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Since the invention of the World Wide Web the content and services provided
on the web have changed signi�cantly. In search of cost savings governments
and businesses push online services, and the web has therefore become ever more
important to many people. It is therefore important to understand the performance
of web page delivery, in order to improve the user experience of the web.

The goal of this Master's thesis is to evaluate the network performance of web
page delivery in relation to content distribution networks. We use the global mea-
surement platform PlanetLab to perform active measurements of the performance
of DNS and HTTP when downloading web pages. Domain names are resolved
using iterative resolution, Google DNS, OpenDNS, and the default DNS server of
measurement nodes. This enables us to asses how the choice of DNS resolver af-
fects CDN server selection. The measurements reveal that network latency has the
greatest impact on DNS resolution time and that nearby DNS servers will generally
have the lowest resolution time. We developed an e�ective method of identifying
CDNs and applied it to the measurement data. We analyze the accuracy of the
DNS resolvers and determine that the use of a recursive DNS server close to the
end-user typically results in server selections more similar to the optimal server
selection of a CDN. However, we did not establish a relationship between resolver
accuracy and HTTP performance. Finally, we compare the throughput of CDNs
and observe that CDNs are likely optimized for di�erent �le sizes.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

With the invention of the World Wide Web (WWW), the rapid growth of the Inter-

net began. The “web” provided an easy platform for communication and publishing

content, and two decades later it is still the primary method for accessing online con-

tent and services. Over the years the content and services offered have changed and

nowadays services like Google Docs challenge the need for traditional desktop appli-

cations by moving all functionality into the browser, and the data into “the cloud”.

The content of web pages have changed from being mostly static text and images,

to offering highly dynamic and interactive interfaces with much richer graphical el-

ements including video. It can be argued that the changes in content have been

made possible by advances in network technologies and that these advances have

been driven by the increasing Internet traffic. The increasing importance of online

services on the web have also created a need for better ways of evaluating the quality

of such services. The concept of quality can cover multiple aspects of a service de-

pending on the perspective, but this Master’s thesis focuses on the network-related

aspects of service quality, as these are quantified automatically more easily.

Three parties are involved when Internet services are delivered: the consumer, the

internet service provider (ISP), and the content provider. The consumers are paying

for Internet access and potentially content, and thus have an interest in making sure

that the purchased service performs as expected. The ISPs and content providers

have a financial incentive to keep their customers happy. Additionally, content

providers may be hosting servers inside ISP networks and therefore wish to know

how the network of an ISP performs.
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CHAPTER 1. INTRODUCTION

Although video streaming traffic accounted for 64% of Internet traffic in 2012 [1],

web pages remain an important part of the Internet due to the services provided on

web pages. This makes the performance of web page delivery an important area of

research as it affects practically all Internet users.

1.1 Active and Passive Measurements

Content providers can monitor the performance of their services with little effort,

but only at point of which traffic enters the Internet. However, since the Internet is

a best-effort service, there is no guarantee that good performance at the server side

is equal to good performance at the client side.

The first step of delivering a good experience for a service provider, is to ensure

adequate capacity on the server side, such that service does not deteriorate due to

overload. Evaluating service performance at the client-side can either be done ac-

tively or passively, and each method has its advantages and disadvantages. Passive

measurements can be used to monitor one or more end-users, depending on the link

where traffic is captured. The main benefit of passive measurements is that the per-

formance of real Internet traffic is measured, and that no additional traffic is injected

into the network which would distort measurement results. Passive measurements

are useful when the goal is to study general tendencies of real traffic, because traffic

is generated by actual users. This of course requires users to use a specific service in

order for its performance to be measured. Passive measurements can deliver large

amounts of data, but has privacy issues since sensitive user data may be captured.

For this reason, passive measurements require legal paperwork and adherence to

data protection laws in the country of measurement.

Active measurements have fewer privacy issues because all measurement traffic is

artificially generated and therefore does not contain sensitive information. The main

privacy concern of active measurements is the origin of measurements, e.g. source IP

address and geographical location, but this information can easily be anonymized. If

the origin of measurements were not anonymized it would be possible link individu-

als or households with e.g. websites visited. The key benefit of active measurements

is greater control in terms of which services are measured and the behavior of mea-

surement software. Another benefit of active measurements is that they can be used

for network monitoring by taking measurements with regular intervals. Additionally,
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measurement applications could be used to diagnose network problems by triggering

them when failures occur. The disadvantage of active measurements is that they

compete with existing traffic on a network and that the measurements change the

traffic profile of a network. The effects of cross-traffic can be reduced by monitoring

the local network passively for traffic, but this may be problematic from a privacy

point of view. If a software-based measurement agent is used, cross-traffic detec-

tion may be limited to the host running the software and therefore not be able to

detect traffic generated by other devices on the local network. For hardware-based

measurement agents, cross-traffic detection is complicated by the local area network

configuration and the presence of both wired and wireless interfaces. An accurate

way of determining cross-traffic is to pass all traffic through the measurement agent

operating as a switch, and simply count the number of bytes processed by the net-

work interfaces without ever inspecting traffic. From a performance perspective this

is not the best solution and the setup requires end-users to connect the measurement

agent correctly.

The goal of this Master’s thesis is to evaluate the DNS and HTTP performance

of web sites. In order to analyze content distribution networks the measurements

will have to be carried out at many geographical locations. Performing passive

measurements in many locations would have taken a great deal of time to orchestrate

and would have complicated the performance comparison for specific services. For

these reasons we decided to perform active measurements as this allowed specific

services to be measured in the same way across all measurement locations.

1.2 Domain Name System

The Domain Name System (DNS) is an integral part of the Internet and is often

referred to as the phone book of the Internet. DNS is most commonly used to resolve

domain names like www.aalto.fi into one or more IP addresses before connecting

to a service. The resolution of domain names can be done either iteratively or

recursively. Iterative resolution consists of querying multiple DNS servers until the

authoritative name server of the domain name is found. This server will always

return the most recent version of the requested DNS record. When resolving a

domain name recursively, a single query is sent to a recursive DNS server which

will then resolve the domain name iteratively. Recursive DNS servers typically
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cache the results of the iterative queries undertaken on behalf of its clients and is

allowed to answer queries using the cached results. The validity of the cached DNS

information is controlled by the authoritative name server that originally delivered

the information.

Home gateways often implement a recursive DNS server so that all clients on the

local area network can benefit from faster DNS replies. In a typical setup LAN

clients query the home gateway which in turn queries the recursive DNS servers of

the ISP when necessary. In recent years the use of third-party DNS servers outside

of ISP networks have become popular for various reasons. We believe that the most

significant reasons include IP addresses of resolvers being easy to remember and that

DNS information is less likely to be censored by third-party DNS servers. Third-

party DNS services have been criticized for not actually improving performance and

for even impairing the service of users [2]. The main point of the criticism is that the

latency between client and server typically defeats any performance optimizations.

Even if the DNS resolver of an ISP is slow, its proximity to the end-users still

makes the resolution time shorter than when using any third-party resolver in most

cases. Additionally, third-party DNS resolvers are suspected of providing suboptimal

server selections for content distribution networks. Because of the distance between

end-users and third-party DNS servers, the assumption that the source IP address

of a DNS query is equivalent to the location of the end-user is no longer valid.

Understanding the performance and use of DNS is therefore an important aspect of

not only web site performance, but the performance of most Internet services.

1.3 Problem Statement

Since the invention of the World Wide Web the content of the web has changed

significantly and the web pages of today are sophisticated, providing desktop-like

interfaces with a high degree of interactivity. The change in content has also made

the web ever more important to a lot of people across the world. In search of cost

savings, governments and banks push online services providing critical services to

society and businesses. It is therefore ever more important to understand the per-

formance of web page delivery, in order to monitor and improve the user experience

of the web.
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The aim of this Master’s thesis is to evaluate the network performance of web page

delivery. This will be accomplished by means of active measurements of a set of

popular websites. The performance of DNS and HTTP will be measured on a page-

element level in order to analyze potential performance differences depending on the

origin of content. Finally, using the collected DNS information the performance of

web pages will be linked to the use of content distribution networks.

This Master’s thesis is structured as follows. Chapter 2 introduces the Domain

Name System, web pages, HTTP, and content distribution networks. Chapter 3

explains the research goals of this thesis, performance metrics of interest, and how

these will be measured. In Chapter 4 the collected measurement data is analyzed

and the results of the analysis are discussed in Chapter 5. Finally, the conclusions

are summarized in Chapter 6.
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Chapter 2

Background

2.1 Domain Name System

In the early days of the Internet, IP addresses associated with hostnames were stored

is a single hosts file (hosts.txt), which was distributed using FTP to all hosts in the

Internet. Changes to hostnames or IP addresses were submitted to the maintainer

of the hosts file, which would then update the file. The changes would propagate

through the internet as each host downloaded the latest version of the hosts file.

This approach offered basic name resolution and worked reasonably well due to the

limited number of hosts in the Internet. However, the centralized nature of this

solution also meant that it had poor scalability and with the increase in number

of hosts connected to the Internet, a more efficient and scalable solution for name

resolution was needed.

The Domain Name System (DNS) [3] was designed to solve the problem of resolving

hostnames. Domain names are hierarchical and consists of a series of labels, each a

subdomain of the previous, except for the first label which is the root domain. In

written form a domain name is separated by dots and ordered by decreasing level

in the hierarchy such that every domain name ends with the root domain. The

domain name www.aalto.fi. consists of four labels: www, aalto, fi, and the root

label which is empty. Because all domains names contain the root domain, the last

dot is generally omitted. Figure 2.1 shows an example of the DNS hierarchy of six

domain names including the root domain: ”fi.”, ”aalto.fi.”, ”elec.aalto.fi.”,

”www.aalto.fi.”, and ”mail.aalto.fi.”.
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root domain

fi

aalto

www mailelec

Figure 2.1: Example of DNS hierarchy.

DNS is essentially a distributed database and it was thought that it would also be

used to store other information besides hostname to IP address mappings, e.g. email

addresses associated with a domain. Nowadays, the primary use of DNS is resolution

of domains into IP addresses and providing information about email servers. The

hierarchical structure of DNS is one of the main reasons for its ability to scale

well. Each domain label in Figure 2.1 can be controlled by separate authoritative

name server, or by a single authoritative name server for the root domain. An

authoritative name server can delegate control of its subdomains to one or more

name servers and thereby reduce its load. A domain and its subdomains can also

have the same authoritative name server, which is the case for the aalto.fi and its

subdomains elec, www, and mail.

The second feature of DNS that improves scalability is record time-to-live (TTL)

values, which specifies how long DNS records are valid. The TTL value of DNS

records determine how frequently clients must refresh DNS information by resolving

a domain name. When a DNS client receives a response to a DNS query, it is

allowed to store the received records in its local cache until their TTL expires. Any

subsequent DNS queries will be answered using the local cache without querying a

DNS server. This greatly reduces the load on the DNS infrastructure, depending

on the lifetime of records. Allowing DNS records to be used for a certain period of

time also makes the DNS system tolerant to failures.

The fault tolerance of DNS depends on the rate at which DNS information expires

at end-users. It will take longer time for a service providing DNS records with high

TTL values to become unavailable to all users if the its authoritative name servers

were to fail. Records with longer lifetime have a higher probability of remaining

valid until a DNS problem is resolved. On the other hand, the use of high TTL
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values also poses a problem if a service provider were to change DNS records. In

this case the clients with cached DNS records could experience service disruption

until the cached records expire and the domain name is resolved again. In order

to take down the DNS infrastructure an attacker would need to make all the au-

thoritative name servers of the root domain unavailable for a substantial amount of

time. Distributed denial of service attacks have been targeted against the DNS root

servers, but attackers have not been able to sustain the attack for long enough to

affect the DNS infrastructure [4]. Ten out of thirteen DNS root servers are using

anycast to distribute DNS queries across hundreds of servers, and it is therefore

difficult to overload all root servers at the same time.

2.1.1 Message and Record Formats

The DNS protocol uses UDP as transport protocol, because the lack of a connection-

setup phase reduces name resolution time and network load. Naturally DNS suffers

from the lack of reliability like any protocols carried over UDP, but with the amount

of DNS traffic on the internet today, it was a good decision to optimize with respect

to traffic volume rather than reliability.

Type

Class

TTL

Data length

Data

Record name

16 bit

Figure 2.2: DNS record format.

The DNS protocol uses a single message format for both queries and responses. The

message format is shown in Figure 2.3. A DNS message consists of a header and four

record sections: questions, answers, authorities, and additional records. The header

contains information about the number of records in the record sections and how

a message should be processed by DNS clients and servers. Figure 2.2 shows the

format of a DNS resource record. Each resource record consists of six fields: name,
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Transaction ID

Flags and response code

Number of question records

Number of answer records

Number of authority records

Number of additional records

16 bit

Question records

Answer records

Authority records

Additional records

Figure 2.3: DNS message format.

type, class, TTL, data length, and data. The record name indicates which domain

the record contains information about and the type tells what type of data is stored

in the data field. When DNS was designed several network types existed and the

class field was included in the message format as a way of separating information

by network type. Nowadays, only the Internet class is used and the class field is

an unnecessary legacy field that reminds us of a time when the Internet was less

dominant than today. The RFCs concerning DNS define the possible record types

and the format used in the data field for each type [3]. Over the years, extensions to

DNS have been made in the form of extra resource record types. These extensions are

compatible with the original DNS specification and the new record types specified

in separate RFC documents.

Type Description

A 32 bit IPv4 address record.

AAAA 128 bit IPv6 address.

CNAME Alias pointing to another domain name.

NS Nameserver record containing information about
an authoritative name server of a domain.

MX Mail exchange record telling what servers should
handle email for a domain.

Table 2.1: Common DNS record types.
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2.1.2 Resource Record Types

The record name field in a DNS record contains the fully qualified domain name

about which the record contains information. The use of full domain names and not

a single domain label is necessary because a name server can be the authoritative

name server of multiple domains. Using full domain names prevents ambiguity. In

order to reduce the size of DNS responses, domain names are compressed using

a pointer scheme. Subsequent records in the same message contain references to

previously used domain names rather than repeating the full domain name. Table 2.1

shows a list of the most commonly used DNS record types. The importance of these

record types have not changed with time and improvements to DNS have typically

been implemented as extra record types complementing the previously specified

record types. IPv4 and IPv6 addresses are represented by A and AAAA records,

respectively. The data field of these records has a fixed length of 32 bit or 128 bit.

The CNAME record type is used to create domain aliases and contains the full alias

domain name. For instance, the domain www.aalto.fi uses a CNAME record to

point to the domain aalto.fi. Whereas A, AAAA, and CNAME record are the

typical record types of interest to end-users, the NS record defines the hierarchy of

DNS. The NS record contains information about authoritative name servers of a

domain and is used to delegate control of subdomains to other name servers. The

data field of an NS record contains the domain name of an authoritative name server

of the domain name. When resolving a domain name iteratively NS records are used

to determine the name servers relevant to the resolution of the domain name.

2.1.3 Protocol

Although the DNS message format supports up to 65535 question records in a single

DNS query, the de facto standard is that only one question record is sent per query

and servers will ignore queries with multiple questions. Move advanced queries

involving e.g. DNSSEC will include extra query information in the additional records

section of the query as specified by Extension Mechanisms for DNS [5].

A typical DNS query message contains a single question record matching the record

type of interest. Thus if the client wants to know the IPv4 address of aalto.fi, the

question record will be of type A and the name field contain “aalto.fi”. Figure 2.4

shows an example of a DNS query message. The transaction ID of the message is

selected randomly such that two pending queries never have identical IDs. Given
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the size of the transaction ID space, collisions are possible if many queries are sent

by the same client. In this case, the transaction ID space can be extended by also

randomizing the UDP source port of queries. This effectively increases the identifier

space with a factor of 65535, thereby making collisions highly improbable.

Transaction ID: 0xABCD

Flags and response code

Number of question records: 1

Number of answer records: 0

Number of authority records: 0

Number of additional records: 0

Data length: 0

Data: (empty)

Answer records: (empty)

Authority records: (empty)

Additional records: (empty)

Type: A

Class: Internet

TTL: 0

Data length: 0

Data: (empty)

Record name: www.aalto.fi

Figure 2.4: Example of a DNS query message.

DNS records can be obtained through either recursive resolution or iterative reso-

lution. A typical DNS resolver will send queries with the “recursion desired” flag

enabled to a recursive DNS server either in the home gateway or provided by the

ISP. When the flag is set, the DNS server is allowed to forward the query if it cannot

be answered using cached information. Of course, the query will only be forwarded

if the server configuration allows it. When using recursive name resolution, the DNS

client only needs to send a single query message unless the packet is lost. The re-

cursive name server will then handle the more complex iterative resolution of the

domain name, if necessary. Iterative name resolution consists of sending the same

query message repeatedly to different name servers. If the DNS resolver has no

cached information, the first DNS server contacted is one of the 13 authoritative

name server of the root domain, also know as root servers. If a DNS server is not

the authoritative name server of the queried domain name, it will return an NS

record telling which server most likely knows more about the domain in question.

Consider the iterative resolution of the domain aalto.fi:
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1. The DNS client sends the DNS message shown in Figure 2.4 to a DNS root

server.

2. The root server does not have an A record for the full domain name and

therefore returns an NS record saying that the authoritative name server of

the fi domain can provide a better answer.

3. The DNS client repeats the query to the name server of the fi domain, and

this server returns an NS record for the aalto.fi domain.

4. The DNS client has now received the address of the authoritative name server

of the aalto.fi domain and when this server is queried it returns one or more

A records for the aalto.fi domain.

Because NS records contain the domain name of an authoritative name server of a

domain, it may be necessary for the resolver to obtain an A or AAAA record for this

domain before being able to continue the resolution of the original domain name.

For this reason, the use of so-called glue records in DNS responses containing NS

or CNAME records are necessary in order to connect different parts of the DNS

hierarchy together at the network layer. Without any IP address information it

would not be possible to query name servers defined in NS records.

2.1.4 Issues and Vulnerabilities

In 2008 Dan Kaminsky described how DNS caches could easily be poisoned due

to a flaw in common DNS server implementations [6]. The transaction ID of DNS

messages is only 16 bits long and Kaminsky demonstrated that it was possible to

predict transaction IDs. By correctly predicting the transaction ID of a DNS query,

an attacker could send malicious responses that would be accepted as valid by a

DNS resolver. The attack could be used to poison DNS caches with invalid DNS

information, and thereby potentially redirect traffic to malicious servers. The attack

was possible because most DNS software used fixed source port numbers of DNS

requests and did not randomize the transaction ID. The use of sequential transaction

IDs made it possible to send relatively few fake DNS responses and have one of them

accepted with high probability. The problem was mitigated by randomizing both

source UDP port and transaction ID, thereby increasing the transaction ID space.

The DNS protocol still has a weakness but the probability of an attacker guessing
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both the source port and transaction ID is extremely low. It is also infeasible

for an attacker to flood a DNS client with all possible combinations, as once the

correct answer is received by the DNS client all subsequent messages with the correct

transaction ID are ignored.

2.1.5 DNS Security Extensions

The DNS Security Extensions (DNSSEC) [7] [8] were designed to improve the se-

curity of the original DNS standard, which did not offer any means of ensuring

authenticity and integrity of DNS records. Applications protocols such as HTTP

have long been protected by Transport Layer Security1 (TLS), and this has gener-

ally mitigated the threat of DNS tampering by teaching users always to make sure a

web page URL starts with https before providing sensitive information. However,

TLS does not protect against DNS poisoning and it is possible to redirect users by

manipulating DNS information. Victims could be redirected to malicious servers

and be tricked into providing sensitive information. DNSSEC is important because

it prevents attackers from manipulating DNS information and in combination with

TLS, it will significantly improve online security.

DNSSEC ensures authenticity and integrity of DNS records using public-key cryp-

tography in a similar fashion to TLS. The hierarchical structure of DNS can be

mapped to chains of trust in a public-key infrastructure. Each authoritative name

server has a public and private key, and the public key is available as a DNSKEY

record. An authoritative name server that delegates control of subdomains is known

as the parent of the subdomains. The parent vouches for its subdomains by signing

a hash of the public key of the subdomains. The signed hash is stored as a Delega-

tion Signature (DS) record at the parent name server. The parent name server can

in turn be signed by its parent and so on, until the chain of trust reaches a trust

anchor. A trust anchor is a public key distributed out-of-band and which is the root

of a trust chain. The root domain has been signed and its public key distributed

with DNS resolvers and can therefore be used to validate DNSSEC information.

Backwards compatibility is maintained by signing hashes of existing record types

and storing the signature in a Resource Record Signature (RRSIG) record. If a

client has DNSSEC capabilities it will indicate so in the additional records section

of its DNS queries. DNS responses will contain the requested record along with its

1Previously known as Secure Sockets Layer (SSL)
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corresponding RRSIG record and the DNSKEY record of the domain. The client

will verify that the DNSKEY of the domain is trusted by verifying the chain of

trust from the domain name to a trust anchor. If the key is trusted it is used to

authenticate and verify the integrity of the resource records in the DNS response.

The specification of DNSSEC started more than 10 years ago, but actual deployment

in the Internet is still limited. As of November 9, 2013 36% of the top-level domains

had been signed by the DNS root [9] and less than 0.5 percent of the subdomains of

com had been signed [10]. The slow adoption can mainly be attributed to DNSSEC

being more cumbersome to manage. Cryptographic keys must be managed safely

and improper configuration will result in DNSSEC-capable clients rejecting DNS in-

formation and thereby be unable to access services. Many services managing domain

names are providing tools to help configure DNSSEC, so hopefully the adoption rate

will increase in the future.

2.1.6 Third-Party Resolvers

Google DNS and OpenDNS are the two most popular third-party DNS services.

Google claims that its service “speeds up your browsing experience” by offering

faster DNS resolution through higher capacity and improved caching compared to

ISP DNS servers. Furthermore, the user base of Google DNS is much larger than

that of any ISP and the probability of cache-misses should therefore be lower. Google

DNS serves 70 billion DNS queries per day on average and is the worlds largest DNS

resolution service [11]. OpenDNS served an average of 49 billion DNS queries per

day between October 9 and November 7, 2013 [12]. Both services rely on anycast to

direct end-users to nearby servers.

Ager et al. [13] evaluated the performance of Google DNS, OpenDNS, and the default

resolver of measurement nodes using active measurements. The measurements were

performed using colleagues and friends, and this approach provided 50 vantage points

in different ISP networks, spread across 28 countries. The measurement locations

were connected to the Internet through commercial ISPs, but the characteristics

of the connections were not described. The study focused on DNS performance of

web pages, and measured the name resolution of the main domain along with the

domains of page elements. The 5000 most popular domain names and the 2000

least popular domain names were selected from Alexa’s global rankings [14]. In
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addition, the web pages of the top 1000 Alexa rankings were analyzed and 3500

domain names of page elements were selected. This selection of domain names was

made such that some domains should have low cache-miss probability, while others

should most likely have a high cache-miss probability. The measurement procedure

was designed to measure the impact of cache misses, by issuing sequential DNS

queries for the same domain name to the same DNS resolver such that differences

in resolution time could be recorded. The measurements showed that the default

resolver generally outperforms Google DNS and OpenDNS, but not in all cases. The

better performance of the default resolver comes from the fact that the latency to the

client is much lower than between the third-party resolvers and the client. The client

must be very close to a Google DNS or OpenDNS server in order for the performance

to be comparable to the default resolver. Additionally, the study showed that some

internet service providers load balance queries to their DNS servers, and thereby

impair the performance of their setup because the servers did not use a shared DNS

cache. Subsequent queries for the same domain name might not be directed to

a server with the requested record in its cache. Ager et al. concluded that the

proximity of the client and DNS resolver is the limiting factor for DNS resolution

time. Furthermore, any optimizations made by Google DNS or OpenDNS could not

be confirmed, and if present generally did not yield better performance compared

to using the default DNS resolver. Finally, it was observed that for the tail of the

distribution of DNS resolution times, OpenDNS performed significantly worse than

Google DNS.

2.2 Web Pages and HTTP

A web page is basically a file containing text and HyperText Markup Language

(HTML) [15] syntax, defining the layout and files needed to render a page. HTML

has become more advanced over the years and so has web pages. Modern web

pages can be highly dynamic and rely heavily on JavaScript to provide interactivity

and create content. The main content type categories of web pages are: HTML,

JavaScript, style sheets, images, and plugins. The HTML text provides text con-

tent and the general structure of a web page along with embedded JavaScript, style

sheets, and images. The JavaScript content of a web page typically consists of linked

libraries and scripts utilizing these libraries. Style sheets allow web page designers

to easily manipulate the look of a page without modifying HTML syntax. Images

16 / 82



CHAPTER 2. BACKGROUND

constitute the graphical content of web pages and can be embedded in the HTML

text, but are usually files linked to using HTML tags. Plugins are software that

provide functionality not natively supported by web browsers. Two popular plugins

for web browsers are Java and Flash. Flash became a popular choice for video play-

back because this was not supported by the HTML standard. Java in the form of

Java applets is used on the web for instance by online banking solutions, but many

companies are abandoning Java applets due to security issues and the lack of Java

support on mobile devices. The specification of HTML 4.01 was completed in 1999

at a time where the web was quite different compared to the web pages of today.

The standardization of HTML 5 is expected finish in the near future and is a ma-

jor overhaul. Browsers which implement HTML 5 will support a range of features

natively which previously required plugins. These features will be accessible as new

HTML tags and JavaScript functions, and hopefully result in a more coherent and

cross-platform compatible web.

GET /search?q=KEYWORD HTTP/1.1

host: www.google.fi

accept-encoding: gzip,deflate,sdch

accept-language: en-US,en;q=0.8,da;q=0.6

user-agent: Chrome/30.0.1599.114 Safari/537.36

accept: text/html

cache-control: no-cache

Figure 2.5: Example of HTTP headers in a GET request.

Web pages are delivered over the Internet using the HyperText Transfer Proto-

col (HTTP), which is an application-layer protocol running on top of TCP. The

download of any file over HTTP can be divided into three phases: domain name

resolution, TCP connection establishment, and file transfer. In the first phase the

domain name is resolved by the DNS resolver of the operating system. If the resolver

has the IP address of the domain in its cache, this address is used in the second step.

Otherwise, the resolver continues by sending a recursive DNS query to its default

DNS server. In the second phase, a TCP connection is established to the IP address

of the domain on port 80 which is the default HTTP port. Once the connection

has been established, the HTTP client can send a request to the HTTP server. The

HTTP server either responds with the requested file, a redirection command, or an

error page. Figures 2.5 and 2.6 show examples of the HTTP headers for a GET
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request and a response, respectively. In a request the header contains the path of

the requested file along with the domain name it belongs to. It is necessary to in-

clude the domain name in the request, because an HTTP server may serve multiple

domain names on the same IP address. The header also contains information about

the HTTP clients capabilities, such as HTTP version, web browser, and accepted

compression schemes. The first line of a response always contains the HTTP version

used by the server, a three-digit status code, and optionally a human-readable status

message. The remaining lines of the response header contain information relevant

to the decoding of the payload of the response, such as content type, content length,

encoding, and compression scheme. HTTP responses often contain a creation and

expiry time, along with information about the cacheability of the payload. This

information is used by HTTP clients to refresh content when needed and for HTTP

caches to determine whether content should be cached.

HTTP/1.1 200 OK

cache-control: private, max-age=0

content-encoding: gzip

content-type: text/html; charset=UTF-8

Date: Sun, 10 Nov 2013 09:15:41 GMT

Expires: Sun, 10 Nov 2013 09:17:41 GMT

Figure 2.6: Example of HTTP headers in a response.

Figure 2.7 shows the process of downloading a web page and its elements. The name

resolution phase is repeated once for each unique domain name. In HTTP 1.0 a new

TCP connection is used to transfer each file and the connection-establishment is thus

repeated before every file transfer. Delivering a single file per HTTP connection,

makes HTTP clients and servers easy to implement, but at the cost of less efficient

transfers. HTTP 1.1 supports persistent connections where multiple requests can be

sent over the same TCP connection, thereby reusing the connection for multiple file

transfers. Figure 2.8 shows the process of downloading a web page using persistent

connections. The figure shows how the files downloaded in Figure 2.7 could be down-

loaded using only two TCP connections. Technically, the connection-establishment

phase of a file transfer is only required once per domain name as all files hosted on

the same domain could ideally be transferred over a single connection. The benefit

of persistent connections is that the initial TCP handshake is avoided and the con-

gestion window is larger for subsequent file transfers, because the connections do not

have to undergo slow start again. Persistent connections improve performance on
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high-latency links because the number of packet round-trips is reduced. However,

the HTTP client must wait for the server to respond before requesting another file

and this adds a round-trip time. The extra round-trip time can be avoided by us-

ing pipelining where multiple requests are sent immediately after each other on the

same HTTP connection. The server then responds to each request in the order they

were sent and this results in the best utilization of an HTTP connection. The most

noticeable problem with HTTP pipelining is head-of-line blocking, where processing

of one request delays the processing of the subsequent requests, as requests must be

processed in the order they were sent. This reduces the throughput compared to

using multiple TCP connections. Modern web browsers therefore use both multiple

connections and pipelining to achieve the best download performance [16] [17]. We

could not find any statistics on the usage of HTTP pipelining, but the tendency

appears to be that HTTP servers support persistent connections but not necessarily

pipelined requests. The most popular web browsers support this pipelining [18], but

this is of little use if servers do not.

Time
DNS resolution TCP connect File transfer

Parse file

TCP connect File transfer

TCP connectDNS resolution File transfer

Domain A

Domain A

Domain B

TCP connectDNS resolution File transferDomain B

Figure 2.7: Web page download without persistent connections.

Time
DNS resolution TCP connect File transfer

Parse file

File transfer

TCP connectDNS resolution File transfer

Domain A

Domain B File transfer

Figure 2.8: Web page download using persistent connections.

The main HTML file of a web page is the starting point of any web page down-

load. The web browser parses the HTML syntax while it receives the file from the

HTTP server and determines which additional files need to be downloaded, such

that transfer of these files can begin while the first file is still being transferred. For

this reason, most web browsers render web pages progressively as they receive page

elements. Browsers impose limits on HTTP transfers in terms of maximum number
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of overall and per-hostname simultaneous connections allowed. These limits vary

from browser to browser, but typically 6 connections per hostname are allowed.

The maximum number of connections independent of domain names varies a lot

between browsers. Internet Explorer 9 allows up to 35 connections and Firefox 18

allows 11 connections [18].

Several studies deal with the performance of web page downloads, but unfortunately

these studies are focused on the performance over mobile networks and their results

are thus not directly comparable to measurements in wired networks.

Pries et al. studied the composition of the top 1 million web pages from Alexa [14]

and presented an updated model of the characteristics of web page content [19].

The web page download performance was not measured, because their goal was to

develop a model of web content. By considering previous models for HTTP content,

it was concluded that web pages are growing in file size and number of page elements.

Additionally, web pages are being downloaded from a greater number of servers than

previously and this may affect download performance. Their measurements showed

that the mean uncompressed file sizes was roughly 50% larger than the median file

size.

2.3 Content Distribution Networks

With the growth of the Internet came the need for greater capacity to deliver con-

tent. The only way for a service provider to handle millions of simultaneous users

is to distribute requests across many servers. When it comes to operating content

distribution infrastructures, two approaches or a combination of both are gener-

ally used. The first and perhaps most common approach, is to build data centers

which contain a large number of servers. Data centers concentrate capacity in lo-

cations with good connectivity to the Internet, and this enables easy maintenance

and thereby reduced operational expenses. Furthermore, data centers are designed

for high reliability with redundant links to the Internet through multiple network

operators. The second approach consists of distributing the capacity of a data center

across many geographical locations. These locations may be within data centers,

ISP networks, or at Internet exchanges. Each location has little capacity compared

to a data center and may not have as high reliability, depending on the location.
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However, the use on many locations with different links to the Internet, makes it

practically impossible for a service provider to end up in a situation where all servers

are disconnected from the Internet. Granted, it is unlikely this would happen to a

data center, but data centers can be said to be more of an “all eggs in one basket”

approach. For this reason service providers use multiple independent data centers

for additional redundancy.

The purpose of content distribution networks (CDNs) is to distribute the load of a

service across an infrastructure such that data can be delivered with high perfor-

mance and thereby give users a higher quality of service. Architectures with few

or many hosting locations can be used to optimize content delivery. However, the

concept of a CDN is often associated with a distributed architecture, perhaps be-

cause the largest CDN provider Akamai has such an architecture. A good CDN

is characterized by not only distributing traffic across multiple servers, but also

distributing the traffic geographically across multiple locations. Using multiple lo-

cations increases network capacity, improves redundancy, and reduces the average

distance between client and server. In most cases shorter distance is equivalent to

lower network latency and thereby higher throughput. With the use of multiple

servers and locations, an important part of a CDN is to direct end-user requests to

an optimal server. Determining the optimal CDN server can be done at different

layers of the network stack and with varying degrees of precision. The following

sections explain the most common methods of distributing the traffic of a service

provider in the Internet and at the ingress point of hosting locations.

2.3.1 Anycast

The Internet Protocol carries all types of Internet traffic and the routing mecha-

nisms for IP traffic can be used to distribute traffic on a global scale [20]. The

Border Gateway Protocol (BGP) is an exterior gateway protocol used to route traf-

fic between autonomous systems (AS) which are the largest topological units in the

Internet. A service provider with its own AS number advertises its network prefixes

through BGP and thereby connects its network to the rest of the Internet. The

service provider can advertise its IP prefix from multiple locations in the Internet.

When border routers in other autonomous systems calculate the optimal route to

the prefix, the route will depend on the location of the border router in the Internet.

This causes packets going to the service provider to be routed to the closest server
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according to BGP. This concept is known as anycast routing and can be used for

global load balancing at the network layer. Anycast routing is only useful if servers

are hosted in geographical locations far apart, as the distribution of traffic might

otherwise not be beneficial. Anycast routing provides stateless traffic distribution

and is typically used for stateless services such as DNS. It is also possible to use any-

cast for statefull services, but when routes change connections will potentially break.

It is only worth optimizing routing in the Internet for large service providers. For

instance, Google DNS uses anycast routing to direct user to servers in 25 different

IPv4 networks [21].

2.3.2 Load Balancing

Google DNS uses two IP addresses, 8.8.8.8 and 8.8.4.4 for their recursive DNS

servers. These addresses are routed using anycast, but considering the amount

of traffic Google DNS handles, request must be distributed across multiple servers

in multiple hosting locations. Because DNS is a stateless protocol, this can be done

using network-layer load balancers. Each IP address points to a load balancer which

will direct incoming packets to servers based on some distribution algorithm. The

distribution could be as simple as round robin, but could also be based on additional

parameters such as server load. In contrast to load balancing of stateless servers,

stateful protocols such as TCP require packets to always be directed to the same

server. This requires a stateful load balancer to remember the server assigned to a

specific traffic flow such that packets belonging to the flow are directed to the correct

server. The rate at which packets can be processed depends on the number of pa-

rameters taken into consideration before forwarding a packet. If a service provider

has the need for load balancing, it is probably meaningful to optimize the server

configurations for load balancing. This could be done by using dedicated servers for

different services, e.g. DNS, HTTP. If a single load balancer were used for multiple

service types, it would be necessary to look at transport-layer information in order

to direct traffic flows correctly. On the other hand, if different services had their

own load balancer it would only be necessary to consider network-layer informa-

tion for stateful services and stateless services could be balanced independent of any

information contained in packets.
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2.3.3 Application Layer Redirection

Anycast routing provides load balancing based on network topology and dose not

consider the actual load of servers. An anycast address could therefore point towards

a location where servers are experiencing high load. The network-layer load balancer

at such a location could have more detailed information about the current load of

servers. However, because server load constantly changes, the load balancer may

still direct traffic to an overloaded server. In this case the request can either be

dropped or be redirected at the application layer. The latter is of course preferable

as a dropped request appears as an error to the end-user, whereas a redirection

appears as increased processing time. Redirection at the application layer relies on

mechanisms in the application protocol and is thus not transparent to the client. A

good example of application-layer redirection is HTTP where certain response codes

are used to indicate that the requested file has changed location. It is then up to

the HTTP client to interpret this response code and initiate a new request to the

address specified in the header of the redirection response.

Application-layer redirection has a number of disadvantages that makes it preferable

to do proper load distribution below this layer of the network stack. First of all,

an overloaded server always has to process a request even if the request will be

redirected. Traffic is thus not directed away from an overloaded server but merely

deflected by it. Although redirection responses can be sent quickly, the resources

spent redirecting clients may disrupt service for existing clients. Secondly, because

the redirection information is supplied at the application layer it cannot be cached by

local gateways. In a network where multiple clients share a common gateway, caching

could reduce the load on an overloaded server by caching redirection responses.

In order for a gateway to cache redirection responses it would have to be able to

understand the application-layer protocol where the address of the alternate server

is supplied. If the application protocol is encrypted, the gateway has no chance of

detecting redirections.

2.3.4 DNS Redirection

Despite application layer redirection generally being undesirable, the most popular

method of load balancing technically relies on an application-layer protocol. DNS is

the preferred method of redirecting users to an optimal server because it is transpar-

ent to all services that use domain names. Operating systems typically implement a
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DNS client as a shared library used by all applications that need to resolve domain

names. This essentially makes DNS act like a pseudo-layer between the application

layer and network layer. DNS can be used to provide transparent redirections to all

applications by having a DNS server return different responses to queries, depending

on some load balancing algorithm. Furthermore, because DNS is an integral part of

the Internet, most home gateways have a built-in DNS cache that performs recursive

name resolution on behalf of clients on the local network. This enables redirections

to be cached and thereby improve performance for other clients on the network.

Service Provider
HTTP Server

(Origin Server)

Client
Service Provider

DNS Server
Akamai

Edge Server
Akamai

DNS Server

Request A record

Respond with CNAME

Request A record of CNAME

Respond with A record of edge server

Send HTTP request Forward 
request

Return file

Cache file and return it to client

Figure 2.9: Example of HTTP download using Akamai.

Figure 2.9 shows how HTTP files are served using the Akamai CDN [22]. The

following steps are completed in order to download a file from an Akamai CDN

server:

1. The client or a recursive resolver begins by resolving the domain name of the

service provider, e.g. www.cnn.com.

2. The DNS query is sent to the authoritative name server of the domain name
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which has been configured to return a CNAME record pointing to a domain

name controlled by Akamai, e.g. www.cnn.com.edgesuite.net.

3. The DNS resolver continues by resolving the domain name controlled by Aka-

mai.

4. The Akamai DNS server returns an A record containing the IP address of an

appropriate HTTP edge server. Akamai uses multiple levels of DNS redirection

and may also return yet another CNAME record in this step, in which case

the client repeats step 3.

5. The client has finally obtained an IP address of an edge server and sends an

HTTP request to it.

6. If the edge server has the requested file in its cache it will return it to the

client immediately. Otherwise, it will forward the request to the origin server

of www.cnn.com.

7. The origin server will return the file to the edge server.

8. The edge server saves the file in its cache and delivers it to the client.

Content distribution networks use multiple levels of DNS redirection to direct clients

to an optimal server. The optimal sever is selected based on a set of parameters,

including IP address of the client, type of service, and current load of the CDN.

Redirections are made by returning different NS, CNAME, or A records depending

on the server selection parameters. Each redirection narrows down the area within

which a CDN server will be selected. This is a good design choice, because it

allows optimal redirection to be made without requiring global knowledge of the

state of the CDN. Table 2.2 shows a simplified trace of how the domain name

newsimg.bbc.net.uk is resolved iteratively. The table shows which name server

was queried, the most important records in the response, and the TTL of that

record. The trace shows that three CNAME records are encountered while resolving

the domain name. The first CNAME points to another CNAME controlled by

BBC. If the DNS records had been configured optimally, the first domain would

have pointed to the news.bbc.co.uk.edgesuite.net domain, instead of another

CNAME. The edgesuite.net domain is controlled by Akamai and provides the

first level DNS redirection using an NS record. When the authoritative name server

of the edgesuite.net domain is queried, another CNAME record is returned. This
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CNAME record is the second level of DNS redirection. When the alias domain name

is resolved the third redirection is received and this is the final server selection.

When the domain a1733.g.akamai.net is resolved, Akamai makes the final server

selection and returns two A records with IP addresses of suitable severs with respect

to the client.

Name Server Record Name and Data Record TTL

k.root-servers.net NS(uk)= ns1.nic.uk 2 days

ns1.nic.uk NS(bbcimg.co.uk) = ns1.tcams.bbc.co.uk 2 days

ns1.tcams.bbc.co.uk CNAME(news.bbcimg.co.uk)=
newsimg.bbc.net.uk

1 hour

ns1.nic.uk NS(bbc.net.uk) = ns0.tcams.bbc.co.uk 2 days

ns1.nic.uk NS(bbc.co.uk) = ns1.rbsov.bbc.co.uk 2 days

ns1.rbsov.bbc.co.uk A(ns0.tcams.bbc.co.uk) = 212.72.49.2 1 day

ns0.tcams.bbc.co.uk CNAME(newsimg.bbc.net.uk)=
news.bbc.co.uk.edgesuite.net

300 seconds

k.root-servers.net NS(net) = a.gtld-servers.net 2 days

a.gtld-servers.net NS(edgesuite.net)= ns1-2.akam.net 2 days

ns1-2.akam.net CNAME(news.bbc.co.uk.edgesuite.net)=
a1733.g.akamai.net

2 hours

a.gtld-servers.net NS(akamai.net) = zc.akamaitech.net 2 days

zc.akamaitech.net NS(g.akamai.net) = n1g.akamai.net 9 hours

n1g.akamai.net A(a1733.g.akamai.net)=87.108.18.42
A(a1733.g.akamai.net)=87.108.18.40

20 seconds

Table 2.2: DNS trace of resolution of newsimg.bbcimg.co.uk.

When the TTL values of the records returned by Akamai are considered, only the

records returned in the final response could have been selected based on actual server

load. It was therefore suspected that the previous redirections were simply directing

the DNS client to a DNS server responsible for an Akamai region. However, by

resolving a1733.g.akamai.net from multiple locations in the Internet, it was ob-

served that the two first levels of DNS redirection were repeated independently of the

location. This suggest that Akamai server selections are based on global knowledge

of the state of the CDN and that server selection is not handled by region-specific

DNS servers. Akamai has a large monitoring infrastructure where performance in-

formation is gathered from every CDN location and aggregated [23]. By utilizing

this information, it would be possible for end-users to get an optimal server selection

from a single Akamai DNS server without multiple levels of redirection. The extra

steps needed to resolve Akamai domain names are therefore likely due to redun-

dancy, or they may play a part in the server selection that is not entirely obvious.
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The TTL of the final two A records indicates that Akamai believes the performance

of the selected servers will be optimal within the next 20 seconds.

DNS is a good solution for directing clients to servers based on their estimated

location. However, one key feature of DNS has become a problem for CDNs with the

increasing popularity of third party resolvers outside of ISP networks. DNS caches

are an important part of the DNS infrastructure and most home gateways provide a

recursive DNS resolver that typically forwards requests to the DNS servers provided

by the ISP. The location of a client is the most important piece of information when

it comes to selecting an optimal CDN server. The location is estimated using the

source IP address of DNS queries. When the domain name pointing to a CDN is

resolved iteratively by a client, an authoritative name server of a CDN will see the

client as the source of the query. However, when a recursive DNS server resolves a

request on behalf of a client, the recursive DNS server will be seen as the source of

the query. This has not been a problem in the past because most users relied on

ISP DNS caches for name resolution. These servers were geographically close to the

end-user and the selected CDN server was the same as if the end-user had resolved

the CDN domain name. The problems arise when the distance between the recursive

DNS server and the client becomes large, as is the case for services like Google DNS

and OpenDNS. Even with the use of anycast routing, the distance is much greater

than between clients and ISP name server. When a third-party DNS resolver queries

the authoritative name server of a CDN, the CDN returns the address of an optimal

server for the third-party resolver, but not for the client it is sending the query on

behalf of.

The only solution to this problem is for the third-party resolver to include the address

of its client in the query message, or to deploy additional servers such that third-

party DNS servers are as close to end-users as ISP DNS servers. The experimental

IETF draft “Client Subnet in DNS Request” [24] defines a extension using Extension

Mechanisms for DNS (EDNS0) [5]. The extension enables recursive DNS servers to

include the IP address and network mask of the client that a query is being processed

on behalf of. The most important fields of extension are source netmask, address,

and scope netmask. The source netmask field defines the number of bits from the

clients IP addres that are included in the address field. The scope netmask field

is used by DNS servers, to specify which IP addresses the answer is intended for

and can be cached for. The source netmask is useful from a privacy perspective,

27 / 82



CHAPTER 2. BACKGROUND

because it allows a recursive resolver to only reveal a limited amount of information

about the original sender of a query. Google is contributing to the specification of

the extension and according to Otto et al. the extension is already in use by Google

DNS [2].

The performance of content distribution networks is an active area of research.

Many studies focus on video streaming because of the rise in traffic volume of this

content type. Another reason for video streams being a popular content type to

measure is the need for large files to evaluate the performance of CDNs in terms

of bandwidth. Web pages generally consists of many small files and the average

bandwidth during download of such files is therefore not representative of the CDNs

throughput capacity. The duration of TCP connections is not long enough for

transfers to reach their maximum transfer rate.

2.3.5 CDN Providers

Akamai is the largest CDN provider in the world and started offering commercial

services in 1999, less than ten years after the invention of the World Wide Web. The

traffic volume of Akamai is at least as big as the traffic volume of all other providers

combined [25]. The Akamai infrastructure is optimized to reduce latency between

clients and servers, by locating CDN servers as close to the end-user as possible,

at the edge of the network. This meant deploying a very large number of servers

across the globe and Akamai operates by far the most CDN locations of any of CDN

provider.

Akamai offers to deploy servers within ISP networks at no cost and it is possible that

ISPs do not charge Akamai either. This is because the presence of Akamai servers

is as beneficial to ISPs as it is to Akamai [26] [27]. Both ISPs and Akamai have to

pay for transit traffic and locating servers in ISP network thus reduces transit traffic

and thereby the expenses of both parties. Akamai states that compared to a cen-

tralized CDN architecture, its architecture provides improved redundancy, greater

throughput, and reduced latency [25]. However, operating servers in many locations

comes at an increased cost compared to large data centers. According to Triukose et

al. [28], Akamai could consolidate their server locations without noticeable changes

in performance, but with significant cost savings. Triukose also concluded that the

Akamai architecture favors clients with high-speed connections because it is easier to

achieve high throughput over short distances in the Internet. As of 2013, Akamai op-
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erates more than 130,000 servers and is present in 2,200 points of presence (Internet

exchanges) and 1,200 networks, spread across 81 countries.

Akamai does not operate its own network, but relies on the Internet as its backbone

network [25]. This is likely less expensive and less complex, but at the cost of not

being able to control quality of service. Because the Internet is a best-effort service,

Akamai servers behave like islands in the network with no need to communicate

with other Akamai edge servers. Edge servers naturally have to communicate with

the part of the Akamai infrastructure responsible for server selection and load bal-

ancing. The part of the Akamai architecture that serves files over HTTP operates

in conjunction with the servers of their customers. The CDN essentially works as

an enormous HTTP cache that fetches content from customer servers when needed,

and end-users are directed to caches rather than the customer’s servers.

Level 3 and Limelight are two competing CDN providers that take a different ap-

proach to content distribution networks compared to Akamai. Both providers have

a more centralized architecture with servers located in a few data centers, as op-

posed to the many CDN locations of Akamai. The design philosophy of Level 3 and

Limelight is that operating large data centers with lots of capacity provides good

performance at a reduced cost compared to a distributed architecture. There is no

doubt that locating servers closer to end-users will reduce latency, but the question

is whether the difference in latency between a centralized CDN and a distributed

CDN has any significant performance impact.

Otto et al. measured CDN redirections and HTTP latency for Akamai and Limelight

from 10,000 locations [2]. The CDN redirections were measured using Google DNS,

OpenDNS, ISP name servers, and iterative resolution. Their measurements showed

that 90% of the locations observed no similarity between DNS answers by the au-

thoritative DNS servers of Akamai, and the answers by Google DNS and OpenDNS.

The same was true for 50% of the measurement locations for Limelight. The DNS

answer obtained from the ISP name servers had a much higher degree of similarity

than the third-party DNS resolvers for both Akamai and Limelight. The HTTP

latency measurements showed that using iterative resolution or the ISP DNS server

resulted in the best selection of a CDN server for both CDN providers. The differ-

ence in HTTP latency between iterative resolution and third-party resolvers, was

more noticeable for Akamai. The HTTP latency of servers selected using iterative

resolution and third-party resolvers were equivalent for 30% of the measurements
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locations for Limelight. The same could only be said for 10% of the locatios for

Akamai. This indicates that the performance of Akamai depends more on good

CDN redirection than Limelight.

The performance of server selections of Akamai and Limelight were also evaluated

using the “Client Subnet in DNS Request” extension. Source netmasks of 32 bit, 24

bit, and 16 bit were used. The results showed that the full client IP address always

resulted in the best performance. For 60% of the measurement locations the 16 bit

netmask resulted in performance similar to using the full address. The performance

observed for the 24 bit prefix was comparable to that of the full IP address.

Su et al. tried to infer good paths in the Internet from the server selections made

by Akamai [29]. Their research showed that Akamai typically managed to avoid

congested network paths and that mapping an overlay network to Akamai’s archi-

tecture could improve performance of the overlay network. Their research indicated

that Akamai uses more information than just client location, latency and server load

to select servers. Akamai is likely monitoring congestion in the internet from their

many hosting locations and optimizes server selection based on this information.

In this chapter the protocols needed to download web pages were introduced. The

structure of the Domain Name System was explained along with the process of

name resolution. Finally, the key mechanisms of content distribution networks were

introduced.

30 / 82



CHAPTER 3. MEASUREMENTS

Chapter 3

Measurements

3.1 Metrics

The download of a web page consists of DNS resolution and HTTP download. In

order to study the performance of web page delivery performance indicators of this

process must be identified. From an end-user’s point of view the performance can

be summed up to the total download time of a web page. The DNS resolution

time and HTTP download time will therefore be used to describe the performance

of the protocols. By including all steps of the resolution process in the resolution

time, packet loss and server errors are also captured by the metric. Although the

download time is important to the end-user, it is not a good metric for estimating

the performance of the network path between client and server. The congestion

control mechanisms of TCP affect throughput and download time is therefore not a

good metric for assessing network performance. One of the most important factors

affecting TCP throughput is latency and measuring the latency between client and

server will therefore give a better picture of potential throughput. The latency can

be measured as the TCP connect time, as there is a fixed relationship between

this value and the actual round-trip time (RTT). It is also possible to measure the

RTT using ICMP, but since some routers in the Internet treat TCP and ICMP traffic

differently [30], TCP connect time is a better indicator of potential TCP throughput.

CDNs often use DNS redirection and by recording the messages exchanged during

the resolution process it will be possible to analyze the server selection mechanisms

of CDNs along with general DNS characteristics of the domain names used by web
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sites. Because CDNs direct users to servers based on their estimated location, mea-

suring websites from a single locations will not yield any interesting results with

respect to content distribution networks. To observe different CDN server selections

it is necessary to perform measurements from multiple locations in the Internet. If

the locations are sufficiently far apart from each other, CDNs should return differ-

ent IP addresses of servers. By performing measurements from the geographically

distributed measurement platform PlanetLab, it will be possible to measure CDN

performance from a global perspective.

We decided to measure popular websites as these likely rely on content distribution

networks to improve their service. Measuring popular websites fulfills two goals of

this thesis: measuring websites that are important to many users and measuring

the use of CDNs to deliver websites. Thirty-three websites were selected from the

rankings of Alexa [14] from the following categories: news, shopping, social networks,

video, search engines, email, and Finnish news. Websites were selected according

to their popularity internationally with the assumption that such sites optimize

their content delivery at a global level. The number of users is not necessarily an

indication of international popularity, as the potential user base of a website largely

depends on the language of the site. The Finnish news sites were measured because

these were not expected to utilize CDNs. Measurements of those websites could

therefore be used to evaluate the performance differences between sites using and

not using CDNs.

Table 3.1 shows a list of the selected websites and their URLs. Some URLs redirected

HTTP clients immediately and these URLs were replaced with the destination of the

redirection, unless the redirection was based on client location. Some URLs immedi-

ately redirected HTTP clients to an HTTPS version of a page, and these URLs were

also replaced with the HTTPS version of the URL. The reason for replacing URLs

that lead to redirection pages is that these web pages do not contain any content.

Furthermore, if a user visits a website frequently they might have a bookmark for it

and thereby skip the redirection page. The measurements are therefore equivalent

to a user accessing websites directly using a bookmark in a web browser.
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Category URLs

News http://news.yahoo.com/

http://edition.cnn.com/

http://www.huffingtonpost.com/

http://www.weather.com/

http://www.reddit.com/

http://www.bbc.co.uk/news/

http://www.nytimes.com/

https://news.google.com/

http://www.foxnews.com/

Shopping http://www.amazon.com/

http://www.ebay.com/

http://www.ikea.com/

Social networks https://www.facebook.com/

https://twitter.com/

http://www.linkedin.com/

https://plus.google.com/

https://pinterest.com/

http://www.flickr.com/

Video http://www.youtube.com/

https://vimeo.com/

http://www.dailymotion.com/

http://www.netflix.com/

http://www.hulu.com/

Search engines http://www.google.com/ncr

http://www.bing.com/

http://www.yahoo.com/

E-mail http://www.gmail.com/

http://mail.live.com/

http://mail.yahoo.com/

Finnish news http://www.iltalehti.fi/etusivu/

http://www.hs.fi/

http://www.iltasanomat.fi/

http://www.yle.fi/

Table 3.1: List of websites and their categories.
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3.2 Measurement Application

Several DNS and HTTP tools exist for Linux, but the DNS tools are not able to

provide a sufficient level of detail about the DNS resolution process. We therefore

decided to implement a standalone application to collect the performance metrics of

interest. An alternative solution would have been to use a collection of command-line

tools and shell scripts. This would have made deployment of the measurement so-

lution more difficult to manage across multiple platforms. Furthermore, differences

in the output of command-line tools could also have complicated data processing.

The measurement application consists of a DNS client working together with the

popular HTTP library cURL [31]. The DNS client was implemented as a separate

library and this allows other applications with the need for name resolution to also

collect DNS performance information.

The DNS library is written in C and provides new API functions for DNS resolu-

tion. Compared to the name resolution functions in C, these functions are more

complicated to use, as more resolution options can be controlled. Additionally, the

resolution of a domain name results in more information than just IP addresses be-

ing returned for successful queries. The DNS library supports both recursive and

iterative resolution, and records detailed information about the resolution process

and all records received. Operating systems generally implement DNS caches to

improve name resolution performance. The library therefore also supports caching

of records, in order for measurements to be equivalent to the DNS performance ex-

perienced by applications using the native DNS resolution functions of an operating

system. However, DNS records are only cached within a process and the cache is

therefore not persistent. Because the expected run-time of the measurement appli-

cation is shorter than the TTL of DNS records, records are not removed from the

cache when they expire. From a research point-of-view there is no need for persistent

caching as only the network performance of DNS is of interest. The DNS cache also

provides the foundation for the query logic driving the name resolution process of

the resolver. The cache is implemented as a tree structure because DNS information

is organized hierarchically. In order for the resolver to work, the DNS cache has to

be primed with information about which servers it can initially query. This is done

by defining NS records for the root domain and adding the necessary glue records.

The NS records can either be those of actual DNS root servers or recursive DNS
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servers. The library also supports parsing of the /etc/resolv.conf file containing

the list of default name servers on Linux systems.

Figure 3.1 shows an example of the DNS cache tree created after resolving the

domain name netlab.hut.fi. Each label of a domain name is represented by a

node in the cache tree, such that each node except the root node, has a parent and

zero or more children. DNS records are added to the node with the domain label

they contain information about.

The following is an explanation of how the cache tree in Figure 3.1 was created.

1. The cache tree is initialized such that queries for the root zone should be sent

to a.root-servers.net and the A record of this domain is also defined.

2. The first query is sent to the authoritative name server of the root zone, which

returns an NS record for the fi top-level domain along with the necessary glue

records.

3. The second query is sent to the authoritative name server of the fi domain.

The response to the query contains yet another NS record pointing to the

authoritative name server of the hut.fi domain.

4. The third query is sent to the authoritative name server of the hut.fi domain

and since the control of the netlab.hut.fi domain has not been delegated

to yet another name server, the server returns the A record of the queried

domain.

When subsequent domain names are resolved, the information in the DNS cache

is used to make the optimal choice of which name server to contact. For instance,

when resolving the domain mail.netlab.hut.fi, the resolver locates the leaf node

”netlab” and checks if an NS record for this domain is in the cache. As Figure 3.1

shows, no NS record is know for netlab.hut.fi domain. The resolver continues

by traversing the tree towards the root node until it finds an NS record. In this

case the parent of the netlab domain contains an NS record. The resolver queries

the authoritative name server of the hut.fi domain and receives the address of

the mail.netlab.hut.fi domain. It is evident from this example that the number

of queries which have to be sent is greatly reduced and that caching significantly

reduces the resolution time of subsequent queries.
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aalto

NS(aalto.fi) = 
ns01.aalto.fi

a

A(a.fi) = 
193.166.4.1

hut

NS(hut.fi) = 
ns01.aalto.fi

ns01

A(ns01.aalto.fi) = 
130.233.224.132

net

root-servers

a

A(a.root-servers.net) 
= 198.41.0.4

. (root)

NS(.) = a.root-servers.net

fi

NS(fi) = a.fi

netlab

A(netlab.hut.fi) = 
130.233.154.176

Figure 3.1: Tree structure used to represent DNS records.

The DNS library supports resolution of A, AAAA, and CNAME records. If the

record type of a query is A or AAAA, the resolver will automatically follow CNAME

records until an A or AAAA record is found.

We decided not to implement DNSSEC support as security aspects of DNS are not

of interest in this Master’s thesis. The behavior of DNS resolvers vary between

different operating systems. Some resolvers are more aggressive and will send mul-

tiple requests for the same domain and thereby reduce the performance impact of

packet loss or server errors. The implemented DNS resolver does not send multiple

simultaneous queries as it seeks to measure the performance of the network and

DNS servers without client-side optimizations. The performance impact of packet

loss and server errors are therefore included in the measured metrics. The resolution

algorithm is persistent and will query all relevant name servers until either a positive

or negative response is received. If a DNS query is lost, the DNS resolver will simply

wait until a timeout occurs before continuing. If a timeout occurs, the resolver will

then send the query to the next IP address of the destination name server. If the

queries to all IP addresses of a name server fail, the resolver will continue to the next

authoritative name server and repeat the process. If a response contains a Start of

Authority (SOA) record for the domain name being resolved and no answer records,

the domain name does not exist and the resolver returns an error. If no DNS re-

sponse is received after sending a query to all IP addresses of all appropriate name

servers, the resolver will return to the parent level of the DNS hierarchy and send
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the query to the next name server at this level. This approach will inevitably lead

to the resolver querying the same name server at some point. For this reason, and

because loops can also be created using CNAME records, the resolver features loop

detection. The resolver keeps track of which name servers have already been queried

and if a loop is detected, the resolver aborts the resolution process and returns an

error. Table 3.2 shows the key metrics collected for each domain name resolved.

The entire trace of queries sent and responses received is also recorded, such that

the resolution process can be analyzed and new metrics be defined at a later time.

Metric Description

Domain name Primary domain name of query.

Final domain name Domain name pointed to by last CNAME record or primary domain
name if no CNAME records were followed.

Resolution time Sum of network RTT of queries.

Answer IP address IP Address of first A record in final DNS response.

Answer TTL TTL value of first A record in final DNS response.

Table 3.2: Key DNS metrics recorded by measurements application.

The cURL [31] library is a popular library that implements an HTTP client among

other things. The library is tried and tested, so we decided to use it to handle

HTTP downloads, rather than implementing our own HTTP client. The library is

not designed to be used by web browsers and therefore has a couple of shortcomings.

cURL supports simultaneous connections and can enforce an overall connection limit.

However, it is not possible to limit the number of connections per hostname. There

is therefore a risk that the per-hostname connection limit used by web browsers is

exceeded by the measurement application when downloading web pages with many

page elements hosted on the same domain name.

Although cURL provides several hooks at key points of an HTTP download, it is

not possible to override name resolution. The only solution is to resolve all domain

names and replace the domain names in URLs with their IP address, before asking

cURL to download the files. There are two issues with this solution. Firstly, name

resolution and file downloads are intermixed by web browsers. The performance

of DNS resolution may therefore be slightly better, because the connection is not

being used for HTTP downloads at the same time. Secondly, by replacing a domain

name with an IP address, multiple IP addresses provided via DNS cannot be used.

Normally an HTTP client will try all IP addresses returned by DNS until a connec-
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tion is established. If a HTTP connection cannot be established by cURL in the

measurement application, the download will fail even if alternative IP addresses of

the domain name are available.

The ”user-agent” header is used to identify the HTTP client or web browser sending

a request. Some websites return different files depending on the value of this header,

and some sites return unexpected content or nothing at all. We chose to use the

user-agent value of the Google Chrome browser as the default user-agent in the

measurement application. The popularity of Google Chrome and Internet Explorer

is comparable, but it should be noticed that the popularity of browsers vary greatly

depending on the target audience of a web site. Additionally, older versions of

Internet Explorer are known to require browser-specific HTML syntax for web pages

to be rendered properly, whereas Google Chrome does not.

Tabel 3.3 shows the key metrics collected for each HTTP download. Some of the

metrics are extracted from HTTP headers and some are reported by cURL.

Metric Description

Connect time Time to establish TCP connection to server
excluding name resolution time.

Download size Size of downloaded file reported by cURL.

Download time Time to transfer file.

Table 3.3: Key HTTP metrics recorded by the measurement application.

3.3 PlanetLab

PlanetLab is a platform consisting of approximately 1000 servers that can be used

for Internet research purposes. As the name suggests, PlanetLab provides measure-

ment locations across the world, and this makes it suitable for CDN measurements.

However, it should be noted that most nodes are located in Europe and North

America. The multitude of locations makes it possible to measure services on the

Internet from a global perspective. PlanetLab servers are hosted by organizations

contributing to the platform in return for the possibility to run tests on the entire

platform.

Each PlanetLab node must conform to a set of minimum hardware and connection

requirements [32]. Many of the organizations contributing to PlanetLab have access
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to high-speed connections and it is doubtful that any measurements location has

a low connection speed. We expected PlanetLab nodes to have faster connection

speeds that the average in Europe and North America. However, since web pages are

rarely bandwidth intensive, users on high-speed connection should only experience

marginally better performance than users with average Internet connections. High-

speed connections favor download of large files because it takes time to increase the

window size of TCP connections. Web pages contain many small elements and the

TCP connections therefore do not last long enough for the window size to increase

enough to take advantage of a high-speed connection. Measuring web page delivery

performance on PlanetLab should therefore yield results comparable to locations

with more typical connection speeds.

Each PlanetLab node can be shared by up to 10 users running test simultaneously.

For this reason PlanetLab nodes sometimes have poor performance and become un-

stable. Software deployed on PlanetLab nodes is executed within virtual containers

and have limited disk space and working memory. PlanetLab offers no guaranteed

service level, and the reliability and uptime of nodes varies greatly. The software

and scripts deployed on PlanetLab should therefore be designed with robustness in

mind. Because nodes may also be rebooted at any time, PlanetLab nodes should

not be relied upon for persistent storage. Measurement data should rather be trans-

ferred to a more reliable storage system regularly.

3.4 Measurement Procedure

Each PlanetLab node was configured to run a test batch every hour and the starting

time was randomized by using the hostid function for seeding a pseudo-random

number generator. Each website was measured using four different DNS resolution

methods in the following order: iterative resolution, Google DNS, OpenDNS, and

the default DNS resolver as configured in /etc/resolv.conf. Each node measured

the ICMP RTT to all of the 13 DNS root servers. Based on the RTT measurements

a DNS configuration was created such that each node would prefer the roots servers

closest to it in terms of RTT. The root server configuration of each node was updated

every morning at 9:00. All measurements were only done using IPv4 as this ensured

more reliable results on PlanetLab.
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Test # DNS Servers Cached Responses

1 Iterative resolution Disallow

2 Google DNS Disallow

3 OpenDNS Disallow

4 Default Disallow

5 Iterative resolution Allow

6 Google DNS Allow

7 OpenDNS Allow

8 Default Allow

Table 3.4: Hourly testing sequence.

In order to measure the use of HTTP caches, each measurement was carried out

with caching allowed and disallowed. This was controlled using the cache-control

HTTP header, which tells HTTP caches whether they are allowed to return a cached

response or if the request should be sent to the origin HTTP server. Table 3.4 shows

the sequence of measurements performed every hour. Web pages were first down-

loaded with cached responses disallowed and then with cached responses allowed.

If a cache is present on the network path, the response to the first HTTP request

should be cached and a difference in download time be observed for the following

download of the web page with caching allowed.

To measure the performance of the download of an entire web page, a tool called

PhantomJS [33] was used. PhantomJS is a headless web browser that can load and

render web pages outside of a graphical environment. The measurement applica-

tion supports page element detection using regular expressions, but it is difficult to

write regular expressions that capture all possible tags linking to external elements

in HTML. A PhantomJS script was created that downloads a web page and outputs

the URLS of files that need to be downloaded to render the page. At the begin-

ning of each measurements batch, the script is used to generate a list of URLs that

should be downloaded by the measurement application for each of the target web

sites. The lists remained the same for the entire measurement batch, such that the

same elements were measured with different DNS resolvers and caching options.

In this chapter we explained the measurement goals of this Master’s thesis and

how we intend to achieve these goals. We decided to measure the DNS and HTTP

performance of popular websites in order to measure the performance of content
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distribution networks. In order to measure DNS performance in detail, a DNS client

was implemented. A standalone measurement application was created by combining

the DNS client and the cURL library. The application was then deployed on the

distributed measurement platform PlanetLab.
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Chapter 4

Analysis

4.1 Measurement Data

The measurement application was deployed on PlanetLab and measurement results

were collected from June 19th to July 26th 2013. During this period the DNS and

HTTP performance of 23 million web page downloads were measured. Deployment

occurred gradually and initially less than 10 nodes were used to test the stability

of the application on PlanetLab and to detect any issues with the measurement

application and the data collection system. After several days of testing, the mea-

surement application was deployed on additional nodes. It was originally planned to

handpick measurement locations in order to get a good geographical distribution of

nodes. However, this approach proved to be too time consuming since many nodes

were offline although the PlanetLab API reported them as being online. Instead,

the measurement application was deployed on as many PlanetLab nodes as possible.

Based on logging information from the data collection system, the nodes that never

came online were removed from the set of active measurement nodes. After remov-

ing all offline nodes, redundant nodes hosted in the same location were removed,

leaving only one measurement node per location. Finally, approximately 140 nodes

remained online and measurements commenced. Figure 4.1 shows a map of the

location of the nodes used in this thesis. As the figure shows, the distribution of

nodes is clustered in two locations: Europe and North America. The number of

nodes located outside these two areas was small in comparison.
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Figure 4.1: Location of measurement nodes.

During the measurement period the number of nodes submitting data to the data

collection system regularly was between 110 and 134. Nodes that sometimes failed

to submit data were either affected by network issues or system overload caused by

tests executed by other users on the node. Nodes would continue testing even if

disconnected from the data collection system and submit measurement data when

connectivity was restored. Some nodes would fail to submit data for a couple of

hours, some for several days.

At the end of the measurements we discovered that the measurement application

had encountered problems with the cURL library for websites using TLS. The cURL

package installed on PlanetLab nodes did include OpenSSL support and cURL there-

fore not download files over encrypted connections. The websites with URLs be-

ginning with https in Table 3.1 were therefore excluded from the analysis. The

data collected for the remaining websites was filtered to remove measurements from

unreliable nodes. Unreliable nodes were identified by analyzing the number of mea-

surements performed by every node. Figure 4.2 shows a histogram of the number

of measurements made by a node. The plot shows that 50% of the nodes collected
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Figure 4.2: Histogram of number of measurement made by PlanetLab nodes.

more than 160,000 measurements. If a node had performed all measurements with-

out errors, every hour throughout the measurement period, it would have submitted

approximately 235,000 measurements. The plot shows that only 17 nodes consis-

tently submitted data throughout the measurement period. We decided to ignore

data from all nodes with less than 10,000 measurements because many of these

nodes submitted zero measurements. Additionally, the histogram does not suggest

any other logical thresholds and shows that nodes belonging to the lower half of

the distribution still contributed with a significant number of measurements. Five

weeks of PlanetLab measurements added up to 2.3 TB of data. In order to make

data processing and analysis feasible within the time frame of this Master’s thesis,

we decided to analyze the week when most measurements were recorded. This was

the week of July 8th 2013 and during this week 3.4 million web page downloads were

measured.

The number of measurements in the selected week proved too much to analyze and

the data was therefore sampled. When analyzing the data it was necessary to com-

pensate for variations in number of measurements for each DNS resolver, number of

elements per webpage, and number of measurements per website. Otherwise values
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belonging to certain measurement configurations or websites would skew distribu-

tions significantly. Each analyzed metric was randomly sampled 8,000 or 10,000

times per combination of DNS resolver and website. The sampling resulted in a

data set with a manageable size, while maintaining the representativeness of the

entire data set. In order to improve the visualization, most of the box plots in this

chapter only show first quartile, median, and third quartile of a distribution. In

the few box plots that do have ”whiskers”, these line extend 1.5 IQR (inter-quartile

range) from the first and third quartile.

In section 4.2 we analyze key performance metrics of DNS and HTTP to give

a picture of the general performance of web page downloads. In section 4.3 the

composition of web pages is analyzed to identify content distribution networks. The

performance of the identified CDNs is then evaluated with respect to each other and

non-CDN servers.

4.2 DNS and HTTP Performance

4.2.1 Resolution Time

The DNS resolution time is typically defined as the the execution time of a call to

the DNS resoution function, e.g. getaddrinfo in C. This includes network delays,

retransmissions, and processing of messages. PlanetLab nodes could experience high

CPU load that affected the performance of the measurement application. In order

to minimize the effects of operating system scheduling on measurement results, we

decided to redefine the DNS resolution time as the sum of round-trip times includ-

ing timeouts, for queries sent during the resolution process. This redefinition only

changes the resolution time slightly, because the processing time of DNS messages

is negligible.

Figure 4.3 shows a scatter and box plot of the DNS resolution time for each resolver.

The plot shows that the resolution time of the default resolver is generally lower than

for any of the other resolvers. The distribution of resolution time is asymmetric

with many small values and few large values. The typical resolution time of the

default resolver is 1.5 ms. When considering the typical resolution time of the

other resolvers, it is clear that most queries to the default resolver were answered

using cached information. The resolution time of the other resolvers is typically at
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least an order of magnitude greater than that of the default resolver. The default

resolver shows the largest variation in resolution time. The increased variation

comes from a cache-misses where queries are forwarded to another name server or

resolved iteratively. The observations above 1 ms generally fit within the range of

observations for Google DNS, OpenDNS, and iterative resolution. A cluster around

11 ms suggests that the default resolver of some PlanetLab nodes might have been

forwarding queries to either Google DNS or OpenDNS, or that these resolvers were

queried directly.
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Figure 4.3: Scatter and box plot of DNS network time for each DNS resolver.

The median resolution time of Google DNS is slightly higher than OpenDNS, but

Google DNS has less variation. The plot shows that OpenDNS has a cluster around

4 ms and this cluster is most likely responsible for the difference in median resolution

time. When we examined this cluster of data points in detail, we discovered that the

measurements were made by a few nodes located in California. The most significant

component of resolution time is network latency and the nodes must therefore have

had an advantage compared to the other measurement nodes. OpenDNS has a

strong presence on the west coast of the United States with servers in Los Angeles,

Palo Alto, and Seattle. The cluster of low resolution time was therefore likely a

result of measurement nodes being connected to the Internet close to the OpenDNS

servers.
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Google DNS servers are hosted in 27 different IPv4 networks, whereas OpenDNS

servers are hosted in 19 different networks. The extra locations used by Google

DNS could explain the lower variation in resolution time, as more locations reduces

the average distance between clients and servers, and thereby the average resolution

time. The data supports this, as the mean resolution time of Google DNS is 3 ms

smaller than that of OpenDNS.

The plot also shows that OpenDNS has more observations above 100 ms than Google

DNS, and this could be a sign that OpenDNS has more cache-misses, as this group of

measurements matches the typical iterative resolution time. Overall, neither of the

third-party resolvers show any clear performance gain over the other with respect

to resolution time.

DNS Resolver 1st quartile Median Mean 3rd quartile IQR

Default Resolver 0.7 1.5 21.4 8.6 7.9

Google DNS 14.8 22.5 30.9 36.1 21.3

OpenDNS 8.5 17.7 33.8 32.7 24.2

Iterative Resolution 101.9 191.1 254.0 340.2 238.2

Table 4.1: Distribution summaries for each DNS resolver (milliseconds).

For both third-party resolvers the majority of the observations are smaller than the

average resolution time. However, as Table 4.1 shows, the mean was 13 times greater

than the median for the default resolver. In comparison the difference between

median and mean was less that 100% for the remaining resolvers. The difference in

skewedness between the four resolvers can be attributed to network latency. The

network latency between nodes and their default resolvers is generally small. As the

third-party resolvers or iterative resolution would not be able to answer a query in

15 ms, the low median resolution time is an indication of low cache-miss probability

for the default resolver.

Iterative resolution was expected to have the highest resolution time, because au-

thoritative name servers of each part of a domain name have to be queried. Table

4.1 shows that the median resolution time is two orders of magnitude greater than

that of the default resolver. This clearly shows why caching is an important part

of DNS and that there are significant performance benefits of using DNS caches.

Although the default resolver still has the best performance in terms of resolution

time, the third-party resolvers are one order of magnitude faster than iterative res-

olution and will therefore also result in significant reduction in resolution time.

48 / 82



CHAPTER 4. ANALYSIS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 1.0 10.0 100.0 1000.0
DNS Resolution Time [ ms ]

E
m

pi
ric

al
 C

D
F Site

Default Resolver

Google DNS

OpenDNS

Iterative Resolution

Empirical CDF of DNS Resolution Time

Figure 4.4: Empirical CDF of DNS resolution time for each DNS resolver.

Figure 4.4 shows the empirical CDF of resolution time for each resolver. The

plot clearly shows the general performance trends for each DNS resolution method,

but also reveals details about the upper 10% of the distribution. For 90% of the

measurements, the default resolver always has the shortest resolution time and it-

erative resolution always results in the longest resolution time. The default resolver

and OpenDNS have equivalent performance for the upper 10% of the observations,

whereas fewer high resolution times are observed for Google DNS. The iterative res-

olution time can be considered the worst case resolution time as the most servers are

queried. The difference between the graphs of the third-party resolvers and iterative

resolution can be attributed mainly to network latency. The number of authoritative

name servers for a domain typically decreases for each level of the domain name,

e.g. the root domain has 386 authoritative name servers [34], fi has 9 servers, and

aalto.fi has 4 servers. More name servers translates into lower average distance

between client and server, if servers are hosted in multiple locations for redundancy.

Iterative resolution time is higher because of the number of queries sent and the

fact that the network latency of a query likely increases for each iteration of the

resolution process.
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The cache-miss probability is also an important factor, but given the number of users

of Google DNS and OpenDNS, it is reasonable to assume a low probability for the

domain names of the measured websites, except for the Finnish news websites. The

10% of the observations where Google DNS outperforms the default resolver is likely

the a byproduct of the measurement process itself. Any of the PlanetLab nodes

or regular visitors of the Finnish news sites using Google DNS, could potentially

have primed the cache of Google DNS just before a PlanetLab node queries it. The

likelihood of several PlanetLab nodes querying the same Google DNS server is higher

than several nodes sharing the same default resolver. Depending on the TTL of DNS

records for the Finnish news sites, the default resolver will have a higher cache-miss

probability for the Finnish domains and thereby a higher average resolution time.

This is supported by the fact that most of the Finnish news sites had TTL values

smaller than the time between DNS requests made by the measurement application

(1 hour). The default resolver would therefore never have the information in cache.

The performance of the default resolver and OpenDNS are equivalent for the top 10%

of the observations, and since the default resolvers typically use iterative resolution,

it can be inferred that so does OpenDNS. If this is true, Google DNS must be doing

something besides iterative resolution, or more domains are simply cached by Google

due to its larger number of users. A way of improving the cache-miss probability

is pre-fetching of DNS records or sharing cached information between servers in

different regions.

4.2.2 Record TTL

In order to evaluate the performance of DNS caches for popular websites, it is

necessary to consider the lifetime of DNS records. The lifetime of records and the

number of users of a DNS cache determines its cache-miss probability.

Figure 4.5 shows a scatter plot of the TTL of the first A record in the final DNS

response for each of the resolvers. The plot only shows observations less than 1

hour as 95% of the observations were under this threshold. When considering the

observations for iterative resolution it can be seen that most records have a TTL

of 1 hour, 15 minutes, 10 minutes, or less than 5 minutes. When comparing the

iterative resolver to the recursive resolvers, it is clear that the record TTL still falls

into the same clusters, but that there are many data points between these clusters.

This is a result of the TTL value of cached records being decremented continuously.
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Figure 4.5: Scatter plot of A record TTL less than 1 hour for each DNS resolver.

This behavior ensures that DNS caches do not respond with information that is

outdated. When the TTL reaches zero the record is flushed from the cache and a

newer version of the record will be retrieved upon the next request for the record.

Figure 4.6 shows the empirical CDF of the TTL values and gives a better picture of

the distribution. The effects of the TTL decrementing are evident from the smooth

curves between the TTL clusters. 25% of the observations are less than 20 seconds,

and 90% are less than 10 minutes. None of the measured websites used TTL values

that would reduce load on the DNS infrastructure significantly. Instead the DNS

configurations were geared towards frequent changes in DNS information. This is

likely a sign that the websites are using content distribution networks and DNS load

balancing.

The CDF plot also shows performance differences between the recursive resolvers

with respect to caching. In the bottom 30% of the observations it can be seen

that the default resolver typically receives A records with a higher TTL than the

third-party resolvers. Given that the third-party resolvers have more users than the

default resolvers, the tendency of higher TTL comes from cache-misses that trigger

iterative resolution. Because of the variation in record TTL for different domains it

is not possible to conclude anything about the cache-miss probability of the recursive
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Figure 4.6: Empirical CDF of A Record TTL.
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Figure 4.7: Empirical CDF of A Record TTL for the domain www.bbc.co.uk.

resolvers using Figure 4.6. By considering the TTL of a single A record for a single

domain it is possible to evaluate the performance of a DNS cache. Figure 4.7
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shows the empirical CDF of A record TTL only for the domain www.bbc.co.uk.

The figure shows that almost 100% of the observations are 300 seconds for iterative

resolution. Queries to the recursive resolvers that return a record with a TTL of

300 seconds must therefore indicate a cache-miss. The plot shows that Google DNS

and OpenDNS have equivalent performance, and that their cache-miss probability is

almost zero for the BBC domain. The default resolvers have a cache-miss probability

of 50% for the domain.

DNS Resolver 1st quartile Median Mean 3rd quartile IQR

Default Resolver 19 58 459 264 245

Google DNS 15 56 357 256 241

OpenDNS 16 51 509 223 207

Iterative Resolution 20 150 774 300 280

Table 4.2: Summary of A record TTL (seconds).

4.2.3 Connect Time

Comparing network performance by throughput is complicated by the fact that TCP

performance depends on file size, bandwidth, latency, and packet loss. TCP is not

able to take advantage of the entire link capacity for small file transfers, but for

large file transfers the link can be filled and transfer of large files therefore give a

better picture of the available capacity. Network latency is an unbiased measure of

the quality of a server selection. It is not a perfect measure, but congested network

paths will typically have increased latency or packet loss due to queuing. Because

CDNs have servers in many parts of the Internet they will be able to direct users to

servers in uncongested parts of the Internet. There is a tradeoff between congestion

and latency when it comes to server selection. The use of an alternate server is only

beneficial if the latency to this server is not too high.

Figure 4.8 shows the empirical CDF of the connect time reported by cURL. The

connect time is measured as the time it takes to establish a TCP connection without

sending any data. The connect time is therefore either two or three round-trip times

depending on the implementation of TCP, as the final ACK message of the TCP

handshake may contain payload data. The TCP implementation is expected to be

identical across all PlanetLab nodes and the relationship between the connect time

and the two-way network latency should therefore be fixed. The connect time can

therefore be used to compare the performance of servers in terms of network latency.
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Figure 4.8: Empirical CDF of TCP connect time.

The plot shows that connect time for Google DNS and OpenDNS is equivalent,

suggesting that neither service provides more optimal server selection. Iterative res-

olution appears to have marginally better performance than the default resolver, but

overall the performance of the two are equivalent. Table 4.3 shows the distribution

summary of connect time. The median and mean tell that all resolvers have many

small connect times, but that Google DNS and OpenDNS observe more high connect

times, than the default resolver and iterative resolution. Iterative resolution results

in the lowest connect time and the default resolver provides equivalent performance.

DNS Resolver 1st quartile Median Mean 3rd quartile IQR

Default Resolver 13 32 98 94 82

Google DNS 19 38 116 108 89

OpenDNS 17 38 116 110 93

Iterative Resolution 11 30 93 91 79

Table 4.3: Summary of connect time (milliseconds).
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4.3 Content Distribution Networks

4.3.1 Identifying Content Distribution Networks

Considering the popularity of the web sites measured, we expected that most of the

websites offload traffic to content distribution networks. Sites were not expected

to offload all content, but, but at least some content like JavaScript libraries and

images. As explained in the Chapter 2, CDNs typically use DNS to direct clients to

an optimal server. By merely looking at the URL of page elements, it is not possible

to determine whether an element is hosted on a CDN or not, because the domain

name in the URL may be an alias for another domain name. By analyzing the DNS

trace collected as a part of the measurements, it is possible to detect the effective

domain name of an alias by analyzing CNAME records. We found that by grouping

elements by their effective domain name, it was possible to determine which services

were actually hosting content.

In order to compare the use of CDNs across all measurement nodes we stripped away

part of domain names used for DNS redirection by the CDNs. For instance, the do-

main names used by Akamai servers typically have the format a1733.g.akamai.net,

where the a1733 part of the domain name play some unknown role in the server se-

lection process. The effective domain names of page elements were reduced to their

two top-most labels, such that e.g. a1733.g.akamai.net became akamai.net. This

aggregation provided sufficient information to identify CDN providers. The same

approach was also tried with the three top-most labels, but this did not provide any

additional insights. Because recursive resolvers do not necessarily return CNAME

records, the CDN analysis was based on the measurements for iterative resolution.

Figure 4.9 shows the first, second, and thirds most popular domains per page

with respect to the number of elements hosted on the domain and its sub-domains.

The plot shows where page elements were actually delivered from. For instance,

most elements on the web site of Helsingin Sanomat were delivered from domain

names ending in hs.fi which is the main domain name of the web site. The second

most popular source was adtech.de which provides banner ads, and the third most

popular source was akamai.net which is a well-known domain name used by the

Akamai CDN. This tells that most of the page elements of Helsingin Sanomat are

not hosted on a CDN.
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Figure 4.9: Domains hosting most page elements.

The plot shows that akamai.net is the most popular domain among all the web

sites in terms of number of elements. All but one of the web sites have akamai.net

or akamaiedge.net as either first, second, or third most popular source of content.

Only Yahoo News does not contain any elements hosted by Akamai. The second

domain from which many web sites download elements is google.com. Google pro-

vides free CDN hosting of popular JavaScript libraries and download of these, along

with the use of Google Analytics is the most likely reason for websites to download

files from a sub-domain of google.com.

Figure 4.9 shows the popularity of domains in terms of the total number of bytes

downloaded from a domain. The plot shows that Akamai is still the most popular

source of page elements. For the four Finnish news sites, the plot shows that all but

one of the websites download most bytes from their main domains, e.g. www.hs.fi

downloads most bytes from hs.fi or its subdomains. In the case of Iltalehti, most

bytes came from the domain cdn.fi which is controlled by CyberCom Group, a

company delivering website services. Considering the user base of Iltalehti, it is

highly unlikely that the site is delivered from a CDN because having multiple server

locations within Finland would not improve performance significantly, and using

a global CDN would only move content further away from the target users of the
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Figure 4.10: Domains hosting most most content in terms of file size.

website. By analyzing the DNS diversity of the cdn.fi domain it was confirmed

that this is in fact not a CDN, as only a single IP address was observed globally and

that this was not an anycast address.

CDN Provider Domain Name

Akamai

akamai.net

akamaiedge.net

akamaitech.net

Amazon
amazonaws.com

cloudfront.net

EdgeCast edgecastcdn.net

Level 3 footprint.net

Google google.com

Limelight llnwd.net

Yahoo yahoodns.net

Table 4.4: Identified content distribution networks.

The analysis of the effective domain names of page elements lead to ten domain

names which were confirmed to be CDN providers using WHOIS information and

visiting the websites of the domain owners. Table 4.4 shows the confirmed CDN

domains and the name of the CDN providers controlling these domain names. Any
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element hosted on these domains or their subdomains are considered to be hosted

on a CDN.

4.3.2 CDN Servers

Content distribution networks rely on many servers to provide high capacity, redun-

dancy, and geographical diversity. The IP addresses of the CDN servers identified

in the measurement data were analyzed to estimate the capacity of each CDN in

terms of number of servers, networks, and locations. It should be noted that the IP

addresses collected may not represent all available servers of the CDNs. The Planet-

Lab nodes used for measurements were located in Europe and North America, and

it is therefore less likely that servers outside of these areas were observed for CDNs

with good server selection. Even within Europe and North America, PlanetLab

nodes may not be redirected to all available CDN servers because redirections may

depend on the ISP of a PlanetLab node.

Figure 4.11 shows the relationship between IP address prefix length and the number

of distinct prefixes in the measurement data. The plot is based on IP addresses

obtained through DNS resolution and not information about actual allocations of

IP address space to network segments. For the sake of clarity the term ”network”

is used for distinct IP prefixes since some prefixes will inevitably be actual network

segments. The plot visualizes the diversity in networks in which CDN servers are

hosted. The increase in the number of distinct prefixes indicates how many networks

the observed IP addresses belong to. A large increase shows that a CDN is served

from many different networks, whereas no increase indicates that IP addresses have

a sequence of bits in common. For instance, the plot shows that all EdgeCast servers

are located within three ”/20” IPv4 networks.

The most networks were observed for Akamai for all prefix lengths. Compared

to the other providers, the networks of Akamai servers belong to many different

address blocks, even for short prefix lengths. Since it is unlikely that Akamai has

been allocated 70 ”/8” IPv4 address blocks, Akamai servers must be hosted within

many different networks in the Internet. The tail of the Akamai graph shows a big

increase in networks from a prefix length of 30 bits to 31 bits. This suggests that

Akamai servers are typically deployed in pairs within networks with a 30 bit network

mask. It is assumed that Akamai has locations with more than two servers, because

servers are deployed in locations near many potential end-users in ISP networks and
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Figure 4.11: Number of unique networks depending on prefix length.
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near Internet exchanges. It is possible that within large ISP networks, Akamai has

multiple server locations with just two servers. The IP addresses allocated to servers

might differ across the ISP network and account for the high number of IP addresses

with a common 30 bit prefix. Another explanation is that due to fragmentation of

the IPv4 address space, CDNs may use multiple network prefixes within a single

network.

Besides revealing the number of networks CDN servers are hosted in, the plot also

gives a picture of the architecture of the CDNs. The last 7 bits of all collected IP

addresses were identical for Level 3. Since it is unlikely that Level 3 servers are

located in separate ”/25” networks at the same location or that each location would

only contain a single server, the use of load balancers could explain why IP addresses

have common last bits. Level 3 uses DNS to direct users to the nearest location but

instead of providing the IP address of a specific physical server, the address of a

load balancer is likely provided. DNS is used to distribute load globally, whereas

the load balancer pointed to by DNS is used to distribute traffic across the available

servers in a location. The IP addresses of Limelight and Yahoo servers also showed

similarity within the last 7 bits of the addresses, so these providers may use a similar

architecture.
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Figure 4.12: Box plot of TTL of A Records for CDN and non-CDN domains.

Thousands of IP addresses were observed for Google, Amazon, and Akamai. Since

it would be unnecessary to use this many unique IP addresses to access anycast
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servers, it can be concluded that these CDNs do not use anycast as their primary

method of traffic distribution and load balancing. However, the remaining CDNs

returned significantly fewer unique IP addresses through DNS and this could be a

sign of anycast usage. We analyzed a small subset of the collected IP addresses for

these CDNs using traceroute. By comparing the routes from a vantage point in

Finland and Germany, we determined that EdgeCast uses anycast to direct clients

to nearby servers, whereas the remaining CDN providers use DNS redirection.

Figure 4.12 shows a box plot of A record TTL for each CDN provider and for

the domain names that were not classified as belonging to CDNs. All of the CDN

providers except EdgeCast consistently returned DNS records with very low lifetime.

The low TTL hints that these CDNs were using DNS redirection rather than any-

cast. EdgeCast on the other hand consistently used a TTL value of 1 hour and this

shows that DNS information is not changed frequently and that DNS redirection is

therefore not used for fine-grained server selection. Based on the typical DNS record

lifetime and the traceroute analysis, it is certain that EdgeCast relies on anycast to

direct clients to the nearest server. When the routes to EdgeCast servers were ana-

lyzed, it was discovered that although all the IP addresses are anycast routed there

was a noticeable performance difference between IP addresses in different networks.

This difference is caused by different prefixes being routed to different locations in

the Internet. EdgeCast must therefore also be using DNS redirection, but instead

of returning an address of a specific CDN server, and anycast address optimized for

a geographical region is returned.

Overall, Figure 4.12 shows that the TTL of non-CDN domains is very low and com-

parable to those of the CDNs except for EdgeCast. This is due to unnecessarily low

TTL values used by websites and miscategorization of CDN domains as non-CDN

domains. Websites hosted on a limited set of servers with static IP addresses should

not use low TTL values for DNS records as these rarely need to be changed.

In order to make the best estimate of the number of server locations, it would be

necessary to analyze the routes between PlanetLab nodes and the IP addresses of

the CDNs, but this information was not collected. 19,865 distinct IP addresses were

collected for Akamai servers. If each address belongs to a physical server, only 15%

of the total number of Akamai servers [35] were seen by measurement nodes. If

Akamai servers are typically hosted in clusters of two severs, Figure 4.11 suggests

that 10,000 hosting locations were observed for Akamai. Since we determined that
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Akamai does not use anycast as its primary load distribution method, the number

of observed IP addresses is a good measure of the number of CDN servers deployed

Akamai, although the use of load balancers cannot be ruled out. The same can be

said for Google and Amazon, which have CDN architectures similary with Akamai.

For Limelight, Yahoo and Level 3, the lower number of unique IP addresses and use

of load balancers indicates that there is a better relationship between the number of

observed IP addresses and the number of locations each CDN has servers in. Because

the IP addresses returned for these three CDN providers most likely point to load

balancers, it is not possible to estimate the number of available CDN servers. The

use of anycast makes it impossible to estimate the number of locations for EdgeCast

without analyzing traceroute or BGP data.

It is possible that the websites measured also played a role in the number of IP ad-

dresses observed for each CDN provider. Some of the measured web sites might have

had more users and therefore need more CDN servers to handle traffic. However,

given the popularity of the non-Finnish websites, the traffic demand of those web

sites should be sufficiently high to expect content to be delivered from many CDN

servers. The number of unique IP addresses is therefore a good measure to compare

CDNs that do not hide servers behind load balancers by.

While Figure 4.11 reveals information about the overall structure of the identified

CDNs, it does not tell anything about how specific PlanetLab nodes perceived each

of the CDNs. Figure 4.13 shows the empirical CDF of the number of unique IP

addresses observed by PlanetLab nodes for each CDN provider. The plot shows

that although most servers were observed for Akamai globally, 85% of the nodes

typically observed more distinct IP addresses for Amazon than Akamai. The re-

maining 15% of the nodes observed significantly more Akamai servers than Amazon

servers. The highest number of servers observed by a PlanetLab node was 1,000 for

Amazon, whereas the same number was an order of magnitude larger for Akamai.

Five percent of the PlanetLab nodes observed more than 1,000 servers for Akamai

and this indicates that these nodes were in locations far from Akamai locations. If

any Akamai location had been significantly better than the others, clients would

have been redirected to this locations more often and thereby have observed fewer

servers.

I could be expected that because Akamai has many servers deployed in many differ-

62 / 82



CHAPTER 4. ANALYSIS

ent networks, the average number of servers observed by a node would be similar to

those of CDN providers with more consolidated architectures, such as Level 3 and

Limelight. However, the plot shows that nodes observe noticeably more servers from

CDN providers with many servers in many locations. A CDN location is therefore

not reserved for end-users within a particular network, but the capacity can also

be taken advantage of by clients outside the network. This makes server deploy-

ment inside ISP networks more profitable as an increased number of reachable users

increase server utilization.
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Figure 4.13: Empirical CDF of number of unique IP addresses observed by each
node.

4.3.3 Resolver Accuracy

All of the seven CDNs identified in the measurement data relied on DNS to redirect

users to servers optimal with respect to their estimated location. DNS is therefore an

important component in the architectures of these CDNs and may affect the user ex-

perience positively or negatively depending on the accuracy of the DNS redirection.

Iterative resolution always queries an authoritative name server of a domain and for

CDNs this should result in the best possible server being selected as the source IP

address of the DNS query is not masked by a recursive resolver. The IP address
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in the A record obtained through iterative resolution is therefore used to estimate

the accuracy of the answers by the default resolver, Google DNS, and OpenDNS.

In order to measure the accuracy of the DNS resolvers, the concept of IP address

similarity was defined as the length of the longest prefix two IP addresses have in

common. For instance, the addresses 192.168.0.1 and 192.168.0.2 have an IP

address similarity of 30 bit. The resolver accuracy was defined as IP address simi-

larity between the address returned by iterative resolution and the address returned

by another resolver.
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Figure 4.14: Average accuracy of DNS Resolvers.

Figure 4.14 shows the average resolver accuracy of CDN and non-CDN domain

names. The accuracy for the non-CDN domains was expected to be higher, as

websites hosted on a limited number of servers should have consistent DNS informa-

tion. The lower accuracy is most likely due to incorrect classification of CDN and

non-CDN domains, and DNS servers shuffling multiple A records in DNS responses.

For all of the identified CDNs, the plot shows that name resolution using Google

DNS and OpenDNS results in sub-optimal server selection, except for Amazon and

EdgeCast. The IP address returned by the default resolver is generally more sim-

ilar to IP address returned by an authoritative name server of a CDN provider.

Surprisingly, the plot shows that the accuracy of Google DNS and OpenDNS is far

worse for Akamai than for any of the other CDN providers. This may be a con-
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sequence of the distributed architecture of Akamai and the high number of unique

IP addresses returned by the authoritative DNS servers of Akamai. Any location-

dependent server selection made by Akamai appears to be broken by Google DNS

and OpenDNS. In comparison, a much smaller difference in resolver accuracy is ob-

served for Level 3, Limelight, and Google. Although the server selections by Google

DNS and OpenDNS could be better for these CDNs, the selections are still much

better than those made for Akamai.

CDN Provider Europe North America Combined

Akamai 9242 12373 19865

Amazon 2095 2765 4477

Google 1864 1204 3027

Level 3 122 190 279

Yahoo 85 123 161

Limelight Networks 28 41 69

EdgeCast Networks 12 10 22

Table 4.5: Summary of Unique IP addresses by CDN provider and continent.

Since CDN locations are not necessarily reserved for end-users in the network they

are deployed in, the collected IP addresses were analyzed for overlapping server

selections between Europe and North America. Is is assumed that due to the ge-

ographical distance between Europe and North America, users on either continent

should preferably never be redirected to a CDN server on the opposite continent. If

a node in Europe observed the same IP address as a node in North America, either

node must have been redirected to a CDN server located on the opposite continent

or neither continent. CDNs do not base their redirections purely on the estimated

location of clients, but also consider other factors that affect the quality of service.

A server with high latency is still better than an overloaded server in a congested

part of the Internet.

Table 4.5 shows a summary of the number of unique IP addresses observed by nodes

on the two continents and by nodes globally. The table shows that Limelight and

EdgeCast were the only providers that did not have any overlap in DNS redirections

between the Europe and North America. This suggest that the location-based DNS

redirection worked perfectly and that none of the PlanetLab nodes were located in

border zones of the CDNs. Naturally the number of CDN locations increases the

risk of incorrect DNS redirection because the geographical regions mapped to IP

addresses are smaller.
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Figure 4.15 shows the percentage of overlapping IP addresses depending on prefix

length. The plot shows that the CDN providers with many server locations have

less than 10% overlap in DNS redirections. Given the combined number of servers

for Akamai, Amazon, and Google, the DNS redirection of these CDN providers ap-

pears to work very well. Almost 30% of Yahoo IP addresses were observed in both

Europe and North America, and this indicates that Yahoo servers lack geographical

diversity compared to the other CDNs. Yahoo has three data centers in the United

States and one in Singapore [36] and this could explain the higher number of overlap-

ping IP addresses. Since IP addresses observed on the two continents did not fully

overlap, Yahoo must have servers deployed in Europe in undisclosed locations. No

overlapping IP addresses were observed for EdgeCast and this indicates that Edge-

Cast uses different anycast addresses in different regions. Finally, the small overlap

in IP addresses for Google, Amazon, and Akamai can most likely be attributed to

their many server locations. End-users are more likely to be redirected to a CDN

server on the same continent, even if the redirection is not perfect. Furthermore, it is

possible for CDNs with many server locations to direct users away from overloaded

servers or congested network paths without sending them to another continent.
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Figure 4.15: Percentage of IP addresses observed in both Europe and North America
depending on prefix length.

Figure 4.15 shows several peaks between prefix lengths of 16 and 22 bits. These
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peaks could indicate that overlapping servers share a common IP prefix. Akamai

servers that are observed on the two continents come from “/16” networks. An IP

prefix of this size could suggest that Akamai uses data centers for overflow traffic

between continents, rather than hosting locations inside e.g. ISPs. The peak for

Google at 22 bit prefix length suggests that the overlapping servers come from the

same Google data center.

4.3.4 Connect Time

CDN providers claim that their infrastructures enable faster delivery of content to

end-users in terms of both throughput and latency. To determine the validity of

these claims, we analyzed the delivery performance of website elements. Figure

4.16 shows a box plot of the connect time for CDN servers and non-CDN servers

for each of the DNS resolution methods. The latency between clients and non-CDN

servers was typically higher than for the CDN servers. For non-CDN servers iterative

resolution results in a median connect time 7 ms lower than the other resolvers.

This confirms that some of the non-CDN domains must belong to CDNs using DNS

redirection. The connect time of the default resolver and iterative resolution is

generally comparable for the CDN servers except for Limelight which had a 12 ms

difference.

Akamai servers had the lowest latency for iterative resolution. The plot also shows

that despite Akamai redirections being noticeably worse for Google DNS and OpenDNS,

the seemingly poor server selection only caused a 10 ms increase in connect time

compared to iterative resolution. This suggests that the DNS redirections of Akamai

are actually not broken by Google DNS and OpenDNS. Google DNS is experiment-

ing with the ”Client Subnet in DNS Request” extension for DNS [24], but since

Google DNS did not have a resolver accuracy of CDN domains comparable with the

default resolver, it would appear that this feature did not result in more accurate

DNS answers. DNS queries using the client subnet extension do not contain the full

IP address of the original client. This may explain why the accuracy is lower, but

even if only the first 24 bits of the original client’s IP address were provided, the

resolver accuracy should still have been better than what was observed. The combi-

nation of DNS redirection and anycast routing could also have explained why poor

CDN redirections did not result in higher connect time, but Akamai does not use

anycast [37]. The most likely reason for the discrepancy between resolver accuracy
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Figure 4.16: Box plot of connect time for CDN server and non-CDN servers.

and connect time for Google DNS and OpenDNS is the location of the PlanetLab

nodes and their Internet connectivity, or that the CDNs do not support the client

subnet extension yet. Akamai has also been experimenting with application layer

redirection where poor DNS redirections are detected by measuring RTT during

the TCP handshake [38]. If the RTT indicates that the client was directed to an

sub-optimal CDN server, the server will automatically find a optimal server and

return the address of this server through the application protocol. Because TCP

connections typically do not run through proxies, the IP address of the client is not

masqueraded as with recursive DNS resolution. Akamai is therefore able to make the

best possible server selection using the full IP address of the client. Akamai states

that the added time of application layer redirection mean that it is only beneficial to

redirect clients requesting large files. Given the typical size of files hosted by Akamai

for the measured webpages, it is unlikely that Akamai used HTTP redirection.

The use of Google DNS results in the lowest connect time for Google CDN servers.

This indicates that Google DNS is optimized for Google services as even iterative

resolution results in a higher median connect time. Normally an authoritative name

server of Google would be expected to give the best possible answer. Since this is

not the case, Google DNS must have additional information about the state of the
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CDN and thereby be able to make better server selections.

4.3.5 Throughput

The congestion control of TCP affects the throughput of HTTP differently for dif-

ferent file sizes. Figure 4.17 shows a box plot of file sizes for each CDN. Different

services provide different content and hence the variations in file sizes between the

CDNs. The typical file size is different for each of the CDNs and this complicates

throughput comparison. In order to minimize the TCP behavior affecting through-

put, we decided to compare the throughput of the CDNs for file sizes in two small

intervals.
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Figure 4.17: Box plot of the file size of files hosted on each CDN.

Figure 4.18 shows the empirical CDF of HTTP throughput of the CDN servers and

non-CDN servers. The upper part shows throughput for small files between 5 and

15 kilobytes, and the lower part shows the throughput for larger files between 95

and 105 kilobytes. The plot for the large file sizes is missing some CDN providers

as file sizes in the selected range were not observed for these providers. The overall

tendency for the two plots is that larger files are transferred at a higher bitrate than

smaller files. The throughput for small files is better for all the CDNs compared

to files coming from non-CDN servers. The use of a CDN therefore does improve
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the download time of web pages with many small elements. The performance of

the CDNs fall into three groups for small files. Amazon has a median throughput

of only 200 kbps and Limelight, EdgeCast, and Yahoo had a median throughput of

400 kbps. Akamai, Google, and Level 3 had a median throughput of approximately

1.3 Mbps. Despite having a lower number of estimated locations, Level 3 is still able

to compete with Akamai and Google when its comes to throughput for small files.

This shows that a distributed CDN architecture does not necessarily result in better

throughput.
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Figure 4.18: Empirical CDF of throughput for small and larger files.

The throughput of Akamai appears to be the same for the small and larger files, and

the throughput of larger files is comparable to that of non-CDN servers. Compared

to Google and Yahoo, Akamai does not enhance content delivery of larger files for

web pages. Google and Yahoo show significantly better performance for larger files

than non-CDN servers and the median throughput is 2 Mbps and 3 Mbps, respec-

tively. The differences in throughput suggests that the Akamai, Yahoo, and Google

CDNs are optimized for different file sizes. Figure 4.17 shows that Yahoo is the

only CDN where the 95-105 kilobyte range lies within the inter-quartile range of

the file size distribution. Since Yahoo outperforms Google and Akamai for larger

files, the Yahoo CDN is likely optimized for delivering larger files, rather than small

files. Google had similar performance with Akamai for smaller files, but significantly
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better performance for larger files. This indicates that the Google CDN performs

well in terms of throughput for both small and larger files. Given the many different

file sizes observed for Akamai, it is surprising that there is a noticeable difference

in throughput for small and larger files. It is possible that this is related to the

measured websites and the content they provide.

In this chapter we analyzed the performance of a set of popular websites based

on measurements performed by PlanetLab nodes. We determined that network

latency affects DNS resolution time the most, and that using a recursive DNS server

close to the client results in the best possible DNS resolution time. By comparing

the the DNS resolution results of four different resolution methods we determined

that the proximity of a recursive DNS affects resolver accuracy. The proximity of

a recursive resolver affects the similarity of the obtained IP address with the best

possible server selection obtained by querying an authoritative name server of a CDN

domain. However, when the TCP connect time was analyze, we discovered that

dissimilar addresses do not necessarily translate into higher connect time. Finally,

we evaluated the throughput of the identified CDNs and determined that CDNs are

likely optimized for different file sizes. Akamai and Google performed well for small

files, but for larger files Akamai had performance similar with non-CDN servers.

Google on the other hand still had significantly better throughput that non-CDN

servers for large files.
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Chapter 5

Discussion

The analysis of DNS resolution time showed that the latency between client and

servers has the greatest impact on DNS performance. The best reason for using

a third-party resolver is lower cache-miss probability compared to the recursive re-

solver of a home gateway. However, depending on the TTL of records the third-party

resolver will only outperform the default resolver for the first query. If the default

resolver performs iterative resolution it will also cache information about the author-

itative name servers for a domain. These NS records may have substantially longer

lifetime than the final A record. The default resolver will therefore be able to direct

subsequent queries directly to authoritative name servers and thereby skip several

resolution steps. Thus third-party resolvers do not necessarily have an advantage

for records with short TTL values.

Currently Google DNS and OpenDNS cannot compete on resolution time with DNS

caches in home gateways or ISP networks, but DNS resolution is about more than

just resolution time. Google DNS and OpenDNS claim to provide better secu-

rity and this is an important aspect to consider when choosing DNS resolver. For

instance, Google DNS validates DNS records using DNSSEC and will not return

records where the authenticity cannot be verified for domains which use DNSSEC.

From a security perspective, third-party resolvers provide a better service as security

enhancements are implemented sooner than by ISPs and home gateway manufactur-

ers. It can therefore be argued that if the latency between clients and DNS servers

were reduced, the use of third-party resolvers would be preferable from a security

standpoint, even at the cost of slightly higher resolution time.
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The content distribution networks identified in the measurement data used different

architectures to improve content delivery. Six out of seven CDNs only used DNS

redirection, and one CDN used both DNS redirection and anycast to direct users to

optimal CDN servers. DNS is preferred over anycast by most of the identified CDNs

because it is not possible to make fine-grained load balancing using BGP. Akamai

claims that their CDN is able to direct traffic away from overloaded servers within

seconds [37]. If a CDN only relied on anycast to distribute traffic across servers,

it could happen that a surge in traffic within a region would overload servers in

a hosting location. In that case, the only way of directing traffic away from the

overloaded servers would be to announce new BGP information. However, the gran-

ularity of BGP information means that changes in information does not necessarily

lead to changes in routing. If a BGP announcement does affect the routing in the

Internet, there is a risk that the traffic will not be distributed over a larger number

of servers, but instead overload another hosting location. DNS provides much more

accurate control than what is possible with BGP. EdgeCast therefore uses both DNS

and anycast to redirect users to optimal servers. This allows EdgeCast to benefit

from the simplicity of anycast and react better if servers become overloaded for an

extended period of time. In an overload situation EdgeCast would be able to update

its DNS information as quickly as Akamai, but the 1 hour TTL of its DNS records

means that clients already directed to the overloaded servers will be stuck with these

for up to 1 hour. Because Akamai uses a much lower TTL value, clients are only

stuck with overloaded servers for a matter of minutes or tens of seconds. Overload

therefore has a more severe impact on the performance of the EdgeCast CDN. The

only way to avoid overload situations is to over-provision servers and redirect users

via DNS well before overload occurs. CDNs which only use DNS redirection are able

to operate with higher server loads than EdgeCast, because traffic patterns can be

changed more rapidly.

Of course there are also benefits of using anycast compared to only using DNS redi-

rection. Because anycast works independently of DNS, third-party resolvers cannot

break the server selection of the CDN. The limited number of regional anycast ad-

dresses also enabled EdgeCast to make perfect DNS redirections. Although the low

resolver accuracy of the third-party resolvers for Akamai did not appear to affect

the TCP connect time significantly, it still highlights the main problem of DNS redi-

rection. To overcome the problem of recursive resolvers hiding the IP address of

the end-user, Akamai could start using both unicast and anycast addresses for its
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servers. Queries identified as coming from Google DNS or OpenDNS would then

receive an anycast addresses rather than a unicast addresses. However, this would

be complex and likely impossible to implement in all locations where Akamai hosts

servers. Pushing for the adoption and deployment of the ”Client subnet in DNS

requests” extension is a more feasible solution for Akamai. It is possible that CDN

providers with fewer server locations would be able to use both unicast and anycast,

and thereby overcome the problem of poor DNS redirections by third-party resolvers.

The measurement application worked very well on PlanetLab except for the OpenSSL

issue. Although package management was taken into consideration when setting up

measurement nodes, we did not foresee that the default cURL package could come

without OpenSSL support. In hindsight, this problem should have been detected

early on, but because the data processing tools had not yet been written this did

not happen. Initially there were also some problems with the output format of the

measurement application and these had to be fixed during the measurement pe-

riod. Automating validity checking of measurement data would have been able to

detect problems earlier. We learned that when using many measurement nodes it

is necessary to have a good system for managing and monitoring nodes. Logging

information collected by the data collection and deployment systems was used to

check if nodes were functioning properly. The data collection system also sent daily

statistics and alarms in case certain statistics dropped below a threshold.

The design of the measurement application resulted in behavior that was different

from that of web browsers. The cURL library lacked the ability to override DNS

resolution and the integration with the DNS clients was therefore not optimal. We

determined that the only solution to this problem is to implement an HTTP client

with this feature. Additional hook points that will enable measurement of more

precise performance metrics than cURL should also be implemented.

Although the collection of measurement data was automated, the processing of this

data was only semi-automatic. When dealing with data in the order of terabytes, we

realized it would have been beneficial to process data shortly after it is submitted

to the data collection system. The longer data processing is postponed, the greater

the need of data storage becomes and the more obvious the I/O limitations of hard

drives become.

The main reason why data processing became a challenge was that many more per-
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formance metrics were collected than were necessary. We chose to collect additional

metrics in order to create a data set that can be used in future research of web-page

delivery performance and content distribution networks.

The analysis of resolver accuracy and connect time showed that poor resolver accu-

racy did not translate directly into higher connect time. It would be interesting to

establish a relationship between resolver accuracy and HTTP performance metrics,

such that the impact of using third-party DNS resolvers can be quantified better.

We confirmed that DNS redirection is the most popular solution for CDN server

selection. CDNs use multiple levels of redirection and in order to understand the

operation of CDNs, it would be interesting to analyze the redirection process in

detail. The full trace of messages sent and received during DNS resolution was

collected and this information will be useful in future CDN research. Visualizing

DNS redirections as a graph could previously reveal unseen details about the struc-

ture and operation of content distribution networks. We also observed that many

websites had peculiar DNS configurations. The DNS traces can also be used to

determine potential performance gains by correcting improper DNS configurations.
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Chapter 6

Conclusions

In this Master’s thesis we developed an application for measuring the performance

of DNS and HTTP downloads. The application was successfully deployed on the

distributed measurement platform PlanetLab and used to measure a set of popular

websites. The measurement data was used to evaluate the performance of different

DNS resolution methods and HTTP download. Finally, a method of identifying

content distribution networks from a global perspective was developed and applied

to the measurement data. The performance of DNS and HTTP was then analyzed

with respect to CDNs.

Domain names were resolved using iterative resolution, Google DNS, OpenDNS, and

the default DNS resolver of the measurements nodes. The performance of HTTP was

evaluated in terms of TCP connect time and throughput. The DNS measurements

showed that network latency has the biggest impact on DNS resolution time. The

default resolver used by measurement nodes resulted in the shortest resolution time

in 90% of the measurements. Despite having a lower cache-miss probability, the

resolution time was only shorter for Google DNS in 10% of the measurements and

OpenDNS showed no improvement over the default resolver. The performance of

Google DNS and OpenDNS was comparable, and iterative resolution consistently

resulted in the highest resolution time.

Most of the measured websites used content distribution networks and the choice

of DNS resolver affected the network latency between client and server, due to the

use of DNS redirection. The default resolver had the best performance for CDN

servers as the latency to servers was comparable to iterative resolution, but the
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resolution time was an order of magnitude smaller. While identifying CDNs, it

was determined that the TTL of DNS records is not a useful indicator when it

comes to identifying CDN servers, because CDNs that use anycast will likely use

higher TTL values. An effective method of identifying CDN servers using CNAME

records was developed and used to identify the most popular CDNs used by the

measured websites. Through the global perspective of the measurements, seven

CDN providers and the IP addresses of their servers were identified. Analysis of

these IP addresses showed that different providers employed different architectures

relying on DNS redirection, anycast, and load balancers. In addition, it was observed

that the websites often relied on more than just a single CDN provider.

The A records retrieved by the default resolver were a closer match to those re-

turned by the authoritative name servers of the CDNs. However, the analysis of

connect time revealed that third-party resolvers did not result in higher connect

time to CDN servers. This was especially surprising for Akamai which had the

worst resolver accuracy of the seven CDNs. Further research is needed to establish

a relationship between resolver accuracy and application-layer performance. The

analysis of HTTP throughput showed that despite the difference in the number of

estimated CDN locations, Akamai and Level 3 have comparable throughput for small

files. Finally, it was observed that content distribution networks are likely geared

towards delivering different file sizes, as Akamai had noticeably worse throughput

for larger files, whereas Google performed well for both small and larger files.
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