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Literature data concerning thermodynamic data for BaO including melting point, heat
capacity, enthalpy increment, enthalpy of formation and entropy of formation were reviewed.
The phase diagram data of the BaO-MgO, BaO-CaO, BaO-Al2O3 and BaO-SiO2 systems were 
evaluated and taken into account in the thermodynamic assessment in the present work. 
Associate model was employed to describe the liquid phase in the BaO-Al2O3 and BaO-SiO2 
systems. Four sets of consistent thermodynamic parameters, which can explain most of the 
experimental data of the BaO-MgO, BaO-CaO, BaO-Al2O3 and BaO-SiO2 systems, were achieved. 
The calculated phase diagrams of BaO-MgO, BaO-CaO, BaO-Al2O3 and BaO-SiO2 systems were 
provided. By employing the optimized thermodynamic parameters, mixing of enthalpies of the 
liquid phase for the four systems and heat capacities for BaAl2O4 and BaAl12O19 were calculated 
and compared with the literature values. 
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1 Introduction
Phase relations in multi-component oxide systems are generally

complicated and difficult to investigate because of high temperatures for

experiment. A proper multi-component oxide database should be established

to improve the study of complex BaO-containing oxide systems. By

thermodynamic evaluation of the MgO- CaO-Al2O3-SiO2 system with

additions of BaO, it’s beneficial to complete the complex oxide databases,

such as Mtox database used in smelting and refining [1].

In  this  work,  the  binary  systems  BaO-MgO,  BaO-CaO,  BaO-Al2O3 and

BaO-SiO2 were assessed using the CALPHAD (CALculation of PHAse

Diagram) method. The achieved thermodynamic parameters can be served as

the foundation for the future experimental research about the ternary and

quaternary systems in the BaO-MgO- CaO-Al2O3-SiO2 system. For the sake of

simplicity,  abbreviations B,  A and S were used to represent BaO, Al2O3 and

SiO2,  respectively.  In  the  following  study  the  abbreviations  thus,  B10A,  B8A,

B7A, B5A, B4A, B3A, BA, BA6, BS, B3S, B2S, B2S3, B5S8, B3S5 and BS2 stand for

the compounds Ba10Al2O13, Ba8Al2O11, Ba7Al2O10, Ba5Al2O8, Ba4Al2O7, Ba3A2O6,

BaAl2O4, BaAl2O19, BaSiO3, Ba3SiO5, Ba2SiO4, Ba2Si3O8, Ba5Si8O21, Ba3Si5O13

and BaSi2O5, respectively, if not stated otherwise.
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2 Review of the experimental data

2.1 Thermodynamic data for BaO

The thermodynamic data for BaO phase including melting point, heat

capacity, enthalpy increment, enthalpy of formation and entropy of formation

have  been  measured  and  assessed  by  various  authors  [2-20].  In  order  to

make the thermodynamic calculation in present work accurate and consistent,

the thermodynamic properties of BaO from the database optimized by Zhou

et al. [21], Zimmermann et al. [22], and SGTE substance database 1994

(SGTE94) [23] were evaluated and compared with the experimental results in

the literature.

Discrepancy exists for the melting point reported by Moissan [2],

Schumacher [3], Foex [4], Glushko [5], Chase et al. [6] and Seo et al. [7].

Their results are listed in Table 1. It can be seen that the value by Schumacher

[3], 2196 K, is lower than those obtained in the other works [2, 4-6]. Foex [4]

pointed out that the low value was probably caused by a contamination with

tungsten oxide that might have been formed on the surface of the boat after

the initial heating. The measured results of Foex [4] and Glushko [5] and the

calculated one [7]  only hold only 3-4 K differences from that  of  Chase et  al.

[6].  The melting point  of  2286 K from Chase et  al.  [6]  was accepted in this

work.  It  represents  the  average  temperature  obtained  when  the  data  by

Schumacher [3] are not considered.

Table 1. Thermodynamic data for the BaO phase per mole of the molecule.

Compound Melting

point, K

Enthalpy of formation

at 298.15 K (kJ/mol)

Entropy of

formation

at 298.15 K

J/mol/K
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Experimental data

BaO 2273   [2]

2196    [3]

2283   [4]

2290   [5]

2286    [6]

-548.1±2.1

-530.70

-560.82

-556.48

-552.71±0.2

-548.02±0.47

-546.16±0.54

-581.83±0.7

[6]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

72.07±0.3

70.29±0.3

65.90±0.1

70.01±0.1

[6]

[8]

[9]

[10]

Calculated data

2290   [7] -548.06

-553.36

-548.10

[21]

[22]

[23]

70.29

69.98

72.07

72.07

[8]

[21]

[22]

[23]

The heat capacity at ambient temperature was experimentally investigated

by Anderson [8], Gmelin [9] and Cordfunke et al. [10]. These values extend

between  55  and  300  K,  4  and  300  K,  and  79  and  366  K,  respectively.  By

smoothing and integrating the experimental data, the heat capacity of BaO up

to  2200  K  was  derived  by  Irgashov  et  al.  [11],  Chekhovskoi  [13]  and

Cordfunke et al. [10]. In the present work, the measured heat capacity from

[9-13] at ambient and high temperatures were compared separately with the

calculated ones from the thermodynamic functions assessed by Zhou et al.

[21], Zimmermann et al. [22], and SGTE94 [23].

The comparison is shown graphically in Figures 1 and 2. A good agreement

can be found at temperatures ranging from 4 K to 300 K, see Figure 1, while

at high temperatures the values by Irgashov [11] and Chekhovskoi [12] show a

large  scatter,  as  shown  in  detail  in  Figure  2.  At  the  same  time,  the  heat

capacity  calculated  from  the  assessed  parameters  by  SGTE94  [23]  fits  well

with Chase et al. [6], and Zhou’s [21] calculation is in accordance with

Cordfunke [10].
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In Table 1, the entropy of formation of BaO at 298.15 K was given based on

the  data  of  Chase  et  al.  [6],  Anderson  [8],  Gmelin  [9]  and  Cordfunke  et  al.

[10]. The temperature from Gmelin [9] may be typed incorrectly as 273.15 K,

instead of 298.15 K and the measurement is 5 J/mole/K lower than that from

Anderson [8] and Chase et al. [6]. It was considered by Chase et al. [6] that

the entropy value from Gmelin [9] should be neither at 273.15 K nor 298.15 K

and must be erroneous. Chase et al. [6] calculated the entropy of formation at

room temperature to be 72.069 J/mol/K by using the adopted heat capacities

published in their handbook [6]. They were derived based on the

measurements by Gmelin [9] with integration and correction of some

typographical errors.

Figure 1. A comparison of heat capacity of BaO below 300 K.
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Figure 2. A comparison of heat capacity of BaO above 300 K.

Employing the drop calorimetry method, Cordfunke et al. [10], Irgashov et

al.  [11]  and  Lander  [13]  measured  the  enthalpy  increment  of  BaO  at  high

temperatures, and from a literature compilation, Chekhovskoi [12] calculated

enthalpy increment of BaO. Their data were obtained between 390 K and

1262  K,  1171  K  and  2201  K,  469  K  and  876  K,  and  4  K  and  2500  K,

respectively. Meanwhile, the authors [10-11, 13] published the polynomial

equations derived from the experimental data.

In Figure 3, a comparison was made among the experimental values,

polynomial equations and calculated data from the assessed parameters by

Zhou et al. [21], Zimmermann et al. [22], and SGTE94 [23]. The variations of

their data show minor differences except for the results from [11-12]. It can be

observed  that  the  measurement  and  integration  by  Irgashov  et  al.  [11]  and

Chekhovskoi [12] show large differences at temperatures above 2000 K. The

tendency resembles their [11-12] heat capacity data in Fig. 2. The calculation

of  SGTE94  [23]  is  compatible  with  the  data  by  Chase  et  al.  [6]  in  most

temperature regions but shows small differences in respect with the
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calculations by Cordfunke et al. [10], Irgashov [11] and Lander [13]. Chase et

al. [6] indicated that the calorimetric data of Lander [13] was subject to bias

from a calibration based on Pt and from impurities in the two samples.

Figure 3. A comparison of enthalpy increment of BaO.

The enthalpy of  formation of  BaO at  298.15 K was measured by Forcrand

[14], Guntz et al. [15], Zaitseva [16], Flidlider et al. [17], Fitzgibbon et al. [18]

and  Cordfunke  et  al.  [19].  The  values  obtained  are  listed  in  Table  1.The

solution calorimetry method was applied in their work to measure the

enthalpy of formation, in which the molar enthalpy of solution of BaO(s) in

HCl(aq) was combined with the molar enthalpy of solution of barium metal in

the same solvent and with the molar enthalpy of formation of H2O(l) to

achieve  the  molar  enthalpy  of  formation  of  BaO(s).  Mah  [20]  employed  the

combustion calorimetry to investigate the enthalpy of formation for BaO. It

was found that the major obstacle of combustion calorimetry was the

appearance of large quantities of peroxide (BaO2) when barium was burnt in

oxygen. Therefore, solution calorimetry was preferred by most researchers
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[15-19]. However, most authors did not re-measure the molar enthalpy of

solution of various reactions but selected the data from previous reports,

which lead to the inconsistency of  molar enthalpy of  BaO(s)  in Table 1.  The

data  measured  by  Fitzgibbon  et  al.  [18]  and  Cordfunke  et  al.  [19]  and

calculated by Zhou et al. [21] and SGTE94 [23] are essentially identical with

each other with only a small difference. Their results are close to that adopted

by Chase et al. [6] which was accepted on the basis of Fitzgibbon et al.’s [18]

work.

2.2 The phase equilibrium data for BaO-MgO, BaO-CaO,
BaO-Al2O3 and BaO-SiO2 systems

2.2.1 BaO-MgO system

Wartenberg et al. [24] measured the liquidus and eutectic line of BaO-MgO

system by a quenching technique. Van-der Kemp et al. [25] calculated phase

diagram of the BaO-MgO system based on the excess thermodynamic

properties,  and  Shukla  [26]  assessed  this  binary  system  using  the  Modified

Quasichemical Model (MQM) for describing the liquid phase.

Large differences can be found in their works concerning the liquidus and

the eutectic temperature. The melting point of BaO in Wartenber et al.’s [24]

work is 2196 K. It is not consistent with those reported by [2-7], at the same

time, although the accepted melting temperature of MgO is still under

discussion [27]. The melting point of MgO reported by Wartenberg et al. [24]

is  very  different  from  those  reported  by  Mcnally  et  al.  [28],  Kanolt  [29],

Schneider [30]. The value 3073 K from [24] compares with 3105 ±30 K [6],

3100 ±20 K [29] and 3125 K [30]. So the misused melting points for BaO and

MgO by Wartenberg et al. [24] will lead to errors for plotting the liquidus. It

was reported in their  work [24] that  the presence of  BaCO3 might influence

the measurement of eutectic temperature. The estimated eutectic
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temperature is 1762 K and the possible value lies between 1723 K and 1773 K,

based on the measurements of Wartenberg et al. [24], and the calculated

value  by  van-der  Kemp  et  al.  [25]  and  Shukla  [26]  is  1958  K  and  2092  K,

respectively.

Due to the wide variation, no data were taken into account in the present

work. In the literature, no phase diagram or thermodynamic data have been

reported about the mutual solubility between BaO and MgO. On the basis of

the published work [24-26], especially the discussion by Shukla [26], the

solid solubility at both terminal solutions can be ignored.

2.2.2 BaO-CaO system

No experimental phase diagram and thermodynamic data were identified

about the BaO-CaO system. Very low mutual solubilities of barium and

calcium oxides in the solide state were confirmed by Flidlider et al. [31] from

the calorimetric method.

Van-der  Kemp  et  al.  [25]  calculated  the  phase  diagram  of  this  system  by

evaluating the excess thermodynamic functions for the binary alkaline earth

oxide  mixtures.  Seo  et  al.  [7]  assessed  the  thermodynamic  properties  and

phase  diagram  for  the  BaO-CaO  system  by  Molecular  Dynamics  Simulation

(MDS). Shukla [26] published the calculated phase diagram of this system by

estimating the solid solubility between BaO and CaO using an equation from

Blander [32]. Based on the works [25-26, 31], the mutual solubilities on both

ends were estimated by taking their results as references. The calculated

eutectic temperature was 2050 K [7], 2180 K [25] and 2082 K [26],

respectively.

These data were not included in the present optimization because of large

differences in the eutectic temperature. But the calculated liquidus by Seo et

al. [7] using MDS was employed in the present calculation, due to lack of the
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measured values.

2.2.3 BaO-Al2O3 system

Phase relations of the BaO-Al2O3 system have been measured by Purt et al.

[33]  employing  thermal  analysis  and  X-ray  diffraction  (XRD),  in  which  the

liquidus and solidus were published in detail. Toropov et al. [34] studied this

system by equilibrium and quenching. Three stable compounds, B3A, BA and

BA6, were reported in their papers [33-34]. Beretka et al. [35] also reported

the three phases and investigated the reaction sequence of barium carbonate

and  aluminum  oxide.  They  found  that  BA  was  the  first  to  appear  and  then

stabilize BA6 and B3A. Mateika et al. [36] determined the concentration range

between  65-100  mol  %  Al2O3 of the BaO-Al2O3 system. In their study, the

melting behavior was observed simultaneously through the chamber window

using a microscope and the phase compositions were analyzed by XRD. In the

reports from Mateika et al. [36], Haberey et al. [37], Kimura et al. [38] and Iyi

et al. [39], the conventional ‘barium hexa-aluminate’ BaAl2O19 was described

as two distinct phases, expressed as BaO·4.6Al2O3 and BaO·6.6Al2O3.

Kadyrova et al. [40-41] using XRD and quenching confirmed BA6 as the only

stable phase in Al2O3 rich region.

In Shukla [26]’s work of the BaO-Al2O3 system, BA6 and another compound

with the chemical formula Ba1.21Al11O17.71 were added in the assessment. It was

mentioned that the stoichiometry of Ba1.21Al11O17.71 was tentative and more

experimental work was required to confirm it. In Ye et al. [42]’s assessment,

only three compounds, BA, B3A and BA6, were included. Only BA6 in present

work was included as the stable phase in the Al2O3 rich region by considering

the controversy of the possible existence of other phases mentioned above. In

the BaO rich region,  B10A,  B8A,  B7A,  B5A and B4A were reported to exist  by

[43] and [44]. Appendino [43] investigated the solid state equilibria by XRD
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in the temperature range from 1173 K to 1673 K. In his study, B4A was stable

above 1231 K, under which B5A was stable, and B8A existed above 1323 K and

B7A  was  found  under  this  temperature,  and  finally,  B10A  was  found  to  be

stable under 1403 K. Kovba et al. [44] studied the phase relationships by XRD

and thermal analysis. According to their results [44], B10A  and  B8A exist

within larger temperature ranges as 1173 K to 1573 K compared with [43], and

B4A melts congruently at 1833 K. This melting temperature may be estimated

because the temperature being studied in [44] focused between 1173 K and

1573 K. Due to the detailed description of experiments for preparing the

samples and phase identification, the decomposition temperatures of B10A,

B8A, B7A and B5A were calculated based on the result from Appendino [43].

The congruent melting of B4A  reported  by  Kovba  et  al.  [44]  was  taken  into

account as references.

2.2.4 BaO-SiO2 system

Eskola [45] investigated the BaO-SiO2 binary system by quenching

experiments at 1573 K to 2013 K. Four compounds B2S, BS, B2S3 and BS2 were

report. The eutectic point between tridymite and B2S was 47 wt% BaO at 1647

K. And the melting point of BS2, according to his [45] measurement, was 1693

±4  K.  Phase  region  composed  of  two  phases,  B2S3 and BS2, was observed.

Greig [46] measured the liquidus in SiO2-rich region by quenching and

microscopic examination. He [46] pointed out that the cristobalite liquidus of

was of a peculiar and its distinctive shape not hitherto encountered in silicate

studies and no immiscibility should exist in this case. While based on the

work by Seward et al. [47] by optical microscopy, a metastable miscibility gap

was observed and even the sample containing 10 mol % BaO quenched from

1998 K was found to form the liquid immiscibility. It is favored in the study

by Argyle [48] who has observed a stable liquid miscibility gap.
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In the calculated phase diagram by Shukla [26], the stable liquid miscibility

gap was also included. Roth and Levin [49], using quenching technique,

polarizing microscope and X-ray powder diffraction, published a revised

phase equilibrium diagram for the subsystem BS2-B2S3.  On  the  basis  of  the

X-ray diffraction powder data for compounds B3S5,  B5S8 and  BS2, they [49]

doubted the formation of solid solution between BS2 and B2S3 in Eskola’s [45]

work,  due  to  the  reason  that  instead  of  a  continuous  shift  in d values, as

expected for the solid solution, two phases of unvarying d values were always

found for intermediate compositions. By interpretation of X-ray diffraction

data of BS2,  the  conclusion  was  made  by  Roth  and  Levin  [49]  that  BS2

exhibited  a  slowly  reversible  polymorphic  transformation  at  1623±10  K.  It

was confirmed by the work from Oehlschlegel  [50-51].  He also reported the

polymorphs of B5S8 and  B2S3 that  transformed  at  1359  K  and  1282  K

respectively. Roth et al. [49] and Oehlschlegel [50-51] confirmed the

existence of B3S5 and mentioned the unstable B3S5 at 1573 K transforming to

well-crystallized, stable low temperature BS2 and high temperature B5S8. The

crystal structures of B2S3, B5S8 and BS2 was determined and refined by Hesse

[52] employing automatic Philips PW 1100 four-circle diffractometer with the

program LAT by Hornastra et al. [53]. Fields et al. [54] investigated the phase

equilibria in the system BaO-SrO-SiO2 and  the  melting  point  of  B2S was

found to be 2150 K. The melting point of BS observed by Jaeger et al. [55] was

1877 K and the attempts to achieve some information about a polymorphic

transition of BS failed. It is reported that BS exists in two polymorphs, but the

-BS was found by Shimizu [56] to be stable at  the pressure up to 120 kbar

and temperatures 1113 K to 1673 K. Assignment of the X-ray diffraction

pattern of -BS  to  a  known  crystal  structure  was  unsuccessful.  Eskola  [45]

also tried to find out whether the barium metasilicate (BS) could be inverted

into some other form by heating a sample of the crystallized compound at
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1373 K overnight but no transformation took place. Consequently, the

polymorphic transformation of BS at normal pressure was not considered in

the present work.

Shukla [26] assessed thermodynamically the BaO-SiO2 phase  diagram.  In

his calculations, it was found difficult to reproduce the liquidus in high SiO2

region  as  reported  by  Greig  [46]  but  a  miscibility  gap  with  the  upper

consolute  point  at  about  10  mol%  BaO  at  2026  K  was  estimated.  The

polymorphs of B2S3,  B5S8 and  BS2 were  not  taken  into  account  in  his

assessment [26].

2.3 Thermodynamic data

No thermodynamic data can be found for the BaO-MgO and BaO-CaO

systems. For the BaO-Al2O3 system,  heat  capacity,  enthalpy  and  entropy  at

298.15 K for BA and BA6 can be obtained in the handbook cited by Shabanova

[57-58] and in the compilation by Barin [59]. The heat capacities for BA and

BA6 from [57-59] were employed in the present optimization. The mixing

enthalpy data of these three systems are not available, maybe due to

difficulties of the experiments at high temperatures. For the BaO-SiO2 system,

the calculated heat capacities of BS, B2S, B2S3 and BS2 were reported by Barin

[59].  He  did  not  identify  the  polymorphic  properties  of  these  phases,  and

therefore they were not considered in the present assessment.
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3 Thermodynamic modeling

3.1 Unary phases

The Gibbs energy of component i in  phase , )(0 TGi = )(TGi -
SER
iH ,

(i=BaO, MgO, CaO, Al2O3 and SiO2) was expressed by equation:

)(0 TGi = a + bT + cTlnT + dT2 + eT 1 + fT3 + gT7 + hT 9               (1)

SER
iH  is the sum of the enthalpies of the elements at 298.15 K and 1 bar in

their stable states (Stable Element Reference, denoted as SER); T is the

absolute temperature. In this work, the Gibbs energy functions for pure BaO

are consistent with SGTE94 according to the evaluation in Section 2.1. The

Gibbs energy expression for pure MgO was taken from Hallstedt [60], and the

Gibbs energy functions for pure CaO and Al2O3 were retained from a previous

assessment by Hallstedt [61], and that of pure SiO2 was adopted from Barry

[62].

3.2 Solution phases

Liquid, BaO-based, MgO-based, CaO-based, Al2O3-based and SiO2-based

solid  solutions  exist  in  the  BaO-MgO,  BaO-CaO,  BaO-Al2O3 and BaO-SiO2

systems respectively. Their Gibbs energy functions were described by the

following expression:

)lnln(00
iiBaOBaOiiBaOBaO

SER
m xxxxRTGxGxHG

m
EG                                              (2)

where BaOx  and ix  are the mol fractions of BaO and component i (i=MgO,

CaO, Al2O3 and SiO2), m
EG  is the excess Gibbs energy, which was described
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by the Redlich-Kister polynomials [63] as:

)]([ 10
iBaOiBaOiBaO

l
iBaOm

E xxLLxxLxxG               (3)

where Ll  is the interaction parameter between BaO and component i

(i=MgO,  CaO,  Al2O3 and  SiO2)  to  be  optimized  in  the  present  work.  The

general temperature dependent form of the interaction parameter

bTaLl  was used.

In the BaO-Al2O3 system, both associate and substitutional solution models

were employed to describe the liquid phase. In the BaO-SiO2 system,

associate  model  was  used  for  the  description  of  liquid  phase.  The  Gibbs

energy function for substitutional solution model is the same as equations (2)

and (3). For associate model in both BaO-Al2O3 and BaO-SiO2 systems, it was

assumed to be constituted of three species: BaO, Al2O3 (or SiO2) and BaAl2O4

(or BaSiO3). The molar Gibbs energy of liquid can be expressed as follows:

Liq
SiOOAlSiOOAl

Liq
BaOBaO

SER
m GyGyHG )(

0
)(

0
232232

Liq
BaSiOOBaAlBaSiOOBaAl Gy )(

0
)( 342342

)()( 232232
lnln( SiOOAlSiOOAlBaOBaO yyyyRT

)ln( )()( 342342 BaSiOOBaAlBaSiOOBaAl yyRT m
EG       (4)

where y represents the mole fractions of BaO, Al2O3 (or SiO2) and BaAl2O4 (or

BaSiO3) in the liquid, and m
EG  can be described as:

qp
n

qpqBaO
n

qBaOpBaO
n

pBaOm
E LyyLyyLyyG

)]([ 10
pBaOpBaOpBaOpBaO yyLLyy

)]([ 10
qBaOqBaOqBaOqBaO yyLLyy

)]([ 10
qpqpqpqp yyLLyy                             (5)
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where p is Al2O3 or SiO2, and q is BaAl2O4 or BaSiO3 respectively. Ln  is the

interaction parameter among three species in liquid, which will be assessed in

present work. The general form of Ln  is the same as Ll .

It  should  be  noted  that  according  to  the  evaluation  of  previous  literature

data  in  Section  2.2,  the  terminal  solid  solutions  (BaO-based,  MgO-based,

Al2O3-based  and  SiO2-based  solutions)  in  the  BaO-MgO,  BaO-Al2O3 and

BaO-SiO2 systems were taken as pure oxides. The mutual solid solubilities of

BaO and CaO in halite in the BaO-CaO system were considered in the present

work. Substitutional solution model, (BaO, CaO), was applied to describe the

solution phases in the solid BaO-CaO system.

3.3  Compounds

No  compounds  were  reported  to  exist  in  the  BaO-MgO  and  BaO-CaO

systems.  In the BaO-Al2O3 and BaO-SiO2 systems, B10A,  B8A,  B7A,  B5A,  B4A,

B3A, BA, BA6, BS,  B3S,  B2S,  B2S3,  B5S8,  B3S5 and  BS2 were confirmed. There

are heat capacity data for BA and BA6. The molar Gibbs energy functions of

them were evaluated as:

2
1111

0 ln42 TDTTCTBAHHHG SER
O

SER
Al

SER
BaBA

1
1TE                       (6)

TTCTBAHHHG SER
O

SER
Al

SER
BaBA ln1912 222

0
6

1
2

2
2 TETD            (7)

where
SER
iH  is the enthalpy of element i in its stable form at 298.15 K and 1

bar, and SER stands for Stable Element Reference. Due to lack of

thermochemical data, the Gibbs energy expressions for the other

stoichiometric compounds mentioned above were described by the
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Neumann-Kopp rule. Their Gibbs energy functions were given by:

TBAGmGnG ii
S
OAl

S
BaOAB mn 32

000
                         (8)

TDCGmGnG ii
S
SiO

S
BaOSB mn 2

000
                           (9)

where Ai, Bi, Ci and Di are the enthalpy and entropy of formation of the

compounds from the pure oxides. The parameters Ai and Bi were optimized in

the present work.
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4 Results and discussion
After critical evaluation in Section 2.1, the thermodynamic data of pure BaO

phase from SGTE94 were selected in the present work. The thermodynamic

optimization was performed using PARROT module of the Thermo-calc

software package [64]. Step-by-step optimization procedure was adopted and

the experimental data from the literature sources [33, 34, 43-46, 49-55] were

employed. Each piece of information was given a certain weight indicating the

experimental uncertainty. The weights were adjusted and optimization was

repeated until reaching a satisfactory description of most experimental

results. The parameters already obtained were slightly adjusted using all the

selected experimental data simultaneously to achieve the best overall fit.

The optimized thermodynamic parameters obtained have been listed in

Table 2.  The calculated phase diagrams compared with the literature values

[7, 24-26, 33-36, 49-55] are shown in Figs. 4-8. The measured and calculated

invariant equilibria are compared in Table 3. It can be observed from figures

and  tables  that  a  good  agreement  can  be  achieved  in  most  regions,  while

some contradictions exist, which will be discussed below.

Table 2. Summary of thermodynamic parameters describing the BaO-MgO,

BaO-CaO, BaO-Al2O3 and BaO-SiO2 systems.*

BaO-MgO

Liquid: L0 -11000+7*T, L1 -1.3*T

BaO-CaO

Liquid: L0 -12011+6*T, L1 2*T

BaO-Al2O3 a

Liquid
32,

0
OAlBaOL -175716.6-26*T

3242 ,
0

OAlOBaAlL -340120-40*T

42,
0

OBaAlBaOL -340101-40*T
42

0
OBaAlL -139122.3+50*T
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BA: -2596313.52+362.036*T-74.16*T*Ln(T)-0.00885775*T2+731345.7*T (-1)

BA6: -11140656.33-300.03*T-105.4*T*Ln(T)-0.005048*T2+1581988*T (-1)

B3A: 3*
S
BaOG  +

S
OAlG
32

-447035+73.5* T

B10A: 10*
S
BaOG  +

S
OAlG
32

-576815+140*T

B7A : 7*
S
BaOG  +

S
OAlG
32

-539871+126.5*T

B5A: 5*
S
BaOG  +

S
OAlG
32

-510418+114.6*T

B8A: 8*
S
BaOG  +

S
OAlG
32

-377588-2*T

B4A: 4*
S
BaOG  +

S
OAlG
32

-425269+50*T

BaO-Al2O3 b

Liquid
32,

0
OAlBaOL -383247+19.8*T

32,
1

OAlBaOL -98605+10.06*T

32,
2

OAlBaOL -80622*T

BA: -2452496.97+307.433*T-74.1*T*Ln(T)-0.00885918*T2+731503.1*T (-1)

BA6: -11128809.8-300.87*T-105.4*T*Ln(T)-0.0050476*T2+1582462.4*T (-1)

B3A: 3*
S
BaOG  +

S
OAlG
32

-364830+70.86* T

B10A: 10*
S
BaOG  +

S
OAlG
32

-576815+140*T

B7A : 7*
S
BaOG  +

S
OAlG
32

-436228+115.57*T

B5A: 5*
S
BaOG  +

S
OAlG
32

-409400+100.77*T

B8A: 8*
S
BaOG  +

S
OAlG
32

-354288+50.3*T

B4A: 4*
S
BaOG  +

S
OAlG
32

-358918+62.44*T
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BaO-SiO2

Liquid
2,

0
SiOBaOL -204789+9.9*T

23 ,
0

SiOBaSiOL -38534.7+25*T

3,
0

BaSiOBaOL -569630.39+10*T
3

0
BaSiOL -257197.59+24.6*T

BS :
S
BaOG  +

S
SiOG

2
-229651.02+15.1* T

B3S : 3*
S
BaOG  +

S
SiOG

2
-320174.3+32* T

B2S : 2*
S
BaOG  +

S
SiOG

2
--293949.6+24* T

H-B2S3 : 2*
S
BaOG  +3*

S
SiOG

2
-474588.20+29* T

L-B2S3 : 2*
S
BaOG  +3*

S
SiOG

2
-478065.4+31.7* T

H-B5S8 : 5*
S
BaOG  +8*

S
SiOG

2
-1192822.5+72.7* T

L-B5S8 : 5*
S
BaOG  +8*

S
SiOG

2
-1197200.1+75.9* T

B3S5 : 3*
S
BaOG  +5*

S
SiOG

2
-713503.11+41.21* T

H-BS2 :
S
BaOG  +2*

S
SiOG

2
-234403.5+10* T

L-BS2 :
S
BaOG  +2*

S
SiOG

2
-240886.05+14* T

* All values are given in SI units (J, mol, K), a means the calculated data using

associate model, b means the calculated data using substitutional model.

Table 3. Invariant equilibria in the BaO-MgO, BaO-CaO, BaO-Al2O3 and

BaO-SiO2 systems*

Equilibrium T, K Composition Reference

BaO-MgO mol. % MgO

Liquid+BaO+MgO 1762 0.44 [22]

1958 0.22 [23]

2092 0.24 [24]

2092 0.24 Present work a
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BaO-CaO mol. % CaO

Liquid+BaO+CaO 2180 0.14 [23]

2050 0.2 [8]

2082 0.28 [24]

2149 0.26 Present work a

BaO-Al2O3 mol. % Al2O3

Liquid+B3A 2023 0.25 [32]

1893 0.25 [31]

1877 0.25 [24]

1893 0.25 Present work a

1893 0.25 Present work b

Liquid+BA 2103 0.5 [32]

2088 0.5 [31]

2561 0.5 [24]

2088 0.5 Present work a

2088 0.5 Present work b

Liquid+BA6 2173 0.857 [32]

2188 0.857 [31]

2188 0.857 Present work a

2188 0.857 Present work b

Liquid+B4A 1833 0.2 [42]

1845 0.2 [24]

1884 0.2 Present work a

1889 0.2 Present work b

Liquid+B3A+BA 1983 0.304 [32]

1753 0.304 [31]

1866 0.271 [24]

1891 0.266 Present work a

1891 0.268 Present work b

Liquid+BA+BA6 2063 0.648 [32]

1893 0.770 [31]

2095 0.282 [24]

2023 0.637 Present work a

2001 0.637 Present work b

Liquid+BA6+Al2O3 2163 0.880 [32]

2148 0.880 [31]

2138 0.736 [24]

2176 0.903 Present work a
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2165 0.917 Present work b

Liquid+BaO+B8A 1885 0.119 [24]

1992 0.103 Present work a

1932 0.131 Present work b

Liquid+B8A+B4A 1829 0.172 [24]

1874 0.178 Present work a

1885 0.179 Present work b

Liquid+B4A+B3A 1880 0.220 Present work a

1891 0.218 Present work b

B10A+BAO+B8A Below 1403 0.091 [41]

1403 0.091 Present work a

1401 0.091 Present work b

B8A+B10A+B4A Above 1323 0.111 [41]

1328 0.111 Present work a

1329 0.111 Present work b

B7A+B10A+B4A Below 1323 0.125 [41]

1232 0.125 [24]

1232 0.125 Present work a

1229 0.125 Present work b

B4A+B7A+B3A Above 1213 0.2 [41]

1213 0.2 [24]

1216 0.2 Present work a

1212 0.2 Present work b

B5A+B7A+B3A Below 1213 0.167 [41]

1173 0.167 [24]

1175 0.167 Present work a

1174 0.167 Present work b

BaO-SiO2 mol. % SiO2

Liquid+H-BS2 1693 0.667 [45]

1693 0.667 [49]

1695 0.667 Present work a

Liquid+ H-B5S8 1719 0.615 [49]

1718 0.615 Present work a

Liquid+ H-B2S3 1720 0.6 [49]

1720 0.6 Present work a

Liquid+BS 1877 0.5 [55]

1877 0.5 Present work a

Liquid+ B2S 2150 0.333 [54]
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2150 0.333 Present work a

>2023 0.333 [55]

Liquid+B3S 2125 0.26 Present work a

H-BS2+ L-BS2 1623 0.667 [49]

1623 0.667 [50]

1623 0.667 Present work a

H-B5S8 +L-B5S8 1358 0.615 [50]

1358 0.615 Present work a

H-B2S3 1282 0.6 [50]

1283 0.6 Present work a

B3S5+H-B5S8+L-BS2 1573 0.625 [50]

1573 0.625 Present work a

Liquid +B2S+BS 1824 0.47 [45]

1768 0.468 Present work a

Liquid+BS+ H-B2S3 1708 0.572 [45]

1704 0.571 Present work a

Liquid+ H-B5S8+B3S5 1696 0.654 [49]

1696 0.659 [50]

1703 0.652 Present work a

Liquid+H-BS2+B3S5 1683 0.66 [49]

1695 0.665 Present work a

Liquid+L-BS2+Tridymite 1645 0.75 [45]

1642 0.74 [46]

1340 0.859 Present work a

a means  the  calculated  data  using  associate  model, b means the calculated

data using substitutional model.

For  the  BaO-MgO  system,  the  assessed  data  in  this  work  fits  well  with

Shukla’s  calculation  [26]  but  not  with  the  measurements  from  [24].  As

mentioned in section 2.2, the reported melting points of MgO and BaO [24]

are  much  lower  than  those  given  in  the  other  sources  [2-7,  29-30].

Waternberg [24] et al. measured only four points to construct phase diagram

of the BaO-MgO system. Their  data [24] were not  taken into account in the

present  calculations  or  in  [24].  Van-der  Kemp  et  al.  [25]  reported  that  the

estimated excess parameters for the BaO-MgO system showed the largest
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deviation from ideal mixing behavior. In this case, the present calculations

and [26] are in reasonable agreement. Future work, for example a DTA/DSC

study, should be done to measure the eutectic temperature.

For the BaO-CaO system, the calculated eutectic temperature, 2149 K, is not

consistent  with  that  in  work  [7,  25-26].  They  also  scatter  greatly  from  each

other:  2059  K  in  [7],  2180  K  in  [25]  and  2082  K  in  [26].  In  the  absence  of

experimental  data,  the  mutual  solubilities  of  BaO  and  CaO  in  halite  were

estimated taking [25-26] as references. The estimated solubility ranges agree

well with [25-26].

Figure 4. Calculated phase diagram of BaO-MgO system, compared with

references [24-26].
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Figure 5. Calculated phase diagram of BaO-CaO system, compared with

references [7, 25-26].

For the BaO-Al2O3 system, the difficulty in measuring the liquidus and the

melting points at high temperatures leads to large uncertainty of

experimental results. The measurements by Purt et al. [33] and Toropov et al.

[34] showed great discrepancies on the liquidus, ranging from 20 mol % to

100 mol % Al2O3, and as to the melting point for B3A. Detailed experimental

procedures have been published in their papers [33-34], and so both the

results were given certain weights during optimization.

It  was  found  that  the  calculated  liquidus  using  both  the  associate  and

substitutional solution models are consistent with [34] in most part of the

phase diagram. The calculated invariant reactions cannot reproduce well both

experimental  sets.  They  are  relatively  close  to  the  data  from  [34].  In  the

published phase diagrams [33-34] in the BaO-rich region, the confirmed

compounds B10A, B8A,  B7A, B5A and B4A [43-44] were omitted, which leads

to differences when the liquidus line was based on measured points [33-34].
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Shukla [26] assessed the BaO-Al2O3 system by considering the existence of

these five compounds. His calculation for the melting point of BA shows a

huge deviation from the experimental data. In present work, the

decomposition temperatures of compounds, B10A,  B8A,  B7A,  B5A,  and  B4A,

were assessed based on the results by Appendino [43]. Much experimental

work  is  still  required  to  establish  accurately  the  temperatures  of

decomposition for these binary compounds.

Figure 6. Calculated phase diagram of BaO-Al2O3 system using associate

model, compared with references [26, 33-34, 36].



26

Figure 7. Calculated phase diagram of BaO-Al2O3 system using substitutional

model, compared with references [26, 33-34, 36].

Figure 8. Calculated phase diagram of BaO-SiO2 system using associate

model, compared with references [26, 45-55].

For the BaO-SiO2 system, three silica polymorphs, quarts, tridymite and

cristobalite, were adopted in the present assessment. Large discrepancy can

be  found  at  SiO2-rich  part  for  the  liquidus.  Based  on  Seward’s  [47]

measurement, a metastable miscibility gap existed below liquidus, while
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Greig  [46]  reported  the  liquidus  with  a  strange  shape  and  with  no  phase

separation. The present calculated liquidus is situated between Seward and

Greig’s [46] work. Detailed experiments are required to confirm the liquidus

of SiO2-rich part. The polymorphic transformation of BS, B2S3, B5S8 and BS2

were taken into account in the present work and the calculated results agree

well with the experimental work by Roth and Levin [49].

The enthalpies of mixing at various temperatures of the BaO-MgO,

BaO-CaO, BaO-Al2O3 and BaO-SiO2 systems (all referred to pure liquid oxides)

have been calculated in Figs. 9-13. Due to lack of experimental measurements,

the predictions in the present work were only compared with the calculated

Figure 9. Calculated enthalpy of mixing for BaO-MgO liquid at 2400 K

(referred to liquid BaO and liquid MgO).

Figure 10. Calculated enthalpy of mixing for BaO-CaO liquid at 2400 K,

compared with calculated value [7] (referred to liquid BaO and liquid CaO).
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Figure 11. Calculated enthalpy of mixing for BaO-Al2O3 liquid at 2273 K using

associate model and substitutional model, compared with calculated value

[26] (referred to liquid BaO and liquid Al2O3).

Figure 12. Calculated enthalpy of mixing for BaO-Al2O3 liquid at 2400 K

using associate model and substitutional model, compared with calculated

value [42] (referred to liquid BaO and liquid Al2O3).

Figure 13. Calculated enthalpy of mixing for BaO-SiO2 liquid at 3273 K,

compared with calculated value [26] (referred to liquid BaO and liquid SiO2).
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Figure 14. Calculated heat capacity for BaAl2O4, compared with data from the

literature [26, 45-46].

Figure 15. Calculated heat capacity of BaAl2O19, compared with references

[45-46].

values from [7, 26, 42]. The comparison shows a reasonable agreement. In

this  work,  in  the  BaO-Al2O3 assessment employing the associate model, BA

was  selected  as  an  associate.  A  valley  showing  minimum  value  can  be

observed in Fig. 11 and 12 at composition of the BA (50 mol % Al2O3) which

shows strong interactions of molecules in the liquid oxide at the composition

around that of BA phase (characterized by the close interaction parameters of

42,
0

OBaAlBaOL  and
3242 ,

0
OAlOBaAlL  in Table 2).

When using associate model to calculate the enthalpy of mixing for the liquid
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oxide, it generates a deeper valley showing minimum point compared with

the substitutional solution model, as shown in Fig. 11 and 12, and the

minimum values of the curve are shifted from 57.6 mol % to 50 mol % Al2O3

and 58.1 mol % to 50 mol % Al2O3 respectively. X.Y. Ye et al. [42] employed a

two-sublattice model for the ionic oxide solutions and Shukla [26] modeled

the  liquid  phase  by  MQM,  with  BaAl2 added  as  an  associate.  Both  the

associate and substitutional solution models were applied in this work to

present liquid phase. The same tendency in Fig. 10 for present and Shukla’s

[26]  works  can  be  observed  that  the  minimum  points  of  the  curves  focus

around 50 mol % Al2O3 because of the associates included in the models for

liquid phase. The differences in Fig. 11 may result from the models adopted by

the different authors to describe the liquid phase.

For the BaO-SiO2 system, BS was selected as an associate in modeling the

liquid phase. It can be observed from Fig. 13 that calculation employing

associate model presents the minimum point around 50 mol % SiO2 where

the associate exists. The difference between Shukla’s [26] work and the

present calculation may be caused by the different models used to describe

the liquid phase. The comparisons between the calculated heat capacity of BA

and BA6 in the present work and the experimental results from [43-44] were

plotted  in  Figs.  14-15.  The  assessed  values  reproduce  the  previous  data  by

[43-44] well.
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5 Conclusions
Thermodynamic  data  of  BaO  was  critically  evaluated  and  compared  with

the available experimental values from the literature [2-20]. The stability

functions for pure BaO from SGTE94 [23] were accepted and employed in the

present work for the thermodynamic optimization. Phase diagrams for the

BaO-MgO, BaO-CaO, BaO- Al2O3 and BaO-SiO2 systems were calculated

thermodynamically and compared with the literature data [24-26, 33-34, 36].

For  the  BaO-CaO  system,  the  liquidus  data  assessed  from  Seo  et  al.  [8]  by

MDS were included in the present assessment due to the absence of

experimental measurements.

Associate and substitutional solution models were applied to describe the

liquid  oxide  phase  in  the  BaO-Al2O3 assessment. The assessed phase

diagrams using both the models were compared and no large difference were

found to exist between them. The calculated heat capacities of BaAl2O4 (BA)

and BaAl12O19 (BA6) were compared with the data from [26, 45-46]. A good

agreement was observed. Associate model was employed for the description

of liquid phase of the BaO-SiO2 system. Discrepancies can be found at

SiO2-rich part  that  experimental  works [45-48] show different results  about

whether  miscibility  gap  should  exist  or  not.  New  experimental  data  are

needed to confirm the phase relations. The enthalpies of mixing of the liquid

oxide for the four systems were calculated, using the thermodynamic model

parameters obtained in the present work. A comparison was performed with

the calculated data from [7, 26, 42] due to lack of experimental

measurements.
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