
9HSTFMG*affhej+

ISBN 978-952-60-5574-9
ISBN 978-952-60-5575-6 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934
ISSN 1799-4942 (pdf)

Aalto University
School of Science
Department of Information and Computer Science
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 21

/2
014

K
yunghyun C

ho
F

oundations and A
dvances in D

eep L
earning

A
alto

 U
n
ive

rsity

Department of Information and Computer Science

Foundations and Advances
in Deep Learning

Kyunghyun Cho

DOCTORAL
DISSERTATIONS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80711689?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University publication series
DOCTORAL DISSERTATIONS 21/2014

Foundations and Advances
in Deep Learning

Kyunghyun Cho

A doctoral dissertation completed for the degree of Doctor of
Science (Technology) to be defended, with the permission of the
Aalto University School of Science, at a public examination held at
the lecture hall T2 of the school on 21 March 2014 at 12.

Aalto University
School of Science
Department of Information and Computer Science
Deep Learning and Bayesian Modeling

Supervising professor
Prof. Juha Karhunen

Thesis advisor
Prof. Tapani Raiko and Dr. Alexander Ilin

Preliminary examiners
Prof. Hugo Larochelle, University of Sherbrooke, Canada
Dr. James Bergstra, University of Waterloo, Canada

Opponent
Prof. Nando de Freitas, University of Oxford, United Kingdom

Aalto University publication series
DOCTORAL DISSERTATIONS 21/2014

© Kyunghyun Cho

ISBN 978-952-60-5574-9
ISBN 978-952-60-5575-6 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934 (printed)
ISSN 1799-4942 (pdf)
http://urn.fi/URN:ISBN:978-952-60-5575-6

Unigrafia Oy
Helsinki 2014

Finland

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Kyunghyun Cho
Name of the doctoral dissertation
Foundations and Advances in Deep Learning
Publisher
Unit Department of Information and Computer Science

Series Aalto University publication series DOCTORAL DISSERTATIONS 21/2014

Field of research Machine Learning

Manuscript submitted 2 September 2013 Date of the defence 21 March 2014

Permission to publish granted (date) 7 January 2014 Language English

Monograph Article dissertation (summary + original articles)

Abstract
Deep neural networks have become increasingly popular under the name of deep learning

recently due to their success in challenging machine learning tasks. Although the popularity is
mainly due to recent successes, the history of neural networks goes as far back as 1958 when
Rosenblatt presented a perceptron learning algorithm. Since then, various kinds of artificial
neural networks have been proposed. They include Hopfield networks, self-organizing maps,
neural principal component analysis, Boltzmann machines, multi-layer perceptrons, radial-
basis function networks, autoencoders, sigmoid belief networks, support vector machines and
deep belief networks.

The first part of this thesis investigates shallow and deep neural networks in search of
principles that explain why deep neural networks work so well across a range of applications.
The thesis starts from some of the earlier ideas and models in the field of artificial neural
networks and arrive at autoencoders and Boltzmann machines which are two most widely
studied neural networks these days. The author thoroughly discusses how those various neural
networks are related to each other and how the principles behind those networks form a
foundation for autoencoders and Boltzmann machines.

The second part is the collection of the ten recent publications by the author. These
publications mainly focus on learning and inference algorithms of Boltzmann machines and
autoencoders. Especially, Boltzmann machines, which are known to be difficult to train, have
been in the main focus. Throughout several publications the author and the co-authors have
devised and proposed a new set of learning algorithms which includes the enhanced gradient,
adaptive learning rate and parallel tempering. These algorithms are further applied to a
restricted Boltzmann machine with Gaussian visible units.

In addition to these algorithms for restricted Boltzmann machines the author proposed a two-
stage pretraining algorithm that initializes the parameters of a deep Boltzmann machine to
match the variational posterior distribution of a similarly structured deep autoencoder. Finally,
deep neural networks are applied to image denoising and speech recognition.

Keywords Deep Learning, Neural Networks, Multilayer Perceptron, Probabilistic Model,
Restricted Boltzmann Machine, Deep Boltzmann Machine, Denoising Autoencoder

ISBN (printed) 978-952-60-5574-9 ISBN (pdf) 978-952-60-5575-6

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942

Location of publisher Helsinki Location of printing Helsinki Year 2014

Pages 277 urn http://urn.fi/URN:ISBN:978-952-60-5575-6

Preface

This dissertation summarizes the work I have carried out as a doctoral student at

the Department of Information and Computer Science, Aalto University School of

Science under the supervision of Prof. Juha Karhunen, Prof. Tapani Raiko and Dr.

Alexander Ilin between 2011 and early 2014, while being generously funded by the

Finnish Doctoral Programme in Computational Sciences (FICS). None of these had

been possible without enormous support and help from my supervisors, the depart-

ment and the Aalto University. Although I cannot express my gratitude fully in words,

let me try: Thank you!

During these years I was a part of a group which started as a group on Bayesian

Modeling led by Prof. Karhunen, but recently become a group on Deep Learning and

Bayesian Modeling co-led by Prof. Karhunen and Prof. Raiko. I would like to thank

all the current members of the group: Prof. Karhunen, Prof. Raiko, Dr. Ilin, Mathias

Berglund and Jaakko Luttinen.

I have spent most of my doctoral years at the Department of Information and

Computer Science and have been lucky to have collaborated and discussed with

researchers from other groups on interesting topics. I thank Xi Chen, Konstanti-

nos Georgatzis (University of Edinburgh), Mark van Heeswijk, Sami Keronen, Dr.

Amaury Momo Lendasse, Dr. Kalle Palomäki, Dr. Nima Reyhani (Valo Research

and Trading), Dusan Sovilj, Tommi Suvitaival and Seppo Virtanen (of course, not in

the order of preference, but in the alphabetical order). Unfortunately, due to the space

restriction I cannot list all the colleagues, but I would like to thank all the others from

the department as well. Kiitos!

I was warmly invited by Prof. Yoshua Bengio to Laboratoire d’Informatique des

Systèmes Adaptatifs (LISA) at the Université de Montréal for six months (Aug. 2013

– Jan. 2014). I first must thank FICS for kindly funding the research visit so that I

had no worry about daily survival. The visit at the LISA was fun and productive!

Although I would like to list all of the members of the LISA to show my apprecia-

tion during my visit, I can only list a few: Guillaume Allain, Frederic Bastien, Prof.

1

Preface

Bengio, Prof. Aaron Courville, Yann Dauphin, Guillaume Desjardins (Google Deep-

Mind), Ian Goodfellow, Caglar Gulcehre, Pascal Lamblin, Mehdi Mirza, Razvan Pas-

canu, David Warde-Farley and Li Yao (again, in the alphabetical order). Remember,

it is Yoshua, not me, who recruited so many students. Merci!

Outside my comfort zones, I would like to thank Prof. Sven Behnke (University of

Bonn, Germany), Prof. Hal Daumé III (University of Maryland), Dr. Guido Montú-

far (Max Planck Institute for Mathematics in the Sciences, Germany), Dr. Andreas

Müller (Amazon), Hannes Schulz (University of Bonn) and Prof. Holger Schwenk

(Université du Maine, France) (again, in the alphabetical order).

I express my gratitude to Prof. Nando de Freitas of the University of Oxford, the

opponent in my defense. I would like to thank the pre-examiners of the disserta-

tion; Prof. Hugo Larochelle of the University of Sherbrooke, Canada and Dr. James

Bergstra of the University of Waterloo, Canada for their valuable and thorough com-

ments on the dissertation.

I have spent half of my twenties in Finland from Summer, 2009

to Spring, 2014. Those five years have been delightful and ex-

citing both academically and personally. Living and studying in

Finland have impacted me so significantly and positively that I

cannot imagine myself without these five years. I thank all the

people I have met in Finland and the country in general for hav-

ing given me this enormous opportunity. Without any surprise, I must express my

gratitude to Alko for properly regulating the sales of alcoholic beverages in Finland.

Again, I cannot list all the friends I have met here in Finland, but let me try to

thank at least a few: Byungjin Cho (and his wife), Eunah Cho, Sungin Cho (and

his girlfriend), Dong Uk Terry Lee, Wonjae Kim, Inseop Leo Lee, Seunghoe Roh,

Marika Pasanen (and her boyfriend), Zaur Izzadust, Alexander Grigorievsky (and his

wife), David Padilla, Yu Shen, Roberto Calandra, Dexter He and Anni Rautanen (and

her boyfriend and family) (this time, in a random order). Kiitos!

I thank my parents for their enormous support. I thank and congratulate my little

brother who married a beautiful woman who recently gave a birth to a beautiful baby.

Lastly but certainly not least, my gratitude and love goes to Y. Her encouragement

and love have kept me and my research sane throughout my doctoral years.

Espoo, February 17, 2014,

Kyunghyun Cho

2

Contents

Preface 1

Contents 3

List of Publications 7

List of Abbreviations 8

Mathematical Notation 11

1. Introduction 15

1.1 Aim of this Thesis . 15

1.2 Outline . 16

1.2.1 Shallow Neural Networks 17

1.2.2 Deep Feedforward Neural Networks 17

1.2.3 Boltzmann Machines with Hidden Units 18

1.2.4 Unsupervised Neural Networks as the First Step 19

1.2.5 Discussion . 20

1.3 Author’s Contributions . 21

2. Preliminary: Simple, Shallow Neural Networks 23

2.1 Supervised Model . 24

2.1.1 Linear Regression . 24

2.1.2 Perceptron . 26

2.2 Unsupervised Model . 28

2.2.1 Linear Autoencoder and Principal Component Analysis . . . 28

2.2.2 Hopfield Networks . 30

2.3 Probabilistic Perspectives . 32

2.3.1 Supervised Model . 32

2.3.2 Unsupervised Model . 35

3

Contents

2.4 What Makes Neural Networks Deep? 40

2.5 Learning Parameters: Stochastic Gradient Method 41

3. Feedforward Neural Networks:

Multilayer Perceptron and Deep Autoencoder 45

3.1 Multilayer Perceptron . 45

3.1.1 Related, but Shallow Neural Networks 47

3.2 Deep Autoencoders . 50

3.2.1 Recognition and Generation 51

3.2.2 Variational Lower Bound and Autoencoder 52

3.2.3 Sigmoid Belief Network and Stochastic Autoencoder 54

3.2.4 Gaussian Process Latent Variable Model 56

3.2.5 Explaining Away, Sparse Coding and Sparse Autoencoder . 57

3.3 Manifold Assumption and Regularized Autoencoders 63

3.3.1 Denoising Autoencoder and Explicit Noise Injection 64

3.3.2 Contractive Autoencoder 67

3.4 Backpropagation for Feedforward Neural Networks 69

3.4.1 How to Make Lower Layers Useful 70

4. Boltzmann Machines with Hidden Units 75

4.1 Fully-Connected Boltzmann Machine 75

4.1.1 Transformation Invariance and Enhanced Gradient 77

4.2 Boltzmann Machines with Hidden Units are Deep 81

4.2.1 Recurrent Neural Networks with Hidden Units are Deep . . 81

4.2.2 Boltzmann Machines are Recurrent Neural Networks 83

4.3 Estimating Statistics and Parameters of Boltzmann Machines 84

4.3.1 Markov Chain Monte Carlo Methods for Boltzmann Machines 85

4.3.2 Variational Approximation: Mean-Field Approach 90

4.3.3 Stochastic Approximation Procedure for Boltzmann Machines 92

4.4 Structurally-restricted Boltzmann Machines 94

4.4.1 Markov Random Field and Conditional Independence . . . 95

4.4.2 Restricted Boltzmann Machines 97

4.4.3 Deep Boltzmann Machines 101

4.5 Boltzmann Machines and Autoencoders 103

4.5.1 Restricted Boltzmann Machines and Autoencoders 103

4.5.2 Deep Belief Network . 108

5. Unsupervised Neural Networks as the First Step 111

5.1 Incremental Transformation: Layer-Wise Pretraining 111

4

Contents

5.1.1 Basic Building Blocks: Autoencoder and Boltzmann Machines113

5.2 Unsupervised Neural Networks for Discriminative Task 114

5.2.1 Discriminative RBM and DBN 115

5.2.2 Deep Boltzmann Machine to Initialize an MLP 117

5.3 Pretraining Generative Models . 118

5.3.1 Infinitely Deep Sigmoid Belief Network with Tied Weights . 119

5.3.2 Deep Belief Network: Replacing a Prior with a Better Prior 120

5.3.3 Deep Boltzmann Machine 124

6. Discussion 131

6.1 Summary . 132

6.2 Deep Neural Networks Beyond Latent Variable Models 134

6.3 Matters Which Have Not Been Discussed 136

6.3.1 Independent Component Analysis and Factor Analysis . . . 137

6.3.2 Universal Approximator Property 138

6.3.3 Evaluating Boltzmann Machines 139

6.3.4 Hyper-Parameter Optimization 139

6.3.5 Exploiting Spatial Structure: Local Receptive Fields 141

Bibliography 143

Publications 157

5

Contents

6

List of Publications

This thesis consists of an overview and of the following publications which are re-

ferred to in the text by their Roman numerals.

I Kyunghyun Cho, Tapani Raiko and Alexander Ilin. Enhanced Gradient for Training

Restricted Boltzmann Machines. Neural Computation, Volume 25 Issue 3 Pages

805–831, March 2013.

II Kyunghyun Cho, Tapani Raiko and Alexander Ilin. Enhanced Gradient and Adap-

tive Learning Rate for Training Restricted Boltzmann Machines. In Proceedings

of the 28th International Conference on Machine Learning (ICML 2011), Pages

105–112, June 2011.

III Kyunghyun Cho, Tapani Raiko and Alexander Ilin. Parallel Tempering is Ef-

ficient for Learning Restricted Boltzmann Machines. In Proceedings of the 2010

International Joint Conference on Neural Networks (IJCNN 2010), Pages 1–8, July

2010.

IV Kyunghyun Cho, Alexander Ilin and Tapani Raiko. Tikhonov-Type Regulariza-

tion for Restricted Boltzmann Machines. In Proceedings of the 22nd International

Conference on Artificial Neural Networks (ICANN 2012), Pages 81–88, September

2012.

V Kyunghyun Cho, Alexander Ilin and Tapani Raiko. Improved Learning of Gaussian-

Bernoulli Restricted BoltzmannMachines. In Proceedings of the 21st International

Conference on Artificial Neural Networks (ICANN 2011), Pages 10–17, June 2011.

7

List of Publications

VI Kyunghyun Cho, Tapani Raiko and Alexander Ilin. Gaussian-Bernoulli Deep

Boltzmann Machines. In Proceedings of the 2013 International Joint Conference

on Neural Networks (IJCNN 2013), August 2013.

VII Kyunghyun Cho, Tapani Raiko, Alexander Ilin and Juha Karhunen. A Two-

Stage Pretraining Algorithm for Deep Boltzmann Machines. In Proceedings of the

23rd International Conference on Artificial Neural Networks (ICANN 2013), Pages

106–113, September 2013.

VIII Kyunghyun Cho. Simple Sparsification Improves Sparse Denoising Autoen-

coders in Denoising Highly Corrupted Images. In Proceedings of the 30th Interna-

tional Conference on Machine Learning (ICML 2013), Pages 432–440, June 2013.

IX Kyunghyun Cho. Boltzmann Machines for Image Denoising. In Proceedings of

the 23rd International Conference on Artificial Neural Networks (ICANN 2013),

Pages 611–618, September 2013.

X Sami Keronen, Kyunghyun Cho, Tapani Raiko, Alexander Ilin and Kalle Palomäki.

Gaussian-Bernoulli Restricted Boltzmann Machines and Automatic Feature Ex-

traction for Noise Robust Missing Data Mask Estimation. In Proceedings of the

38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP

2013), Pages 6729–6733, May 2013.

8

List of Abbreviations

BM Boltzmann machine

CD Contrastive divergence

DBM Deep Boltzmann machine

DBN Deep belief network

DEM Deep energy model

ELM Extreme learning machine

EM Expectation-Maximization

GDBM Gaussian-Bernoulli deep Boltzmann machine

GP Gaussian Process

GP-LVM Gaussian process latent variable model

GRBM Gaussian-Bernoulli restricted Boltzmann machine

ICA Independent component analysis

KL Kullback-Leibler divergence

lasso Least absolute shrinkage and selection operator

MAP Maximum-a-posteriori estimation

MCMC Markov Chain Monte Carlo

MLP Multilayer perceptron

MoG Mixture of Gaussians

MRF Markov random field

OMP Orthogonal matching pursuit

PCA Principal component analysis

PoE Product of Experts

PSD Predictive sparse decomposition

RBM Restricted Boltzmann machine

SESM Sparse encoding symmetric machine

SVM Support vector machine

XOR Exclusive-OR

9

List of Abbreviations

10

Mathematical Notation

As the author has tried to make mathematical notations consistent throughout this

thesis, in some parts they may look different from how they are used commonly

in the original research literature. Before entering the main text of the thesis, the

author would like to declare and clarify the mathematical notations which will be

used repeatedly.

Variables and Parameters

A vector, which is always assumed to be a column vector, is mostly denoted by a

bold, lower-case Roman letter such as x, and a matrix by a bold, upper-case Roman

letter such as W. Two important exceptions are θ and μ which denote a vector of

parameters and a vector of variational parameters, respectively.

A component of a vector is denoted by a (non-bold) lower-case Roman letter with

the index of the component as a subscript. Similarly, an element of a matrix is denoted

by a (non-bold) lower-case Roman letter with a pair of the indices of the component

as a subscript. For instance, xi and wij indicate the i-th component of x and the

element of W on its i-th row and j-th column, respectively.

Lower-case Greek letters are used, in most cases, to denote scalar variables and

parameters. For instance, η, λ and σ mean learning rate, regularization constant and

standard deviation, respectively.

Functions

Regardless of the type of its output, all functions are denoted by non-bold letters. In

the case of vector functions, the dimensions of the input and output will be explicitly

explained in the text, unless they are obvious from the context. Similarly to a vector

notation, a subscript may be used to denote a component of a vector function such

that fi(x) is the i-th component of a vector function f .

11

Mathematical Notation

Some commonly used functions include a component-wise nonlinear activation

function φ, a stochastic noise operator κ, an encoder function f , and a decoder func-

tion g.

A component-wise nonlinear activation function φ is used for different types of ac-

tivation functions depending on the context. For instance, φ is a Heaviside function

(see Eq. (2.5)) when used in a Hopfield network, but is a logistic sigmoid function

(see Eq. (2.7)) in the case of Boltzmann machines. There should not be any confu-

sion, as its definition will always be explicitly given at each usage.

Probability and Distribution

A probability density/mass function is often denoted by p or P and the corresponding

unnormalized probability by p∗ or P ∗. By dividing p∗ by the normalization constant

Z, one recovers p. Additionally, q or Q are often used to denote a (approximate)

posterior distribution over hidden or latent variables.

An expectation of a function f(x) over a distribution p is denoted either byEp [f(x)]

or by 〈f(x)〉p. A cross-covariance of two random vectors x and y over probability

density p is often denoted by Covp(x,y). KL (Q‖P) means a Kullback-Leibler di-

vergence (see Eq. (2.26)) between distributions Q and P .

Two important types of distributions that will be used throughout this thesis are the

data distribution and the model distribution. The data distribution is the distribution

from which training samples are sampled, and the model distribution is the one that is

represented by a machine learning model. For instance, a Boltzmann machine defines

a distribution over all possible states of visible units, and that distribution is referred

to as the model distribution.

The data distribution is denoted by either d, pD or P0, and the model distribution

by either m, p or P∞. Reasons for using different notations for the same distribution

will be made clear throughout the text.

Superscripts and Subscripts

In machine learning, it is usually either explicitly or implicitly assumed that a set of

training samples are given. N is often used to denote the size of the training set, and

each sample is denoted by its index in the super- or subscript such that x(n) is the

n-th training sample. However, as it is a set, it should be understood that the order of

the elements is arbitrary.

In a neural network, units or parameters are often divided into multiple layers.

12

Mathematical Notation

Then we use either a superscript or subscript to indicate the layer to which each unit

or a vector of units belongs. For instance, h[l] and W[l] are respectively a vector of

(hidden) units and a matrix of weight parameters in the l-th layer. Whenever it is

necessary to make an equation less cluttered, h[l] (superscript) and h[l] (subscript)

may be used interchangeably.

Occasionally, there appears an ordered sequence of variables or parameters. In that

case, a super- or subscript 〈t〉 is used to denote the temporal index of a variable. For

example, both x〈t〉 and x〈t〉 mean the t-th vector x or the value of a vector x at time

t.

The latter two notations [l] and 〈t〉 apply also to functions as well as probability

density/mass functions. For instance, f [l] is an encoder function that projects units

in the l-th layer to the (l + 1)-th layer. In the context of Markov Chain Monte Carlo

sampling, p〈t〉 denotes a probability distribution over the states of a Markov chain

after t steps of simulation.

In many cases, θ∗ and θ̂ denote an unknown optimal value and a value estimated

by, say, an optimization algorithm, respectively. However, one should be aware that

these notations are not strictly followed in some parts of the text. For example, x∗

may be used to denote a novel, unseen sample other than the training samples.

13

Mathematical Notation

14

1. Introduction

1.1 Aim of this Thesis

A research field, called deep learning, has gained its popularity recently as a way

of learning deep, hierarchical artificial neural networks (see, for example, Bengio,

2009). Especially, deep neural networks such as a deep belief network (Hinton et al.,

2006), deep Boltzmann machine (Salakhutdinov and Hinton, 2009a), stacked denois-

ing autoencoders (Vincent et al., 2010) and many other variants have been applied

to various machine learning tasks with impressive improvements over conventional

approaches. For instance, Krizhevsky et al. (2012) significantly outperformed all

other conventional methods in classifying a huge set of large images. Speech recog-

nition also benefited significantly by using a deep neural network recently (Hinton

et al., 2012). Also, many other tasks such as traffic sign classification (Ciresan et al.,

2012c) have been shown to benefit from using a large, deep neural network.

Although the recent surge of popularity stems from the introduction of layer-wise

pretraining proposed in 2006 by Hinton and Salakhutdinov (2006); Bengio et al.

(2007); Ranzato et al. (2007b), research on artificial neural networks began as early as

1958 when Rosenblatt (1958) presented the first perceptron learning algorithm. Since

then, various kinds of artificial neural networks have been proposed. They include,

but are not limited to Hopfield networks (Hopfield, 1982), self-organizing maps (Ko-

honen, 1982), neural networks for principal component analysis (Oja, 1982), Boltz-

mann machines (Ackley et al., 1985), multilayer perceptrons (Rumelhart et al., 1986),

radial-basis function networks (Broomhead and Lowe, 1988), autoencoders (Baldi

and Hornik, 1989), sigmoid belief networks (Neal, 1992) and support vector ma-

chines (Cortes and Vapnik, 1995).

These types of artificial neural networks are interesting not only on their own, but

by connections among themselves and with other machine learning approaches. For

instance, principal component analysis (PCA) which may be considered a linear alge-

15

Introduction

braic method, arises also from an unsupervised neural network with Oja’s rule (Oja,

1982), and at the same time, can be recovered from a latent variable model (Tipping

and Bishop, 1999; Roweis, 1998). Also, the cost function used to train a linear au-

toencoder with a single hidden layer corresponds exactly to that of PCA. PCA can

be further generalized to nonlinear PCA through, for instance, an autoencoder with

multiple nonlinear hidden layers (Kramer, 1991; Oja, 1991).

Due to the recent popularity of deep learning, two of the most widely studied ar-

tificial neural networks are autoencoders and Boltzmann machines. An autoencoder

with a single hidden layer as well as a structurally restricted version of the Boltzmann

machine, called a restricted Boltzmann machine, have become popular due to their

application in layer-wise pretraining of deep multilayer perceptrons.

Thus, this thesis starts from some of the earlier ideas in the artificial neural net-

works and arrives at those two currently popular models. In due course, the author

will explain how various types of artificial neural networks are related to each other,

ultimately leading to autoencoders and Boltzmann machines. Furthermore, this the-

sis will include underlying methods and concepts that have led to those two models’

popularity, which include, for instance, layer-wise pretraining and manifold learn-

ing. Whenever it is possible, informal mathematical justification for each model or

method is provided alongside.

Since the main focus of this thesis is on general principles of deep neural networks,

the thesis avoids describing any method that is specific to a certain task. In other

words, the explanations as well as the models in this thesis assume no prior knowl-

edge about data, except that each sample is independent and identically distributed

and that its length is fixed.

Ultimately, the author hopes that the reader, even without much background on

deep learning, will understand the basic principles and concepts of deep neural net-

works.

1.2 Outline

This dissertation aims to provide an introduction to deep neural networks throughout

which the author’s contributions are placed. Starting from simple neural networks

that were introduced as early as 1958, we gradually move toward the recent advances

in deep neural networks.

For clarity, contributions that have been proposed and presented by the author are

emphasized with bold-face. A separate list of the author’s contributions is given in

Section 1.3.

16

Introduction

1.2.1 Shallow Neural Networks

In Chapter 2, the author gives a background on neural networks that are considered

shallow. By shallow neural networks we refer, in the case of supervised models, to

those neural networks that have only input and output units, although many often

consider a neural network having a single layer of hidden units shallow as well. No

intermediate hidden units are considered. A linear regression network and perceptron

are described as representative examples of supervised, shallow neural networks in

Section 2.1.

Unsupervised neural networks which do not have any output unit are considered

shallow when either there are no hidden units or there are only linear hidden units. A

Hopfield network is one example having no hidden units, and a linear autoencoder, or

equivalently principal component analysis, is an example having linear hidden units

only. Both of them are briefly described in Section 2.2.

All these shallow neural networks are then in Section 2.3 further described in rela-

tion with probabilistic models. From this probabilistic perspective, the computations

in neural networks are interpreted as computing the conditional probability of other

units given an input sample. In supervised neural networks, these forward computa-

tions correspond to computing the conditional probability of output variables, while

in unsupervised neural networks, they are shown to be equivalent to inferring the

posterior distribution of hidden units under certain assumptions.

Based on this preliminary knowledge on shallow neural networks, the author dis-

cusses some conditions that are often satisfied by a neural network to be considered

deep in Section 2.4.

The chapter ends by briefly describing how the parameters of a neural network can

be efficiently estimated by the stochastic gradient method.

1.2.2 Deep Feedforward Neural Networks

The first family of deep neural networks is introduced and discussed in detail in Chap-

ter 3. This family consists of feedforward neural networks that have multiple layers

of nonlinear hidden units. A multilayer perceptron is introduced and two related, but

not-so-deep, feedforward neural networks, a kernel support vector machine and an

extreme learning machine are briefly discussed in Section 3.1.

The remaining part of the chapter begins by describing deep autoencoders. With

its basic description, a probabilistic interpretation of the encoder and decoder of a

deep autoencoder is provided in connection with a sigmoid belief network and its

learning algorithm called wake-sleep algorithm in Section 3.2.1. This allows one

to view the encoder and decoder as inferring an approximate posterior distribution

17

Introduction

and computing a conditional distribution. Under this view, a related approach called

sparse coding is discussed, and an explicit sparsification, proposed by the author in

Publication VIII, for a sparse deep autoencoder is introduced in Section 3.2.5.

Another view of an autoencoder is provided afterward based on the manifold as-

sumption in Section 3.3. In this view, it is explained how some variants of autoen-

coders such as a denoising autoencoder and a contractive autoencoder are able to

capture the manifold on which data lies.

An algorithm called backpropagation for efficiently computing the gradient of the

cost function of a feedforward neural network with respect to the parameters is pre-

sented in Section 3.4. The computed gradient is often used by the stochastic gradient

method to estimate the parameters.

After a brief description of backpropagation, the section further discusses the dif-

ficulty of training deep feedforward neural networks by introducing some of the hy-

potheses proposed recently. Furthermore, for each hypothesis, a potential remedy is

described.

1.2.3 Boltzmann Machines with Hidden Units

The second family of deep neural networks considered in this dissertation consists of

a Boltzmann machine and its structurally restricted variants. The author classifies the

Boltzmann machines as deep neural networks based on the observation that Boltz-

mann machines are recurrent neural networks and that any recurrent neural network

with nonlinear hidden units is deep.

The chapter proceeds by describing a general Boltzmann machine of which all

units, regardless of their types, are fully connected by undirected edges in Section 4.1.

One important consequence of formulating the probability distribution of a Boltz-

mann machine with a Boltzmann distribution (see Section 2.3.2) is that an equiva-

lent Boltzmann machine can always be constructed when the variables or units are

transformed with, for instance, a bit-flipping transformation. Based on this, in Sec-

tion 4.1.1 the enhanced gradient which was proposed by the author in Publication I

is introduced.

In Section 4.3, three basic estimation principles needed to train a Boltzmann ma-

chine are introduced. They are Markov Chain Monte Carlo sampling, variational ap-

proximation, and stochastic approximation procedure. An advanced sampling method,

called parallel tempering, whose use for training variants of Boltzmann machines

was proposed in Publication III, Publication V and Publication VI for training vari-

ants of Boltzmann machines, is described further in Section 4.3.1.

The remaining part of this chapter concentrates on more widely used variants of

Boltzmann machines. In Section 4.4.1, an underlying mechanism based on the con-

18

Introduction

ditional independence property of aMarkov random field is explained that justifies re-

stricting the structure of a Boltzmann machine. Based on this mechanism, a restricted

Boltzmann machine and deep Boltzmann machine are explained in Section 4.4.2–

4.4.3.

After describing the restricted Boltzmann machine in Section 4.4.2, the author dis-

cusses the connection between a product of experts and the restricted Boltzmann

machine. This connection further leads to the learning principle of minimizing con-

trastive divergence which is based on constructing a sequence of distributions using

Gibbs sampling.

At the end of this chapter, in Section 4.5, the author discusses the connections be-

tween the autoencoder and the Boltzmann machine found earlier by other researchers.

The close equivalence between the restricted Boltzmann machine and the autoen-

coder with a single hidden layer is described in Section 4.5.1. In due course, a

Gaussian-Bernoulli restricted Boltzmann machine is discussed with its modified en-

ergy function proposed in Publication V. A deep belief network is subsequently

discussed as a composite model of a restricted Boltzmann machine and a stochastic

deep autoencoder in Section 4.5.2.

1.2.4 Unsupervised Neural Networks as the First Step

The last chapter before the conclusion deals with an important concept of pretraining,

or initializing another potentially more complex neural network with unsupervised

neural networks. This is first motivated by the difficulty of training a deep multilayer

perceptron in Section 3.4.1.

The first section (Section 5.1) describes stacking multiple layers of unsupervised

neural networks with a single hidden layer to initialize a multilayer perceptron, called

layer-wise pretraining. This method is motivated in the framework of incrementally,

or recursively, transforming the coordinates of input samples to obtain better repre-

sentations. In this framework, several alternative building blocks are introduced in

Sections 5.1.1–6.3.5.

In Section 5.2, we describe how the unsupervised neural networks such as Boltz-

mann machines and deep belief networks can be used for discriminative tasks. A

direct method of learning a joint distribution between an input and output is intro-

duced in Section 5.2.1. A discriminative restricted Boltzmann machine and a deep

belief network with the top pair of layers augmented with labels are described. A

non-trivial method of initializing a multilayer perceptron with a deep Boltzmann ma-

chine is further explained in Section 5.2.2.

The author wraps up the chapter by describing in detail how more complex gen-

erative models, such as deep belief networks and deep Boltzmann machines, can be

19

Introduction

initialized with simpler models such as restricted Boltzmann machines in Section 5.3.

Another perspective based on maximizing variational lower bound is introduced to

motivate pretraining a deep belief network by stacking multiple layers of restricted

Boltzmann machines in Section 5.3.1–5.3.2. Section 5.3.3 explains two pretraining

algorithms for deep Boltzmann machines. The second algorithm, called the two-

stage pretraining algorithm, was proposed by the author in Publication VII.

1.2.5 Discussion

The author finishes the thesis by summarizing the current status of academic research

and commercial applications of deep neural networks. Also, the overall content of

this thesis is summarized. This is immediately followed by five subsections that

discuss some topics that have not been discussed in, but are relevant to this thesis.

The field of deep neural networks, or deep learning, is expanding rapidly, and it is

impossible to discuss everything in this thesis. multilayer perceptrons, autoencoders

and Boltzmann machines, which are the main topics of this thesis, are certainly not

the only neural networks in the field of deep neural networks. However, as the aim of

this thesis is to provide a brief overview of and introduction to deep neural networks,

the author intentionally omitted some models, even though they are highly related

to the neural networks discussed in this thesis. One of those models is independent

component analysis (ICA), and the author provides a list of references that present

the relationship between the ICA and the deep neural networks in Section 6.3.1.

One well-founded theoretical property of most of deep neural networks discussed

in this thesis is the universal approximator property, stating that a model with this

property can approximate the target function, or distribution, with arbitrarily small

error. In Section 6.3.2, the author provides the references to some earlier works that

proved or described this property of various deep neural networks.

Compared to the feedforward neural networks such as autoencoders and multilayer

perceptrons, it is difficult to evaluate Boltzmann machines. Even when the struc-

ture of the network is highly restricted, the existence of the intractable normalization

constant requires using a sophisticated sampling-based estimation method to evalu-

ate Boltzmann machines. In Section 6.3.3, the author points out some of the recent

advances in evaluating Boltzmann machines.

The chapter ends by presenting recently proposed solutions to two practical mat-

ters concerning training and building deep neural networks. First, a recently pro-

posed method of hyper-parameter optimization is briefly described, which relies on

Bayesian optimization. Second, a standard approach to building a deep neural net-

work that explicitly exploits the spatial structure of data is presented.

20

Introduction

1.3 Author’s Contributions

This thesis contains ten publications that are closely related to and based on the basic

principles of deep neural networks. This section lists for each publication the author’s

contribution.

In Publication I, Publication II, Publication III and Publication IV, the author

extensively studied learning algorithms for restricted Boltzmann machines (RBM)

with binary units. By investigating potential difficulties of training RBMs, the au-

thor together with the co-authors of Publication I and Publication II designed a novel

update direction called enhanced gradient, that utilizes the transformation invariance

of Boltzmann machines (see Section 4.1.1). Furthermore, to alleviate selecting the

right learning rate scheduling, the author proposed an adaptive learning rate algorithm

based on maximizing the locally estimated likelihood that can adapt the learning rate

on-the-fly (see Section 6.3.3), in Publication II. In Publication III, parallel tempering

which is an advanced Markov Chain Monte Carlo sampling algorithm, was applied to

estimating the statistics of the model distribution of an RBM (see Section 4.3.1). Ad-

ditionally, the author proposed and tested empirically novel regularization terms for

RBMs that were motivated by the contractive regularization term recently proposed

for autoencoders (see Section 3.3).

The author further applied these novel algorithms and approaches, including the

enhanced gradient, the adaptive learning rate and parallel tempering to Gaussian-

Bernoulli RBMs (GRBM) which employ Gaussian visible units in place of binary

visible units in Publication V. In this work, those approaches as well as a modi-

fied form of the energy function (see Section 4.5.1) were empirically found to fa-

cilitate estimating the parameters of a GRBM. These novel approaches were further

applied to a more complex model, called a Gaussian-Bernoulli deep Boltzmann ma-

chine (GDBM), in Publication VI.

In Publication VII, the author proposed a novel two-stage pretraining algorithm

for deep Boltzmann machines (DBM) based on the fact that the encoder of a deep

autoencoder performs approximate inference of the hidden units (see Section 5.3.3).

A deep autoencoder trained during the first stage is used as an approximate poste-

rior distribution during the second stage to initialize the parameters of a DBM to

maximize the variational lower bound of a marginal log-likelihood.

Unlike the previous work, the author moved his focus to a denoising autoencoder

(see Section 3.3) trained with a sparsity regularization, in Publication VIII. In this

work, mathematical motivation is given for sparsifying the states of hidden units

when the autoencoder was trained with a sparsity regularization (see Section 3.2.5.

The author proposes a simple sparsification based on a shrinkage operator that was

21

Introduction

empirically shown to be effective when an autoencoder is used to denoise a corrupted

image patch with high noise.

In Publication X and Publication IX, two potential applications of deep neural

networks were investigated. An RBM with Gaussian visible units was used to extract

features from speech signal for speech recognition in highly noisy environment, in

Publication X. This work showed that an existing system can easily benefit from sim-

ply adopting a deep neural network as an additional feature extractor. In Publication

IX, the author applied a denoising autoencoder, a GRBM and a GDBM to a blind

image denoising task.

22

2. Preliminary: Simple, Shallow Neural
Networks

In this chapter, we review several types of simple artificial neural networks that form

the basis of deep neural networks1. By the term simple neural network, we refer

to the neural networks that do not have any hidden units, in the case of supervised

models, or have zero or one single layer of hidden units, in the case of unsupervised

models.

Firstly, we look at a supervised model that consists of several visible, or input, units

and a single output unit. There is a feedforward connection from each input unit to

the output unit. Depending on the type of the output unit, this model can perform

linear regression as well as a (binary) classification.

Secondly, unsupervised models are described. We begin with a linear autoencoder

that consists of several visible units and a single layer of hidden units, and show the

connection with principal component analysis (PCA). Then, we move on to Hopfield

networks.

These models will be further discussed in a probabilistic framework. Each model

will be re-formulated as a probabilistic model, and the correspondence between the

parameter estimation from the perspectives of neural networks and probabilistic mod-

els will be found. This probabilistic perspective will be useful later in interpreting a

deep neural networks as a machine performing probabilistic inference and generation.

At the end of this chapter, we discuss some conditions that distinguish deep neu-

ral networks from the simple neural networks introduced in the earlier part of this

chapter.

1Note that we use the term neural network instead of artificial neural network. There should
not be any confusion, as this thesis specifically focuses only on artificial neural networks.

23

Preliminary: Simple, Shallow Neural Networks

2.1 Supervised Model

Let us consider a case where a set D of N input/output pairs is given:

D =
{(

x(n), y(n)
)}N

n=1
, (2.1)

where x(n) ∈ Rp and y(n) ∈ R for all n = 1, . . . , N .

It is assumed that each y is a noisy observation of a value generated by an unknown

function f with x:

y = κ(f(x)). (2.2)

where κ(·) is a stochastic operator that randomly corrupts the input. Furthermore, it

may be assumed that x(n) is a noisy sample of an underlying distribution. Under this

setting, a supervised model aims to estimate f using the given training set D.

Often when y is a continuous variable, the task is called a regression problem. On

the other hand, when y is a discrete variable corresponding to a class of y with only

a small number of possible outcomes, it is called a classification task.

Now, we look at how simple neural networks can be used to solve these two tasks.

2.1.1 Linear Regression

A directed edge between two units or neurons indicates that the output of one unit

flows into the other one via the edge.2 It is possible to have multiple edges going

out from a single unit and to have multiple edges coming in. Each edge has a weight

value that amplifies the signal carried by the edge.

A linear unit u gathers all p incoming values amplified by the associated weights

and outputs their sum:

u(x) =

p∑
i=1

xiwi + b, (2.3)

where wi is a weight of the i-th incoming edge, and b is a bias of the unit. With

this linear unit as an output unit, we can construct a simple neural network that can

simulate the unknown function f , given a training set D.

We can arrange the input and output units with the described linear units, as shown

in Figure 2.1 (a). With a proper set of weights, this network then simulates the un-

known function f given an input x.

The aim now becomes to find a vector of weights w = [w1, . . . , wp]
� such that

the output u of this neural network estimates the unknown function f as closely as

2Although it is common to use the terms neuron, node and unit to indicate each variable in a
neural network, from here on, we use the term unit, only. An edge in a neural network is also
commonly referred to as a synapse, synaptic connection or edge, but we use the term edge
only in this thesis.

24

Preliminary: Simple, Shallow Neural Networks

x1

x2

xp

y

(a) Linear Regression

x1

x2

xp

y

(b) Perceptron

Figure 2.1. Illustrations of linear regression and perceptron networks. Note that the outputs of these
two networks use different activation functions.

possible. If we assume Gaussian noise ε, this can be done by minimizing the squared

error between the desired outputs
{
y(n)

}
and the simulated output

{
u(x(n))

}
with

respect to w:

ŵ = argmin
w

N∑
n=1

(
y(n) − u

(
x(n)

))2
+ λΩ (w, D) , (2.4)

whereΩ and λ are the regularization term and its strength. Regularization is a method

for controlling the complexity of a model to prevent the model from overfitting to

training samples.

If we assume the case of no regularization (λ = 0), we can find the analytical solu-

tion of ŵ by a simple linear least-squares method (see, e.g., Golub and van Van Loan,

1996). For instance, ŵ is obtained by multiplying y =
[
y(1), y(2), . . . , y(N)

]�
to a

pseudo-inverse of X� =
[
x(1),x(2), . . . ,x(N)

]�
.

When there exists a regularization term, the problem in Eq. (2.4) may not have an

analytical solution depending on the type of the regularization term. In this case, one

must resort to using an iterative optimization algorithm (see, e.g., Fletcher, 1987).

We iteratively compute updating directions to update w such that eventually w will

converge to a solution ŵ that (locally) minimizes the cost function.

One exception is the ridge regression which regularizes the growth of the L2-norm

of the weight vector w such that

Ω(w, D) =

p∑
i=1

w2
i .

In this case, we still have an analytical solution

ŵ =
(
XX� + λI

)−1
Xy.

It is, however, usual with other regularization terms that there is no analytical solu-

tion. For instance, the least absolute shrinkage and selection operator (lasso) (Tib-

shirani, 1994) regularizes the L1-norm of the weights, and the regularization term

Ω(w, D) =

p∑
i=1

|wi|.

25

Preliminary: Simple, Shallow Neural Networks

does not have an exact analytical solution.

Although we have considered the case of a one-dimensional output y, this network

can be extended to predict a multi-dimensional output. Simply, the network will

require as many output units as the dimensionality of the output y. The solution for

the weightsw can be found in exactly the same way as before by solving the weights

corresponding to each output simultaneously.

This simple linear neural network is highly restrictive in the sense that it can only

approximate, or simulate, a linear function arbitrary well. When the unknown func-

tion f is not linear, this network will most likely fail to simulate it. This is one of the

motivations for considering a deep neural network instead.

2.1.2 Perceptron

The basic idea of the perceptron introduced by Rosenblatt (1958) is to insert a Heav-

iside step function φ after the summation in a linear unit, where

φ(x) =

⎧⎨
⎩ 0, if x < 0

1, otherwise
. (2.5)

The unit u then becomes nonlinear:

u(x) = φ

(
p∑

i=1

xiwi + b

)
. (2.6)

This formula allows us to perform a binary classification, where each sample is either

classified as negative (0) or positive (1).

The illustration of a perceptron in Fig. 2.1 (b) shows that the perceptron is identical

to the linear regression network except that the activation function of the output is a

nonlinear step function.

Consider a case where we have again a training set D of input/output pairs. How-

ever, now each output y(n) is either 0 or 1. Furthermore, each y(n) was generated

from x(n) by an unknown function f , as in Eq. (2.2). As before, we want to find a

set of weights w such that the perceptron can approximate the unknown function f

as closely as possible.

In this case, this is considered a classification task rather than a regression as there

is a finite number of possible values for y. The task of the perceptron is to figure out

to which class each sample x belongs.

A perceptron can perfectly simulate the unknown function f , when the training

samples are linearly separable (Minsky and Papert, 1969). Linear separability means

that there exists a linear hyperplane that separates x(n) that belongs to the positive

class from those that belong to the negative class (see Fig. 2.2). With a correct set of

26

Preliminary: Simple, Shallow Neural Networks

(a) Linearly separable (b) Nonlinearly separable

Figure 2.2. (a) Samples are linearly separable. (b) They are separable, but not linearly.

weights w∗, the linear separating hyperplane can be characterized by

p∑
i=1

xiw
∗
i + b∗ = 0

The perceptron learning algorithm was proposed to estimate the set of weights The

algorithm iteratively updates the weightsw overN training samples by the following

rule:

w← w + η
[
y(n) − u

(
x(n)

)]
x(n).

This will converge to the correct solution as long as the given training set is linearly

separable.

Note that it is possible to use any other nonlinear saturating function whose range

is limited from above and below so that it can approximate the Heaviside function.

One such example is a sigmoid function whose range is [0, 1]:

φ(x) =
1

1 + exp (−x) . (2.7)

In this case, a given sample x is classified positive if the output is greater than, or

equal to, 0.5, and otherwise as negative. Another possible choice is a hyperbolic

tangent function whose range is [−1, 1]:

φ(x) = tanh(x). (2.8)

The set of weights can be estimated in another way by minimizing the difference

between the desired output and the output of the network, just like in the simple

linear neural network. However, in this case the cross-entropy cost function (see, e.g.

Bishop, 2006) can be used instead of the mean squared error:

ŵ = argmin
w

N∑
n=1

(
−y(n) log u

(
x(n)

)

−
(
1− y(n)

)
log
(
1− u

(
x(n)

)))
+ λΩ (w, D) . (2.9)

27

Preliminary: Simple, Shallow Neural Networks

Unlike the simple linear neural network, this does not have an analytical solution,

and one needs to use an iterative optimization algorithm.

As was the case with the simple linear neural network, the capability of the per-

ceptron is limited. It only works well when the classes are linearly separable (see,

e.g., Minsky and Papert, 1969). For instance, a perceptron cannot learn to compute

an exclusive-or (XOR) function. In this case, any non-noisy samples from the XOR

function are not separable with a linear boundary.

It has been known that a network of perceptrons, having between the input units and

the output unit one or more layers of nonlinear hidden units that do not correspond

to either inputs or outputs, can solve classification tasks where classes are not linear

separable, such as the XOR function (see, e.g., Touretzky and Pomerleau, 1989). This

makes us consider a deep neural network also in the context of classification.

2.2 Unsupervised Model

Unlike in supervised learning, unsupervised learning considers a case where there is

no target value. In this case, the training set D consists of only input vectors:

D =
{
x(n)

}N

n=1
. (2.10)

Similarly to the supervised case, we may assume that each x in D is a noisy obser-

vation of an unknown hidden variable such that

x = f(h). (2.11)

Whereas we aimed to find the function or mapping f given both input and output

previously in supervised models, our aim here is to find both the unknown function

f and the hidden variables h ∈ Rq. This leads to latent variable models in statistics

(see, e.g., Murphy, 2012).

This is, however, not the only way to formulate an unsupervised model. Another

way is to build a model that learns direct relationships among the input components

x1, . . . , xp. This does not require any hidden variable, but still learns an (unknown)

structure of the model.

2.2.1 Linear Autoencoder and Principal Component Analysis

In this section, we look at the case where hidden variables are assumed to have lin-

early generated training samples. In this case, it is desirable for us to learn not only

an unknown function f , but also another function g that is an (approximate) inverse

function of f . Opposite to f , g recognizes a given sample by finding a corresponding

28

Preliminary: Simple, Shallow Neural Networks

x1

x2

xp

x̃1

x̃2

x̃p

h1

hq

(a) Linear Autoencoder

x1 x2 x3 xp

(b) Hopfield Network

Figure 2.3. Illustrations of a linear autoencoder and Hopfield network. An undirected edge in the Hop-
field network indicates that signal flows in both ways.

state of the hidden variables.3

Let us construct a neural network with linear units. There are as many input units

as p corresponding to components of an input vector, denoted by x, and q linear units

that correspond to the hidden variables, denoted by h. Additionally, we add another

set of p linear units, denoted by x̃. We connect directed edges from x to h and from

h to x̃. Each edge eij which connects the i-th input unit to the j-th hidden unit has a

corresponding weight wij . Also, edge ejk which connects the j-th hidden unit to the

k-th output unit has its weight ujk. See Fig. 2.3 (a) for the illustration.

This model is called a linear autoencoder.4 The encoder of the autoencoder is

h = f(x) = W�x+ b, (2.12)

and the decoder is

x̃ = g(h) = U�h(x) + c, (2.13)

where we uses the matrix-vector notation for simplicity. W = [wij]p×q are the

encoder weights, U = [ujk]q×p the decoder weights, and b and c are the hidden

biases and the visible biases, respectively. It is usual to call the layer of the hidden

units a bottleneck.5 Note that without loss of generality we will omit biases whenever

it is necessary to make equations uncluttered.

In this linear autoencoder, the encoder in Eq. (2.12) acts as an inverse function

g that recognizes a given sample, whereas the decoder in Eq. (2.13) simulates the

unknown function f in Eq. (2.11).

If we tied the weights of the encoder and decoder so that W = U�, we can see

the connection between the linear autoencoder and the principal component analysis

3Note that it is not necessary for g to be an explicit function. In some models such as sparse
coding in Section 3.2.5, g may be defined implicitly.
4The same type of neural networks is also called autoassociative neural networks. In this
thesis, however, we use the term autoencoder which has become more widely used recently.
5Although the term bottleneck implicitly implies that the size of the layer is smaller than that
of either the input or output layers, it is not necessarily so.

29

Preliminary: Simple, Shallow Neural Networks

(PCA). Although there are many ways to formulate PCA (see, e.g. Bishop, 2006),

one way is to use a minimum-error formulation6 that minimizes

J(θ) =
1

2

N∑
n=1

∥∥∥x(n) − x̃(n)
∥∥∥2
2
. (2.14)

The minimum of Eq. (2.14) is in fact exactly the solution the linear autoencoder aims

to find.

This connection and equivalence between the linear autoencoder and the PCA have

been noticed and shown by previous research (see, for instance, Oja, 1982; Baldi and

Hornik, 1989). However, it should be reminded that minimizing the cost function in

Eq. (2.14) by an optimization algorithm is unlikely to recover the principal compo-

nents, but an arbitrary basis of the subspace spanned by the principal components,

unless we explicitly constrain the weight matrix to be orthogonal.

This linear autoencoder has several restrictions. The most obvious one is that it is

only able to learn a correct model when the unknown function f is linear. Secondly,

due to its linear nature, it is not possible to model any hierarchical generative process.

Adding more hidden layers is equivalent to simply multiplying the weight matrices

of additional layers, and this does not help in any way.

Another restriction is that the number of hidden units q is upper-bounded by the

input dimensionality p. Although it is possible to use q > p, it will not make any

difference, as it does not make any sense to use more than p principal components in

PCA. This could be worked around by using regularization as in, for instance, sparse

coding (Olshausen and Field, 1996) or independent component analysis (ICA) with

reconstruction cost (Le et al., 2011b).

As was the case with the supervised models, this encourages us to investigate more

complex, overcomplete models that have multiple layers of nonlinear hidden units.

2.2.2 Hopfield Networks

Now let us consider a neural network consisting of visible units only, and each visible

unit is a nonlinear, deterministic unit, following Eq. (2.6), that corresponds to each

component of an input vector x. We connect each pair of the binary units xi and xj

with an undirected edge eij that has the weight wij , as in Fig. 2.3 (b). We add to each

unit xi a bias term bi. Furthermore, let us define an energy of the constructed neural

network as

−E(x | θ) = 1

2

∑
i �=j

wijxixj +
∑
i

xibi, (2.15)

6Actually the minimum-error formulation minimizes the mean-squared error E
[
‖x− x̃‖22

]
which is in most cases not available for evaluation. The cost function in Eq. (2.14) is an
approximation to the mean-squared error using a finite number of training samples.

30

Preliminary: Simple, Shallow Neural Networks

where θ = (W,b). We call this neural network a Hopfield network (Hopfield, 1982).

The Hopfield network aims to finding a set of weights that makes the energy of the

presented patterns low via the training set D =
{
x(1), . . . ,x(N)

}
(see, e.g., Mackay,

2002). Given a fixed set of weights and an unseen, possibly corrupted input, the

Hopfield network can be used to find a clean pattern by finding the nearest mode in

the energy landscape.

In other words, the weights of the Hopfield network can be obtained by minimizing

the following cost function given a set D of training samples:

J(θ) =
N∑

n=1

E
(
x(n)

∣∣∣θ) . (2.16)

The learning rule for each weight wij can be derived by taking a partial derivative

of the cost function J with respect to it. The learning rule is

wij ← wij −
η

N

N∑
n=1

∂E
(
x(n) | θ

)
∂wij

= wij +
η

N

N∑
n=1

x
(n)
i x

(n)
j = wij + η 〈xixj〉d , (2.17)

where η is a learning rate and 〈x〉P refers to the expectation of x over the distribution

P . We denote by d the data distribution from which samples in the training set D

come. Similarly, a bias bi can be updated by

bi = bi + η 〈xi〉d . (2.18)

This learning rule is known as the Hebbian learning rule (Hebb, 1949). This rule

states that the weight between two units, or neurons, increases if they are active to-

gether. After learning, the weight will be strongly positive, if the activities of the two

connected units are highly correlated.

With the learned set of weights, we can simulate the network by updating each unit

xi with

xi = φ

⎛
⎝∑

j �=i

wijxj + bi

⎞
⎠ , (2.19)

where φ is a Heaviside function as in Eq. (2.6).

It should be noticed that because the energy function in Eq. (2.15) is not lower

bounded and the gradient in Eq. (2.17) does not depend on the parameters, we may

simply set each weight by

wij = c 〈xixj〉d ,

where c is an arbitrary , positive constant, given a fixed set of training samples. An

arbitrary c is possible, since the output of (2.19) is invariant to the scaling of the

parameters.

31

Preliminary: Simple, Shallow Neural Networks

In summary, the Hopfield network memorizes the training samples and is able to

retrieve them, starting from either a corrupted input or a random sample. This is

one way of learning an internal structure of a given training set in an unsupervised

manner.

The Hopfield network learns the unknown structure of training samples. However,

it is limited in the sense that only direct correlations among visible units are modeled.

In other words, the network can only learn second-order statistics. Furthermore, the

use of the Hopfield network is highly limited by a few fundamental deficiencies in-

cluding the emergence of spurious states (for more details, see Haykin, 2009). These

encourage us to extend the model by introducing multiple hidden units as well as

making them stochastic.

2.3 Probabilistic Perspectives

All neural network models we have described in this chapter can be re-interpreted

from a probabilistic perspective. This interpretation helps understanding how neural

networks perform generative modeling and recognize patterns in a novel sample. In

this section, we briefly explain the basic ideas involving probabilistic approaches to

machine learning problems and their relationship to neural networks.

For more details on probabilistic approaches, we refer the readers to, for instance,

(Murphy, 2012; Barber, 2012; Bishop, 2006).

2.3.1 Supervised Model

Here we consider discriminative modeling from the probabilistic perspective. Again,

we assume that a set D of N input/output pairs, as in Eq. (2.1), is given. The same

model in Eq. (2.2) is used to describe how the set D was generated. In this case, we

can directly plug in a probabilistic interpretation.

Let each component xi of x be a random variable, but for now fixed to a given

value. Also, we assume that the observation of y is corrupted by additive noise ε

which is another random variable. Then, the aim of discriminative modeling in a

probabilistic approach is to estimate or approximate the conditional distribution of

yet another random variable y given the input x and the noise ε parameterized7 by θ,

that is, p(y | x,θ).
The prediction of the output ŷ given a new sample x can be computed from the

7It is possible to use non-parametric approaches, such as Gaussian Process (GP) (see, e.g.,
Rasmussen andWilliams, 2006), which do not have in principle any explicit parameter. How-
ever, we may safely use the parameters θ by including the hyper-parameters of, for instance,
kernel functions and potentially even (some of) the training samples.

32

Preliminary: Simple, Shallow Neural Networks

conditional distribution p(y | x, θ̃) with the estimated parameters θ̃. It is typical to

use the mean of the distribution as a prediction and its variance as a confidence.

Linear Regression

A probabilistic model equivalent to the previously described linear regression net-

work can be built by assuming that the noise ε follows a Gaussian distribution with

zero mean and its variance is fixed to s2. Then, the conditional distribution of y given

a fixed input x becomes

p(y | x, s2) = N
(
y

∣∣∣∣∣
p∑

i=1

xiwi + b, s2

)
,

whereN
(
y
∣∣m, s2

)
is a probability density of the scalar variable y following a Gaus-

sian distribution with the mean m and variance s2. A linear relationship between the

input and output variables has been assumed in computing the mean of the distribu-

tion.

The parameters wi and b can be found by maximizing the log-likelihood function

L(w, b) = −
N∑

n=1

(
y(n) −

∑p
i=1 x

(n)
i wi − b

)2
2s2

+ C, (2.20)

where the constant C does not depend on any parameter. This way of estimating ŵi

and b̂ to maximize L is called maximum-likelihood estimation (MLE).

If we assume a fixed constant s2, maximizing L is equivalent to minimizing

N∑
n=1

(
y(n) − u(x(n))

)2

using the definition of the output of a linear unit u(x) from Eq. (2.3). This is identical

to the cost function of the linear regression network given in Eq. (2.4) without a

regularization term.

A regularization term can be inserted by considering the parameters as random

variables. When each weight parameter wi is given a prior distribution, the log-

posterior distribution log p(w | x, y) of the weights can be written, using Bayes’

rule8, as

log p(w | x, y) = log p(y | x,w) + log p(w) + const.,

8Bayes’ rule states that

p(X | Y) =
p(Y | X)p(X)

p(Y)
, (2.21)

where bothX and Y are random variables. One interpretation of this rule is that the posterior
probability of X given Y is proportional to the product of the likelihood (or conditional
probability) of Y given X and the prior probability of X . If both the conditional and prior
distributions are specified, the posterior probability can be evaluated as their product, up to
the normalization constant or evidence p(Y).

33

Preliminary: Simple, Shallow Neural Networks

x1 x2 xp

y

x(n)

h(n)

σ2

N
W

(a) Naive Bayes (b) Probabilistic PCA

Figure 2.4. Illustrations of the naive Bayes classifier and probabilistic principal component analysis.
The naive Bayes classifier in (a) describes the conditional independence of each component
of input given its label. In both figures, the random variables are denoted with circles (a
gray circle indicates an observed variables), and other parameters are without surrounding
circles. The plate indicates that there are N copies of a pair of x(n) and h(n). For details
on probabilistic graphical models, see, for instance, (Bishop, 2006).

where the constant term does not depend on the weights. If, for instance, the prior

distribution of each weight wi is a zero-mean Gaussian distribution with its variance

fixed to 1
2λ , the log-posterior distribution given a training set D becomes

log p

(
w

∣∣∣∣{(x(n), y(n))
}N

n=1

)
= L(w, b)− λ

p∑
i=1

w2
i .

Maximizing this posterior is equivalent to ridge regression (Hoerl and Kennard, 1970).

When the log-posterior is maximized instead of the log-likelihood, we call it a maximum-

a-posteriori estimation (MAP), or in some cases, penalized maximum-likelihood es-

timation (PMLE).

Logistic Regression: Perceptron

As was the case in our discussion on perceptrons in Section 2.1.2, we consider a

binary classification task.

Instead of Eq. (2.2) where it was assumed that the output y was generated from an

input x through an unknown function f , we can think of a probabilistic model where

the sample x was generated according to the conditional distribution given its label9

y, where y was chosen according to the prior distribution. In this case, we assume that

we know the forms of the conditional and prior distributions a priori. See Fig. 2.4 (a)

for the illustration of this model, which is often referred to as the naive Bayes model

(see, e.g., Bishop, 2006).

Based on this model, the aim is to find a class, or a label, that has the highest

posterior probability given a sample. In other words, a given sample belongs to a

class 1, if

p(y = 1 | x) ≥ 1

2
,

9A label of a sample tells to which class the sample belongs. Often these two terms are
interchangeable.

34

Preliminary: Simple, Shallow Neural Networks

since

p(y = 1 | x) + p(y = 0 | x) = 1

in the case of a binary classification.

Using the Bayes’ rule in Eq. (2.21), we may write the posterior probability as

p(y = 1 | x) = p(x | y = 1)p(y = 1)

p(x | y = 1)p(y = 1) + p(x | y = 0)p(y = 0)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
(
− log p(x|y=1)p(y=1)

p(x|y=0)p(y=0)

) .
The posterior probability above takes the form of a sigmoid function with an input

a = log
p(x | y = 1)p(y = 1)

p(x | y = 0)p(y = 0)
.

A logistic regression approximates this input a with a weighted linear sum of the

components of an input. The posterior probability of y = 1 is then

u(x) = p(y = 1 | x,θ) = φ
(
W�x+ b

)
,

where θ = (W, b) is a set of parameters. We put u(x) to show the equivalence

of the posterior probability to the nonlinear output unit used in the perceptron (see

Eq. (2.6)). Since the posterior distribution of y is simply a Bernoulli random variable,

we may write the log-likelihood of the parameters θ as

L(θ) =
N∑

n=1

y(n) log u(x(n)) + (1− y(n)) log(1− u(x(n))). (2.22)

This is identical to the cross-entropy cost function in Eq. (2.9) that was used to

train a perceptron, except for the regularization term. The regularization term can be,

again, incorporated by introducing a prior distribution to the parameters, as was done

with the probabilistic linear regression in the previous section.

2.3.2 Unsupervised Model

The aim of unsupervised learning in a probabilistic framework is to let the model

approximate a distribution p(x | θ) of a given set of training samples, parameterized

by θ. As was the case without any probabilistic interpretation, two approaches are

often used. The first approach utilizes a set of hidden variables to describe the re-

lationships among visible variables. On the other hand, the other approach does not

require introducing hidden variables.

35

Preliminary: Simple, Shallow Neural Networks

Principal Component Analysis and Expectation-Maximization

PCA can be viewed in a probabilistic perspective (see, e.g., Tipping and Bishop,

1999; Roweis, 1998) by considering both x and h in Eq. (2.11) as random variables

and assuming that f is a linear function parameterized by the projection matrix W.

The noise term ε follows a zero-mean Gaussian distribution with its variance σ2.

Furthermore, we may assume that the training samples x(n) are centered so that their

mean is zero.10

The hidden variables h follow a zero-mean unit-covariance multivariate Gaussian

distribution such that

h ∼ N (0, I),

and the conditional distribution over x given h is also a multivariate Gaussian with a

diagonal covariance:

x | h ∼ N (Wh, σ2I).

This is illustrated in Fig. 2.4 (b).

The aim is to estimateW and σ2 by maximizing the marginal log-likelihood, given

by

L(θ) =
N∑

n=1

log

∫
h
p(x(n) | h)p(h)dh, (2.23)

where θ =
(
W, σ2

)
. Because both the prior distribution of h and the conditional

distribution of x | h are Gaussian distributions, the marginal distribution of x is also

a Gaussian distribution with the following sufficient statistics:

E [x] = 0,

Cov [x] = C = WW� + σ2I.

In this case, Tipping and Bishop (1999) showed that all the stationary points of the

marginal log-likelihood function L are given by

Ŵ = Uq

(
Lq − σ2I

)1/2
R

and

σ̂2 =
1

p− q

p∑
i=q+1

λi,

where Uq, Lq and λi are any subset of q eigenvectors of the data covariance, the

diagonal matrix of corresponding eigenvalues, and the i-th eigenvalue, respectively.

R is an arbitrary orthogonal matrix.11 Furthermore, in (Tipping and Bishop, 1999),

10This is not necessary, but for simplicity, it is assumed here.
11Any orthogonal matrix can be used as R, since it does not change the sufficient statistics,
specifically the covariance of the observation, as WR (WR)

�
= WRR�W� = WW�.

36

Preliminary: Simple, Shallow Neural Networks

it was shown that L is maximal when the q largest eigenvectors and eigenvalues of

the data covariance were used.

In this section, however, we are more interested in solving PCA using the expectation-

maximization (EM) algorithm (Dempster et al., 1977), which was proposed by Roweis

(1998). It will make the connection to the linear autoencoder introduced in Sec-

tion 2.2.1 more clear.

The EM algorithm is an iterative algorithm used to find a maximum-likelihood

estimate when the probabilistic model has a set of unobserved, hidden variables. Let

us state the algorithm based on (Neal and Hinton, 1999; Bishop, 2006).

We first note that the marginal log-likelihood in Eq. (2.23) can be decomposed by

L(θ) =
N∑

n=1

L(n)(θ) =
N∑

n=1

LQ(n)(θ) + KL(Q(n)‖P (n)), (2.24)

where

LQ(n)(θ) = EQ(n)

[
log p(x(n),h | θ)

]
+H(Q(n)) (2.25)

and

KL(Q(n)‖P (n)) = −EQ(n)

[
log

p(h | x(n),θ)

Q(n)(h)

]
, (2.26)

and P (n) and Q(n) denote the true posterior distribution p(h | x(n),θ) and any arbi-

trary distribution, respectively. KL(Q‖P) is a Kullback-Leibler (KL) divergence that

measures the difference between two distributions Q and P (Kullback and Leibler,

1951).

The first term is a complete-data log-likelihood over the posterior distribution of h

given x(n), and the second term is a KL divergence between a distribution Q(n) and

the posterior distribution over h. H(Q) is an entropy functional of the distributionQ.

LQ(n)(θ) is a lower bound ofL(n)(θ) for all n in Eq. (2.24), since the KL-divergence

KL(Q(n)‖P (n)) is always non-negative. From this, we can see that
∑N

n=1 LQ(n)(θ)

is a lower bound of the marginal log-likelihood L(θ). The lower bound is equal

to the marginal log-likelihood when an arbitrary distribution Q(n) is identical to the

posterior distribution (KL(Q(n)‖P (n)) = 0) for all the training samples.

From this decomposition, we now state the EM algorithm consisting of two steps;

expectation (E) and maximization (M) steps:

(E) Maximize LQ(θ) with respect to Q(h) while θ is fixed.

(M) Maximize LQ(θ) with respect to θ while Q(h) is fixed.

In other words, we repeatedly update the approximate posterior distribution Q and

the set of parameters θ sequentially.

37

Preliminary: Simple, Shallow Neural Networks

Since the original L(θ) is not dependent on the choice of Q, the E-step effectively

minimizes the KL-divergence between Q and the true posterior distribution. This is

equivalent to saying that Q(h) becomes a better approximate of the true posterior

distribution p(h | x,θ).
In probabilistic PCA, the E-step simply estimates the sufficient statistics of the pos-

terior distribution p(h | x, θ̃) with the fixed set of parameters θ̃. The posterior distri-

bution follows in this case again a Gaussian distribution, and the sufficient statistics

are

E

[
h(n)

]
= (W̃�W̃ + σ̃2I)−1W̃�x(n)

E

[
h(n)h(n)�

]
= σ̃2(W̃�W̃ + σ̃2I)−1 + E

[
h(n)

]
E

[
h(n)

]�
.

These are simplified in the limiting case of σ2 → 0 as

E

[
h(n)

]
= W̃�x(n) (2.27)

E

[
h(n)h(n)�

]
= E

[
h(n)

]
E

[
h(n)

]�
. (2.28)

The mean of each hidden unit in Eq. (2.27) corresponds to the encoder of a linear

autoencoder in Eq. (2.12).

Again, in the limit of σ2 → 0, at the M-step, the weights W that maximize LQ̃(θ)

with the fixed Q̃ from the E-step, are obtained by

W =

[
N∑

n=1

x(n)E

[
h(n)

]�][N∑
n=1

E

[
h(n)

]
E

[
h(n)

]�]−1
. (2.29)

We ignore σ2 as we consider the case of σ2 → 0. This update corresponds to mini-

mizing the squared reconstruction error between x(n) and WE
[
h(n)

]
.

This gives us another possible interpretation of the components of an autoencoder,

in general. The encoder infers the state of the hidden variables given an input, and

the decoder generates a visible sample given a state of the hidden variables.

Fully-Visible Boltzmann Machines

The Hopfield network described in Section 2.2.2 becomes stochastic if each unit is

stochastic. By a stochastic unit, we mean that the activity of the unit is not deter-

ministically decided based on the output of each unit but is randomly sampled from

its distribution. A resulting stochastic version of the Hopfield network is called a

Boltzmann machine12, proposed by Ackley et al. (1985).

Instead of the energy of the Hopfield network, the Boltzmann machine is defined

by a probability distribution. The probability of a state x follows a Boltzmann distri-

12An equivalent model of the fully-visible Boltzmann machine, called an Ising model, is
used in physics to investigate a phase transition of a large system consisting of small, locally
interacting particles. We refer any interested reader to (Cipra, 1987, and references therein).

38

Preliminary: Simple, Shallow Neural Networks

bution13 (with the temperature T fixed to 1) which is defined by

p(x | θ) = 1

Z(θ)
exp {−E (x | θ)} , (2.30)

where Z(θ) =
∑

x exp {−E(x | θ)} is a normalization constant that ensures the

probabilities sum up to one. Although it is possible to have hidden units that do

not correspond to any component in the input of a Boltzmann machine, we do not

consider them in this section.

The conditional probability of a unit xi given the state of all other units x−i is

p(xi = 1 | x1, · · · , xi−1, xi+1, . . . , xN ,θ) = φ

⎛
⎝∑

j �=i

wijxj + bi

⎞
⎠ , (2.31)

where φ is a sigmoid function. This equation is equivalent to Eq. (2.19) after substi-

tuting the Heaviside function with the sigmoid function.

Since it is possible to define a proper distribution, learning the weights is done by

maximizing the log-likelihood. The log-likelihood function is defined to be

L(θ) =
N∑

n=1

log p(x(n) | θ)

=
N∑

n=1

−E
(
x(n) | θ

)
− logZ(θ). (2.32)

The learning rule of the Boltzmann machine is quite similar to that of the Hopfield

network. However, due to the existence of the normalization constant Z(θ), an addi-

tional term appears. The learning rule for the weight wij of the Boltzmann machine

is

wij ← wij + η
(
〈xixj〉d − 〈xixj〉m

)
, (2.33)

where d and m refer to the data distribution defined by the training set D and the

model distribution defined by the Boltzmann machine (see Eq. (2.30)), respectively.14

Although computing the statistics of the distribution learned by the Boltzmann ma-

chine, called the model distribution, is computationally intractable, one can approxi-

mate it with Markov Chain Monte Carlo (MCMC) sampling (see, e.g., Neal, 1993).

13The Boltzmann distribution is often referred to as a Gibbs distribution as well. This dis-
tribution was discovered for describing the statistical distribution of any macroscopic (small)
part of a large closed system in statistical physics (see, e.g., Landau and Lifshitz, 1980).
Under this distribution, the probability of a state x is

p(x) =
1

Z
exp

{
−E(x)

T

}
,

where T is the temperature of the system and Z is a normalization constant which does not
depend on E(x).
14For the derivations of the conditional distribution in Eq. (2.31) and the gradient in
Eq. (2.33), see, for instance, (Cho, 2011).

39

Preliminary: Simple, Shallow Neural Networks

As the conditional distribution of each unit can be exactly and efficiently computed

by Eq. (2.31), it is possible to gather unbiased samples from the model distribution by

Gibbs sampling introduced by Geman and Geman (1984). More on how to compute

the statistics of the model distribution will be discussed later in Section 4.3.1.

Even though each unit is now stochastic and a valid probability distribution of input

samples can be learned, the same limitation of the Hopfield network persists in the

fully-visible Boltzmann machine. It also can only model the second-order statistics of

the training samples, hence this again encourages us to consider introducing hidden

units.

2.4 What Makes Neural Networks Deep?

The neural networks discussed in this chapter are shallow in the sense that the number

of layers of units, regardless of their types, is usually at most two. Logistic regres-

sion, for instance, consists of two layers corresponding to input and output layers.

A linear autoencoder or PCA consists of an input layer and a single hidden layer,

considering that the input and the output layers of the linear autoencoder represent

the same variable. Then we must ask ourselves: what does a neural network satisfy

in order to be called a deep neural network?

A straightforward requirement of a deep neural network follows from its name. A

deep neural network is deep. That is, it has multiple, usually more than three, layers

of units. This, however, does not fully characterize the deep neural networks we are

interested in.

In essence, we often say that a neural network is deep when the following two

conditions are met (see, e.g., Bengio and LeCun, 2007):

1. The network can be extended by adding layers consisting of multiple units.

2. The parameters of each and every layer are trainable.

From these conditions, it should be understood that there is no absolute number of

layers that distinguishes deep neural networks from shallow ones. Rather, the depth

of a deep neural network grows by a generic procedure of adding and training one or

more layers, until it can properly perform a target task with a given dataset. In other

words, the data decide how many layers a deep neural network needs.15

One important consequence of the first condition is that since the units in an added

layer use the activations of the units in the existing lower layers to compute their own

activations, the activations of the units in the lower layers are shared. In other words,

15Yoshua Bengio, personal communication

40

Preliminary: Simple, Shallow Neural Networks

there exist more than one computational path from the input layer to a unit in the

added, upper layers.

2.5 Learning Parameters: Stochastic Gradient Method

Before ending this chapter and moving on to discuss deep neural networks, we briefly

look at one of the most widely used techniques for learning parameters of a neural

network, or any parameterized machine learning model. This can be applied not only

to the simple models introduced earlier in this chapter, but also to the deep neural

networks that will be discussed later.

The cost functions, or negative log-likelihood functions, we discussed in this chap-

ter so far (See Eqs. (2.4), (2.9), (2.14), (2.16), (2.20), (2.22), (2.23) and (2.32)), can

be generalized as the average of losses over training samples such that

Re(θ) =
1

N

N∑
n=1

L(x(n),θ), (2.34)

where x(n) can be either a sample-label pair (supervised models) or just a sample

(unsupervised models). L(x,θ) is a non-negative loss function.

If we follow the approach of the statistical learning theory (see, e.g. Vapnik, 1995),

the empirical cost function Re approximates the expected cost function

R(θ) = Ex [L(x,θ)] =

∫
p(x)L(x,θ)dx, (2.35)

where p(x) is the probability of x or the data distribution. R(θ) cannot be evaluated

directly as the distribution from which the training samples
{
x(1), . . . ,x(N)

}
were

sampled is unknown, while the empirical cost Re(θ) can be in many cases exactly

computed.

There is another way to look at the empirical cost function. Instead of considering

a set of training samples as an initially given fixed set, we may consider them as a

sequence of sampled points from an unknown data distribution D(x). For instance,

at time t we approximate the expected cost function R(θ) by

R(θ) ≈ R〈t〉e (θ) =
1

t

t∑
i=1

L(x〈i〉,θ),

where x〈i〉 is the sample collected fromD at time i, and we denote the empirical cost

at time t byR〈t〉e . As t→∞, the empirical cost will converge toR(θ), assuming that

the samples are unbiased.

Under this perspective, we may justify using the stochastic approximation method

initially proposed by Robbins and Monro (1951). According to this method, the set

41

Preliminary: Simple, Shallow Neural Networks

of parameters θ that minimizes the expected loss can be found by updating them

iteratively by

θ〈t+1〉 = θ〈t〉 − η〈t〉∇θL(x
〈t〉,θ〈t〉), (2.36)

where the superscript 〈t〉 indicates the value of the variable at time t. Bottou (1998)

provides a proof of almost sure convergence of this procedure to the true solution

with a convex R(θ), with the following constraints on the learning rate

∞∑
t=1

η2〈t〉 <∞, (2.37)

∞∑
t=1

η〈t〉 =∞, (2.38)

assuming that Ex [∇θL(x,θ)] = ∇θR(θ). We call ∇θL(x
〈t〉,θ〈t〉) a sample gradi-

ent at time t.

Furthermore, Bottou (1998) also proves a more general case where the convexity

of R(θ) is not assumed. With some more assumptions, he was able to show that the

iterations in Eq. (2.36) converge to one of the extremal points of R(θ) that include

global/local minima and saddle points.

All these proofs, however, essentially require that the number of training samples

approaches infinity, assuming that x is continuous. In most of machine learning tasks,

this assumption does not hold. However, it is possible to use this approach by choos-

ing a single sample, or a (mini-)batch of a fixed-number of samples, at each iteration

from the whole training set uniform-randomly to compute the sample gradient. It is

also a usual practice to simply cycle through all (randomly shuffled) training samples

several times.

This method of iteratively updating parameters using the stochastic iterate in Eq. (2.36)

is often referred to as a stochastic gradient method. As one may easily guess from its

name, its deterministic counterpart is a simple, batch gradient method.

The most important advantage of using this method is that the computational re-

source required at each iteration can be bounded by a constant with respect to the

number of training samples. A batch steepest gradient method requires time linearly

proportional to the number of all training samples. On the other hand, it takes con-

stant time to compute a stochastic gradient with respect to the number of training

samples. Furthermore, since only few samples are used for computing a stochastic

gradient, the memory requirement is also much smaller than in the batch method.

Many studies (see, e.g., Bottou and Bousquet, 2008; Bottou and LeCun, 2004) have

shown that the stochastic gradient method converges to at least a general area in the

parameter space with a relatively low cost function very rapidly. Furthermore, some

even argued that it is easier to achieve a better solution in terms of the expected cost

42

Preliminary: Simple, Shallow Neural Networks

rather than the empirical cost with the stochastic gradient method compared to the

batch gradient method in the case of neural networks (LeCun et al., 1998b).

When we talk about estimating parameters in this thesis, it is implicitly assumed

that the stochastic gradient method is used together with a cost, or objective function

of each model. Most arguments on the advantages and disadvantages of learning

algorithms specific to different neural networks presented later will also assume that

the stochastic gradient method is used.

Recently there have been many approaches that try to overcome the weaknesses

of the naive stochastic gradient method, such as the slow convergence rate and in-

ability to easily escape from a plateau or a saddle point. Tonga, proposed by Le

Roux et al. (2008), speeds up the convergence of the stochastic gradient method by

utilizing an online approximation to the natural gradient. Schraudolph et al. (2007)

proposed an online variant of the popular Quasi-Newton method. Also, Le et al.

(2011a) compared the performances of various second-order optimization methods

in training deep neural networks against the stochastic gradient descent.

We will not further discuss on the stochastic gradient method and its extensions, as

they are out of the scope of this thesis.

43

Preliminary: Simple, Shallow Neural Networks

44

3. Feedforward Neural Networks:
Multilayer Perceptron and Deep Autoencoder

In this chapter, we describe deep feedforward neural networks. A feedforward neural

network consists of units that are connected to each other with directed edges, where

each edge propagates the activation of one unit to another. The network is feedfor-

ward in the sense that there are no feedback connections in the network, which makes

it efficient to evaluate the activations of all units in the network with a single sweep

from the input units to the output units.

The linear regression network, perceptron, and linear autoencoder, introduced in

the previous chapter, are shallow realizations of feedforward neural networks. If we

group, starting from the input units, each set of the disjoint units as a layer, then one

can evaluate the activations, or states, of the output units by letting the input vector

propagate through the network layer by layer to the output layer.

Here we discuss in more details two types of deep feedforward neural networks: a

multilayer perceptron and autoencoder. Unlike the ones from the previous chapter,

we consider more generalized versions that have multiple layers of nonlinear units.

In due course, we introduce other machine learning models that are closely related to

these neural networks and provide different aspects from which these networks can

be viewed.

3.1 Multilayer Perceptron

Let us extend the linear regression network and the perceptron introduced in Sec-

tion 2.1. Based on the structures shown in Fig. 2.1, we may add intermediate layers

of nonlinear hidden units between the input and output units. A shallow, simple per-

ceptron, for instance, can be extended to a deep neural network by adding multiple

intermediate layers, and this deep neural network is often called a multilayer percep-

tron (MLP) (Rosenblatt, 1962). See Fig. 3.1(a) for an example of the neural network.

An MLP can approximate a nonlinear function f in Eq. (2.2) with a set D of train-

ing samples. Assuming linear output units (see Eq. (2.3)), the output of an MLP with

45

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

x1 x2 xp

h
[1]
1 h

[1]
2 h

[1]
q1

h
[L]
1 h

[L]
2 h

[L]
qL

y

x1 x2 xp

h
[1]
1 h

[1]
2 h

[1]
q1

h
[L]
1 h

[L]
2 h

[L]
qL

y

(a) Multilayer Perceptron (b) Multiple Computational Paths

Figure 3.1. Illustrations of (a) a multilayer perceptron and (b) an example of multiple computational
paths starting from x1 to y. In (b), the red arrows illustrate three different paths sharing
hidden units.

L intermediate hidden layers is

u(x) = U�φ[L]

(
W�

[L]φ[L−1]
(
W�

[L−1] · · ·φ[1]

(
W�

[1]x
)
· · ·
))

,

where U and W[l] are the weights of the edges between the L-th intermediate layer

and the output layer and between (l − 1)-th and l-th layers, respectively. φ[l] is a

component-wise nonlinear function at the l-th layer, such as the sigmoid function in

Eq. (2.7). We have omitted biases for notational simplicity.

This can be re-written by considering each intermediate hidden layer l as a nonlin-

ear module g[l] such that

g[l](x) = φ[l](W
�
[l]x),

and

u(x) = U� (g[L] ◦ g[L−1] ◦ · · · ◦ g[1](x)) .
In this way, we can say that the MLP is a composition of multiple layers of nonlinear

modules (Bengio and LeCun, 2007).

Each intermediate nonlinear layer transforms the coordinate of the input from the

layer below nonlinearly. For instance, the vector of hidden activations one layer

below h[l−1] ∈ [0, 1]p is transformed into h[l] ∈ [0, 1]q, if the sigmoid nonlinear acti-

vation function is used. Therefore, if we consider the composition of the intermediate

layers as a single nonlinear transformation, it can be said that the top layer performs

a linear regression, or classification, on the nonlinearly transformed dataset.

Another way to look at what each intermediate layer does is to consider it as a

feature detector (see, e.g., Haykin, 2009). The j-th hidden unit h[l]j in the l-th inter-

mediate layer is likely to be active, if the activation in the layer immediately below

46

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

embeds a feature similar to the associated weights
[
w

[l]
1,j , · · · , w

[l]
p,j

]
, where p is the

number of units in the layer below. In other words, each unit detects a feature in the

activation of the layer below.

Assuming that there are more than one intermediate layers each consisting of more

than one hidden units and most of the weights parameters are not zero, there exists

more than one computational path from an input vector to a unit in any intermediate

layer l (l > 1), This implies that each intermediate unit shares the features detected

by the units in the lower (closer to the input layer) layers. See Fig. 3.1(b) for an

illustration.

Each intermediate layer is trainable in the sense that the associated parameters are

fitted to a given training set D by minimizing the following joint cost function:

J(θ) =
N∑

n=1

d
(
y(n), u(x(n))

)
, (3.1)

where d(·, ·) is a suitably chosen distance function. For a regression task, the Eu-

clidean distance may be used, as in Eq. (2.4), and for a classification task, one may

use the cross-entropy loss, as in Eq. (2.9). The parameters can be efficiently learned

using the stochastic gradient method with the gradient computed by the backpropaga-

tion algorithm (Rumelhart et al., 1986) which will be discussed more in Section 3.4.

The importance of having one or more intermediate layers of nonlinear hidden units

between the input and output units has been highlighted by the universal approxima-

tor property (Cybenko, 1989; Hornik et al., 1989). It states that there exists an MLP

with a single hidden layer that can approximate a continuous function whose support

is on a hypercube, with an arbitrary small error.

A multilayer perceptron described in this section is a typical example of a deep

neural network that can be characterized by having multiple layers of trainable feed-

forward nonlinear hidden units.

3.1.1 Related, but Shallow Neural Networks

Here we explain two models that are closely related to an MLP, but are not considered

deep.

Support Vector Machines and Kernel Methods

A support vector machine (SVM) proposed by Cortes and Vapnik (1995) is one of the

most widely used neural network models. The SVM is based on two important ideas

which are the maximum-margin principle and kernel methods. We briefly describe

these principles and find the connection to the MLP here. For more details on SVMs,

the readers are referred to (Schölkopf and Smola, 2001).

The maximum-margin principle provides a way of selecting an optimal separating

47

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

hyperplane among multiple possible separating hyperplanes. For instance, in the

case of a classifier separating two classes (see Section 2.1.2), the optimal separating

hyperplane is the one that has the maximal margin of separation, where the margin

of separation is the distance between the hyperplane and the closest training samples

from both classes.

Under this principle, the objective of training a perceptron, assuming −1 and 1 as

the outputs of the Heaviside function in Eq. (2.5) and each output y(n) ∈ {−1, 1},
becomes

min
1

2
‖w‖2 (3.2)

subject to

y(n)
(
w�x(n) + b

)
≥ 1, ∀n = 1, . . . , N

Once the optimization is over, the separating hyperplane with the maximum margin

can be mathematically described in terms of support vectors, as in Fig. 3.2(a).

A kernel method for an SVM does a similar thing to what the intermediate hidden

layers of an MLP do. Instead of training a linear classifier directly on raw training

samples, consider training a classifier on, possibly nonlinearly, transformed samples.

Let us denote the nonlinear vector transformation φ. Then, in essence, the classifier

is trained not on D =
{(

x(n), y(n)
)}N

n=1
, but on D̃ =

{(
φ(x(n)), y(n)

)}
. The

connection to MLPs explained earlier can be found by comparing φ to the multiple

intermediate layers of hidden units.

The kernel method uses a kernel function k(·, ·) between two samples, instead of

using an explicit transformation φ. This is justified by looking at a dual form of the

objective function in Eq. (3.2) obtained by introducing Lagrangian multipliers α. In

a dual form, the output y of an unseen, test sample x is written as

y = φ

(
N∑

n=1

αny
(n)x(n)�x+ b

)
,

where φ is the Heaviside function, and we may replace the inner product between

x(n) and x with a positive-definite kernel function k(x(n),x).

In fact, it is possible to build an equivalent MLP when a certain type of kernel

function is used. For instance, an MLP equivalent to the SVM with the hyperbolic

tangent kernel function

k(x,x′) = tanh(β0x
�x′ + β1)

can be constructed.

An equivalent, but not necessarily optimal, MLP has a single intermediate hidden

layer with N hidden units, each having a hyperbolic tangent activation function. The

48

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

y = 1

y = 0

y = −1

Margin
x1 x2 xp

β0x
(1) β0x

(2) β0x
(N)

h1 h2 hN

α1y
(1)

α2y
(2) αNy(N)

y

(a) Maximum Margin (b) Equivalent MLP

Figure 3.2. Illustrations of (a) the maximum-margin principle and (b) constructing a multilayer percep-
tron equivalent to a given support vector machine. In (a), there are two classes (denoted by
black and white circles). A solid line is the maximum-margin separating hyperplane, and
the samples on the dashed lines are support vectors. In (b), it should be noticed that this
construction is not optimal, as any hidden unit not corresponding to a support-vector may
be omitted.

weightsW of the edges connecting the input units to the hidden units are fixed to the

training samples scaled by β0, that is, W = β0
[
x(1),x(2), · · · ,x(N)

]
. The biases

to all the hidden units are set to β1. The weights of outgoing edges from the hidden

units to the output unit are U =
[
α1y

(1), α2y
(2), · · · , αNy(N)

]�
, and the bias to the

output unit is b. The structure of this MLP is illustrated in Fig. 3.2(b).

We do not consider nor discuss kernel methods, as well as SVMs, any further in

this thesis. It should be, however, noted that there has been a few attempts to make it

deeper recently by Cho and Saul (2009) and Damianou and Lawrence (2013). Also,

there has been a study linking the maximum-margin principle used in SVMs to a

learning criterion of multilayer perceptrons as well as a simpler perceptron (see, e.g.,

Collobert and Bengio, 2004).

Extreme Learning Machines

Another related model is an extreme learning machine (ELM) proposed recently by

Huang et al. (2006b). The ELM is, in essence, an MLP with a single intermediate

layer of nonlinear hidden units.

The main difference between an ELM and an MLP is whether all layers are jointly

adapted to minimize the cost function in Eq. (3.1). While the parameters of all layers

of an MLP are jointly estimated, in an ELM, only the parameters of the last output

layer or the outgoing weights from the penultimate layer to the output layer, are

adapted.1

This is equivalent to using shallow supervised neural networks, presented in Sec-

tion 2.1 with a transformed training set D̃ =
{(

φ(x(n)), y(n)
)}

. The transformation

1A similar idea of learning only the parameters of the last output layer has also been proposed
and used for recurrent neural networks (see, e.g., LukošEvičIus and Jaeger, 2009).

49

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

φ(x) corresponds to the activations of the intermediate layer. Interestingly, in an

ELM, the parameters of the transformation φ are not estimated, but sampled from a

random distribution.

One of the underlying reasons why an ELM works at all is the Cover’s separability

theorem (Cover, 1965) stating that samples in a classification problem are more likely

to become linearly separable when the input is nonlinearly transformed to a higher-

dimensional space. Under this theorem, an ELM can be considered as a two-step

model that first nonlinearly projects an input sample x into a higher-dimensional

space φ(x) (q > p) to make it, in probability, more likely to be linearly separable and

then performs classification/regression in the new space.

Since it is relatively easy and computationally efficient to estimate the parameters

of the shallow neural networks, the most obvious advantage of using an ELM over

an MLP is speed. Furthermore, the cost function then becomes a convex function,

which prevents any problem arising from the existence of many, potentially infinite

local minima, again unlike an MLP. These reasons have led to the popularity of ELM

recently (Huang et al., 2011).

3.2 Deep Autoencoders

As was the case with MLPs, a linear autoencoder can have more modeling power

by employing multiple nonlinear intermediate layers symmetrically in the encoder

and decoder. The units corresponding to the hidden variables in Eq. (2.11) may also

be replaced with nonlinear units instead of the linear units originally used in the

linear autoencoder. We call this a deep autoencoder, and it is a typical example of an

unsupervised deep neural network.

When there are L − 1 intermediate layers of hidden units, both in the encoder and

decoder, the encoder becomes

h = f(x) = f[L−1] ◦ f[L−2] ◦ · · · ◦ f[1](x) (3.3)

and the decoder is

x̃ = g(x) = g[1] ◦ g[2] ◦ · · · ◦ g[L−1](h), (3.4)

where f[l] and g[l] are the encoding and decoding nonlinear modules at the l-th layer.

They are defined by

f[l](s[l−1]) = φ[l]

(
W�

[l]s[l−1] + b[l]

)
and

g[l](s[l+1]) = ϕ[l]

(
U[l]s[l+1] + c[l]

)
,

50

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

x1 x2 xp x̃1 x̃2 x̃p

h1 hq

Figure 3.3. Illustration of a deep autoencoder. The left- and right- halves correspond to the encoder
and decoder, respectively. Although each hidden node is drawn to have a sigmoid nonlinear
activation function, a different activation function may be used.

where W[l], U[l], b[l] and c[l] are parameters of the l-th hidden module, and φ[l] and

ϕ[l] are component-wise nonlinearities used in the encoder and decoder, respectively.

f here should not be confused with the unknown generating function f in Eq. (2.11).

We may simply write f = f[L−1] ◦ · · · ◦ f[1] and g = g[1] ◦ · · · ◦ g[L−1]. See Fig. 3.3

for the illustration.

The parameters of a deep autoencoder can be found by minimizing the difference

between the original input x(n) and the reconstructed input x̃(n) for all N training

samples, as in Eq. (2.14). Of course, the difference may be measured by any suitable

distance metric such as, for instance, a squared Euclidean distance or a cross-entropy

loss in the case of binary inputs.

We may call this a deep autoencoder, as this network can be further extended by

employing more intermediate hidden layers, and each and every layer is trainable.

This way of extending a linear autoencoder by adding multiple intermediate layers

of hidden units with a bottleneck layer has been proposed by, for instance, Oja (1991)

and Kramer (1991). In these early works, it was usual to use a bottleneck layer with

less units to perform dimensionality reduction or data compression.

3.2.1 Recognition and Generation

A deep autoencoder is nothing but a plain MLP if we transformed a training set D

consisting of only inputs

D =
{
x(1), . . . ,x(N)

}
to another training set D̃ such that the label of each training sample is the training

sample itself:

D̃ =
{(

x(1),x(1)
)
, . . . ,

(
x(N),x(N)

)}
.

51

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

However, it becomes more interesting when we look at the deep autoencoder as a

sequential composition of recognition and generation of a set of visible units.

Let us restate the underlying unsupervised model in Eq. (2.11):

x = g(h) + ε.

This model specifies the generation of each sample x given the corresponding latent

representation. If we further constraint the model to be explicitly parameterized, we

get

x = g(h | θg) + ε,

where θg is a set of parameters. Furthermore, let us assume that x and h are binary

vectors such that each component of them is either 0 or 1. Instead of f in the original

equation (2.11), we used g for making the connection with the autoencoder more

clearly.

In this section, we consider a probabilistic perspective from which a deep autoen-

coder can be viewed. From this perspective, we assume that the training samples were

generated from the set of latent variables in a bottleneck layer. Then, the encoder is

expected to approximately infer the states of the latent variables given a sample in the

visible layer, and the decoder to generate a sample from the inferred latent variables.

3.2.2 Variational Lower Bound and Autoencoder

Since we will now view this model in a probabilistic framework, let us define a prior

distribution over h with the Bernoulli distribution, with parameterized probability

masses γ and 1− γ :

p(h) =

q∏
j=1

γhj (1− γ)1−hj (3.5)

We assume now that there exists a parameterized deterministic nonlinear mapping g

from h to x such that the conditional distribution of x given h is

p(x | h) =
p∏

i=1

x̃xi
i (1− x̃i)

1−xi , (3.6)

where x̃ = g(h | θg). These fully describe the probabilistic model

p(x,h | θg) = p(x | h)p(h). (3.7)

Let us further assume that there is a deterministic nonlinear mapping f , param-

eterized by θf that approximates the factorized posterior distribution over h given

x:

Q(h) =

q∏
j=1

q(hj), (3.8)

52

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

where μ = f(x | θf) and q(hj = 1) = μj . For now, we assume that θf is fixed.

Since the exact evaluation of the marginal log-likelihood is intractable, the param-

eters θg of the decoder then can be found by maximizing the lower bound of the

marginal log-likelihood log p(D =
{
x(n)

}N
n=1

| θg):

log p(D | θg) ≥ EQ(h)

[
log p

(
D,H =

{
h(n)

}N

n=1
| θg

)]
+ const,

where

log p(D,H | θg) =

N∑
n=1

p∑
i=1

x
(n)
i log x̃

(n)
i + (1− x

(n)
i) log(1− x̃

(n)
i) + const.

and the equality holds only when Q(h) is the true posterior distribution. See Sec-

tion 2.3.2 to see how the lower bound is derived.

This corresponds to learning the parameters of the decoder of an autoencoder by

minimizing the cross-entropy loss in Eq. (2.9). The only difference is that the bottle-

neck layer consists of stochastic units where their activations are sampled rather than

decided deterministically.

This suggests that the decoder g of the deep autoencoder (see Eq. (3.4)) generates

a visible sample starting from its latent representation, following the model given in

Eq. (3.7). On the other hand, the encoder f recognizes a visible sample by encoding

it into a latent representation, which is in the probabilistic framework equivalent to

inferring the posterior distribution over the latent variables h. However, it should be

understood that the encoder f does not perform exact inference, but only approximate

inference assuming the fully factorized posterior distribution Q in Eq. (3.8), without

trying to reduce the Kullback-Leibler divergence between Q and the true posterior

distribution.

If we drop the binary constraint of x and instead assume that x follows a multi-

variate Gaussian distribution with a diagonal covariance matrix, we get the marginal

log-likelihood that corresponds to the negative sum of squared reconstruction error

(see Eq. (2.14)).

This interpretation, however, does neither provide an intuitive way of learning the

parameters θf of the encoder f nor tell us how latent representations should be de-

signed. Vincent et al. (2010) argued that minimizing the reconstruction error in an

autoencoder trained by, for instance, stochastic gradient descent is equivalent to max-

imizing the lower bound of the mutual information between the input x and latent

representation h.

Combining these two approaches, in summary a deep autoencoder recognizes an

input sample x with a latent representation h such that the mutual information be-

tween them is maximal, and generates a reconstructed sample x̃ from the latent rep-

resentation h so that the reconstruction error between the original input x and the

reconstructed sample x̃ is minimal.

53

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

3.2.3 Sigmoid Belief Network and Stochastic Autoencoder

A sigmoid belief network, proposed by Neal (1992), consists of a single layer of

stochastic binary visible units x and L > 0 layers of stochastic binary hidden units

h[l] such that a sample x is generated starting from the activations of the L-th layer

hidden units sampled from

p
(
h
[L]
j = 1

)
= φ

(
b
[L]
j

)

by iteratively sampling from

p
(
h
[l]
j = 1

∣∣∣h[l+1]
1 , h

[l+1]
2 , . . .

)
= φ

(∑
k

w
[l]
jkh

[l+1]
k + b

[l]
j

)
, (3.9)

where φ is a sigmoid function (see Eq. (2.7)).

The probability of each component xi given the activations of the units in the layer

above is

p
(
xi = 1

∣∣∣h[1]
)
= φ

⎛
⎝∑

j

wijh
[1]
j + bj

⎞
⎠ . (3.10)

Note that this description assumes that there are no intra-layer edges. This is not

necessary, but makes it much easier to understand the generative process the network

is modeling.

Once the sigmoid belief network has been trained, one important task is to infer

the states of the hidden units given a novel sample. However, it is not trivial to

do so due to the nonlinear nature of multiple layers of the hidden units. Inference

may be performed by generating a set of samples from the posterior distribution over

binary hidden units (Neal, 1992) or by approximating the posterior distribution with a

simpler distribution (see, e.g., Saul et al., 1996; Jordan et al., 1999). Both approaches

may easily become computational inefficient to be used in practice.

Instead, Hinton et al. (1995) proposed a wake-sleep algorithm, which is based on

the principle of minimum description length (Rissanen, 1978), that learns simultane-

ously the generative parameters θ+, used in Eqs. (3.9)–(3.10), and the recognition

parameters θ−, used for approximate inference of the posterior distribution over the

hidden units. Since it is intractable to compute the posterior distribution exactly, the

wake-sleep algorithm instead maximizes the lower bound LQ(θ) of the true marginal

log-likelihood L(θ) =
∑N

n=1 log
∑

h p(x
(n),h | θ) (see Eqs. (2.24)–(2.26)).

Let us look at a single update step given a single data sample x. In the wake stage,

samples of the hidden units are collected from the approximate posterior distribution

Q parameterized by the recognition parameters θ−. With the fixed samples h
[l]
j ’s

from all the hidden layers, the conditional expectation p
[l]
j of each hidden unit is

54

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

x1 xp

h
(1)
1 h

(1)
q

h
(2)
j

Figure 3.4. Illustration of a sigmoid belief network having two hidden layers. The solid lines indicate
the generation path starting from the top hidden layer and are parameterized by the gener-
ation parameters. The dashed curves correspond to the recognition paths starting from the
bottom, visible layer, parameterized by the recognition parameters.

computed using Eq. (3.9) with the generative parameters θ+. Then, we update each

generative weight w[l]
ij by

w
[l]
ij ← w

[l]
ij + η(h

[l]
i − p

[l]
i)h

[l+1]
j . (3.11)

In the sleep stage, the process is reversed. Samples of the hidden units are collected

starting from the top layer in a top-down manner using the generative parameters

θ+. This time, the conditional expectation p
(l)
j is computed using the recognition

parameters θ−. With these, each recognition weight u(l)ij is updated by

u
(l)
ij ← u

(l)
ij + ηs

(l)
i (s

(l+1)
j − p

(l+1)
k). (3.12)

We can notice the similarity between the deep autoencoder and the sigmoid belief

network trained with the wake-sleep algorithm (see Fig. 3.4 for an example). Both of

them maintain two sets of parameters; encoding and decoding parameters of the au-

toencoder, and recognition and generation parameters of the sigmoid belief network.

The encoder and the recognition parameters are used to infer the states of the hidden

units given a sample. The decoder and the generative parameters generate a sample

given the states of the hidden units.

Unlike the encoder in the autoencoder which computes the activation of each hid-

den unit deterministically, the recognition of the sigmoid belief network computes the

activation probability of each hidden unit. An actual activation needs to be sampled.

The same difference exists in the process of generation. Hence, we may consider

the recognition and generation passes of the sigmoid belief network as a stochastic

deep autoencoder, however, trained with an objective function other than the recon-

struction error. We will discuss more this difference in connection to the up-down

algorithm proposed to train a deep belief network (Hinton et al., 2006) later in Sec-

tion 5.3.2.

55

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

3.2.4 Gaussian Process Latent Variable Model

Under this probabilistic approach, it is possible to use only a part of a deep autoen-

coder together with another probabilistic model. For instance, any latent variable

model may use the encoder of a deep autoencoder to perform a fast inference of

hidden variables. Here, we will briefly describe one such model, called a Gaussian

process latent variable model with back-constraints.

The Gaussian process latent variable model (GP-LVM) proposed by Lawrence

(2004) is a dual formulation of probabilistic PCA introduced earlier in Section 2.3.2.

Whereas the probabilistic PCA tries to maximize the log-likelihood with respect to

the weights after marginalizing out the hidden variables h, the basic version of GP-

LVM maximizes the log-likelihood with respect to the hidden variables and hyper-

parameters after marginalizing out the weights.

Instead of putting a prior distribution over h, GP-LVM puts a prior distribution over

W such that

p(W) =

p∏
i=1

N (wi | 0, α−1I),

where N (w | m,S) is a probability density of x under a multivariate Gaussian

distribution with mean m and covariance S. Then, the marginal log-likelihood, after

marginalizing out the weights, becomes

L = −qN

2
log 2π − q

2
log |K| − 1

2
tr(K−1XX�), (3.13)

where H =
[
h(1), . . . ,h(N)

]�
and K = αHH� + σ2I. The illustration of this

probabilistic model is shown in Fig. 3.5(a). It is usual to replace HH� in K with

a nonlinear kernel matrix with hyper-parameters to construct a nonlinear GP-LVM.

However, unless the linear kernel matrix is used, it is difficult to find an analytical

solution for both the hyper-parameters and the hidden representations, and one must

resort to an iterative optimization algorithm.

Once the hyper-parameters and the hidden representations H of the training sam-

ples were learned by optimization, a novel hidden representation can be projected on

the input space by

p(X | H, σ2) =
1

(2π)
qN
2 |K|

q
2

exp

{
−1

2
tr(K−1HH�)

}
.

It is not trivial, however, to find the hidden representation given a novel sample.

One has to, again, resort to using an iterative optimization method, which usually is

done simultaneously while the hyper-parameters are estimated. Furthermore, since

the initial optimization of the marginal log-likelihood involves only the mapping from

the hidden space to the input space, distances among the training samples in the input

space are not well preserved in the hidden space.

56

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

x(n)

h(n)

σ2

N W

x(n)

h(n)

σ2

N

W

h1

h2

(a) GP-LVM (b) With Back-Constraint

Figure 3.5. Illustrations of a Gaussian process latent-variable model (a) with and (b) without back-
constraint. Note that the differences from the probabilistic principal component in
Fig. 2.4(b) that in GP-LVM, h(n) is not a random variable whereas W is. In (b), the
back-constraint by a feedforward neural network with multiple hidden layers h1 and h2, or
the encoder of a deep autoencoder, is drawn with dashed lines.

Hence, Lawrence and Quiñonero Candela (2006) proposed to optimize the marginal

log-likelihood in Eq. (3.13) with respect to a nonlinear mapping from the input space

to the hidden space, instead of the hidden representations directly. The nonlinear

mapping is called a back-constraint, and any preferably nonlinear function whose

partial derivatives with respect to its parameters can be computed can be used. See

Fig. 3.5(b) for the relationship between the GP-LVM and the back-constraint.

One possible choice is the encoder part of a deep autoencoder. As the back-

constraint can be considered to find the mean of the posterior distribution of hidden

variables given an input, we can see the encoder as doing a recognition/inference.

3.2.5 Explaining Away, Sparse Coding and Sparse Autoencoder

Let us now consider an autoencoder from the probabilistic framework considered

in Section 3.2.1 together with the discussion of a sigmoid belief network in Sec-

tion 3.2.3.

As originally discussed by Hinton et al. (1995), the approximate posterior distribu-

tion, or the distribution computed by the encoder of an autoencoder, is a factorized

distribution. That is, the hidden units in the intermediate layer are mutually indepen-

dent given the states of the visible units below. This is beneficial in the sense that the

number of parameters required to express the (conditional) probability distribution

over the hidden units in a single layer is reduced to q − 1, where q is the number of

the hidden units. On the other hand, if they are not independent from each other, it

will require up to an exponential number of parameters.

This approximation, however, severely prevents possible competitions among the

hidden units. For instance, the effect of explaining away (see, e.g., Wellman and

Henrion, 1993) cannot be observed in the factorial approximate posterior distribution.

57

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

h1 h2

w1 w2

x

w1

w
2

−5−5

5

5

0.2

−0.2

−0.4

−0.6

(a) (b)

Figure 3.6. (a) A simple sigmoid belief network with two hidden units and a single visible unit. (b)
The log-ratio between p(h2 = 1 | x = 1, h1 = 1) and p(h2 = 1 | x = 1).

As an example, let us consider a sigmoid belief network consisting of only two

hidden units and a single visible unit in Fig. 3.6(a). The two hidden units h1 and h2

are a priori mutually independent while each is equally likely to be either 0 or 1. The

conditional probability of the visible unit x is defined by

p(x = 1 | h1, h2) = φ(w1h1 + w2h3),

where φ is a logistic sigmoid function.

Under this model, the factorial assumption in the approximate posterior states that

p(h2 = 1 | x = 1, h1 = 1) = p(h2 = 1 | x = 1, h1 = 0), (3.14)

since h2 and h1 are independent from each other conditioned on x.

The conditional probability of h2 being 1 given x = 1 and h1 = 1 is

p(h2 = 1 | x = 1, h1 = 1) =
φ(w1 + w2)

φ(w1) + φ(w1 + w2)
, (3.15)

and that given x = 1 and h1 = 0 is

p(h2 = 1 | x = 1, h1 = 0) =
φ(w2)

0.5 + φ(w1 + w2)
. (3.16)

These are unlikely to be identical, unless w1 = 0, which means that h1 and x are

effectively disconnected.

It is also interesting to see how the state of h1 affects the state of h2. For instance,

we can compare Eq. (3.15) against the conditional probability of h2 = 1 given x = 1

after marginalizing out h1. Fig. 3.6(b) shows

log
p(h2 = 1 | x = 1, h1 = 1)

p(h2 = 1 | x = 1)
,

where

p(h2 = 1 | x = 1) =
φ(w2) + φ(w1 + w2)

φ(0) + φ(w1) + φ(w2) + φ(w1 + w2)
.

From this figure, we can see that the fact that h1 is known to have caused x = 1

(x = 1, h1 = 1) decreases the conditional probability of h2 being the cause of x = 1,

58

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

when bothw1 andw2 are larger than zero. When the signs of the weights are different,

the opposite happens.

Intuitively speaking, if h1, which is likely to have triggered an observed event

(w1 > 0), has been found to be true (h1 = 1), it is unlikely that h2, which is as well

likely to have triggered the event (w2 > 0), has happened also. Furthermore, if h1

which is known to decrease the likelihood of the observed event happening (w1 < 0)

happened, h2 which is known to increase the likelihood of the event (w2 > 0), is more

likely to have triggered the event. This same phenomenon, called explaining away,

happens when we consider the posterior probability of h1 when h2 was observed to

be 1.

The factorial approximation of posterior distribution of the recognition process of

sigmoid belief network, or of the encoder of an autoencoder, however, is unable to

incorporate this competition between hidden units.

Sparse Coding and Predictive Sparse Decomposition

Sparse coding (see, e.g., Olshausen and Field, 1996) is another linear generative

method which aims to learn a latent variable model in Eq. (2.11). There are two

important characteristics that distinguish sparse coding from other methods such as

PCA based on a linear generative model.

Firstly, sparse coding typically assumes that there are more hidden units (q) than

visible units (p). It is usual to use q = c × p with the constant c ≥ 2. Secondly, it

requires that the number of nonzero components of h be strictly below a certain level

ρ.

Given a set of training samples D =
{
x(1), . . .x(N)

}
sparse coding aims to find

a set of weights W and a set of sparse codes
{
h(1), . . . ,h(N)

}
by minimizing the

following cost function:

N∑
n=1

∥∥∥x(n) −Wh(n)
∥∥∥2
2

(3.17)

subject to

‖h(n)‖0 ≤ τ , ∀n = 1, . . . , N, (3.18)

where τ = ρq is a predefined level of sparsity. Similarly, we may rewrite the cost

function and the constraint as

‖h(n)‖0, ∀n = 1, . . . , N, (3.19)

subject to

∥∥∥x(n) −Wh(n)
∥∥∥2
2
≤ ε, ∀n = 1, . . . , N,

59

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

where ε is a bound on the reconstruction error.

Since it is often difficult to minimize the cost function in Eq. (3.19) directly, it is

usual to relax the problem by minimizing the L2 reconstruction error while regular-

izing the L1-norm of sparse codes, that is,

argmin
W,{h(n)}N

n=1

N∑
n=1

∥∥∥x(n) −Wh(n)
∥∥∥2
2
+ λ

N∑
n=1

‖h(n)‖1. (3.20)

Unlike an autoencoder which has an explicit encoder that outputs a hidden repre-

sentation of a given input, in the framework of sparse coding, the sparse code must

be found via optimization, for instance by an orthogonal matching pursuit (OMP)

algorithm (Davis et al., 1994).

Most of those algorithms start from an all-zero code and sequentially search for a

hidden unit that satisfies a certain criterion such as the reduction in the reconstruction

error. The search continues until the number of non-zero components reaches the

predefined level L. This sequential process, in effect, avoids the problem of the

factorial assumption made by the encoder of an autoencoder described earlier.

For instance, let us consider the OMP. At each step of the algorithm, let us assume

that there are two hidden units h1 and h2 that have the corresponding weight vectors

w1 andw2 whose inner products with a residual vector r are large, compared to other

hidden units. From a generative modeling perspective, h1 and h2 generate a similar

pattern in the visible units.

Assuming that 〈w1, r〉 = 〈w2, r〉+ ε where ε is a very small positive constant, the

OMP will choose h1 instead of h2. Once w1 is included in the chosen bases, it is

unlikely that at any step later h2, and correspondingly its basis w2, will be chosen

as the r afterward is almost orthogonal to w2. In essence, when h1 was chosen, it

explained away h2.

Irrespective of this preferable property of sparse coding, the computational cost of

inferring the states of hidden units is much higher compared to autoencoders. Hence,

there have been attempts to combine sparse coding together with a parameterized

encoder of an autoencoder to construct a model that can implement, at least approxi-

mately, both explaining away and fast inference (see, e.g., Kavukcuoglu et al., 2010;

Gregor and LeCun, 2010).

In the case of (Kavukcuoglu et al., 2010), the regular sparse coding cost function in

Eq. (3.20) is augmented with another regularization term that penalizes the difference

between the sparse code
{
h(n)

}N
n=1

and the predicted sparse code computed by a pa-

rameterized nonlinear encoder f . This model, called predictive sparse decomposition

60

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

(PSD), solves the following problem:

argmin
W,{h(n),θf}Nn=1

N∑
n=1

∥∥∥x(n) −Wh(n)
∥∥∥2
2
+

λ
N∑

n=1

‖h(n)‖1 + α
N∑

n=1

‖h(n) − f(x(n) | θf)‖22,

where θf is a set of parameters that define the encoder f , and α is a constant that

balances between the encoder f and the optimal hidden states.

The underlying principle of the PSD is similar to that of the GP-LVM with a back-

constraint described earlier. In an original formulation of sparse coding, decoding

is straightforward and computationally cheaper, while encoding is not. Hence, the

computationally expensive encoding step is approximated by a nonlinear parametric,

potentially multi-layered encoder.

Sparse Autoencoder and Explicit Sparsification

Let us consider an autoencoder with only a single intermediate layer of sigmoid hid-

den units. In this case, we have already discussed that its encoder can be considered

as performing an approximate inference of the factorial posterior distribution of the

hidden units given a state of the visible units. In the approximate factorial posterior

distribution, each hidden unit follows a Bernoulli distribution with its mean computed

by the encoder such that

p(hj = 1 | x,θ) = φ

(
p∑

i=1

wijxi + cj

)
,

for all j = 1, . . . , q.

Under this interpretation, it is possible for us to regularize the autoencoder such that

on average over training samples, each hidden unit is unlikely to be active. Equiva-

lently, the probability of each hidden unit being active should on average be low.

The autoencoder regularized to have a low average hidden activation probability is

called a sparse autoencoder. One of the most widely used regularization term was

proposed by Lee et al. (2008):

Ω(θ, D) =
1

q

q∑
j=1

1

2

∣∣∣∣∣ 1N
N∑

n=1

ĥ
(n)
j − ρ

∣∣∣∣∣
2

, (3.21)

where ρ is a target hidden activation probability and

ĥ
(n)
j = p(hj = 1 | x(n),θ).

Instead of the squared Euclidean distance, one may use the Kullback-Leibler (KL)

distance such that

Ω(θ, D) =
1

N

N∑
n=1

1

q

q∑
j=1

(
ρ log

ρ

ĥ
(n)
j

+ (1− ρ) log
1− ρ

1− ĥ
(n)
j

)
.

61

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

There are other possibilities to learn a sparse autoencoder, for instance, by a sparse

encoding symmetric machine (SESM) proposed by Ranzato et al. (2008). However,

here, we stick to the regularization based on Eq. (3.21).

If we consider any model that has hidden units, we find that either encoding (au-

toencoders) or inference (probabilistic PCA and sparse coding) is equivalent to a

(nonlinear) mapping f that has its domain P ⊆ Rp and range Q ⊆ Rq. P is defined

by the set of training samples, while Q is defined by regularizing the average hidden

activation probability. For instance, the range of the encoder of a regular PCA, which

does not have any regularization or constraint, is unrestricted and equals to Rq.

The inference procedure of sparse coding, for instance, according to the constraint

in Eq. (3.18), maps an input x ∈ P to Q which includes only those points h that

satisfy

‖h‖0 ≤ τ,

for some constant τ > 0. Similarly, the encoder of a sparse autoencoder trained with

the sparsity regularization in Eq. (3.21) has the (approximate) range Q ⊆ Rq such

that

Q ≈
{
h = f(x)

∣∣∣x ∈ P, ‖Ex∈P [hj]− ρ‖22 = 0
}

(3.22)

with the amount of error controlled by the regularization constant.

In the case of a sparse autoencoder, mapping f(x) of any sample x that is close to

one of the training samples will fall in Q. In other words, the average activation of

f(x) will be around the predefined ρ. If the average activation of f(x) is either much

smaller or much larger than ρ, it can be suspected that the sample x is either not the

same type as training samples or corrupted with high level of noise.

This leads to the idea of explicit sparsification, proposed in Publication VIII. It is

claimed that the encoded state of hidden units of a sparse autoencoder should not be

used as it is. Rather, it must be checked whether h = f(x̃) belongs to Q, and if not,

h needs to be projected on or nearby Q by an explicit sparsification.

An explicit sparsification R is defined by

R(h) = argmin
q∈Q

d(h− q), (3.23)

where d(·, ·) is a suitable distance metric.

One simple way to explicitly sparsify f(x) is to use a simple sparsification which

effectively sets small components to zero by

h← max

(
h−max

(
1

q
‖h‖1 − (1− ρ̄) , 0

)
, 0

)
, (3.24)

where max applies to each component. ρ̄ which defines a target sparsity should be

set to one minus the target hidden activation probability ρ in Eq. (3.21).

62

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

This simple approach was empirically shown to be effective when a sparse autoen-

coder trained on clean samples was applied to novel samples which were corrupted

with high level of noise in Publication VIII. The two tasks considered in Publication

VIII were image denoising and classifying highly corrupted test samples. In both

cases, more robust performance could be achieved if the activations of the units in

the bottleneck were treated with the proposed simple sparsification.

3.3 Manifold Assumption and Regularized Autoencoders

The manifold2assumption (Chapelle et al., 2006) states that the (high-dimensional)

data lie (roughly) on a low-dimensional manifold.

Informally, it says that a (small) neighborhood or chart Ux surrounding each data

sample x ∈ Rp which lies on a manifold M ⊂ Rp has a bijection ϕ onto an open

subset of a d-dimensional Euclidean space Rd, where d � p. Any other point x′ in

the neighborhood Ux can be reached from x by

x′ = ϕ−1 (ϕ(x) + ε) ,

where ε ∈ Rd. Thus, the degree of freedom is d which is smaller than p.

This says that the number of local variations in the above case q, allowed for a

sample to remain on the manifold, is smaller than the dimensionality p of the original

space to which it belongs to. Furthermore, any other variation pushes the sample

outside the manifold, making it invalid, or a noisy sample of the data.

Under this assumption, it is desirable to transform the coordinate system of an orig-

inal space into one that describes the variations allowed on the manifold only. In other

words, we want the transformation to capture and disentangle the hidden, underly-

ing factors of variations (Bengio, 2009) while ignoring any possible variation in the

original space that moves away from the manifold. These transformed coordinates

hopefully will improve the performance of a target task using another model. For

instance, Bengio et al. (2013b) recently conjectured and provided empirical evidence

that this disentangling, or transformation, results in better mixing of MCMC chains

as well as an improvement in classification tasks.

One prominent example that implements this manifold assumption is principal

component analysis (PCA), discussed earlier in Section 2.2.1. PCA assumes that the

manifold on which training samples lie is linear. The linear manifold is described by

the few largest principal components which correspond to the directions of maximal

variance (see, e.g., Bishop, 2006). Any change along the directions of small vari-

ances, or few last principal components, is mainly considered as meaningless noise.

2For more details on manifolds, we refer any interested reader to (Absil et al., 2008).

63

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

However, the linear nature of PCA is highly restrictive, in the sense that in many

problems most interesting factors of variations are unlikely to be linear, which is one

of the reasons that motivated introducing deep neural networks with nonlinear hidden

units.

In fact, an MLP with multiple intermediate hidden layers can be seen as captur-

ing the data manifold and performing classification on the captured manifold. As

discussed earlier in Section 3.1, each pair of two consecutive non-output layers non-

linearly transforms the coordinates of the input from the lower layer. If each of them

can gradually capture and disentangle the factors of variations along the manifold on

which training samples lie, we can expect that the top two layers which perform the

actual target task, either classification or regression, will benefit from it.

Unless we are lucky, however, we cannot expect that this type of transformation

that captures the data manifold will be discovered when we estimate the parameters

of an MLP. It might happen that minimizing the cost function in Eq. (3.1) ends up in

the (local) solution that corresponds to the situation where intermediate hidden layers

gradually capture the data manifold, but it is not likely nor guaranteed.

Instead, there is another approach that gradually builds up a sequence of transfor-

mations, starting from the raw data, that encourages the hidden layers of an MLP to

disentangle the factors of variations along the data manifold. This incremental way

of transforming coordinates is known widely as a greedy layer-wise pretraining (Hin-

ton and Salakhutdinov, 2006). This will be discussed more in Chapter 5, and in the

remainder of this section we will look at two variants of autoencoders that are known

to capture the data manifold. These two models have been recently shown to be good

candidates for gradually capturing the data manifold.

3.3.1 Denoising Autoencoder and Explicit Noise Injection

Instead of our original aim of training an autoencoder, we may decide to train it to

denoise a noisy sample so that

x ≈ g(f(x̃)),

where x and x̃ are clean and noisy versions of the same sample, and f and g are the

encoder and decoder of the autoencoder, respectively.

This can be done by modifying the cost function in Eq. (2.14) so that noise is explic-

itly injected before the encoder is applied to training samples. When the cost function

is modified accordingly, we call the resulting autoencoder a denoising autoencoder

(Vincent et al., 2010).

A denoising autoencoder is constructed to have in many cases a single interme-

diate hidden layer. The parameters are estimated by minimizing the following cost

64

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

function:

J(θ) =

N∑
n=1

∥∥∥x(n) − g
(
f(κ(x(n)))

)∥∥∥2
2
, (3.25)

where f and g are respectively the encoder and decoder defined by Eqs. (3.3) and

(3.4). κ is a stochastic operator that adds random noise to the input.3

The denoising autoencoder finds a coordinate system of the data manifold. Min-

imizing Eq. (3.25) effectively corresponds to ignoring any direction of variation in-

jected by κ. This is equivalent to maintaining only those directions that are implicitly

found by the training samples (Vincent et al., 2010). From this, we may say that the

denoising autoencoder learns the data manifold, since the data manifold is by defini-

tion a set of small neighborhoods (charts) that encode those directions of variations.

Here let us in more detail try to understand at least informally how the denois-

ing autoencoder internally learns the data manifold. We will consider a denoising

autoencoder with a single intermediate hidden layer only.

Let x and x′ be two nearby real-valued training samples, and h = f(x) and

h′ = f(x′) are corresponding hidden states encoded by a denoising autoencoder.

We assume that κ was chosen to add a white Gaussian noise.

If we consider only x, because we trained the denoising autoencoder by minimizing

Eq. (3.25), any point x + ε in a small area surrounding x, defined by κ, will map

almost exactly to h. This applies to x′ as well.

A point x̄ in an overlapping area needs a closer observation. For instance, a middle

point x̄ = x+x′
2 between x and x′ will neither be reconstructed exactly to x nor

x′. Instead, it will be reconstructed to be a point between x and x′, and because the

decoder is linear, the hidden state of x̄ will also lie between h and h′. See Fig. 3.7

for illustration.

In short, the change in a hidden representation encoded by the denoising autoen-

coder corresponds only to the change on the manifold on which training samples lie.

Any other small change in directions moving outside the manifold will be ignored.

In this way, a denoising autoencoder learns the data manifold.

This, however, does not mean that every possible state of the hidden units encodes a

point on the data manifold. It is not well defined nor known to what extent points far

from the manifold will be encoded. Fortunately, this may not be a big problem when

3κ(x) may be designed to corrupt the input using the combination of multiple types of noise.
In (Vincent et al., 2010), the following types of noise were proposed:
1. Additive white Gaussian: add white Gaussian noise to each component
2. Masking: randomly force some components to 0

3. Salt-and-Pepper noise: randomly force some components to either the maximum or mini-
mum allowed value

65

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

Hidden space

Data space

κ(x)

Figure 3.7. Illustration of how a denoising autoencoder learns a data manifold. The solid curves are
the manifolds on which the training samples in the data space and their corresponding
representations in the hidden space lie. The blue points (×) correspond to both training
samples in the data space and their hidden representations in the hidden space (x, x′ and
f(x), f(x′) in the text). The dashed circle around a training sample shows the amount of
error explicitly injected by κ. The red points (×) are examples of the neighboring points of
the training samples that are not on the data manifold, while the magenta point (×) lies on
the manifold between two training samples (x̄ and f(x̄) in the text). The deviations of both
the red points from their original training samples are ignored in the encoder, while that of
the magenta point is preserved.

we deal with a task where both training and test samples were obtained from a single

distribution whose probability mass is mostly concentrated along the manifold. This

will eliminate any need of encoding a sample far away from the manifold.

As can be expected from this argument, it has been shown by, for instance, Vincent

et al. (2010) that the denoising autoencoder tends to learn a better representation that

is more suitable for a further machine learning task such as classification than the one

extracted by an ordinary autoencoder. Therefore, this model has been used widely to

pretrain an MLP layer-wise.

Explicit Noise Injection for Classification

Let us now discuss briefly another aspect of injecting random noise explicitly to train-

ing samples while estimating parameters.

It is usual that we know a priori that the data distribution from which the training

samples as well as the test samples are sampled is smooth with respect to each point

in the state space. In supervised learning, this means that a point x which is not

necessarily in a training set but in the neighborhood of a training sample x(n), is

66

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

highly likely to belong to the same class y(n). In unsupervised learning, it means that

a point x, again in the neighborhood of a training sample x(n), is likely to have a

similar probability.

If we go one step further, we may say that there is a certain invariance with respect

to some transformation, potentially nonlinear and stochastic, κ such that κ(x) is sim-

ilar, or has a similar property to x. The property shared by those two points may be

their classes or their probabilities in the data distribution.

One way to incorporate this prior knowledge is to use corrupted or transformed

versions of training samples
{
x(n)

}N
n=1

when estimating the parameters of a model

(see, e.g., Bishop, 2006, Chapter 5.5).

For instance, in the case of anMLP, the aim of the neural network is to find a nonlin-

ear mapping from an input to its corresponding output. The above prior knowledge,

however, suggests that rather than trying to optimize the network to find the mapping

from the raw training set, the network needs to be optimized to find the mapping from

a transformed input κ(x(n)) to its output y(n). Then, the cost function originally in

the form of Eq. (3.1), is replaced by

J(θ) =
N∑

n=1

d
(
y(n), u(κ(x(n)))

)
, (3.26)

where u(·) is the output of the MLP.

If we assume that κ stochastically corrupts the input, thus making a noisy version

of it, the trained MLP becomes more robust to noise in the input. In other words,

the input corrupted by some level of noise will nevertheless be mapped to its desired

output which is the output expected from the clean input.

The stochastic gradient method described in Section 2.5 can be used to minimize

Eq. (3.26). At each iteration, a randomly chosen subset of the training set is stochas-

tically corrupted by κ before the steepest descent direction is computed.

In the case where κ simply adds uncorrelated white Gaussian noise to an input,

Bishop (1995) showed that minimizing Eq. (3.26) is related to regularizing the sensi-

tivity of an output with respect to the input such that the cost function to be minimized

becomes

J(θ) =
N∑

n=1

d
(
y(n), u(x(n))

)
+

λ

2

p∑
i=1

q∑
j=1

(
∂u(x(n))

∂x(n)

)2

, (3.27)

where the regularization constant λ is determined by the amount of noise injected by

κ in Eq. (3.26).

3.3.2 Contractive Autoencoder

The informal discussion in Section 3.3.1 on how the denoising autoencoder learns

the data manifold, arrives at the conclusion that the key is the invariance of hidden

67

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

activations to any direction of change moving outside the manifold. Or, it may be

said that any infinitesimal change to a point in the data space should not change its

corresponding encoded point in the hidden space. In other words, the norm of the

Jacobian matrix Jf should be minimized. The Jacobian matrix Jf ∈ Rq×p with

respect to the encoder f is defined as

Jf =

⎡
⎢⎢⎢⎣

∂ĥ1
∂x1

· · · ∂ĥ1
∂xp

...
. . .

...
∂ĥq

∂x1
· · · ∂ĥq

∂xp

⎤
⎥⎥⎥⎦ , (3.28)

where ĥj is the j-th component of f(x).

A denoising autoencoder achieves this by injecting predefined levels of noise to

training samples. However, this does not directly minimize Jf , as we have seen

previously in Eq. (3.27), it rather penalizes Jg◦f which is

Jg◦f =

⎡
⎢⎢⎢⎣

∂x̃1
∂x1

· · · ∂x̃1
∂xp

...
. . .

...
∂x̃q

∂x1
· · · ∂x̃q

∂xp

⎤
⎥⎥⎥⎦ ,

where x̃j is the j-th component of the reconstruction.

Hence, Rifai et al. (2011b) proposed to directly regularize the L2-norm of Jf by

adding the following regularization term to the cost function based on reconstruction

error

Ω(D,θ) =
∑
x∈D

p∑
i=1

q∑
j=1

(
∂ĥj
∂xi

)2

. (3.29)

Furthermore, Rifai et al. (2011a) proposed to regularize, in addition to the Jaco-

bian, the Hessian Hf approximated using the finite-difference method by modifying

Eq. (3.29) to

Ω(D,θ) =
∑
x∈D

p∑
i=1

q∑
j=1

(
∂ĥj
∂xi

)2

+ γ

p∑
i=1

q∑
j=1

Eε

⎡
⎣(∂ĥj

∂xi
(xi)−

∂ĥj
∂xi

(xi + ε)

)2
⎤
⎦ ,

where ε ∼ N (0, σ2).

This idea of utilizing the Jacobian matrix with respect to each training sample sug-

gests to further use the Jacobian matrix to investigate the local neighborhood, or

chart, centered on the training sample. The leading singular vectors or principal com-

ponents of the Jacobian matrix are the directions parallel to the data manifold, while

the minor singular vectors indicate those directions that are close to perpendicular to

the manifold.

If the manifold assumption at the beginning of this section indeed holds true and the

contractive regularization in Eq. (3.29) enables the autoencoder to capture this mani-

fold, only few leading singular vectors will have a large corresponding singular value,

68

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

while the others will be close to zero. In other words, the neighborhood centered on

each training sample will have only a few degrees of freedom which correspond to

the leading singular vectors.

Rifai et al. (2011b) empirically showed that this is indeed the case with the autoen-

coders trained with the contractive regularization (Eq. (3.29)) as well as the denoising

autoencoders. The phenomenon was most visible when the contractive regularization

was used, which suggests that directly regularizing the Jacobian matrix may help cap-

turing the data manifold more effectively and efficiently.

A similar idea was applied to training restricted Boltzmann machines (see Sec-

tion 4.4.2) in Publication IV.

3.4 Backpropagation for Feedforward Neural Networks

Before finishing our discussion on deep feedforward neural networks, in this section,

we briefly describe an efficient algorithm that computes the gradient of a cost function

with respect to each parameter of a deep feedforward neural network. The algorithm,

called backpropagation, was proposed for multilayer perceptrons by Rumelhart et al.

(1986).

In order to compute the gradient, we first perform a forward pass. For each sample

x, we recursively compute the activation of the j-th hidden unit h[l]j at the l-th hidden

layer by

h
[l]
j = φ

[l]
j

(q[l−1]∑
k=1

h
[l−1]
k w

[l]
kj

)
,

where the activation of the j-th hidden unit in the first hidden layer is

h
[1]
j = φ

[1]
j

(
p∑

i=1

xiw
[1]
ij

)

and the activation of the j-th linear output unit is

uj(x) = φo
j

(q[L]∑
k=1

h
[L]
k ukj

)
.

Note that we used a different notation for the nonlinear function of each unit, other

than visible ones, to emphasize that the algorithm works in a general feedforward

neural network. For simplicity, we have omitted biases without loss of generality.

After the forward pass, we begin the backward pass, where a local gradient δ is

computed per each unit. For each output unit, where a desired output yj is available,

the local gradient is

δj =
∂J

∂uj

which is simply a difference between the predicted and desired values:

δj = yj − uj(x),

69

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

assuming that the output units are linear (φo
j(x) = x) and the cost function J is de-

fined based on the squared Euclidean distance between the true and predicted outputs.

The same computation holds when the cross-entropy loss is used together with the

sigmoid output units.

For a hidden unit in a subsequent intermediate layers, we compute the local gradi-

ents recursively using the backward pass by

δ
[l−1]
j =

(
h
[l−1]
j

)′ q[l]∑
k=1

w
[l]
jkδ

[l]
j

until l reaches 2, where
(
h
[l−1]
j

)′
is the partial derivative of h[l−1]j with respect to the

input to the unit. For instance, if the nonlinear function used by the unit φ[l−1]
j is a

logistic sigmoid function, then(
h
[l−1]
j

)′
= h

[l−1]
j

(
1− h

[l−1]
j

)
.

Once all the inputs and local gradients are computed, we can compute the partial

derivatives with respect to the top-level and intermediate-level weight parameters ukj

and w
[l]
ij by

∂J

∂ukj
=δjh

[L]
k

∂J

∂w
[l]
ij

=δ
[l+1]
j h

[l−1]
i , ∀l ≥ 2

∂J

∂w
[1]
ij

=δ
[2]
j xi.

See Fig. 3.8 for the illustration of the forward and backward passes.

Here we showed how to compute the gradient using a single sample only, but it is

possible to extend it to the case of multiple samples by taking an average of gradients

computed from a number of samples at each update. It is usual to use the gradient

computed by the backpropagation to perform stochastic gradient descent on the cost

function using a subset of training samples at a time (see Section 2.5).

3.4.1 How to Make Lower Layers Useful

It has been observed that neural networks with more than two intermediate hidden

layers trained using plain stochastic gradient descent often exhibit worse generaliza-

tion performance4 than neural networks with only one or two intermediate layers (see,

e.g. Bengio and LeCun, 2007). This is surprising, as we expect a larger model with

more parameters to have a higher modeling capacity and thus result in better perfor-

mance. In this section, we discuss some of the hypotheses explaining this surprising

phenomenon.

4By generalization performance, we refer to the performance of a trained model on an un-
seen, novel sample.

70

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

x1 x2 xp

h
(1)
1 h

(1)
2 h

(1)
q1

h
(L)
1 h

(L)
2 h

(L)
qL

y

ŷ δ

δ
(L)
1 δ

(L)
2 δ

(L)
qL

δ
(1)
1 δ

(1)
2 δ

(1)
q1

Figure 3.8. An illustration of the forward and backward passes. Starting from the input layer on left,
the activation of each unit is iteratively computed up until the output ŷ is predicted. The
difference δ between the prediction ŷ and true output y is computed, and the local gradients
δ
(l)
j are iteratively computed in the backward pass. The left and right parts of the figure

respectively correspond to the forward and backward passes.

One important hypothesis explaining the underlying reasons for this phenomenon

was proposed by Bengio et al. (2007). According to this hypothesis, this difficulty

may come from the fact that the parameters of the lower layers (closer to a layer with

input units) are not well utilized since the top three layers, consisting of the output

layer and two last hidden layers, are capable enough of learning a given training set

almost perfectly. They essentially act as a deep neural network with a single inter-

mediate hidden layer, which already has a universal approximator property, using the

activation of the hidden units in the layer immediately below as an input. However,

this capability of the top two layers does not translate to the performance of the neural

network on unseen samples.

In other words, training an MLP with stochastic gradient descent will simply adapt

the parameters of the top layers to fit the training set as well as possible. The al-

gorithm in general will not necessarily prefer a solution that aims to force the lower

intermediate layers, which act as feature detectors according to our discussion in Sec-

tion 3.1, to detect important features. A simple experiment by Bengio et al. (2007)

showed further that even when the top layers are not powerful enough to minimize

the cost function almost perfectly, the plain stochastic gradient descent will fail to

make the lower intermediate layers any more useful.

In an extreme case, it might be that the top two layers, the output and the last

hidden layers, will be enough to minimize the cost function almost perfectly. In this

case, it is possible that the network effectively becomes an extreme learning machine,

discussed in Section 3.1.1, since the weights of lower layers do not change from their

71

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

randomly initialized values.

In order to avoid this problem, an approach that incrementally adds intermediate

layers starting from the visible layer has been suggested by, for instance, Fahlman and

Lebiere (1990) and Lengellé and Denæux (1996). The cascade correlation algorithm

(Fahlman and Lebiere, 1990) starts from a logistic regression network without any

intermediate hidden layer, and then incrementally trains and adds intermediate layers

while keeping all the existing connections as long as the cost function decreases by

doing so. Lengellé and Denæux (1996) similarly add new intermediate layers, or

units, until the objective function based on the class separability does not improve.

However, these approaches based on supervised criteria have not been widely adopted

as they did not show much improvement.

Hinton and Salakhutdinov (2006) proposed a method called greedy layer-wise pre-

training which pretrains each pair of two consecutive layers starting from the bottom

two layers, as if it were an restricted Boltzmann machine (see Section 4.4.2). Simi-

larly to the earlier attempts, this approach allows stacking multiple layers. However,

each pair is trained in an unsupervised manner, where no output information is used

during the layer-wise pretraining. The success of this approach started a so called

second neural network renaissance (Schmidhuber et al., 2011). We will discuss in

more detail this approach in Chapter 5.

The hypothesis by Bengio et al. (2007) is not the only explanation available. Martens

(2010) pointed out that another potential factor that makes it difficult to estimate the

parameters of lower layers of a deep MLP, or a deep autoencoder by stochastic gra-

dient descent is the existence of a pathological curvature of the cost function, not the

powerfulness of the top few layers.

Martens (2010) claimed that the directions of the cost function that correspond to

the parameters in the lower layers have lower curvature compared to those corre-

sponding to the parameters in the top few layers. In this scenario, the plain gradient

descent, relying solely on the first-order information, is unable to make rapid, if any,

progress in those directions with low curvatures, leaving the parameters of the lower

layers mostly unchanged.

The Hessian-free optimization, or truncated Newton method with subsampled Hes-

sian algorithms, proposed by Martens (2010) and Byrd et al. (2011) independently,

overcomes this problem by utilizing the Hessian of the cost function. Specifically

in the cases of deep autoencoders and recurrent neural networks, Martens (2010)

and Sutskever et al. (2011) empirically showed that the Hessian-free optimization

can indeed train very deep neural networks without much difficulty. For a detailed

discussion on implementing the Hessian-free optimization for training deep neural

networks, we refer any interested reader to (Martens and Sutskever, 2012).

72

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

In a similar sense, Raiko et al. (2012) proposed, instead of a novel optimization al-

gorithm, to linearly transform each unit in a deep neural network such that the mean

and the first-derivative of the output of each unit are close to zero. In order to make

the neural network invariant under such a transformation, shortcut connections skip-

ping one or few intermediate layers were introduced. Raiko et al. (2012) informally

explained and empirically showed that the proposed linear transformation makes the

Fisher information matrix closer to diagonal, thus pushing the steepest descent gradi-

ent closer to the natural gradient direction which is known to be efficient in estimating

the parameters of an MLP (Amari, 1998).

Glorot and Bengio (2010) extensively tested plain stochastic gradient descent in

training deep MLPs. They were able to provide some practical advice on the choice

of nonlinear functions of hidden units as well as how to initialize the parameters to

avoid being stuck in a poor local optimum or a plateau.

One must be careful about making any definite conclusion on using a plain gradient

descent approach. The underlying factor of the difficulty might simply be a lack of

patience, and extremely longer training, potentially assisted by the recent advances in

utilizing GPUs (Raina et al., 2009), might help avoiding the aforementioned problem.

Recently, for instance, Ciresan et al. (2012b) showed that a deep MLP trained with

the plain stochastic gradient descent can achieve state-of-the-art results on handwrit-

ten digits classification without any of the methods described earlier. Many recent

papers from the same group (see, e.g. Ciresan et al., 2012c,d,a) presented deep (con-

volutional) neural networks achieving the state-of-the-art performances on various

tasks using just plain stochastic gradient descent.

73

Feedforward Neural Networks: Multilayer Perceptron and Deep Autoencoder

74

4. Boltzmann Machines with Hidden
Units

In Section 2.3.2, a fully-visible Boltzmannmachine (BM) was introduced as a stochas-

tic extension of the Hopfield network which learns the underlying statistics of train-

ing samples. These models are not considered deep, since it is not possible to extend

them without any additional hidden units. Hence, in this chapter, we discuss BMs

that have hidden units in addition to the usual visible units.

In this chapter, we start with a general description of a BMwith hidden units. Then,

we give a brief explanation why any recurrent neural network with hidden units may

be considered as a deep neural network (see, e.g., Bengio et al., 2013). This will

provide a basis on which any Boltzmann machine, which is one particular type of

recurrent neural networks, with hidden units is considered deep. Afterwards, we

discuss more about BMs with hidden units in depth.

4.1 Fully-Connected Boltzmann Machine

Here we generalize the fully-visible Boltzmann machine described in Section 2.3.2

to a general, fully-connected Boltzmann machine (Ackley et al., 1985). A fully-

connected Boltzmann machine has, in addition to a set of visible stochastic units, a

separate set of hidden units.1

Regardless of whether it is visible or hidden, each unit xi is binary (having either 0

or 1 as its state) and has a bias bi. Each pair xi and xj is connected by an undirected

edge with its weight wij , or one may say that there are two directed edges from xi to

xj and from xj to xi with a symmetric weight wij .

Let us denote the weights of the edges connecting the visible and hidden units, of

those among the visible units, and of those among the hidden units by W ∈ Rp×q,

U ∈ Rp×p and V ∈ Rq×q, respectively. Then, as we did with both the Hopfield

network and the fully-visible Boltzmann machine previously, we define the negative

1Whenever it is clear that a referred unit is stochastic, we will drop the term stochastic.

75

Boltzmann Machines with Hidden Units

energy of the network by

−E(x,h | θ) = b�x+ c�h+ x�Wh+
1

2
x�Ux+

1

2
h�Vh, (4.1)

where b and c are vectors of the biases to the visible and hidden units, respectively. θ

indicates the set of all parameters including b, c, W, U andV. From this, we define

a probability of a state
[
x�,h�

]� with the Boltzmann distribution by

p(x,h | θ) = 1

Z(θ)
exp {−E (x,h | θ)} , (4.2)

where again Z(θ) is a normalization constant that requires the summation over an

exponential number of terms with respect to the number of units.

x1

h1

x2

h2

xp

hq

U

W

V

Figure 4.1. Fully-Connected Boltzmann
machine.

See Fig. 4.1 for the illustration of this Boltz-

mann machine.

When it comes to estimating parameters, how-

ever, the marginal log-likelihood needs to be

maximized instead. The marginal log-likelihood

is computed by marginalizing out the hidden

units:

L(θ) = 1

N

N∑
n=1

log
∑
h

exp
(
−E

(
x(n),h | θ

))

− logZ(θ). (4.3)

The parameters can be estimated by maximiz-

ing Eq. (4.3) using, for instance, the stochastic gradient algorithm. This algorithm

will take a small step in the direction of the steepest ascent direction in the parameter

space. The steepest direction is computed for each parameter by the partial derivative

of the marginal log-likelihood with respect to it. The partial derivative with respect

to a parameter θ is

∂L(θ)
∂θ

∝
〈
∂ (−E(x,h | θ))

∂θ

〉
p(h|x,θ)pD(x)

−
〈
∂ (−E(x,h | θ))

∂θ

〉
p(x,h|θ)

.

(4.4)

The first term computes the expectation of the partial derivative of the negative

energy with respect to the parameter under the posterior distribution of the hidden

units, with the visible units fixed to training samples from the empirical, or data,

distribution. The second term is the expectation of the same quantity under the model

distribution represented by the Boltzmann machine. Unfortunately, computing these

terms exactly is intractable. Both terms require evaluating the partial derivative of the

negative energy exponentially many times.

Hence, we must resort to estimating them with various techniques instead of trying

to compute them exactly. The first choice is to use samples from those intractable

76

Boltzmann Machines with Hidden Units

distributions to estimate the statistics. The other possibility is to approximate, for

instance, the true posterior distribution over the hidden units given the state of the

visible units with a simpler distribution. In Section 4.3, we briefly describe the un-

derlying ideas of these two approaches and how they can be applied to estimating

parameters of a Boltzmann machine.

There is yet another formulation of training Boltzmann machines that leads to ex-

actly the same update rules in Eq. (4.4). This formulation is based on minimizing

the negative KL-divergence between the data distribution and the model distribution,

which is defined by

−KL(P0‖P∞) = −
∑
x

log
P0(x)

P∞(x)
P0(x) = 〈logP∞(x)〉P0

− 〈logP0(x)〉P0
,

(4.5)

where the shorthand notations P0 and P∞ are, respectively, defined by

P0 =p (h | x,θ) pD (x)

P∞ =p (x,h | θ) .

A reason for this notation is related to interpolating between the data and model

distributions, which will be made more clear in Section 4.4.2. The last term, corre-

sponding to the entropy of the data distribution, does not depend on the parameters θ

and can be safely ignored.

Eq. (4.5) is equivalent to Eq. (4.3), since

〈logP∞(x)〉P0
=

1

N

N∑
n=1

log
∑
h

p(x(n),h | θ)

which is exactly the marginal log-likelihood of Eq. (4.3). This fact will become use-

ful when we describe an efficient learning procedure, called minimizing contrastive

divergence (Hinton, 2002).

4.1.1 Transformation Invariance and Enhanced Gradient

It is interesting to notice that the addition of any constant to the energy function of

a Boltzmann machine does not alter the probability distribution it defines over the

state space. This can be verified by the fact that the new normalization constant

Z̃(θ) after adding a constant to the energy is just the original normalization constant

Z(θ) multiplied by the exponential function of the added constant, assuming that the

77

Boltzmann Machines with Hidden Units

constant is independent of the states of both x and h:

Z̃(θ) =
∑
x

∑
h

exp {−E(x,h | θ) + C}

= exp {C}
∑
x

∑
h

exp {−E(x,h | θ)}

= exp {C}Z(θ).

We may now investigate a case where the states of some units are transformed. To

make equations uncluttered, in this section, we do not distinguish between visible

and hidden units, and use x to denote all units. Also, instead of p + q units, we will

use p solely to indicate the number of units.

A bit-flipping transformation x̃i of unit xi ∈ {0, 1} is defined by an indicator

variable fi ∈ {0, 1} such that

x̃i = x1−fii (1− xi)
fi .

In other words, the i-th unit of a Boltzmann machine is flipped, if fi is set to 1. Given

the states x of the units, the bit-flipping transformation by f results in x̃.

Let us assume that we are given a Boltzmann machine B(0) with the parameters

θ. It was shown by Cho et al. (2013) that there exists a Boltzmann machine B(f) pa-
rameterized by θ̃ that assigns the probability to the state x̃ transformed by f which is

equivalent to the probability assigned by the Boltzmann machine B(0) to the original

state x. In other words,

E(x̃ | θ̃) = E(x | θ) + C,

with the following re-parameterization:

w̃ij = (−1)fi+fjwij , (4.6)

b̃i = (−1)fi
(
bi +

∑
j

fjwij

)
. (4.7)

A direct implication of this transformation-invariance property is that learning pa-

rameters by maximizing the log-likelihood in Eq. (4.3) is dependent on the data rep-

resentation. In other words, completely different behaviors will be observed when

training a Boltzmann machine on the same data, however, with different representa-

tions. Especially, in Publication I it is empirically shown that certain representations

of the same dataset are favored over other representations. For instance, a sparse

data set can easily be learned by a Boltzmann machine with the stochastic gradient

method, while its inverted form, a dense version of the same data, cannot be learned

as easily.

This phenomenon becomes more clear, if we understand that there are exponen-

tially many possible update directions each time with respect to the number of units.

78

Boltzmann Machines with Hidden Units

x1x1

h1h1

x2x2

h2h2

xpxp

hqhq

x̃1x̃1

h̃1h̃1

x̃2x̃2

h̃2h̃2

x̃px̃p

h̃qh̃q

U

W

V

U+ΔfU

W +ΔfW

V +ΔfV

Ũ

W̃

Ṽ

Ũ+ΔŨ

W̃ +ΔW̃

Ṽ +ΔṼ

(2) Update

(1) Transform (3) Transform Back

Figure 4.2. Illustration of the three-step update procedure consisting of (1) transforming, (2) updating
and (3) transforming back. Δfθ denotes the change in θ dependent on the transformation
f .

In fact, if a transformation is chosen to be other than the bit-flipping transformation,

there are potentially infinitely many update directions available, as will be discussed

later.

We first transform the Boltzmann machine with a given bit-flipping transformation

f , according to Eqs. (4.6)–(4.7). The transformed model is updated by one step of

the stochastic gradient method, and then, is transformed back. A simple illustration

of how this three-step update is performed is given in Fig. 4.2.

Interestingly, this approach results in a valid steepest-ascent update rule for each

parameter that depends on the transformation f :

wij ← wij + η [Covd(xi, xj)− Covm(xi, xj)+

(〈xi〉dm − fi)∇bj +
(
〈xj〉dm − fj

)
∇bi

]
, (4.8)

bi ← bi + η

⎛
⎝∇bi −

∑
j

fj∇fwij

⎞
⎠ , (4.9)

where we used the following shorthand notations

∇fwij = 〈xixj〉d − 〈xixj〉m − fi∇bj − fj∇bi,

〈xi〉dm =
1

2
(〈xi〉d + 〈xi〉m) ,

and the covariance between two units with respect to the distribution P is defined by

CovP (xi, hj) = 〈xihj〉P − 〈xi〉P 〈hj〉P .

As defined earlier in Section 2.3.2, d and m correspond to the data and model distri-

butions, respectively.

79

Boltzmann Machines with Hidden Units

All these 2p update directions, in the case of the bit-flipping transformation, are

valid so that they will increase the log-likelihood. However, it may not be the case that

all such directions will lead to the same solution, considering that the log-likelihood

function in Eq. (4.3) is a highly non-concave function. For instance, one direction

may lead to the solution that is superior, in terms of log-probabilities of test samples,

to those solutions reached by other update directions.

To alleviate this problem, the author of this thesis together with two co-authors,

in Publication I and Publication II, proposed to use the weighted sum of all those

directions. We define the weight γf of each gradient update dependent on the trans-

formation f by

γf =

p∏
i=1

〈xi〉fidm (1− 〈xi〉dm)
1−fi ,

where

〈xi〉dm =
1

2
(〈xi〉d + 〈xi〉m) .

The weighted sum of exponentially many transformation-dependent update direc-

tions, called the enhanced gradient, is then

∇ewij = Covd(xi, xj)− Covm(xi, xj), (4.10)

∇ebi = ∇bi −
∑
j

〈xj〉dm∇ewij , (4.11)

where we use∇e to distinguish the enhanced gradient from the conventional gradient.

It must be noticed that the enhanced gradient is not dependent on the transformation

f , making it invariant to the bit-flipping transformation.

Empirical evidence has been provided in Publication I that the enhanced gradient is

more robust to the choice of hyper-parameters, such as a learning rate and its schedul-

ing, and extracts more discriminative features, when used for training a restricted

Boltzmannmachine. A restricted Boltzmannmachine, which is a structurally-restricted

variant of a Boltzmann machine, will be discussed in detail later.

The bit-flipping transformation introduced in Publication I and Publication II have

inspired others since. For instance, Montavon and Müller (2012) showed that cen-

tering each unit helps avoiding a difficulty in training a deep Boltzmann machine

which is another structurally-restricted variant of a Boltzmann machine. Instead of

the bit-flipping transformation, they used a shifting transformation such that

x̃i = xi − βi.

Cho et al. (2011), which was recently published as Publication VI, also proposed

independently the same transformation for Gaussian visible units.

80

Boltzmann Machines with Hidden Units

One can construct the equivalent Boltzmann machine given the shifting transfor-

mation β with the following parameters

w̃ij = wij ,

b̃i = bi +
∑
j

wijβj .

However, in this case, there are infinitely many possible update directions at a time,

and one needs to choose a single update direction, where

βi = 〈xi〉dm

was proposed in Publication VI, and Montavon and Müller (2012) proposed to use

βi = 〈xi〉d .

A similar idea was also proposed by Tang and Sutskever (2011), but they applied the

transformation only to visible units.

4.2 Boltzmann Machines with Hidden Units are Deep

Before discussing Boltzmann machines further, in this section, we first provide an

intuitive explanation as to why Boltzmann machines, especially with hidden units,

are considered deep. This is done by showing that a recurrent neural network, after

being unfolded over time, is deep and an equivalent recurrent neural network can be

constructed for each Boltzmann machine.

A recurrent neural network consists of input, output and hidden units as usual with

any other types of neural networks considered so far in this thesis. It, however, differs

from, for instance, a multilayer perceptron introduced earlier in that there exist feed-

back edges. Hence, a state
[
x�〈t〉,h

�
〈t〉
]�

of the network at time t does not only depend

on the given input x〈t〉, but it also depends on the state
[
x�〈t−1〉,h

�
〈t−1〉

]�
of the units

at the previous time step t−1. More comprehensive discussions on general recurrent

neural networks and recent advances in their learning algorithms can be found in

(Bengio et al., 2013; Sutskever, 2013; Graves, 2013).

In this section, we first discuss why a recurrent neural network with hidden units

is deep. Then, we describe how a Boltzmann machine with hidden units may be

considered a recurrent neural network. Based on these observations, we conclude

that Boltzmann machines with hidden units are deep neural networks.

4.2.1 Recurrent Neural Networks with Hidden Units are Deep

Let us consider a simplified recurrent neural network consisting of an input layer, a

single nonlinear hidden layer and a output layer. Each hidden layer receives signal

81

Boltzmann Machines with Hidden Units

W

U
G

x

h

y

z−1

x〈1〉

y〈1〉

h〈1〉

x〈2〉

y〈2〉

h〈2〉

x〈3〉 x〈4〉

h〈3〉h〈0〉

(a) Recurrent Neural Network (b) Unfolded over Time

Figure 4.3. (a) A simple recurrent neural network. z−1 is a unit delay operator. (b) The same recurrent
neural network has been unfolded over time. Each layer is grouped by a rectangle with
dashed lines.

from the hidden layer at the previous time t− 1. The set θ of parameters consists of

weights from the input layer to the hidden layer (W), those from the hidden layer to

the output layer (U) and those from the previous hidden layer to the current hidden

layer (G). Every unit has its own bias term. See Fig. 4.3(a) for the illustration of this

network.

The goal of this network is to learn to predict a sequence of labels, given a sequence

of input vectors. It is also possible to train it to predict the next input given the

sequence of previous inputs. For instance, Sutskever et al. (2011) showed that a

recurrent neural network was able to learn and generate an arbitrary sequence of text

once the network was trained this way.

Now, let us unfold the described recurrent neural network in time, starting from

t = 0, assuming that the activations of the input and hidden units are fixed to zero

initially. We will construct a deep multilayer perceptron (MLP) from the unfolded

recurrent neural network.

If we denote the input, output and hidden layers of the recurrent neural network at

time t by x〈t〉, y〈t〉 and h〈t〉, the l-th layer of the infinite-depth MLP is constructed

by concatenating x〈t〉, y〈t−2〉 and h〈t−1〉. Then, each consecutive intermediate layers

t and t + 1 are connected by a sparse weight matrix, where the connections from

y〈t−2〉 to h〈t〉 and from h〈t−1〉 to x〈t+1〉 are not present, but both h〈t−1〉 to h〈t〉 (G)

and to y〈t−1〉 (U) and x〈t〉 to h〈t〉 (W) are. In this MLP, unlike how MLPs were

described in Section 3.1 earlier, not only the bottom-most and top-most layers, but

all intermediate layers also have input and output units, and this network shares the

weights parameters of each layer. See Fig. 4.3(b) for the structure of this unfolded

network.

This unfolded recurrent neural network is deep, since it satisfies the two conditions

described in Section 2.4.

First, the network can be easily extended, just like an MLP, by adding one or more

hidden layers. However, in the case of a recurrent neural network, this addition grows

the size of each layer instead of the number of layers, when viewed as the time-

82

Boltzmann Machines with Hidden Units

unfolded network. This is an obvious consequence from the fact that potentially the

time-unfolded network already has infinitely many layers.

The second condition is trivially satisfied as each layer is parameterized. One can

modify the backpropagation algorithm (see Section 3.4) used for training conven-

tional MLPs to train all the parameters.

Hence, we consider any recurrent neural network with hidden units a deep neural

network.

4.2.2 Boltzmann Machines are Recurrent Neural Networks

Similarly, let us consider a fully-connected Boltzmann machine (BM) trained on a

training set consisting of vectors of samples augmented by their labels. Each label is

considered to be transformed into a binary vector using a 1-of-K coding. That is, the

visible units are divided into those x that correspond to input components and those

y that correspond to label components.2 Furthermore, let us assume that there is no

edge between the sets of the input and label units and also no edge inside those sets.

Then, we may rewrite the energy function of the BM in Eq. (4.1) into

−E(x,y,h | θ) = a�x+ b�y + c�h+ x�Wh+ y�U+
1

2
h�Vh. (4.12)

Once the BM is trained, we can obtain a sequence
(
y〈0〉,y〈1〉, . . . ,y〈∞〉

)
of vec-

tors of the states of label units given a visible sample by simulating the Boltzmann

machine. To do so, at each time t, we need to have the previous states of the hidden

units h〈t−1〉 and label units y〈t−1〉.

Given these previous states, we first compute the states of the hidden units at time

t by replacing one unit. The state of the unit hjt can be sampled from

p(hjt = 1 | x,y〈t−1〉,h〈t−1〉,θ) = φ

⎛
⎝∑

i

wijtxi +
∑
l

uljty
′
l +

∑
k �=jt

vkjth
′
k + bjt

⎞
⎠ ,

where y′l and h′k are the l-th component of y〈t−1〉 and the k-th component of h〈t−1〉,

respectively. Subsequently with the new hidden state h〈t〉, we replace a single unit

ylt to get the new label state y〈t〉 similarly by sampling from

p(ylt = 1 | x,y〈t−1〉,h〈t〉,θ) = φ

⎛
⎝∑

i

wijtxi +
∑
k �=lt

uklty
′
k +

∑
j

vljh
′
j + alt

⎞
⎠ .

The indices jt and lt may be chosen arbitrarily at each time t.

This way of viewing the simulation of the BM is equivalent to performing a feedfor-

ward pass through time in a recurrent neural network. One difference to the recurrent

2A practical description of how a Boltzmann machine trained on samples augmented with
their labels will be presented in more detail in Section 5.2.1. Here, this model is only used to
illustrate how an equivalent recurrent neural network can be built for a Boltzmann machine.

83

Boltzmann Machines with Hidden Units

W

U

0

0

0

x

h

y

x

y1

h1

y2

h2

y3

h3h0

y0

(a) Original Boltzmann Machine (b) Equivalent Recurrent Neural Network

Figure 4.4. (a) A Boltzmann machine with some edges fixed to 0 having visible units that correspond
to a label. (b) The equivalent recurrent neural network unfolded over time. Each layer is
grouped by a rectangle with dashed lines.

neural network described in Section 4.2.1 is that the visible units are fixed to a sample

over time.

Also, there are multiple computation paths from the visible units via both the hid-

den and label units to the label units at some time t > 1. Furthermore, all the pa-

rameters in the BM, or in the equivalent recurrent neural network, are trainable in the

sense that they are estimated by maximizing the marginal log-likelihood in Eq. (4.3).

Based on these observations, we can consider Boltzmann machines with hidden units

as deep.

In Fig. 4.4, an illustration of a Boltzmann machine with label units and its equiva-

lent time-unfolded recurrent neural network is shown. Note that for simplicity in the

figure we further assumed that there is no edge among hidden units.

4.3 Estimating Statistics and Parameters of Boltzmann Machines

In order to compute the gradient of the marginal log-likelihood of a fully-connected

Boltzmann machine in Eq. (4.3), we must be able to compute the statistics under the

following intractable distributions3:

1. p(h | x,θ): the posterior distribution of h with the fixed state of x

2. p(x,h | θ): the joint distribution modeled by the Boltzmann machine

In this section, we briefly discuss two approaches that can be used to compute the

statistics under these distributions approximately.

3Here we say that a distribution is intractable, when there is no explicit analytical form of
the probability mass/density function available, or the statistics of the distribution cannot be
computed analytically.

84

Boltzmann Machines with Hidden Units

4.3.1 Markov Chain Monte Carlo Methods for Boltzmann Machines

When one considers estimating the expectation of a function f over a distribution p̃,

the most obvious approach one can think of is to collect a large number of samples

from the distribution and use them to compute f , such that

Ep̃(x) [f(x)] =
∑
x

f(x)p̃(x) ≈ 1

T

T∑
t=1

f(x〈t〉),

where
{
x〈t〉

}T
t=1

is a set of T samples collected from p̃. This effectively reduces the

problem of computing the statistics of an intractable distribution to the problem of

collecting samples from the distribution.

A Markov Chain Monte Carlo (MCMC) method is a general framework on which

sequential sampling can be built to collect samples from a distribution (see, e.g.,

Neal, 1993; Mackay, 2002, for comprehensive review on using MCMC sampling

in probabilistic models). This method is based on the idea that sampling from a

target distribution is equivalent to simulating a Markov chain which has the target

distribution as its unique stationary distribution.

A Markov chain consists of a set of states, for instance, all possible states of the

units of a Boltzmann machines {x}, and a transition probability T (x̃ | x) of the

new state x̃ from the current state x which only depends on the current state. Given

a probability distribution p〈t〉 over the states at time t, the probability distribution

p〈t+1〉 can be fully specified by

p〈t+1〉(x) =
∑
x̃

p〈t〉(x̃)T (x | x̃).

In order to be used as a sampler of a target distribution p̃, the stationary distribution

p〈∞〉 of this chain at the limit of t→∞ must coincide with the target distribution p̃,

that is,

p〈t〉(x) = p̃(x) as t→∞.

The stationary distribution, or equivalently the target distribution, must be invariant

with respect to the chain. In other words, any further simulation of the Markov chain

does not alter the distribution of the states once the stationary distribution has been

reached. That is,

p〈∞〉(x) =
∑
x̃

p〈∞〉(x̃)T (x | x̃).

Due to this property of invariance, the stationary distribution is often referred to as

the equilibrium distribution.

85

Boltzmann Machines with Hidden Units

This condition of invariance is usually met by designing a transition probability, or

operator, T to satisfy detailed balance:

T (x0 | x1)p̃(x1) = T (x1 | x0)p̃(x0),

for arbitrary x0 and x1. Satisfying this implies that the target distribution p̃ is invari-

ant under the Markov chain.

Furthermore, the chain must be ergodic, which implies that the stationary distribu-

tion is reachable regardless of the initial distribution p〈0〉:

p〈t〉(x) = p̃(x) as t→∞, ∀p〈0〉. (4.13)

Otherwise, it will be impossible to use the chain to collect samples from a target dis-

tribution, since the simulation of the chain may converge to one or more distributions

that are not the target distribution, depending on the initial distribution.

Using this property, we can use a Markov chain to collect samples from a target

distribution. We start with an initial distribution which usually gives to a single state

the whole probability mass (= 1) and all the others zero probability. Because the

chain is ergodic, the simulation of the chain will eventually end up in the stationary

distribution which is equivalent to the target distribution. From there on, we record

the sequence of states the simulation visits. The invariance of the distribution on the

chain ensures that the state transitions, or simulation, will not move away from the

stationary distribution. The recorded list of states will be the samples from the target

distribution, albeit not necessarily independent samples.

One representative example of MCMCmethods is the Metropolis-Hastings method

(Hastings, 1970). In the Metropolis-Hastings method, we assume that the target dis-

tribution is computable up to the normalization constant, and introduce a proposal

distribution Q from which we can readily and efficiently sample.

Let us define a transition probability T as

T (x̃ | x) = Q(x̃ | x)α(x̃,x), (4.14)

where the acceptance probability α(x̃,x) is defined as

α(x̃,x) = min

(
1,

p∗(x̃)Q(x | x̃)
p∗(x)Q(x̃ | x)

)
. (4.15)

We used p∗ to denote an unnormalized probability such that p̃(x) = p∗(x)∫
p∗(x′)dx′ .

We can sample from the target distribution p̃With the transition operator in Eq. (4.14),

following the procedure described in Alg. 1. The distribution of x〈t〉 will converge

to the target distribution p̃(x) using the Metropolis-Hastings method with some mild

assumptions on the proposal distribution Q,

86

Boltzmann Machines with Hidden Units

Algorithm 1 Metropolis-Hastings

Initial state x〈0〉, the proposal distribution Q, the unnormalized distribution p∗ and

the maximum number M of proposal are required.

Create an empty set of samples X = {}.
for t = 1, · · · ,M do

Sample x′ from Q(x | x〈t−1〉).
Compute the acceptance probability α using Eq. (4.15).

Draw a sample s from the uniform distribution U(0, 1).
if s < α then

Add x′ to X .

Set x〈t〉 = x′.

end if

end for

X is the set of samples collected by Metropolis-Hastings method.

Gibbs Sampling

One particular form of the Metropolis-Hastings method is Gibbs sampling, in which

we are more interested, in the case of Boltzmann machines. Gibbs sampling can be

derived by using the conditional distribution of a single component k given the state

of all other components, denoted by −k, as the proposal distribution Q. That is,

Q(x̃ | x) = p(xk | x−k), (4.16)

where x̃−k = x−k. This choice makes the acceptance probability α always one so

that every sample is accepted.

With the proposal distribution in Eq. (4.16) and the property of accepting always,

the Gibbs sampling can be implemented simply by repeatedly collecting a new sam-

ple from

x′ =
[
x1, x2, · · · , x′k, · · · , xp

]
,

where x′k is sampled by

x′k ∼ xk | x1, · · · , xk−1, xk+1, · · · , xp,

and p is the dimensionality of x, while changing k in a predefined schedule. It is

usual to simply cycle k through all the components sequentially.

It is straightforward to use Gibbs sampling to evaluate the statistics of the distribu-

tions p(h | x,θ) and p(x,h | θ), because the conditional probability of each unit in

a Boltzmann machine (Eq. (2.31)) is well defined and easily evaluated.

This sampling-based approach, especially with the Gibbs sampling, however, may

not be practical due to several reasons. Firstly, it is usually difficult, if not impos-

sible, to determine the convergence of the Markov chain, which leaves collecting as

87

Boltzmann Machines with Hidden Units

many samples as possible the only option. Secondly, Gibbs sampling or any other

Metropolis-Hastings method with a local proposal distribution in which each consec-

utive sampling steps can only make a local change, will require a large amount of

steps to explore the whole distribution, especially when there are multiple modes in

it.

The latter issue of requiring a large amount of steps is especially prevalent when

one tries to sample from the joint distribution p(x,h | θ). The joint distribution,

and consequently the marginal distribution of
∑

h p(x,h | θ), is after all optimized

to have multiple modes that correspond to, for instance, different classes or clusters

of a given training set. Unless the training set consists of samples from a unimodal

distribution, the joint distribution p(x,h | θ) that models the training set well enough

will always have more than one modes.

Parallel Tempering

The major problem of Gibbs sampling is that it often fails to explore isolated modes

lying far away in the distribution. In many cases, the Gibbs sampling chain is stuck

at one mode and is unable to escape from it. In other words, the convergence of the

Gibbs chain to the stationary distribution might take too long, or infinitely long.

In order to prevent this problem, several approaches have been proposed to im-

prove the mixing property of Gibbs sampling in collecting samples from Boltzmann

machines. Salakhutdinov (2009) proposed to use tempered transitions (Neal, 1994),

while a similar, but not identical sampling method based on tempered chains called

parallel tempering was proposed in Publication III and independently by Desjardins

et al. (2010b,a). Instead of introducing a new sampling scheme, Tieleman and Hinton

(2009) described a method of using fast parameters, in the case of training restricted

Boltzmann machines.

Here, we will mainly discuss one of those proposed approaches, called parallel

tempering, which was empirically found to improve the generative performance.

Parallel tempering was introduced by Swendsen and Wang (1986) under the name

of a replica Monte Carlo simulation applied to an Ising model which is equivalent

to the fully-visible Boltzmann machine (see Section 2.3.2). Geyer (1991) later pre-

sented the application of parallel chaining of MCMC sampling based on the speed of

mixing of samples across parallel chains to the maximum likelihood estimator.

Let us first introduce an inverse temperature β which was assumed to be fixed to 1

earlier for a Boltzmann machine. The joint probability of a Boltzmann machine of

the inverse temperature β is defined by

pβ(x,h) = p(x,h | θβ) =
1

Z(θβ)
exp {−βE(x,h | θ)} .

Let us call the distribution represented by the Boltzmann machine with the inverse

88

Boltzmann Machines with Hidden Units

temperature β a tempered distribution with β.

Parallel tempering can be understood as a composite of two transition operators,

if we only consider two tempered distributions with β = 1 (model distribution) and

β = βq < 1 (proposal distribution) for now. Since the concatenation of valid MCMC

transitions satisfies the properties of a valid MCMC method, parallel tempering as a

composite of two operators is a valid MCMC method.

The first transition operator, which performs a single-step Gibbs sampling on the

model distribution, is applied to the current sample x and results in a new sample x′.

Then the second transition operator performs a single step of the Metropolis-Hastings

sampling from the new sample x′.

In the second transition operator, the proposal distribution is the tempered distribu-

tion with the inverse temperature βq. The sample x′′ from the proposal distribution

will be obtained by yet another Gibbs sampling step on the tempered distribution.

Then, x′′ is accepted with the probability

pswap(x
′,x′′) = min

(
1,

p∗1(x′′)p∗βq
(x′)

p∗1(x′)p∗βq
(x′′)

)
, (4.17)

where p∗ indicates that it is an unnormalized probability. If accepted, we keep x′′ as

the new sample and otherwise, x′ is kept.

The reason why the acceptance probability in Eq. (4.17) was denoted a swap proba-

bility is that once we switch the roles between the model distribution and the proposal

distribution, we can see that this probability, in essence, decides whether the samples

from the two distributions be swapped or not.

Let us now assume that we have a series of N + 1 tempered transitions such that

β0 = 0 < · · · < 1 = βN . Then we can apply the above transition operator to each

consecutive pairs of the tempered distribution. That is, sampling from the proposal

distribution is replaced by the same transition operator applied to the pair of tempered

distributions immediately below. This chaining continues down to the bottom pair.

Since the top tempered distribution with the inverse temperature β = 1 corresponds

to the model distribution, the samples that stay on it are the ones from the model

distribution. We can use them to compute the statistics of the model distribution

of a Boltzmann machine. When we use the parallel tempering with the stochastic

approximation procedure (see Section 4.3.3), we apply the above transition operator

a few times at each update and use the samples from the top chain to compute the

gradient while maintaining the samples of the other chains as well.

When the inverse temperature is 0, the tempered distribution is completely flat,

meaning that every state is assigned the same probability 1
2p+q . Under this distri-

bution, one can draw an exact sample from the stationary distribution without even

running any MCMC sampling chain. One can simply draw the state of each unit from

89

Boltzmann Machines with Hidden Units

Figure 4.5. Illustration of how PT sampling could avoid being trapped in a single mode. The red, pur-
ple, and blue curves and dots indicate distributions and the samples from the distributions
with the high, medium, and cold temperatures, respectively. Each black line indicates a
single sampling step. Reprinted from (Cho, 2011).

a Bernoulli random variable with its mean 0.5.

In other words, the tempered distributions with low β’s tend to be smooth overall,

and the Gibbs sampling on those distributions is less prone to being trapped in a

single, or only few, modes out of all modes in the distributions. As β approaches 1

(model distribution), it becomes more difficult for the plain Gibbs sampling to explore

the whole state space efficiently.

In this regard, the most important advantage of parallel tempering when compared

to Gibbs sampling is that parallel tempering can avoid being trapped in a single mode.

This is possible, since the samples from the Gibbs sampling chains in the tempered

distributions with smaller β’s are less prone to becoming highly correlated with each

other. A sample in a lower chain, that is far away from the mode in which the current

sample at the top chain is trapped, may be swapped to become a new sample at the

top chain, and this helps preventing having a sequence of highly correlated samples.

This behavior of exploring other modes easily is illustrated in Fig. 4.5.

In Publication III, it is empirically shown that if the same number of Gibbs steps is

allowed, using parallel tempering to compute the statistics of the model distribution

results in a better generative model compared to the plain Gibbs sampling, when an

RBM was trained.

Similarly, the tempered transition and the coupled adaptive simulated tempering

(Salakhutdinov, 2010) are all based on using tempered distributions. All these meth-

ods are superior to the plain Gibbs sampling in the sense that the whole state space

can be explored more easily.

4.3.2 Variational Approximation: Mean-Field Approach

A variational approximation is another way of computing the intractable statistics of

a probability distribution such as the posterior distribution of a Boltzmann machine

90

Boltzmann Machines with Hidden Units

over its hidden units. Here we discuss how the variational approximation, which has

already been discussed briefly earlier in Section 3.2.2, can be applied to computing

the statistics of a Boltzmann machine.

Let us restate how the marginal log-likelihood in general can be decomposed into

two terms, which was presented in Eqs. (2.24)–(2.25):

L(θ) = LQ(θ) + KL(Q‖P)

≥ EQ [log p(x,h | θ)] +H(Q) (4.18)

Q and P are respectively an arbitrary distribution over hidden variables and the pos-

terior distribution over the hidden variables given the states of visible, or observed,

variables.

This same decomposition applies to the marginal log-likelihood of a Boltzmann

machine with hidden units presented in Eq. (4.3). In other words, we can also in the

case of Boltzmann machines maximize the lower bound LQ(θ) instead of maximiz-

ing the original marginal log-likelihood directly.

Let us assume that we use a fully factorized distribution Q(h | θQ) parameterized

by θQ. By considering that each hidden unit can have either 0 or 1, we can use the

following factorized Q proposed by Salakhutdinov (2009):

Q(h | θQ) =

q∏
j=1

q(hj), (4.19)

where q(hj = 1) = μj and μj’s are the parameters of Q. This approach of using a

fully factorized approximate posterior is often called a mean-field approximation.

By plugging Eq. (4.19) and Eq. (4.2) into Eq. (4.18), we can rewrite the lower

bound LQ(θ) as

LQ(θ) =

p∑
i=1

bixi +

q∑
j=1

cjμj +

p∑
i=1

xiμjwij+

p∑
i=1

p∑
j=i+1

xixjuij +

q∑
i=1

q∑
j=i+1

μiμjvij − logZ(θ)

−
p∑

j=1

(μj logμj + (1− μj) log(1− μj)) . (4.20)

By maximizing this with respect to Q, or its parameters θQ, we can minimize the

difference between Q and the true posterior distribution.

Maximization can be done simply by taking the partial derivative of LQ with re-

spect to each variational parameter μj and updating it according to the computed

direction. By setting the partial derivative of LQ with respect to μj to zero, we get

the following fixed-point iteration:

μj ← φ

⎛
⎝ p∑

i=1

wijxi +

q∑
k=1,k �=j

vkjhk + cj

⎞
⎠ , (4.21)

91

Boltzmann Machines with Hidden Units

where φ is a logistic sigmoid function.

Once θQ converges after running the fixed-point iterations several times, we may

use it not only for estimating the parameters as a part of a problem of maximizing

the lower bound of the marginal log-likelihood, but also as an approximate posterior

distribution of a given sample. For instance, one can use the variational parameters

θQ of each sample as a feature vector for another model.

Despite its advantages, such as easy parallelization and easy-to-check convergence,

there is an important limitation in this approach. The limitation comes from the

unimodality of the fully factorized form of the approximate posterior distribution Q.

Q can only have a single mode, unless μj = 0.5 for some j, because all hidden units

were assumed to be independent from each other. If the distribution approximated

by Q has more than one mode, due to the property of the KL-divergence and the

order4 of Q and the true distribution P , the approximate distribution Q will tend to

approximate one of those multiple modes in the true distribution P (see Murphy,

2012, Section 21.2.2 for more details).

This especially limits using the variational approximation for estimating the joint

distribution p(x,h | θ). As discussed earlier, it is highly likely that p(x,h | θ) will

be highly multimodal as learning continues, and the statistics estimated by the ap-

proximate distribution will not reflect the true statistics well. Furthermore, in the

context of Boltzmann machines, this approximation will not work for the joint distri-

bution since the parameters estimated by the gradient-based update will increase the

KL-divergence between the approximate distribution and the true joint distribution

due to the minus sign in front of logZ(θ) in Eq. (4.20).

Hence, it is usual to use this variational approximation for estimating the statis-

tics under the posterior distribution p(h | x,θ), while an approach based on MCMC

methods is used to estimate the statistics under the joint distribution.

4.3.3 Stochastic Approximation Procedure for Boltzmann Machines

Using a naive stochastic gradient method described in Section 2.5, we can find the

set of parameters that maximizes the marginal log-likelihood (4.3) or the variational

lower bound (4.20) of a Boltzmann machine. One can simply repeat the following

update to each parameter:

θ〈t+1〉 = θ〈t〉 + η〈t〉
(〈

h(x,h | θ〈t〉)
〉
d
−
〈
h(x,h | θ〈t〉)

〉
m

)
= θ〈t〉 + η〈t〉 (H0 −H∞) , (4.22)

4Note that the order of Q and P matters when their KL-divergence is computed, as the KL-
divergence is not a symmetric measure.

92

Boltzmann Machines with Hidden Units

where θ〈t〉 and η〈t〉 are the parameter value and the learning rate at time t, and

h(x,h | θ) = ∂ (−E(x,h | θ))
∂θ

.

η〈t〉 should decrease over time while satisfying Eqs. (2.37)–(2.38). Note that we used

the following shorthand notations for simplicity:

H0 =
〈
h(x,h | θ〈t〉)

〉
d

H∞ =
〈
h(x,h | θ〈t〉)

〉
m
.

The first term H0 can be computed quite efficiently by the variational approxima-

tion with a fixed number of training samples randomly collected from the training

set. Let
{
x(1), . . . ,x(N)

}
be a set of randomly chosen samples from the training set,

and let μ(n) be the variational parameters obtained by iteratively applying Eq. (4.21)

to all hidden units conditioned on x(n). Then,

H0 ≈
1

N

N∑
n=1

h
(
x(n),μ(n)

∣∣∣θ〈t〉) .
The problem is with the second termH∞ which requires running a Gibbs sampling

chain until convergence. For instance, let us assume that we collected a finite number

N0 of samples
{
(x(1),h(1)), . . . , (x(N0),h(N0))

}
from the model distribution using

Gibbs sampling. Then,

H∞ ≈
1

N0

N0∑
n=1

h
(
x(n),h(n)

∣∣∣θ〈t〉) .
The problem is that it is difficult to choose or determine N0. Furthermore, N0 might

be determined too large to be of any practical use.

A computationally efficient method to overcome this problem was proposed by

Younes (1988). This algorithm, sometimes called stochastic approximation proce-

dure (Salakhutdinov, 2009), does not run the Gibbs sampling chain, starting from

random states until the convergence at each update.

Let X〈t〉 =
{(

x
(1)
〈t〉 ,h

(1)
〈t〉
)
, . . . ,

(
x
(N0)
〈t〉 ,h

(N0)
〈t〉

)}
be a set of states of visible and

hidden units. At time t = 0, X〈0〉 is initialized with random samples, or a randomly

chosen subset of the training set. Then at each time t before updating parameters by

Eq. (4.22), we obtain X〈t+1〉 by applying the following transition to each sample a

few times:

(
x
(n)
〈t+1〉,h

(n)
〈t+1〉

)
∼ Tθ〈t〉

(
x,h

∣∣∣x(n)
〈t〉 ,h

(n)
〈t〉
)
,

where Tθ〈t〉 is the transition probability of the Gibbs sampling on the Boltzmann

machine parameterized by θ〈t〉. With the new set X〈t+1〉 of samples, we compute

93

Boltzmann Machines with Hidden Units

H∞ by

H∞ ≈
1

N0

∑
(x,h)∈X〈t+1〉

h
(
x,h | θ〈t〉

)
.

Simply put, this approach does not wait for the Gibbs sampling chain to converge

to the equilibrium distribution. Rather, it performs only a few Gibbs sampling steps

starting from the samples used during the last update, and use the new samples to

compute the second termH∞ of the gradient. This algorithm arises from the fact that

if the parameters converge slowly to, for instance, θ∗, then X〈t〉 will converge to the

equilibrium distribution of the Boltzmann machine parameterized by θ∗ in the limit

of t→∞.

This approach was proposed independently for training a restricted Boltzmann ma-

chine by Tieleman (2008). Tieleman (2008) called this approach persistent con-

trastive divergence based on the similarity between this approach and an approach

of minimizing contrastive divergence (see Section 4.4.2).

Although this approach is only a special case of a stochastic gradient method, we

refer to this algorithm as a stochastic approximation procedure in order to distinguish

it from a method that uses a randomly sampled subset of training samples to compute

a gradient.

4.4 Structurally-restricted Boltzmann Machines

Beside the intractability of computing the statistics of the distributions modeled by

a fully-connected Boltzmann machine exactly, the approximate methods introduced

before, such as MCMC methods and variational approximations, are still computa-

tionally very expensive. Especially when it comes to using MCMC methods such as

Gibbs sampling, the full connectivity of Boltzmann machines prevents an efficient,

parallel sampling procedure.

In this section, we first describe how the Boltzmann machine can be interpreted as a

Markov random field. This interpretation allows us to examine the underlying reason

of the difficulty in parallelizing Gibbs sampling in a fully-connected Boltzmann ma-

chine. Furthermore, it sheds light on the direction in which the structural restriction

will be applied.

Based on this interpretation, we introduce two structurally restricted variants of

Boltzmann machines that have become widely used recently. The first model, called

a restricted Boltzmann machine, simplifies the connectivity of units such that no pair

of units of the same type is connected. This allows an extremely efficient and exact

computation of the posterior probability of the hidden units, avoiding any need for

the variational approximation. Furthermore, this bipartite structure allows an easy

94

Boltzmann Machines with Hidden Units

implementation of parallel Gibbs sampling.

The other model is called a deep Boltzmann machine. It relaxes the structural

restriction of the restricted Boltzmann machine by allowing multiple layers of hidden

units, instead of just a single one. Again, each pair of layers is fully connected, while

no pair of units in the same layer is connected.

4.4.1 Markov Random Field and Conditional Independence

A Markov random field (MRF) is an undirected graphical model that consists of

multiple random variables and undirected edges connecting some pairs of the random

variables (see, e.g., Kindermann et al., 1980). A Boltzmann machine is a special case

of MRFs. See Fig. 4.6 for one example of an MRF.

AnMRF is constructed from a set of random variables as vertices V = {x1, . . . , xp}
and a set of undirected edges connecting those vertices. The probability of a state V

is defined by

p(V) =
1

Z

∏
c∈C

ϕc (Vc) ,

where Z is a normalization constant and C is the set of all possible cliques.5 ϕc (Vc)

is a positive potential function assigned to a clique c. It is usual that the unnormalized

probability (p∗(V) = Zp(V)) is easy to compute, while it is intractable to compute

Z exactly.

From this, we can see that a Boltzmann machine is a special case of MRFs. Each

variable of the Boltzmann machine corresponds to a vertex, and edges between all

pairs indicate that it is a complete, undirected graph. A potential function of all

cliques of two vertices is

ϕij = exp {xixjwij} ,

and that of all cliques of a single vertex is

ϕi = exp {xibi} .

All other cliques are assigned a constant potential (= 1).

In an MRF, two variables A and B are conditionally independent from each other,

if there is at least one variable observed in each and every path between A and B.

That is,

p(A | Xobs, B) = p(A | Xobs),

if there is no path between A and B without any observed variable. Xobs is the state

of all observed variables.
5A clique is a complete subgraph, where all vertices in the subgraph are fully connected to
each other (see, e.g., Bondy and Murty, 2008).

95

Boltzmann Machines with Hidden Units

A

B

C

D

E

Figure 4.6. An example Markov random field with five random varaibles.

In this sense, we define the Markov blanket of a random variable as the set of all

immediate neighboring variables. If all the variables in the Markov blanket of another

variable were observed, the variable would be independent from all other variables

conditioned on the variables in the Markov blanket.

In the example MRF in Fig. 4.6, there are five random variables;A,B, C,D andE.

Let us consider the variable A. When D is observed, A is conditionally independent

fromE sinceD is the observed in the only pathA–B–D–E between them. However,

A and C are mutually dependent, as the path A–B–C has no observed variable.

In this example, the Markov blanket of D consists of B and E. Whenever both B

and E are observed, D is conditionally independent from all other variables, in this

case A and C, regardless of the connectivity in the graph.

This conditional independence property provides a means to parallelize a sampling

procedure by Gibbs sampling. Let us, for instance, assume that we run a Gibbs

sampler to collect samples from the example MRF in Fig. 4.6. One way is to grab

a sample from one variable at a time, sequentially. However, if we consider the fact

that A, E and C are conditionally independent from each other when B and D are

observed, we can use the following schedule for the Gibbs sampler repeatedly:

1. Sample from p(A | B), p(C | B) and p(D | B,E) in parallel.

2. Sample from p(B | A,C,D) and p(E | D) in parallel.

This will greatly speed up the sampling process, assuming that parallel computation

is easily accessible and implementable.

It is unfortunately difficult to evaluate statistics of a fully-connected Boltzmann

machine by collecting samples. When the Markov blanket of each unit consists of all

other units, sampling must be done for each unit sequentially. This has led to attempts

to overcome this problem by imposing structural restrictions to a Boltzmann machine

using the property of conditional independence of an MRF. Some of these attempts

will be described in this section.

96

Boltzmann Machines with Hidden Units

x1 x2 xp

h1 h2 hq

x1 x2 xp

h
[1]
1 h

[1]
2

h
[1]
q[1]

h
[L]
1 h

[L]
2

h
[L]
q[L]

(a) Restricted Boltzmann Machine (b) Deep Boltzmann Machine

Figure 4.7. Illustrations of restricted and deep Boltzmann machines.

4.4.2 Restricted Boltzmann Machines

A restricted Boltzmann machine (RBM) proposed by Smolensky (1986) is a variant

of a Boltzmann machine that has a bipartite structure such that each visible unit is

connected to all hidden units and each hidden unit to all visible units, but there are

no edges between the same type of units (see Fig. 4.7(a) for illustration). In other

words, we put constraints in the energy of a Boltzmann machine (4.1) so that U = 0

and V = 0. Then, the energy is simplified into

−E(x,h | θ) = b�x+ c�h+ x�Wh. (4.23)

Contrary to the fully-connected Boltzmann machine, the Markov blanket of each

unit consists only of the units of an opposite type. For instance, the Markov blanket

of a visible unit xi is the set of all hidden units, and that of a hidden unit hj is the set

of all visible units. Simply put, the hidden units are conditionally independent given

a state of the visible units, and vice versa.

This conditional independence has two positive consequences in computing the

statistics required for learning the parameters of an RBM. Firstly, Gibbs sampling

can be implemented efficiently by parallelizing the sampling procedure. The states

of the units in each type of layer, either a visible or hidden layer, can be sampled in

parallel given the state of the units in the other type of layer. Essentially, samples are

collected repeatedly from the following distributions alternately:

p(x | h,θ) =
p∏

i=1

νxi
i (1− ν1−xi

i), (4.24)

p(h | x,θ) =
q∏

j=1

μ
hj

j (1− μ
1−hj

j), (4.25)

97

Boltzmann Machines with Hidden Units

x〈0〉

h〈0〉 ∼ h | x〈0〉

x〈1〉 ∼ x | h〈0〉

h〈1〉 ∼ h | x〈1〉

x〈2〉 ∼ x | h〈1〉

h〈2〉 ∼ h | x〈2〉

x〈3〉 ∼ x | h〈2〉

h〈3〉 ∼ h | x〈3〉

Figure 4.8. An illustration of performing a block Gibbs sampling on a restricted Boltzmann machine.
x0 is initialized to a random binary vector.

where

νi = p(xi = 1 | h,θ) = φ

⎛
⎝ q∑

j=1

wijhj + bi

⎞
⎠ ,

μj = p(hj = 1 | x,θ) = φ

(
p∑

i=1

wijxi + cj

)
.

Effectively, in just two parallelized steps, the state of each unit is replaced by a new

sample. See Fig. 4.8 for an illustration of Gibbs sampling in the case of RBMs.

Furthermore, we can efficiently compute the posterior distribution over the hidden

units exactly, since the posterior distribution is fully factorized. The exact posterior

distribution p(h | x,θ) is given in Eq. (4.25). This enables us to exactly compute the

first term of the gradient in Eq. (4.4):〈
∂
(
−E(x(n),h | θ)

)
∂θ

〉
d

=
1

N

N∑
n=1

(
∂ − E(x(n),μ(n) | θ)

∂θ

)
, (4.26)

where μ(n) =
[
μ
(n)
1 , . . . , μ

(n)
q

]�
and μ

(n)
j = p(hj = 1 | x(n),θ). We used a

shorthand notation d to denote the data distribution which was replaced with the N

training samples
{
x(1), . . . ,x(N)

}
.

This property of an RBM that enables parallelized Gibbs sampling and exact com-

putation of posterior distribution over hidden units, however, do not fully avoid the

difficulty in computing the second term of the gradient. Firstly, this efficient paral-

lelized implementation does not overcome the fundamental weakness of Gibbs sam-

pling that it is easy to get trapped in a single mode (see Section 4.3.1). Secondly, a

sample gradient at each time computed using samples from Gibbs sampling tends to

have high variance, which easily leads to unstable learning.

In the remainder of this section, we describe an efficient learning algorithm for

an RBM based on the principle of minimizing contrastive divergence, proposed by

Hinton (2002).

Product of Experts

A product of experts (PoE) (Hinton, 2002) is a model that combines multiple tractable

probabilistic models, or experts, by multiplying their contributions and normalization

the product to sum up to one. The probability assigned to a single input vector x can

98

Boltzmann Machines with Hidden Units

then be written as

p(x | θ) =
∏q

j=1 ϕj(x | θj)∑
x′
∏q

j=1 ϕj(x′ | θj)
, (4.27)

where ϕj is the positive contribution of the j-th expert parameterized by θj , and the

denominator is the normalization constant. It is not necessary for each ϕj to be a

valid probability, since their product will be normalized afterward.

By replacing ϕj(x | θj) with ϕ̃j(x | θj) = ϕj(x | θj) − 1, we may rewrite

Eq. (4.27) as

p(x | θ) = 1

Z(θ)

q∏
j=1

[1 + ϕ̃j(x | θj)] , (4.28)

where we used Z(θ) for the normalization constant.

If we assume that there is a binary hidden variable associated with each expert,

Eq. (4.28) can be written as a marginal probability of the joint probability of both the

visible and hidden variables:

p(x | θ) =
∑
h

p(x,h | θ) =
∑
h

1

Z(θ)

q∏
j=1

ϕ̃j(x | θj)
hj . (4.29)

Furthermore, one can see that the posterior probability of h given the state of x

is factorized so that each hj is independent from all other hidden variables. The

posterior probability of hj is given by

p(hj = 1 | x,θj) =
ϕ̃j(x | θj)

1 + ϕ̃j(x | θj)
. (4.30)

If it is further assumed that the choice of ϕj’s makes the conditional probability of

x factorized, as was the case with RBMs, efficient parallelized Gibbs sampling can

be implemented for the PoE. One example of a contribution ϕj or ϕ̃j , is

ϕ̃j(x | θj) = exp

{
cj +

p∑
i=1

wijxi

}
,

which leads to the factorized conditional probability

p(x | h,θ) = 1

Z(θ)
exp

⎧⎨
⎩

q∑
j=1

hjcj +

p∑
i=1

q∑
j=1

wijxihj

⎫⎬
⎭

=
1

Z ′(θ)

p∏
i=1

exp

⎧⎨
⎩

q∑
j=1

wijhj

⎫⎬
⎭

xi

, (4.31)

where Z ′(θ) = Z(θ) exp
{∑

j hjcj

}
is a new normalization constant.

This model corresponds in fact exactly to the RBM (Freund and Haussler, 1994),

under certain constraints, such as (1) one of the experts is always on to act as a

visible bias in an RBM and (2) x ∈ {0, 1}p. Comparing Eqs. (4.30) and (4.31)

99

Boltzmann Machines with Hidden Units

against Eqs. (4.25) and (4.24), we see that an RBM is a special case of the PoE, and

a learning algorithm for PoEs can be immediately applied to an RBM.

Another example of PoE models that results in a factorized conditional distribu-

tion is the exponential family harmonium proposed by Welling et al. (2005). The

exponential family harmonium assumes that the prior distributions of visible vari-

ables x and hidden variables h belong to the exponential family. This implies that

both conditional and posterior distributions are in the form of the exponential family

distributions.

Interpolation between Data and Model Distributions and Contrastive Divergence

Consider now a series of distributions that are defined by running a Gibbs sampler for

k steps under a PoE with a factorized conditional distribution for visible variables.

A distributionP0 is defined to be the data distributionD fromwhich a set of training

samples was sampled. Since the goal of the model is to model this distribution as well

as possible, the form of this distribution is assumed to be unknown a priori.

LetXk =
{
x
(1)
k , . . . ,x

(N)
k

}
be a set of samples from Pk. We may then define a set

of samples Xk+1. First, we collect hidden samples Hk =
{
h
(1)
k , . . . ,h

(N)
k

}
, where

each h
(n)
k is a sample from the posterior distribution p(h | x = x

(n)
k ,θ). Given Hk,

we collect samples or their respective means by the conditional distribution such that

Xk+1 =
{
x
(1)
k+1, . . . ,x

(N)
k+1

}
, where

x
(n)
k+1 ∼ x

∣∣∣h = h
(n)
k ,θ.

We call the distribution, represented by the samples in Xk+1, Pk+1.

Starting from the distribution P0, Pk in the limit of k →∞ converges to the model

distribution which is the stationary distribution of the Markov Chain defined by the

Gibbs sampler used (see Section 4.3.1). It does not matter at all that we start the

chain from the training samples, rather than randomly chosen states, assuming that

the Gibbs chain is ergodic (see Eq. (4.13) for its definition).

Under these definitions, we may write the objective of learning in RBMs, and

respectively PoEs with a factorized conditional distribution of visible variables, by

KL(P0‖P∞). There P∞ is the model distribution that can be described by the sam-

ples collected by running a Gibbs sampler for a long time starting from the set of

training samples.

With these interpolated distributions, Hinton (2002) proposed a learning algorithm

that minimizes a contrastive divergence, instead of maximizing the log-likelihood.

The k-step contrastive divergence (CD) is defined as a difference between KL(P0‖P∞)

and KL(Pk‖P∞). Minimizing it is equivalent to maximizing the log-likelihood in the

infinite limit of k, since KL(P∞‖P∞) = 0.

100

Boltzmann Machines with Hidden Units

The gradient of the k-step CD is, then,

∂CDk

∂θ
≈
〈
∂
(
−E(x(n),h | θ)

)
∂θ

〉
P0

−
〈
∂ (−E(x,h | θ))

∂θ

〉
Pk

, (4.32)

where CDk = KL(P0‖P∞) − KL(Pk‖P∞). This approach is directly applica-

ble to the enhanced gradient described in Section 4.1.1 by replacing m with Pk in

Eqs. (4.10)–(4.11).

This method has a huge computational advantage over maximizing the log-likelihood

exactly in a naive way. As one can immediately see, computing Eq. (4.32) requires

neither running the Gibbs sampler for indefinite time nor checking the convergence

of the sampling chain. Empirically, minimizing CD was found to learn a good model

even with k as small as 1.6

Although minimizing CD has been used successfully in practice since it was intro-

duced, Carreira-Perpiñán and Hinton (2005); Bengio and Delalleau (2009) showed

that it is a biased estimate of the true log-likelihood with a finite k. This is con-

trary to the stochastic approximation procedure described in Section 4.3.3, which is

guaranteed to converge to the right maximum-likelihood estimate under some mild

assumptions. However, minimizing CD is preferable in many cases, as much smaller

learning rate needs to be used with the stochastic approximation procedure, especially

using a plain Gibbs sampling (see, e.g., (Hinton, 2012)).

For detailed justification on minimizing CD, we refer any interested reader to (Ben-

gio and Delalleau, 2009).

4.4.3 Deep Boltzmann Machines

The deep Boltzmann machine (DBM) was proposed by Salakhutdinov and Hinton

(2009a) as a relaxed version of an RBM. A DBM simply stacks multiple additional

layers of hidden units on the layer of hidden units of an RBM. As was the case with

an RBM, consecutive layers are fully connected, while there is no edge among the

units in one layer. See Fig. 4.7(b) for an example structure of a DBM.

The energy function is defined as

−E(x,h | θ) = b�x+ c�[1]h[1] + x�Wh[1] +
L∑
l=2

(
c�[l]h[l] + h�[l−1]U[l−1]h[l]

)
,

(4.33)

where L is the number of hidden layers. The state and biases of the hidden units at

the l-th hidden layer and the weight matrix between the l-th and (l+ 1)-th layers are

6From here on, we will occasionally refer to the learning algorithm that minimizes CD as CD
learning, when there is no ambiguity.

101

Boltzmann Machines with Hidden Units

respectively defined by

h[l] =
[
h
[l]
1 , . . . , h[l]ql

]�
, c[l] =

[
c
[l]
1 , . . . , c[l]ql

]�
,U[l] =

[
u
[l]
ij

]
,

where ql is the number of the units in the l-th layer and U[l] ∈ Rql×ql+1 .

Given a set D of training samples, a DBM can also be trained by maximizing the

marginal log-likelihood in Eq. (4.3). However, unlike an RBM the posterior dis-

tribution over the hidden units is not factorized, and the variational approximation

described in Section 4.3.2 needs to be used to compute the statistics of the data dis-

tribution.

The statistics of the model distribution can again be estimated by using the Gibbs

sampling. The layered structure of a DBM makes it easy to parallelize the Gibbs

sampling procedure. Let us denote the state of the odd-numbered and even-numbered

hidden layers by h+ and h−, respectively:

h+ =
[
h�[1],h

�
[3], . . .

]�
,h− =

[
h�[2],h

�
[4] . . .

]

We can collect samples by repeating the following steps:

1. Sample h+ in parallel, conditioned on x and h−.

2. Sample {x,h−} in parallel, conditioned on h+.

This procedure can similarly be used to estimate the statistics of the data distri-

bution by the variational approximation. This is due to the fact that the fixed-point

update rules in Eq. (4.21) of variational parameters μ[l] in a single layer are mutually

independent given the variational parameters in the adjacent layers. Based on this,

we can perform the variational fixed-point updates of the variational parameters of a

DBM efficiently using the following steps:

1. Compute μ+ in parallel using x and μ−
2. Compute μ− in parallel using μ+

We used μ+ and μ− to denote the variational parameters of the odd-numbered and

even-numbered hidden layers, respectively.

It has been noticed by many researchers, for instance Salakhutdinov and Hinton

(2009a) and Desjardins et al. (2012) as well as the author in Publication VI and

Publication VII, that training a DBM starting from randomly initialized parameters

is not trivial.

In order to alleviate this difficulty, Salakhutdinov and Hinton (2009a, 2012a) pro-

posed an algorithm that initializes the parameters of a DBM by pretraining each layer

102

Boltzmann Machines with Hidden Units

separately starting from the bottom layer. In Publication VII, yet another pretraining

algorithm was proposed that utilizes a deep autoencoder to obtain a set of variational

parameters for the hidden units in the even-numbered hidden layers. We will discuss

those pretraining algorithms later in Section 5.3.3.

There have been other approaches to avoid this difficulty. Montavon and Müller

(2012) suggested that a shifting transformation that centers each unit, described briefly

in Section 4.1.1, helps training a DBM directly from a set of randomly initialized

parameters at least when the size of the DBM is relatively small. On top of the

shifting transformation, Desjardins et al. (2013) proposed a metric-free natural gra-

dient method that utilizes the idea of natural gradient together with the subsampled

Hessian algorithm. Instead of maximing the log-likelihood, or its variational lower-

bound, (Goodfellow et al., 2013) proposed a learning algorithm that maximizes the

multi-prediction objective function.

4.5 Boltzmann Machines and Autoencoders

In this section, we describe the connections between the Boltzmann machines and

the autoencoders which we have discussed earlier in Section 2.2.1 and Section 3.2.

We begin by relating an RBM with an autoencoder that has only a single hidden

layer. This can be done by considering the correspondence between the learning al-

gorithms for the two models. We will discuss this from the perspectives of contrastive

divergence learning and score matching (Hyvärinen, 2005). These connections were

respectively discovered and presented by Bengio and Delalleau (2009), Swersky et al.

(2011) and Vincent (2011).

We continue on to describing a deep belief network (Hinton et al., 2006) which is

an extension of the sigmoid belief network as one of the related approaches of deep

autoencoders.

4.5.1 Restricted Boltzmann Machines and Autoencoders

Here we consider rather shallow models that have only a single hidden layer consist-

ing of nonlinear units, which are restricted Boltzmann machines and autoencoders

with a single intermediate hidden layer.

We briefly discuss two different ways to relate RBMs to shallow autoencoders here.

However, it should be noticed that these are not the only ways (see, e.g., Ranzato

et al., 2007a, for another interpretation that unifies RBMs and autoencoders).

103

Boltzmann Machines with Hidden Units

Contrastive Divergence and Reconstruction Error

In (Bengio and Delalleau, 2009), learning parameters of an RBM by minimizing

contrastive divergence was justified by considering an expansion of the gradient of

the marginal log-likelihood of an RBM in Eq. (4.26).

As we defined the interpolated distributions between the data and model distribu-

tions in Section 4.4.2, let us here consider a potentially infinite sequence{(
x〈0〉,h〈0〉

)
,
(
x〈1〉,h〈1〉

)
, . . .

}
, where

x〈n〉 ∼ x | h〈n−1〉,θ

and

h〈n〉 ∼ h | x〈n〉,θ.

x〈0〉 denotes a training sample.

In this case, Bengio and Delalleau (2009) showed that the gradient of the marginal

log-likelihood, considering only a single sample for now, can be expanded by

∂L(θ)
∂θ

= lim
t→∞

t−1∑
s=1

(
E

[
∂ log p(x〈s〉 | h〈s〉)

∂θ

]
+ E

[
∂ log p(h〈s〉 | x〈s+1〉)

∂θ

])

+ E

[
∂ log p(x〈t〉)

∂θ

]
, (4.34)

where the terms inside the summation and the last term converge to zero as t grows.

The expectations are computed over the data distribution. Dependency on θ is omit-

ted to make the expression less cluttered.

When only the first two terms of the expansion in Eq. (4.34) are considered, we

get the update direction that minimizes the contrastive divergence with k = 1. The

remaining terms determine the bias in the resulting model.

Bengio and Delalleau (2009) went one more step to investigate the case of truncat-

ing even earlier. In that case, the truncated expression becomes

∑
h

p(h | x〈0〉)∂ log p(x〈1〉 | h)
∂θ

.

If we use a mean-field approximation to replace each component hj of h inside

log p(x〈1〉 | h) with its posterior mean ĥj = E
[
hj | x〈0〉

]
, we get

∂ log p(x〈1〉 | ĥ)
∂θ

. (4.35)

Let us rewrite it by adopting our usual notation using Eq. (2.10) such that we assume

to be given a set of training samples as

D =
{
x(n)

}N

n=1
.

104

Boltzmann Machines with Hidden Units

Eq. (4.35) becomes
N∑

n=1

∂ log p(x(n) | ĥ(n))

∂θ
.

This is the gradient of the cross-entropy loss of a single-layer autoencoder with a

single hidden layer of sigmoid hidden units.

This result says that minimizing contrastive divergence is an extreme stochastic ap-

proximation of maximizing the marginal log-likelihood, while minimizing the recon-

struction error or cross-entropy corresponds to a deterministic approximation. Since

the latter truncated one more term from the expansion, the latter results in a more

biased estimation, if we look at the resulting model as an RBM.

The objective function of an autoencoder, however, can be exactly and efficiently

computed, while computing the marginal log-likelihood of an RBM is intractable.

This makes it easier to learn parameters by minimizing the reconstruction error com-

pared to either minimizing the contrastive divergence or maximizing the marginal

log-likelihood directly.

Gaussian Restricted Boltzmann Machines, Score Matching and Autoencoders

Let us define an RBM that can handle continuous visible units by replacing bi-

nary visible units with Gaussian units. The energy function of this RBM, called a

Gaussian-Bernoulli RBM (GRBM, Hinton and Salakhutdinov, 2006) is then,

−E(x,h | θ) = −
p∑

i=1

(xi − bi)
2

2σ2
i

+

q∑
j=1

hjcj +

p∑
i=1

q∑
j=1

xi
σ2
i

hjwij . (4.36)

The conditional distributions of the visible and hidden units are defined by

p(xi = x|h) = N

⎛
⎝x

∣∣∣ bi +∑
j

hjWij , σ
2
i

⎞
⎠ (4.37)

and

p(hj = 1|x) = φ

(
cj +

∑
i

Wij
xi
σ2
i

)
, (4.38)

where φ is again a sigmoid function.

In other words, each visible unit conditionally follows a Gaussian distribution

whose mean is determined by the weighted sum of the states of the hidden units. The

conditional probability of each hidden unit being one is determined by the weighted

sum of the states of the visible units scaled by their variances.7 It should be noticed

7The energy function of a GRBM was originally proposed by Hinton and Salakhutdinov
(2006) to be

−E(x,h | θ) = −
p∑

i=1

(xi − bi)
2

2σ2
i

+

q∑
j=1

hjcj +

p∑
i=1

q∑
j=1

xi

σi
hjwij ,

105

Boltzmann Machines with Hidden Units

that despite the change of the visible units’ types, there is essentially no change in its

learning algorithm compared to the original RBM with binary visible units.

In this case, an alternative learning algorithm called score matching proposed by

Hyvärinen (2005), can be used instead of the stochastic approximation procedure or

CD learning. Score matching can be used to estimate the parameters of a model

whose differentiable unnormalized probability can be tractably computed exactly,

while computing its normalization constant is intractable. This requirement reminds

us of a PoE described earlier in Section 4.4.2 which is a family of models that includes

a GRBM.

We start by writing a GRBM in the form of PoE:

log p(x | θ) = −(bi − xi)
2

2σ2
i

+

q∑
j=1

log

(
1 + exp

{
p∑

i=1

xi
σ2
i

wij + cj

})
− logZ(θ)

= log p∗(x | θ)− logZ(θ). (4.39)

Then, the score function of the GRBM is

ψi(x | θ) =
∂ log p∗(x | θ)

∂xi
=

bi − xi
σ2
i

+

q∑
j=1

ĥj
wij

σ2
i

. (4.40)

Furthermore, we will need

∂ψi(x | θ)
∂xi

= − 1

σ2
i

+

q∑
j=1

ĥj(1− ĥj)
w2
ij

σ4
i

,

where ĥj = φ
(∑p

i=1
xi

σ2
i
wij + cj

)
is the activation probability of the j-th hidden

units.

Given a set D of N training samples, score matching then tries to minimize the

following cost function instead of maximizing the marginal log-likelihood:

J(θ) =
1

N

N∑
n=1

p∑
i=1

[
∂ψi(x

(n) | θ)
∂xi

+
1

2
ψi(x | θ)2

]
(4.41)

If we assume that the bias bi and the conditional variance σi to each visible unit are

which results in a conditional probability of a visible unit

p(xi = v|h) = N

⎛
⎝x

∣∣∣ bi + σi

∑
j

hjWij , σ
2
i

⎞
⎠ .

In order to avoid the standard deviation σi affecting the mean, it was proposed in Publication
V that the energy function be modified so that σi does not influence the conditional mean of
the visible unit. In Publication V, it was claimed that this formulation makes estimating σi’s
easier, and hence we use the modified definition of the energy function here.

106

Boltzmann Machines with Hidden Units

respectively fixed to 0 and 18, the cost function in Eq. (4.41) can be rewritten as

J(θ) =
1

N

N∑
n=1

⎡
⎣1
2

p∑
i=1

⎛
⎝ q∑

j=1

ĥjwij − xi

⎞
⎠

2

+

p∑
i=1

q∑
j=1

hj(1− hj)w
2
ij

⎤
⎦+ C,

where C is a constant that does not depend on θ.

The first term inside the summation is the reconstruction error of a single-layer

autoencoder with a tied set of weights W (see Eq. (2.14)). The other term can be

considered as a regularization term.

Hence, this leads us to understand that learning the parameters of a GRBM by score

matching is equivalent to learning the parameters of a single-layer autoencoder that

has a hidden layer having nonlinear sigmoidal units by minimizing the reconstruc-

tion error with a regularization (Swersky et al., 2011). Furthermore, this connection

gives a justification on using a tied set of weights for the encoder and decoder of an

autoencoder (Vincent, 2011).

Additionally to an ordinary autoencoder, Vincent (2011) showed a connection be-

tween a denoising autoencoder (see Section 3.3.1) and a modified form of GRBM,

again via score matching.

8Fixing bi to 0 can be indirectly achieved by normalizing each component of training samples
to have a zero-mean, and it has been a usual practice to ignore σi by forcing it to 1 (see, e.g.,
Hinton, 2012).

107

Boltzmann Machines with Hidden Units

4.5.2 Deep Belief Network

x1 x2 xp

Figure 4.9. An illustration of a deep be-
lief network. Note that the
top two layers are connected
to each other by undirected
edges.

In Section 3.2.3, we presented the sigmoid be-

lief network in relation with a deep autoencoder

Here, we describe a deep belief network (DBN)

(Hinton et al., 2006) which extends the sigmoid

belief network by adding a layer of undirected

network on its top.

The deep belief network (DBN), proposed by

Hinton et al. (2006), is a hybrid model that has

both directed and undirected edges. The top

two hidden layers h(L−1) and h(L) are connected

to each other (without any intra-layer edges) by

undirected edges, while all subsequent pairs of

layers below are connected with the directed

downward edges. Hence, one might say that the top two layers generatively model

the prior distribution of h(L−1), and all the other hidden layers below model the con-

ditional distribution that generates the states of the units in the layer immediately

below. See Fig. 4.9 for the illustration.

In this case, as we did with Boltzmann machines previously, we may define the

energy of a DBN as

−E(x,h[1], . . . ,h[L] | θ) = log p(x | h[1],θ) +

L−2∑
l=1

log p(h[l] | h[l+1],θ)

+ log p(h[L−1],h[L],θ) (4.42)

where the last term denotes the top two layers connected by the undirected edges.

The conditional distribution between the consecutive intermediate hidden layers as

well as between the visible and first hidden layers is defined by Eqs. (3.9) and (3.10),

respectively.

Again, similarly to the Boltzmann machine, we can define the joint probability of

all units using a Boltzmann distribution:

p(x,h | θ) = 1

Z(θ)
exp {−E(x,h | θ)} ,

where we simply used h to denote the units in all hidden layers.

A DBN maintains two sets of parameters as well as the parameters for the top two

layers. The first two sets θ− and θ+ correspond to the recognition and generation

parameters of a sigmoid belief network. Additionally, there is a separate set of pa-

rameters for the parameters of a top-level RBM.

108

Boltzmann Machines with Hidden Units

Using this hybrid architecture Hinton et al. (2006) proposed an efficient learning

algorithm that consists of two stages. In the first stage, each pair of layers, starting

from the bottom, is pretrained as if it were an RBM.

Specifically, the first pair of layers x and h[1] is trained as an RBM to model a

given set of training samples D =
{
x(1), . . . ,x(N)

}
. Once the training is over, we

can efficiently and exactly compute the posterior distribution over h(1) given each

training sample Q(h[1] | x(n)) and collect samples from these distributions. We

call the distribution from which those samples were collected an aggregate posterior

distribution

Q̃
(
h[1]

)
=

1

N

N∑
n=1

Q
(
h[1] | x(n)

)
Let us denote the set of the samples from this distribution by D1.

Then, the next pair of layers h[1] and h[2] are pretrained to model Q̃
(
h[1]

)
using

the set D1. From this RBM we can again collect a set of samples D2 from the next

aggregate posterior distribution Q̃
(
h[2]

)
. We continue this process up until we pre-

train the last pair of layers h[L−1] and h[L]. Let us use θ[l]
0 to indicate the parameters

of an RBM consisting of the l-th and (l + 1)-th layers, learned during the first stage.

The first stage corresponds to a layer-wise pretraining. Instead of jointly optimizing

all the layers at once, during the first stage each pair of two consecutive layers is

optimized one by one starting from the bottom pair consisting of the visible and

first hidden layers. This approach of adding more hidden layers in a DBN has been

shown to guarantee to improve the variational lower-bound of the model (Hinton

et al., 2006), and will be discussed more in Section 5.3.2.

The second stage highly resembles the wake-sleep algorithm used to estimate the

parameters of a sigmoid belief network from Section 3.2.3. The learning algorithm,

called the up-down algorithm, starts by initializing the weights to those estimated

during the first stage. The recognition and generation parameters will be identical,

since the RBMs trained in the first stage use a tied set of weights for both inference

and generation. The parameters between the top two layers will be θ[L−1]
0 .

The up-pass of the up-down algorithm corresponds to the wake-stage, and given

a training sample, the samples are collected from the approximate posterior distri-

butions over the hidden units using the recognition weights up until the penultimate

layer. The generation parameters of the intermediate hidden layers are updated using

Eq. (3.11), while the parameters of the top two layers are updated using the learning

rule of an RBM in Eq. (4.26).

At the down-pass, unlike the sleep-stage, one does not attempt to collect model

samples starting from scratch. Rather, Gibbs sampling is run starting from the sam-

ples of the penultimate layer collected during the up-pass for several iterations, which

reminds us of minimizing contrastive divergence (see Section 4.4.2). From the sam-

109

Boltzmann Machines with Hidden Units

ples gathered by the several-step Gibbs sampling, the generation parameters are used

to generate samples of the subsequent intermediate layers down until the visible layer.

The recognition parameters are then updated using Eq. (3.12). Unlike in the up-pass,

the parameters of the top two layers are not adjusted in the down-pass.

This model can thus be thought as combining a deep autoencoder having stochastic

hidden units together with a top-level RBM. The stochastic deep autoencoder models

both the conditional distribution of a layer given the state of the upper layer and the

approximate posterior distribution of a layer given the state of the lower layer. The

prior distribution of the penultimate hidden layer is learned by the top-level RBM.

Deep Energy Model

Before ending this section, we will briefly introduce a deep energy model (DEM)

proposed by Ngiam et al. (2011) as an alternative formulation of combining a deep

autoencoder with an RBM. A DEM extends an RBM by introducing a nonlinear

encoder with multiple layers of deterministic hidden units. According to Ngiam et al.

(2011), this potentially avoids the difficulty introduced by having stochastic hidden

units in a deep belief network.

Let us consider a GRBM from Section 4.5.1, however, assuming that σi = 1 for all

i = 1, . . . , p. The energy function of a DEM is a modified form of Eq. (4.36) such

that

−E(x,h | θ) =
p∑

i=1

xibi +

q∑
j=1

hjcj +

p′∑
i=1

q∑
j=1

fi(x | θf)hjwij ,

where fi(x | θf) is the i-th component of an output of a nonlinear encoder f : Rp →
Rp′ parameterized by θf .

The parameters of both an RBM and an encoder can be estimated by maximiz-

ing the marginal log-likelihood as usual with an RBM. Ngiam et al. (2011) used the

stochastic approximation procedure with hybrid Monte Carlo (Neal, 1993) to esti-

mate the statistics of the model distribution.

110

5. Unsupervised Neural Networks as
the First Step

So far in this thesis, we have considered unsupervised and supervised neural net-

works separately. In fact, our main focus was on the unsupervised neural networks

rather than the supervised ones. We mostly discussed autoencoders and Boltzmann

machines, both of which aim to learn the distribution of training samples and are not

specifically engineered for other tasks.

In Section 3.4.1, we briefly discussed the so called layer-wise pretraining, where

shallow unsupervised neural networks were used to initialize the parameters of a deep

multilayer perceptron (MLP). Notably, a stack of, for instance, restricted Boltzmann

machines used for initializing an MLP was trained without any prior knowledge that

it will be used for classification.

This suggests that it may be possible or even beneficial to utilize unsupervised neu-

ral networks as the first step to train a more sophisticated model that aims to perform

a potentially different target task. For instance, an unsupervised neural network such

as a denoising autoencoder or contractive autoencoder may be used to transform the

coordinate system of input samples into one that is more useful for supervised learn-

ing tasks. A restricted Boltzmann machine may be trained to facilitate training more

sophisticated deep Boltzmann machines, or it can learn the joint distribution of in-

puts and outputs and use it to compute the conditional distribution of an output given

a new input.

In this chapter, we discuss some of the approaches proposed recently to incorpo-

rate the power of generative modeling provided by unsupervised neural networks to

improve the performance of another, often more complex neural network.

5.1 Incremental Transformation: Layer-Wise Pretraining

Let us consider a classification task. We already discussed earlier in Sections 2.1.2

and 2.3.1 that a simple perceptron without any intermediate nonlinear hidden layer

can perform this task perfectly only if training samples are linearly separable. Oth-

111

Unsupervised Neural Networks as the First Step

xx

h[1] h[1] h[1]

h[2] h[2]

y

Pretraining (1st layer)

Pretraining (2nd layer)

Figure 5.1. Illustration of the layer-wise pretraining of a multilayer perceptron. The dashed directed
lines indicate copying of either pretrained models or the activations of the hidden units of
the pretrained models.

erwise, this simple neural network will fail to do so. However, even if the training

set has a nonlinear separating hyperplane, an MLP which is essentially a perceptron

with one or more intermediate nonlinear hidden layers can be trained to classify the

samples, assuming that the MLP is large enough.

The feedforward computation starting from the bottom, visible layer fixed to an

input x gradually performs nonlinear transformations up until the last hidden layer.

Let h = f(x) be the nonlinearly transformed representation of x by the feedforward

pass of an MLP. Then, the last part of the MLP essentially does a perceptron-like

linear classification on h.

In other words, the encoder f computed by the MLP attempts to transform each

sample x(n) into a new point h(n) in a new coordinate system such that the set of

these new points D̃ =
{
(h(n), y(n))

}N
n=1

is as linearly separable as possible. It

does not matter whether the original training set D =
{
(x(n), y(n))

}N
n=1

is linearly

separable or not.

This process f is carried out in an incremental fashion. Each subsequent interme-

diate layer transforms the coordinate system from the immediate lower layer such

that the samples become linearly separable after going through the multiple layers of

nonlinear transformations.

This suggests a possibility of incrementally building a sequence of intermediate

layers that gradually extract better and better representations of data.1 This is differ-

ent from how the parameters of an MLP were estimated. For an MLP, we first fix

the structure of the model and jointly optimize all layers, while what is being sug-

gested here is different. We start with one visible and one hidden layer to learn a

transformation that extracts a somewhat better representation. Repeatedly, using the

representation from the previous stage, we train another model with one visible and

1We say the representation is better when better generalization performance on another ma-
chine learning task, for instance classification, can be achieved using the representation com-
pared to using the raw representation (Bengio et al., 2007).

112

Unsupervised Neural Networks as the First Step

one hidden layer to learn a still somewhat better representation. See Fig. 5.1 for the

illustration.

In fact, this approach of incrementally learning multiple layers of representations

constitutes one of the most important principles in the field called deep learning (see,

e.g., Bengio, 2009).

5.1.1 Basic Building Blocks: Autoencoder and Boltzmann Machines

The most straightforward way to implement this incremental feature learning is to

consider each consecutive pair of layers of an MLP separately.

Each pair consists of a lower layer of visible units x ∈ Rp and an upper layer of

nonlinear hidden units h ∈ Rq, and they are connected by directed edges from the

lower to upper layers. A hidden activation, or hidden state, is computed by

h = φ
(
W�x+ c

)
,

where φ is a component-wise nonlinearity. This reminds us of an encoder of an au-

toencoder (see Eq. (3.3)) or the conditional probability of hidden units of a restricted

Boltzmann machine (RBM, see Eq. (4.25)).

Hence, we may estimate the parameters W and c as if a pair of those two layers

would form either an autoencoder with a single hidden layer or a restricted Boltzmann

machine. We start from the bottom by training the visible layer and the first hidden

layer as if they formed an RBM. Once the RBM is trained, we compute the posterior

distribution of hidden units and consider them as a new set of training samples for

an upper pair of layers consisting of the first and second hidden layers. We repeat

this step until the last two hidden layers were trained as yet another RBM. This same

procedure can be done using either ordinary or regularized autoencoder instead of the

RBMs.

An ordinary autoencoder (see, e.g., Bengio et al., 2007, and Section 3.2), a regular-

ized autoencoder (see, e.g., Ranzato et al., 2008, and Section 3.2.5) as well as sparse

coding (see, e.g., Raina et al., 2007, and Section 3.2.5) and a restricted Boltzmann

machine (see, e.g., Hinton and Salakhutdinov, 2006, and Section 4.4.2) as well as

a sparse restricted Boltzmann machine (see, e.g., Lee et al., 2008) have been used

widely in this way to perform incremental feature learning. The denoising autoen-

coder (Vincent et al., 2010) and contractive autoencoder (Rifai et al., 2011b) dis-

cussed in Section 3.3 have recently been shown to be effective in this approach.

Once the sequence of these models is obtained it is possible, though not necessary,

to finetune them all together for a specific target task. For instance, an MLP can be

initialized by stacking the learned sequence and be trained continuing from the pre-

trained parameters. A deep autoencoder with more than one intermediate layer can

113

Unsupervised Neural Networks as the First Step

also benefit from this approach (Hinton and Salakhutdinov, 2006). In this context,

the approach of incremental feature learning is often referred to as a layer-wise pre-

training. This layer-wise pretraining has been successfully used to train a deep neural

network that has been known to be difficult to train well starting from randomly ini-

tialized parameters.

5.2 Unsupervised Neural Networks for Discriminative Task

Throughout this thesis, we have mostly concentrated on unsupervised neural net-

works. There are tasks to which these unsupervised neural networks can trivially be

applied.

For instance, Burger et al. (2012), Xie et al. (2012) and Cho (2013) (Publication

IX) recently showed that (denoising) autoencoder and restricted/deep Boltzmann ma-

chines can denoise large, corrupted images. The performance of these neural net-

works was shown to be comparable to, or sometimes better than, conventional meth-

ods of image denoising such as BM3D (Dabov et al., 2007) or K-SVD (Portilla et al.,

2003).

A deep autoencoder initialized by a deep belief network was shown to excel at

extracting low-dimensional binary codes for documents (Salakhutdinov and Hinton,

2009b). Also, Salakhutdinov et al. (2007) showed that an RBM can be successfully

used for collaborative filtering.

These unsupervised models cannot be used directly for performing any supervised

task. This is clear as none of these models have at their disposal known outputs of

training samples.

As in the layer-wise pretraining discussed earlier in this chapter, however, the un-

supervised neural networks can be used to improve the discriminative performance

of supervised models. In the layer-wise pretraining, recursively stacking shallow un-

supervised neural networks was shown to extract better representations that are more

suitable for classification, which may be improved further by finetuning the whole

stack.

In the remainder of this section, we introduce other approaches than the previously

discussed layer-wise pretraining that aim to improve the discriminative performance

by using unsupervised neural networks. These approaches may use a separate unsu-

pervised neural network, or combine a supervised and an unsupervised neural net-

work.

114

Unsupervised Neural Networks as the First Step

5.2.1 Discriminative RBM and DBN

The most straightforward way to perform discriminative tasks with an unsupervised

neural network is to model the joint probability distribution of both the input and

output p(x, y). Once the network is trained, one can utilize the joint distribution to

perform a prediction on a new sample x.

Regardless of whether the task is classification or regression, the best output ŷ given

a new sample x∗ can be found by, for instance, the maximum a posteriori (MAP):

ŷ = argmax
y

p∗(x∗, y), (5.1)

where we have used the unnormalized probability p∗ to emphasize that there is no

need to compute the potentially intractable normalization constant.

Alternatively, one may be interested in computing the expected value of the output

ŷ =
1

Z

∑
y∈Y

yp∗(x∗, y), (5.2)

where Z and Y are the normalization constant and the set of all possible values

for y, respectively. However, in the latter case, the normalization constant which is

often computational intractable has to be computed or estimated, which makes it less

practical. Hence, in this section, we only focus on the MAP solution for the output y.

If y can only have a finite number of possible outcomes (classification), we can

simply evaluate p(x∗, y) for all possible y’s and choose the y with the largest value.

Otherwise, it is possible to optimize p(x∗, y) with respect to y to compute the best

possible y, although it may only find a local mode if p(x∗, y) has more than one

modes.

Let us consider using a restricted Boltzmann machine (RBM, Section 4.4.2) for

classification.

First, given a training set D =
{(

x(n), y(n)
)}N

n=1
, we turn each output y(n) ∈

{1, 2, . . . , q} into a q-dimensional vector y(n) whose y(n)-th component is one and

all other components are zero. With the transformed output vectors, we create a new

training set D̃ =
{[

(x(n))�, (y(n))�
]�}N

n=1
by concatenating x(n) and y(n) for each

n.

Then we train an RBM with the transformed set D̃ (see Fig. 5.2(a)) either using,

for instance, the stochastic approximation procedure (see Section 4.3.3) or by min-

imizing contrastive divergence (see Section 4.4.2). Recalling that the unnormalized

probability of
[
x�,y�

]
after marginalizing out the hidden units can be efficiently

and exactly computed (see Section 4.4.2), we can predict the label of a new sample

by Eq. (5.2).

Larochelle and Bengio (2008) proposed a discriminative objective function for

training this kind of an RBM. The proposed objective function maximizes instead

115

Unsupervised Neural Networks as the First Step

h1 h2 hq

x1 x2 xpy1 yK

y ∈ {1, · · · ,K}

x1 x2 xp

y1 yK

y ∈ {1, · · · ,K}

(a) Discriminative RBM (b) Discriminative DBN

Figure 5.2. Illustrations of a discriminative restricted Boltzmann machine and discriminative deep be-
lief network. Note that the 1-of-K coding is used for the output label y which may take K
discrete values.

the conditional log-likelihood

Ld(θ) =

N∑
n=1

log p(y(n) | x(n),θ).

Furthermore, they showed that a better classification performance can be achieved by

maximizing the weighted sum of the log-likelihood and the conditional log-likelihood

together.

A similar idea was also presented earlier for a deep belief network (DBN) by Hinton

et al. (2006). Instead of augmenting the visible layer with a transformed label y, they

augmented the penultimate layer. The augmented units corresponding to y are only

connected to the top layer with undirected edges. See Fig. 5.2(b) for illustration.

This model can be trained by the procedure described in Section 4.5.2, however

with a slight modification. Firstly, during the first stage of layer-wise pretraining,

we augment the posterior distribution of the penultimate layer with the labels of the

training samples. During the second stage, where the up-down algorithm is used,

the Gibbs sampling steps between the top two layers start from the samples from

the (approximate) posterior distribution attached with the labels of the samples in a

minibatch.

Once training is over, we can classify a new sample x∗ easily by first obtaining

the approximate (fully factorized) posterior means of the penultimate layer μ∗ and

computing the unnormalized probabilities of the combination of μ∗ and all possible

label states y. The one that gives the largest unnormalized probability is chosen as a

prediction ŷ.

Surprisingly, both of these approaches which perform both generative p(x, y) and

discriminative p(y | x) modeling achieve a classification performance comparable to

or often better than the models which were trained purely to perform discriminative

modeling (Hinton et al., 2006; Larochelle and Bengio, 2008).

116

Unsupervised Neural Networks as the First Step

5.2.2 Deep Boltzmann Machine to Initialize an MLP

It is straightforward to initialize a multilayer perceptron (MLP) with a deep belief

network (DBN) as well as a restricted Boltzmann machine (RBM). Once the parame-

ters of those unsupervised neural networks are estimated, we can directly use them as

initial parameters of an MLP. This corresponds to the layer-wise pretraining scheme

discussed in Section 5.1. However, when it comes to a deep Boltzmann machine

(DBM), one must take into account the nature of each layer receiving both bottom-

up and top-down signals.

A naive way of utilizing a DBM for a discriminative task in this case is to for-

get about transforming it into an MLP, and simply use the approximate posterior

means of hidden units as features (see, e.g., Montavon et al. (2012) and Publication

VII). In other words, for each sample x we compute the variational parameters μ by

maximizing the variational lower bound in Eq. (5.9) with respect to them. Then the

obtained variational parameters are used instead of the original sample. However, it

is often obvious that a better discriminative performance is achieved when the model

is specifically finetuned to optimize it.

Salakhutdinov and Hinton (2009a) proposed that the structure of an MLP be mod-

ified to simulate the top-down signal in a DBM. Given a DBM with L hidden layers{
h[l]
}L
l=1

and a single visible layer x, let us construct an MLP with L intermediate

hidden layers
{
h̃[l]
}L

l=1
, a single output layer ỹ and a single visible layer x̃. The

main goal of this construction is to make sure that a single forward pass results in

the states of the units in the penultimate layer h[L] of the MLP being identical to the

mean-field approximation μ[L] of them.

The fixed point of the variational parameters of the first hidden layer that locally

maximizes the variational lower bound in Eq. (5.9) is

μ[1] = φ
(
W�x+U[1]μ[2]

)
,

where φ is a component-wise logistic sigmoid function. Then, if we let the visible

layer of the MLP to be x̃ =
[
x�,μ[2]�

]�
and connect xwith the first hidden layer of

the MLP by W and μ[2] by U[1]�, a single forward pass will result in the activation

of the first hidden layer of the MLP h̃[1] to be exactly μ[1].

This applies similarly to all intermediate hidden layers of the DBM. For any l-th

layer of the DBM, where l < L − 1, we constrain the l-th hidden layer of the MLP

by appending h̃[l] with μ[l+2]. By connecting them to h̃[l+1] with the corresponding

weights from the DBM, we can ensure that the activation of the (l + 1)-th hidden

layer of the MLP will be initially identical to μ[l+1].

Since the last hidden layer of the DBM only receives the bottom-up signal, there

will be no need to construct the last hidden layer in this way. Simply it is enough to

117

Unsupervised Neural Networks as the First Step

x x

h[1]h[1]

h[2]h[2]

μ
[2]

WW

UU

U�

y

Figure 5.3. A deep Boltzmann machine with two hidden layers, on the left, is transformed to initialize
a multilayer perceptron on the right. μ[2] is a vector of the variational parameters of the
second hidden layer of the DBM.

connect h̃[L] with h̃[L−1] by U[L−1].

This way of constructing an MLP (see Fig. 5.3) guarantees that the activation of

the last hidden layer of the MLP after a forward pass with the initialized weights will

coincide with their variational parameters. From there on, we can finetune the model

to optimize for classification performance.

For instance, in (Salakhutdinov and Hinton, 2009a) and (Hinton et al., 2012), this

way of initializing an MLP with a DBM was shown to improve the performance on

handwritten digits as well as 3-D object recognition tasks.

5.3 Pretraining Generative Models

So far in this chapter we have described how unsupervised neural networks can be

used to improve performance in supervised tasks. In this section we will discuss

how a simpler unsupervised neural network can help training more complex, deeper

unsupervised neural networks with some theoretical guarantees.

Earlier in this chapter we have looked at incremental feature learning from the per-

spective of an incremental transformation that nonlinearly transforms an input into a

better representation. Once the features are obtained by the incremental transforma-

tion, they are fed to another machine learning model, or the last pair of layers in an

MLP, to perform a task whose objective was not necessarily utilized when learning

the transformation. However, there is another perspective from which the incremental

transformation can be viewed.

In Section 4.5.2, we described the learning algorithm for training a deep belief

network (DBN). It should be noticed that the first stage of the learning algorithm

does almost exactly what the incremental feature learning introduced earlier in this

chapter does. Starting from a single restricted Boltzmann machine (RBM) trained

on original training samples, we repeatedly stack an RBM trained on the aggregate

posterior distribution of the previous RBM on top. However, the ultimate goal of this

118

Unsupervised Neural Networks as the First Step

almost identical procedure was very different. The goal of this procedure in training

a DBN was to build a good generative model that learns the data distribution well,

rather than to nonlinearly transform the input space so that another machine learning

task will benefit from the new, better representation.

Ultimately it is a question of what or how much stacking another restricted Boltz-

mann machine on top of the existing deep neural network improves the performance.

Furthermore, one might ask if another pretraining scheme, other than incrementally

stacking shallow models, is possible.

In the remainder of this section, we first describe how an RBM can be viewed as an

infinitely deep sigmoid belief network with tied weights (Hinton et al., 2006). Based

on this observation we describe in more detail how stacking RBMs improves the

generative performance of a DBN according to the argument given in (Hinton et al.,

2006; Salakhutdinov and Hinton, 2012b). We then continue on to discuss how this

scheme can be extended to initializing the parameters of a deep Boltzmann machine

(DBM) based on (Salakhutdinov and Hinton, 2012b,a). At the end of the section,

another pretraining scheme for DBMs, proposed in Publication VII, utilizing such

directed deep neural networks as deep autoencoders and DBNs is introduced.

5.3.1 Infinitely Deep Sigmoid Belief Network with Tied Weights

The most straightforward way to obtain samples from a sigmoid belief network is to

sample from the conditional distribution of each layer given the states of the layer

immediately above, starting from the top layer. An unbiased sample can be easily

obtained from the top layer, since the prior distribution of the units in the top layer is

factorized. Simply, for each variable in the top layer, we flip a coin with a probability

decided by φ(bi)where bi is the bias and φ is a logistic sigmoid function. This way of

gathering samples in a directed network is often known as ancestral sampling (see,

e.g., Bishop, 2006; Murphy, 2012).

Let us construct a sigmoid belief network with infinitely many layers, given a set

of parameters from an RBM. The bottom layer corresponds to the visible layer of

the RBM, and there are directed edges from the layer above which corresponds to

the hidden layer of the RBM. The weights of the edges are set to those of the RBM.

Again, on top of the second layer, another layer that corresponds to the visible layer

of the RBM is connected with the downward directed edges whose weights are fixed

to those of the RBM. We repeat this step infinitely, and we get the infinitely deep

sigmoid belief network with tied weights.2

Let us perform ancestral sampling from a layer, very far up from the first layer

2For simplicity, we omit biases, but they can be considered a part of the weights.

119

Unsupervised Neural Networks as the First Step

denoted x[−L], in the infinite limit of L that corresponds to the visible layer, start-

ing from a random state. Next, we will sample from the conditional distribution of a

layer immediately below h[−L] that corresponds to the hidden layer of the RBM. Sub-

sequently, we will repeatedly sample from the conditional distributions of x[−L+1],

h[−L+1], h[−L+2], h[−L+2], . . . , h[−1], and x[0], where x[0] is the visible layer (See

Fig. 5.4).

x h

x(0)

x(−1)

x(−2)

x(−3)

h(0)

h(−1)

h(−2)

W

W

W

W

W�

W�

W�

Figure 5.4. The ancestral sampling on
an infinitely deep sigmoid
belief network with tied
weights is equivalent to
the block Gibbs sampling
on a restricted Boltzmann
machine.

This is exactly what Gibbs sampling does to

get samples from the model distribution of an

RBM. If this procedure starts from a layer far

enough from the visible layer, the Gibbs chain

will reach the equilibrium distribution by the

time samples from the bottom layers are col-

lected.

This means that if, instead of a random state,

we perform the same sampling procedure while

fixing all those layers that correspond to the visi-

ble layer of the RBM to a given sample, the sam-

ples of the other layers will represent the true

posterior distribution which is factorized equiva-

lently to the posterior distribution over the hid-

den units of the RBM. In other words, in this

infinitely deep sigmoid belief network, we can

sample exactly from the posterior distribution

over the hidden units, because the weights are

tied.

5.3.2 Deep Belief Network: Replacing a Prior with a Better Prior

Here, we take a more detailed look at the first stage of the learning algorithm of a

DBN. The first stage consists of iteratively training an RBM on the samples collected

from the posterior distribution of the hidden units of an RBM immediately below.

Let us first consider a DBN with two layers of hidden units where the second hidden

layer has as many units as there are visible units.

The first RBM trained on a training set D with N samples learns

p(x | θ1) =
∑
h[1]

p(h[1] | θ1)p(x | h[1],θ1),

where p(h[1] | θ1) is a prior distribution of the hidden units parameterized with θ1

120

Unsupervised Neural Networks as the First Step

defined by

p(h[1] | θ1) =
∑
x

p(h[1],x | θ1).

We used the superscript [1] to indicate that the hidden units are in the first hidden

layer of a DBN.

An interesting observation can be made here. The same set of parameters θ1 is

used to model both the conditional distribution p(x | h[1]) and the prior distribution

p(h[1]). From this observation, we may consider replacing the prior of h[1] such that

it is not anymore constrained to be modeled with the same parameters θ1. In other

words, we would like to replace p(h[1] | θ1) with

p(h[1] | θ2) =
∑
h[2]

p(h[1],h[2] | θ2).

First, we need to recall that the infinitely deep sigmoid belief network with tied

weights is equivalent to an RBM from Section 5.3.1. Then, since the DBN considered

here has as many units in h[2] as there are in the visible layer x, we get the samemodel

even after replacing the prior, if we fix θ2 to θ1.3

Let us write the variational lower bound of the marginal log-likelihood, as described

in Eq. (2.24)–(2.26), for the DBN with two hidden layers:

N∑
n=1

log p(x(n) | θ) ≥
N∑

n=1

(
EQ(h[1]|x(n))

[
log p(x(n),h[1] | θ1)

]
+H(Q)

)

=
N∑

n=1

(
EQ(h[1]|x(n))

[
log p(x(n) | h[1],θ1)

]
+H(Q)

)

+

N∑
n=1

EQ(h[1]|x(n))

⎡
⎣log∑

h[2]

p(h[1],h[2] | θ2)

⎤
⎦ , (5.3)

where H(Q) is the entropy functional of Q. This bound holds for any Q(h[1] | x),
but when θ1 = θ2, we can use the true posterior p(h[1] | x) to make the bound equal

to the marginal log-likelihood.

In Eq. (5.3), we can see that only the last term is dependent on θ2. This means

that if we increase the last term which corresponds to training another RBM on the

aggregate posterior4 by using the stochastic approximation method, we can improve

the bound, ignoring any possible stochastic fluctuation. This, however, will move

Q away from the true posterior distribution, as θ2 is now different from θ1, which

makes the bound less tight.

Once θ2 is estimated, we can recursively perform this procedure to replace the prior

distribution of h[2], and so on. Each replacement will result in an improved bound,

3If we only consider the weights, assuming that the weights include the biases,W[2] = W�
[1].

However, without loss of generality, we simply state that θ2 = θ1.
4The aggregate posterior was described in Section 4.5.2 as a mixture ofN posterior distribu-
tions.

121

Unsupervised Neural Networks as the First Step

making the generative model possibly better and better each time. The approximate

posterior distribution Q, however, becomes less and less tight each time, and the

second stage, called the up-down algorithm (Hinton et al., 2006), is needed to jointly

estimate both the recognition and generation parameters of all layers.

This guarantee of improving the variational lower bound only holds when

1. The weights are initialized to be identical to those of the lower layer,

2. Samples from the aggregate posterior are used, and

3. RBMs are trained to maximize the log-likelihood.

In practice, most of these conditions are violated. The weights of the newly added

RBM are often randomly initialized, and the probabilities rather than samples of the

lower hidden units are used. Furthermore, in most cases due to the computational

reason, RBMs are trained by minimizing the contrastive divergence.

Stochastic Units vs. Deterministic Units

Let us discuss more about using probabilities instead of actual samples as training

samples for training an upper RBM. This can be considered as using a different ap-

proximate posterior distribution Q.

In the original proper pretraining procedure, the approximate posterior distribution

Q(h) =
L∏
l=1

qμ[l]

(
h[l]
)

is defined to be factorized only layer-wise. In other words, the hidden units are not

mutually independent across layers, but only mutually independent inside each layer

given the sampled activations of the units in the lower layer.

We can obtain the variational parameters μ[l] iteratively, starting from the first hid-

den layer by

μ[l] = φ
(
W�

[l−1]h̃
[l−1] + b[l]

)
, (5.4)

where h̃[l−1] is a vector consisting of elements sampled by

h̃
[l−1]
k ∼ q

(
h
[l−1]
k = 1 | μ[l−1]

k

)
.

Here φ is a sigmoid function as usual. This is equivalent to performing a feedforward

pass on the encoder of a stochastic autoencoder (see Section 3.2.3).

We can design another approximate posterior distribution Q̃ such that the varia-

tional parameters μ[l] are obtained without actual sampling of hidden units. This new

posterior distribution will correspond to using probability values instead of sampled

activations to train an upper RBM.

122

Unsupervised Neural Networks as the First Step

Again, the approximate posterior distribution is defined by

Q̃(h) =
L∏
l=1

q̃μ̃[l]

(
h[l]
)

In this case we assume a fully-factorized distribution.

To cope with this assumption, the procedure for computing the variational parame-

ters μ̃[l]) should be modified accordingly. The variational parameters of the l-th layer

are now computed recursively using the following formula:

μ̃[l] = φ
(
W�

[l−1]μ̃
[l−1] + b[l]

)
. (5.5)

One can immediately see that this is equivalent to the encoder part of a determin-

istic autoencoder, however the decoder part still differs from an autoencoder in the

sense that it propagates down sampled activations, not the real-valued probabilities.

Roughly put, this difference can be understood so that the decoder of the autoen-

coder approximates the generation path of a deep belief network by using again a

fully factorized distribution. Table 5.1 summarizes these differences.

DBN DBN-FF AE

Recognition Layer-wise Factorial Fully Factorial Fully Factorial

Generation Layer-wise Factorial Layer-wise Factorial Fully Factorial

Table 5.1. The forms of approximate/exact distributions used by a deep belief network (DBN), a deep
belief network pretrained by a stack of RBMs with probabilities used for training upper
RBMs (DBN-FF), and a deep autoencoder (DAE).

The latter choice of an approximate posterior distribution has two advantages.

Firstly, the computation is easier, since no sampling is required. Also, the approx-

imated variational parameters are less noisy, since no stochastic mechanism is in-

volved. However, this choice nullifies the guarantee discussed earlier in Section 5.3.2.

Based on this and the similarity between the fully factorized approximate posterior

and the encoder of a deterministic autoencoder, we informally conclude that in terms

of generative modeling of data, autoencoders may lag behind a deep belief network

of the same structure. However, in practice where features extracted by these models

are more interesting, the fully factorized approximate posterior is often used to train

even a deep belief network. Furthermore, since the network can be further finetuned

generatively by the up-down algorithm (see Section 4.5.2) later on, the importance

of using a layer-wise factorized approximate posterior distribution using pretraining

diminishes.

123

Unsupervised Neural Networks as the First Step

5.3.3 Deep Boltzmann Machine

In the paper where the deep Boltzmann machine was proposed, Salakhutdinov and

Hinton (2009a) noticed that it is difficult to estimate the parameters well. Hence,

they proposed a layer-wise pretraining scheme for deep Boltzmann machines that fa-

cilitates estimating its parameters (Salakhutdinov and Hinton, 2012b). The proposed

layer-wise pretraining scheme was further improved in (Salakhutdinov and Hinton,

2012a) to better utilize the undirected nature of the connectivity in a deep Boltzmann

machine.

Firstly, we must realize that all the edges in a DBM are undirected. This is a

critical difference with a DBN, when we consider the conditional distribution of a

single intermediate hidden layer h[l]. In a DBN, this is simply conditioned on the

layer immediately above h[l+1], whereas the conditional distribution under a DBM is

conditioned on both the layers immediately above and below such that

p(h
[l]
j = 1 | h[l−1],h[l+1],θ) = φ

(ql−1∑
k=1

h
[l−1]
k w

[l−1]
kj +

ql+1∑
i=1

h
[l+1]
i w

[l]
ji + c

[l]
j

)
,

where we follow the notations from Section 4.4.3.

Simply put, DBMs must be pretrained while taking into account that each hidden

unit receives a signal from both upper and lower layers. On the other hand, no such

considerations are needed when pretraining a DBN. If the same pretraining method

for DBNs is used, the conditional distribution of each hidden unit will be too peaked

and saturated to prevent any further finetuning (jointly optimizing the whole layers)

to improve the model.

Salakhutdinov and Hinton (2009a) proposed to modify the structure of RBMs to

cope with this difference. For the bottom two layers, an RBM is modified to have

two copies of visible units with tied weights such that the additional set of visible

units supplies signal that compensates for the lack of signal from the second hidden

layer. Similarly, an RBM that consists of the top two layers has the two copies of

hidden units. For any pair of intermediate hidden layers, an RBM is constructed to

have two copies of both visible and hidden units. See Fig. 5.5 for an illustration.

Recently, Salakhutdinov and Hinton (2012b) were able to show that the variational

lower bound is guaranteed to increase by adding the top hidden layer using the pro-

posed pretraining scheme. Although their proof only applies to the top layer, it is

worth discussing it in relation to the pretraining scheme for DBNs.

124

Unsupervised Neural Networks as the First Step

xxx

h[1]h[1]

h[1]h[1]

h[2]h[2]

h[2]

h[2]

h[3]

h[3]h[3]

Figure 5.5. Illustration of the layer-wise pretraining of a deep Boltzmann machine. The dashed directed
lines indicate copying either the pretrained models or the activations of the hidden units of
the pretrained models.

We can rewrite the variational lower bound of a DBN given in Eq. (5.3) as

N∑
n=1

log p(x(n) | θ) ≥
N∑

n=1

(
EQ(h[1]|x(n))

[
log p(x(n) | h[1],θ1)

]

+EQ(h[1]|x(n))

[
log

p(h[1] | θ2)

Q(h[1] | x(n))

])

=
N∑

n=1

(
EQ(h[1]|x(n))

[
log p(x(n) | h[1],θ1)

]

− KL
(
Q(h[1] | x(n))‖p(h[1] | θ2)

))
. (5.6)

From this, we can see that replacing the prior of the first hidden layer to improve the

lower bound is equivalent to estimating θ2 such that the new prior distribution p(h[1] |
θ2) becomes closer to the aggregate posterior, since the KL-divergence between two

distributions is non-negative and becomes zero only when they are identical.

If we train the first RBM with two copies of visible units (x and h[2]), following the

pretraining algorithm of a DBM, we can compute the marginal or prior distribution

over h[1] by using the fact that by considering h[1] as a visible layer, the whole model

is simply a product-of-expert (PoE) model (see Section 4.4.2) with a hidden layer

consisting of x and h[2]. Note that we used h[2] to denote the second copy of the

visible units. The prior distribution of h[1] is then

p(h[1] | θ1) =
1

Z(θ1)

(∑
x

p(h[1],x | θ1)

)⎛⎝∑
h[2]

p(h[1],h[2] | θ1)

⎞
⎠ . (5.7)

Since both x and h[2] are free variables in Eq. (5.7), we can improve the variational

lower bound in Eq. (5.6) by replacing it with an RBM having two copies of hidden

125

Unsupervised Neural Networks as the First Step

units with tied parameters θ2. If we start by fixing θ2 = θ1 and follow the steepest

gradient direction, the KL-divergence between the aggregate posterior and the new

prior distribution will be guaranteed to decrease, or stay identical at least, which

amounts to improving the lower bound in Eq. (5.6). The new prior distribution can

be similarly written as

p(h[1] | θ2) =
1

Z(θ2)

(∑
x

p(h[1],x | θ2)

)⎛⎝∑
h[2]

p(h[1],h[2] | θ2)

⎞
⎠ . (5.8)

With these two RBMs, we can form a DBM with two hidden layers, by replac-

ing the half of the original prior distribution in Eq. (5.7) with the half of the new

distribution in Eq. (5.8) such that

p(h[1] | θ1,θ2) =
1

Z(θ1,θ2)

(∑
x

p(h[1],x | θ1)

)⎛⎝∑
h[2]

p(h[1],h[2] | θ2)

⎞
⎠ ,

which is guaranteed to have a smaller KL-divergence from the aggregate posterior

Q(h[1] | x) than p(h[1] | θ1) in Eq. (5.8) (See Appendix of Salakhutdinov and

Hinton, 2012b).

Hence, adding one more layer on top of an existing RBM is guaranteed to improve

the variational lower bound, if the proposed pretraining method is used. However,

this procedure does not extend trivially to the intermediate hidden layers.

This mathematical justification suggests that the pretraining method for a DBM

differs from that for a DBN in that only half of a prior distribution is replaced by

the upper layer. Conversely, it states that the existing layer is still used to model

the remaining half of the prior distribution, whereas in a DBN the lower layer only

concentrated on modeling the conditional generative distribution given the state of

units in the upper layer.

In fact, this way of justifying the pretraining algorithm allows to extend the algo-

rithm so that modeling of the prior distribution is distributed unevenly. For instance,

Salakhutdinov and Hinton (2012a) proposed to use three copies of visible and hidden

units, respectively, when training the bottom and top RBMs. This is equivalent to re-

placing two thirds of the prior distribution by the top RBM. They were able to show

that better generative models could be learned by DBMs with this approach.

Two-Stage Pretraining: From Autoencoders To Deep Boltzmann Machine

This layer-wise approach is not the only pretraining method available for DBMs.

In Publication VII, another approach that utilizes a deep belief network or a deep

autoencoder is proposed.

Let us look at the variational lower bound of the marginal probability of x under a

DBM using a fully factorized approximate posterior distribution

126

Unsupervised Neural Networks as the First Step

Q(h) =
∏L

l=1

∏ql
j=1 q(h

[l]
j), where q(h[l]j = 1) = μ

[l]
j :

log p(x | θ) ≥ −E(x,μ) +H(Q)− logZ(θ), (5.9)

where μ is a vector of all variational parameters.

The parameters of a DBM can be estimated by plugging the EM algorithm (see

Section 2.3.2) in the stochastic approximation procedure (see Section 4.3.3). At each

update step, we first perform the E-step of the EM algorithm, which is equivalent

to maximizing Eq. (5.9) with respect to the variational parameters μ. Then, with

the fixed μ, we compute the stochastic gradient and update the parameters, which

corresponds to the M-step.

The gradient of the marginal log-likelihood of a Boltzmann machine tries to match

two distinct distributions. One distribution is the model distribution characterized by

a mixture of products of visible samples and the corresponding posterior distributions

over hidden units. The other distribution, the data distribution, is a mixture of training

samples and the corresponding posterior distribution. The gradient drives the BM by

pushing the model distribution closer to the data distribution.

At the beginning of learning, as parameters were initialized to have small magni-

tude, the variational posterior distribution of hidden units in the deep layers is ef-

fectively random in the sense that each hidden unit is likely to be 0 or 1 with equal

probabilities. This leads to almost zero gradient with respect to the parameters in

the deep layers, since the (variational) posterior distributions under the both data and

model distributions match already. Then, it is unlikely that the stochastic gradient

method will make the deep hidden layers useful. In other words, it is likely that the

hidden units in upper layers will stay random even after many updates, which was

noticed in Publication VI.

Hence, in Publication VII it was claimed that it may be important to have a sensible

variational posterior distribution to start with. To obtain a sensible variational poste-

rior distribution, the two-stage pretraining algorithm proposed in the same paper uses

a deep directed neural network, such as a deep belief network or a deep autoencoder,

that has the similar structure as the target DBM.

This way of borrowing an approximate posterior distribution from another model

is informally justified from the fact that the lower bound in Eq. (5.9) holds for any

distribution Q. Thus, we can maximize the variational lower bound by updating the

parameters using the stochastic gradient method, with any fixed Q. This amounts to

moving the true posterior distribution to approximately match the arbitrary approxi-

mate posterior distribution.

Once the true posterior distribution is close enough to the fixed Q, the variational

lower bound can be further maximized using the standard EM approach. In other

127

Unsupervised Neural Networks as the First Step

words, after some updates we can free the variational posterior distribution Q and let

it be estimated by maximizing Eq. (5.9) with respect to the variational parameters μ.

Since the units h+ in the odd-numbered hidden layers can be explicitly summed

out, one only needs to borrow the approximate posterior distribution only for those

units in the even-numbered hidden layers. This significantly reduces the computa-

tional time required to train a deep, directed neural network from which the approxi-

mate posterior is borrowed.

Let us rewrite Eq. (5.9) to marginalize out the units in the odd-numbered hidden

layers:

EpD(x)

[
log p(x(n) | θ)

]
≥

EpD(x)Q(h−|x)

⎡
⎣log∑

h+

exp
{
−E(x(n),h−,h+)

}⎤⎦+H(Q)− logZ(θ),

(5.10)

where pD(x) is the data distribution which is approximated by the set of training

samples.

It becomes immediately apparent that the first term of the lower bound in Eq. (5.10)

is equivalent to the marginal log-likelihood of an RBM having visible units [x,h−]

and hidden units h+ with the data distribution pD(x)Q(h− | x). Hence, with

the fixed Q, we can maximize the lower bound efficiently using all the available

techniques, such as minimizing contrastive divergence (see Section 4.4.2), the en-

hanced gradient (see Section 4.1.1) and advanced MCMC sampling methods (see

Section 4.3.1), for training RBMs. This stage is referred to as the second stage in the

two-stage algorithm.

The arbitrary approximate posterior distribution Q is found in the first stage. For

instance, consider having a deep belief network that has a visible layer corresponding

to x, and a number of hidden layers corresponding to the even-numbered hidden

layers h− of the DBM. Then we can perform layer-wise pretraining described earlier

in this chapter, to estimate the recognition parameters that represent the approximate

posterior distribution of the DBN.

We may also use a deep autoencoder that consists of the input and output layers

corresponding to x and two copies of hidden layers that correspond to h−. Once

trained, either with or without a layer-wise pretraining, we may use its encoder part

to approximate the posterior distribution over the hidden units.

In summary, the two-stage algorithm borrows an approximate posterior distribution

from another model trained in the first stage, and maximizes the variational lower

bound with the variational posterior fixed to the borrowed posterior distribution5, as

5We acknowledge here that a similar idea of borrowing an approximate posterior distribution

128

Unsupervised Neural Networks as the First Step

xxx x̃

h[1] h[1]

h[2]h[2]h[2]

h[3] h[3]

h[4]h[4]h[4]

Stage 1 Stage 2 Finetuning

Figure 5.6. Illustration of the layer-wise pretraining of a deep Boltzmann machine. The dashed directed
lines indicate copying of either pretrained models or the activations of the hidden units
of the pretrained models. In this figure, a deep autoencoder is used to learn an arbitrary
approximate posterior in the first stage. The red-colored edges indicate that the weights
parameters learned in the second stage are used as initial values when finetuning the DBM.
Note that the parameters learned in the first stage are discarded immediately after the first
stage.

if the DBM were an RBM. See Fig. 5.6 for illustration.

This approach was empirically shown to be very effective at learning a good gen-

erative model using a DBM in Publication VII. Furthermore, DBMs with Gaussian

visible units trained using this approach were found to be good at denoising images

corrupted with a high level of noise in Publication IX.

from another model was used for a variational Bayesian nonlinear blind source separation
method by Honkela et al. (2004).

129

Unsupervised Neural Networks as the First Step

130

6. Discussion

Lately deep neural networks have shown remarkable performances in various ma-

chine learning tasks. They include1, but are not limited to, speech recognition (see,

e.g., Hinton et al., 2012; Dahl et al., 2012) and large-scale object recognition (see,

e.g., Goodfellow et al., 2013; Krizhevsky et al., 2012; Hinton et al., 2012) as well

as natural language processing (see, e.g., Socher et al., 2011). In these cases, deep

neural networks were able to outperform the conventional models and algorithms

significantly.

Based on these advances in academic research, deep neural networks have rapidly

found their way into commercial use through companies such as Google, Microsoft

and Apple. For instance, Google Goggles2 uses a deep belief network (see Sec-

tion 4.5.2) in production.3 Microsoft has replaced the existing speech recognition al-

gorithm based on Gaussian mixtures with one based on deep neural networks (Deng

et al., 2013). Furthermore, the voice assistance feature of Apple’s iPhone, called Siri,

as well as Google’s Street View are also known to utilize deep neural networks.4

More recently, Google reported that a deep convolutional neural network is able to

achieve the performance comparable to that of human operators on recognizing multi-

digit numbers from Google Street View images5 (Goodfellow et al., 2013).

These recent successes of deep neural networks in both academic research and com-

1For a more comprehensive list, see, for instance, (Bengio et al., 2013a).
2http://www.google.fi/mobile/goggles/
3See the invited talk Machine Learning in Google Goggles by Hartmut Neven at the Interna-
tional Conference on Machine Learning 2011: http://techtalks.tv/talks/machine-learning-in-
google-goggles/54457/
4See the article Scientists See Promise in Deep-Learning Programs by John Markoff featured
in the New York Times on 23 November 2012:
http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-
part-of-artificial-intelligence.html
5See the article How Google Cracked House Number Identification in Street View from the
MIT Technology Review:
http://www.technologyreview.com/view/523326/how-google-cracked-house-number-
identification-in-street-view/

131

Discussion

mercial applications may be attributed to several recent breakthroughs. Layer-wise

pretraining of a multilayer perceptron proposed by (Hinton and Salakhutdinov, 2006;

Bengio et al., 2007; Ranzato et al., 2007b) showed that a clever way of initializing

parameters can easily overcome the difficulties of optimizing a large, deep neural

network. Furthermore, this new pretraining scheme was found to be a useful way to

incorporate a large amount of unlabeled data in addition to a small number of labeled

data. This led to a success of deep neural networks, for example, in unsupervised and

transfer learning tasks (Guyon et al., 2011; Mesnil et al., 2012; Raina et al., 2007,

see, e.g.,). Beside the layer-wise pretraining as well as unsupervised learning, several

modifications to multilayer perceptrons, such as novel nonlinear hidden units (see,

e.g., Nair and Hinton, 2010; Glorot et al., 2011; Goodfellow et al., 2013) and dropout

regularization (Hinton et al., 2012), have further pushed the performance boundary

of deep neural networks.

Despite these recent breakthroughs that brought in the recent surge of popularity6

of deep neural networks, the core principles of building deep neural networks have

evolved rather gradually over more than 50 years since Rosenblatt (1958) proposed

the perceptron. Over those years many seemingly distant classes of neural networks

as well as other machine learning models have been proposed and later found to be

closely related (see, e.g., Haykin, 2009). In due course, many concepts, mainly from

probabilistic approaches and semi-supervised learning, have been absorbed by the

field of neural networks to form the solid basic principles of deep neural networks.

The main text of this thesis has been written to show how different perspectives and

concepts of machine learning interact with each other to form the basic principles of

deep neural networks.

In this last chapter, the author briefly summarizes the main contents and discusses

potential future research directions. At the end of this chapter, some important mod-

els, concepts as well as practical matters that have not been discussed in this thesis

are briefly explained.

6.1 Summary

In this thesis, the author has aimed to reveal relationships among different neural

networks as well as other machine learning methods. Mainly, two classes of deep

neural networks, namely autoencoders and Boltzmann machines, were discussed in

6As an example of the increasing popularity of deep neural networks and the field of deep
learning, MIT Technological Review selected deep learning as one of the ten breakthrough
technologies in 2013:
http://www.technologyreview.com/featuredstory/513696/deep-learning/

132

Discussion

detail and found to be related to each other. The underlying principles of those two

models were found to be useful in understanding the layer-wise pretraining of a deep

multilayer perceptron.

The thesis began with simple, linear neural networks. Linear regression and percep-

trons were first described in terms of neural networks, and later the equivalent models

were formulated from a probabilistic perspective. Similarly, a linear autoencoder was

shown to be equivalent to principal component analysis as well as its probabilistic

variant.

The author went on to describing their deeper, nonlinear versions which are a multi-

layer perceptron in the case of supervised models, and a deep autoencoder in the case

of unsupervised models. Especially, the thesis focused mainly on autoencoders. The

autoencoder was interpreted as performing approximate inference and generation in

a probabilistic latent variable model. Furthermore, the author explained a geomet-

ric interpretation of the states of hidden units encoded by a variant of autoencoders

based on the manifold assumption which constitutes a central part of semi-supervised

learning.

Independently from autoencoders, the thesis discussed Boltzmann machines ex-

tensively. Starting from Hopfield networks, which may be seen as a deterministic

variant of Boltzmann machines, the author described in detail how to estimate the

statistics and learn the parameters of Boltzmann machine as well as their structurally

restricted variants such as the restricted Boltzmann machines (RBM) and the deep

Boltzmann machines. Furthermore, a justification for viewing Boltzmann machines

with hidden units as deep neural networks was provided in connection to recurrent

neural networks.

These two seemingly separate classes of neural networks, autoencoder and Boltz-

mann machines, were shown to be closely related to each other. Especially, an au-

toencoder with a single hidden layer was described to be an approximation of an

RBM. The author introduced recent studies showing their relatedness as well as

equivalence. Additionally, a deep belief network was described as a combination

of an RBM and a deep autoencoder with stochastic units.

At the end of the thesis, the author has explained a recently introduced method of

pretraining a deep multilayer perceptron. This method of pretraining, called layer-

wise pretraining, is analyzed from two different viewpoints. Firstly, the fact that some

variants of autoencoders capture the data manifold was used to view the layer-wise

pretraining as a way of incrementally extracting more useful features. Secondly, the

author explained how stacking another layer on top of the existing neural network in

layer-wise pretraining can guarantee the improvement in the variational lower bound

of the marginal log-likelihood.

133

Discussion

6.2 Deep Neural Networks Beyond Latent Variable Models

Two different perspectives from which deep neural networks can be understood have

been discussed in this thesis. One is based on the idea of incrementally capturing

the data manifold through stacking multiple layers of nonlinear hidden units. The

other considers a feedforward computation of a deep neural network as performing

an approximate inference of the posterior distribution over hidden units in higher

layers.

The latter perspective essentially divides a deep neural network into two distinct

parts. The first part is a latent variable model that models the distribution of train-

ing samples without labels, and then the second part makes a decision based on the

inferred posterior distribution given a sample, on which class the sample belongs to.

For example, a forward pass computation up until the penultimate layer of a multi-

layer perceptron (MLP, see Section 3.1) would correspond to performing an approx-

imate inference, and the computation from the penultimate layer to the output layer

to decision-making.

In this framework of a latent variable model, the most exact way of performing

classification or decision-making is to marginalize out hidden variables h to obtain

the conditional distribution of missing variables xm given the states of the observed

variables xo:

p(xm | xo) =
∑
h

p(xm | h)p(h | xo).

A deep neural network, however, replaces this with a parametric nonlinear function

that computes ∑
h

p(xm | h)Q(h | xo)EQ [p(xm | h]

in a single sweep, since this exact marginalization is often computationally intractable.

One consequence of assuming a simple, unimodal distribution p(xm | h), is that the
approximate predictive distribution p̃(xm | xo) loses most of the information in the

true predictive distribution p(xm | xo). This is due to the unimodality of p̃(xm | xo)

while the true predictive distribution could have many probabilistic modes.

The inherent limitations of this approximate approach employed by deep neural

networks are obvious.7 There is no guarantee that the parametric form employed by

a deep neural network of an approximate posterior distribution Q is good enough

to make the above approximation close to the exact marginalization. Furthermore,

a usual method of fitting the variational parameters of Q to minimize the Kullback-

Leibler divergence between Q and the true posterior distribution p(h | xo) tends

7Note that the discussion in this section has been highly motivated and influenced by Section
5 of (Bengio, 2013).

134

Discussion

to find only a single mode of the true posterior distribution, but we usually cannot

tell how representative the found mode is. If the true posterior distribution is highly

multi-modal, this approximation based on an arbitrary mode will be generally poor.

Lastly, it is not clear how a deep neural network can cope with a more flexible setting

where the observed components are not fixed a priori.8

A way has been proposed to overcome each of these limitations. For instance,

one may bypass the problem of marginalization or approximate inference by directly

mapping from an input xo to the distribution of xm given xo which may have been

learned by another model such as a restricted Boltzmann machine (Mnih et al., 2011).

In this way, a deep neural network can learn to approximate a true predictive distribu-

tion p(xm | xo) without going through an extra step of approximation in the middle.

If the ultimate goal is to make a decision that maximizes the predictive perfor-

mance, we still need to be able to evaluate either approximately or exactly the multi-

modal predictive distribution quickly and well. This brings us back to one of the

limitations of the current approach based on the approximate inference of hidden

variables.

A Boltzmann machine provides a principled way to overcome the problem of hav-

ing to use an approximate inference of the posterior distribution over hidden vari-

ables. Instead of an variational approximation, one may perform an (asymptotically)

exact inference utilizing Markov chain Monte Carlo (MCMC) sampling such that

p(xm | xo) ≈
1

T

T∑
t=1

p(xm | h〈t〉),

where h〈t〉 is the t-th sample from p(h | xo). In fact, it is natural with a Boltzmann

machine to consider any combination of observed components and missing compo-

nents. Therefore this approach is tempting, but as the size of a model grows and the

number of modes in the predictive distribution increases, it becomes impractical to

use MCMC sampling for making a rapid decision.

Hence, we want to have a radically new neural network that keeps the best of the

two types of deep neural networks discussed throughout this thesis. A fast and ef-

ficient computation of feedforward neural networks (see Chapter 3) is required for

a rapid decision-making, while most information and structure contained in a com-

plex multi-modal predictive distribution must be maintained, just like a Boltzmann

machine is able to learn a multi-modal distribution (see Chapter 4). To the author’s

current knowledge, there is no such neural network at the moment.9 It is, hence,

8In a classical setting of, for instance, classification, we know in advance that label compo-
nents are not going to be observed but all other components are.
9A few recent works are showing some promising directions using stochastic neural networks
Bengio and Thibodeau-Laufer (see, e.g., 2013); Tang and Salakhutdinov (see, e.g., 2013).

135

Discussion

left for future research to build such a neural network that combines these two very

different characteristics.

The ultimate goal of deep neural networks and the field of deep learning will be to

build a large deep neural network that can learn

f(xo | θ) = argmax
xm

p(xm | xo),

where θ denotes a set of parameters, and the indices of observed and missing com-

ponents are not fixed a priori. A deep neural network that computes this function

will have to be powerful and flexible enough to consider all different possibilities or

modes in the predictive distribution in a single sweep of the network in a feedforward

manner.

6.3 Matters Which Have Not Been Discussed

Despite the original intention of describing in much details the basics of deep neural

networks, some important models and concepts have been left out from the main text.

The author would like to briefly mention a few of them here, to provide any interested

reader with some references.

The remainder of this section starts by providing a list of the previous work that

relates independent component analysis as well as general factor analysis to the mod-

els discussed previously. Additionally, some references that attempted to make these

models deeper are presented.

The models described so far in this thesis are fairly powerful in the sense that many

of them have the universal approximator property. In Section 3.1, it was stated that

a multilayer perceptron has the universal approximator property, but no results about

the other models were presented nor described. Thus, a list of previous research

results which showed and proved the universal approximator property of the models

discussed earlier in this dissertation is provided.

Subsequently, we discuss how a Boltzmann machine can be evaluated. Unlike

most feedforward neural networks, the exact computation of the objective function

in training a Boltzmann machine cannot be done tractably. This is due to both the

intractability of the normalization constant and the difficulty of marginalizing out

hidden units. Hence, the author discusses some approaches that can approximately

evaluate Boltzmann machines.

Throughout this thesis, there was no discussion on selecting hyper-parameters that

are necessary for training a deep neural network. Section 6.3.4 briefly describes

a problem of hyper-parameter selection in one particular setting of pretraining and

finetuning a multilayer perceptron, and introduces recently proposed hyper-parameter

136

Discussion

optimization approaches based on Bayesian optimization.

This thesis is directed towards deep neural networks, but it must be reminded that

not all models nor research directions have been covered. For instance, the entire

text was written assuming that all training samples are independent and identically

distributed, ignoring any temporal dependence. A recurrent neural network described

in Section 4.2.1 is, however, capable of learning temporal dependencies between

samples.

Furthermore, it was implicitly assumed that a target task is permutation invariant,

meaning that the structure of a deep neural network is independent from the order

of the components of an input vector. This ensures that the models discussed in

this thesis are generally applicable to any data without prior knowledge. However,

this may not be an optimal approach especially in a task which exhibits clear spatial

structures among input components. One such case involves handling images, and at

the end of this section we briefly discuss an approach based on convolutional neural

networks that specifically aims at handling images.

6.3.1 Independent Component Analysis and Factor Analysis

One important model which belongs to a family of linear generative models is in-

dependent component analysis (ICA, see, e.g., Hyvärinen et al., 2001). This model

is closely related to many models we have discussed. For instance, ICA formulated

using the information-theoretic approach by Bell and Sejnowski (1995) is equiva-

lent to the maximum likelihood solution of sparse coding (see Section 3.2.5) in the

limit of no noise, when the numbers of inputs and sources are same (Olshausen and

Field, 1997). Furthermore, by replacing the orthogonality constraint with the min-

imal reconstruction regularization, it was shown by Le et al. (2011a) that a linear

autoencoder (see Section 2.2.1) with a soft-sparsity regularization on hidden activa-

tions is equivalent to ICA. Similarly, an approach that extracts principal components

can be extended to extract independent components by employing certain nonlinear

activation functions for the hidden units (see, e.g., Oja, 1997; Hyvärinen et al., 2001).

ICA is further related to a restricted Boltzmann machine (see Section 4.4.2) via an

energy-based model proposed by Teh et al. (2003).

There have been approaches to extend basic ICA, which assumes a single layer

of sources, or hidden units, to have more than one hidden layer. For instance, Lap-

palainen and Honkela (2000) proposed a nonlinear generative model where the visi-

ble variables are generated through multiple layers of nonlinear hidden units starting

from the mutually independent top hidden units, or sources. They called this model

Bayesian nonlinear independent component analysis.

When put into a probabilistic framework, most of these generative models, includ-

137

Discussion

ing principal component analysis, ICA and sparse coding, with directed edges are

special cases of factor analysis with certain assumptions. Factor analysis assumes

that the observation has been generated from a number of factors, or hidden units, via

a certain mapping. In basic factor analysis the mapping is assumed to be linear, and

the factors follow Gaussian distribution (see, e.g., Bishop, 2006, Chapter 12.2.4).

Similarly to ICA, factor analysis has also been extended into a nonlinear model

with potentially deep structure. Raiko (2001) and Raiko et al. (2007), for instance,

describe a hierarchical nonlinear factor analysis method which starts from a set of

factors at the top and generates sequentially a layer of stochastic hidden units until

the visible layer of observed variables. This hierarchical model can be considered as

a generalization of the sigmoid belief network (see Section 3.2.3) such that hidden

units are not restricted to be binary. A similar model which replaces binary units of

the sigmoid belief network with Gaussian units with squashing nonlinearity functions

was proposed by Frey and Hinton (1999).

6.3.2 Universal Approximator Property

In Section 3.1, it was mentioned that a multilayer perceptron (MLP) with a single

hidden layer has the universal approximator property provided that there are enough

hidden units. It is natural to question whether any other model discussed in this

dissertation has the same property.

Support vector machines with certain kernel functions have the universal approx-

imator property (Hammer and Gersmann, 2003). Furthermore, an extreme learning

machine was shown to have the same property (Huang et al., 2006a). Deep autoen-

coders are obviously universal approximators in the sense that they can reconstruct

any input sample arbitrary well, as each of them is equivalent to an MLP.

Similarly, universal approximator property can be defined for unsupervised models.

A model has the universal approximator property if any distribution can be modeled

arbitrary well with respect to a chosen divergence criterion by the model.

Le Roux and Bengio (2008) and Freund and Haussler (1994) proved that a re-

stricted Boltzmann machine (RBM, see Section 4.4.2) has this property when any

binary distribution is considered. This extends to the fact that a deep Boltzmann ma-

chine (DBM, see Section 4.4.3) and a fully-connected Boltzmann machine are both

universal approximator, since they are more general than an RBM. Later, the same

authors in (Le Roux and Bengio, 2010) showed that a deep belief network (see Sec-

tion 4.5.2) has the same property on any binary distribution with the upper-bound on

the number of units in each hidden layer, albeit requiring exponentially many hidden

layers with respect to the input dimensionality.

In Publication VI, it was shown that an equivalent DBMwith Gaussian visible units

138

Discussion

(GDBM) can be constructed for any mixture of Gaussians (MoG, see, e.g., Bishop,

2006). Since MoGs are universal approximators, so are GDBMs. However, this argu-

ment does not apply to RBMs with Gaussian visible units (GRBM, see Section 4.5.1),

since not all MoGs can be modeled by GRBMs.

6.3.3 Evaluating Boltzmann Machines

One important reason that makes training a Boltzmann machine more difficult than,

for instance, an autoencoder is that the exact computation of the cost function is

intractable. This is due to an intractable normalization constant in its formulation (see

Eqs. (4.2)–(4.3)). Furthermore, except for restricted Boltzmann machines (RBM), it

is intractable to marginalize hidden units.

Salakhutdinov and Murray (2008) proposed to first estimate the normalization con-

stant using annealed importance sampling (Neal, 1998) and then to use the estimated

constant for computing the variational lower bound (see Eq. (4.20)) of either train-

ing or test samples. The average of multiple runs of annealed importance sampling

can compute an unbiased estimate of the normalization constant. Empirical evidence

(Salakhutdinov, 2008) showed that the variance of the estimates is sufficiently small

even with only a small number of runs. Furthermore, the variational lower bound

turned out to be surprisingly tight in the case of deep Boltzmann machines (Salakhut-

dinov and Hinton, 2012b).

Based on the idea of the annealed importance sampling and parallel tempering (see

Section 4.3.1), Desjardins et al. (2011) introduced a method of tracking the normal-

ization constant while training a restricted Boltzmann machine. Also, in Publication

II and Publication VI an adaptive learning rate which estimates the local change in

the log-likelihood, or its variational lower bound up to the constant multiplicative

factor, was proposed based on the idea of the annealed importance sampling.

In the case of RBMs, a crude approximation of the cost function can be computed

based on the connection between the RBM and the autoencoder. Especially, when

the RBM is trained by minimizing the contrastive divergence (see Section 4.4.2), the

reconstruction error (see Section 4.5.1) may be used to monitor the learning progress

(Hinton, 2012). However, as pointed out in (Hinton, 2012), the reconstruction error

is not an absolute measure of the performance of an RBM.

6.3.4 Hyper-Parameter Optimization

One might have noticed throughout this thesis that there are many hyper-parameters

involved in training these deep neural networks. Typically, training an unsupervised

neural network with a single hidden layer involves, for instance in the case of a de-

139

Discussion

noising autoencoder, nine hyper-parameters:

1. The number of hidden units

2. Noise variance

3. Drop ratio

4. Initial learning rate

5. Learning rate scheduling

6. Momentum

7. Weight decay constant

8. Target sparsity

9. Sparsity regularization constant

Hence, if we use a denoising autoencoder to pretrain a deep multilayer perceptron

(MLP), this number of hyper-parameters is multiplied by the number of hidden layers

in the MLP. Furthermore, there are 6 more hyper-parameters that need to be further

tuned for finetuning:

1. Noise variance

2. Drop ratio

3. Initial learning rate

4. Learning rate scheduling

5. Momentum

6. Weight-decay

In total, if we have to train a deep MLP using layer-wise pretraining by denoising

autoencoders, we need to choose 9L+ 6 hyper-parameters correctly.

When the number of hyper-parameters is low, it is usual to use the grid-search to

find the best configuration. It is, however, less preferable in the case of deep neural

networks, since the number of candidate points on the grid grows exponentially with

respect to the number of hyper-parameters, which grows linearly with respect to the

number of hidden layers.

This is highly problematic considering that training even a single deep neural net-

work is computationally expensive. One cannot allow training exponentially many

deep neural networks only for selecting the hyper-parameters. Hence, a hyper-parameter

optimization method for deep neural networks must be able to find only a small set

of good candidate points in the hyper-parameter space.

Based on this motivation, two recent studies (Bergstra et al., 2011; Snoek et al.,

2012) explored the idea of using Bayesian optimization (see, e.g., Brochu et al.,

140

Discussion

2010). Bayesian optimization simultaneously models the posterior distribution over

a function h(Ψ) that maps from a set Ψ of hyper-parameters to the performance of a

model trained using Ψ and explores the state-space of Ψ to find the maximum of the

unknown function h.

As both of these approaches have shown promising empirical result, we finish this

section by recommending any of these two approaches for choosing hyper-parameters

of deep neural networks. We do not go any further into the details of these algorithms

as it is out of the scope of this thesis.

6.3.5 Exploiting Spatial Structure: Local Receptive Fields

When we have prior knowledge about the structure of the data, it may be possible

to exploit it to obtain a better representation. For instance, a two-dimensional image

has a local structure that is not maintained once the pixels in the image are shuffled.

Similarly, a segment of speech has a temporal structure that easily breaks down when

the speech samples are shuffled across time.

In (Coates et al., 2011), an image classification framework based on a single level

of incremental feature learning was described in detail. The framework consists of

three stages; (1) training a shallow neural network on randomly selected small im-

age patches from training images, (2) extracting features from each image using the

trained neural network, and (3) training a (linear) classifier on the extracted features.

The first two stages correspond to a single step of the already described incremental

feature learning.

The underlying idea in the first two stages is based on convolutional neural net-

works (see, e.g., LeCun et al., 1998a; Lee et al., 2009) where a hidden unit is con-

nected only to a small neighborhood, or local patch, in the input image. A set of

hidden units is trained on a large set of fixed-size patches of training images, rather

than the whole images. Then, each image is scanned with the trained neural network

to extract features. Each hidden unit of the model used in this stage is often referred

to as a local receptive field. Usually after this stage the sets of features from nearby

patches are pooled to form a subsampled set of features.

Coates et al. (2011) empirically compared using different neural networks for the

first two stages. They compared sparse autoencoders (see Section 3.2.5), restricted

Boltzmann machines with sparsity regularization, K-means clustering and Gaussian

mixtures. In most cases they considered, they were able to achieve the state-of-the-art

performance.

This approach of convolution and pooling can be further used as a single stage in

incremental feature learning. In fact, if we had started our discussion on incremental

feature learning from the convolutional neural network (see, e.g., LeCun et al., 1998a)

141

Discussion

rather than from the fully-connected MLP, we would have arrived at the idea of incre-

mental feature learning where each stage consists of convolution, contrast normal-

iziation, and pooling (see, e.g., LeCun et al., 2010). Lee et al. (2009) showed that

this way of incrementally stacking convolutional layers enables the neural network,

specifically a convolutional deep belief network in their work, to learn hierarchical

part-based representations of data.

As the aim of this thesis, however, was not on the specific tasks of image or audio

recognition, which are known to benefit heavily from this convolutional structure,

we have not discussed it any further. For more details on learning local receptive

fields and using them for image classification, we refer readers to (Coates, 2012).

We further suggest (Krizhevsky et al., 2012) and (Ciresan et al., 2012d) for the latest

advances in using convolutional neural networks for image classification.

142

Bibliography

P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds.
Princeton University Press, Princeton, NJ, 2008.

D. H. Ackley, G. Hinton, and T. J. Sejnowski. A learning algorithm for Boltzmann machines.
Cognitive Science, 9:147–169, 1985.

S.-I. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):
251–276, 1998.

P. Baldi and K. Hornik. Neural networks and principal component analysis: learning from
examples without local minima. Neural Networks, 2(1):53–58, Jan. 1989.

D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012.

A. J. Bell and T. J. Sejnowski. An information-maximization approach to blind separation
and blind deconvolution. Neural Computation, 7(6):1129–1159, Nov. 1995.

Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learning,
2(1):1–127, 2009.

Y. Bengio. Deep learning of representations: Looking forward. arXiv:1305.0445
[cs.LG], May 2013.

Y. Bengio and O. Delalleau. Justifying and generalizing contrastive divergence. Neural
Computation, 21(6):1601–1621, June 2009.

Y. Bengio and Y. LeCun. Scaling learning algorithms towards AI. In L. Bottou, O. Chapelle,
D. DeCoste, and J. Weston, editors, Large Scale Kernel Machines. MIT Press, 2007.

Y. Bengio and É. Thibodeau-Laufer. Deep generative stochastic networks trainable by back-
prop. arXiv:1306.1091 [cs.LG], June 2013.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep
networks. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Informa-
tion Processing Systems 19, pages 153–160. MIT Press, Cambridge, MA, 2007.

Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu. Advances in optimizing recurrent
networks. In Proceedings of the 38th International Conference on Acoustics, Speech, and
Signal Processing (ICASSP 2013), May 2013. To appear.

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspec-
tives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828,
2013a.

143

Bibliography

Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai. Better mixing via deep representations. In
Proceedings of the 30th International Conference on Machine Learning (ICML 2013), vol-
ume 28 of JMLR Workshop and Conference Proceedings, pages 552–560. JMLR W&CP,
June 2013b.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimiza-
tion. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors,
Advances in Neural Information Processing Systems 24, pages 2546–2554. 2011.

C. M. Bishop. Training with noise is equivalent to Tikhonov regularization. Neural Compu-
tation, 7(1):108–116, Jan. 1995.

C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statis-
tics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

A. Bondy and U. Murty. Graph Theory. Graduate Texts in Mathematics. Springer, 2008.

L. Bottou. Online algorithms and stochastic approximations. In D. Saad, editor, Online
Learning and Neural Networks. Cambridge University Press, Cambridge, UK, 1998.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In J. Platt, D. Koller,
Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20,
pages 161–168. MIT Press, Cambridge, MA, 2008.

L. Bottou and Y. LeCun. Large scale online learning. In S. Thrun, L. Saul, and B. Schölkopf,
editors, Advances in Neural Information Processing Systems 16. MIT Press, Cambridge,
MA, 2004.

E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement
learning. arXiv:1012.2599 [cs.LG], Dec. 2010.

D. Broomhead and D. Lowe. Radial Basis Functions, Multi-variable Functional Interpola-
tion and Adaptive Networks. RSRE memorandum / Royal Signals and Radar Establish-
ment. Royals Signals & Radar Establishment, 1988.

H. Burger, C. Schuler, and S. Harmeling. Image denoising: Can plain neural networks com-
pete with BM3D? In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2012), pages 2392–2399, June 2012.

R. H. Byrd, G. M. Chin, W. Neveitt, and J. Nocedal. On the use of stochastic Hessian
information in optimization methods for machine learning. SIAM Journal on Optimization,
21(3):977–995, 2011.

M. A. Carreira-Perpiñán and G. Hinton. On contrastive divergence learning. In R. G. Cowell
and Z. Ghahramani, editors, Proceedings of the Tenth International Workshop on Artifi-
cial Intelligence and Statistics, Jan 6-8, 2005, Savannah Hotel, Barbados, pages 33–40.
Society for Artificial Intelligence and Statistics, 2005.

O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT Press,
Cambridge, MA, 2006.

K. Cho. Improved Learning Algorithms for Restricted Boltzmann Machines. Master’s thesis,
Aalto University School of Science, 2011.

K. Cho. Boltzmann machines and denoising autoencoders for image denoising.
arXiv:1301.3468 [stat.ML], Jan. 2013.

144

Bibliography

K. Cho, T. Raiko, and A. Ilin. Gaussian-Bernoulli deep Boltzmann machine. In NIPS 2011
Workshop on Deep Learning and Unsupervised Feature Learning, Sierra Nevada, Spain,
Dec. 2011.

K. Cho, T. Raiko, and A. Ilin. Enhanced gradient for training restricted Boltzmann machines.
Neural Computation, 25(3):805–831, Mar. 2013.

Y. Cho and L. Saul. Kernel methods for deep learning. In Y. Bengio, D. Schuurmans,
J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information
Processing Systems 22, pages 342–350. 2009.

B. A. Cipra. An introduction to the Ising model. American Mathematics Monthly, 94(10):
937–959, Dec. 1987.

D. Ciresan, A. Giusti, luca Maria Gambardella, and J. Schmidhuber. Deep neural networks
segment neuronal membranes in electron microscopy images. In P. Bartlett, F. Pereira,
C. Burges, L. Bottou, and K. Weinberger, editors, Advances in Neural Information Pro-
cessing Systems 25, pages 2852–2860. 2012a.

D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber. Deep big multilayer
perceptrons for digit recognition. In G. Montavon, G. Orr, and K.-R. Müller, editors,
Neural Networks: Tricks of the Trade, volume 7700 of Lecture Notes in Computer Science,
pages 581–598. Springer Berlin Heidelberg, 2012b.

D. C. Ciresan, U. Meier, J. Masci, and J. Schmidhuber. Multi-column deep neural network
for traffic sign classification. Neural Networks, 32:333–338, 2012c.

D. C. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image
classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2012), pages 3642–3649, June 2012d.

A. Coates. Demystifying Unsupervised Feature Learning. PhD thesis, Stanford University,
2012.

A. Coates, H. Lee, and A. Ng. An analysis of single-layer networks in unsupervised fea-
ture learning. In G. Gordon, D. Dunson, and M. Dudík, editors, Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15
of JMLR Workshop and Conference Proceedings, pages 215–223. JMLR W&CP, 2011.

R. Collobert and S. Bengio. Links between perceptrons, MLPs and SVMs. In Proceedings
of the 21st International Conference on Machine learning (ICML 2004), July 2004.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, Sept.
1995.

T. M. Cover. Geometrical and statistical properties of systems of linear inequalities with
applications in pattern recognition. IEEE Transactions on Electronic Computers, EC-14
(3):326–334, 1965.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals, and Systems (MCSS), 2(4):303–314, Dec. 1989.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-D
Transform-Domain collaborative filtering. IEEE Transactions on Image Processing, 16
(8):2080–2095, Aug. 2007.

145

Bibliography

G. Dahl, D. Yu, L. Deng, and A. Acero. Context-dependent pre-trained deep neural net-
works for large-vocabulary speech recognition. IEEE Transactions on Audio, Speech, and
Language Processing, 20(1):30–42, Jan. 2012.

A. C. Damianou and N. D. Lawrence. Deep Gaussian processes. In Proceedings of the Six-
teenth International Conference on Artificial Intelligence and Statistics (AISTATS 2013),
volume 31 of JMLR Workshop and Conference Proceedings, pages 207–215. JMLR
W&CP, Apr. 2013.

G. M. Davis, S. G. Mallat, and Z. Zhang. Adaptive time-frequency decompositions. Optical
Engineering, 33(7):2183–2191, 1994.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological),
39(1):1–38, 1977.

L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig, X. He, J. Williams,
Y. Gong, and A. Acero. Recent advances in deep learning for speech research at Microsoft.
In Proceedings of the 38th International Conference on Acoustics, Speech, and Signal
Processing (ICASSP 2013), May 2013.

G. Desjardins, A. Courville, and Y. Bengio. Adaptive parallel tempering for stochastic max-
imum likelihood learning of RBMs. In NIPS 2010 Workshop on Deep Learning and Un-
supervised Feature Learning, 2010a.

G. Desjardins, A. Courville, Y. Bengio, P. Vincent, and O. Delalleau. Parallel tempering for
training of restricted Boltzmann machines. In Y.-W. Teh and M. Titterington, editors, Pro-
ceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
(AISTATS 2010), volume 9 of JMLR Workshop and Conference Proceedings, pages 145–
152. JMLR W&CP, 2010b.

G. Desjardins, A. Courville, and Y. Bengio. On tracking the partition function. In J. Shawe-
Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors, Advances in Neural
Information Processing Systems 24, pages 2501–2509. 2011.

G. Desjardins, A. Courville, and Y. Bengio. On training deep Boltzmann machines.
arXiv:1203.4416 [cs.NE], Mar. 2012.

G. Desjardins, R. Pascanu, A. Courville, and Y. Bengio. Metric-free natural gradient for joint-
training of Boltzmann machines. In Proceedings of the First International Conference on
Learning Representations (ICLR 2013), May 2013.

S. E. Fahlman and C. Lebiere. The cascade-correlation learning architecture. In D. S. Touret-
zky, editor, Advances in Neural Information Processing Systems 2, pages 524–532. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

R. Fletcher. Practical Methods of Optimization. Wiley-Interscience, New York, NY, USA,
2nd edition, 1987.

Y. Freund and D. Haussler. Unsupervised learning of distributions on binary vectors using
two layer networks. Technical report, Santa Cruz, CA, USA, 1994.

B. J. Frey and G. Hinton. Variational learning in nonlinear Gaussian belief networks. Neural
Computation, 11(1):193–213, 1999.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restora-
tion of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6
(6):721–741, Nov. 1984.

146

Bibliography

C. J. Geyer. Markov chain Monte Carlo maximum likelihood. In Computing Science and
Statistics: Proceedings of the 23rd Symposium on the Interface, pages 156–163, 1991.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the Thirteenth International Conference on Artificial In-
telligence and Statistics (AISTATS 2010), volume 9 of JMLR Workshop and Conference
Proceedings, pages 249–256. JMLR W&CP, May 2010.

X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In Proceedings of
the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS
2011), volume 15 of JMLR Workshop and Conference Proceedings, pages 315–323. JMLR
W&CP, Apr. 2011.

G. H. Golub and C. F. van Van Loan. Matrix Computations (Johns Hopkins Studies in Math-
ematical Sciences). The Johns Hopkins University Press, 3rd edition, Oct. 1996.

I. Goodfellow, M. Miraz, A. Courville, and Y. Bengio. Multi-prediction deep Boltzmann
machines. In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger,
editors, Advances in Neural Information Processing Systems 26, pages 548–556, Dec.
2013.

I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks.
arXiv:1302.4389 [stat.ML], Feb. 2013.

A. Graves. Generating sequences with recurrent neural networks. arXiv:1308.0850
[cs.NE], Aug. 2013.

K. Gregor and Y. LeCun. Learning fast approximations of sparse coding. In J. Fürnkranz and
T. Joachims, editors, Proceedings of the 27th Internation Conference on Machine Learning
(ICML 2010), pages 399–406, Haifa, Israel, June 2010.

I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Aha. Unsupervised and transfer learning
challenge. In Proceedings of the 2011 International Joint Conference on Neural Networks
(IJCNN 2011), pages 793–800, 2011.

B. Hammer and K. Gersmann. A note on the universal approximation capability of support
vector machines. Neural Processing Letters, 17:43–53, 2003.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57(1):97–109, Apr. 1970.

S. Haykin. Neural Networks and Learning Machines. Pearson Education, 3rd edition, 2009.

D. O. Hebb. The Organization of Behavior: A Neuropsychological Theory. Wiley, New York,
June 1949.

G. Hinton. Training products of experts by minimizing contrastive divergence. Neural Com-
putation, 14:1771–1800, Aug. 2002.

G. Hinton. A practical guide to training restricted Boltzmann machines. In G. Montavon,
G. B. Orr, and K.-R. Müller, editors, Neural Networks: Tricks of the Trade, volume 7700
of Lecture Notes in Computer Science, pages 599–619. Springer Berlin Heidelberg, 2012.

G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313(5786):504–507, July 2006.

G. Hinton, P. Dayan, B. J. Frey, and R. Neal. The wake-sleep algorithm for unsupervised
neural networks. Science, 268:1158–1161, 1995.

147

Bibliography

G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural
Computation, 18(7):1527–1554, July 2006.

G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling
in speech recognition. Signal Processing Magazine, 29(6):82–97, 2012.

G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Improving
neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580
[cs.NE], July 2012.

A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

A. Honkela, S. Harmeling, L. Lundqvist, and H. Valpola. Using kernel PCA for initialisa-
tion of variational Bayesian nonlinear blind source separation method. In C. Puntonet and
A. Prieto, editors, Proceedings of Independent Component Analysis and Blind Signal Sep-
aration (ICA 2004), volume 3195 of Lecture Notes in Computer Science, pages 790–797.
Springer, 2004.

J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366, Jan. 1989.

G.-B. Huang, L. Chen, and C.-K. Siew. Universal approximation using incremental con-
structive feedforward networks with random hidden nodes. IEEE Transactions on Neural
Networks, 17(4):879–892, 2006a.

G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: Theory and applica-
tions. Neurocomputing, 70(1—3):489–501, 2006b.

G.-B. Huang, D. Wang, and Y. Lan. Extreme learning machines: a survey. International
Journal of Machine Learning and Cybernetics, 2:107–122, 2011.

A. Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal
of Machine Learning Research, 6:695–709, Dec. 2005.

A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. Wiley-
Interscience, May 2001.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational
methods for graphical models. Machine Learning, 37(2):183–233, Nov. 1999.

K. Kavukcuoglu, M. Ranzato, and Y. LeCun. Fast inference in sparse coding algorithms with
applications to object recognition. arXiv:1010.3467 [cs.CV], Oct. 2010.

R. Kindermann, J. Snell, and A. M. Society. Markov Random Fields and Their Applications.
Contemporary mathematics. American Mathematical Society, 1980.

T. Kohonen. Self-organized formation of topologically correct feature maps. Biological
Cybernetics, 43(1):59–69, 1982.

M. A. Kramer. Nonlinear principal component analysis using autoassociative neural net-
works. AIChE Journal, 37(2):233–243, 1991.

148

Bibliography

A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional
neural networks. In P. Bartlett, F. Pereira, C. Burges, L. Bottou, and K.Weinberger, editors,
Advances in Neural Information Processing Systems 25, pages 1106–1114. 2012.

S. Kullback and R. A. Leibler. On information and sufficiency. Annals of Mathematical
Statistics, 22:49–86, 1951.

L. D. Landau and E. M. Lifshitz. Statistical Physics, Third Edition, Part 1: Volume 5 (Course
of Theoretical Physics, Volume 5). Butterworth-Heinemann, 3rd edition, Jan. 1980.

H. Lappalainen and A. Honkela. Bayesian non-linear independent component analysis by
multi-layer perceptrons. In M. Girolami, editor, Advances in Independent Component
Analysis, Perspectives in Neural Computing, pages 93–121. Springer London, 2000.

H. Larochelle and Y. Bengio. Classification using discriminative restricted Boltzmann ma-
chines. In Proceedings of the 25th International Conference on Machine learning (ICML
2008), pages 536–543, New York, NY, USA, 2008. ACM.

N. D. Lawrence. Gaussian process latent variable models for visualisation of high dimen-
sional data. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Informa-
tion Processing Systems 16. MIT Press, Cambridge, MA, 2004.

N. D. Lawrence and J. Quiñonero Candela. Local distance preservation in the GP-LVM
through back constraints. In Proceedings of the 23rd International Conference on Machine
learning (ICML 2006), pages 513–520, New York, NY, USA, 2006. ACM.

Q. Le, A. Karpenko, J. Ngiam, and A. Ng. ICAwith reconstruction cost for efficient overcom-
plete feature learning. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Wein-
berger, editors, Advances in Neural Information Processing Systems 24, pages 1017–1025.
2011a.

Q. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Ng. On optimization methods for
deep learning. In L. Getoor and T. Scheffer, editors, Proceedings of the 28th International
Conference on Machine Learning (ICML 2011), pages 265–272, New York, NY, USA,
June 2011b. ACM.

N. Le Roux and Y. Bengio. Representational power of restricted Boltzmann machines and
deep belief networks. Neural Computation, 20:1631–1649, June 2008.

N. Le Roux and Y. Bengio. Deep belief networks are compact universal approximators.
Neural Computation, 22(8):2192–2207, Aug. 2010.

N. Le Roux, P.-A.Manzagol, and Y. Bengio. Topmoumoute online natural gradient algorithm.
In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information
Processing Systems 20, pages 849–856. MIT Press, Cambridge, MA, 2008.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, volume 86, pages 2278–2324, 1998a.

Y. LeCun, L. Bottou, G. Orr, and K. R. Müller. Efficient BackProp. In G. Orr and K. Müller,
editors, Neural Networks: Tricks of the Trade, volume 1524 of Lecture Notes in Computer
Science, pages 5–50. Springer Verlag, 1998b.

Y. LeCun, K. Kavukvuoglu, and C. Farabet. Convolutional networks and applications in
vision. In Proceedings of the International Symposium on Circuits and Systems (ISCAS
2010), June 2010.

149

Bibliography

H. Lee, C. Ekanadham, and A. Ng. Sparse deep belief net model for visual area V2. In J. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing
Systems 20, pages 873–880. MIT Press, Cambridge, MA, 2008.

H. Lee, R. Grosse, R. Ranganath, and A. Ng. Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representations. In Proceedings of the 26th Annual
International Conference on Machine Learning (ICML 2009), pages 609–616, New York,
NY, USA, 2009. ACM.

R. Lengellé and T. Denæux. Training MLPs layer by layer using an objective function for
internal representations. Neural Networks, 9(1):83–97, Jan. 1996.

M. LukošEvičIus and H. Jaeger. Survey: Reservoir computing approaches to recurrent neural
network training. Computer Science Review, 3(3):127–149, Aug. 2009.

D. J. C. Mackay. Information Theory, Inference & Learning Algorithms. Cambridge Univer-
sity Press, 1st edition, June 2002.

J. Martens. Deep learning via Hessian-free optimization. In J. Fürnkranz and T. Joachims, ed-
itors, Proceedings of the 27th Internation Conference on Machine Learning (ICML 2010),
pages 735–742, Haifa, Israel, June 2010.

J. Martens and I. Sutskever. Training deep and recurrent networks with Hessian-free opti-
mization. In G. Montavon, G. Orr, and K.-R. Müller, editors, Neural Networks: Tricks of
the Trade, volume 7700 of Lecture Notes in Computer Science, pages 479–535. Springer
Berlin Heidelberg, 2012.

G. Mesnil, Y. Dauphin, X. Glorot, S. Rifai, Y. Bengio, I. Goodfellow, E. Lavoie, X. Muller,
G. Desjardins, D. Warde-Farley, P. Vincent, A. Courville, and J. Bergstra. Unsuper-
vised and transfer learning challenge: a deep learning approach. In I. Guyon, G. Dror,
V. Lemaire, G. Taylor, and D. Silver, editors, Proceedings of the Unsupervised and Trans-
fer Learning Challenge and Workshop, volume 27 of JMLR Workshop and Conference
Proceedings, pages 97–110. JMLR W&CP, 2012.

M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry. MIT
Press, 1969.

V. Mnih, H. Larochelle, and G. Hinton. Conditional restricted Boltzmann machines for struc-
tured output prediction. In F. G. Cozman and A. Pfeffer, editors, Proceedings of the 27th
International Conference on Uncertainty in Artificial Intelligence (UAI 2011), pages 514–
522, July 2011.

G. Montavon and K.-R. Müller. Deep Boltzmann machines and the centering trick. In
G. Montavon, G. Orr, and K.-R. Müller, editors, Neural Networks: Tricks of the Trade,
volume 7700 of Lecture Notes in Computer Science, pages 621–637. Springer Berlin Hei-
delberg, 2012.

G. Montavon, M. L. Braun, and K.-R. Müller. Deep Boltzmann machines as feed-forward hi-
erarchies. In Proceedings of the Fifteenth Internation Conference on Artificial Intelligence
and Statistics (AISTATS 2012), volume 22 of JMLR Workshop and Conference Proceed-
ings, pages 798–804. JMLR W&CP, Apr. 2012.

K. Murphy. Machine Learning: A Probabilistic Perspective. Adaptive Computation and
Machine Learning Series. Mit Press, 2012.

150

Bibliography

V. Nair and G. Hinton. Rectified linear units improve restricted Boltzmann machines. In
J. Fürnkranz and T. Joachims, editors, Proceedings of the 27th Internation Conference on
Machine Learning (ICML 2010), pages 807–814, 2010.

R. Neal. Connectionist learning of belief networks. Artificial Intelligence, 56(1):71–113,
July 1992.

R. Neal. Probabilistic inference using markov chain monte carlo methods. Technical Report
CRG-TR-93-1, Department of Computer Science, University of Toronto, 1993.

R. Neal. Sampling from multimodal distributions using tempered transitions. Statistics and
Computing, 6:353–366, 1994.

R. Neal. Annealed importance sampling. Statistics and Computing, 11:125–139, 1998.

R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental, sparse, and
other variants. In M. I. Jordan, editor, Learning in graphical models, pages 355–368. MIT
Press, Cambridge, MA, USA, 1999.

J. Ngiam, Z. Chen, P. W. Koh, and A. Ng. Learning deep energy models. In L. Getoor
and T. Scheffer, editors, Proceedings of the 28th International Conference on Machine
Learning (ICML 2011), pages 1105–1112, New York, NY, USA, June 2011. ACM.

E. Oja. Simplified neuron model as a principal component analyzer. Journal of Mathematical
Biology, 15:267–273, 1982.

E. Oja. Data compression, feature extraction, and autoassociation in feedforward neural
networks. In T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas, editors, Artificial Neural
Networks, volume 1, pages 737–745. Elsevier Science Publishers B.V., North-Holland,
1991.

E. Oja. The nonlinear PCA learning rule in independent component analysis. Neurocomput-
ing, 17(1):25–45, 1997.

B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381(6583):607–609, June 1996.

B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: a strategy
employed by V1? Vision Res, 37(23):3311–3325, 1997.

J. Portilla, V. Strela, M.Wainwright, and E. Simoncelli. Image denoising using scale mixtures
of Gaussians in the wavelet domain. IEEE Transactions on Image Processing, 12(11):
1338–1351, Nov. 2003.

T. Raiko. Hierarchical Nonlinear Factor Analysis. Master’s thesis, Aalto University School
of Science, 2001.

T. Raiko, H. Valpola, M. Harva, and J. Karhunen. Building blocks for variational Bayesian
learning of latent variable models. Journal of Machine Learning Research, 8:155–201,
May 2007.

T. Raiko, H. Valpola, and Y. LeCun. Deep learning made easier by linear transformations
in perceptrons. In Proceedings of the Fifteenth Internation Conference on Artificial In-
telligence and Statistics (AISTATS 2012), volume 22 of JMLR Workshop and Conference
Proceedings, pages 924–932. JMLR W&CP, Apr. 2012.

R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng. Self-taught learning: transfer learning
from unlabeled data. In Proceedings of the 24th International Conference on Machine
learning (ICML 2007), pages 759–766, New York, NY, USA, 2007. ACM.

151

Bibliography

R. Raina, A. Madhavan, and A. Ng. Large-scale deep unsupervised learning using graph-
ics processors. In Proceedings of the 26th Annual International Conference on Machine
Learning (ICML 2009), pages 873–880, New York, NY, USA, 2009. ACM.

M. Ranzato, Y.-L. Boureau, S. Chopra, and Y. LeCun. A unified energy-based framework
for unsupervised learning. In Proceedings of the Tenth Conference on AI and Statistics
(AISTATS 2007), volume 2 of JMLR Workshop and Conference Proceedings, pages 860–
867. JMLR W&CP, 2007a.

M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse represen-
tations with an energy-based model. In B. Schölkopf, J. Platt, and T. Hoffman, editors,
Advances in Neural Information Processing Systems 19, pages 1137–1144. MIT Press,
Cambridge, MA, 2007b.

M. Ranzato, Y.-L. Boureau, and Y. LeCun. Sparse feature learning for deep belief networks.
In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information
Processing Systems 20, pages 1185–1192. MIT Press, Cambridge, MA, 2008.

C. E. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT Press,
2006.

S. Rifai, G. Mesnil, P. Vincent, X. Muller, Y. Bengio, Y. Dauphin, and X. Glorot. Higher
order contractive auto-encoder. In D. Gunopulos, T. Hofmann, D. Malerba, and M. Vazir-
giannis, editors, Machine Learning and Knowledge Discovery in Databases, volume 6912
of Lecture Notes in Computer Science, pages 645–660. Springer Berlin Heidelberg, 2011a.

S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto-encoders: Explicit
invariance during feature extraction. In L. Getoor and T. Scheffer, editors, Proceedings
of the 28th International Conference on Machine Learning (ICML 2011), pages 833–840,
New York, NY, USA, June 2011b. ACM.

J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400–407, 1951.

F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization
in the brain. Psychological Review, 65(6):386–408, Nov. 1958.

F. Rosenblatt. Principles of neurodynamics: perceptrons and the theory of brain mechanisms.
Report (Cornell Aeronautical Laboratory). Spartan Books, 1962.

S. Roweis. EM algorithms for PCA and SPCA. In Advances in Neural Information Process-
ing Systems 10, pages 626–632, Cambridge, MA, USA, 1998. MIT Press.

D. E. Rumelhart, G. Hinton, and R. J. Williams. Learning representations by back-
propagating errors. Nature, 323(Oct):533–536, 1986.

R. Salakhutdinov. Learning and evaluating Boltzmann machines. Technical Report UTML
TR 2008-002, Department of Computer Science, University of Toronto, June 2008.

R. Salakhutdinov. Learning in Markov random fields using tempered transitions. In Y. Ben-
gio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in
Neural Information Processing Systems 22, pages 1598–1606. 2009.

R. Salakhutdinov. Learning deep Boltzmann machines using adaptive MCMC. In
J. Fürnkranz and T. Joachims, editors, Proceedings of the 27th International Conference
on Machine Learning (ICML 2010), pages 943–950, Haifa, Israel, June 2010.

152

Bibliography

R. Salakhutdinov and G. Hinton. Deep Boltzmann machines. In Proceedings of the Twelfth
Internation Conference on Artificial Intelligence and Statistics (AISTATS 2009), volume 5
of JMLR Workshop and Conference Proceedings, pages 448–455. JMLR W&CP, 2009a.

R. Salakhutdinov and G. Hinton. Semantic hashing. International Journal of Approximate
Reasoning, 50(7):969–978, July 2009b.

R. Salakhutdinov and G. Hinton. A better way to pretrain deep Boltzmann machines. In
P. Bartlett, F. Pereira, C. Burges, L. Bottou, and K.Weinberger, editors, Advances in Neural
Information Processing Systems 25, pages 2456–2464. 2012a.

R. Salakhutdinov and G. Hinton. An effcient learning procedure for deep Boltzmann ma-
chines. Neural Computation, 24:1967–2006, 2012b.

R. Salakhutdinov and I. Murray. On the quantatitive analysis of deep belief networks. In Pro-
ceedings of the 25th International Conference on Machine learning (ICML 2008), pages
872–879, New York, NY, USA, 2008. ACM.

R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted Boltzmann machines for collaborative
filtering. In Proceedings of the 24th international conference on Machine learning (ICML
2007), pages 791–798, New York, NY, USA, 2007. ACM.

L. K. Saul, T. Jaakkola, and M. I. Jordan. Mean field theory for sigmoid belief networks.
Journal of Artificial Intelligence Research, 4:61–76, 1996.

J. Schmidhuber, D. Cireşan, U. Meier, J. Masci, and A. Graves. On fast deep nets for AGI
vision. In J. Schmidhuber, K. R. Thórisson, and M. Looks, editors, Artificial General
Intelligence, volume 6830 of Lecture Notes in Computer Science, pages 243–246. Springer
Berlin Heidelberg, 2011.

B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regular-
ization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001.

N. N. Schraudolph, J. Yu, and S. Günter. A stochastic quasi-Newton method for online
convex optimization. In M. Meila and X. Shen, editors, Proceedings of the Eleventh In-
ternational Conference Artificial Intelligence and Statistics (AISTATS 2007), volume 2 of
JMLR Workshop and Conference Proceedings, pages 436–443. JMLR W&CP, 2007.

P. Smolensky. Information processing in dynamical systems: foundations of harmony theory.
In Parallel distributed processing: explorations in the microstructure of cognition, vol. 1:
foundations, pages 194–281. MIT Press, Cambridge, MA, USA, 1986.

J. Snoek, H. Larochelle, and R. Adams. Practical Bayesian optimization of machine learning
algorithms. In P. Bartlett, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors,
Advances in Neural Information Processing Systems 25, pages 2960–2968. 2012.

R. Socher, C. C. Lin, A. Ng, and C. Manning. Parsing natural scenes and natural language
with recursive neural networks. In L. Getoor and T. Scheffer, editors, Proceedings of the
28th International Conference on Machine Learning (ICML 2011), pages 129–136, New
York, NY, USA, 2011. ACM.

I. Sutskever. Training Recurrent Neural Networks. PhD thesis, University of Toronto, 2013.

I. Sutskever, J. Martens, and G. Hinton. Generating text with recurrent neural networks.
In L. Getoor and T. Scheffer, editors, Proceedings of the 28th International Conference
on Machine Learning (ICML 2011), pages 1017–1024, New York, NY, USA, June 2011.
ACM.

153

Bibliography

R. H. Swendsen and J.-S. Wang. Replica Monte Carlo simulation of spin-glasses. Physical
Review Letters, 57(21):2607–2609, Nov. 1986.

K. Swersky, M. Ranzato, D. Buchman, B. Marlin, and N. de Freitas. On autoencoders and
score matching for energy based models. In L. Getoor and T. Scheffer, editors, Proceedings
of the 28th International Conference on Machine Learning (ICML 2011), pages 1201–
1208, New York, NY, USA, June 2011. ACM.

Y. Tang and R. Salakhutdinov. A new learning algorithm for stochastic feedforward neural
networks. In ICML 2013 Workshop on Challenges in Representation Learning, Atlanta,
Georgia, June 2013.

Y. Tang and I. Sutskever. Data normalization in the learning of restricted Boltzmann ma-
chines. Technical Report UTML-TR-11-2, Department of Computer Science, University
of Toronto, 2011.

Y.-W. Teh, M. Welling, S. Osindero, and G. Hinton. Energy-based models for sparse over-
complete representations. Journal of Machine Learning Research, 4:1235–1260, Dec.
2003.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statis-
tical Society, Series B, 58:267–288, 1994.

T. Tieleman. Training restricted Boltzmann machines using approximations to the likelihood
gradient. In Proceedings of the 25th Internation Conference on Machine Learning (ICML
2008), pages 1064–1071, New York, NY, USA, 2008. ACM.

T. Tieleman and G. Hinton. Using fast weights to improve persistent contrastive divergence.
In Proceedings of the 26th Annual International Conference on Machine Learning (ICML
2009), pages 1033–1040, New York, NY, USA, 2009. ACM.

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of the
Royal Statistical Society, Series B, 61:611–622, 1999.

D. S. Touretzky and D. A. Pomerleau. What is hidden in the hidden layers? Byte, 14:
227–233, 1989.

V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag New York, Inc., New
York, NY, USA, 1995.

P. Vincent. A connection between score matching and denoising autoencoders. Neural Com-
putation, 23(7):1661–1674, July 2011.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising
criterion. Journal of Machine Learning Research, 11:3371–3408, Dec. 2010.

M. Welling, M. Rosen-Zvi, and G. Hinton. Exponential family harmoniums with an appli-
cation to information retrieval. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances
in Neural Information Processing Systems 17, pages 1481–1488. MIT Press, Cambridge,
MA, 2005.

M. P. Wellman and M. Henrion. Explaining ’explaining away’. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15(3):287–292, Mar. 1993.

J. Xie, L. Xu, and E. Chen. Image denoising and inpainting with deep neural networks.
In P. Bartlett, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages 350–358. 2012.

154

Bibliography

L. Younes. Estimation and annealing for Gibbsian fields. Annales de l’institut Henri Poincaré
(B) Probabilités et Statistiques, 24(2):269–294, 1988.

155

Bibliography

156

9HSTFMG*affhej+

ISBN 978-952-60-5574-9
ISBN 978-952-60-5575-6 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934
ISSN 1799-4942 (pdf)

Aalto University
School of Science
Department of Information and Computer Science
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 21

/2
014

K
yunghyun C

ho
F

oundations and A
dvances in D

eep L
earning

A
alto

 U
n
ive

rsity

Department of Information and Computer Science

Foundations and Advances
in Deep Learning

Kyunghyun Cho

DOCTORAL
DISSERTATIONS

