this context will be discussed in Section 2.3.1. The key issue is that the external
signal processing delays have to be met for a preserved call after a unit changeover.

 It was required that the warm-up of the spare unit should not take more than two minutes
measured from the point where all the applications have been started in the spare unit to the
point where they are ready for a graceful changeover. This means that an algorithm for
copying the dynamic state data of processes from the active unit to the standby unit is
required. This algorithm is called the active warm-up process. Passive warm-up, on the
other hand, means that all the new call processing is replicated from the beginning of the
warm-up. This situation is also quite different from what one is used to in a transaction
processing environment.

 Related to the previous point a performance requirement for the unit changeovers is set. A
unit changeover should not take longer than a few minutes. This requirement applies to the
unit types that have a unit changeover i.e. the units with 2N and replaceable N+1 replication
schemes.

In all the solution models three assumptions were made. The first is applicable to the class of
systems described in Section 1.2. The last two are applicable to all DX 200 switching systems.

1. All the computation replication problems should be solved in software without intricate
dedicated and thus expensive hardware support. This software oriented approach has been
shown to be the most efficient economically [Bo87]. Dedicated hardware support could be
used where it would not noticeably increase the cost.

2. It is desirable that the computation replication model does not bring up the need to
radically change the basic recovery concepts, such as functional unit or functional unit
state. So the model should fit well together with those concepts.

3. It is assumed that the amount of dynamic data to be transferred by the warm-up algorithm
may well exceed one Mbyte. Assuming an effective data-rate of 100 kbytes/s from unit to
unit over the Message Bus, this would take at least ten seconds to transfer.

31

2.3 Requirement analysis

In this section we will analyse the specific requirements applicable to the replication of
computations in a switching system. Some requirements are based on the characteristics of the
process of call processing; others are taken directly from the specifications of the CCITT and
from the specifications of the customer organisations.

This analysis is not intended to be very exact. Instead, the goal is to qualitatively justify the
critical choices between different possible approaches to solve the problems of replicated
computations, to structure the problem scope and thus make it possible to solve the constituent
subproblems separately.

In the analysis we will use often use the concepts of reliability and availability. Reliability,
R(t), of a system is defined as the probability that the system will not fail within time t, given
that it was not failed at time 0. Availability, A(t), is defined to be the probability that a system
is operational at time t. For systems without repair A(t) = R(t) [see e.g. Ne87, Chapter 2]. For
switching systems a repair time can be assumed and the system may be operational even if
failures may have occurred.

2.3.1 Availability and performance requirements

Availability performance, call processing performance and real-time performance are common
key requirements for switching systems. The analysis of these requirements will direct our
choice of applicable replication methods and derive a quantitative measure of performance of a
replication scheme.

First consider the requirement of overall availability performance of the whole system. The
mean intrinsic unavailability objective for our specific target system considering complete
system failures is three minutes down-time per year [Af]. Experience of systems in operation
has shown that this level of availability has been achieved by DX 200 systems with 16-bit
control computers [PuAf]. Any new architecture should not compromise these figures.

A definite requirement for the solution is high system throughput. On a given hardware the
throughput of the class of systems described in Section 1.2 in Busy Hour Call Attempts
(BHCA) is determined by the performance of the critical centralised server units and by the
performance of the call control and signalling applications executed by the signalling units. In
our specific target systems of Figure 1.7 these are the statistics and charging units (STU, CHU),
the Marker (M) controlling the switching matrix, and the specific signalling and call control
computers.

To come to terms with the real-time performance requirements of switching systems, at least
three problems should be considered. First, we will consider what happens, if the call handling
processes or more specifically the sending of call related messages through the Message Bus
have to be stopped for a short period. A signalling unit sends about 50 messages related to a
call to other units. Assuming that the unit is handling 50 000 calls per hour (BHCA), this means
that the unit has to send

 50 x 50 000/3600  700 messages/s.

As a consequence, if this message traffic is stopped for e.g. 100 ms, the computer units are
required to be able to buffer a few hundred messages. This is undesirable, but still possible to
implement.

32

14-Apr-14

Secondly, there are specific performance requirements for the duration of processing the
signalling messages going through the switching system. Such messages may have to be passed
through the message bus. Mean values of the shortest durations are required to fall in the range
of less than 50 ms or less than 100 ms under the normal reference load (reference load A in
[CCITT, Q.543]). Examples of such durations are the answer sending delay in the case of in-
band line signalling (< 50 ms), the answer sending delay in other cases (< 100 ms), and
exchange signalling transfer delay (< 100 ms).

The third consideration is application transparency. Applications set time-limits for incoming
messages. In fact, it is a common fault-tolerance requirement for all applications to be able to
recover if an expected message does not arrive in a reasonable time. This is achieved by always
setting a time limit for any incoming message. Duration of these time-limits may be as short as
100 ms, while the clock-tick interval is 10 ms. The worst case would be 20-30 ms time-limits.

All these considerations lead us to set an important derived requirement: a single function or
application, e.g. the algorithms for computation replication and migration, cannot have
exclusive access to the Message Bus for more than a few tens of milliseconds. For our problem
at hand, it is enough to notice that the expected one Mbyte of dynamic data to be warmed-up
clearly cannot be transferred over the Message Bus during this time. Consequently, the system
or the computations cannot be stopped for the duration of the warm-up of the spare unit.

An important requirement of a switching system is very high real-time performance relative to
message passing. The call control, signalling and protocol applications in the switching systems
are as a rule very message intensive, especially if high capacity and modularity are required at
the same time. By message intensiveness we mean the expected proportion of time spent by an
application on sending and receiving messages to the total CPU time used by the application. A
highly message intensive application may use more than half of its time just sending and
receiving messages, at least, if message coding and decoding between the internal variables and
the message structure itself is counted as part of message sending and receiving. Note that this
measure of message intensiveness is system dependent.

We will use the replication related message count as a measure of performance of the
replication scheme. We will judge the applicability of a replication method for a computation
on the basis of this measure. For the overall replication scheme we set the requirement that it
should not significantly increase the total message count of the non-replicated computation to
which it is applied. This requirement is intended to ensure that replication of computations does
not significantly restrict the maximum achievable throughput of the system on a given level of
processor and message bus technology in any system configuration. By significant in this
context we mean some tens of percents.

2.3.2 Availability vs. correctness for call processing

Fortunately, the message intensive switching applications are not required to be absolutely
reliable. The system may mishandle a single call with a certain probability as long as the whole
application behaves reasonably and meets the overall availability performance requirement. In
processing a single call, correctness can be sacrificed for the sake of high performance and
lower cost of the system as long as certain probability requirements for the availability of
service are met. In this sense call processing differs e.g. from transaction processing where it is
vital that the database consistency is preserved in all situations and for this reason even heavy
performance penalties are acceptable.

The most important of the availability requirements placed on call processing in a switching
system is the premature release requirement:

33

R1 The probability of a call being prematurely released in any one minute interval

should be less than 2  10-5. [CCITT, Q.543].

Premature release means that an existing call is released before the party assigned to control the
release hangs up. This includes calls in both the ringing and the conversation state. This
requirement can be seen also as a correctness requirement.

The premature release of a call is avoided, i.e. the level of required correctness may be
achieved in a unit changeover, if the spare computation is consistent with the active one and
consequently, can replace the former active computation from the point of view of the
environment. We will give the definition of consistency in Chapter 5. The probabilistic
requirement for the replicated call processing computation being consistent in the spare
computer can be derived from the requirement R1, assuming that unit changeover may take
place any time and allocating some portion of the whole unreliability to the computation
replication scheme. This analysis is done in Chapter 8.

The consistency of a single spare call computation is less important than the instant availability
of the service provided by the call processing applications, i.e. applications directly related to
setting-up, monitoring and releasing calls. This means that the call is always allowed to
proceed even when it is known that the spare computation has failed. It is easy to see that the
call processing service availability is better if the active computer is allowed to proceed in case
the spare computation fails compared to the case when the whole computation is aborted in the
same situation. This is different from e.g. the case of a database, where if the spare computer
cannot be updated, a transaction may be aborted to preserve database consistency after a
possible changeover. Let us assume that the probability of failure of the spare computation is
Pfs. If then the whole computation is aborted, the instant service availability is Aa = 1  Pfs,
provided that other factors are excluded. If on the other hand the active is allowed to proceed,
the service availability can be expressed as (again excluding other factors and assuming the
failures to be independent):

 Ap = 1  Pfs * Pcho (1)

where Pcho is the probability that a unit changeover takes place while the spare computation is
in the failed state. Pcho can be estimated considering the expected duration of the spare

computation fail state tcall and the interval between unit changeovers Tunit cho .

The worst case when the spare computation may fail is at the call set-up. Then tcall may be
taken as the call holding time, which is usually not more than a few minutes. The interval
between unit changeovers Tunit cho is expected to be much more than that. Clearly, given that

unit changeover may take place any time during Tunit cho with equal probability, then Pcho is
substantially less than 1 and Aa < Ap .

2.3.3 Permanence requirements

In some process control systems there are definite permanence requirements for data
concerning the state of the external world or the process being controlled. Fortunately, in a

34

14-Apr-14

public telecommunication network all the switching systems have to be able to cope with the
crash of a neighbouring switch. Especially in the new signalling systems for digital switching
systems provisions are made to recover from such situations by releasing the calls and
executing reset or other special protocol procedures. As a consequence, in extreme crash
situations we may rely on the network being able to recover without exact knowledge about the
calls in every network node.

Permanence of the collected statistical and especially charging data as well as the permanence
of the database in a switching system have to be preserved. However, it can be argued that in a
switching environment the permanence requirement is not as strong as in a transaction
processing environment. This is because the users of the switching system database are mostly
professionals and the applications using the database are well known, while the transaction
processing systems have to be designed for all kinds of users and all kinds of applications.

2.3.4 Charging requirements

The correctness requirement for a charging event is:

R2. The probability of mischarging for a call is less than 10-4 per pulse [Finnish PTT].

We use this requirement, because it is tighter than the corresponding requirement of 10-4 per
call set by the CCITT [CCITT, Q.543]. Clearly, when the charging or statistical data has been
collected over a period of time e.g. for a number of calls, the correctness requirement for this
data should be much higher than for an event.

The charging pulses for calls are generated by the switching system based on the real-time
clock. The requirement for the accuracy of real-time clock synchronisation can be derived from
requirement R2 assuming that

- the system may accomplish one unit changeover in ten minutes,
- unit changeover is an instantaneous action after all the required preparations have been

made.

The seemingly very short ten-minute interval between two unit changeovers is assumed
because of the desirability of avoiding any user annoyance. On the average the spontaneous
unit changeovers occur much more rarely. However, calculating the average on the basis of
failure intensity assumptions or data would not be appropriate, because the unit changeovers
can also be initiated by operator commands.

Mischarging is caused by the clock skew between the active and the spare computer only
immediately after the changeover. The probability that a charging pulse is erroneously sent or
received immediately after the unit changeover can be estimated as

 P1 =
୼ୡ

୼୮
 (2)

where c is the clock skew between the two units and p is the pulse interval.

As a consequence, the relation for charging pulses between unit changeovers is derived using
the requirement R2:

35

୔భ
୒౦

 	൏ 10-4 (3)

where Np is the number of charging pulses in an interval where the unit changeover occurs.

As a consequence, taking into account Eq. 2 and Eq. 3 and the assumed 10 min interval
between unit changeovers (Np = 10 x 60  1/p) , we get:

୼ୡ

୼୮	*	଺଴	*	ଵ଴	*	ଵ/୼୮
 < 10-4 (4a)

which implies:

 c < 60 ms. (4b)

By looking at the calculation we notice that actually the requirement does not depend on the
intensity of call traffic, the pulse interval in a computer or on the interval between clock ticks.
The interval between charging pulses in a unit depends on traffic but so does the number of
pulses in the unit changeover interval.

If, however, the unit changeover cannot be taken to be instantaneous and during the changeover
messages may be misrouted, duplicated or lost, the duration of the changeover (x) has to be
part of the critical period c. The mischarging is actually a problem when it comes to
overcharging. When taking this and the possible non-zero duration of the changeover into
account, we finally get an asymmetric skew requirement, where asymmetry is a desirable but
not an absolutely necessary feature.

 0 < SP-clock  WO-clock < 60 ms  x, where x < 60 ms. (4c)

To reach this level of clock synchronisation accuracy, using dedicated hardware means is
naturally the safest way. A software clock synchronisation algorithm, like the one described in
[Th89] or used by SIFT [We78], would probably also be appropriate. The clock times have to
be sent in broadcast messages to other units, because there is no shared memory. To be on the
safe side a combination of hardware and software implementation was chosen for the DX 200,
with software for setting the initial time and supervising the clocks and hardware delivering the
synchronisation ticks.

2.3.5 MTP and Database requirements

In switching there are a few applications with very high reliability and correctness
requirements. An example is the Message Transfer Part (MTP) of the common channel
signalling system. For messages carried by the MTP , the following reliability requirements are
set [Q.7XX]:

- The probability of a message being lost by the MTP should not typically exceed 10-7.

36

14-Apr-14

- The probability of a message being delivered out of the order it was sent should not exceed
10-10.

- The probability of a message data being disrupted and the error going undetected should not
exceed 10-10.

These figures place the MTP in a completely different class of applications than signalling and
call control. The MTP also has very heavy performance requirements. As a consequence, and
because of the existing reliably functioning implementation of the MTP in DX 200, for the
time being the MTP was excluded from the problem scope of the envisioned basic virtual
machine implementation of the computation replication scheme. However, the MTP could still
use some of the replication tools provided by the kernel.

Another application which has clearly more stringent correctness requirements than call control
and signalling is the memory resident database system. Also this application could use some of
the replication tools of the kernel, but the basic scheme was not required to solve all replication
problems of this application.

2.4 Conclusions

The analysis shows that in a switching environment there are a wide variety of applications
with largely differing and even conflicting requirements relative to replicated computations. A
short summary of the requirements and to what extent they apply to different applications in a
switching environment is in Table 1.

Listing other applications would not simplify the picture. The summary suggests employing a
structured approach in solving the replication problems.

For the purposes of the discussion on th requirements we will define informally the concepts of
instantaneous correctness5 and eventual convergence. Instantaneous correctness of the
replicated computation is achieved in a state where it can be guaranteed that the state of the
spare system is consistent with the state of the corresponding active system. Eventual
convergence means that consistency of the spare system is not guaranteed but has a high
probability and in the case of the changeover, where the spare system becomes active, the
overall system service capability will be recovered although some minor errors may occur in
the process. An example of such errors in the changeover is that sometimes a call may be lost.

It does not seem an attractive approach to aim at instantaneous correctness at the basic virtual
machine level supporting replication of computations because of the following reasons. First, in
a switching environment the main application, call control and signalling, does not need
absolute correctness in the spare computation. Second, only conditional instantaneous
correctness of the spare in both the 2N and the replaceable N+1 configuration is possible, the
condition being that the active does not fail. (Recall that complete single failure masking is
possible only if at least three concurrent computations are executed by different computers.)
Still another reason is that computation replication schemes like [Co85], [Bl90] aiming at
instantaneous correctness seem to have quite a high performance penalty under the conditions
prevalent in a switching environment. Two features of the switching environment are important
in this sense. The first is the high message intensity of the main applications. Another is that
failures are not detected immediately upon occurrence, because of the low level of redundancy
acceptable due to economic reasons. We will return to the performance penalty issue in Chapter
10. The same reasoning as to instantaneous correctness applies to the very popular approach of

5We will come back to this in Chapter 7.

37

using atomic broadcast protocols similar to e.g. [Co85], or [Bl90]] on the basic level for
reliable message delivery between processes. We will return to this topic also in Chapter 10.

Table 1: The Requirements of Switching Applications.

Call
control
and
signalling

Statistics
and
charging

Data base MTP of
CCS7

Availability performance of the sys-
tem

high high read: high
Else:medium

high

Real-time performance high high read:high;
Else: low

high

Correctness of an event low medium medium high
Correctness of a task low high high high
Correctness of the application medium

or high
high high high

Permanence No Yes Yes No

The conditions in a system replicated using either the 2N or the replaceable N+1 principle can
be summarised in the form of the following important assumption that has to be taken into
account in the design of all the applications and also the replication support.

Assumption 2.1 The optimistic failure assumption is that synchronisation failures in the
replication scheme and hardware failures are independent of each other and that hardware
failures in the active computer are detected by the software fast enough for the recovery to
execute the unit changeover before either the failure propagates itself to the other units of
the system or the application task is lost because the system cannot react correctly to the
events of the external world or maintain its correct state.

Failure is considered to have propagated if the failure of active unit X caused a recovery action
of unit Y, e.g. a restart of unit Y or a restart of a program block in unit Y initiated by the unit
level recovery function. The condition of preserving the call processing tasks during an active
unit failure requires that failure detection times are less than the intervals between call related
signalling protocol monitoring events such that will require that both ends of the network
signalling link will react in a coherent way to an event. For example, depending on the protocol
it may be that if the link is lost, established calls are to be released. Another example is when
the called party is ringing and the system is waiting for the answer signal. If a unit involved in
the call fails while the call is in the ringing state, the failure has to be detected before the
answer signal in order to handle the call correctly. A further reason why a call may be
prematurely lost in a unit failure condition is that the unit may not be able to maintain the call
related resources in other units of the system as these are to be periodically rereserved to avoid
the creation of orphans. Orphans are software or hardware resources such as hand processes
and circuits which are reserved and thus can not be reused, although the end-to end service for
which these resources were reserved, has been terminated.

The optimistic failure assumption does not provide enough of a basis for complete failure
masking, which is the aim e.g. of atomic broadcast protocols. In fact, this assumption requires
that all software applications help with failure detection in systems that have only limited
hardware means for this purpose. It is assumed that the decision that there is a fault is made by
the system maintenance, not by any replication tools. The latter are no different from any other
applications in that they can only indicate that an error has occurred.

Application

Requirement

38

14-Apr-14

We will call instantaneous correctness under the optimistic failure assumption conditional
instantaneous correctness.

Eventual convergence and the probability based approaches appear to be a more attractive basis
for the solution than building instantaneous correctness to the basic mechanisms of the
replication scheme. This approach allows building conditional correctness on top of the basic
unreliable replication scheme. This approach aims at meeting high performance requirements
while providing the necessary level of correctness required by the signalling and call control
applications. In line with this the virtual machine supporting replicated computations need not
directly support transaction atomicity, but could still be used as a basis to build the transaction
processing subsystem. The computation replication scheme can be viewed as a set of tools. The
basic tools should guarantee only some easily achievable level of reliability for replicated
computations and the level of reliability could be increased using other tools provided by the
kernel. The most advanced tools could even guarantee conditional instantaneous correctness.

Another feature, that would be desirable, because of the real-time performance requirements, is
to keep as many as possible of the messages between processes related to call handling internal
to a computer. If the replication is handled purely on the process level, this would not be
achieved since it would lead to a situation, where all the messages would be replicated, and
thus external to the computer, and would be sent through the message bus in our multicomputer
system. This could lead to a considerable performance loss in call processing and would make
the message bus interfaces of the signalling units the performance bottle-necks. The problem
might be solved by a faster medium and faster interface to that medium but this should be
expected to imply some cost penalty. That is why we need a replication concept for entities
which are larger than processes. This is different from replication schemes known so far
[Co85, Bl90].

39

3 Related Work

A classification of fault-tolerant systems is useful to relate our work to the research that has
been done and is going on in other areas. Fault-tolerant systems can be classified e.g. by their
application areas, design goals and by specific implementation techniques used in the systems.

Application areas for which fault-tolerant computing systems have been built include life-
critical systems e.g. for aircraft control, long-life applications e.g. for space exploration,
commercial applications, e.g. transaction processing systems for banking, and computer and
telecommunication network applications. Somewhat different approaches for fault-tolerance
have been adopted in each of these fields, because of the differences in external requirements
[see e.g. Ne87].

3.1 Design goals of fault-tolerant systems

For all fault-tolerant systems the objective of improved availability is valid. In addition it is
useful to characterise the systems by fault masking capability, time for recovery, time between
maintenance and fault coverage. Systems which mask their faults and have no delays in
recovery are said to have high computational integrity. In order to achieve very high
computational integrity it is necessary to carry out at least two self-checked computations or
three non-self-checked computations concurrently [Re84]. However, because of economic
reasons in switching, this level of redundancy, as a rule, is not acceptable.

A switching system is not required to mask all its faults. A high probability of correct operation
is enough for most of the switching applications and subsystems. In reality, achieving complete
fault masking is not possible, because in large real world systems some design faults and 
worst of all  some specification faults are always possible. The experience in switching shows
that of the reasons for system crashes, namely hardware faults, software errors and human
errors, the hardware errors are the least frequent and human errors the most frequent [Mo89].
Consequently, even if all crashes due to hardware failures are eliminated with massive
redundancy, the overall availability performance of the systems would not be significantly
improved if nothing is done to eliminate design, specification and human errors.

Considering the time to recover, in some cases a switching system is required to recover
practically without any delay. This requirement can be expressed e.g. so that stable calls, or
calls in the ringing or conversation phase, have to be preserved in some fault situations. High
fault masking capability, or data consistency which is applicable in our case, is required in
handling the semi-permanent data in the exchange. The data consistency requirement applies to
the data which is kept in the non-volatile memory. A lower degree of data consistency for the
memory resident data is allowed if this leads to no more than occasional failure of some calls
and if the situation can be rectified by human action in a simple way using the information and
tools provided by the system.

A fault-tolerant system automatically recovers from faults by invoking redundant hardware, but
to restore the initial level of reliability, the failed components have to be repaired by human

40

14-Apr-14

action. Especially in avia-space applications there is often no possibility for human
intervention. For these applications long-life systems are required. These are usually systems
with massive redundancy. Switching systems are, with the exception of satellite based
switching systems, all repairable. Performance requirements are set for the reparability. An
active repair time of 30 minutes is usually required of the switching systems by the public
network operators [Af].

Coverage is a measure of how well the fault-tolerance mechanisms work. It is defined as the
conditional probability, given that a fault occurs, that the system will recover properly. A 100%
fault coverage is probably impossible to achieve with low-cost designs [Re84], because this
would require knowledge of absolute certainty about the faults which will occur in practice. For
a switching system e.g. 99% of coverage in fault detection is set. This is not easy to achieve
and requires, that all the applications are designed with lots of error handling code. In practice,
if e.g. 99.9999% coverage is required, which is the case with life-critical systems, at least three
computations have to be carried out concurrently by different computers. In this case
knowledge of which faults will occur is not required.

3.2 Fault-tolerance implementation techniques

For implementing fault-tolerance, hardware, software, or a combination of both means may be
used. Replication of computer units may be used or not. If replication is used, five parameters
are involved:

 number of spares related to the number of active units,

 the size of the replication block,

 usage of load sharing,

 how close is the dynamic state of the spare to the active unit, and

 what methods are used to keep the spare unit behaviour consistent with the active one
[LA89].

3.2.1 Software vs. Hardware for Fault-Tolerance

The idea of using hardware replication to achieve fault-tolerance and high reliability goes back
to von Neumann [Ne56]. Different schemes using the spare computer units have been
proposed. Replication of computations can be built into the hardware itself or a software
solution can be used. In many other switching systems, e.g. the 5ESS and the Japanese D70
[Cl86, To78, Sn84, Ya89] the hardware approach has been largely used. The hardware
approach has the disadvantages, that some dedicated, proprietary hardware is usually required,
all the applications get the same fault-tolerance treatment irrespective of their actual needs, and
as a consequence, the cost of the control system of the exchange is higher than would be
actually needed. Using standard hardware as much as possible has several advantages, some of
which are: lesser cost, shorter design cycle, fast application of new hardware technology, less
training expenses of the engineering personnel and ease of technology transfer.

There are, however, some fault-tolerance problems which are easy to solve effectively in
hardware but very hard in software. Broadcast and multicast protocols on a bus are an example
of such problems. Multicasting means sending the same message to a number of recipients.
Broadcast means sending to all possible recipients. An atomic multicast or broadcast means

41

that the message is delivered to all the non-faulty destinations or to none of them. When
implemented in software, the protocols use the hardware ineffectively. The bus interfaces can
easily be built to be capable of receiving a broadcast or multicast message from the bus in
parallel, so the message has to be sent only once to reach all the destinations practically at the
same time.

The software approach to fault tolerance has the advantage that it is more flexible. An example
of the flexibility is that only those applications, which really need it, may be executed as
replicated computations. Different hardware replication schemes, like 2N and replaceable N+1
in the DX 200 design, can be incorporated in one software scheme. In a switching system this
means that the very inexpensive N+1 scheme can be effectively used for call control and
signalling on all the trunk interfaces. The software approach may have the disadvantage that
replication of computations has to be designed into the applications. So, although the
replication scheme may be transparent to the application code, some design-in-the-large effort
may be involved to use the scheme.

Consequently, the most cost effective way to solve the fault-tolerance problems seems to be
the software oriented approach combined with the use of standard hardware as much as
possible. This may include using dedicated hardware support, which may be built using
standard components, in carefully selected places. This also means that e.g. the computation
replication problem has to be solved in the operating system kernel so that it is as transparent as
possible to the applications.

3.2.2 Computation replication schemes

Very little work seems to have been done on studying replicated computations in distributed
real-time environments. An exception is a prototype system of Natarajan and Tang [NaTa],
which contains some interesting ideas. The proposed solution is based on a centralised scheme
employing clones. The clone is a group of different copies of a process, intended to execute a
replicated computation. One of the members of a clone is always the master and the others are
called cohorts. The choice coordination problem is the problem of ensuring that all the
members of a clone always start executing the same transactions. To solve the choice
coordination problem, when the master receives a message, it informs its cohorts about its
decision to execute the corresponding transaction with a phase_1 -message. After ensuring that
every cohort has received this message, it sends the phase_2 message, and only at this point can
the execution start. Consequently, to ensure instantaneous correctness, a high performance cost
in the form of executing a two-phase commitment protocol has to be paid. Consequently, when
coming to the solution of the choice coordination problem, unfortunately, from our point of
view, the solution sacrifices real-time performance in pursuit of instantaneous correctness.

A number of distributed systems have been suggested with software based fault-tolerance
features, some of them with replicated computation support and most of them aiming primarily
towards transaction processing or avia-space applications: ISIS [Bi85, Bir], Auragen and later
MACH [zB90, Bl90, Gl84], Amoeba [Mu86, Re89, Mu90], HOPS [Si89], System V [Ch88],
Circus [Co85], Tandem [Ba81], SIFT [We78], Clouds [Da88], Nexus [Tr89], Delta-4 [Sp89],
Arjuna [Ar90]. The classical system was the SIFT (Software Implemented Fault-Tolerance)
which was designed for aircraft control applications and which used software implemented
voting to find agreement upon the results of replicated computations. SIFT produced good
research results but was never actually used.

In more recent systems (ISIS, Amoeba, Clouds, HOPS, Nexus, Arjuna) object based
programming paradigms have been popular. These systems have primarily been intended to run

42

14-Apr-14

on workstation hardware connected with a local area network. These systems do not guarantee
instantaneous recovery. This is especially the case with schemes like sender based message
logging [Jo87] and optimistic recovery [SY85], in which the idea is to trade recovery time for
performance in the absence of failures. This approach is also aimed towards the needs of a
computing system based on a network of workstations.

A basic building block of a computation replication
scheme is the message passing scheme, which
describes the configuration of sending and receiving
messages between a replicated client and a replicated
server. Logically, a very large number of schemes can
be suggested. For example, if we take just a paired
client and a paired server and look at the possible
sending configurations, each of the client members
has six possibilities of sending to other members of
the configuration excluding sending to itself and
sending to own pair only (see Figure 3.1  arrows
indicate messages from the clients to the servers). If
the client members are taken to be independent, a total
of 36 schemes is acquired. If we take the

acknowledgement direction, again 36 schemes are logically possible. So for two-way message
exchange, logically 1296 schemes are possible. To design a replication scheme we will have to
select the suitable configurations of sending and receiving messages.

3.2.3 Checkpointing vs. replicated active computations

Two principal architectures of software based replicated computations are primary/standby and
modular redundancy e.g. [Co85, Bi85, Bir]. In a primary/standby scheme, only a single
component functions normally; the remaining replicas are on standby in case the primary
component fails. The standby processes are passive and the recovery is usually based on the
information sent by the primary. Sending the state information of the primary to the standby is
called checkpointing. Instead of, or in combination with checkpointing, message logging may
be used. In modular redundancy, each component performs the same function and so all the
replicas are active. Voting on the outputs may or may not be used.

To keep the replicas of a computation synchronised Tandem and Delta-4 use a checkpointing
scheme [Ba81, Sp89]. For example, passive replicas in Delta-4 are checkpointed transparently
in connection with every external message. In Tandem´s Guardian operating system, before
each request is processed, the primary sends information about its internal state to the standby
in the form of a checkpoint. The checkpoint enables the standby to service the request if the
primary fails.

Another example of a primary/standby architecture is the ISIS system [Bi85, Bir]. ISIS
implements the concept of replicated objects. In an interaction with a replicated object, one
replica plays the role of coordinator, and only it performs the operation. The coordinator then
uses a two-phase commit protocol to update the other replicas.

In a message intensive switching environment these schemes would clearly be very costly in
terms of performance. The problem with checkpointing is that, while the spare components do
not make any positive contribution, a very large amount of data has to be transferred to them,
especially if they are kept up-to-date all the time. The amount of data can be decreased by

 Figure 3.1 Different message
 passing schemes.

1 2 3

4 5 6

43

allowing the spare to lag behind some of the time. This usually leads to eventual recovery
through e.g. a roll-back algorithm, at least if checkpointing is done transparently.

Under the optimistic failure assumption (Assumption 2.1 in Section 2.4), the primary/standby -
type components of the replication tools are at best able to tackle the problem of keeping the
spare unit consistent with the active one. Clearly then the active computation has to be assumed
to be non-faulty and the state of the spare is not independent of the performance of the active
unit. This does not, however, mean that the replication tools should give up and not take
precautions against hardware failures. It just means that the same external conditions and fault-
tolerance design rules apply to the replication support software as to any distributed fault-
tolerant software in the system. One of those design rules is that programs should be prepared
for hardware failures in their environment and should help with fault detection. Due to the need
for a lot of updating from the active computer to the spare, the primary/standby schemes also
may increase the risk of active unit failure propagation to the spare unit before the failure is
detected.

The primary/standby scheme is characterised by poor performance in a switching environment
and increased risk of failure. The level of achievable consistency is limited due to the low level
of redundancy. Consequently, a pure checkpointing scheme as the only means to keep the spare
synchronised does not seem very attractive nor economical in real-time switching
environments. To ensure instantaneous recovery and, hopefully, to achieve better real-time
performance, a scheme with active replicas seems more promising.

3.2.4 The Auragen scheme

MACH is a UNIX compatible operating system kernel that has adopted the Auragen message
passing scheme [Bl90]. The idea of the scheme is to save enough information about the
computation to be able to eventually recover after a failure of the unit executing the active
computation. The scheme is a combination of checkpointing and message logging. The cohort
is not active, because it is deemed desirable to save processing capacity of the spare unit. In the
scheme every message is sent to three destinations: to the active receiver, to the cohort of the
receiver and to the replica of the sender (scheme number 6 in Figure 3.1). The cohort of the
receiver buffers the messages, the replica of the sender counts them to track which messages
have already been sent and naturally the receiver consumes the message. When there are
enough messages in the buffers or enough time has passed, a checkpoint is automatically made.
At the checkpoint the state of the active process is copied to its cohort, the queue of buffered
incoming messages of the cohort is discarded, and the message count is reset. When a computer
fails, the cohort of a lost process is activated. It then runs the lost computation and the outgoing
messages are repressed until the message count is reached.

Instantaneous recovery could be added to this scheme e.g. by allowing the cohort to execute
normally upon receiving a message and repressing all messages sent by the cohort. The
problem with this kind of a scheme is that the replication is still done on the process level. A
larger replication entity is needed in a switching environment. Another problem is the
performance cost involved with sending the messages to the own replica, too. To minimise the
performance cost of replacing simple hardware supported multicast delivery on a bus by two
messages over the bus, measures should be taken. A possibility would be that messages on the
bus could carry a number of destination addresses recognised by the message bus interface.

44

14-Apr-14

3.2.5 Circus

Cooper [Co85] suggested a modular replication scheme for a synchronous message passing
environment, in which message passing is hidden by replicated procedure calls. A prototype
implementation of the scheme was called Circus. Circus is based on the fully symmetric
message passing scheme in which all the clients send to all servers and all servers receive from
all clients (scheme number 3 in Figure 3.1 for both the active and the spare sender). Voting
may be incorporated or not. N-version programming which uses multiple implementations of
the same module specification to mask software faults, may be used in conjunction with the
scheme. The basic idea on the receiving side is to collect all the incoming messages coming
from different members of the sending troupe i.e. the set of replicas, and not to send the
acknowledgement before all of them have been received, and thus preserve consistent
behaviour of the troupe.

In Circus, too, replication is introduced at the process level. The message passing scheme is
based on a reliable broadcast protocol and is rather heavy for a message intensive environment.
The reliability of message delivery is guaranteed by a compulsory explicit or implicit
acknowledgement and the possibility of re-sending the message. The implicit
acknowledgement increases performance to some extent, but the existence of the
acknowledgement is essential for the replication scheme itself. This is because obviously in a
scheme aimed at fault-tolerance, one cannot let the scheme fail or make a decision about a
computer unit failure just because of one lost message. The replication scheme is fully
transparent to the applications. The message passing scheme is hidden in the replicated
procedure call, which is introduced to handle many-to-many communication between troupes.
If a failure model without malicious malfunctions is used, voting does not have any positive
contribution except in N-version programming. Consequently fully symmetric message passing
is used mainly to keep the replicas synchronised. For hiding the replication mechanisms
Cooper examines language tools called stub compilers. We will use the same idea in Chapter 9.

3.3 Transaction processing systems

In database systems, transactions are the means of structuring concurrent computations.
Transactions have the essential properties of atomicity, serializability and permanence.
Atomicity guarantees that a transaction is an all-or-nothing operation, no intermediate effects of
a transaction are ever visible to other transactions. A transaction terminates successfully by
committing, or unsuccessfully by aborting. Before the results of a transaction are committed,
they are tentative. If a transaction commits, the tentative effects of the transaction become
permanent and visible to other transactions. If the transaction aborts, its tentative effects are
undone, leaving no trace of ever having been performed. Because the tentative effects of a
transaction are not visible to other transactions, if a transaction aborts, there is no cascading
effect. Achieving atomicity, when more than one machine is involved, requires some form of
distributed commit protocol, the best known of which is the two-phase commit. Serializability
means that the concurrent execution of any number of transactions is equivalent to their serial
execution in some order. To achieve this, a concurrency control algorithm is required. Most of
the algorithms are based on two-phase locking, time-stamps or commit time validation.

An interesting duality between transactions and conversations may be established [Ma89].
Conversations are message passing protocols between processes. Consequently there is a
duality connection between transactions and message passing schemes.

45

However, using a transaction model for ensuring the consistent behaviour of the replicas of a
replicated computation, has a problem. If a non-consistent behaviour is detected in one of the
replicas, what should be done? If the whole computation is aborted, this would mean that
higher availability is lost for the sake of instantaneous correctness as we saw in Section 2.3.2.
This would not meet our overall goals.

3.4 Conclusion

Replication schemes developed in other application areas and reported in the literature do not
seem to satisfy our requirements. Particularly, real-time performance issues and optimisation
on the use of hardware have not been considered to the extent which would satisfy the
requirements of the switching environment. Often papers on the techniques of replication of
computations bypass other aspects of fault-tolerance and other system requirements with
minimal attention. It seems typical that correctness is assumed as the predominant requirement
without discussion. Due to this unsatisfactory situation we are left with the option of devising
our own replication scheme to suit the specific needs of the distributed switching environment.

46

14-Apr-14

4 Modelling Tools

To formalise our ideas of replicated computations we shall need a set of models. The
programming model dealing with the programmer's view of the system was discussed in
Section 1.4.1. The model of computation defines what it means to execute a program.
Additionally a model of failures is needed to capture our failure assumptions. On this basis the
model of replicated computations, i.e. what it means to execute a pair of interchangeable or
equivalent computations, will be defined in Chapter 5. Then the replication scheme, which is a
more or less faithful implementation of the requirements of the model of replicated
computations in a system, can be introduced and its properties may be investigated.

4.1 Model of computation

We will first introduce the model informally and then formalise the semantics of the most
important concepts using the Asynchronous Communication Tree (ACT) model developed in
[Lin91] for SDL systems [Z.100]. We will modify and extend the model introduced in [Lin91]
to consider replicated computations in a switching system. We will finish by discussing some
properties of computations in a switching system informally.

In a switching system a computation may be permanent, that is, the active computation is
initiated when the computer unit is taken to the active state and runs until the unit is taken
down or fails. From the application point of view such a computation runs forever and the
processes for them are allocated permanently and are always ready to proceed, i.e. active. The
state of the permanent computations forms a steady state of the system. This is a state of the

system before any external
events have occurred or a state
in which the system eventually
ends, if all incoming external
events are cut out. Because the
system collects history
information, each new steady
state can be expected to be
different from the previous
one.

A computation may also be of
indefinite length with a
duration distribution and an

average. For such computations, hand processes are allocated at the computation creation time,
and released when the computation ends. Indefinite length computations usually represent the
reactions of the system to the events in the external world. An example of such a computation
in a switching environment is the call control.

The semantics of both indefinite length and permanent computations can be described using a
language like SDL in terms of events, transitions, processes, and application process states and
actions. An event is the reception or the sending of a message. A transition consists of two

Figure 4.1 Process and its message queue.

incoming message queue

message reception
Process

47

elements: a finite sequence of events and the final state. Additionally, actions like reading and
writing a memory resident file and decisions may take place in a transition. A process is
composed of three elements: initial state, set of receive events, and the transitions. If there is a
send-and-receive call inside a transition, this is viewed as a procedure call and is therefore not
modelled. In SDL as well as in DMX, arriving messages are put into the incoming message
queue (see Figure 4.1). When a message is received, it may be processed or saved into the save
queue of the process. After the reception of the next message the save queue is loaded into the
incoming message queue.

The current process state determines, which of the transitions in a process is chosen, when a
message is received. The state is an abstraction of the values of variables of a process, which
may carry information from transition to transition. These variables are called the state
variables.

Executing a process means receiving an event, choosing the transition determined by the
current state and the received message, executing all the sending events and actions of the
transition, and arriving to the final state of the transition. The final state is the new current state.
The final state depends on the current state, the received message and the read actions.
Variables in the memory resident files which are written by the process are considered an
extension of the process state.

We will always assume that a process is deterministic in that the final state is uniquely
determined by the current state, the received messages, and the values of the data accessed by
the read actions. We will also assume that a process is well behaved in the sense that it will
eventually consume all the messages sent by the user of the service in their order of arrival and
will not miss any of them. This also guarantees that the process will send the messages defined
by the service which is being produced.

Memory resident files, which are not under the control of the memory resident data base
system, are accessed without a buffering system software layer between the files and the
applications with the help of a set of library routines mainly to open and close the files and find
the data in the files. A process does not necessarily or even usually access all the data in a
memory resident file. That is why we will abstract from the implementation and model the data
in memory resident files by the concept of external data units.

Alternatively, write and read actions could be modelled by send and receive events: this would
rid us of the memory resident files and simplify the model. However, there is a difference
between read/write actions and an event. An event provides a synchronisation mechanism
between the sender and the recipient: knowing the sender, it will be known to us that the
sender has finished all the actions that it is supposed to finish before sending the message and
nothing that happens after the reception can have an impact on the sender before the message
was sent. If a data unit is used for passing information from one process to another, the read
and write operations have to be synchronised e.g. by messages or semaphores to make sure that
read actions do not occur earlier than the data is made available by the write actions. Another
difference is that data in the memory resident files is available until it is overridden by new
values i.e. potentially indefinitely, while message passing is typically a fast means of
communication. For these reasons we believe that this simplified model would make it difficult
to capture the behaviour of our system.

We shall now turn to a more formal presentation. Let us consider a given switching system or
any of its subsystems, a system for short.

48

14-Apr-14

Notation 4.1 The following set symbols are used:

1.  is the finite set of all Pids,  Í  is the set of Pids of the processes of the system
under consideration, and E Í  is the set of Pids of the processes of the environment.
We will typically use s and  to denote processes of  and E, respectively.

 We will assume that the system and the environment are disjoint,   E = . To
consider everything that may happen we will assume   E = .

2. A is the finite set of messages, the alphabet, and A* is the set of finite strings over A.
Messages are typically denoted by a.

3. The mappings sender: A   and dest: A   yield the sender and receiver of some
message, respectively.

4. S is the finite set of process states. The states are typically denoted by s, suitably
subscripted if necessary.

5. D is the set of data units of the system and the environment. The data units are typically
denoted by d. By D we will denote the set of data units of the system and by DE the

set of data units of the environment: D = D  DE . We will not assume that D  DE =
.

6. U is the set of values of data units. The set U includes the value NIL disjoint from the
other values to denote the value of a non-initialised data unit.

7. V = {v | v: D  U} is the set of given mappings from the data units to their values. This
set can be extended to the function, also denoted by v, that yields the set of values of
any set of data units v: (D)  (U), where by (X) we denote the power set of set
X. The set of given values of the data units of the system are denoted by v = v(D) =
U. Mapping v restricted to the data units of system  is denoted by v .

Data units are analogous to indefinite length messages, the difference being the method of
access to the contents of the data. A process may access several data units during the execution
of a transition. All the variables in a memory resident file accessed by a transition of a process
are assumed to belong to one data unit from the point of view of that process. Note, also, that
the values of data units may be changed by the processes i.e. the mapping from the data units to
their values may change.

Notation 4.2 We will need the following mappings from [Lin91, definitions 4.3, 4.4]:

1. input: S  (A) yields the set of possible input messages of a state.

2. Let the mapping v: D  U and a  A be given.

 output: S  S  A* yields the string of messages output in a transition initiated by
message a from one state to another.

3. The mapping Q:   A* yields the incoming message queue of a process   ,
i.e. Q() = q = <a1,...,an> denotes the contents of the queue of process    with a1
being the first element of the queue. By q = <> we denote that the queue of process
 is empty.

4. first: A*  A denotes the first message of a string e.g. of a queue.

49

We will use mapping output in a context where the values of the data units and the incoming
message are given. The alternative definition output: A  (D  U)  S  S  A* is
cumbersome and would lead to a need to define an initial message for a system which would be
an unnecessary burden.

To manipulate queues we need to add elements to the end of the queue and to remove them
from the head of the queue. We will adopt the necessary operators from [Lin91].

By (b; i: e) we will denote the mapping that is the same as b except that when applied to the
value of i it yields e [Definition 5.1.2 in Gr81]. This allows us to describe new mappings by
modifying old ones.

Definition 4.3 Let Q be the queues of processes   . Let q . q´ = <a1,...,an, a´1,...,a´m'>

be the concatenation of two queues q = <a1,...,an>, q  Q and q´ = <a´1,...,a´m'>, q´  Q.

By  and O we will denote the operators for addition and removal of an event to and from
a queue:

1. Let Q() = q , then Q  {(, <a>)} = (Q ; : q . <a>)

2. Let Q() = <a> . q , then Q O {(, <a>)} = (Q ; : q).

In our presentation we will ignore the save queues [Z.100, Lin91] and assume that when a
message is received it will be consumed before any other event can take place. The save queue
semantics has been fully discussed in [Lin91] and would not contribute to the understanding of
our problem but would rather only make our presentation more cumbersome.

Definition 4.4 Let the mapping v: D  U be given and let a  A be a message and s  S a
state, then

1. The mapping readset: S  A  (D); readset(s, a) yields the set of data units which
may be read in a transition initiated by message a from state s. We will denote the
data units in readset(s, a) by dsa.

2. The function read
sa

 = vreadset(s, a)
 is defined on readset(s, a) and yields a value for

each data unit which a process may read in a transition initiated by message a from
state s.

Let the message a be given.

3. The mapping writeset: S  S  (D); writeset(s, s') yields the set of data units which
may be written to in the transition initiated by message a from state s to another s' 
S. We will denote the data units in writeset(s, s') by dss' .

4. The function write
ss'

 = v'writeset(s, s')
 where v'  V is defined on writeset(s, s') and

assigns a new value to each data unit which a process may write to in the transition
initiated by message a from state s to the new state s'  S.

With the functions readset and read

sa
 we can focus our attention on the data units and their

values which may be read in one of the possible transitions6 starting from a state on reception
of a message. The mapping writeset and the function write

ss'
 are well defined only in the case

6See Definition 4.5.

50

14-Apr-14

where original values of the data units and the message initiating the transition are given.
Alternatively we could have defined a more generic function: write: A  S  S  (D  U) 
(D  U). We preferred Definition 4.4.4 because working with such a complicated structure is
likely to be quite cumbersome and our intention is to use the function only for a given initial
state and a given message initiating the transition from one state to another. Furthermore, both
Definition 4.4.4 and the suggested definition of write are not quite enough to capture all the
parameters which may have an impact on the new values of the data units. For example, in a
real life switching system the new values are dependent on time. The impact of such
parameters could be modelled by introducing non-determinism to the model and saying that in
Definition 4.4.4 there is a set of possible write functions. We have chosen to ignore such
relationships because we are not interested in what the values really are. The closest to the
values of the data units we will come is when we ask whether they are equal in the
corresponding data units in the active and spare computer units. Our single write function is an
adequate representative of the set of write functions for our purposes provided that the same
write function is always selected in the active and the spare computer in the transition initiated
by a given message from one state to another. We will assume that this is the case.

Definition 4.5 The following mappings are defined (see also [Lin91, definitions 4.2, 4.4]):

1. The state of a system  of processes is a mapping S :   S from the Pids of the
processes of  to the set of process states.

2. start, initial and current are mappings   S and denote the starting, initial and current
state of a process, respectively.

3. next: S  A  (S) is the set of states that can be entered after a message is received
in a state and the consequent read operations are executed, i.e. the set of possible
follower states.

The next state may depend on the values of the read operations and the mapping next assumes
that the alternative values of data units in read

sa
 = vsa

: Dsa  Usa can be made available

to produce the possible set of next states by executing the system in different environments.

Now we can formally define what we mean by a deterministic process.

Definition 4.6 Let  be a process. Process  is deterministic if for a given tuple of (s, a,
read

sa
), the set next(s, a)  (S) is either a singleton or empty and there is a unique

function write
ss'

 yielding the values of the data units, the process may have written to

while executing the transition initiated by message a  A from state s S to state s'.

Implicit consumption of unexpected messages is a general property inherited by all processes
from SDL. This can be presented using the defined mappings by requiring that:     such
that Q() = a . qtail , s is the current state of process , and a  input(s), event a is consumed
implicitly i.e.:

1. next(s, a) = {s}.

2. read
sa

 = .

3. write
ss'

 = , where s' = next(s, a).

4. New state of the queue: Q´() = qtail.

51

An Asynchronous Communication Tree is defined as a tree with the mapping from each of its
nodes to a triple that gives the states of the processes of the system, the contents of the
incoming message queues of the system and the environment and the contents of the data units
of the system. A node of the tree represents the global state of the system. Further, there is the
mapping from the arcs of the tree to the observable and silent events of the system. The arcs
represent all the possible global state changes of the system. For the sake of simplicity, contrary
to [Lin91], we will assume that all the events are observable except those the reception of
which was not expected in the current state and will be consumed implicitly.

Definition 4.7 Let T = (N, ) be a tree with the mapping C which for a node n  N yields a
configuration (S , Q , v) and l:   A  {} where v  VD and   A stands for a

silent event. T is called the Asynchronous Communication Tree, or ACT for short, with
the set of nodes N and the set of arcs . For a node of the ACT n  N the mapping CS ,

called the configuration of the processes s  , yields S, CQ , called the configuration of

the incoming message queues of  and E, yields Q, CV , called the configuration of the
data units of the system in some node yields v .

We now have to show how to construct the ACT of a given system and a given environment.
The ACT formally defines the semantics of all possible computations which may occur in a
system in a given environment. A path of the ACT represents a possible behaviour of the
system, i.e. a computation.

Definition 4.8 Let  and E be the Pids of the processes of a system and its environment
respectively, and let D  D be the set of data units of the system and let the values of DE
 D be given. Then T = (N, ) is an ACT for (, E, D) iff:

1. Initial configuration: The configuration C of the root node n0  N is such that:

a.  s  : CS (n0)(s) = initial(s),

b.    : CQ (n0)() = q = <a1,...,an> and  ai , i = 1,...,n  ´   such that ai

appears in output(start(´), initial(´)). Further, if <ai1
,...,aik

> are messages in q

such that sender(ai1
) = . . . = sender(aik

) = ´ then the order of their appearance

in q is the same as their order in output(start(´), initial(´)),

c.  s  : CV (n0)(s) = v = write
start()initial()

.

2. Consumption of a message by the system: Let n  N.  s   such that
first(CQ(n)(s)) = a, sender(a)  , a  input(current(s))7 and  s'  next(current(s

), a) ! n´  N such that

a. CS (n´) = (CS (n); s: s'),

b. CQ (n´) = CQ (n) O {(s, <a>)}  {(dest(a1), <a1>)}  . . .  {(dest(an), <an>)}
where output(current(s), s') = <a1,...,an> and the order of messages is preserved
as in item (1.b) above,

7Note that current(s) = CS (n)(s), where s  .

52

14-Apr-14

c. CV (n´) = CV (n)  {(d, u) | d  writeset(current(s), s')}  write
current()s'

where

the write assigns the new values to the data units of the writeset of the transition,

d. l(n, n´) = a.

3. Consumption of a message by the environment: Let E Í  be the processes of the
environment and let n  N.    E such that first(CQ (n)() = a, a  input(s), s the

current state of process , and  s'  next(s, a) ! n´  N such that

a. CS (n´) = CS (n),

b. CQ (n´) = CQ (n) O {(, <a>)},

c. CV (n´) = CV (n)  {(d, u)| d  writeset(s, s')  D}8  {(d, u')| d  writeset(s,

s')  D}, where u' are the new values written in the transition by the process of
the environment to the data units of the system,

d. l(n, n´) = a.

4. Implicit consumption of a message by the system or the environment: Let n  N.  
  where  =   E, first(CQ(n)()) = a, s the current state of process , a 

input(s) ! n´  N such that

a. CS (n´) = CS (n),

b. CQ (n´) = CQ (n) O {(, <a>)},

c. CV (n´) = CV (n),

d. l(n, n´) = .

The first item of Definition 4.8 tells how to construct the initial configuration in which each
process is in its initial state after having executed the transition from the start to its initial state.
Messages sent by a process in this transition are put into the incoming message queues of the
destination processes in the order they were sent. Messages sent by different processes to a
process are queued in a random order. The initial contents of the set of data units is produced
by write operations in the transitions from start to the initial state. For simplicity, here we
ignore the order of write operations. We also ignore the fact that some of the data in the system
are loaded from non-volatile memory or originate from before the system restart.

The second item of Definition 4.8 deals with consumption of a message by a process of the
system. The message may be sent by a process of the environment or by a process of the
system. Internal events in the system affect the future behaviour of the system with respect to
the environment because the resulting state changes have an effect on what messages are
expected from the environment. It is implicit that the next state of the system may depend on
the values of the data units which are read by the process and which may be data units of the
system or the environment (see Definitions 4.4 and 4.5). The mapping next was defined in such
a way (Definition 4.5.3) that the same set of new nodes n'  N of the ACT result in any given
data environment. It is assumed that any time a message is expected, it also eventually arrives
or alternatively a time-out is active and will elapse, leading to a retry, other recovery or release
procedure. It is also assumed that all the values of the data units which are read by the process
and may affect the next state of the process, will be available by executing the system in

8Note that D is the domain of mapping CV (n).

53

different environments. As a consequence, all possible ways the system may evolve in a given
environment are covered by the ACT. The order of messages sent by the transition is preserved
in the same way as in item (1) of the definition. The data units which are produced (written) by
the transition become members of the set of data units of the system. For simplicity, the model
ignores the combined order in which the write actions and sending of messages are mixed in a
transition. This is justified by the assumption that processes are deterministic and consequently,
if data is passed from one process to another through a data unit, this information exchange is
synchronised by a message.

The third item of Definition 4.8 deals with the consumption of messages by the environment.
This takes care of the deletion of messages from the queues of the processes of the
environment. In sub-item (3.c) a data unit of the system may be written to by a process of the
environment. As the values of the data unit will be changed and the data units are part of the
global state of the system, the mapping from the data units of the system to their values is
modified without any of the processes of the system being directly responsible.

The fourth item of the definition takes care of the implicit consumption of unexpected
messages by the processes of the system as well as by the environment.

A process of the environment may read a data unit of the system or consume a message sent by
the system. These events do not, however, have any impact on the ACT of the system other
than described in items three and four of the definition, but may affect the state of the
environment. The possible later impact on the messages sent by the environment to the system
or to data units read by the system is taken care of by item two of the definition. Write
operation by the processes of the environment to DE such that D  DE = Æ are not described
by the model because they do not have a direct impact on the state of the system. If a process of
the system reads data units from such DE this is taken care of by item two of the definition. The
definition describes the semantics of executing a transition as if the transition is executed until
the final state before the messages sent in the transition are processed by the destination
processes. This cannot have any impact on the execution of the rest of the transition provided
that after sending a message the process does not read any data units of the environment and
the destination process does not read any data units which the sender may write in the rest of
the transition. Due to these considerations we will assume that this simplification is justified. In
fact the execution order of transitions linked by a message may not be well defined, because
scheduling may be possible during a transition. For example, this is the case in the DX 200
system.

As such the model described in Definition 4.8 does not cover the creation and deletion of
processes. We will come back to this issue in Chapter 5.

For the purpose of modelling replicated computations, the concepts of isomorphic global states
and isomorphic behaviour of processes and sets of processes are useful.

Isomorphic behaviour implies that there is a bijection for renaming the processes and a
bijection for renaming the data units such that the configurations and the whole ACTs of the
isomorphic systems (1, E1, D1) and (2, E2, D2) are the same except for the renaming.

54

14-Apr-14

Definition 4.9 Let 1 and 2 be systems of processes, T1 = (N1, 1)and T2 = (N2, 2) the

ACTs for (1 , E1 , D1) and (2, E2, D2) and C1 and C2 their configurations, respectively.

1. A global state n1  N1 is isomorphic to a global state n2  N2 iff  bijection r: 1  2

such that  s1  1 , s2  2 r(s1) = s2 and r: D1  D2 such that  d1  D1 , d2  D2
r(d1) = d2 and

a. r(C1
S (n1)) = C2

S (n2), and

b. r(C1
Q (n1)) = C2

Q (n2), and

c. r(C1
V (n1)) = C2

V (n2).

 We will denote such global states C1 (n1) ~ C2 (n2), systems of processes 1 ~ 2 and

sets of data units D1 ~ D2 .

2. The behaviour of the system of processes 1 and its data units D1
 is isomorphic to the

behaviour of the system of a processes 2, and its data units D2
 iff,

a. the initial configurations of T1 and T2 are isomorphic: C1 (n
0
1) ~ C2 (n

0
2), and

b.  a  A, n1 , n´1  N1 , n2  N2  n´2 such that

 (C1 (n1) ~ C2 (n2))  ((C1 (n´1) ~ C2 (n´2))

 where n´1 is any next node of T1 according to Definition 4.8, and

  a  A, n1  N1 , n2 , n´2  N2  n´1 such that

 (C1 (n1) ~ C2 (n2))  ((C1 (n´1) ~ C2 (n´2))

 where n´2 is any next node of T2 according to Definition 4.8, and

c. l1(n1, n´1) = l2(n2, n´2) = a or l1(n1, n1´) = l2(n2, n2´) =  .

We will denote such isomorphism by T1 ~ T2 .

If the behaviours of two processes are isomorphic until event a  A, it implies that they are in
the same state when the event occurs. This is true assuming that we do not have the means to
differentiate between two states of a process unless a message was received or sent or an action
executed by the process. The opposite, however, is not true. Two processes can naturally be in
the same state even if their histories are different. Definition 4.9 gives a criterion to an external
observer to decide whether two processes are observably different or not by comparing sets
without the identity of the processes playing a role.

Two systems of processes with isomorphic behaviour may be distinguished at their external
interface by differing Pids in the external messages. Two otherwise identical processes may
have different Pids because it is the responsibility of the service provider to allocate the process
which produces the service. Two computations are said to be disjoint if they are executed by
disjoint execution groups i.e. by groups without common members. Disjoint computations may
be isomorphic.

The behaviour of a deterministic process is isomorphic to the behaviour of a process of the
same type if the initial states are identical, the processes are exposed to the same sequence of

55

receive events and the values of the isomorphic data units of the environment are identical at
the moment they execute the read actions. Using our model of computation we can formalise
these notions.

Definition 4.10 Let us denote the mappings of a process by superscripting the name of the
mapping by the process Pid, e.g. inputs is the input mapping of process s. Process s1 is of
the same type as another process s2 iff in any given environment:

1. the processes have the same set of states: Ss1 = {s
i
s1| i = 1,...,n} = Ss2 =

 {s
i
s2 | i = 1,...,n} = S,

2. the processes have the same mappings of input messages: inputs1 = inputs2 , and

3. the processes have the same mappings for the next state: nexts1 = nexts2 , and

4. they send the same messages in the corresponding transitions, i.e. the output mappings
are equal: outputs1 = outputs2 , and

5. the sets of data units read by the processes are isomorphic:
  s  S and  a  inputs1 (s): readsets1(s, a) ~ readsets2(s, a) , and

6. the sets of data units the processes write into in the corresponding transitions are
isomorphic, i.e.  (s, s') SS: writesets1(s, s') ~ writesets2(s, s'),

7. for the data units it applies that  s  S,  a  inputs1 (s) and  s'  nexts1(s, a):

 (reads1,
sa

(d s1) = reads2,
sa

(d s2))  (writes1,
ss'

 ( s1) = writes2,
ss'

( s2) where d s1

 readsets1(s, a) and d s2  readsets2(s, a) are isomorphic and  s1  writesets1(s, s')
and  s2  writesets2(s, s') are isomorphic.

Lemma 4.11 Let s1 and s2 be two deterministic processes of the same type and let initial

configurations of the ACTs T1 = (N1, 1) and T2 = (N2, 2) for (s1, E1, D1) and (s2, E2, D2)

be C(n0
1) and C(n0

2) respectively. Let s  S be a state of the processes s1 and s2, let a 

inputs1 (s). If

1. C(n0
1) ~ C(n0

2), and

2. the processes are exposed to the same messages,

3. there are no processes in the environment such that they write into the data units of the
systems (s1, E1, D1) and (s2, E2, D2), and

4.  s  S and  a  A: reads1,
sa

 (d s1) = reads2,
sa

 (d s2) where d s1  readsets1(s, a)

and d s2  readsets2(s, a) are isomorphic,

then the behaviours of processes s1 and s2 are isomorphic.

Proof: We must show that under the conditions of the lemma:

a.  a  A, n1  N1 and n2  N2 : (C1(n1) ~ C2(n2))  (C1(n1´) ~ C2(n2´)) where n1´ and
n2´ are the next nodes of the ACTs according to Definition 4.8, and:

b. l1(n1, n1´) = l2(n2, n2´) = a or l1(n1, n1´) = l2(n2, n2´) =  .

56

14-Apr-14

Let us assume that C1 (n1) ~ C2 (n2) and let us denote the current state CS(n1)(s1) = CS(n2)(

s2) by s. According to Definition 4.10, item (2): inputs1 (s) = inputs2 (s). Consequently, a 

inputs1 (s)  a  inputs2 (s).

According to Definition 4.8  a :

I. if a  inputs1 (s) and a  inputs2 (s) then

i. There is a single new state due to the fact that the processes are deterministic
and we can denote this new state by s' = CS (n1´) = next(s, a).

 CS (n1´) = CS (n2´) due to Definition 4.10, items (3) and (5) and conditions of the

lemma. Alternatively next(s, a) =  and there is nothing to prove.

ii. CQs1
(n1´) = CQs1

(n1) ,- {(s1, <a>)}  {(dest(a1), <a1>)}  . . .  {(dest(an),

<an>)} where outputs1(s, s') = <a1,...,an>; due to our initial assumption

CQs1
(n1) ~ CQs2

(n2) and due to item(4) of Definition 4.10 and the fact that

{(s2, <a>)} is also removed from CQs2
(n2): CQs1

(n1´) = CQs2
(n2´).

iii. CVs1
(n1´) = CVs1

(n1)  {(d, u) | d  writesets1(s, s')}  writes1,
ss'

. Due to our

initial assumption CVs1
(n1) ~ CVs2

(n2), and due to Definition 4.10, items (5), (6)

and (7):

(5): the sets of data units read by the processes are isomorphic: readsets1(s, a)
 ~ readsets2(s, a); further due to condition (4) of the lemma the values
 read in the isomorphic data units are equal,

(6): the sets of data units that may be written to by the processes are
isomorphic: writesets1(s, s') ~ writesets2(s, s'), and

(7): the values that may be written into these isomorphic data units are equal
 and consequently, CVs1

(n1´) ~ CVs2
(n2´).

iv. l(n1 , n1´) = a and due to conditions of the lemma l(n2 , n2´) = a .

II. if a  input(s) and a  input(s) then

i. CS (n1´) = CS (n1) ~ CS (n2´) = CS (n2).

ii. CQs1
 (n1´) = CQs1

 (n1) O {(s1 , <a>)} and the same a will be removed from the

queue of process s2 .

iii. CVs1
(n1´) = CVs1

(n1) ~ CVs2
(n2´) = CVs2

(n2).

iv. l(n1 , n1´) = l(n2 , n2´) =  .

Consequently, due to I.(i, ii, iii) and II.(i, ii, iii) the above requirement (a) is satisfied and
due to I.(iv) and II.(iv) requirement (b) is satisfied. According to conditions of the lemma,
item 3 of Definition 4.8 may not change the state of the systems. Consequently, the
lemma follows.

57

In modelling graceful software updating procedures, subsets of the set of receive events of a
process are of interest. Based on this, upward compatibility issues can be analysed. For our
purposes, however, the definition given is sufficient.

The system functional requirements specification, which is a step in the system design process,
starts with the identification of the external functions or services of the system, like the
operator commands and services offered by the switching system into the network. This is
followed by the implementation specification phase starting with the breakdown of the
functionality into the necessary software and hardware components of the system which
together will implement the external functions. Finally comes the specification of the behaviour
of the components.

To support these ideas and to preserve the overall system view it is useful to define concepts
which allow us to talk about the behaviour of larger portions of the system than just a process.
For this purpose we will introduce the concept of an execution group. We will apply this
concept in Chapters 5, 6 and 7.

Definition 4.12 Let  be a system of processes s, s'   and let T = (N, ) be an ACT for a
subsystem of processes   . Any such set  is an execution group iff

1.  has only one member s  , or

2.  = '  {s}, where s  ' such that ' is an execution group and
  s'  ' such that  n, n´  N and a  A: l(n, n´) = a and

i. sender(a) = s and dest(a) = s' , or
ii. sender(a) = s' and dest(a) = s.

The definition implies that the set is always connected and may not be a fragmented set. The
global state of an execution group includes the values of the data units which may be written to
by any of the processes of the group. A process may be a member of many execution groups.
The concept of an execution group is a tool that allows us to focus our attention on specific sets
of processes for which a common condition applies and which are of interest to us.

The largest possible execution group in a system contains all the processes of the system.
However, by restricting ourselves to a smaller group of processes we may talk about e.g. the
properties of a system that handles just one call. For this purpose an interesting execution group
might include all the processes participating in handling a call or all processes which store or
access call state variables. We may also want to restrict such a group further by excluding e.g.
processes which are solely devoted to charging and statistics. Another interesting execution
group might be the set of processes which carry out an operator command.

From the point of view of an execution group, messages may be external or internal. Messages
passed between the members of the group are internal. Messages sent or received by a process
in the group to or from any process which is not a member of the group are called external
messages.

Informally all that is initiated and happens in an execution group upon arrival of an external
message is called a computation. So, informally we can see a computation as a "service"
produced by an execution group.

A finite computation is represented by a finite path of the corresponding ACT. Of interest are
finite computations which are executed by an execution group as a reaction to a single external
event.

58

14-Apr-14

Definition 4.13 A finite computation resulting from a single external event in an execution
group is called a reaction. An execution group is reactive, if isolated from the reception of
external messages from a state onwards, it will after a finite computation end up in a steady
state where it will not change state unless a new external message is received.

By definition the first arc of the ACT of a reaction is labelled by the external event. All the rest
of the arcs of the ACT are labelled by internal messages of the execution group. We will use
these concepts in Chapters 5 and 7.

The transitions of a reaction may send messages to the environment. A reaction ends in a
steady state represented by a node of the ACT with empty incoming message queues if the
execution group is isolated from the external incoming messages after the initial event was
received and if there are no processes in the environment which write into the data units of the
execution group. If there is no isolation, according the service definition, the reaction may be
interrupted by a new external event before the execution of the reaction ends. When a reaction
ends in the steady state, i.e. all internal messages are consumed, we say that the reaction is
complete.

A system is said to be closed if there are no processes in the environment which write into the
data units of the system.

In the sequel we will discuss some additional concepts informally. These concepts will not be
used in further formal definitions but will help to describe the behaviour of a switching system
intuitively.

A special case is a sequential reaction, which may be visualised as a chain of transitions. This
means that during the computation, each process in the execution group invokes not more than
one service provider at a time and if a process executes more than one transition in the
reaction, they are different transitions. In terms of the structure of the ACT this means that the
degree of the nodes of the ACT of the system is not more than three, i.e. a node may be an
endpoint to the arc for entering into the node, to the main outgoing arc for leaving the node and
possibly to the additional arc labelled with the time-out message to avoid deadlock. Note that
this does not require that the transition of the user is finished before the provider starts
execution.

A computation is sequential if it is a sequence of complete sequential reactions. A sequential
reaction either ends when it is complete or it is interrupted by a new external message, because
the restriction of invoking no more than one service at a time applies to external and internal
services alike.

An example when the concept of an interrupt (a new external message arrives before a reaction
is complete) is useful, is to describe the behaviour of the call control system that has to accept a
disconnect message from the initiator of the call while the system is waiting for an answer
signal from the called party. To describe this situation at least two main outgoing arcs of the
ACT are needed in the node representing such a global state.

Involvement of a process in a computation may be stateless or state oriented. If the state
variables of a process have at least two different values, because of the process being involved
in a computation, the involvement is state oriented. In terms of the ACT this means that the
configuration of the state variables CS or the configuration of the data units CV is not constant

during the path representing the computation. This includes all cases in which the process
writes anything to its state variables or to memory resident files. The subset of the processes of
an execution group, the involvement of which in a computation is state oriented, is called the
state oriented execution group. When the values of the state variables of a process do not

59

change because of the computation, the involvement of the process is stateless. An example of
a stateless involvement is a process offering database read services to call control.

Control in the computation can flow in different directions in an execution group. Each
reaction executed by a state oriented execution group creates an order of involvement of the
member processes. This order we will call the reaction order. It is not necessarily the same as
the execution order of the corresponding transitions, which depends on priorities. Priorities are
process attributes that are used to determine the execution order of processes which are ready
for execution. In terms of the ACT an order of involvement is produced by applying the
function dest to all the labels on the arcs of the path representing the computation.

An example is the order in which the processes were initially allocated for the computation. In
this order there is only one process, which is the topmost user or initiator of the computation. If
we look only at the uses-provides relations between the processes we see that the allocation
order is a partial order on processes. Even more precisely, it is a tree of processes, because (1)
a user may have several service providers in this order, and (2) each service provider may be
allocated only once, so cycles are not possible. There may be several downmost service
providers in this example computation and some processes may have both the role of a user
and the role of a provider.

4.2 Model of Failures

A hierarchy of models of faults and failures is required to build a system which is highly
available, able to detect its own faults, recover from them, and locate the faults. For purposes of
fault location a low level model dealing with the behaviour of a faulty circuit or a faulty chip is
needed. This model is based on the physical fault model. For the purposes of recovery and
replicated computation modelling, however, a higher level failure model is more useful. This
model deals with the behaviour of a faulty computer unit.

A computer unit failure may be either a crash during which a machine simply ceases to
function, or a malfunction during which it functions incorrectly. A malfunction may be
malicious or non-malicious. If the model incorporates malicious malfunctions, by which is
meant a behaviour which is seen differently by different components of the system, a solution
to the Byzantine agreement problem must be implemented. The Byzantine agreement problem
was first identified and solved by the researchers who tried to prove the correctness of the SIFT
system [Pe80, We78]. The problem is as follows. A sending processor wishes to communicate
some value to each of the n receiving processors. The sender may malfunction, sending
different values to different recipients, or not sending anything to some of them. However, the
following conditions must hold:

1. All correctly functioning recipients agree on the same value.

2. If the sender is functioning correctly, then all correctly functioning recipients agree on the
value sent.

By a non-malicious malfunction we mean the class of failures where the possibility of sending
different values to different recipients in the Byzantine assumption is excluded, but still
messages may be lost. These failures can be handled without the full Byzantine agreement
problem solution. An example is when a multicast message is correctly received by some of the
recipients but not received at all by at least one of them. When non-malicious malfunctions are
incorporated, the classes of failures must be specified more exactly each time.

60

14-Apr-14

The Byzantine failure assumption is not very close to reality and may easily lead to inefficient
systems, because of the complicated agreement protocol. Known alternatives to the Byzantine
assumption are the notion of a fail-stop processor [Sc83, Sc84] and the notion of a fail-silent
processor[SSh90]. The idea in these concepts is that a processor may crash, but will never
malfunction. If it is possible to detect malfunctions, then an ordinary processor can be
transformed into a well behaved fail-silent processor by causing it to halt whenever a
malfunction occurs. Unfortunately, fault detection is a very hard problem, too.

In this thesis a compromise is chosen. The basis is the fail-silent processor assumption. It is
assumed that if a message is received, its validity can always be established. Messages may be
lost, but this can be detected e.g. by time-outs. So, the possibility of some non-malicious
malfunctions is also incorporated into the model.

It should be noted that in our case the "fail-silence" abstraction is created from ordinary
processors by extensive fault detection and recovery software instead of duplicating the

processors to form fail-silent nodes as in [SSh90]. As we
defined in our optimistic failure assumption (Assumption 2.1
in Section 2.4), the failure detection is assumed to take some
time, but to be fast enough to stop failure propagation into
other processors of the system. It is our conviction that this
model is close enough to reality in a distributed switching
environment with a low level of redundancy and it can
therefore help to come up with a more efficient and practical
implementation of the replication of computations.

The requirement of the optimistic failure assumption can be
presented in terms of the protocol for message exchange
between processors using our model of computations (see
Figure 4.2). In the presentation we will assume that the
processes of the environment run on a different processor than
the system and that that particular processor is duplicated and
may fail. The presentation is not a formal model of failures; it
only expresses what is the impact of the optimistic failure

assumption to the ACT of a system that can recover from a failure by a unit changeover.

Let  be a system, E the environment,   E a process of the environment, A the alphabet of
messages and T = (N, ) the ACT for (, E, D). Let us look at an extract of system behaviour
in which a process of the system    sends a message ai to a process of the environment and

expects an acknowledgement bi. Let n, n'  N, and let  a  input(CS(n)()) such that (n, n') =

a, then  ai  <a1, . . .,am> = output(CS(n)(), CS(n')()) and dest(ai) =   ai,
t such that

1. ai,
t  input(CS(n')()),

2. ai,
t will arrive not later than tai

 + 1 and not earlier than tai
 where one represents the

clock tick interval,

3.  n't  N such that (n', n't) = ai,
t and ai  <a'1, . . .,a'k> = output(CS(n')(), CS(n't)()) and

dest(ai) = ,

4.  n", n"t  N, such that (n', n") = (n't, n"t) = bi where bi is the acknowledgement

message for ai: sender(bi)= .

Figure 4.2. An extract
 of an ACT

61

To fulfil requirements of the optimistic failure assumption we will assume that the time for
failure detection and unit changeover tF is:

 tF < tai
.

Faults may be permanent, transient, or intermittent by their time behaviour. A transient fault
causes an error to occur but disappears before it can be located. This is modelled by assuming
the transient fault to have a duration with some distribution [Yi80]. Intermittent faults are faults
with some occurrence period. In a switching system, it is assumed that transient and
intermittent faults can be handled by the alarm handling and recovery control functions, and
need not be considered in the context of replicated computations.

62

14-Apr-14

5 The Basic Replication Tools

The replication scheme can be seen as a set of tools. The first one of these tools is discussed in
this chapter. Before we describe the tools, we will discuss the goal of these tools formally. The
ideal, how things should be, is expressed by the replication model. The replication scheme is a
more or less faithful implementation of the replication model.

5.1 The Replication Model

The goal of the replication tools is to support replicated computations in a distributed
(switching) system with a low level of redundancy. The replicated computations are a
prerequisite for implementing graceful unit changeovers with an operator command and in the
case of the failure of an active unit in 2N replicated computers. A replicated computation is a
pair of equivalent or consistent computations which run simultaneously, one in the active unit
and the other in the spare unit. Furthermore the states of the active and the spare computations
are consistent. By the global state of a computation we mean the configuration C(n), where n 
N, of the ACT of the respective execution group. A changeover can be visualised as a special
event linking the active and the spare ACTs such that after that event the trees are isomorphic.
In this section we will formalise these notions.

Notation 5.1 The following symbols are used:

1. wo = {si
wo | i = 1,...,n} is the execution group of active processes.

2. sp = {si
sp | i = 1,...,n} is the execution group of spare processes, such that wo ~ sp.

3. A pair of corresponding or replicate processes of the system: s = (swo, ssp), swo ~ ssp,
swo  wo and ssp  sp, swo and ssp are of the same type and swo is executed in an active
computer and ssp in its spare.

4. A pair of corresponding or replicate processes of the environment:  = (wo, sp),
wo ~ sp, wo  Ewo and sp  Esp and wo and sp are of the same type.

5. By dest(a) = , a  A,  = (wo, sp)   we denote that message a is addressed to
both the active (wo) and the spare process (sp). By sender(a) = , a  A,  = (wo,
sp)   we denote that message a is sent by both the active (wo) and the spare
process (sp) in the same context.

Isomorphic states of the corresponding active and spare processes are not necessarily, and in
the case of e.g. the DX 200 system not even usually, bitwise identical because memory
allocation for segments is done by each computer unit independently. However, the application
does not need to concern itself with these differences between units. An example of isomorphic
states is the initial states of two corresponding processes working on the same object (e.g. a
call) in the active and the spare computer units.

63

Definition 5.2 Let T wo = (N wo, wo) and T sp = (N sp, sp) be the ACTs for two isomorphic
systems (wo, E wo, D wo) and (sp, E sp, D sp) where wo and sp are the active and the spare
execution groups. The active and spare computations are equivalent, iff:

1. the behaviour of the execution group wo is isomorphic with the behaviour of the
execution group sp

2.  nwo  N wo and nsp  N sp such that the configurations Cwo (nwo) ~ Csp (nsp) and  a
 A if the next node of the ACT of the active system according to Definitions 4.8 is
ǹwo such that

 wo(nwo, ǹwo) = a, then Cwo (ǹwo) ~ Csp (ǹsp) and sp(nsp, ǹsp) = a where ǹsp is the next
node of the spare system, or

 wo(nwo, ǹwo) = , then Cwo (ǹwo) ~ Csp (ǹsp) and sp(nsp, ǹsp) =  where ǹsp is the next
node of the spare system.

It should be noted that because of the Pid allocation scheme, described in Section 1.4.1,
Definition 5.2 implies that the members of each of the process pairs are of the same process
type. Definition 5.2 also states what an ideally replicated computation should be like. However,
as we have discussed earlier, we are not going to present an ideal replication scheme but intend
to build the scheme based on eventual convergence. That is why we will define a replicated
computation more loosely than Definition 5.2, taking into account the requirements of Section
2.4. One of the key requirements in that section was to retain the possibility of using messages
which are internal to a computer unit.

Definition 5.3 Let T = (Two, Tsp), Two = (Nwo, wo), Tsp = (Nsp, sp) be a pair of ACTs
representing, in a given environment, all possible behaviours of a pair of the active and the
spare execution groups  = (wo, sp) of the system with the nodes nwo  Nwo and nsp  Nsp.
The pair of ACTs represent all possible replicated computations of the system in a given
environment iff for system  and for the external messages a  A between  and the
environment E = (Ewo, Esp) the following conditions apply:

1.  (n0
wo, n0

sp), n0
wo  Nwo, n0

sp  Nsp such that: Cwo(n0
wo) ~ Csp(n0

sp),

2. " a such that sender(a) = ,   E: if a is sent to the system, then

 dest(a) = (si
wo, si

sp)  , and " a  Cwo
Q(nwo)(swo) where nwo  Nwo and " a 

Csp
Q(nsp)(ssp) where nsp  Nsp : sender(a) = wo  Ewo,

3. " a such that sender(a) =s, s  : if a is sent to the environment, then

 dest(a) = (i
wo, i

sp)  E, and " a  Cwo
Q(nwo)(wo) where nwo  Nwo and " a 

Csp
Q(nsp)(sp) where nsp  Nsp : sender(a) = swo  wo.

So, a replicated computation is a pair of initially equivalent computations and the incoming
external messages are passed to the two execution groups simultaneously. One of the member
computations is executed by the active unit and the other by the spare unit. The messages seem
to come from the active environment and the spare environment is hidden. Looking from the
environment, the messages sent by the replicated execution group of the system seem to come
from an active process and the corresponding spare sender is hidden.

64

14-Apr-14

The executions have to be simultaneous because the goal is the possibility of a graceful unit
changeover in a real-time environment.

In Definition 5.3 we assumed that E = (Ewo, Esp) for symmetry with the system because both
system  and environment E are executed by a computer unit that may or may not be
duplicated at any given point in time. We will come back to the dynamic behaviour of a
computer unit after a definition and a lemma in this chapter.

Definition 5.4 Let Two and Tsp be ACTs representing the behaviours of the active and the
spare members of a replicated system. The global states Cwo(n1) and Csp(n2) of the
replicated system are consistent, iff

a. Cwo(nwo
1

) ~ Csp(nsp
2), or

b. there was a pair of isomorphic states (Cwo(n´1) ~ Csp(n´2)) such that

i. Cwo(n1) was reached from Cwo(n´1) and Csp(n2) was reached from Csp(n´2), and

ii. there exists a pair of isomorphic states (Cwo(n''1) and Csp(n''2)) such that if

Cwo(n''1) will be reached from Cwo(n1), then Csp(n''2) will eventually be reached

from Csp(n2).

Note that according to Definition 5.3 the condition (b) sub-item (i) of Definition 5.4 is always
true for the members of a replicated computation. The Definition 5.3 does not guarantee that
sub-item (ii) will be true. However, for replicated computations Lemma 5.5 applies.

Lemma 5.5 Let  = (wo, sp) be a pair of the active and the spare execution groups of

deterministic processes of the same type and let wo and sp be reactive9. The states of a
replicated computation of  are consistent, if

1. the execution groups are closed and the active and spare data environments are
isomorphic, i.e.

  s, a, and (swo, ssp)   the values of the data units such that (dୱൈୟ୵୭ , uୱൈୟ୵୭)  read	ୱൈୟ஢౭౥

are equal to the values of the isomorphic data units such that (dୱൈୟ
ୱ୮ , uୱൈୟ

ୱ୮)  read	ୱൈୟ஢౩౦ ,
and

2. "    and a  input(current(s)): The order of messages in CQ(nwo)(swo) and CQ(nsp)(

ssp) is the same, and

Proof: Here, as before we assume that processes are well-behaved and that the states of a
process between receptions of messages are indistinguishable.

 Condition b, sub-item (i) of Definition 5.4 is true according to Definition 5.3, item (1).

 Condition (2) of Lemma 5.5 will guarantee that messages are received in the same order by
the active and the spare processes    of the member execution groups. This will make
the member computations satisfy condition b sub-item (ii) of Definition 5.4.

 Consequently, Lemma 5.5 is true according to Definition 5.4 item b.

9See Definition 4.13.

65

The condition that the active and the spare execution groups are reactive means that any
computation they may execute is finite unless new messages keep arriving from the
environment. Having executed a finite number of steps, they arrive in a steady state which is
isomorphic, provided that the rest of the conditions of the lemma are satisfied. We will not take
the condition that the active and spare execution groups are closed as a general assumption
because if a process of the environment writes into the data units of the execution group, it is
possible that the same write action takes place in both the active and the spare computer and
thus the states of the execution groups will still remain isomorphic. The definition of a
replicated computation could be generalised for an arbitrary number of spares, but in a
switching environment this is not of practical interest, and therefore here and in all the rest of
this thesis, we will assume that the maximum is one spare computation.

State changes may occur in a system which may be replicated. The possible states and state
changes of a replicated system (e.g. a computer unit or a replicated execution group) are
presented in Figure 5.1.

The state changes indicated in Figure 5.1 are:

(1) Changeover: the previously active system becomes the spare and the spare becomes
active.

(2) Creation of the hot-standby spare.

(3) Deletion of the hot-standby spare.

In our further presentation we will assume that such state changes are possible and will discuss
their impact as a separate issue apart from the basic constructs of the replication model and the
replication scheme.

An ideal, thoroughly reliable synchronisation scheme of WO and SP processes is one which
guarantees that the member computations of a replicated computation will remain equivalent
and thus their states remain consistent. Such a synchronisation scheme of WO and SP processes
would require that all events that affect the global state of the process are synchronised between
the WO and the SP. The synchronisation should ensure that equivalent processes are allocated
for a service and that all the events are handled by the WO and SP processes exactly in the
same order. This order should not be violated by a changeover nor during the creation of the
hot-standby spare system. These events include the following:

 all incoming messages: external including time-out messages and internal messages,

 all software resource allocations: hand processes, buffers,

 read actions,

 write actions.

 Figure 5.1 States and state changes of a replicated system.

single=0
Hot-standby
active=0
 spare=1

Hot-standby
active=1
 spare=0

single=1123 32

66

14-Apr-14

5.2 The Basic Replication Scheme

A Replication Scheme refers to an outline of how replicated computations are implemented in a
system. We will call our basic scheme loose message synchronous mode. It comprises five
elements, two of which conform to the ideas of modular redundancy, two others to the ideas of
primary/standby redundancy, and the last is the time-out synchronisation protocol. The
intention of the basic scheme is not to meet the requirements of a thoroughly reliable scheme
but rather to solve only the key synchronisation problems.

5.2.1 The replication group

The system is divided into a set of replication groups. The replication groups are sets of
processes. A hand process may be a member of exactly one replication group. The position of
the master processes will be discussed in Section 5.3.

Definition 5.6 The replication group is a pair of isomorphic execution groups wo and sp for
which Definition 5.3 holds.

One of the execution groups resides in the WO computer and the other in the SP computer.
According to Definition 4.12 of an execution group, processes of each of the execution groups
communicate with each other directly with internal messages, independent of the
communication which is taking place between the processes of the other group.

More exactly: Let T = (N, ) be an ACT for a system of processes wo  wo and let   wo.
Then the set wo is an execution group and the following applies:

1. wo has only one member s  wo, or

2. wo = '  {s}, where s  ' such that ' is an execution group and
  s'  ' such that  n, n´  N and a  A: l(n, n´) = a and

i. sender(a) = s and dest(a) = s' , or
ii. sender(a) = s' and dest(a) = s.

The same applies for sp  sp.

The execution groups are isomorphic sets of processes. We will call the execution groups the
active and spare members of the replication group. The internal messages here are also internal
to the hosting computer. Membership in the replication group is intended to be static, i.e. for
the whole lifetime of a process. The service provider allocation protocol explains how a
replication group can be extended by new processes. The replication group concept in the
scheme is a modular redundancy element.

Figure 5.2 illustrates the concept of the replication group. Circular figures , ,  and 
indicate replicated processes. By arrows the initial user-provider relations are shown. The
boxes around the groups of processes indicate the boundaries of the members of the replication
group.

A replication group is an instance of a replication class. A replication class is a pair of identical
sets of process types. In a switching environment N-version programming is typically not used,

67

and thus the replication class member
sets have the same code10, and ideally
execute their code irrespective of where
they reside, in a WO computer, or in a
SP computer.

5.2.2 The multicast delivery protocol

Another element of the basic replication tool, conforming to the idea of modular redundancy, is
the wo+sp multicast delivery. The multicast delivery passes a message simultaneously to the
members of a pair of corresponding processes of a replication group. This is illustrated in
Figure 5.3. Wo+sp is one of the values of the destination delivery code which is part of the
computer_address. Thus the multicast delivery addresses items (2) and (3) of Definition 5.3.

Consequently, if 1 = (1
wo, 1

sp) and 2 = (2
wo, 2

sp) are two replication groups, such that A

are the messages between them, and T wo = (N wo, wo) and T sp = (Nsp, sp) are the pair of two
ACTs for 1, then

(i). " a  A such that sender(a) = 2, 2  2: if a is sent to 1, then

 dest(a) = (1i
wo, 1i

sp)  1, and " a  C wo
Q(nwo)(1

wo) where nwo  N wo and " a 

C sp
Q(nsp)(1

sp) where nsp  N sp : sender(a) = 2
wo  2

wo,

(ii). " a  A such that sender(a) = 1, 1  1: if a is sent to 2, then

 dest(a) = (2i
wo, 2i

sp)  2, and " a  C wo
Q(nwo)(2

wo) where nwo  N wo and " a 

C sp
Q(nsp)(2

sp) where nsp  N sp : sender(a) = 1
wo  1

wo,

Entities 1 and 2 in Figure 5.3 are distinct communicating replication groups with the active

(1
wo, 2

wo) and spare members (1
sp, 2

sp). Messages are passed asynchronously without

compulsory acknowledgements. Groups 1 and 2 may reside in the same pair of computers or

in different pairs of computers. In either case the message is delivered using the hardware
supported multicast facility along the Message Bus. This means that the message is sent by the
WO computer only once and read by both of the recipient computers at the same time. The

10Graceful software updating procedures are of interest in the switching environment, i.e. procedures for updating the
switching system software package without service interruptions. During such procedures, replication class members
may be different versions of the same program blocks.

 Figure 5.2 An example of a replication
 group.


wo

sp

1 2 3

4

wo
 



wo

wo

1 2 3

4

 



sp sp

sp

68

14-Apr-14

message sent approximately at the same
time by the SP member of the replication
group 1 is discarded by the kernel. The

notation for discarding a message is (
X) in all the figures. Because all messages
with wo+sp delivery are sent through the
same bus, such messages are always
received by a process in the same order as
they were sent by any single process.
Furthermore, the sequence of reception of
such messages in the active and the spare
replicate processes from any number of
processes is the same if messages are not

lost. This is because, in fact, the same message is received by both the active and the spare
computer from a shared communication medium that can provide service only to a single
sender at a time.

5.2.3 The service provider allocation protocol

The third element of the scheme is the handling of service provider allocation messages. The
protocol is always used for hand allocation inside and across the boundary of a replication
group to facilitate the creation of isomorphic replication group members. The protocol ensures
that isomorphic Pids are reserved for the active and the spare process. In our system this
isomorphism is implemented by Pids which are bitwise identical including all the parts of the
identifier except for the destination delivery code that is a part of the computer address.

To accommodate this new feature we have to extend our model of computations to cover the
creation of processes.

Definition 5.7 Let B  A be the set of the service provider allocation request messages and
  B, let  be the system of processes s   and E the environment where processes  
E and let  be the set of (hand) processes    which are free and ready to be allocated for
a task and included in the system. Let there be a set of master processes M such that M 
E, and   M and let the current state of  be s. Then T is the ACT for the system (, E,
D) incorporating the creation of processes, iff

1. The messages   B are queued into Q as any other messages.

2. Semantics of the consumption of a message   B amends item (3) of Definition 4.8
as follows:

 Let n  N, and      Domain(CS (n)). Then    M, M  E such that

 first(CQ (n)() = , where   input(s):  n'  N such that

a. CS (n') = CS (n)  (, initial()),

b. CQ (n') = CQ (n) O{(, <>)}  {(dest(b1), <b1>)}  . . .  {(dest(bn), <bn>)} 

{(dest(a1), <a1>)}  . . .  {(dest(am), <am>)}, where output(s , s') = <b1,...,bn>,

output(start(), initial()) = <a1,...,am>, and s'  next(s , ),

 sender recipient

 Figure 5.3 Message with wo+sp delivery.

 

 

69

c. CV(n') = CV(n)  {(d, u)| d  writeset(s , s')  D}  {(d, u')| d  writeset

(s , s')  D}  {(d, u) | d  writeset(start(), initial())}  write
start()initial()

, where u' are the new values written in the transition by the master process to
the data units of the system,

d. l(n, n') = .

3. The rest of the ACT is constructed as in Definition 4.8. Item (4) of Definition 4.8
applies to   input(current()) and to      Domain(CS (n)).

Note that the definition assumes that processes  and  send only one message to a destination
and thus all the messages in item 3 of the definition are queued in a random order. The
definition ignores the order in which  and  write into the data units of the system as well as
the combined order of write actions and the sending of messages. These assumptions follow the
same lines of reasoning as in Chapter 4.

The creation of replicated hand processes is modelled by a pair of ACTs T wo and T sp each of
which is constructed according to Definition 5.7 with the addition that the definition applies to
M = (M wo, M sp) and  = (wo, sp)   = (wo, sp) and in item 2 of the definition wo  wo 
Domain(C S (n

wo)) and sp  sp  Domain(C S (n
sp)).

The protocol implementing the allocation of hand processes in a replicated environment is as
follows (Figure 5.4):

1. The service provider allocation request is sent by the service user only to the WO master
process of the service
provider program block.
The message sent by the
active user is delivered;
the message sent by the
spare user is discarded.

2. The master process of the
service provider invokes a
kernel primitive to allo-
cate a hand with the re-
quest message as a pa-
rameter. The allo-
cate_hand primitive
selects a free hand using
the Pid search algorithm,
defines the Pid of the
hand (finding the hand
and finding the local Pid
is the same; the focus11 has to be incremented), and sends a kernel message to the spare
master. The kernel message carries the allocate request and the local Pid and focus of the
hand. The primitive sets a time limit for the acknowledgement. When the kernel message
has been sent, wo hand exists for other processes of the system.

3. The spare master allocates a hand with the isomorphic Pid and sends an acknowledgement
kernel message to the WO master. From this moment we say that sp hand exists and is

11Indicating the beginning of the next life of the process.

 service service
 user provider

 Figure 5.4 Service Provider Allocation Protocol.

70

14-Apr-14

involved in a computation. A replication state variable, "Replicated_mode_ok" of the WO
and SP hands is set to true. The allocate_hand primitive returns in both the active and
the spare service providers. The service provider master and the newly allocated hand
processes are free to continue as appropriate for the application. When the
acknowledgement message has been received by the WO, we say that the wo hand is
involved in a computation.

 The allocate_hand primitive, invoked by the spare master, also runs the Pid search
algorithm locally. If the result of the search is a different local Pid value than the one sent
by the WO, both hands are reserved. The hand suggested by the WO is always allocated
for the new task. The locally found hand is set into the suspended state to wait for a release
message from the WO. This is done because it is possible that this is an error caused by a
loss of a message in one of the previous applications of the service provider allocation
protocol. By indicating this error, a hook for error correction is created. This will be dealt
with in Chapter 7 of this thesis.

 If the required hand is not free in the SP unit, which is always regarded as an error
situation, it is forcefully released and allocated for the new task.

 If the time limit in WO expires first, a kernel message is sent once more12 and a new time
limit is set. If the timer expires the second time, the failure is reported to a supervisory
function, and the WO continues irrespective of what happens on the other side. Naturally
in this case the "Replicated_mode_ok" of the WO hand is set to false.

4. The usual procedure is that the WO provider hand sends an acknowledgement with wo+sp
delivery to the service user. The user gets the identity of the service provider in the
acknowledgement message. The corresponding message sent by the spare service provider
is discarded.

5.2.4 The hand release protocol

This element of the replication scheme allows destroying replicated processes and consequently
replicated computations in a controlled manner. To formalise the semantics of the deletion of
processes from the system we will first extend our model of computations.

Definition 5.8 Let B  A be the set of the release request messages and let   B, let  be
the system of processes s   and E the environment where processes   E. Then T is
the ACT for the system (, E, D) incorporating deletion of processes, iff

1. stop:   S is a mapping from the set of processes of the system to a state after
which nothing can happen13.

2. The messages   B are queued into Q as any other messages.

3. Semantics of the consumption of a message   B amends item (2) of Definition 4.8
as follows:

 Let n  N. Then  s   such that first(CQ(n)(s)) = , where   B  input(current(

s)): ! n'  N such that

12This retry procedure is not currently implemented in the DX 200 system.
13This corresponds to the STOP statement in SDL and TNSDL.

71

a. CS (n') = (CS (n); s: stop(s)), and CS (n)(s) is removed from CS (n'),

b. CQ (n') = CQ (n) O {(s, <>)}  {(dest(b1), <b1>)}  . . .  {(dest(bn), <bn>)},
where output(current(s), stop(s)) = <b1,...,bn>, additionally CQ (n)(s) is removed
from CQ (n'),

c. CV(n') = CV(n)  {(d, u)| d  writeset(current(s), stop(s))}

  write
current()stop()

.

d. l(n, n') = .

4. The rest of the ACT is constructed as in Definition 5.7. Item (4) of Definition 4.8
applies to   input(current(s)).

Note that the definition assumes that
process s sends only one message to a
destination and thus all the messages
in item 3 of the definition are queued
in a random order. The definition
ignores the combined order of write
actions of s and the sending of
messages. These assumptions follow
the same lines of reasoning as
previously.

The deletion of replicated hand
processes is modelled by a pair of
ACTs Two and Tsp each of which is
constructed according to Definition
5.9 with the addition that

stop:   S is defined for  = (wo,
sp).

The hand release protocol anticipates
the possible problems arising if some
hands would be free in the spare,
while their twins in the active unit were allocated to a task. Such problems could arise e.g. after
a unit changeover. This protocol ensures that inconsistent processes in the spare are easily
distinguished from consistent and from free processes and thus creates a possibility for further
development of the replication scheme. The protocol is invoked by a hand upon completion of
its task by calling the main_receive kernel procedure with the release-me parameter set to
true. This hides the details from the application. The protocol is as follows (Figure 5.5):

1. In the WO unit the main_receive primitive sends a release message to the SP, sets a
time limit and waits for an acknowledgement.

2a. In the SP, the release primitive checks whether the release message has already arrived.
If yes, it inserts the hand into the free hand queue, sends the acknowledgement to the WO
and ends. If the release message has not arrived yet, the hand is left in a suspended state to
wait for it. The suspended state can be used for error detection, namely if it lasts too long,
it is highly probable that the computation in the spare is in an inconsistent state. The spare
process can legitimately be in the suspended state, if the last transition after which the hand

 WO SP
 computer computer

1

2

 Figure 5.5 The Hand Release protocol.

72

14-Apr-14

is released has been executed in the spare unit while in the active unit the same transition is
about to begin or has not yet been finished executing. Because of Lemma 5.5 and
Definition 5.4 we know that eventually  and in practice very soon  the active process
should finish the last transition, and according to item (1) of this procedure, send the
release message to the spare.

2b. When the release message arrives in SP, and the hand is found in the suspended state, it is
inserted into the free hand queue and an acknowledgement is sent to the WO unit.

3. In the WO unit, if the time limit expires14, the active hand is put into the free hand queue
and the kernel passes control to another process.

5.3 State changes of a replication group

As noted earlier in Section 5.1, state changes are possible in our target system (see Figure 5.1).
Here we will briefly discuss the impact of such state changes into the elements of the
replication scheme.

We will show that the impact of the state changes to the elements of the replication scheme is
temporary, provided that the measures identified underneath are taken.

5.3.1 Changeover

In a changeover the members of a replication group change places. After the changeover the
former spare member becomes active and thus visible to the environment. This visibility
manifests itself through the multicast delivery protocol. Due to the computation skew between
the active and the spare computers the multicast delivery protocol may cause a loss or a
duplication of a message during a unit changeover of the sending computer. A message will be
lost if at the moment of unit changeover the spare was ahead of the active and had just before
the changeover sent a multicast message that was discarded in SP. After the changeover the
same message will be discarded again in the new spare unit. If the spare was lagging behind at
the moment of the changeover of the sending unit, the message will be sent twice, first by the
old active and then by the new active unit.

Provided that nothing is done to eliminate the message loss and duplication problem a unit
changeover may increase the risk of failure for some of the computations. The problem may
cascade back to the sender if the message was lost and the sender waits for an
acknowledgement. When the time-out for the acknowledgement elapses, it is up to the
application either to retry or to launch an abort or an equivalent procedure. The receiver should
be able to discard the second message if a message was sent twice. It should be noted, however,
that replication arrangements are not the only reason for such retry, abort and validation
procedures in the applications. Because of the low level of redundancy, partial failures cannot
be masked in the system and a service user always has to assume that the provider may fail, and
make the best decision from the point of view of the application. The implementation of our
failure model requires that the validity of received messages can be established. The system
provides primitives to support the validation, but the selection of the validation method is left
to the application.

14For performance reasons there is no retry procedure but internally an error is indicated.

73

Leaving the retry and message validation responsibility to the application, although it is a
burden, has its advantages. When an acknowledgement is received from a peer process, the
recipient may be sure that both parties understand the situation alike and e.g. that the peer
process is not in an inappropriate state nor in an infinite loop. An acknowledgement on a
message protocol level does not carry this information.

To eliminate the problems in the multicast delivery the protocol would have to be synchronised
with the changeover or alternatively the replicate processes (i.e. lightweight process families
and all normal processes) immediately before the changeover. This can be done by sending a
multicast synchronisation message to the replicate processes before the changeover and setting
them to wait for the recovery to switch the sides of the active and spare computers. This
solution is applicable if the maximal halt period is within the limits determined by the real time
requirements discussed in Chapter 2. These kinds of message loss and duplication errors are,
however, assumed to be not too frequent nor fatal for call control type of applications and that
is why they are ignored in the basic replication scheme.

If a changeover occurred while the service provider allocation protocol was being executed,
two consecutive applications of the protocol may come into conflict. Such conflicts may be
avoided by synchronising the master processes with the changeovers. The system recovery
control function can take care of this by making the changeover known to the master processes
which should not allocate new processes while the changeover is in progress.

If the unit changeover occurred between the release message (message (1) in Figure 5.5) sent
by the old active unit and before the release procedure is invoked in the new active unit, the
new active unit will ignore the earlier release message and send a release message after the
changeover. The new spare process, waiting for the acknowledgement to his release message,
now has to accept the release message based on the new unit state and proceed as described in
the hand release protocol.

After a changeover in the active unit there may be processes in the suspended state. To avoid
the creation of an orphan process which will never be released, there must be a time limit for
the suspended state. When the time limit expires, such processes will eventually be put into the
free hand queue. If the process in the suspended state is in the active unit, the hand release
protocol is applied.

5.3.2 Deletion of the hot-standby spare member

The spare system is isolated from the environment by the recovery control that changes the
address mapping so that the multicast deliveries are sent only to the remaining active system by
the environment. The active system will now bypass the steps in the service provider
allocation, hand release, and time-out synchronisation protocols, which assume the existence of
the spare.

5.3.3 Creation of the hot-standby spare member

This requires that the state of the spare has to become consistent with the active system. Two
approaches tackling this problem are discussed: the passive warm-up in this section and active
warm-up in Chapter 6.

When the spare unit is taken from the testing state (TE) to the standby state (SP), the unit is
restarted and first set to the SP-UP sub-state to bring it up to the same dynamic state as where
the WO unit is. More exactly in the SP-UP state, by the warm-up procedure, the spare unit is

74

14-Apr-14

taken from the initial steady
state to a consistent state with
the active unit. In the warm-up
procedure the state oriented
processes are involved, while
stateless processes have nothing
to do with warm-up in the
narrow sense. The initial steady
state which is at the same time
the correct working mode of
stateless processes can be
reached by loading the
appropriate code of the program
blocks and data files and
starting the master processes.

The loose synchronous mode
can easily support passive
warm-up of the spare unit. By
passive warm-up we mean that
the new computations are
created as replicated
computations, and with time the
number of consistent
computations in the spare unit
will get closer and closer to the total number of parallel computations in the WO unit. This
scheme works for finite computations, like calls. Figure 5.6 gives an overview of the use of
replication tools, like the basic replication tools and warm-up in different states of a functional
unit.

Clearly there is no guarantee that the spare unit will ever reach a consistent state with the active
i.e. that the passive warm-up will successfully end, nor does the basic scheme provide an end
criterion for the warm-up. For this reason and because the passive warm-up might take too
long, active warm-up is needed. By the active warm-up we mean the procedure of copying the
current values of the state variables of the state oriented processes in the active unit to the
corresponding state variables of the spare. Active warm-up also gives a criterion of whether the
warm-up has successfully ended.

To support the passive warm-up, certain considerations have to be taken into account in the
protocols of the basic replication scheme. The passive warm-up works as follows:

1. The initial state of the spare unit is such that all programs and files have been loaded and
the master processes are ready to allocate hand processes and perform possible other tasks.

2. The loose message synchronous mode is started in the two units by state information
delivery initiated by the recovery control. The spare unit is declared as SP in all the units
of the system in the address mapping tables of the kernel and the message bus interface of
the SP-UP unit is programmed to receive the wo+sp multicast messages.

3. From now on all the new computations are created as replicated computations using the
loose message synchronous mode protocols. Considerations to be taken into account in the
protocols are:

a. The allocate_hand primitive invoked by the spare master should not run the Pid
search algorithm locally, because it would give results that should be expected to be

 Figure 5.6 Use of Replication Tools in different unit
 states.

OK
SP-UP

SP-EX

Hot-Standby

 Active
Warm-up

 Passive
Warm-up

Cold

e.g. TE

Failure

Warm-up-OK

Hot-Standby
Maintenance Tools

Logical addresses, multicast
Synchronous Hand Allocatio
Synchronous Hand Release
etc.

Fault Detection

75

different from those received from the WO unit. The primitive should just allocate the
same hand as in the WO unit.

b. If the computation ends and the hands are released using the release protocol, and the
hand is already free in SP, this should not be regarded as an error. If the hand was
reserved in the SP, it is released using the normal protocol.

c. When a multicast message is received in the SP, and the recipient process is found to be
free (not allocated to a task), the message is discarded by the kernel and this is not
regarded as an error.

An alternative approach to the above considerations concerning the hand allocation protocol
would be to try to synchronise the free hand queues. This is not suggested because to be able to
handle items (b) and (c), the kernel has to be aware of the SP-UP state all the same, and being
aware of this state, it is simpler to solve the problem as described in item (a).

5.4 Analysis of the properties of the Basic Replication Scheme

The optimistic failure assumption defined in Section 2.4 (Assumption 2.1) in the context of
replicated computations means that hardware failures in the active computer are detected by the
software fast enough for the unit changeover to take place before the failure propagates itself to
another computer unit of the system e.g. to the spare computer.

The loose message synchronous mode comprises the basic computation replication tool. It may
be used by some of the applications as such. It can, however, easily be seen, that this tool does
not guarantee even conditional instantaneous correctness. The advantages of the loose message
synchronous mode are:

- It is very simple, and has a very small performance overhead in applications like call
processing, especially if replication groups can be kept big enough. We will return to this
issue in Chapter 10.

- It can be implemented in a way which makes the replication of computations easy to
implement to the application programmers. This topic will be addressed later in this thesis.

The consistency properties of the scheme can be summarised with a state model of a replicated
process represented in Figure 5.7. For simplicity, in the model it is assumed that the service
provider allocation and hand release protocols do not fail.

76

14-Apr-14

In Figure 5.7 the states are as follows. "Free"
means that the process pair is not allocated to
any task, "Involved" that both the active and
the spare process are engaged in a
computation. "Involved" has the substates:
"Consistent" in which the spare process is in
a consistent state with the active, i.e.
Definition 5.4 applies, "Inconsistent" - i.e.
unknown to the system or to the application
Definition 5.4 is not true for the process pair,
"Inconsistent suspended" means that the
spare process is in the suspended kernel state
- i.e. the system can assume, after a time-out,
that the spare is inconsistent.

The master processes are not included in the
execution groups of a replication group. The
idea is that only the hand allocation and
release protocols (Sections 5.2.3 and 5.2.4)
determine the states of the masters, while all

interactions related to the actual work are handled by the hands and may thus influence the state
of the hand processes. Likewise the state model of Figure 5.7 does not apply to a master
process e.g. because from the point of view of the replication scheme, a master process is never
free nor suspended.

Lemma 5.9 Let  = (wo , sp) be a replication group and let swo  wo and ssp  sp. Let us
assume that the service provider allocation and hand release protocols always succeed.
Then

1.  ssp  sp  swo  wo such that swo ~ ssp, we call this the existence property,

  swo  wo: Involved(swo)  Involved(ssp) and (swo ~ ssp), we call this the non-
contradictory computations property,

 where Involved:  {true, false} is a Boolean function the values of which are true for
processes, which are not free, the allocation acknowledgement from the SP has been
received, and the hand release request has not been invoked in the WO. A process in
the suspended state is involved in the computation it was executing when it was set to
this state.

Proof: Three cases have to be studied:

a. Let us first assume that no unit changeovers of the computer executing  have
occurred. Item (1) holds, because according to the hand allocation protocol swo is
allocated first from the queue of free hands on the WO side and in the SP unit an
isomorphic ssp is always reserved for the computation. Further, if the spare falls into an
inconsistent state and even is suspended, it is always released according to the hand
release protocol at the same time as the active process.

 Implication (2) holds if swo is free. Let Involved(swo) = true. According to the hand
allocation protocol the isomorphic spare process ssp becomes involved earlier than the
active. Even if the spare becomes inconsistent or suspended, still it stays involved in the
same computation. Consequently, the implication is true.

Figure 5.7. State model of a replicated hand
process.

Free

Involved

Consistent

Inconsistent
suspended

Inconsistent

a correct state

an incorrect state

77

b. Let us assume that a unit changeover has occurred. All old swo become new ssp and old s
sp become new swo. During a unit changeover no new processes are allocated.
Consequently, according to item (a) the lemma holds for new replication groups created
after the unit changeover. In Section 5.3.1 we also saw that the hand release protocol
will not fail due to a unit changeover occurring in the middle of the protocol.

c. After the unit changeover, items (1) and (2) hold for swo and ssp which are consistent.
According to the state model of a replicated hand (Figure 5.7) a new swo may also be
'inconsistent' or even suspended. This does not violate item (1) nor item (2). As we said
in Section 5.3.1 there is a time limit for the suspended state. The hand release protocol
applied to such processes after the time limit of the suspended state expires makes sure
that both processes are released at the same time and (1) and (2) remain intact.

The tool guarantees that concurrent computations are not mixed-up. So, if copies of the same
code are executed on both sides and if the service provider allocation requests and the
acknowledgements of the provider are passed successfully, the scheme guarantees correct
creation of isomorphic members of the replication group under our model of failures. I.e., if the
creation of the two members of the replication group is successful, then they are guaranteed to
be isomorphic and initially consistent. Furthermore both of the corresponding active and spare
processes remain involved in the same computation until they are released by the hand release
protocol at the same time.

The scheme guarantees that if the spare computation ends up in an inconsistent state, an
involved spare hand process cannot be confused with a free hand process. The hand release
protocol, being successful, guarantees that a spare process is released even if it is in an
inconsistent state. This means that processes in a pair of computers with isomorphic Pids, can
not be involved in different computations.

Lemma 5.10 Let  = (wo , sp) be a closed replication group, let swo  wo and ssp  sp, let E
= (Ewo, Esp) be the environment, wo  Ewo, sp  Esp, and let  s, a, s: readsets

sp
(s, a) 

D
sp

E = . Then if the states of the processes of the environment (wo, sp) become

inconsistent, the effects caused by this will not propagate into .

Proof: Let T
sp

 =(N
sp

, sp
) be the ACT for (sp, Esp, D

sp
). Item (3) of Definition 4.8 will not

change the global state of the ACT because the replication group is closed. Consequently,
the next global states of the ACT are determined by item (2) of Definition 4.8 and the hand
allocation and release protocols. All the messages consumed by sp are received from Ewo
and the read actions upon reception of messages from Ewo cannot access possibly
inconsistent data in D

sp

E because of the conditions of the lemma. The applications of the

hand allocation and release protocols in  are not dependent on Esp. Consequently, the
lemma follows.

5.4.1 Analysis of possible errors

The message loss and duplication error type which is inherently possible due to the simple
multicast protocol e.g. in conjunction with unit changeovers was discussed in Section 5.3. Error
propagation will be further discussed in Chapter 7. Additionally, the following should be
considered:

78

14-Apr-14

1. If a multicast delivery message correctly arrives in the WO computer but not in the SP
computer, there is nothing in the scheme itself that would help to keep the spare
computation in a consistent state. It is expected to be typical that the spare process would
release itself through a time-out procedure and would end up in the suspended state. If a
multicast message arrives in the SP, but not in the WO, the computation in the SP goes
ahead of the WO computation. This will not, however, propagate inconsistency outside the
replication group by message passing, because all the external messages sent by the spare
execution group of the replication group are discarded. There are two possible outcomes
for the WO computation in such a situation. Either it is successfully restored by a retry
procedure in the application, or it is aborted through a time-out procedure. If the retry is
successful, the computations in WO and SP may or may not be resynchronised. This is not
guaranteed by the replication scheme, but depends on the application. In case the WO
computation is aborted, the release protocol will eventually fix the problem if the hands are
released by the application.

2. Replicate computations in the two units may also fall into an inconsistent state because of
concurrent messages. The Message Bus guarantees that the order of external messages as
seen by both members of a replication group, is the same. However, in no way does the
scheme guarantee, that from the point of view of a pair of processes in the different
members of a replication group, the combined order of internal and external messages will
remain the same in both members of the pair.

 In a switching environment e.g. in call processing, these concurrency situations are
certainly possible but statistically not too frequent. The most obvious example is the
clearing phase of the call, in which the switching system will be prepared to act
concurrently towards both subscribers and the clearing can be initiated by any of them at
any time during the call. Fortunately in this case the hand release protocol will eventually
resynchronise the WO and SP unit states. Another example is a time-out situation, when a
replicated process is waiting for an internal message. The order of the time-out and the
message may be different in the WO and the SP computers. The probability of these
concurrency situations is kept small by making sure that the time-outs are long enough and
by the time-out synchronisation protocol which will be presented in Section 5.5.1.

 The property of restricted error propagation of Lemma 5.10 is equally valid for these kinds
of errors. Consequently, we can see that with the replication group concept there is a trade-
off between reliability and performance. Replication groups which are larger than one
process provide the benefit of increased performance due to messages that are internal to a
computer unit. The cost for this is an additional possibility of losing consistency between
the active and the spare process. So, the replication group concept can be seen as a
performance optimisation tool.

3. File read and write actions are not synchronised. An active and a spare process may read
different data, if a write happened before the read in one of the computers and is late in the
other. These errors happen e.g., when multiple copies of a file are maintained for
performance reasons to deliver some data for general use. Also, if a file is written by a
replication group and read by another, inconsistency may propagate from the first group to
the other through the file. Secure ways of using memory resident files can be pointed out.
They include a file or a data unit which is accessed only by one process, a producer
process and a consumer process with synchronised access to a file, and accessing data only
through the memory resident database which has the responsibility of maintaining data
consistency.

4. If a spare computation is in an inconsistent state, when the unit changeover takes place, the
computation will fail. When the model is applied to the call control, it is assumed that the

79

call will be mishandled. It is assumed that this is acceptable as long as the probability is
low enough. An important feature of the scheme is that if the hand processes were
allocated for a limited period of time, they will eventually be released and the normal
overall system service capability will be recovered.

5. Long transitions due to disabled interrupts or high priority and cascading of high priority
transitions may cause the hand allocation and release protocols to fail. However,
replication is not the ultimate reason why, disabling interrupts for a long time, long high
priority transitions and bursts of high priority transitions are troublesome. The basic real
time and delay performance requirements, discussed in Section 2.3.1., should not be
forgotten.

6. Ignoring the state of the free Pid queues, the states of the active and the spare computer are
consistent, except for those replication groups in which a synchronisation error has
occurred. Possible cases of synchronisation errors were identified in items (1), (2), and (3).
The states of the free hand queues were discussed in Section 5.3.3.

To summarise: Because of errors discussed in items (1), (2), (3) and (4), and in Section 5.3.1,
the scheme does not guarantee that the behaviour of replicate processes will remain consistent
for the lifetime of a computation. However, due to Lemmas 5.9 and 5.10 errors will remain
local over parallel computations in a computer and with respect to dependent computations in a
set of computers. We will come back to error propagation issues in Chapter 7. Because of the
described non-recoverable errors with low, but non-zero occurrence probability, the behaviour
of a replicated computation using this tool, can be conveniently characterised by a reliability
model. This is done in Chapter 8.

The scheme is also open to enhancements on the basis of error detection and additional
synchronisation points during the execution. This topic will be further discussed in Chapter 7.

The scheme can easily be applied to indefinite length computations. Its application to
permanent computations is somewhat problematical, because there is a non-zero probability of
losing consistency unrecoverably at a given time interval. This means that the consistency will
be lost with a probability, which grows with time and can be made arbitrarily close to certainty,
if an arbitrarily long time interval can be taken.

5.5 Implementation Issues

This basic replication scheme has been implemented in the DX 200 system. When making
implementation decisions, much concern was given to high performance. In particular, this
meant that execution times of such primitives as sending a message had to be minimised.

The implementation of the loose message synchronous mode in the DMX is transparent to an
application, except for the service provider allocation protocol, the use of which requires a
slightly different program code in the service provider masters. The hand code remains fully
immune to the basic replication problems. We will come back to the design rules and
recommendations which are introduced due to the replication tools. Also an alternative
allocation scenario has been implemented, the difference being that the hand allocation request
is sent with the wo+sp delivery code and received on both sides. If TNSDL is used to write a
master process, this scenario is transparent to the code of the master.

80

14-Apr-14

5.5.1 Time-out synchronisation

Considering error type (2) created by concurrent messages in Section 5.4.1 we can improve the
scheme by synchronisation of the time-outs. The time-out messages are important because of
their wide use in a real-time system. The clock tick and computation skew between the WO and
the SP computers can cause an inconsistent state of the computation to occur if a process
receives a message at the end of the time limit during the critical period associated with the
skew.

DMX kernel provides real-time services to the applications. These services are:
- time-outs. Time-outs are queued by the System Master kernel process in the order of

expiration. The queue is located in the data segment of the System Master process.
- wake-up services.
- time measurement records; these records may be located in any application data segment.

They are not used for supervision purposes.
- clock-time services.

Legend:

 a replicated application
 process

S System Master process

set t time-out request
 procedure call

timeout time-out elapsed
 message

 a small time interval

The clock tick interval of the System Master is 10 ms. This is also the accuracy of the time-out
and wake-up services. When a time-out is set, the WO and the SP units may have an execution
skew and so the time-out is not set at exactly the same time on both computers. When a time-
out of a replicated process expires, the time-out message may arrive 10 ms plus the execution
skew later on one of the sides than it arrived on the other side. Another message arriving during
this period could cause an inconsistent state of the replicated computation to occur. To
minimise these problems a time-out synchronisation protocol is used. Figure 5.8 gives an
overview of the protocol.

Real time services in a switching environment are a very performance sensitive area because in
a computer unit thousands of time-outs may be active at the same time. It is expected that most
of the time-outs are not intended to elapse in the normal case but are set to recover the
application in a situation where an expected message does not arrive. That is why a light
protocol was chosen with no synchronisation overhead at the time-out setting.

The protocol goes as follows:

 Figure 5.8 Time-out synchronisation protocol.

set
timeout

timeout

set

S

S

wo

sp





wo

sp

WO
computer

SP
computer

81

1. Both the WO and the SP set a time-out of t with a procedure call. On the SP side, System
Master which is the time service provider automatically adds a small value  to the
requested time to make it highly improbable that the time-out would elapse earlier on the
SP side.

2. The time-out expires in the WO unit. A time-out message is sent to the application process
pair  with wo+sp delivery15. When the time-out is received by the sp , the kernel finds
the time-out in the incoming message queue of sp or in the time-out queue of Ssp; and
deletes it.

3. If the spare did not receive the time-out from the active unit, at t+ the time-out message
is sent by Ssp to sp.

Some qualitative properties of the protocol are:

1. If the multicast time-out message to the SP is lost and both computations are running, the
internal time-out message is sent on the SP side at t + c  r +  , where t is the time
interval in the time-out request, c is the clock tick skew (less than or equal to half a tick),
which is assumed to be constant during t, r is the computation skew at the time when
the time-out was set, and  is the value added to the time-out interval. The idea is that ,
which is a multiple of the clock tick interval, would compensate for c+r, and thus make
the probability of

 P{ c  r + 1 <  } , where one stands for a clock tick interval, (5)

 close to certainty, but still not violate the intention of the application process noticeably.
Thus the idea is to maximise the probability of the time-out message being sent later in the
SP computer than in the WO computer. Another way to look at  is to say that it is the time
limit for the time-out message from the Swo.

 Reasoning which justifies the need for the additional tick in Eq. 5 is that even if the
computation skew is close to zero and c is smaller than the computation skew, it may
happen that the setting of the time-out in the spare unit falls into the previous tick interval
compared to the active computer. Then the time-out message without  would be sent in
the SP by 1 + |c| earlier than in the active unit. Then there is a risk that  = 1 is not
enough to make sure that the spare time-out will elapse later than the active unit time-out.

2. If the SP computation has gone ahead of the WO computation more than  - c at the time
when the time-out is set, the time-out will expire first on the SP side.

3. When the time-out message is received in the spare, the time-out data can always be found,
even if it is already in the incoming message queue of the requesting process, and it can be
deleted. This avoids the possibility that a time-out would elapse twice

4. Time-outs which were set before a unit changeover and would elapse after it, will typically
expire first in the spare system. This is the exact situation which we wanted to avoid. To

15In the earlier implementation the multicast was not used, but a synchronisation message was sent to the spare System
Master, which sent the time-out to the spare application. Sometimes this caused problems, because the synchronisation
took too long.

82

14-Apr-14

overcome the problem the system master should adjust the time-outs during the
changeover.16

The time measurement services do not require any additional synchronisation tools. The clock-
time synchronisation problems have been discussed in Chapter 2.

5.5.2 Logical address management

The multicast delivery was implemented in the DX 200 using a logical addressing scheme for
computer units. These logical addresses are part of the global process identifier, as we saw in
Section 1.4. They can be used for addressing messages along with physical computer
addresses. A logical or physical computer address is part of every message header. A logical
computer address basically has two parts: the logical unit number and the (destination) delivery
code or the range of the delivery. In DMX the message is sent to a destination address, but the
recipient automatically sees the address of the sender in the address fields of the message.

A logical computer address is mapped to a physical address of the receiving computer on the
Message Bus by the send primitive of the kernel. The message bus interface of a computer
unit is able to recognise four addresses: the individual unit address, two freely programmable
addresses and a broadcast address, which is the same for all units. Programming of the message
bus addresses is a unit state control mechanism for which the recovery control is responsible.
Recovery control is also responsible for delivering a mapping table to every unit. This mapping
table is used by the kernel. A row in the table is directly addressed by the logical unit number.
The table basically has three columns. One for the WO units, the second for the SP units and
the third for the multicast wo+sp delivery. The column in the row is directly chosen by the
destination delivery code in the message. "Discard message" is the fourth possible delivery
code.

There are also some special logical addresses, like the own-unit logical address and the pair
unit logical address.

Recovery control uses hardware supported broadcast to deliver unit state information to all the
control computers simultaneously. At unit changeover the recovery has to change a row in the
address mapping table and deliver the change to all the units. Furthermore, the programmable
addresses of the active and the spare unit in the process of unit changeover have to be
reprogrammed by the recovery.

5.5.3 Message attributes

Another implementation concept which should be briefly addressed here are the static message
attributes. A message attribute in the DMX is a bit variable carried in the message header,
which may radically influence the treatment of the message by the kernel. An example of a
message attribute is the discard-if-not-wo attribute, which is used by the loose message
synchronous mode. In case a message carries this attribute, the message will be discarded, if it
was sent by a process in a computer that was not in the WO state. Other computation
replication tools also rely on their own message attributes. They will be introduced later.

16This has not been implemented in the DX 200 system.

83

6 Warm-up of Computations

In Section 2.2. the requirement was set that the virtual machine should provide for the creation
of a hot stand-by spare process for an active one. On a computer unit level this means that a
spare unit is taken from the cold-standby to the hot-standby state. First the unit is restarted and
set to the SP-UP (spare-updating) sub-state. In the SP-UP state, by means of the warm-up
procedure, the spare unit is taken from the initial steady state to a state consistent with the
active unit. In the warm-up procedure only the state oriented processes are involved, while
stateless processes have nothing to do with warm-up in this narrow sense. The initial steady
state which is at the same time the correct working mode of stateless processes can be reached
by loading the appropriate code of the program blocks and data files and starting the master
processes.

In Section 5.3.3 we saw that there was no guarantee that the passive warm-up would
successfully end. Because of this, and because the passive warm-up might take too long, the
active warm-up is needed. Active warm-up means the procedure of copying the current values
of the state variables of the state oriented processes in the active unit to the corresponding state
variables of the spare unit.

6.1 Requirements for active warm-up

The warm-up services provided by the virtual machine should be applicable to all or at least to
most of the applications for cloning the dynamic state of the active computations i.e. for
migrating the computations to the spare unit without stopping the active computation driven by
the external events. This means that we need a stepwise algorithm that may take hold of the
CPU for periods of no more than a few tens of milliseconds at a time, as we saw in Chapter 2.
Between those periods, the applications are allowed to proceed to comply with the real time
requirements.

The services should be as transparent to the applications as possible, except for invoking the
services and the possibly imposed design rules on the applications.

The dynamic state data to be transferred from the active to the spare unit includes

- state variables in the data segments of heavy and lightweight processes,
- process control data,
- active time-outs,
- state data in the memory resident work files,
- additional memory buffer segments reserved by processes.

It should be possible to use the warm-up services also while the spare unit is in the SP-EX state
so that a single computation can be returned to a consistent state if it has fallen out of it due to
an error.

A DX 200 specific requirement was set in Chapter 2 indicating that the only source of the
dynamic data for the warm-up services should be the active unit.

Naturally, the algorithm should cause as little disturbance to the active computations as
possible, never cause an error in the active computation, and should stop when the spare unit
has reached the consistent state.

84

14-Apr-14

The amount of data to be warmed up should be kept to a minimum and transferring data for
which establishing isomorphism between the active and the spare units is practically impossible
or too difficult should not be taken-up. We will call such data unit specific. For example, the
stack segments contain absolute memory addresses and thus cannot be transferred, because
memory allocation is done independently by each computer unit. Establishing a one to one
mapping between active and spare variables is simple when the variables are allocated in the
same relative addresses in the active and spare data segments. Additionally, for certain data
types, the isomorphic mapping may be described in the service request to the warm-up
services.

Only such state data has to be transferred by the warm-up algorithm, which cannot be just
loaded to the spare unit at some point of its restart. Data files, which are part of the permanent
steady state and also data units which carry state variables of processes that can be stopped for
the duration of loading, can be handled by file loading. Examples of such processes are those
whose sole purpose is to support operator commands.

The starting point at which the active warm-up would first be invoked was to be at some time
during passive warm-up (see Section 5.3.3).

6.2 Atomic warm-up entity and warm-up order

The first problem to be tackled is to define the components that should be warmed up in an
atomic action from the point of view of the applications. We will call these components the
warm-up entities. This means that while the atomic entity is being warmed up, the contents of
the entity may not change. Because of the complications caused by the memory resident files
which are accessed without buffering for performance reasons, processes could not be taken as
the atomic entities as such, even if all the software resources reserved by the process, like
process control data, active time-outs, and allocated memory buffers were tied together with the
process. The existence of such a memory resident file system means, that message passing is
not the only means of communication between processes and that files can be used for this
purpose, too. In our model of computations the memory resident files are represented by the set
of data units of the system (see Notation 4.1).

It would be ideal, if the warm-up entity could be a process. The worst possible case is that all
processes in a unit belong to the same warm-up entity. In that case, the warm-up would be
impossible without stopping the computations for a long time.

The second problem is, whether it is necessary to warm up these atomic entities in a specified
order and if so, on what account this order is defined.

The atomic warm-up entities should be defined in such a way that

1. The amount of data bound to the entity is kept as small as possible to avoid any real-time
problems.

2. A warm-up order between two entities is defined only if it is necessary for the success of
the algorithm.

To conclude let us formulate a definition.

85

Definition 6.1 A warm-up algorithm for a closed system of processes, e.g. a computer unit,
is such that

1. In each step a spare warm-up entity is brought into a consistent state with the active
one, and

2. A step of the algorithm is atomic from the point of view of the objects being warmed
up, i.e. the contents of the warm-up entity may not change during its warm-up, and

3. After each step, if the algorithm is stopped, the warm-up entities already in a
consistent state are kept there by the tools of the basic replication scheme taken into
use before the algorithm was started, because the state of the entities already warmed
up is not dependent on the state of the entities that will be handled after them, and

4. Applications may proceed between the steps of the algorithm, and

5. The algorithm ends when all the warm-up entities i.e. all processes and their data units
in the spare computer unit have been warmed up once and are kept in a consistent state
with the active unit by the tools of the basic replication scheme.

We will spend the rest of this chapter in showing that such an algorithm exists for our target
environment.

6.2.1 Message passing relations between processes

Let us look at a message passing relation between replicated state oriented processes s1 , s2  
, where  is a replication group. We will assume from the start that messages can be passed
both ways between s1 and s2 because this is usually the case. Let s1

wo, s2
wo, and s1

sp, s2
sp be the

corresponding processes in the active (i.e. WO) and spare units respectively. Figure 6.1
clarifies the situation.

In which order should s1
wo and s2

wo be copied to the spare unit to create the replicas s1
sp and s

2
sp ? Clearly, if s1 is warmed up first, s2

wo could send a message m to s1
wo , which could change

the state of s1
wo, before s2 is warmed up.

This would lead to an inconsistent state
of s1

sp because it did not receive message
m. The same problem could clearly arise
with process s2 if the warm-up order were
reversed.

Before suggesting a solution to this
problem we should note that binding the
processes together is not an acceptable
solution due to the requirement of
keeping the warm-up entities small. This
is, however, the only possibility if s1 and s

2 exchange messages with unit specific

data17 both ways. That is why we have a

17see Section 6.1

Figure 6.1 A Replicated message passing relation.

86

14-Apr-14

design rule which is assumed to apply to our system:

DR1. The design rule should be followed: Do not pass unit specific data in messages
between processes which use warm-up services.

The solution is expressed by a rule:

DR2. Every internal message from a non-warmed-up process to a warmed-up process in the
active unit has to be replicated.

This is implemented by introducing a "conditional replication attribute" which is carried in the
header of the internal messages of a replication group. This attribute makes sure that the
message which cannot be sent by the spare process will be sent by the active one to the spare
recipient.

 Messages with the "conditional replication" attribute are replicated (the delivery code is
changed to wo+sp) in the active unit under the following conditions:

 a. The spare unit is in the SP state.
 b. The replication state variable "Replicated_mode_ok"18 of the sender process is false.
 c. The "Replicated_mode_ok" of the receiving process is true.

The conditions mean that a process which is assumed to be in a consistent state (c) is dependent
on the state of a process which is known to be in an inconsistent state with its active peer (b).
The difficulty is overcome by delivering the necessary message from the active side.

Messages carrying this attribute are discarded when the sender is in the SP unit and the
"Replicated_mode_ok" of the sender is false. When in both units the "Replicated_mode-ok" of

the sender is true, this attribute does not affect the treatment of the message in any way, so
inside a replication group member the logical computer address will remain "own -unit"19.

This solution is an extension of the basic replication scheme and is always applicable when the
design rule of DR1 is followed.

If unit specific data is passed only in one direction, say from s1 to s2 , then clearly s1 has to be
warmed up before s2 . Messages in the other direction could be replicated in the active unit
according to rule DR2. Such designs are, however, not recommended because of the necessity
to define a strict warm-up order between two processes.

6.2.2 Relations between a process and a data unit.

Let us look at a system of a process, its data units and the environment. First a definition is
needed.

Definition 6.2 Let  be the system, D the data units, and E the environment, and T = (N, )
the ACT for (, E, D) and let s  , then

1. WRITESET:   (D) is a mapping from the set of Pids to the power set of all the
data units of the process: WRITESET(s) = ⋃ 	୬∈୒ writeset(s, s'), where n denotes the

18This variable was introduced in Section 5.2.3
19This was introduced in Section 5.5.2.

87

nodes in the ACT for (, E, D) and s, s'  S are the states of process s in all possible
configurations of the ACT,

2. WRITESET() = ⋃ 	஢∈∑ WRITESET(s),

3. READSET:   (D) is a mapping from the set of Pids to the power set of all the
data units read by the process, READSET(s) = ⋃ 	୬∈୒ ⋃ 	ୟ∈୅ readset(current(s), a),
where n denotes the nodes of the ACT for (s, E, D) and A is the set of messages,

4. READSET() = ⋃ 	஢∈∑ READSET(s),

5. D஢ഥ = READSET(s)  WRITESET(s) is the set of data units of the environment of process s
which may be read by the process,

6. By s
1
 ≼ s

2
 we denote that the left hand side has to be warmed up not later than the

right hand side.

The set WRITESET(s) defined in 6.2.1 covers all possible data units the process may ever write
to during its execution. A process needs address variables to access a data unit outside its own
data segment. By this definition the set of data units of a process is tied to the behaviour of the
process rather than to the static definition of the process. This approach reflects the indirect
access method of the data units and the dynamic behaviour of a switching system. We believe
that this helps us to minimise the size of the warm-up entities and opens possibilities for further
optimisation on the level of implementation of the warm-up by passing additional information
from the applications to the warm-up function.

The warm-up has to proceed in such a way that after a spare process has been warmed up it will
be able to remain in a consistent state with the active peer while its state changes according to
Definition 4.8. The basic replication scheme takes care of the states of the spare process when
the additions of the wider Definition 5.8 are concerned.

One problem in defining the warm-up entities are the read cycles in a set of processes

 = {i | i = 0,1,..., n  1 and  i: WRITESET(i)  READSET(i1)   } where n is the length of

the cycle and by  modulo-n sum is denoted.

Such a read cycle may also exist between sets of processes. Apart from the process being
independent of a data unit there are three possible relationships between a process and a data
unit: read-only, read-write, and write-only, and several processes can have access to the same
data units. These sorts of problems lead us to a step by step approach in our further
presentation. We will look at the data units of the application processes from the point of view
of the warm-up algorithm i.e. we will avoid making any assumptions about the values of the
data units or about in which transition the processes may write or read a particular data unit.

Lemma 6.3 Let there be a system of a process s, the set of data units D and the environment
E. If the warm-up algorithm has no information about how the process uses its data units,
then to meet the requirements of Definition 6.1, it is necessary for the warm-up of the
process, its data units and the environment to satisfy the following conditions:

1.  d  D஢ഥ are warmed up not later than s,

2. WRITESET(s) is warmed up together with s in one entity.

Proof: If condition (1) of Lemma 6.3 is not followed, s could read a data unit in the
environment just after warm-up. Then we must assume that s could fall into an inconsistent
state because the data unit was in an inconsistent state.

88

14-Apr-14

 If condition (2) is not satisfied and s is warmed up first and a data unit d  WRITESET(s) of
the process after that, a consistency problem arises. Let us suppose that the warm-up of the
data unit d has started and the data is in a message on its way to the spare unit but the data
is not yet written on the spare side. Now s writes into d on both sides. Then this data in the
data unit on the spare side will be overwritten by the older data in a warm-up message. The
consistency error can start to propagate immediately when this data is read in the spare
unit.

 If a data unit d  WRITESET(s) is warmed up first and then s, a similar problem arises. Let
us suppose that d has been warmed up, and s writes into d on the active side before s is
warmed up. Then d on the spare side will not contain this data. Again the consistency error
can start to propagate immediately when this data is read in the spare unit.

 Consequently, both conditions have to be satisfied by the warm-up algorithm of a system
which contains s and its data units.

The solution means that writes of process s into its data units during the warm-up of those data
units are prevented from occurring and thus the consistency problem is avoided.

In Section 6.3 we will suggest an algorithm which allows the handling of warm-up entities
containing a process and such data units.

6.2.3 Relations between two processes and a data unit

Let us consider the case when there is a process in the environment which writes into the data
units of the system.

Lemma 6.4 Let there be a system of a process s and the set of data units D and the
environment E. Let the warm-up algorithm have no information about how the process
uses its data units, and let there be a process   E in the environment such that WRITESET

(s)  WRITESET()  . Then, if no more information is available about the behaviour of 
, to meet the requirements of Definition 6.1, it is necessary that the warm-up of the process
and the environment satisfy the following condition:

Processes s and  are warmed up together in one entity with the data units WRITESET(s) 
WRITESET().

Proof: Let us suppose that the condition is not satisfied, but instead s is warmed up first
together with WRITESET(s) as required by Lemma 6.3 and  is warmed up only after that in
a separate entity. What can happen?

 It is not known whether process  may or may not proceed while s is being warmed up.
Consequently, during the warm-up of s and its data units, due to item (3) of Definition 4.8
we must assume that an active process  may write into WRITESET(s)  WRITESET()
which is not empty. Such a write action may as well occur any time before  has been
warmed up. Because the spare  is not in a consistent state, the same write action will not
occur in the spare unit. Consequently, conditions (2) and (3) of Definition 6.1 are violated.

 Clearly, if the warm-up order of s and  were reversed, the problem would remain the
same.

 Consequently, it is necessary to satisfy the condition of the lemma.

89

The condition of Lemma 6.4 means that the consistency problem is prevented from arising and
that if the warm-up algorithm is unsuccessful for one of the processes in the warm-up entity,
the warm-up of the whole entity fails.

Lemma 6.4 can clearly be generalised for the set of processes  = {  E | WRITESET(s) 
WRITESET()  }. All such processes    must be warmed up together with s and the data
units of WRITESET(s)  WRITESET(). It is also necessary for the warm-up of the closed system
{s, } of processes that condition (1) of Lemma 6.3 is satisfied for (s, E, D) and (, E', D) i.e. it
is satisfied for ({s, }, E'', D).

Condition (1) of Lemma 6.3 can be generalised for a system of processes   , the set of data
units D, and the environment E such that  = {s |  d  ⋂ 	஢∈୻ D 	

ಚ
 }. Clearly the data unit that

all the processes read has to be warmed up not later than any of the processes of  are warmed
up.

Let us look at a system of processes , the data units D, and the environment E such that  =
{s |  d  ⋂ 	஢∈୻ WRITESET(s)  ⋂ 	∈୻ ,

'
 D 	

 where '  E}. Using the previous results,

clearly, the system  of processes has to be warmed up in one entity not later than any of the
processes   ' are warmed up.

6.2.4 A simple read cycle

Lemma 6.5 Let there be a read cycle in a set of processes  = {i| i = 0, 1,...,n1 and  i

WRITESET(i)  READSET(i1)  } where n is the length of the cycle and symbol 
denotes modulo-n sum. Then to meet the requirements of Definition 6.1 it is necessary that
all the processes of  are warmed up in one entity.

Proof: Condition (1) of Lemma 6.3 leads to the warm-up order: i ≼ i1 which is a cycle. If

the processes of  are warmed up in separate warm-up entities starting from any i ,

according to Definition 6.1 it is required that after any step the warm-up may be stopped
and objects which already were warmed up will stay in a consistent state. Let the warm-up
be stopped after the first step of having warmed up i . Eventually process i may read data

in WRITESET(i  n)  READSET(i) which has not yet been warmed-up and thus may be

inconsistent. Then we must assume that i may fall into an inconsistent state. This is a

violation of the above mentioned requirement of Definition 6.1. Consequently, the
requirement of the lemma is necessary and the problem is avoided by warming up all the
processes of  in one entity.

6.2.5 Relations between a process and a set of data units.

The solution suggested in Lemma 6.3 item 2, can be used only as long as the total amount of
data in the warm-up entity containing process s and all its data units WRITESET(s) is not too
large. For large sets of data units we need another solution. To make the solution easier we will
set an additional restriction to the set of data units.

Definition 6.6 Let s be a process of an execution group . When a data unit d  WRITESET(
s) is not used to change the contents of any other data unit of the process, neither to change

90

14-Apr-14

the state variables in the data segment of the process during a transition, nor is it used to
generate the contents of any internal messages to other processes of  sent by the
transition, the data unit d is separate relative to the transition.

 If the data unit is separate relative to all transitions of the process, then it is separate
relative to the process.

The definition implies that the data in a separate data unit d  WRITESET(s) cannot be used by
process s to change another data unit d'  WRITESET(s) during any of the following transitions
because there is no way to carry data from d to d' from transition to transition.

For the purpose of the modelling of warm-up procedures we may assume that the relationship
between the process and a separate data unit is write-only.

Lemma 6.7 Let s be a set of all data units separate relative to process s. Let s be large so
that it cannot be warmed-up together with process s and let d  s. Then to meet the
requirements of Definition 6.1, it is necessary for the warm-up of s to satisfy the
following conditions:

1. s is warmed up in a warm-up entity 0 and after that all the data units d  s are

warmed up in the subsequent warm-up entities {j | j = 1,...,m} where j are disjoint

subsets of s and

2. s = 1  2  ,...,  m

Proof: The state of the sets of data units j is affected by the write actions of process s. If

condition (1) of the lemma were not satisfied and process s were not warmed up before a
separate data unit d  s were warmed up, then according to Definition 6.1 the warm-up
could be stopped after d were warmed up. Then process s on the active side could write
into d whereas on the spare side this would not occur because process s were not warmed
up yet. This is a violation of Definition 6.1. Due to condition (2) of the lemma all the
separate data units will be handled by the warm-up algorithm.

This solution applies to a set of separate data units s The restrictions of Definition 6.6 form a
set of necessary conditions for the solution to be successful. The conditions seem very severe
but such sets of separate data units are useful in a switching system. They can be used e.g. in a
producer-consumer context for statistical and charging data collection. For example the
charging counter file of a large number of subscribers is so large that it cannot be warmed up in
a single entity but it can be split into a set of separate data units. Each data unit carries data for
an independent object. Charging and other counters are state variables, statistical data
collection for an object is a permanent state oriented computation. A single process carries out
data collection for a set of objects, and computations for each object do not have anything to do
with each other. Such data has to be transferred to a non-volatile memory periodically by a
consumer process. Upon receiving a data message the statistic collection process validates the
data and finds out which objects are concerned. For this purpose state data is not used and the
collection process does not need state variables in its data segment for the collection
computations. The actions on the objects are mostly simple, basically incrementing a counter or
a packet of counters.

Note that the warm-up entity 0 may also contain data units which are not separate. An
algorithm which is in line with Lemma 6.7 has been implemented in the DX 200 system and its
outline will be described in Section 6.4.

91

6.2.6 Generalisation

Definition 6.8 Let  be a closed system of processes, the data units D, and the environment
E such that s   and READSET()  WRITESET(E) = . Let there be a partition  = ⋃ k୩
where k = 0,..., p such that

(a) k = {s |  s' such that WRITESET(s)  WRITESET(s')  }. Let k0
 be some k and

(b)  = {k0
, kh1

 | h 0  h  m1 and m  2: WRITESET(kh
)  READSET(kh 1

)  }

 where m is the length of the read cycle and by  modulo-m sum is denoted. Then

1. If no information is available to the warm-up algorithm about how the processes s  
use their data units WRITESET(s), then the set of warm-up entities of  is:

 W = {|  = {, WRITESET()}}, and

2. If there is a large warm-up entity ' constructed according to (1) and there is a subset
  ' of data units of some of the processes s  ', '   and it is known that the
data units d   are separate relative to all such s  ' and not written to by any
processes of   ' nor read by any processes of '  ', then there are warm-up
entities:

a. 0 = '   and

b. j, j = 1,...,m, where j are disjoint subsets of  and

  = 1  2  ,...,  m.

Items (a) and (1) of the definition allow the construction of warm-up entities when there are no
read cycles. Item (b) deals with the read cycles. Item (2b) defines when and how warm-up
entities can be constructed out of separate data units. A break-down of  in item (2b) of the
definition always exists because any set of data units can always be split into the constituent
variables. Note that according to item (2) the data units of  can be only written to by processes
of ' and possibly read by some processes   '.

We need to apply our results to set  of all state oriented processes, s  , in a computer unit
[Ar89]. This set is closed, so there are no processes in the environment which would write into
the set of data units of  because stateless processes cannot change the contents of any data
units by definition nor can they own state data which could be read by the processes of . It is
assumed that processes in other computer units have no physical means of writing into the data
units of  because there is no shared memory. For the same reason the processes of  cannot
read directly any data from other computer units. Consequently, the warm-up entities in a
computer unit may be constructed according to Definition 6.8. We must still show that such an
order of the warm-up entities exists that the warm-up on a computer unit level can succeed.

Notation 6.9 Let  be the system, D the data units, and E the environment, let s  , and let
W be the set of all warm-up entities   W of , then

1.  = {s | s  } is the set of processes of 

92

14-Apr-14

2.  = {(s, s')   X  |    W : s   and s'   denotes the relation of belonging
to the same warm-up entity.

According to the theorem on equivalence relations and partitions, an equivalence relation on
the set of all state oriented processes in a computer unit  determines a partition of  into
disjoint subsets (i.e. ) and a partition of  determines an equivalence relation (i.e. ) on .
As an equivalence relation  is reflexive, i.e. a process belongs to the same warm-up entity
with itself and symmetric, i.e. always s  s'  s'  s. As an equivalence relation  is
transitive i.e. s  s' and s'  s''  s  s''. This also follows from Definition 6.8 item (1) and
items (3) and (5) of Definition 6.1 which mean that a process belongs only to one warm-up
entity. Consequently, warm-up entities  are equivalence classes in .

Let us look at the order relation defined in the set of state oriented processes :

 {(s, s')   X  | such that s has to be warmed-up not later than s'}, we have denoted
this s ≼ s' (Definition 6.2).

The equivalence relation for relation ≼ is the relation of belonging to the same warm-up entity.
Consequently, we can now formally define the relation ≼ between warm-up entities.

Definition 6.10 Let W be the set of all warm-up entities   W of the set of all the state
oriented processes s in the computer unit, s  , constructed according to Definition 6.8
and let  = { , WRITESET()} where    or  = j, j = 0, 1, ... m where j are defined

according to item 2 of Definition 6.8. The warm-up order is the relation:

 ≼ = {(, ') | (  READSET(')  ) or (WRITESET()  '  )}*.

This means that the warm-up order is the transitive closure of read relations between warm-up
entities such that the latter reads data from the former and of write-only relations between
warm-up entities such that the latter contains some separate data units of the former.

Note that for warm-up entities {, '} constructed according to item (1) of Definition 6.8
WRITESET()  ' is always empty. A process s which has no data units, i.e. WRITESET(s) = 
forms a warm-up entity of its own and can be warmed up in any order with respect to all other
processes.

Lemma 6.11 Let W be the set of all warm-up entities   W in a computer unit. Let ≼ be
the warm-up order defined in W according to Definition 6.10. The relation ≼ is a partial
order.

Proof: The relation ≼ is reflexive because  ≼  and it is transitive by definition, i.e.  ≼ '
and ' ≼ ''   ≼ ''. The relation ≼ is also antisymmetric, i.e.  ≼ '   ' ≼ ,
because

a. The write-only relation between the set of processes 0 and their separate data units is

antisymmetric: such data units can be written to only by the processes of 0 and read

by processes   0. Clearly, if such  ≼ 0 we have a read cycle and Definition 6.8,

item (b) implies   0 , which is a contradiction.

b. The read relation between warm-up entities is antisymmetric: Let us assume  ≼ '
and ' ≼ . Then by Definition 6.10 in this case:

93

i.   READSET(')   which by Definition 6.2 implies WRITESET()  READSET(')
 ,

ii. '  READSET()   which by Definition 6.2 implies WRITESET(')  READSET()
 ,

By Definition 6.8 item (b) this is a read cycle between processes of  and ' which is
a contradiction.

 Consequently, ≼is a partial order relation.

Let us assume that algorithms for the warm-up of a set of processes and their data units and the
warm-up of a set of separate data units exist. What can we say about sufficient conditions for
the warm-up of entities constructed according to Definition 6.8?

Lemma 6.12 Let  be the set of all state oriented processes s   in a computer unit that has
a spare and let W be the set of all warm-up entities,   W , in the unit constructed
according to item (1) of Definition 6.8 and let  be the set of processes in . For the
warm-up of any such  to meet the requirements of Definition 6.1 it is sufficient that the
following conditions are satisfied:

1. before the warm-up of  all such warm-up entities were warmed up which are not
later in the warm-up order than , and

2. during the warm-up of  changes in the queues of processes of  are detected and the
processes s   are not allowed to proceed, and

3. if changes occurred in the queues of processes of , the result of the warm-up of  is
discarded, and

4. new attempts are made until no changes in the queues occurred during the warm-up.
Then the processes of  are allowed to proceed.

Proof: To show that the conditions of Lemma 6.12 are sufficient, we need to show that
during the warm-up an initial isomorphic state can be created in the spare unit and that the
system (, E, D) will remain in a consistent state in the spare unit indefinitely due to the
basic replication scheme while state changes occur according to Definition 4.8.

 The system (, E, D) is closed. I.e.  s  {  }: WRITESET(s)   = . If this were not
so then  s'  {  } such that WRITESET(s')    . However, then according to item
(1) of Definition 6.8  s''   such that WRITESET(s')  WRITESET(s'')   and s'  
which is a contradiction.

 Consequently, the processes of {  } can never change the configuration C(n) of the
ACT for (, E, D). The only changes in the configuration that can take place are due to the
actions of processes of . These changes are according to Definition 4.8 solely determined
by the current state, the incoming messages and the read actions which determine the write
actions of deterministic, well behaved processes.

 Let T = (N, ) be the ACT of the system (, E, D). Conditions (2,3,4) of the lemma mean
that an isomorphic copy of the global state of the system (, E, D) expressed by the current
configuration of the ACT: C(n) can be produced in the spare unit using the data in the
active unit. So, at the end of the warm-up the current states of the processes of  will be
isomorphic in the active and the spare units.

94

14-Apr-14

 Condition (1) of the lemma and the fact that, due to Definition 6.8, the warm-up entity  is
not a party in a read cycle with processes which are not included in , ensures that the
simultaneous read actions of the active and the corresponding spare processes will produce
the same data after the warm-up. Then it is up to the basic replication scheme extended
with the conditional replication attribute20 to deliver the same messages to the active and
the corresponding spare processes of . Consequently, even if the warm-up of the spare
unit were stopped after  was warmed up, as required by item (3) of Definition 6.1, 
would stay in a consistent state in the active and the spare units. Consequently, the
conditions of the lemma are sufficient.

Lemma 6.13 Sufficient conditions to meet the requirements of Definition 6.1 for the warm-
up of entities i, i = 1,...,m constructed according to item (2b) of Definition 6.8 are:

1. The warm-up order is not violated i.e.:

a. Lemma 6.7 is satisfied for all i and the set 0 of all processes, s  0 , i.e.  i =

1,...,m: 0 ≼ i and  s  0 such that WRITESET(s)  i  , and

b. Before the warm-up of 0 all such warm-up entities were warmed up which are

not later in the warm-up order than 0, and

2. Write operations of s to i during the warm-up of i are detected by the warm-up
algorithm, and

3. If a write action occurred during the warm-up of i, the result of the warm-up is
discarded, and

4. The warm-up attempts of i are repeated until there is no write operation during the
warm-up.

Proof: To show that the conditions of Lemma 6.13 are sufficient, we need to show that
during the warm-up an initial isomorphic state can be created in the spare unit and that the
system (0, E, D) will remain in a consistent state in the spare unit indefinitely due to the

basic replication scheme while state changes occur according to Definition 4.8.

 Conditions (2,3,4) ensure that an isomorphic copy of any i can be produced in the spare

unit using the data from the active unit. If after the warm-up of i the warm-up algorithm

is stopped, condition (1) of the lemma ensures then that the processes which write into i

are already in a consistent state and will stay so according to Lemma 6.12. As the write
actions of the processes of 0 are the only cause of change in i the state of i will remain

consistent and thus (0, E, D) will remain consistent. Consequently, the conditions of the

lemma are sufficient.

Let  be the set of all state oriented processes in a computer unit that has a spare. For the
warm-up of  it is sufficient to break it into warm-up entities according to Definition 6.8, warm
up one entity in a step of the warm-up algorithm and do the steps in an order that does not
violate the warm-up order.

20See Section 6.2.1.

95

The warm-up entities in a computer unit are defined by using write relations and read cycles
between processes and data units which are portions of memory resident files. The warm-up
order in the set of all warm-up entities in a computer unit is defined by using read and write-
only relations between warm-up entities. The warm-up algorithm will end successfully if all the
warm-up entities in the computer unit are successfully warmed up. The success of that
algorithm will be conditional because of our basic replication scheme. The basic replication
scheme will be responsible for keeping the processes which have already been warmed up in a
consistent state. In Chapter 5 we saw that in this, the basic replication scheme is successful
only under certain conditions or with a certain probability. In Chapter 5 we also saw that
propagation of the replication errors of a closed system replicated according to the basic
scheme is limited with respect to both dependent and parallel computations. For example the
limited error cascading property of Lemma 5.10 applies to warm-up entities constructed
according to item (1) of Definition 6.8 while the conditional replication attribute is taking care
of the multicast deliveries of messages from the concerned warm-up entity to the processes of
the other warm-up entities.

6.3 Active warm-up algorithm for a process

The algorithm handles the warm-up of entities of the type {s, WRITESET(s)} which is a special
case of entities constructed according to item (1) of Definition 6.8. After the algorithm the state
of the spare process and its data units {s, WRITESET(s)} is isomorphic to the state of the
corresponding active process and its data units and the queues of the active and spare process
are in a consistent state. According to Lemma 6.12 the state of the warm-up entity will remain
consistent, if the warm-up order was not violated.

The algorithm is executed by a kernel program block, denoted here as W. A replicated process
to be warmed up will be denoted as s, its active and spare instances as swo and ssp respectively.

Starting conditions for the algorithm are:

 swo is in the main-receive point of execution,
 incoming message queue of swo is empty,
 saved messages queue of swo is empty,
 process swo has not prohibited warm-

up.
 process s has not been warmed up

yet, i.e. Replicated_mode_ok(s) =
false.

Figure 6.2 gives an outline of the
algorithm. During this algorithm other
processes except s in the active and
spare computer units proceed normally.

The principal algorithm goes as
follows:

1. Process swo is frozen. From this
moment, if a message arrives in s
wo, it will be put into the incoming

 Active Spare

 Figure 6.2. Warm-up of a process.

wo sp

wo sp

1

2

3

4

5

7a 7b

loop:6

 

96

14-Apr-14

message queue and will not be processed.

2. State data of the warm-up entity in which s is a member is collected.

3. The data is sent to the spare unit. The first message also implies a freeze command of ssp.

4. Process ssp is created and frozen and data from the message is written for ssp. The
communication state of ssp will be set to "reachable" and all messages coming to ssp will be
put into the incoming message queue from this point.

5. An acknowledgement is sent to the active unit.

6. If the incoming message queue of swo has remained empty, the freezing was successful.
Otherwise the warm-up fails and the failure message is sent to the spare unit, where ssp is
returned to its initial state; swo is defrozen and can continue processing. A higher level
function has to reattempt the warm-up of the process later.

 If the freezing was successful and not all of the data could be sent in the first message in
step 3 of this algorithm, additional data is sent to the spare unit in consequent messages,
the data is written in the spare unit and each message is acknowledged. Note that during
this loop the incoming message queues of swo and ssp do not need to remain empty.

7a. When there is nothing more to be sent, swo is defrozen and the status "Replicated_mo-
de_ok" is set to true.

7b. When data from the last data message has been written, ssp is defrozen and the status
"Replicated_mode_ok" is set to true.

In a frozen state a process exists for the other processes and they can send messages to it. A
frozen process will, however, not execute a single line of code and the kernel puts the incoming
messages to the incoming message queue of the process. Those messages will be processed by
the process when the frozen state ends.

During the steps (2) to (5) the incoming message queue of swo has to remain empty. The reason
for this is that the copy of the same message could have been lost in the SP before ssp is
created. This way of handling the message queues works even if the events cannot be uniquely
identified.

During the transfer of subsequent data items the messages to s will be buffered into the
incoming message queues on both sides, which is a relaxation of condition (3) of Lemma 6.12.
However, the incoming message queues of both of the active and the spare process are empty at
the end of step (4) of the algorithm if step (6) does not fail. From step (4) onwards the queues
will remain consistent if the basic replication scheme does not fail. Steps from 1 to 7 have to be
executed with a high priority to minimise disturbance to the applications and to maximise the
chances of success. However, the overall algorithm for all processes has to run in the
background of the applications, so that the applications can proceed between the warm-ups of
the warm-up entities. Consequently, the following rule for priorities must hold:

DR3 warm-up entity selection  applications  warm-up of an entity.

Is it always possible to traverse through all the warm-up entities? It is assumed that all the
processes in a computer unit can always be found and the algorithm on the level of a computer
unit loops through all the processes. The warm-up of data units has to be interleaved into this
high level loop according to the warm-up order. This will be further discussed in Section 6.5.2.

97

6.4 Warm-up algorithm for a set of separate data units

Here we will describe, how the approach of Lemma 6.13 can be implemented in principle.
Except for the condition that the data units have to be separate, there is one practical
consideration that has to be taken into account. The warm-up will take rather a long time, and
so due to real-time requirements the warm-up algorithm has to run in the background of the
applications. In the DMX this is achieved by an appropriate allocation of priorities. Figure 6.3
gives an overview of the algorithm.

Legend:
 Wm  the kernel master process responsible for the file warm-up,

 Wm
sp  the SP instance of Wm,

 Wh
wo, Wh

sp  the WO and SP instances of the hand acting on file warm-up,

  = {di | i = 1,..., n}, the set of separate data units to be warmed up,

 s  the process to which the set
of data units is related to.

Before the algorithm starts, process s
has been warmed up. The
computation skew r between swo and
ssp is assumed to be small. The
algorithm goes as follows:

1. Wm
sp requests its hand to warm

up a data unit di that can be
carried in a message.

2. Wh
sp saves the data unit to be

warmed up. This data is expected
to be in an inconsistent state. We
will denote the saved contents
v(d୧

ୱ୮) = usav.

3. Wh
sp request the Wh

wo to send the
data unit di .

4. Wh
wo reads the data unit.

5. Wh
wo sends the data unit di to Wh

sp .

6. Wh
sp reads the current value of the data unit in SP v'(d୧

ୱ୮) = ucur , and

 if usav = ucur , then

 The received data unit di is written into the set of separate data units on the SP side

sp.

 Otherwise
 the warm-up of this data unit fails, and the warm-up has to be attempted again.

7. Wh
sp acknowledges the Wm

sp .

 Active unit Spare unit

 Figure 6.3. Warm-up of a set of separate data units.

m

h

sp

h

wo sp

1

2

3

4

5

6

7

 

98

14-Apr-14

 If this was not the last data unit, Wm
sp continues from step (1), otherwise the warm-up

ends.

The test (usav = ucur) in item (6) ensures that the write actions of ssp to di ,
sp during steps (3),

(4), (5) and (6) until the new contents is written, will be detected.

How large a computation skew r can be tolerated? If swo is later from ssp than it takes to
execute steps (2), (3) and (4) of this algorithm, then it may be that ssp wrote something into
d୧
ୱ୮ just before step (1) that is not written into d୧

୵୭ at step (4). It is assumed that skew r can
be kept smaller than this.

Note that in steps (4) and (5) several messages could be passed if it does not take too long so
that real-time problems would arise. This allows the data units to be bigger than the maximum
message length.

To keep the condition that this algorithm runs in the background of the applications, to
minimise the time of warm-up of a single data unit, and to ensure the safety period discussed in
step (6), and thus to maximise the probability of success of the warm-up, priorities are set as
follows:

This rule ensures that ssp can do nothing e.g. during steps (2) and (3). Before this algorithm can
start, the hand processes Wh

sp and Wh
wo have to be allocated for the job. Protocols for this are

trivial, and are not shown here.

This algorithm has been implemented in the DX 200 system.

6.5 Warm-up implementation issues

6.5.1 Atomic warm-up entities

In the process warm-up algorithm, in the DMX, the data to be copied to the spare unit
comprises the following:

 Data in the process control block, like process kernel state variables, e.g. scheduling state
and communication state,

 State variables in the statically allocated data segment of the process. Note that not the
whole data segment needs to be warmed up because it may contain variables, the scope of
which is limited to a transition.

 Dynamically allocated memory buffer segments. Such memory segments are always
accessed with the help of a selector.
 If the segment is in use, a buffer at least of the same size as in the active unit has to be

allocated on the spare side, the selector of the allocated buffer is written to the
corresponding variable of the spare process.

 If the contents of the buffer is requested to be warmed up, it is, also, copied from the
active unit to the spare side.

 The value of the offset of the buffer pointer is copied from the active unit to the spare
side.

DR4 priority(Wm)  priority(Applications) < priority(Wh).

99

 File handles21. If the file handle is in use in the active unit, then:
 If the file was not opened at the spare process initialisation, the file is opened and the

value of the file handle is written into the correct variable on the spare side.
 If the file has to be warmed up, it is taken care of at this point.

 Time limits. In the DMX, the kernel System Master process provides replicated time-out
services described in Section 5.5.1 The replicated active timers, as one of the software
resources allocated to a process, are warmed up by the System Master process at the request
of the warm-up control process. Time measurement counters in the data segment of an
application process are considered to be like process state variables and in warm-up are
treated as such.

 All the above data for possible other processes in the same warm-up entity.

Processes in the DMX can be frozen by setting their priority to a value, which is lower than the
priority of the idle time process.

6.5.2 Warm-up order

The warm-up order is described in terms of warm-up entity classes in the current
implementation. The membership of a process in a warm-up entity is given in a constant file.
The file describes warm-up entity classes for which unique numbers are given and the
membership is recorded for hand process types and for master processes which are considered
to be of their own type. The warm-up control has to do the instantiation of the warm-up entity
classes to find the objects to be warmed up.

In the current implementation, the instantiation of the warm-up entity class for a process family
is done in the following order:

 the master process of the family is warmed up first,
 free hand processes in the last-in-first-out order, i.e. the process that was released last is

warmed up first,
 reserved hand processes.

This implementation does not allow arbitrary combinations of processes to constitute the
warm-up entities. This would require that warm-up entities and the warm-up order were
described not in terms of classes but of individuals.

An issue related to the warm-up order is the nature of the relationships between a data unit and
a process. The relation may be static or it may be dynamically established when the process is
set to work. Static relation means, that the data unit is an extension of the data segment of the
process. This may be the case e.g. when a set of data units are packaged into a file to save
memory. In the warm-up algorithm, statically attached data units can be handled logically just
as process data segments. These data units can easily be found by traversing all the processes
assuming that each process will provide a descriptor of its data units. These descriptors get
their values in process initialisation immediately after the process has been created.

A dynamically established relationship between a process and a data unit means that the
lifetime of the data unit is longer than the lifetime of the process. This adds some complexities
to the warm-up algorithm because some of the data units in a file may not be currently
allocated to any process while the warm-up is taking place.

21This was introduced in Section 1.5.2.

100

14-Apr-14

Let us assume that we have a dynamically partitioned file D = { di | i = 1, ...,n} and data units

from this file are used occasionally only by processes of a single process family. In this special
case a possible way of taking care of this is the following [Ar89]:
1. A dynamically partitioned file D is copied from the active to the spare unit. This takes care

of the data units that are not allocated to any process during the warm-up. If, after this, one
of those data units is allocated to a process, the process will read consistent data in the data
unit in both the active and the spare units. If a process using a data unit di in file D is
released during this phase, the allocated data unit di is warmed up during the process

release operation. This makes sure that possible new non-allocated data units will be
consistent after the process was released.

2. Free hand processes, possible users of D, are warmed up in the first-in-first-out order, that
is, in the order they will be allocated to a task. This is done by traversing the free hand
FIFO of the involved process family. A process that is released during this phase is placed
at the end of the FIFO, and the allocated data units of the process are warmed up during the
release operation.

3. Now the allocated hand processes of the involved process family are traversed. With the
process, the currently allocated data units are also warmed up. If a process is released
during this phase, the allocated data units are warmed up, unless the process was warmed-
up already i.e. "Replicated_mode_ok" was true.

This algorithm is rather complex and requires integration of warm-up and the basic replication
scheme described in Chapter 5. Dynamically partitioned files can be warmed up using the
approach of Lemma 6.13 if the data units are separate. Because of these two reasons, the above
algorithm was not implemented in the kernel. The above order does not, however, contradict
the warm-up entity class instantiation order adopted by the warm-up control for process
families. Consequently, if it can be guaranteed that after hand release the same hand process is
not allocated to a new task during warm-up, then dynamic allocation may be used, provided
that the file is warmed-up before the process family.

6.5.3 Computer unit warm-up

Participants in the computer unit warm-up are the local unit recovery control process, the
warm-up control program block, and applications that have application specific warm-up
functions. To be able to call the application specific warm-up functions at any point in the
sequence, a concept of warm-up chain is introduced. A warm-up chain is a sequence of warm-
up entities in the warm-up order. The recovery requests the warm-up control process to warm
up a warm-up chain. Knowledge about the warm-up order and about the warm-up entities is
made available to the warm-up control with a constant data structure, which is placed in a
memory resident file.

The warm-up control collects the detailed information about the warm-up entities from the
warm-up request messages sent by the applications, usually at their initialisation phase.

To give an overview of the whole process, we will briefly look at the outlines of the unit warm-
up sequence in a DX 200 signalling computer unit. Such sequences are described by the control
data structures of the recovery control, which is a data driven program, and the sequences may
be unit type dependent. The outlines are as follows:

1. The local recovery creates and starts the warm-up control process, and after that creates
and starts applications that are the users of the warm-up services. The applications start
sending warm-up request messages to the warm-up control process. The warm-up control

101

acknowledges each request and stores the information about the warm-up entities in a
memory resident work file.

2. When the master processes are ready to allocate new hand processes, the recovery initiates
the loose message synchronous mode, as described in Chapter 5.

3. Active warm-up of the first warm-up chain is started. This may be a request to the warm-
up control process or a standard request to an application to execute an application specific
procedure.

4. Upon request, the warm-up control acknowledges the recovery and starts warming up the
processes and files of the warm-up chain concerned. The procedure is controlled by the
master process of the warm-up control on the SP side. The hand processes of the warm-up
control on the WO side provide appropriate state data to SP hands, who open the requested
files, attach memory buffer segments to the process, and write the data into segments and
data units of the process which is being warmed up etc. When all the warm-up entities
have been successfully copied to the spare unit, the warm-up master process acknowledges
the recovery control.

5. Item (4) is repeated for all warm-up chains.

Recovery control has time limits for the different phases of the unit restart and warm-up and an
overall time limit. If these time-outs expire, it may again try certain phases of the warm-up
procedure. If the overall time limit is reached, the unit is considered faulty and is taken down to
the test state.

Because of the warm-up chain concept, if a process family is restarted by the recovery control
in the spare unit, the whole warm-up chain in which the concerned process family is a member,
has to be restarted and warmed up in the same recovery job. Then all the warm-up chains
which come later in the warm-up order have to be restarted and warmed up.

6.6 Design rules imposed by warm-up services

Here we have collected some simple design rules and recommendations that should be
followed in the applications that intend to use the currently implemented warm-up services.
These rules give an impression about the applicability of the described services into an
application.

 If you intend to use warm-up services, do not pass unit specific information in messages
(DR1).

 Do not write unit specific information in files for which generic warm-up services are used.

 Hand processes of a normal process family can access the data segments of each other
through the family LDT22 (local descriptor table). In addition to this being a bad
programming practice, it also leads to errors if the family uses warm-up services.
Consequently, if a process family has common data, it should be placed in a memory
resident file or if the hand processes only read common data, it can be located in the data
segment of the master process.

22LDT is an Intel 80386 term. Each process family has its own LDT in DMX. The LDT contains descriptions of
memory segments owned by the process family.

102

14-Apr-14

 If you have to use large memory resident files, restrict the access to the files with static
partitioning or update the file only in such a way that the file can be split into separate data
units.

 Do not use dynamic file partition allocation to processes.

 If it can be guaranteed that, after hand release, the same hand process is not allocated to a
new task during warm-up, then dynamic allocation may be used.

 The data area in the data segment to be warmed up has to be continuous and the compiler
has to be prevented from changing the order of variables by using a corresponding compiler
feature. This helps to minimise the service degradation time when the exchange program
package is changed.

 File handles and memory buffer pointers always have to be initialised to the NULL value
when they are not in use.

Recommendations are another way to direct the thinking of the software designers. They are
not compulsory, but will help the designer to avoid trouble. The following recommendations
are in line with good programming practices and also follow from the theory of warm-up
services.

 To avoid creating large warm-up entities, it is undesirable to transfer information between
processes through files, especially in both directions. Instead, message passing should be
preferred.

 Avoid read cycle type relationships between processes.

 Avoid designs in which two or more processes write state data into a file in a way that the
file cannot be easily partitioned into a set of separate data units attached to each of the
writing processes for warm-up.

103

7 Corrective Replication Tools

The basic replication tool guarantees a certain level of reliability in keeping the replicated
computations in a consistent state, and the warm-up algorithms allow the computations to reach
the consistent state in a reasonable time, when applied to telecommunication applications.
There are, however, some problems left:

1. The basic tool cannot easily be applied to permanent computations.

2. What if the achieved level of reliability does not meet the requirements, or more strict
requirements are set? What about applications which require instantaneous correctness?

Because of these problems, we will discuss additional tools that will at least increase the
reliability of preserving the consistent state of the replicated computations and which can
possibly also be applied to permanent computations. At best, even a tool that achieves
conditional instantaneous correctness, could be added to the replication scheme. Only such
tools will be considered, which will never decrease the possibility of the spare computation to
remain in the consistent state. A highly desirable feature of the tools is application
transparency. If not fully transparent, these tools should at the most be visible to the application
code only through kernel procedure calls or asynchronous service invocations. For ease of
implementation, it is also desirable to use as many of the existing generic mechanisms as

possible. All the earlier identified real-time and
performance requirements apply to these
additional tools, also.

All the tools that will be discussed, are based on
the primary/standby scheme. This means that
the optimistic failure assumption (Assumption
2.1 in Section 2.4) applies to these tools and so
the whole intention of the tools is to try to keep
the spare computation consistent with the active
one. Figure 7.1 gives an overview of the
structure of the whole replication machine we
have in mind. The Basic Replication Scheme
and the Warm-up have already been discussed.
Some of the correction tools are based on error
detection, so a model of replication errors is
needed. Tools for error detection will invoke
the error correction tools. Some of the
Correction Tools may also be based on other
principles than error detection. All the
Corrections Tools may use the warm-up to
carry out the corrective actions.

 Figure 7.1 The Replication Machine.

104

14-Apr-14

7.1 Coverage and Order of Correction

Before going to the actual tools we will discuss the applicability and conditions of use of any
correction tools under our model of computations. By the coverage of correction we mean the
set of processes and data units to which corrective actions are applied. We say that correction is
sufficient if it covers all the processes and data units that may have been contaminated by the
replication error. If we have no knowledge about the relationships between processes and data
units, we do not know how the error may propagate in a computer unit. This is because of
Lemma 5.10 and the errors discussed in Section 5.4.1 and the warm-up order. Then we must
assume that a sufficient correction is to warm up the whole computer unit in case a replication
error was detected. The question is: under what conditions is it sufficient to restrict corrective
action to a subset of processes and data units in a computer unit. Because of what was earlier
found out about the warm-up order, we must also ask in what order the corrective actions
should be applied to a restricted error propagation area. Definition 6.8 leads us to assume that
we do not have any knowledge about how a replication error may have propagated in a warm-
up entity. That is why we will assume that an atomic corrective action covers, as a minimum, a
single warm-up entity.

The results of Chapters 5 and 6 bring up the following lemma.

Lemma 7.1 Let W be the set of all warm-up entities   W in a computer unit and  be a
state oriented execution group involved in a computation in that computer unit and let the
execution group be partitioned into replication groups j such that  = ⋃ j

୔
୨ୀଵ and a

replicated process s  j . If there is a replication error in the spare member of a replication

group j to meet the requirements of Definition 6.1 it is sufficient for the corrective actions

to satisfy the following conditions:

1. The atomic corrective actions are applied to all the warm-up entities   W , where
W  W are the processes in W , of the concerned computer unit such that the
following rules starting from (a) are used repeatedly to add elements into W until no
new entities can be found:

a.  is included in W if  s  j such that s  , and

b. ' is included in W if  s'  '  i and  s''  i  W , and

c. ' is included in W if WRITESET(W)  '  , and

d. ' is included in W if    W such that  ≼ '.

2. The conditions of Lemma 6.12 and 6.13 are met for the corrective actions on W . This
includes that the order of corrective actions does not violate the warm-up order for W .

Proof: If the conditions are not sufficient then in the computer unit there can be an infected
state oriented process  such that   W or an infected data unit d such that d  W .
According to Definition 4.8 the future configurations C : N  (S  Q  D) depend on the
current state of the process, incoming messages and read actions which determine the write
actions of well behaved deterministic processes. This means that the ways a replication
error can infect the system and its environment are: reception of an internal message sent
by an already infected process, contamination of the reader by a read action from an
already infected data unit, or contamination of the data units by write actions of an infected
process.

105

 Let us assume that before the replication error occurred in j the current state C (n)() of

(, E, D) was consistent in the spare unit. Let us assume that the error has spread to  by an
internal message. However, due to (a), W contains all the processes of the initially
infected replication group. Due to (b) it contains all the processes in all replication groups
in which an already existing member of W is involved through another process.
Consequently, W contains all such processes with which a process of W may
communicate by internal messages and the spare W does not send messages to the
environment because they are discarded by the kernel. So, the assumption that the
replication error has infected  by an internal message does not hold.

 For the read-write, write-only and read relations the following statements hold:

1. Due to (d):   READSET()  W      W . Consequently there is no such
process   W which could have been infected by the replication error through a
read action from the contaminated data units.

2. Due to (c):  d WRITESET(W)  d    d  W . So the infection could not have
spread to d  W through a write action of a process of W .

Consequently, there is no such error propagation mechanism which could have infected a
process   W or a data unit d  W . Item (2) of the lemma ensures that the corrective
actions are successful. So, the conditions of the lemma are sufficient.

Lemma 7.1 defines a method of how a sufficient area of correction can be constructed
assuming that a single replication error has occurred. In practice we do not usually know where
an error, if any, has occurred or we may want to provide for multiple replication errors and
define a wider correction area by looking at the structure of the application. For example, we
may want to make sure that all the spare processes involved in handling a single call with their
data units or all the spare entities involved in executing a single operator command are in a
consistent state at a certain time. Then we can use Lemma 7.1 to construct the sufficient area of
correction by assuming that a replication error could have occurred in any of the processes of
the largest state oriented execution group involved in the concerned computation and use
Lemma 7.1 for each of those spare processes. The union of the resulting sets will be a sufficient
area of correction providing for multiple replication errors in the application.

To conclude, a definition of conditional instantaneous correctness under the optimistic failure
assumption23 is useful.

23see Assumption 2.1.

106

14-Apr-14

Definition 7.2 Let    be a system of processes involved in a replicated computation and
 a system of processes of a distributed computing system such that processes in   
are assumed to perform without replication errors which can not be traced back to .
Assumption 2.1 is assumed to hold for the distributed system. Conditional instantaneous
correctness of the replicated computation is achieved in the distributed system in a state
where it can be guaranteed that the state of any spare system of processes and data units
(, Q, D) is consistent with the state of the corresponding active system.

7.2 Replication Error Detection

There are a number of errors that can be easily detected by the basic replication tool. These
errors indicate an inconsistent state of the computation in the spare unit and are caused by
incorrect message ordering and message loss errors, which are not tackled by the basic
replication scheme. In Lemma 7.1 we discussed error states which are transparent to the kernel.
To talk about error detection and correction, we need a high level failure model for errors in the
computational state of the replicated computation. Figure 5.7 illustrates the state model of a
replicated process and is a basis of the failure model.

The failure model basically incorporates two types of inconsistent states of a spare
computation:

A. Error in the process kernel state i.e. the kernel state of a spare process is inconsistent with
the kernel state of the active process. Most probably the spare process is in the suspended
state, while the active process is involved in a computation. If the active process were free,
this is also an error but does not influence any useful computations.

B. Inconsistency in the process application state. The state variables or the data units of the
active and spare member processes have different values.

It is intuitively clear that error state B is often not stable and the more messages are processed
in such a state by the replicated process, the more likely it is that error type B changes to error
type A. This may happen e.g. because being in an incorrect state the process will not accept a
message which was acceptable to the active process, and as there will not be an acceptable
message, the process will try to release itself through a time-out procedure. However, there
may be cases, when a spare process stays in an inconsistent application state for a long time.

An error of class A can easily be detected by the kernel primitives because the kernel state of
the spare process member is changed only within the protocols of the basic tool. More
specifically the following errors, during the execution of the algorithms of the basic tool, can be
detected by the kernel primitives.

1. In the spare computer, a hand process quits but there is no release synchronisation message
from the active unit during the time limit, and the hand is suspended. Most probably the
computation in the spare unit has fallen into an inconsistent state.

2. The Pid search algorithm in the spare unit gives a different result than what is required by
the message sent by the active unit. The locally found Pid is reserved and suspended. The
corresponding computation may have fallen into an inconsistent state.

3. Messages with the wo+sp delivery option arrive at the spare unit or are sent by a process in
the same spare unit, which are addressed to a free or suspended hand process. This may
happen for several reasons, one of which is that the spare process is in an inconsistent
state.

107

4. The hand to be allocated on the spare side is not free. The forced allocation corrects the
error.

5. On the active side, the hand allocation acknowledgement does not arrive in time, or the
current number of the allocation acknowledgement message is not correct.

6. The hand release acknowledgement message does not arrive in time, or the current number
of the acknowledgement message is not correct, or the spare computer sends an
acknowledgement with an error code.

7.3 Basic Error Correction Tool

A consistent state of the computations can be restored by warming up the computations. To
make this possible, the kernel should indicate all detected errors to an analyser kernel process
that should weight the errors and generate a resynchronisation request to the warm-up control
program block.

Upon reception of the resynchronisation request (RESYN_REQ) the warm-up control executes
the algorithm described in Appendix 1; ending with the RESYN_ACK, acknowledgement to
the process that requested the resynchronisation.

In the algorithm of Appendix 1 retries are not shown to save space. Adding them to the
algorithm is simple. The condition RESYNC ALLOWED in the algorithm of Appendix 1 is
true when the hand has not prohibited warming up and it is in the main-receive point of
execution. The object of resynchronisation is the warm-up entity to which the concerned
process belongs. A warm-up entity in a general case may contain more than one process, but
here we have shown only an algorithm for the case, when there is only one process in the
warm-up entity.

In practice in the DX 200 context, resynchronisation is allowed only for warm-up entities such
that the processes in that warm-up entity do not write into a set of separate data units outside of
that warm-up entity. When the background large file warm-up would be required the unit
warm-up is used instead. However, this is an implementation restriction, not a necessary
condition of success as we have shown in Lemma 7.1.

This resynchronisation tool ensures that the inconsistent state of the spare warm-up entity is
corrected under the optimistic failure assumption if

 there is no conflict between the algorithm and application processing, i.e. the queue of the
active process remains empty during the necessary initial warm-up starting period,

 unrecoverable errors do not occur in the execution of the algorithm,

 the spare processes are found in the main-receive point, and the stacks of the spare
processes are in a correct state.

The last conditions mean e.g. that the spare process may not be in an incorrect infinite loop,
while the active member is working properly. Other software recovery and fault-tolerance
techniques are assumed to handle such errors.

According to Lemma 7.1 correcting only the single warm-up entity in which the replication
error initially occurred, is sufficient if

i. the processes of the infected warm-up entity do not send internal messages to other
processes across the boundary of the infected warm-up entity, and

108

14-Apr-14

ii. there are no processes in the computer unit outside the concerned warm-up entity which
could read a data unit in the infected warm-up entity, and

iii. the processes of the infected warm-up entity do not write into other warm-up entities.

The basic error correction tool will use the error information that is available to the kernel
procedures (error type A). What can be gained with such a tool? One of its restrictions is that
we cannot argue that the inconsistent state will always be detected nor can we definitely say
how long it will take to detect the error. So, errors are detected with some probability. As a
consequence, even conditional instantaneous correctness cannot be achieved by using only the
error information that is available to the kernel procedures of the basic tool. In Chapter 8 we
will see, what can be expected to be gained with error correction in terms of higher reliability.
The advantage of this tool is that it is completely transparent to the applications. If this tool is
applied to a computation for which the above conditions (i, ii, iii) do not hold, the success of
the correction depends on whether an internal message (i), a read action (ii), or a write action
(iii), actually occurred such that the error was spread outside the initial warm-up entity.
Occurrence of such an event can be assumed to have a certain probability. It is not
recommended that this tool is used while the above conditions (i, ii, iii) do not hold.

This tool has been implemented in the DX 200 system. The rest of the correction tools in this
chapter are new possible enhancements to the replication scheme and have not been
implemented in the DX 200 system.

7.4 Propagation of the corrective actions

In this section we will discuss a generic method which helps to propagate the corrective actions
to the desired area of correction. Several correction tools may make the use of the same
propagation method.

Correction may be launched by an external event or it may be induced by the system. In both
cases correction is propagated through the correction area with the control flow as the
reaction24 is executed by the processes of the concerned execution group.

To implement this idea, a new message attribute called the correction request attribute is
introduced. The idea is that when a message with this attribute is received, correction will be
applied to the warm-up entity in which the receiver is a member. Propagation in a set of
processes involved in a computation can be automated by marking the processes at the time of
their creation. The correction request attribute is copied from the propagation message to the
process and when a marked process sends a message during the transition started by the
propagation message, the correction attribute is automatically sent together with that message.
The correction attribute of the process is reset at the end of the transition. This mechanism
ensures that correction propagation continues in the execution group until the boundary of the
marking is reached, or a new external message is received. So, one process may be
synchronised several times during the execution of a reaction. Resynchronisations after the first
may be considered excessive. Their execution can be suppressed, e.g. by setting a short time-
out for the process at the same time as the correction attribute of the process is reset. Before the
time-out expires, additional corrective actions for the concerned process would not be allowed.

24see Definition 4.13.

109

7.5 An asynchronous error correction tool

In trying to improve on the performance of the basic error correction tool, the next obvious step
is to try to detect errors in the application processing (error type B), initiate corrective actions
and propagate the correction through the computation and thus achieve even higher reliability.
This can be done e.g. as follows:

1. A kernel procedure call check_replication_error(...) is provided for applications.
The procedure checks whether correction is allowed and if the process belongs to a warm-
up entity, which has other process members; those processes are frozen. Checksum is
calculated over the concerned warm-up entity. The checksum is sent to the error analyser
kernel process in a message. The other processes in the warm-up entity are defrozen.

2. In the spare unit, the other processes of the concerned warm-up entity are frozen and the
checksum is calculated over the warm-up entity. The checksum is sent to the error analyser
kernel process and the processes are defrozen.

3. Correction may be propagated through the correction area using the method described in
Section 7.4. So, the check_replication_error(...) procedure is used upon
reception of a message carrying the correction request attribute and this attribute is sent to
the next processes in the reaction.

4. When the error analyser gets a checksum message, it sets the time-out Tcs. If another

message concerning the same warm-up entity arrives within the time-out, checksums are
compared. Inequality for a warm-up entity with one process member is an error. For a
multiple process warm-up entity, inequality means that an error is suspected. Also, if the
time-out Tcs expires, an error is suspected.

5. Upon deciding on an error indication or an error suspected indication, the analyser process
generates the RESYN_REQ for the warm-up entity concerned. This request message is
handled as described in Appendix 1.

Could the tool be used as well at the beginning of a transition as at the end of a transition?
When used at the end of the transition, if the spare process was not in a consistent state at the
beginning of the transition, it may not be able to send the same (internal) messages as the active
process. When used at the beginning of the transition, the situation is basically the same
because corrective actions are not guaranteed to take place before the execution of the
transition. This means that the error may cascade. However, we know that error cascading is
restricted to the limits defined by Lemma 7.1. The error state of all the processes involved in a
reaction is detected, if the tool is applied to all the processes during the execution of the
reaction, so the tool will generate resynchronisation requests for all the processes in an error
state. According to Lemma 7.1 the correction order, which may be different from the order of
involvement of processes in the reaction, has to be such that it does not violate the warm-up
order.

Of all tools suggested until now, this is the first tool that targets keeping the states of permanent
computations consistent. This tool is able to detect all the errors in our failure model, stated
earlier. However, if checksums are calculated by the kernel library routine, we have a
modularity problem, because the library until now does not have any knowledge of the warm-
up entities. To keep the protocol as efficient as possible, we could sacrifice coverage by
restricting the checksum calculation to the vital state variables only. Another possibility is to
make the warm-up entity descriptions part of the static structure of the process, using language
tools and thus make warm-up entity descriptions available to the kernel.

110

14-Apr-14

7.6 Time-out triggered synchronisation

The more complicated and the longer a computation is, the more unreliable is the basic
replication tool as we will show in Chapter 8. To ensure that all the hardware and software
resources in the system are always released after use, all resources may be required to be
allocated only for a certain period of time, with the necessity to renew the service provider
allocation request, if the resource is still needed at the end of that period.

This brings up the idea that when reservations of software resources like hand processes are
refreshed they could be resynchronised at the same time. When resynchronising a process to
ensure the result, all the other processes involved in the same computation should be
resynchronised at the same time. For this two things are required:

1. A kernel procedure refresh(hand_Pid, additional_period) is provided for the master
processes. This procedure refreshes the allocation of the hand process for an additional
period and resynchronises the process in the spare unit.

2. The refreshing is cascaded through the whole replicated computation.

The refresh() kernel procedure works as follows:

WO unit SP unit

Master process Mwo receives renew allocation Msp receives renew allocation request

request message and calls refresh(R, dT) and calls refresh(R, dT)

refresh(R, dT) refresh(R, dT)
 Update allocation time-out by dT Update allocation time-out by dT
 send RESYN_REQ to Warm-up control receive with time-out RESYN_ACK
 receive with time-out RESYN_ACK if RESYN was SUCCESS
 if RESYN was SUCCESS cascade time-out of R
 cascade time-out of R fi
 fi return
 return END refresh
END refresh

Upon reception of the RESYN_REQ the Warm-up control executes the algorithm described in
Appendix 1. Note that the RESYN_REQ messages are assumed to be served sequentially by
the Warm-up control.

The master process renews the allocation of the service provider hand for a computation on
request from the original service user process. The user process will have an active time-out, at
the expiration of which it will know that a renew allocation request message has to be sent to
the master process of the service provider. Cascading to the following service provider in the
allocation order can be triggered by setting the corresponding time-outs of the refreshed
process to zero. After the renewal of the allocation of the service provider hand, the hand will
receive the time-out message and send the renew allocation request message to the following
service provider in the allocation order. In order to make the resynchronisation cascade through
the whole set of processes involved in the computation, cascading has to start from the topmost
user process in the allocation order in each of the involved computer units.

111

The hand allocation time-outs form a natural marking for the set of processes to be covered by
correction. Setting the time-outs to zero acts as a replacement for the correction request
attribute that was introduced in Section 7.4.

For this correction tool the correction order is the same as the execution order of the
refresh() procedures because the resynchronisation requests are served in the first-come-
first-served order and it should not contradict the warm-up order in any of the computers
involved. The cascading order which is the same as the initial service provider allocation order
is guaranteed to be identical to the execution order of the refresh() procedures for the
processes only as long as each service user has only one service provider. Consequently, in this
simple case the cascading order should not contradict the warm-up order in an involved
computer unit. If a service user has several service providers, the order of correction of those
service providers is dependent on process priorities. Then if it is required that none of the
possible correction orders of the service providers contradicts the warm-up order, the correction
may be successful.

To exclude the possibility of the cascading starting from any other process than the topmost
user, it is clearly sufficient that the following condition applies to the renewal time limits:

  i, j, k {Tij + te,i  Tjk.}

where Tij is the time limit of the service user process i for the renewal of the

allocation of its provider process j in the allocation order,

 t୧
ୣ is the execution time for resynchronisation of process i and cascading the

resynchronisation to process j ,

 Tjk is the time limit for the renewal of the allocation of a service provider k of

process j in the allocation order.

The renewal time-outs may not be in the same phase but it is not necessary to set additional
conditions for the phases. If cascading starts from any other process than the topmost user,
there is a high probability that only part of the possible inconsistency problem will be
corrected. This means that computation resources are wasted and thus it should not be allowed
to occur.

It is assumed that the refresh() procedure is called relatively infrequently. To ensure that the
renewal of allocations will not waste computation resources unnecessarily, e.g. in call
processing, the renewal time limits of about two times the average length of a call have to be
adopted. This means that although with this tool all replicated computations, irrespective of
their length, are going to remain synchronised approximately equally reliably, we are still far
away from instantaneous correctness. The reliability behaviour of this tool will be discussed
more thoroughly in Chapter 8.

Except for checksum optimisation described in the asynchronous error correction tool, an
additional optimisation could be suggested for this algorithm. Namely, if a process has not
received any messages after the latest resynchronisation, a new resynchronisation operation is
clearly not required. The fact that the process has not received messages after the latest
resynchronisation is easy to verify by setting a flag when a message is received and resetting
the flag at each resynchronisation.

112

14-Apr-14

7.7 Safe Transitions

In the requirements analysis we saw that high reliability in call processing is required for
established calls, while the bulk of processing takes place during the call set-up phase. In
transaction processing, only at commit time is instantaneous correctness required; only the
committed states have to be consistent. In our computation model, this corresponds to the idea
that consistency of a replicated computation while processing certain events is more important
than while processing other events. Examples of such important events in call processing are
alerting, connect and disconnect. Alerting means that the called subscriber is being alerted,
connect that the through connection has to be established and call charging started, and
disconnect that the charging has to stop and all resources should be released. Note that in the
DX 200 these are only three messages out of about two hundred that have to be processed in
connection with a call.

To be able to focus our efforts on preserving consistency of a replicated computation while
processing selected events, we will introduce the concept of safe transition.

Definition 7.3 Transition of a replicated process is safe if the final state of the transition is
consistent and both the active and the spare process instances are guaranteed to send the
same messages in the same order during the transition.

Obviously this property can be extended to a set of processes involved in a reaction using the
method described in Section 7.4.

To guarantee state consistency of a transition, resynchronisation of the process members is
required. Two possible implementations of the concept of safe transition can be seen. We will
denote these implementations by A and B and discuss their properties.

A. Resynchronisation takes place at the beginning of the transition in the Begin_Safe_
Trans() kernel procedure which is called from the main_receive procedure. The
transition is executed as required by the basic replication scheme. Messages sent during the
transition may carry the correction request attribute as discussed in Section 7.4.

B. Resynchronisation takes place only at the end of the transition. The Begin_Safe_
Trans() kernel procedure sets the correction attribute of the process. All the messages
sent during the safe transition are buffered in the outgoing message queue by the send
kernel primitive. These messages may carry the correction request attribute. The outgoing
message queues of the process members are synchronised with all the other data in the
concerned warm-up entity by the End_Safe_Trans() kernel primitive. This primitive
also resets the correction attribute of the process and sends the messages in the outgoing
message queue.

We will first describe in more detail the approach A. There are several implementation
possibilities, but in Appendix 2 we have shown one possible implementation of the procedure
Begin_Safe_Trans().

In Appendix 2, we have not shown the reattempts of message sending between the two
computer units, nor have we shown the automated propagation of correction. To add the
automated propagation the Begin_Safe_Trans(), instead of cascading time-outs, would
have to set the correction attribute of the process, the messages sent by the transition would
then carry the correction request attribute, and the End_Safe_Trans() would have to reset
the correction attribute of the process. Adding reattempts would effectively copy Figure 4.2.
The service provided by the synchronisation server in this case differs slightly from the service

113

invoked by the RESYN_REQ message to the warm-up control. Here the incoming message
queues are synchronised to contain at least one message, namely, the message that started the
safe transition and carried the correction request attribute. Another difference is that we have
shown here the checksum optimisation of the algorithm. To minimise the number of messages
in the algorithm in the absence of errors, the spare unit sends the SAFESYN_ACK message to
the process which is being resynchronised and is executing the kernel library primitive. In this
most common case with no errors, the algorithm requires two messages between the computer
units (SAFESYN_SP and SAFESYN_ACK) and one internal message (SAFESYN_REQ) to be
passed upon reception of a correction propagation message. The fourth message is the time-out
message in the active unit but it is passed outside the synchronisation point. If the whole
algorithm were executed in the name of the process being resynchronised, i.e. directly in the
kernel library code, only the internal messages could be squeezed out and still the two
messages between the computer units would be required.

In Appendix 2 we have also shown the possibility of adding time-out cascading in the
Begin_Safe_Trans() primitive. The idea is that time-out cascading could be used, if it is
not possible to use the propagation of correction with the reaction. Naturally an application
should always be addressed only by one of these methods, or resynchronisation could happen
twice successively.

The condition SYNC-ALLOWED in the algorithm of Appendix 2 assumes that the calling
process Rwo is at the safe synchronisation point and that safe transitions have been allowed by

the recovery control. The algorithm is shown only for the case, where there is only one process
in the warm-up entity. The algorithm for the case, when there are several processes in the
warm-up entity, is similar. Synchronisation of those processes is done with the assumption of
empty incoming message queues.

We can see that the algorithm for a deterministic transition of a process under the optimistic
failure assumption succeeds if

i. there are no unrecoverable errors during the execution of the algorithm of Appendix 2,

ii. the spare process is in the main-receive point or waiting for synchronisation, and the stack
of the process is in a correct state. This allows e.g. for the process to be in the suspended
state.

These conditions amend the conditions under which the synchronisation invoked by the
RESYN_REQ succeeds by allowing for the spare process to also be in the waiting for
synchronisation state, and by the implementation of the check whether the queue of the active
process has not changed during the initial critical period.

In approach B, the Begin_Safe_Trans() is simple. The End_Safe_Trans() primitive is
more interesting. It goes as follows:

114

14-Apr-14

WO unit SP unit

End_Safe_Trans() End_Safe_Trans()
 send RESYN_REQ to warm-up receive-with time-out RESYN_ACK
 control if RESYN was OK
 receive-with-time-out RESYN_ACK cascade time-outs
 if RESYN was OK fi
 cascade time-outs send messages in outgoing queue
 fi reset correction attribute of Rwo
 send messages in outgoing queue return
 reset correction attribute of Rwo END
 return
END

The warm-up control executes the same service as described earlier upon reception of the
RESYN_REQ message, except that additionally the outgoing message queue is transferred
from the WO to the SP unit. Here we have also shown the possibility of adding time-out
cascading in the End_Safe_Trans() primitive. The idea is that time-out cascading could be
used if it is not possible to use the propagation of correction with the reaction. Naturally, as in
approach A, a process should always be addressed only by one of these methods, or
resynchronisation could happen twice successively.

Which one of the approaches, A or B, should we prefer? Approach A is more modular because
all that is needed are two new kernel primitives and the correction request attribute. Approach
B requires additionally a new queue to be attached to every process and the buffering of
messages into that queue to be added to the send primitive. Approach A does not have the
side effect present in approach B. Namely, approach B changes the order in which the process
executing a transition accesses files and sends messages. In a safe transition all file access
operations are executed normally but the messages are not sent until after all those access
operations have taken place. If the same transition were executed without the safety property,
the sending of messages and file operations could occur in an arbitrary order. This side effect is
undesirable, although if good programming practices are followed, applications should be
insensitive to it. As a consequence, approach A is preferred for implementation, and in sequel
we will address its properties.

7.7.1 Properties of the safe transitions tool

Consistency of the whole computation is not automatically guaranteed after the safety
propagation. To address this problem, we need a definition.

Definition 7.4 Computation is safe if all its transitions are safe and the execution order of
the corresponding active and spare transitions is identical.

The order of involvement of processes in a sequential reaction is the same as the order of
correction, i.e. the order in which the synchronisation requests are served by the
synchronisation server assuming that the requests are handled according to the first-come-first
served principle. If in a safe transition the correction request is propagated to a number of
processes, the order of correction of those processes is dependent on priorities. We will ignore
the priorities and assume that any of those orders are possible.

115

Under the optimistic failure assumption conditional instantaneous correctness of the replicated
computation in the boundaries of the replication group is achieved after the execution of the
safe transitions by all the process pairs of the replication group in a complete reaction i.e. in the
absence of new external events, if

C0 the replication group is closed and does not read data units of processes which do not
belong to the replication group

C1 correction request attribute is propagated through the largest state oriented execution
group of the replication group, and

C2 resynchronisation succeeds for all the processes in that group, and

C3 none of the possible correction orders contradicts the warm-up order. This means that if
process ' may follow process  in the correction propagation order, processes  and '
may either be unrelated in the warm-up order or  ≼ ', and

C4 the other requirements of Lemma 6.12 and 6.13 are met by the corrective actions.

In other words, a reaction in a closed replication group that does not read the data units of
processes outside the replication group, is safe if all the transitions in the reaction are safe and
the transition execution order in the reaction does not contradict the warm-up order.

In our analysis we did not use the knowledge about how the correction propagation messages
are sent; i.e. what destination delivery code is used. This is why we may assert even more: A
reaction in a closed state oriented execution group that does not read the data units of processes
outside the execution group, is safe if all the transitions in the reaction are safe and the
transition execution order in the reaction does not contradict the warm-up order in any of the
involved computer units.

Using Lemma 7.1 we may conclude that a reaction achieves conditional instantaneous
correctness in a system if

(i) the reaction initiated by a message with the correction request attribute involves all the
processes which belong to the possible replication error propagation area of the
computation which is formed as a union of all the sufficient correction areas of all the
processes in the largest state oriented execution group involved in the computation, and

(ii) correction succeeds for all warm-up entities in which at least a process involved in the
reaction is a member,

(iii) the order of correction does not violate the warm-up order.

Note that the above two results as such are independent of the optimistic failure assumption. It
only happens to be that implementation in our target environment is possible only under the
optimistic failure assumption.

During the warm-up, we had to replicate messages in the active unit with the help of the
"conditional replication" attribute when the sender had not yet been warmed up. We avoid the
problem here because the synchronisation takes place at the beginning of the transition.

The conditional instantaneous correctness property claimed above for a replication group, an
execution group and a computation in a system is such that each process in the propagation
order knows about the success only in the boundaries of its warm-up entity. It can, however,
pass forward the success information in a propagation message. Global consistency in the
absence of new external events is implicitly known to the last process in the propagation order
of a sequential reaction. If the computation has parallel branches ending with a number of
downmost service providers, knowledge about global consistency is dispersed.

116

14-Apr-14

This safe transition tool could be used in a transaction processing subsystem in the switching
environment provided that the subsystem implementation avoids parallel branching at commit
time. However, this method had not been implemented, when the implementation of the
transaction processing subsystem of the DX 200 began, and that is why an explicit message
exchange between the active and spare members of a process in the transaction commit
protocol was used.

7.8 Comparison of the correction algorithms

Now, we have an abundance of tools. Do we need them all or could we take just one of them?
To answer this question we have to make clear the properties of the tools and decide whether
the tools compete with or supplement each other. Here we will compare the tools by their
functional, ease of use, and performance cost overhead properties. In Chapter 8, the
probabilistic properties of the tools will be addressed. The tools to be compared are:

A. The basic error correction tool
B The asynchronous error correction tool
C. The time-out triggered synchronisation
D. The safe transitions tool

Functional properties:

A. Instantaneous correctness is not achieved nor sought. The application cannot influence the
tool because it is fully transparent to the applications. Processes involved in a computation
are addressed by this tool independently. Correction efforts can be focused on errors or
suspected errors.

B. Instantaneous correctness is close but not achieved nor sought. Correction efforts have to
be focused on important events. The warm-up order relations between processes restrict
the possibilities of using this tool in a similar way as is the case with the safe transition
tool. The synchronisation error indications are put into a queue by the error analyser in the
transition execution order, the error analyser sends the resynchronisation requests to the
warm-up control in the same order, and the requests are acted upon in this order. This
means that similar conditions of success as (i, ii, iii of Section 7.3) apply in this case also.
The difference is that there should not be any new external events before all the
resynchronisations have been executed.

C. If the resynchronisation succeeds for all the warm-up entities of all the processes in the
cascading order, the cascading order does not contradict the warm-up order, and during
cascading there were no new external events, the state of the computation restricted to the
replication group is consistent after all the resynchronisation operations have taken place.
However, the applications cannot focus this correctness on the important states of the
computation.

D. Local and implicit global correctness of sequential computations is achieved. The safety
propagation can cross the replication group and computer unit boundaries if it is desirable
for the application. Correction efforts can be focused on carefully selected events but not
on errors only.

Ease of use:

117

A. Easiest to use. Does not require any additional design or programming efforts from the
application designers. However, the tool is not likely to help with permanent processes.

B. Can be used for periodical and for permanent processes. Similar to the safe transition tool.

C. Requires certain design rules to be followed in the applications. All the processes should
be reserved for finite intervals. The process reallocation time limits should be set
accordingly; the process allocation order and the warm-up order should not contradict each
other. The tool is visible to the master process code.

D. The tool can be made easy to use for standard applications, like call processing; and
replication can be addressed as a programming-in-the-large issue as we will show in
Chapter 9. The correction propagation order should not contradict the warm-up order and
the high level designer has to select the important events to which the tool is applied.

Performance cost overhead:

Applied to call processing, the tools use CPU capacity as follows:

 A < C < B < D.

A. CPU capacity is used only when errors occur or when they are suspected to have occurred
in the basic replication tool. Clearly this happens very infrequently and thus the
performance overhead is negligible.

C. Requires at least one checksum optimised resynchronisation operation for all state oriented
processes involved in processing long calls.

B. Requires at least one checksum calculation per process instance, one external message, and
one internal message. Should be applied to all calls and to all state oriented call
computation processes in duplicated computer units.

D. Requires at least one checksum optimised resynchronisation operation for all currently
replicated processes involved in processing any calls. If the process members are found to
be consistent, this adds up to counting the checksums over the concerned warm-up entity
in both units and passing one internal message in both units and two external messages
between the active and spare computers. Qualitatively, if we assume five state oriented
processes, of which three are 2N redundant, to be involved in processing a call, one safe
transition in each of those processes would add 12 messages to the about 200 call
processing application messages. This is about a 6% increase but the actual performance
overhead still heavily depends on the relative complexity of the application transitions and
the resynchronisation transitions.

Conclusion:

Of the suggested tools C competes with A and B, while B complements A. However, there
seem to be differences in the applicability of C compared with A and B. That is why we leave
the final decision about A, B and C to the reliability analysis. The safe transition tool aims at
conditional instantaneous correctness and thus cannot be replaced by any of the other tools.

118

14-Apr-14

8 Reliability Modelling and Analysis

To evaluate the basic and different corrective replication tools, we will use Markov´s reliability
modelling techniques and introduce Markov´s reliability models for a call computation under
different conditions. This modelling technique for discrete-event, continuous-time models with
constant hazard functions is well known and has been represented e.g. in [Ne87].

8.1 Basic Reliability Model

Figure 8.1 shows the model of a call computation, when only the basic replication tool is used.
A call is chosen as the modelling object because availability performance requirements exist
for call handling as presented in Chapter 2.

Notation 8.1 State probabilities: P0 -
probability that a call that is in progress
or has been established, is consistent in
the spare unit, P1 - probability that the
call has been successfully disconnected
in the active and spare computers, P2 -
probability, that an inconsistency error
has occurred in the spare computation.

 Transition intensities:  - error
occurrence intensity of the spare
computation,  -call disconnection
intensity.

In the model it is assumed that if an error in
the state of the spare computation has
occurred, it was at the beginning of the
computation and that call disconnection
always also clears the state of the spare
computation. Constant distributions for the
intensities are used for simplicity.

With this model the state probabilities at time t + t can be expressed using the probabilities at
time t and state transition probabilities by the following matrix equation:

 [P0(t+t), P1(t+t), P2(t+t)] = [P0(t), P1(t), P2(t)] X P (6)

where P is the transition probability matrix:

 Figure 8.1 Basic Reliability Model for a call
 computation.

P

1

2
P

P

0

119

 P =			൥
1‐ሺα ൅ μሻ∆t μ∆t α∆t

0 1 0

0 μ∆t 1‐μ∆t

൩ (7)

A set of simultaneous differential equations follows by taking the limit as t approaches 0:

 [P0' (t), P1' (t), P2' (t)] = [P0(t), P1(t), P2(t)] X ቎
‐ሺα ൅ μሻ μ α

0 0 0
0 μ ‐μ

቏ (8)

We are interested in finding the solution to P2 because it represents the unavailability
performance of the basic replication model. Taking that initially P0(0) = 1, P1(0) = 0, P2(0) = 0
and solving the equations produces:

 P2 = e- t - e -()t (9)

To compare this result with the premature release requirement R1, which was represented in
Section 2.3.2, we would need to find the maximum of the average value of P2 in a one minute
interval. This average may be evaluated from above by the maximum of P2. P2 reaches its
maximum at time

 t0 =
ଵ

஑
 .ln

஑ାஜ

ஜ
 (10)

The maximum of unavailability performance of the basic replication tool is:

 Āb-max = P2(t0) =
஑

஑ାஜ
 (1 +

஑

ஜ
 ሻ‐

ಔ
ಉ <

஑

஑ାஜ

ଵ

ୣ
 <

஑

ஜ

ଵ

ୣ
 (11)

Given that the average call holding time is 2 min, which means that  =
ଵ

ଶ
, and using the

premature release requirement R1, we can obtain an estimate of the requirement for the mean
time between failures of the basic replication tool. We will assume that the requirement R1
should hold for any of the simultaneous calls in the system and that e.g. 10% of the requirement
R1 may be allocated to the replication scheme and unit changeovers may happen not more
often than once in 20 min with constant distribution probability. We also assume that the
probability of a unit changeover and the probability of a replication error are independent. Here
the argument is not about the exact figures but the values obtained give a feeling of what we
are dealing with.

 MTTFb  MTBFb =
ଵ

஑
 >

ଵ଴ఱ

ଶ	ୣ

ଵ

ஜ
 = 613 h  26 days (12)

120

14-Apr-14

The needed length of the experiment to yield a given number of allowed errors (ne) can be

calculated using the above formula. We will assume that the calls of the experiment form a
serial system, the reliability of which can be calculated as a product of the reliabilities of the
subsystems with independent failure modes and that the parameters of a field test: average call
holding time and the number of parallel calls (Nc) to be handled by the test system are given.
If less errors are found in the test, the system meets the reliability requirement.

The reliability of the parallel call system is Ri = e
‐஑୒ౙ			

భ
ಔ

Such parallel call systems again form a serial system the reliability of which is a product of the
reliabilities of its components. We will denote the number of parallel call systems with m.
Consequently, the reliability of the experimental call system is:

 R = e
‐஑	୫	୒ౙ			

భ
ಔ (13)

At the instant of the first error, this reliability should equal to e-1 . Thus, m may be calculated:

 m =
ஜ

஑	୒ౙ
 =

ଵ଴ఱ

ଶ	ୣ	୒ౙ
 (14)

So, the number of calls N yielding no more than 10 errors, should be:

 N = ne
. m . Nc 

ଵ଴ఱ		୬౛	

ଶ	ୣ	
  184 000 (15)

Assuming a field trial with 5000 parallel one minute calls, the experiment should take about 37
min. This is the expected result on the basis of Eq. 12.

8.2 Reliability Model for the Schemes with Correction

A reliability model for a replicated call
computation, when the corrective
replication tools are also used, looks like
the one in Figure 8.2. With  we have
denoted the correction intensity which is
the inverted value of the time for error
detection and correction.

The set of simultaneous differential
equations for this model is:

P
0

1
P

2
P

 Figure 8.2 A Reliability Model of a Call, when
 Corrective Tools are used.

121

 [P0´(t), P1´(t), P2´(t)] = [P0(t), P1(t), P2(t)] X ቎
‐ሺα ൅ μሻ μ α

0 0 0
 μ ‐ሺ൅ μሻ

቏ (16)

As before we are interested in finding the solution to P2 , which is obtained by taking the same
initial values as before P0(0) = 1, P1(0) = 0, P2(0) = 0:

 P2 =
஑

ା஑
 (e- t - e -()t) (17)

The unavailability performance of the model Āc-max = P2(t0) reaches its maximum at time

 t0 =
ଵ

஑ା
 ln ቀ1 ൅	

஑ା
ஜ
ቁ (18)

The value of the maximum and an estimate for it from above are:

 Āc-max =
஑

஑ାஜା
 ቀ1 ൅

஑ା
ஜ
ቁ
‐
ಔ

ಉశ <
஑

஑ାஜା

ଵ

ୣ
 (19)

8.3 Analysis

Comparison of the estimates for the unavailability performance of the basic replication tool and
the newly obtained value allow us to reason about the merits of the different corrective
replication tools.

Relative merit of the corrective replication tool compared to the basic tool is expressed as:

 M =
Āౘ‐ౣ౗౮

Āౙ‐ౣ౗౮
 = ቀ1 ൅


஑ାஜ

ቁ
ቀଵା

ಉశ	
ಔ ቁ

ಔ
ಉశ

ቀଵା
ಉ
ಔ
	ቁ
ಔ
ಉ

 (20)

An estimate for the merit is obtained by substituting the maximums with their estimates:

 M  1 ൅


஑ାஜ
  1 ൅


ஜ
 (21)

because it is assumed that  << 

Using our measure for the merit of different replication schemes we are able to draw some
qualitative conclusions. (i) If a corrective replication tool, like our basic error correction tool, is
able to detect and correct errors in one tenth of the average call holding time, this tool will
improve the reliability of the replication scheme about eleven times. A faster tool, which

122

14-Apr-14

detects and corrects errors in one hundredth of the call holding time, will improve the
reliability of the scheme by about one hundred times.

(ii) Better performance of the replication scheme, when an error correction function is included,
can also be used to cope with more frequent detectable errors which lead to an inconsistent
state of the spare computation and to meet the premature release requirement at the same time.
So, in this case the requirement for the MTBF of the basic tool may be loosened.

(iii) Our result allows us to conclude that one of the correction methods, the time-out triggered
synchronisation is not an effective tool because it gives an improvement in reliability using our
measure for the merit of the tool by only a few tens of percents, taking that the triggering time-
outs have to be at least two times the average call holding time for performance reasons.

Although we have not shown the modelling results for the case when there are some
undetectable errors in the performance of the basic scheme, we may formulate our expectations
for this case also, by looking at the above two models together.

(iv) If there are some undetectable errors in the performance of the basic model, the achievable
improvement in reliability of the scheme by correction tools is restricted by the portion of
undetectable errors in the total amount of errors. So, in this situation the fraction of
undetectable errors sets a limit to the reasonable performance of the correction tool for
detectable errors.

(v) What can we expect by applying the basic error correction tool described in Section 7.3? To
answer this question, at least qualitatively, without an implementation and a tedious field trial
with real applications, we need an estimate or at least an educated guess at the correction time.
The correction CPU time (Tc) for this tool is the sum of the error detection time (td), the
execution of error analysis (ta), and the execution of the correction algorithm (tca), i.e.:

 Tc = td + ta + tca (22)

The last two (ta and tca) can be expected to be less than 100 ms, while td may be much longer
and is hard to determine without experimental data. Heuristic reasoning gives us a guess at td.

Some errors in the kernel state of a process (error type A in Section 7.1) are detected quickly
in times which are comparable to the computation skew between the spare and the active unit
(error type A.1 in Section 7.2) or to kernel time-outs (error types A.5, A.6 in Section 7.2).
However, we can hardly expect that these types of errors are typical because they probably
occur in case of message loss errors. Instead, we expect that message ordering errors are more
typical. In such cases, we will assume that the error manifests itself to the application state
(error type B in Section 7.2). If an application state is connected to waiting for an internal
message from another application process, we may assume that the time-out is less than a few
seconds. If the process was waiting for a message from the network, which is a minority of the
messages, the time-outs are usually tens of seconds. On the basis of this rather vague reasoning,
we make a guess that the average td = 20 sec.

Consequently, under this assumption and assuming that great majority of all the relevant errors
are detectable, we get:  = 3 and the relative merit of the basic error correction tool, when
applied to call computations, can be expected to be M = 7.

(vi) What can we expect from the asynchronous error correction tool? We will consider only
those application states to which the tool is applied. In other states the errors are assumed to be
unimportant. The error detection time td is comparable to the length of the time-out Tcs which

123

is set when one of the checksums arrive and has to be taken to cover for the computation skew
under heavy load conditions multiplied by a small integer. The computation skew can be
expected to be no more than a few hundreds of milliseconds. For the correction time the
formula applies:

 Tc = td + ta + tca = k . r + ta + tca (23)

Consequently, we may assume that Tc is of the order of one second. This gives  = 60 and the

merit of the tool compared to the basic replication tool is of the order of one hundred, provided
that correction succeeds for individual warm-up entities with high probability and the
correction order meets the requirement of Lemma 7.1.

124

14-Apr-14

9 Language Issues

In this chapter we shall discuss the possibilities to hide the details of the replication related run-
time system primitives from the application programmers and thus reach a high level of
transparency of the replication scheme using a language approach. Language tool support for
the use of replication primitives aims at handling the replication issues of the applications as a
programming-in-the-large effort. This means that the language tools should be able to express,
in a compact form, the system design decisions related to the replication of computations.

Talking on a high level of abstraction, two approaches can be suggested to support replication
of computations in a language. The first is to define language constructs corresponding to each
aspect of the replication primitives. Clearly this approach leads to quite a tedious programming
effort because there may be a large number of process types and message types in the
applications to be dealt with. The second approach suggests defining a small number of high
level abstractions from which the default treatment of the run-time replication primitives is
derived. A combination of the approaches is also possible allowing the changing of the default
treatment of the primitives in desired special cases while most events are handled as derived
from the high level abstractions.

We will represent the language constructs as production rules of a language, like TNSDL
[TNG]. The left hand side of a rule is separated from the right hand side by "::=". Non-terminal
symbols are placed in parenthesis "<", ">". Terminal symbols are written in capital bold, e.g.
OF. Rules end in a semi-colon (;). Lists are represented by using recursive rules. A vertical bar
(|) stands for an alternative. We will not go into details of the possible language tool
implementation nor will we exactly follow the representation rules used in the TNSDL
grammar [TNG]. Our intention is limited to showing the possibilities of language tools in
helping the replication design work and setting the requirements for tool implementation.

The language tools should be able to produce the following:

1. delivery codes of the message types,

2. replication related message attributes:

 discard message if sender is a non-active computer,

 conditional replication of a message during the warm-up of the spare unit if the
"replication_mode_ok" of the sender is false and the "replication_mode_ok" of the
receiver is true,

 correction request attributes,

3. warm-up requests to warm-up control on the basis of the definition of the warm-up entity
classes.

We will now show how some of the above objectives can be reached using the second
approach. The presentation will rely on our target language, TNSDL. Useful abstractions for
our purpose are replication class and process attribute.

For the presentation to be self-contained a few features of TNSDL are needed. Systems
described in TNSDL are decomposed into system blocks, system blocks into service blocks,

125

and finally the service blocks into program blocks. Declarations may reside on any of these
levels while all the code resides in the program blocks. In program blocks there may be process
families and modules. Usual visibility rules of block structured languages apply to declarations
of the hierarchical blocks, families and modules. A block has an interface and an
implementation The implementation may contain references to lower level blocks and on the
program block level to process families and modules. The TNSDL block structure and other
main features have been explained e.g. in [Sea91].

9.1 Replication class declarations

The replication class concept was introduced in Chapter 5. Now we will define it as a language
construct:

<Replication class definition> ::= REPLICATION_CLASS <Replication class name>;

<Replication class name> ::= <name>;

Names of the replication classes have to be defined on one of the higher levels of block
hierarchy in a block structured language, like TNSDL. The usual scope rules also apply to the
replication class names. Processes can be attached to replication classes in the program block
implementation as follows:

<programBlockImplDeclaration> ::= <process references>| <otherDefs> |<Replication
definitions>;

<Replication definitions > ::=< process typeDef list>;

<process typeDef list> ::= <process typeDef list>,<process typeDef>|<process typeDef>;

The first rule shows how the replication definitions can be tied to the present TNSDL grammar
[TNG]. Replication definitions reside after the process decomposition of the program block has
been declared. Process attributes are qualifiers of process type which e.g. define the outlines of
how the run-time replication primitives are applied in conjunction with a process of that type.
We suggest to define one process attribute for this purpose. We will call it the Replication
mode attribute and it has four values, namely tightly modular, loosely modular,
primary/standby and cold.

A short informal interpretation and some examples of the use of values of the Replication mode
process attribute are useful. TIGHTLY_MODULAR is intended to be used e.g. for hand processes
in applications like call control and signalling. The LOOSELY_MODULAR scheme behaves as
TIGHTLY_MODULAR relative to the basic replication scheme. The difference is that automatic
correction propagation is not used towards LOOSELY_MODULAR processes. Example candidates
of LOOSELY_MODULAR processes are some statistical data collection processes in the DX 200
system. The PRIMARY_STANDBY attribute value can be used e.g. for master processes to cope
with the hand process allocation scheme which was presented in Section 5.1.3. The COLD
attribute value can be used e.g. for database service provider processes which offer stateless
services to call control applications.

The language constructs are:

<process typeDef> ::= <process type name> OF <Replication class name> IS <process
attribute>;

126

14-Apr-14

<process type name> ::= <name>;

<process attribute> ::= <Replication mode>;

<Replication mode> ::= TIGHTLY_MODULAR | LOOSELY_MODULAR | PRIMARY_STANDBY |
COLD;

How exactly TIGHTLY_MODULAR, LOOSELY_MODULAR, PRIMARY_STANDBY and COLD are
defined is a translator implementation issue but for example they can be defined as keywords or
as constants at the highest block level of a TNSDL system. From the translators point of view
the last rule then would actually read:

 <Replication mode> ::= <enum[1:4]>.

Default values for message attributes and delivery codes can be produced from these constructs
applying a set of rules. In the rules we will denote p - sender process type, q - recipient process
type, RC, RC1, RC2 - variables the values of which are replication class names. By  we will
denote the relation of belonging to a replication class.

The rules are:

if q is tightly_modular or q is loosely_modular

 q is modular

if p  RC and q  RC and q is modular

 delivery_code = own_computer

 conditional_replication_attribute = true

 destroy_in_non-active_unit = false

if p  RC and q  RC and q is primary_standby

 delivery_code = own_computer

 conditional_replication_attribute = false

 destroy_in_non-active_unit = true

if p  RC and q  RC and q is cold

 if p is cold or p is primary_standby

 delivery_code = own_computer

 conditional_replication_attribute = false

 destroy_in_non-active_unit = true

 else

 not allowed /* warning */

if p  RC1 and q  RC2 and RC1 ≠ RC2 and q IS MODULAR

 delivery_code = WO+SP

 conditional_replication_attribute = true /*don´t care */

127

 destroy_in_non-active_unit = true

if p  RC1 and q  RC2 and RC1 ≠ RC2 and (q IS PRIMARY_STANDBY or q IS COLD)

 delivery_code = WO

 conditional_replication_attribute = false

 destroy_in_non-active_unit = true

To implement these rules, one way or the other, the process attributes of the receiver have to be
available, when a send is executed. A possible way of doing this is to generate a global
process attribute table which is made directly available in all the computer units along the
message bus in our computing system. In this table an entry is needed for each process type.
Then either these rules could be used to generate code which is executed by the application
before each send or the run-time system could provide an enhanced send service.

Correction propagation requests can be handled assuming that the initial correction request is
defined as a constant attribute value in a message declaration and that the run-time system sets
the correction request attribute for the receiving process when a message with a correction
request attribute is received. This run-time process attribute is set to false at the end of the
transition. Then the language tool may use the following generation rule:

if p sends m to q and q IS TIGHTLY_MODULAR

 if correction request attribute of p is true

 set correction request attribute of m

If a choice between more than one correction method (e.g. the asynchronous error correction
tool and safe transitions) has to be made upon reception of a message with the correction
request attribute, this can be handled by defining a new value of the Replication mode process
attribute corresponding to each correction method. All these new values are refinements of the
above TIGHTLY_MODULAR replication mode. The run-time system can then make the choice
between the methods of correction by reading the value of the refined replication mode process
attribute.

9.2 Warm-up declarations

Tedious details of warm-up requests can be hidden from the application programmers by
defining a few additional qualifiers to supplement some of the language constructs of the
TNSDL language which were initially defined for non-replicated applications. Warm-up entity
classes may contain a number of data components declared as variables of a process or a
module. Only modules which belong to a program block also containing a process family may
have variables which have to be warmed up. Such variables are warmed up with the master
process of the family. The data components are:

a. statically allocated variables

b. dynamically allocated buffers

c. files or sets of data units of a file

128

14-Apr-14

Case (a) is simple because variables may be handled independently. In case (b) the buffer
handle data structure, buffer length and possibly a variable pointing inside the buffer have to be
bound together. In case (c) the warm-up method of the file, the possible decomposition of the
file into (identical) data units and the file number have to be declared.

To meet these needs the required language constructs are:

<variableDefinition> ::= DCL <variableModifier> <variableDeclarationList> end;

<variableModifier> ::= WITHWARMING | SAVE |<>;

SAVE is a qualifier used in procedure variable declarations and is of interest here only to tie up
the presentation to the initial TNSDL grammar [TNG].

<variableDeclarationList> ::= <variableDeclarationList>, <variableDeclaration>|
<variableDeclaration>;

<variableDeclaration> ::= <nonemptyVariableList> <typeName>

 | <VariableName> <typeName>(<TypeModifierList>)

 | <other types of variableDeclarations>;

<TypeModifierList> ::= <qualifier1>,<qualifier2>|<qualifier1>,<qualifier2>,<qualifier3>;

<qualifier1> ::= BUFFER | FILE_NOT_WARMED | FILE_WARMED_ENTIRELY |
FILE_SLICED_STATICALLY | FILE_LOADED_WITH_PROCESS_WARM-UP |
FILE_WARMED_CONTINUOUSLY ;

<qualifier2> ::= <length>| <fileNumber>;

<qualifier3>::= <farPointer_to_buffer> |<fileSliceVariable>;

How BUFFER, FILE_NOT_WARMED etc. are defined is a translator implementation issue but for
example they can be keywords or constants declared at the system level. So, again in the last
case the rule for qualifier1 would then actually read:

<qualifier1> ::= enum[1:6];

It is assumed that Type Modifier Lists may be bound to variables of Buffer_Handle type and
File_Handle type. Qualifier2 may carry the length of a buffer if the value of qualifier1 is
BUFFER or a file number in case of other values of qualifier1. Qualifier3 may carry the name of
a long pointer declared in an earlier declaration statement without the "WITHWARMING"
modifier, pointing to the buffer. Qualifier3 may also carry a variable of predefined type
"slice_info_type", which has been declared earlier and initialised in the START transition of
the process. It is assumed that this variable defines the data unit in a file to be warmed up with
the process.

Cases for files are

FILE_NOT_WARMED only the file handle is warmed up,
FILE_WARMED_ENTIRELY the whole file is warmed up together with the process in an

atomic action,

129

FILE_SLICED_STATICALLY a data unit of the file defined by qualifier3 is warmed up
with the process in an atomic action. Note that only in this
case the Slice Variable is needed,

FILE_WARMED_CONTINUOUSLY the file is warmed up separately from the process using the
algorithm for a set of separate data units in the spare unit
defined in Chapter 6.

FILE_LOADED_WITH_PROCESS_WARM-UP
 the file is loaded into the spare unit while the concerned

process is frozen just after the process was warmed up.

The translator has to keep all the variables to be warmed up in a continuous data structure to
meet the warm-up request interface specification. It should be possible for the translator to
ignore the warm-up qualifiers if at translation time this is desired. When the warm-up qualifiers
are taken into account the translator produces the warm-up request code of the master process.
For each hand process type, the translator produces a function returning a data structure which
carries information about the data components to be warmed up in conjunction with the hand
process type. The master process can then call these functions.

The described warm-up support has been implemented in the TNSDL translator.

An alternative implementation approach would be to generate a data table from the warm-up
qualifiers and augment the executable code with this table. Then the run-time tools would have
to understand the structure of the table and how to find it in a program block executable image.
This approach seems cleaner, but at the time when these features were first used, had the
practical disadvantage of binding together tool development with the system development in a
project possibly with tight time schedules.

130

14-Apr-14

10 Evaluation of the Solution

10.1 Performance Cost of Replicated Computations

From the beginning we have been looking for a solution to the problem of replicated
computations which would bear no more than a non-significant performance overhead
compared to the case of non-replicated computations. One of the reasons why we did not start
our replication design with an atomic broadcast protocol was the expected performance
penalty. Did we meet our initial goal for our target applications? We will use the message count
measure to answer this question qualitatively. For clarity we define non-significant
performance overhead as a few tens of percents (20-30%) overhead by the message count
measure.

Let us take an example of a process configuration handling a call. The example is close enough
to how call processing is done in the DX 200 system to be representative for our target system.
In the configuration there are 3 state oriented processes in the incoming (A) unit and two
processes in the outgoing (B) unit. The whole message budget for the non-replicated call
computation is 200 messages. One of the units (let us assume A) is a 2N redundant unit while
the other is N+1 redundant.

When the computation is replicated (in the 2N unit) using the basic scheme, message cost
penalty for this under the no-failure assumption is:

 two messages/process allocation

 two messages/process release

 no time-out synchronisations because time-outs are only set and deleted

The cost is: C1 = 12 messages, which is a 6% addition to the total message budget. Note that
we assumed that wo+sp deliveries bear no performance penalty because the multicast is
supported by hardware and it is assumed that all the state oriented processes working on the
same call in a computer unit belong to the same replication group.

What is the message cost penalty for changing all the transitions into safe transitions? For the
calculation, we have to know the number of messages received by the three 2N replicated
processes (we will denote this number S). Bearing in mind that there are a number of other
processes involved in handling the call which communicate with the processes of the state
oriented execution group mentioned above, we will assume that S = 60.

The cost penalty under the no-failure assumption is:

 two external messages/received message with the correction request attribute,

 two internal messages/received message with the correction request attribute.

Cost C2 = 4  60 = 240 messages, which is significant. The overall message budget of a call is
more than doubled, and even if we ignore the internal messages in the safe synchronisation
algorithm, the increase is 60%, which is also unacceptable. But if we add the correction

131

requests only to the carefully selected important events, the performance cost is much lower.
The cost per important external event is:

ci = 3  4 = 12 messages, which represents a 6% increase to the overall message budget.

What level of performance penalty should we expect if we would use a reliable multicast
protocol on the basic level of the replication scheme? As an example we will take the rel/RELfifo
protocol having the Fifo Multicast property suggested in [Ez91]. The protocol requires the
message being sent twice and each of them being acknowledged, so the message count is
quadrupled if we have one sender and a paired receiver, and there are no failures, which is
assumed to be the representative case. Optimisation of the acknowledgements seems possible,
when there happen to be suitable messages available to also carry along the acknowledgements.
We assume that such suitable messages could be in our case only application level
acknowledgements. If application level acknowledgements are assumed, then the low level rel
-protocol acknowledgements are excessive anyway from a global perspective. So for fair
comparison, we should assume that the protocol is on its own.

Consequently, starting to build the replication scheme from reliable atomic broadcast protocol,
we should expect that:

 all internal messages of a computer unit are substituted by external messages,

 the message count per one call computation would be quadrupled or, if optimisation is
possible, at least doubled.

In any case, clearly the performance overhead by message count measure would not be non-
significant and would not leave space for the possible additional messages required by the
higher layers of the replication scheme in the total message budget. Because all the messages
would be delivered through the message bus, a performance bottle-neck would be created in the
message bus interfaces.

Consequently, assuming that our example process configuration is representative, we can see
that the performance penalty for the replication of call computations is non-significant if the
suggested basic replication scheme is used and on top of that no more than two or three
external events are handled by safe transitions propagated through all the state oriented
replicated processes. This is enough to exclude the need to allocate some portion of the
premature release requirement R1 defined in Section 2.3.2 to the replication scheme. Any
alternative hypothetical replication scheme built on top of a reliable atomic multicast protocol
should be expected to bear a significant performance penalty.

10.2 Design Rules Imposed on the Applications

In Section 6.6 we already discussed some useful design rules that should be followed by
replicated applications to comply with the requirements of the warm-up services. In Section
5.2.1 we introduced the replication group concept. We expressed our hope that all the state
oriented processes of a computation could reside in one replication group. However, we did not
try to identify any restrictions to this "rule".

Let us look at an example of a call computation of the previous section. If the data identifying
the circuits used by the call would be inconsistent in the spare and the active process, this could
lead the computer unit to mix up the circuits of the calls it handles after unit changeover. Such

132

14-Apr-14

an error would be possible if data about free circuits from the spare side was used by the state
oriented processes on the spare side. This could not happen if the process executing the search
algorithm and the users of this data are put in separate replication groups. This is an example of
how events carrying important information may influence the membership of processes in
replication groups and restrict the size of the replication groups, e.g. in the DX 210
configuration.

Another example is when the charging is started by one of the state oriented processes on the
incoming side. We want that this important decision on the CONNECT message from the
outgoing side is taken simultaneously by both the active and the spare process. To a certain
extent this can be helped by putting the incoming side processes and the outgoing side
processes in separate replication groups even in the DX 210 configuration. In a large
configuration there would always be two separate replication groups because the processes may
and usually do reside in different computers.

An heuristic generalisation of the previous examples is: If we want to restrict error cascading
in the spare computation through a chain of processes or want to minimise the computation
skew of some of the replicated transitions in the computation, it is recommended that the
process chain is broken down by a replication group boundary. The boundary is put next to the
source of the potential error and next to the process hosting the transition which we want to
start without computation skew.

10.3 Transparency of the Replication Scheme

The suggested replication scheme is not fully transparent. However, application experience of
the first users of the replication primitives including the basic scheme and the warm-up services
has shown that when the requirements imposed by the replication scheme on the application are
understood, changing an initially non-replicated code into a replicated one using also the active
warm-up services takes only from a few hours to a couple of days even while the full TNSDL
support was not implemented yet. Additionally, some amount of testing is necessary. This is a
vast improvement over the previous situation where the replication issues had to be handled
without any kernel support by the applications. Then the same work could take months. There
are additional savings in the efforts for the specification phase because the replication scheme
requires a set of design rules to be followed. In such a situation you do not tend to invent the
wheel again. The achieved level of transparency also means that if need be the replication
scheme or its implementation could be changed without drastically influencing the applications
as long as the new model or implementation are at least as transparent to the applications as the
present one. So, we can say that the modularity of the whole system has been improved by the
replication support of the kernel.

To finalise this issue, we will make a list of visible features of the replication scheme from the
designer's point of view:

 system design effort is required to group the processes into replication groups for the sake
of performance optimisation and to make sure that the application is structured in such a
way that the system does not become too complex for the warm-up to handle,

 description of the replication groups is made using the TNSDL features described in
Chapter 9,

 time-outs to be synchronised from the active to the spare are selected and the actual
parameters of the calls for setting the time-outs are checked,

133

 the data components to be warmed up in connection with a process type are chosen and
their description is augmented by the required warm-up qualifiers,

 whether some particular warm-up order is required for the processes or not is checked. If
the answer is yes, this information is written into a new version of the constant data tables
describing the warm-up order,

 possible important events are chosen and the correction request attributes are set into the
corresponding messages,

 a software build is made, system test is set up and performed.

10.4 Contribution to Knowledge

The basic replication scheme, the warm-up algorithms, the warm-up data qualifiers in the
TNSDL language and the basic error correction tool have been implemented in the target
system. There are also a number of public network and GSM application programs which use
these tools.

To our knowledge this is the first paper on software supported replicated computations in a
distributed switching environment. This is why we used a lot of space discussing the basic
requirements to be met by replicated computations in a switching system. To ensure that we
stay strictly in the realm of real world problems and for the information of those who are not
experts on switching, the replication related features of the target environment were described
in Chapter 1. In Chapters 2 and 3 we saw that the relevant requirements on replicated
computations are different from the requirements which have been tackled in other application
areas of fault-tolerant computing, like long-life systems, life-critical systems and transaction
processing systems. Probably this is why we did not find a satisfactory replication solution in
the extensive literature written on the replicated computations in those other application areas.
So, we came to the conclusion that a new switching oriented replication solution was needed.
In Chapter 4 and sections 5.1, 5.2, 6.2, and 7.1 we introduced modelling tools to help us to
discuss the properties of the replication scheme. The model of computation was based on the
Asynchronous Communication Tree model supplemented with data units and their values.
Information can be passed from one process to another in messages as well as through read and
write actions to the data units. In Chapters 5, 6 and 7 we described the replication scheme
which was structured as a set of tools.

The model of computations is presented in Definition 4.8 augmented by definitions 5.7 and 5.8.
Definition 5.3 defines what we mean by a replicated computation.

The approach of starting from an eventual convergence model as opposed to aiming at
instantaneous correctness at the basic level of the model has been identified before[e.g. Co85].
Examples of true development of such an approach are to our knowledge, however, non-
existent.

In Section 5.2.1 the replication group concept was introduced. This allows the replication of
larger objects than processes. The consequent properties of the scheme were discussed in
Section 5.4 and Lemmas 5.9, 5.10 and 7.1. It was concluded that the replication group concept
is an optimisation tool having a trade-off between reliability and performance. To our
knowledge such a feature has not been incorporated into any of the replication models known
so far. This is not surprising because such a concept would obviously not fit well together with
a replication scheme aiming at instantaneous correctness. In the current implementation, this
tool is available but is not in particularly wide use due to message ordering problems predicted

134

14-Apr-14

in the theory and due to the abundance of performance available with the current hardware.
Internal messages are, however, used in specific situations where this does not increase the
probability of an error.

In Chapter 6 a thorough analysis of necessary and sufficient conditions of success of migration
of computations was made. The challenge of the task was based on the fact that message
passing is not the only means of sending information from one process to another. However,
based on our model of computations we managed to find a solution covering the warm-up of
processes and data units. The results of the analysis were implemented in sections 6.3 and 6.4
by two real-time algorithms for migration or warm-up of computations without roll-back
features. By this we mean that none of the application transitions are re-executed by the spare
computer to catch-up with the active unit. Due to the fact that roll-back is not needed, the
algorithms are well suited to the real-time requirements of switching. To our knowledge, such
algorithms have not been described before. These algorithms are based on the concepts of
warm-up entity (Definition 6.8), warm-up entity class and warm-up order (Definition 6.10). To
our knowledge, such a set of concepts is also a new item which has not been developed before.

In Chapter 7, several corrective replication tools augmenting the basic replication tool were
introduced. Much attention was given to the safe transition tool. The consistency properties of
this tool were formulated by using the modelling tools of Chapter 4, Lemma 7.1 and Definition
7.2. The safe transition tool allows the addition of conditional instantaneous correctness25 to a
replicated computation in conjunction with selected important events.

In modelling the semantics of computation, the work done in [Lin91] on using Asynchronous
Communication Trees (ACT) was taken as a basis. The model of [Lin91] was initially
supplemented with data units as an alternative of message passing in information exchange
between processes (Definition 4.8). The data units were introduced as an abstraction of the
memory resident files which are extensively used in the target system. Later in Chapter 5 the
model of computations was augmented with the creation and deletion of processes and used to
model replicated computations (Definitions 5.7 and 5.8). In Chapter 6, due to the model of
computations, we were able to formally define how the atomic warm-up entities can be
constructed (Definition 6.8) as well as to introduce the warm-up order (Definition 6.10). In
Chapter 7, Lemma 7.1 due to the model of computations, we were able to show how replication
errors may propagate in a system of processes and data units and under what conditions
restricted correction of the state of a spare computer unit, infected by a replication error, can be
successful.

In Chapter 8, the well known Markov's reliability modelling techniques were used to
investigate the properties of the basic replication scheme and to compare different corrective
replication tools. From the model of a replicated call computation, by comparing the
performance of the replication tool with the premature release requirement for established calls
(R1 in Section 2.3.2) we obtained a qualitative estimate of the requirement for the mean time
between failures of the basic replication tool. The tool has to meet this requirement to be
applicable as such to call computations.

On the basis of an educated guess, the basic error correction tool was found to give a decrease
in unreliability of the replication scheme by 7 times for call computations. The asynchronous
error correction tool was found to perform better, giving a decrease of unreliability of the
replication scheme compared to the basic scheme on the order of a hundred times for call
computations. The comparison further allowed us to discard one of the tools suggested in
Chapter 7, namely the time-out triggered synchronisation.

25Definition 7.2.

135

In Chapter 9, the possibilities of language tools to enhance the transparency of the replication
scheme to the application programs were discussed. With the suggested language features, the
replication design decisions that have to be made, can be incorporated into the applications in a
declarative fashion.

Two questions have to be asked. First, how target environment dependent are our results? We
claim that at least the above mentioned new items to knowledge are generally attractive
features of replicated computations in any distributed switching system aiming to meet the
availability and reliability requirements for the public switches set by the CCITT and offering
convenient capabilities to the operator to reallocate the processing resources of the system. This
does not exclude the possibility of finding other valid solutions to meet those requirements. The
results may also be of interest in other possible application areas where systems with low levels
of redundancy (N+M, where N is the number of active machines, M the number of spares and
M < N) are used.

Second, does the developed replication scheme meet the requirements and design goals set at
the beginning of this thesis? Our reasoning has been that the basic scheme gives us a certain
grade of service and if the achieved grade of service is not enough, we have shown that with
the corrective tools it can be improved to the level required. So, we hope that this last chapter
has convinced the reader that the answer is a definite yes.

In fact the (not formally collected) field experience so far indicates that the basic replication
scheme, which has been applied to several types of applications except call control and
signalling, has not caused any real trouble and is performing better than expected by the kernel
development team.

10.5 Further development

The wider range of applications, using the replication tools, than originally anticipated raises
requirements for further development of the replication tools as well as calls for improvements
in the design practice to ensure compliance to the design rules and recommendations imposed
by the replication tools. The improvements in the design practice could be supported by
improvements in the design tools. These include the full range of TNSDL support for the
description of replication groups presented in Chapter 9 and better debugging tools.

Improvements in the implementation of the run-time replication tools that have now been
identified include:

 an optimised and safer implementation of the hand allocation protocol well suited for
TNSDL applications,

 a performance optimised variant of the hand release procedure,

 a performance optimised warm-up by skipping the warm-up of free hands,

 better phasing of the overall warm-up by announcing the spare state only after the master
processes have been warmed-up.

A customer requirement addressing the original application scope of the run-time replication
tools has now been raised: a graceful unit changeover initiated by an operator command should
be clean. With the current implementation most times at least one error is indicated. These
errors are of the type expected in this study; e.g. a call in the set-up phase is lost or some
trouble is caused by the failure of the simple multi-cast protocol as discussed in Section 5.3.1.
This particular customer requirement, as well as the needs of added reliability of a wide range

136

14-Apr-14

of applications other than call control and signalling, could be addressed by the implementation
of the safe transition tool presented in Chapter 7. Additional work is needed on the multi-cast
protocol either to eliminate or avoid the loss and duplication of messages during the unit
changeover. The severe performance requirements identified in this study also apply to any
improvements of the multicast protocol, provided that such improvements are meant for
general and frequent use by applications which are critical in terms of system performance.

10.6 Conclusion

In general, there are very few academic technical papers on fault-tolerance of switching
systems. We hope that this thesis inspires others to make contributions in this area and fill the
obvious gap. From my part I can say that writing this thesis has been a useful exercise; it has
contributed to the identification of problems and the solution of new issues which were raised
during the introduction of the replication tools into the target system. It has also helped to
understand how, why and why not some existing solutions work and what can be done to
improve them.

Our track record shows that the replication services themselves have contributed to the rapid
implementation of e.g. replicated call control, signalling and statistics collection applications
although the debugging of such applications is still felt to take too long. An example of
applications using the described run-time and the corresponding design tools are Nokia's GSM
network elements based on the DX 200. Where bigger suppliers had considerable difficulties
Nokia succeeded in the timely introduction of the whole range of GSM network elements
partially due to the language and replication tools which we have described in this thesis.

The experience is that the effort put into the design of the replication scheme has certainly been
worthwhile and has already paid off in the DX 200 environment during the first couple initial
years of application.

137

 REFERENCES

[Af] Aflatuni, Availability Performance of Digital Switching System DX 200,
Telenokia Specification CAN 2038.

[Ag] Gul Agha, Supporting Multiparadigm Programming on Actor Architectures,
Department of Computer Science Yale University, New Haven, Connecticut,
USA.

[Ag86] G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems,
MIT Press, Cambridge, Mass., 1986.

[Ar89] M. Arppe, E. Hartikainen, R. Kantola, A. Muittari DX 200 F5 Lämmityksen
periaatteet, Telenokia company document 1989.

[Ar90] The Arjuna System, Selected Papers 1987-90 Computing Laboratory University
of Newcastle upon Tyne, Claremont Tower, Claremont Road, Newcastle Upon
Tyne, NE1 7RU.

[Ba81] Joel F. Bartlett, A NonStop Kernel in Proceedings of the Eighth Symposium on
Operating System Principles, Dec. 1981, pp. 22-29 by ACM. Also in John A.
Stankovic (ed.) Reliable Distributed System Software IEEE Computer Society
press, 1985.

[Bir] P. Birman, T.A. Joseph, Exploiting replication in distributed systems Ch. 15 in
Sape Mullender (ed.) Distributed Systems ACM Press, New York, Addison-
Wesley Publishing Company.

[Bi85] P. Birman, Replication and Fault-Tolerance in the ISIS System. In Proceedings
of the Tenth Symposium on Operating System Principles, pp79-86, Orcas Island,
Washington, Dec. 1985.

[Bl90] David L. Black, Scheduling Support for Concurrency and Parallelism in the
Mach Operating System, IEEE Computer Vol. 23, No 5 May 1990.

[Bo87] Anita Borg, Fault Tolerance by Design, Unix Review, April 1987.

[Ch88] R. Cheriton, The V Distributed System, In Communications of the ACM Vol 31,
No 3 pp.314-333, March 1988.

[Cl86] Clement, P. K. Giloth, Evolution of Fault Tolerant Switching Systems in AT&T.
In Evolution of Fault-Tolerant Computing. In Honor of William C. Carter,
Baden, Austria, 30 June 1986.

[Co85] Eric Charles Cooper, Replicated Distributed Programs Ph.D. dissertation, Report
No UCB/CSD 85/231 May 1985 PROGRES Report No. 85.5 Computer Science
Division (EECS) University of California Berkeley, California 94720.

[Da88] Dasgupta, R. J. LeBlanc Jr., W.F. Appelbe The Clouds Distributed Operating
System, The 8th International Conference on Distributed Computing Systems,
IEEE, June 1988.

138

14-Apr-14

[Ez91] Paul D. Ezhilchelvan, Santosh Shrivastava A Distributed Systems Architecture
Supporting High Availability and Reliability, Computing Laboratory, University
of Newcastle upon Tyne, England, UK.

[Gl84] Glazer, Fault Tolerant Mini Needs Enhanced Operating System Computer
Design, August 1984. Pennwell Publishing Company. Also in Victor P. Nelson
and Bill D. Carroll Tutorial: Fault Tolerant Computing IEEE Computer Society
press.

[Gr81] David Gries, The Science of Programming, Springer Verlag, 1981.

[Jo87] D.Johnson, W. Zwaenepoel, Sender-Based Message Logging. In Proceedings of
the 17th International Symposium on Fault-Tolerant Computing pp.14-19,
Pittsburgh, Pennsylvania July 1987.

[Ka87] Raimo Kantola, DX 200 F5, Varmennuksen periaatteet, internal Telenokia
document, 1987.

[Ka88] Raimo Kantola, DX 200 F5, Varmennuksen periaatteet, internal Telenokia
document, 1988.

[LA89] Ari Lehtoranta Puhelinkeskuksen DX 200 käytönohjaustietokoneen
varmentaminen, 1989. Diplomityö, HTKK, Sähkötekniikan osasto.

[Lin91] Augmenting SDL specifications with LOTOS behaviour expressions, Markus
Lindqvist and Heikki Tuominen, in Software Engineering Environments, vol. 3.

[Ma89] Mancini, S. K. Shrivastava, Replication within Atomic Actions and
Conversations: A Case Study in Fault-Tolerance Duality. In Proceedings of the
19th International Symposium on Fault-Tolerant Computing pp. 454-461, 21-23
June 1989 Chicago, Illinois.

[Mo89] Michele Morganti, F-T in Telecommunications Networks: State, Perspectives,
Trends. In Proceedings of the 19th International Symposium on Fault-Tolerant
Computing pp. 253-258, 21-23 June 1989 Chicago, Illinois.

[Mu90] Sape J., Mullender, Guido van Rossum, A. S. Tanenbaum, etc. Amoeba: A
Distributed Operating System for the 1990s. Computer Vol. 23, No 5 May
1990.

[Mu86] Mullender, A.S. Tanenbaum, The Design of a Capability-Based Distributed
Operating System, In The Computer Journal, Vol 29, No 4, 1986 pp. 289-300.

[NaTa] Natarajan, J. Tang, Kernel Mechanisms for Distributed Real-time Programs,
Seventh Annual Int. Phoenix Conference on Computers and Communications,
March 1988.

[Ne87] Victor P. Nelson and Bill D. Carroll, Tutorial: Fault Tolerant Computing IEEE
Computer Society press, 1987.

[Ne56] J. von Neumann, Probabilictic logics and the synthesis of reliable organisms
from unreliable components, In Automata Studies, ed. by C. E. Shannon and J.
McCarthy, Princeton University Press, 1956, pp 43-98.

[Pe80] M.Pease, R. Shostak, L. Lamport. Reaching agreement in the presence of faults.
Journal of the ACM 27(2), April 1980, pp228-234.

139

[PuAf] T. Purho, Z. Aflatuni, J. Soitinaho Operational Reliability of the DX 200
Switching System, Proceedings of the Annual Reliability and Maintainability
Symposium, IEEE, 1987.

[Q.7XX] Blue Book -Fascicle VI.7 Spesification of Signalling System No 7.
Recommendations Q.701 - Q716.

[Q.543] CCITT, Blue Book. Recommendation Q.543.

[Re89] Robbert van Renesse, A. S. Tanenbaum, S.J. Mullender, The Evolution of a
Distributed Operating System. In W.Schröder-Preikschat, W.Zimmer (Eds.),
Progress in Distributed Operating Systems and Distributed Systems Management
European Workshop, Berlin, FRG, April 18/19, 1989 Proceedings Pub. in
Lecture Notes in Computer Science Springer-Verlag.

[Re84] Rennels, Fault-Tolerant Computing - Concepts and Examples IEEE Transactions
on Computers, Vol. C-33, No 12 Dec. 1984, pp.1116-1129. Also in Victor P.
Nelson and Bill D. Carroll Tutorial: Fault Tolerant Computing IEEE Computer
Society press.

[Sc83] R.D. Schlichting, F. B. Schneider, Fail-stop processors: An approach to
designing fault-tolerant computing systems. ACM Transactions on Computer
Systems 1(3), August 1983, pp 222-238.

[Sc84] F.B. Schneider, Byzantine generals in action: Implementing fail-stop processors.
ACM Transactions on Computer Systems 2(2), May 1984, pp145-154.

[Sea91] E. Kettunen, M. Lindqvist, E. Ruohtula, H. Tuominen, A Seamless Software
Production Process Based on TNSDL, Nokia Telecommunications, Proceedings
of the TELECOM-91, Geneva 1991.

[Si89] Jon Silverman, T.Raeuchle, H. Madduri, Programming Fault-Tolerant
Distributed Applications in HOPS, Proceedings of the Eighth Annual
International Phoenix Conference on Computers and Communications March
1989.

[Sn84] Snead, Frank Ho, B. Engram Operating System Features Real Time and Fault
Tolerance, Computer Design August 1984.

[Sp89] Speirs, P. A. Barrett, Using Passive Replicates in Delta-4 to provide Dependable
Distributed Computing, In Proceedings of the 19th International Symposium on
Fault-Tolerant Computing pp. 184-190, 21-23 June 1989 Chicago, Illinois.

[SSh90] Santosh K. Shrivastava, P. D. Ezhilchelvan, N. A. Speirs, D. T. Seaton, Fail-
Controlled Computer Architectures for Distributed Systems, Computing
Laboratory, University of Newcastle upon Tyne, NE1 7RU, UK.

[SY85] Strom, S. Yemini, Optimistic Recovery in Distributed Systems. ACM
Transactions on Computer Systems, 3(3), pp.204-226, August 1985.

[Th89] Thambidurai, A. M. Finn, R. M. Kieckhafer, J. C. Walter, Clock Synchronization
in MAFT, In Proceedings of the 19th International Symposium on Fault-
Tolerant Computing pp. 142-149, 21-23 June 1989 Chicago, Illinois.

[TNG] E. Ruohtula, P. Hjort, M. Lindqvist TNSDL Grammar version 1.8. Nokia
Telecommunications Jan. 1991.

[TNS91] M. Lindqvist, E. Ruohtula, E. Kettunen, H. Tuominen The TNSDL Book, Third
Draft Edition Telenokia, March 1991.

140

14-Apr-14

[To78] Toy, Fault Tolerant Design of Local ESS Processors, in Proceedings of the IEEE,
vol. 66 No.10 Oct.1978 1126...1145. Also in Victor P. Nelson and Bill D.
Carroll Tutorial: Fault Tolerant Computing IEEE Computer Society press.

[Tr89] Tripathi, An Overview of the Nexus Distributed Operating System Design IEEE
Transactions on Software Engineering. Vol 15, No 6, June 1989.

[We78] Wensley, L.Lamport, etc. SIFT: Design and Analysis of a Fault-Tolerant
Computer for Aircraft Control, in Proceedings of the IEEE Vol.66 No.10,
Oct.1978, 1240...1255. Also in Victor P. Nelson and Bill D. Carroll Tutorial:
Fault Tolerant Computing, IEEE Computer Society press.

[Ya89] Takahiko Yamada, Satoshi Ogawa, Fault Tolerant Multiprocessor for Digital
Switching Systems. In Proceedings of the 19th International Symposium on
Fault-Tolerant Computing pp. 245-252, 21-23 June 1989 Chicago, Illinois.

[Yi80] Ying W.NG, Algirdas A. Avizienis, A Unified Reliability Model for Fault-
Tolerant Computers IEEE Transactions on Computers, Vol. C-29, No 11, Nov
1980 1002...1011. Also in Victor P. Nelson and Bill D. Carroll Tutorial: Fault
Tolerant Computing IEEE Computer Society press.

[zB90] Özapl Babaoglu, Fault-Tolerant Computing Based on Mach ACM Special
Interest Group on Operating Systems SIGOPS Vol. 24 No.1 Jan 1990 p.27...39.

[Z.100] CCITT Specification and Description Language SDL. CCITT Recommendation
Z.100, Geneva, March 1988.

141

Appendix 1: Resynchronisation

Notation: Rwo is the hand process in the active unit,

 Rsp is the corresponding hand process in the spare unit,

 Inque is the incoming message queue of a process,
 By freeze operation a process is put into a state in which it will not be given

any CPU time and thus all new incoming messages will be queued.

Active unit Spare unit

Warm-up control: Warm-up control:
state=idle state=idle
DO FOREVER DO FOREVER
 main-receive main-receive
 if state=idle and RESYN_REQ if state=idle and RESYN_SP
 freeze Rwo freeze Rsp

 if RESYNC ALLOWED if Rsp in main-receive

 send RESYN_SP Lrsp = Rsp_inque_length

 set rT send SLEEP_ACK
 state=wfS set rrT
 else state=wfD
 send RESYN_ACK(wo+sp,NOK) else
 defreeze Rwo send NACK_SLEEP

 fi defreeze Rsp

 elseif state=wfS and SLEEP_ACK fi
 if INQUE(Rwo) = empty elseif state=wfD and DATA

 send DATA->SP if Lrsp > 0

 if not LAST delete first Lrsp

 state=wfA messages in Rsp inque

 else Lrsp = 0

 state=wfE fi
 fi write DATA
 else if not LAST
 send RESYN_ACK(wo+sp,NOK) send ACK_OK
 defreeze Rwo else

 send NACK_END send END_OK
 reset rT set "Replication mode ok"
 state=idle defreeze Rsp

 fi reset rrT
 elseif state=wfS and NACK_SLEEP state=idle
 send RESYN_ACK(wo+sp,NOK) fi
 defreeze Rwo elseif state=wfD and (NACK_END

142

14-Apr-14

 reset rT or rrT=0)
 state=idle defreeze Rsp

 elseif state=wfA and ACK_OK state=idle
 send DATA->SP fi
 if LAST ENDDO
 state=wfE
 fi
 elseif state=wfE and END_OK
 set "Replication_mode_ok"
 send RESYN_ACK(wo+sp,OK)
 defreeze Rwo

 reset rT
 state=idle
 elseif state= not idle and rT=0
 send NACK_END
 send RESYN_ACK(wo+sp,NOK)
 defreeze Rwo

 reset rT
 state=idle
 fi
ENDDO

143

Appendix 2: Safe Synchronisation

Notation: Rwo is the (hand) process executing the safe transition in the active unit,

 Rsp is the corresponding spare process.

Active unit Spare unit

Begin_Safe_Trans(safety prop.msg) Begin_Safe_Trans(safety prop. msg)
 if SP exists send SAFSYN_IND to SP
 select free SYNC SERVER SYNC SERVER
 send SAFSYN_REQ to WO SYNC SERVER receive-with-timeout SAFSYN_ACK
 receive-with-timeout SAFSYN_ACK if SAFE SYNC was OK
 if SAFE SYNC was OK set "Replication mode ok"
 set "Replication mode ok" cascade time-limits
 cascade time-limits fi
 fi return
 fi END
 return
END
 SYNC SERVER:
SYNC SERVER state = idle
Notify: I am free DO FOREVER
state = idle main-receive
DO FOREVER if state= idle and SAFSYN_SP
 main-receive if safety prop.msg has NOT arrived
 if state=idle and SAFSYN_REQ to Rsp
 if SYNC- ALLOWED write safety prop. msg
 count WO_CHSUM to Rsp inque last from SAFSYN_SP
 send SAFSYN_SP fi
 set rT set ssT
 state=wfA state=wfRsp
 else elseif state=idle and SAFSYN_IND
 send SAFSYN_ACK(wo+sp,NOK) set ssT
 Notify: I am free state=wfWo
 fi elseif (state=wfWo and SAFSYN_SP)
 elseif state=wfA and ACK_OK or(state=wfRsp and SAFSYN_IND)
 if INQUE(Rwo) has not changed reset ssT

 DO while not LAST and less than N count SP_CHSUM
 send DATA ->SP if WO_CHSUM=SP_CHSUM
 count messages send SAFSYN_ACK(wo+sp,OK)
 state=wfE state = idle
 OD else
 else write DATA from SAFSYN_SP
 send SAFSYN_ACK(wo+sp,NOK) if LAST
 defreeze Rwo send SAFSYN_ACK(wo+sp,OK)

 send NACK_END_TO_SP state = idle

144

14-Apr-14

 reset rT else
 Notify: I am free set rrT
 state idle state = wfD
 fi send ACK_OK
 elseif (state=wfA or wfE) and rT=0 fi
 Notify: I am free fi
 state=idle elseif state=wfD and DATA
 fi write DATA
ENDDO if LAST and all synchoronised
 reset rrT
 send SAFSYN_ACK(wo+sp,OK)
 state=idle
 fi
 elseif (state=(wfRsp or wfWo) and ssT=0)
 or (state=wfD and rrT=0)
 send SAFSYN_ACK(wo+sp,NOK)
 state=idle
 elseif state=wfD and NACK_END_TO_SP
 reset rrT
 state=idle
 fi
 ENDDO

