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Even though processing of errors is one of the most fundamental cognitive func-
tions, it is still unclear whether the human brain processes self-generated and
observed errors similarly. In this study, we examined the neural mechanisms of
error processing with functional magnetic resonance imaging (fMRI) during self-
committed errors, as well as observed errors made by others in both controlled
and naturalistic situations. In the first experiment the subjects played a simple
response selection game, occasionally making errors. In the second experiment
they watched a video recording of the same game played by someone else. In
the third experiment they watched short video clips depicting other people fail-
ing in everyday situations. The fMRI data were analyzed with the general lin-
ear model (GLM) and independent component analysis (ICA) in order to detect
error-related activation and functional connectivity. With the third task we also
examined the activity caused by error anticipation. In addition, correlations be-
tween error-related BOLD responses in 23 predefined regions of interest (ROI) were
calculated, and the regional responses in different experimental conditions were
compared. Similar activations were detected during self-committed and observed
naturalistic errors in striatal subregions (caudate nucleus and globus pallidus),
rostral anterior cingulate cortex (ACC) and visual cortical regions. Dorsal ACC,
inferior frontal gyrus and insula showed similar activation during self-committed
errors and anticipation of naturalistic observed errors. Observed errors in the
game could not produce a robust BOLD response. Both ICA and ROI-based
analyses indicated high functional connectivity between the key regions of the er-
ror monitoring circuit. Together, these findings support the theories advocating
distinct functions of rostral and dorsal ACC in error monitoring and suggest that
the striatum processes self-generated and observed errors quite similarly.

Keywords: fMRI, event-related, error processing, functional connectivity, ante-
rior cingulate cortex, striatum, naturalistic stimulus, GLM, ICA
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Vaikka virheenkäsittely on eräs tärkeimmistä kognitiivisista toiminnoista, on vielä
epäselvää, käsittelevätkö ihmisaivot itse tehtyjä ja havaittuja toisten tekemiä
virheitä samalla tavalla. Tässä tutkimuksessa tutkittiin toiminnallisella mag-
neettikuvauksella (fMRI) mekanismeja, jotka liittyvät itse tehtyjen virheiden ja
sekä kontrolloiduissa että luonnollisissa tilanteissa havaittujen virheiden käsitte-
lyyn. Ensimmäisessä koeasetelmassa koehenkilöt pelasivat yksinkertaista peliä
tehden välillä virheitä. Toisessa kokeessa katseltiin videota kyseisestä pelistä toisen
pelaajan pelaamana. Kolmannessa kokeessa katseltiin lyhyitä videopätkiä erilai-
sista arkielämän virhetilanteista. fMRI-dataa analysoitiin yleisellä lineaarisella
mallilla (GLM) ja riippumattomien komponenttien analyysilla (ICA) virhesidon-
naisen aivotoiminnan ja toiminnallisen konnektiivisuuden selvittämiseksi. Lu-
onnollisten virheiden ennakoinnin aiheuttamaa aivoaktivaatiota tutkittiin myös
erikseen. Lisäksi laskettiin virheiden aiheuttamat hemodynaamiset vasteet 23:lla
eri aivoalueella ja tutkittiin eri alueiden vasteiden välisiä korrelaatioita sekä eri
koetilanteiden aiheuttamien vasteiden eroja. Itse tehdyt ja luonnolliset havaitut
virheet aiheuttivat samanlaista aktivaatiota aivojuovion osa-alueilla (häntätumake
ja linssitumakkeen pallo) sekä rostraalisen etummaisen pihtipoimun ja näköai-
vokuoren alueilla. Dorsaalinen etummainen pihtipoimu, alempi otsalohkon poimu
ja aivosaari aktivoituivat samalla tavoin itse tehtyjen virheiden ja luonnollisten
virheiden ennakoinnin aikana. Sen sijaan havaitut virheet pelissä eivät aiheut-
taneet merkittäviä vasteita. Sekä ICA-tuloksien että yksittäisten aivoalueiden
vasteiden korrelaatioiden perusteella virheiden aikana aktivoituneet alueet oli-
vat toiminnallisesti yhteydessä keskenään. Nämä löydökset vahvistavat teori-
oita rostraalisen ja dorsaalisen etummaisen pihtipoimun erillisistä toiminnoista
virheenkäsittelyn aikana ja viittaavat siihen että aivojuovio käsittelee melko
samalla tavoin itse tehtyjä ja havaittuja virheitä.
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1 Introduction
Error processing is one of the most fundamental cognitive functions. Evaluation of
action outcomes and dynamic adjustment of behavior are required for adaptation to
the constantly changing environment. As humans learn by the consequences of their
actions, error monitoring is the core function for reinforcement learning. Impaired
error processing has been related to several psychiatric disorders characterized by
maladaptive behavior, including Parkinson’s disease [Falkenstein et al., 2001; Ito
and Kitagawa, 2006; Willemssen et al., 2008], schizophrenia [Manoach and Agam,
2013; Sanders et al., 2002], obsessive–compulsive disorder [Fitzgerald et al., 2005]
and depression [Gotlib et al., 2005].

Anterior cingulate cortex (ACC) has been found to mediate error processing and
modulate the activity of prefrontal executive regions, thus controlling the behavioral
adjustments after mistakes (see the reviews by van Veen and Carter [2002] and Bush
et al. [2000]). However, it is still unclear whether the function of ACC and other
regions of the error-monitoring brain circuit is similar during self-committed and
observed errors. Growing body of evidence suggests that the human brain processes
action execution and action observation in a similar way. Therefore, it is likely that
observed errors will activate the same brain regions as the self-committed errors.

In conventional neuroscientific research, brain functions have been studied with
relatively simple stimuli, and the responses have mostly been modelled with the
general linear model (GLM). However, during recent years the focus in neuroscience
has increasingly shifted towards naturalistic stimulus paradigms. Instead of using
highly controlled stimuli, many research groups have adopted rather complicated,
multisensory tasks, such as video games and movies. Naturalistic stimuli are able to
activate widely distributed neural networks related to higher-order cognitive func-
tions [Spiers and Maguire, 2007]. Furthermore, the activation of a certain brain
network in response to naturalistic stimuli verifies that the same network is most
likely activated also in real life under similar conditions. Therefore, brain mecha-
nisms observed in laboratory conditions can be generalized into natural, everyday
environments. This higher ecological validity is a great advantage when investigat-
ing behavioral deficits that only arise during complex cognitive tasks, such as social
interaction.

It is still somewhat uncertain whether naturalistic stimuli, such as movie clips,
are capable of eliciting robust error-related brain activity. To date, it has not been
directly tested whether the activation patterns caused by observed errors are similar
during controlled and naturalistic experiments. It can be hypothesized that watching
a failure in a naturalistic scene, for example someone falling down, causes increased
emotional responses compared to seeing an error in a simulated video game. Thus,
we can expect enhanced error-related activation during the naturalistic scenario,
especially in the regions related to emotional processing.

Because of the high complexity of naturalistic paradigms, novel signal analysis
methods have been developed to uncover the neural responses related to rich mul-
tisensory stimuli [Malinen et al., 2007]. Individual and regional variability of the
BOLD response would decrease detection efficiency if a standard hemodynamic re-



sponse function was used as a regressor. Modifications of the standard HRF, for
example the finite impulse response (FIR) basis functions, are able to account for
this variability. With a FIR regressor model it is possible to capture event-related
responses with any shape up to a predefined time scale. Another approach for ana-
lyzing complex activation patterns is to use data-driven methods, which do not make
any a priori hypotheses about the measured signals, but rather attempt to detect
underlying signal structures. Independent component analysis (ICA) is the most
popular method for spatio–temporal segregation of activation patterns from fMRI
data. The main advantage of ICA is the ability to extract confounding signal sources,
such as physiological noise, head movements and scanner noise, which would bias
the GLM estimates if not specifically modelled in the design matrix. Furthermore,
ICA can detect brain activity unrelated to the task, whereas GLM only models the
predefined task effects. Because the regions belonging to the same component share
the same activation pattern, they are assumed to be functionally interconnected.
ICA is thus also a straightforward measure of functional connectivity.

The main goal of this study is to examine whether committing and observing er-
rors elicit similar neural activity. We measure blood oxygen level dependent (BOLD)
responses while the subjects make errors themselves and observe mistakes by others
in both controlled and naturalistic conditions. In addition, we aim to establish the
effect of error anticipation on error-related BOLD responses. By contrasting the
BOLD responses caused by anticipation and observation of errors in the naturalis-
tic condition, we can examine whether the error response is elicited specifically by
the likelihood of an error or the occurrence of a failure. In addition, responses to
expected and unexpected errors can be extracted and contrasted with each other,
which enables studying the effect of surprise to the error responses. Another objec-
tive of this study is to compare the results of GLM and ICA analyses applied to an
event-related fMRI paradigm. With the combined results from these two methods,
we aim at examining whether the brain regions showing significant error-related
activation are also functionally connected during error monitoring.
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2 Neural basis of error processing
Detecting and correcting errors is an important function for adaptive goal-directed
behavior. This section introduces the anatomical regions involved in error moni-
toring and discusses recent theories about the cognitive processes underlying error
detection. Furthermore, the chapter briefly discusses processing of observed errors.
Finally, we review recent findings on error-processing deficits related to several neu-
ropsychiatric disorders, since there are important correlations between brain struc-
tural abnormalities and error monitoring deficits.








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












 

Figure 1: Brain regions contributing to error processing. ACC = anterior cingulate
cortex, Para-CC = paracingulate cortex, SMA = supplementary motor area, LPFC
= lateral prefrontal cortex.

2.1 Neuroanatomical circuits involved in error monitoring

Efficient error monitoring requires the cooperation of widespread frontal and frontos-
triatal brain circuits [Ullsperger and von Cramon, 2006]. Figure 1 represents some
key regions which have been found to contribute to error processing. Electrophys-
iological, neuroimaging and lesion studies have established the central role of the
anterior cingulate cortex (ACC) in supporting error processing. A vertex-transvert
response peaking at 100–150 ms after error commission has frequently been de-
tected in event-related potential (ERP) studies using electroencephalography (EEG)
and magnetoencephalography (MEG). This error-related negativity (ERN/Ne), de-
scribed first by Gehring et al. [1993] and Hohnsbein et al. [1989], has been localized
in ACC or medial frontal cortex using dipole modeling. Neuroimaging findings have
confirmed the contribution of ACC to error monitoring. Several fMRI studies have
found increased activity in ACC during error commission compared to successful
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performance [Braver et al., 2001; Carter, 1998; Kiehl et al., 2000; Menon et al.,
2001; Ullsperger and von Cramon, 2001]. Importantly, the increased activity has
been observed in a wide variety of error tasks, indicating an underlying general er-
ror detection mechanism modulating responses according to the goals of the current
task.

ACC is located on the medial surface of the frontal lobe and surrounds the
frontal part of the corpus callosum. It can be anatomically divided into dorsal and
rostral regions. The dorsal part of ACC (dACC) extends caudally from the genu
of the corpus callosum into the anterior commissure, and shares connections with
the striatum, lateral prefrontal cortex (LPFC), frontal eye fields (FEF) and sup-
plementary motor area (SMA) [Paus, 2001]. The extensive connectivity with these
executive brain regions makes dACC a central modulator for planning, generation
and execution of actions. Error-related activation of dACC is observed in several
fMRI studies [Taylor et al., 2006; van Veen and Carter, 2002], proposing that the
behavioral adjustments after error commission are controlled by that region.

The rostral part of the ACC is (rACC) lies anterior and ventral to the genu of the
corpus callosum. It is connected to the orbitofrontal cortex, as well as several limbic
and paralimbic regions, including amygdala, hypothalamus, insula and nucleus ac-
cumbens. In addition, rACC receives input from several thalamic nuclei, as well as
pre-supplementary motor area (pre-SMA) and dorsal premotor cortex. In addition,
rACC and pre-SMA are connected with the lateral prefrontal cortex (LPFC). LPFC
projects further to the basal ganglia, especially to the rostral striatum [Ullsperger
and von Cramon, 2006]. The diverse neural inputs from limbic regions involved in
directing motor behavior allow rACC to combine emotional and nociceptive infor-
mation about action outcomes. This information is further used by the prefrontal
cortex to coordinate behavior. Several fMRI studies [Garavan et al., 2002; Menon
et al., 2001; Polli et al., 2005] have found increased error-related activation of rACC
and interconnected regions, especially insula and amygdala. Increased activation
of rACC and affective regions due to error commission is assumed to reflect the
emotional significance of errors [Bush et al., 2000; Manoach and Agam, 2013]. In
particular, considering the large reciprocal connections between rACC and insula
and the conjoint activity of these regions observed after error commission (see a
review by Medford and Critchley [2010]), it it assumed that they constitute a core
network involved in awareness and subjective feelings of errors.

The segregation between dorsal ’cognitive’ and rostral ’emotional’ parts of the
anterior cingulate cortex has been the predominant theory so far. However, in recent
years a growing body of evidence has suggested an integration of negative emotional
responses, cognitive control and monitoring of pain in the dACC (see a review by
Shackman et al. [2011]). Thus, the cognitive and emotional functions subserved by
the ACC are not strictly localized to its subregions, but instead might be integrated
over extensive cortical and subcortical networks.
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2.2 Cognitive processes underlying error monitoring

There is an ongoing debate about the exact neural processes involved in error mon-
itoring (see a review by Ullsperger and Von Cramon [2004]). Holroyd and Coles
[2002] proposed that the error signals causing the ERN are controlling reinforce-
ment learning. According to this theory, the midbrain dopamine system induces a
negative reinforcement signal after error commission into the frontal cortex, which
disinhibits the dendrites of neurons in the motor cortex extending into the ACC.
The disinhibition elicits the ERN and increased post-error BOLD activity in the
ACC. The dopaminergic neurons respond to differences in the predictions of events,
increasing or decreasing activity for events that are better or worse than expected,
respectively. The theory was refined by Alexander and Brown [2011], who pro-
posed a unified model for ACC/mPFC activation in evaluating predicted response
outcome. Importantly, the midbrain dopamine system may activate due to anticipa-
tion of reward or punishment, in addition to already committed errors or successive
trials. This anticipation signal is used to modulate other brain regions involved in
reinforcement learning [Holroyd and Coles, 2002].

Another theory states that error signals are related to conflicting responses. A
classical example of a response conflict is the Stroop task, in which the subject has
to name the ink color, instead of reading the text depicting the name of the color. As
the subject has to withhold the congruent response (reading the text) and execute
the incongruent response (detect the ink color), both responses are activated at the
neural level. ACC activity increases due to the incompatible responses and interacts
with prefrontal control regions in order to strengthen the focus on the current task.
The response conflict theory was established in an ERP study by van Veen and
Carter [2002], who observed a vertex-negative peak both after errors and 340–380
ms after trial onset, the latter being increased for conflict trials. Importantly, both
peaks had a source in ACC. Further studies [Botvinick et al., 2001; Egner et al.,
2007; van Veen and Carter, 2005] have refined the conflict-processing hypothesis
and confirmed that both response conflict and incongruent stimuli activate separate,
nonoverlapping ACC and dorsolateral prefrontal cortex (dLPFC) regions.

The third theory about error processing considers the motivational and affective
significance of errors. Gehring et al. [1993] found that the ERN amplitude is higher
when the participants were more engaged to the task, i.e. when motivational signif-
icance was higher. This finding suggests that the error detection mechanism is also
dependent on the salience of the error stimulus. This effect is largely explained by
the anatomical connections between rACC and the limbic regions.

2.3 Processing of observed errors

Neural correlates of observed errors have been investigated in several studies. Ob-
serving errors made by someone else produces a similar ERN as self-generated errors
[Miltner et al., 2004; van Schie et al., 2004; Yu and Zhou, 2006]. Recent fMRI stud-
ies [de Bruijn et al., 2009; Schiffer et al., 2013; Shane et al., 2008] have localized
the activation to medial prefrontal cortex (MPFC) or rostral cingulate, a region also
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responding to self-generated errors. These findings suggest a similar neural mecha-
nism for processing both self-committed and observed errors. Importantly, it seems
that the rACC/MPFC has specialized to detection of incorrect events, regardless of
the reward value associated with them; in the fMRI study by de Bruijn et al. [2009]
the region showed increased activation after errors made by both cooperators and
enemies.

There is evidence that observed errors also affect the activity in the midbrain
dopamine system subserving reward and punishment. Kätsyri et al. [2013] showed
that striatal responses were more pronounced during active playing of a video game
than passive watching of the recorded game, both during wins and losses. Impor-
tantly, in their study both wins and losses produced striatal deactivation, which was
more significant after successful events. A controversial finding was documented by
de Bruijn et al. [2009], who found increased striatal activity after correct self-made
responses and errors made by the enemy.

Furthermore, the effect of error anticipation has been studied in order to specify
whether the error response arises specifially due to surprising events or incorrectness
of actions. Self-committed errors are always surprising, but errors made by others
can sometimes be predicted, which enables studying the distinction between these
two aspects of error processing. Also, if the unexpectedness of errors was the main
contributor to the ERN or related BOLD responses, similar brain activation would
be elicited by unexpected correct events. Schiffer et al. [2013] investigated this
possibility in an fMRI study and found that the rostral cingulate zone (located close
to the dACC/SMA despite its name) activates specifically after unexpected events,
regardless of their correctness.

2.4 Error monitoring deficits in neuropsychiatric disorders

The dysfunction of error-processing circuits has been associated with a number of
neuropsychiatric disorders. Studying patients with known deficits in parts of the
error monitoring system can shed light on the neural correlates of error process-
ing. Furthermore, comparing the activation patterns of patients to those of healthy
subjects can help in identifying the differences contributing to the behavioral abnor-
malities in neuropsychiatric disorders. Correctly detecting the dysfunctional neural
mechanisms is important when designing treatment and rehabilitation, and studying
these mechanisms thoroughly on healthy subjects constitutes the basis for clinical
research. This section briefly reviews recent findings about certain error processing
pathologies.

Error detection abnormalities have been detected in patients with Parkinson’s
disease (PD), a neurodegenerative disorder causing the loss of dopaminergic neurons
in the basal ganglia. Because PD causes deficits in dopamine release especially in the
dorsal striatum, error processing abnormalities can be directly related to dysfunction
of that region. ERN amplitude is reduced in non-demented PD patients compared to
healthy controls [Falkenstein et al., 2001; Ito and Kitagawa, 2006; Willemssen et al.,
2008]. Blunted ERN has also been observed in patients with Huntington’s disease
[Beste et al., 2006], a neurodegenerative disorder particularly affecting the striatum.
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Together, these findings support the theory about the essential contribution of basal
ganglia and midbrain dopaminergic neurons in error monitoring.

The inability to detect inconsistencies between goals and behavior has been sug-
gested to underlie both positive and negative symptoms in schizophrenia (see a
review by Sanders et al. [2002]). Positive symptoms include delusions and halluci-
nations, which may reflect a misattribution of internal thoughts to external sources
[Mathalon et al., 2002]. Negative symptoms, such as poverty of speech, anhedo-
nia, lack of motivation and social exclusion, are likely related to dysfunction of
the rostral affective division of ACC and impaired regulation of the limbic system.
Previous neuroimaging and ERP studies have shown evidence of ACC dysfunction
in schizophrenia. Carter et al. [1997] found ACC underactivation during response
conflict in a PET study of schizophrenic patients. Reduced ERN amplitude related
to schizophrenia has been observed by Laurens [2003], Kopp and Rist [1999] an by
Mathalon et al. [2002]. Furthermore, Polli et al. [2008] found decreased error-related
BOLD activity in both dorsal and rostral ACC.

In contrast to the decreased error-related brain activity in schizophrenia, hyper-
activation of ACC has been observed in patients with obsessive–compulsive disorder
(OCD) during error detection [Fitzgerald et al., 2005]. ACC hyperactivity increases
with symptom provocation and decreases during successful treatment. Oversensitiv-
ity to errors is a likely cause for obsessive thoughts and compulsive behavior aiming
to correct the perceived mistakes. Both response conflict and error commission have
been found to cause increased ACC activation in OCD patients [Ursu et al., 2003]. In
addition, patients with major depression show increased activity of subgenual ACC
in response to emotional stimuli [Gotlib et al., 2005]. In conclusion, increased error-
related activation of ACC, especially the subgenual part, causes enhanced emotional
responses to errors, which likely contributes to the development of OCD and mood
disorders.
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3 Functional magnetic resonance imaging
This section introduces the basic terms and concepts related to functional magnetic
resonance imaging (fMRI), largely based on the textbook of Huettel et al. [2004].
The principles of nuclear magnetic resonance, MR image formation, hemodynamic
response, BOLD signal generation, noise sources in fMRI and preprocessing of fMRI
data are briefly reviewed.

3.1 Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) of atomic nuclei constitutes the basis for mag-
netic resonance imaging. Many particles have an intrinsic magnetic property called
spin, causing their magnetic interaction with each other and external magnetic fields.
Atoms with a nonzero spin (i.e. an odd number of protons or neutrons) have a mag-
netic moment µ. An atom has to have both an angular momentum and a magnetic
moment in order to possess the NMR property, which enables their use in MRI.

The hydrogen nucleus, consisting of a single proton, is the most frequent nucleus
in human body and therefore the most commonly utilized in human MRI. The spins
of protons are normally randomly oriented. In an external magnetic field B0, the
spins experience a torque, which causes them to align in the direction of B0 and
start precessing around their axis at a nucleus-specific frequency ω0, called Larmor
frequency

ω0 = 2πf = γB0 (1)

where γ is the gyromagnetic ratio. The z-component of the magnetic moment µ in
an external magnetic field can have values

µz = γms~ ms = −s,−s+ 1, ..., s, ... (2)

where ~ = h/2π, h is Planck’s constant, and ms is the magnetic quantum number.
Because for hydrogen ms = 1/2, the magnetic moment vector has two possible

orientations: either parallel or anti-parallel with B0, antiparallel being the state with
a higher energy. There are always more nuclei in the parallel state, and the relative
proportion of spins in these two states depends on their energy difference ∆E and
the absolute temperature T

Nparallel/Nantiparallel = e∆E/kT (3)

where k is Boltzmann’s constant.
The net magnetization M is a vector describing the overall magnetization of

a spin system, i.e. the sum of magnetic moments of all spins within an imaging
volume. The magnitude of M is proportional to the difference between the number
of spins in parallel (Nparallel) and antiparallel (Nantiparallel) states, and it is linearly
dependent on the strength of the external field:

M = (Nparallel −Nantiparallel)µzz (4)

where z is a unit vector in the z-direction, i.e. the direction of B0.
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Figure 2: A) T2 decay describes the loss of transverse magnetization Mxy as a
function of time. B) T1 describes the recovery of the longitudinal magnetization
Mz.

3.2 Excitation and relaxation

During MRI, a net magnetization vector is tipped away from the direction of B0

by applying a radiofrequency (RF) electromagnetic pulse orthogonally to B0. Flip
angle θ is the resulting angle between the net magnetization vector and B0, and
its magnitude is proportional to the amplitude and duration of the RF pulse. The
magnetic field of the RF pulse is commonly referred to as B1.

The precession of the net magnetization vector creates a time-varying magnetic
field, which induces a current in the receiver coil. As soon as the excitation pulse
is turned off, the net magnetization starts to lose phase coherence and return to
equilibrium. As a result of this process, referred to as relaxation, the measured
current begins to decay and produces a free induction decay (FID) signal. Usually
this immediate signal decay is not recorded but instead, an echo of the original signal
is produced by refocusing the spins shortly after excitation. In a spin echo (SE) pulse
sequence, a 180◦ RF pulse is used for refocusing the spins, setting them maximally
in phase after the echo time (TE). In a gradient echo (GE) sequence, a gradient field
is used for dephasing the spins and an opposite gradient field for refocusing them
after a short time period; the refocusing gradient generates the echo.

The excited nuclei return to equilibrium by two distinct decay mechanisms, char-
acterized by the two relaxation time constants. Because of the decay, the RF pulses
must be applied repetitively to elicit new MR signals. The time between two consec-
utive excitation pulses is called the repetition time (TR). The gradual loss of phase
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coherence due to spin–spin interactions is described by the time constant T2 and the
recovery of longitudinal magnetization by the time constant T1 (see Fig. 2).

The processes of precession and relaxation are described by Bloch equations:

dMx

dt
= γB0My −

Mx

T2

(5)

dMy

dt
= −γB0Mx −

My

T2

(6)

dMz

dt
= −Mz −M0

T1

(7)

Inhomogeneities in the magnetic field over time cause minor differences in precession
frequency of different nuclei. The total relaxation resulting from spin–spin relaxation
time T2 and field inhomogeneities T ′2 is described by T ∗2 .

1

T ∗2
=

1

T2

+
1

T ′2
(8)

T ∗2 contrast can only be obtained with gradient echo (GE) imaging, because the
180◦ pulse in the spin echo sequence eliminates the transverse relaxation caused by
field inhomogeneities (see a discussion by Chavhan et al. [2009]). T ∗2 relaxation is
important for fMRI, since it causes a very rapid loss of spin coherence and enables
quick signal acquisition.

3.3 Signal generation

The MR signal strength is proportional to the strength of B0 and the tissue-specific
relaxation times. The magnitude of signal strength can be derived from the Bloch
equation:

dM

dt
= γM×B +

1

T1

(M0 −Mz)−
1

T2

(Mx + My) (9)

where B contains the sum of all magnetic fields, including the static field B0, the
RF excitation pulse B1, gradient fields and field inhomogeneities.

Because the relaxation times contribute to the signal strength, they can be uti-
lized to make contrast between different tissue types in the MR images. Contrast
is maximized by collecting the signal when there is the largest difference in mag-
netization between different tissue types. If the difference is mainly caused by the
longitudinal magnetization decay (the effect of T1 relaxation), the contrast is T1

weighted. T2 weighted contrast is obtained when the difference is mainly caused by
the transverse decay.

In the case of fMRI, T ∗2 relaxation is the most important contrast mechanism.
The maximum contrast is achieved with a long TR (2–3 s) and a short TE (around
30 ms), such that the differences in T ∗2 effects between oxygenated and deoxygenated
blood are maximized.
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3.4 Image formation

Besides flipping the net magnetization with RF pulses, the contribution of each
voxel to the total MR signal has to be uniformly encoded before the image can be
constructed. The encoding is done by introducing gradient magnetic fields, which
are turned on and off in z-, x- and y-directions in a controlled sequence to measure
the signal in each individual voxel. This encoding procedure is referred to as a pulse
sequence.

As the precession frequency is proportional to the strength of the external mag-
netic field, spatially varying gradient fields cause the precession frequency to vary
linearly as a function of the location. Therefore, an excitation pulse given at a certain
frequency band will only excite protons corresponding to that frequency within a
certain 2D slice. This process is called slice selection, and it determines the location
of spins in z-direction, i.e. along the axis of B0.

Immediately after slice selection, the location in x- and y-directions is selected
by introducing additional frequency- and phase-encoding gradients. Phase encoding
means applying a gradient Gy(t) in the y-direction slightly before frequency encod-
ing, such that the spins differ in phase of precession when the other gradient is
applied. Applying a frequency-encoding gradient Gx(t) in the x-direction produces
varying precession frequencies for spins along that direction. It should be noted that
in practice the slice selection, frequency encoding and phase encoding gradients can
be applied to any arbitrary direction; the directions described here were just exam-
ples to simplify the theory. As a result, spins at each location of the two-dimensional
slice have a unique combination of precession frequency and phase. The information
about frequencies and phases is collected in k-space [Ljunggren, 1983], and the final
image is reconstructed by the Fourier transform.
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Figure 3: A) A gradient-echo sequence illustrating the gradients Gx, Gy and Gz

during the imaging process and the data aqcuisition (DAQ) period. B) A spin-echo
sequence illustrating the imaging parameters TE and TR. Figure modified from
[Lahnakoski, 2010].
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The resolution along the phase-encoding direction determines the number of
excitations needed for collecting an image: the size of the imaging matrix is equal
to the number of separate excitations with a different phase-encoding gradient. In
fast imaging techniques, such as most sequences used in fMRI, frequency and phase
gradients are applied simultaneously, and the gradients oscillate rapidly over the
acquisition period.

3.5 BOLD and hemodynamic response

Activation of neurons in response to external and internal stimuli increases their
metabolism, which results in an increased flow of oxygenated blood to the active
brain regions. This phenomenon is called the hemodynamic response. The increased
neural activity causes cerebral blood flow to rise more rapidly than the metabolic
consumption of oxygen in the neurons, resulting in an increased local concentration
of oxygenated hemoglobin. Because hemoglobin is diamagnetic when oxygenated
and paramagnetic when deoxygenated, this overshoot of oxygenated hemoglobin
alters the local magnetic susceptibility, reduces local magnetic field distortions and
causes a minor increase in the local MR signal. This slight increase constitutes
the basis for the electromagnetic signal measured during fMRI, referred to as blood
oxygen level dependent (BOLD) signal [Ogawa et al., 1990]. The effect of neural
responses to the increase of BOLD signal was first documented by Kwong et al.
[1992].

BOLD is an indirect measure of the underlying neural activity, and its magni-
tude is affected by a number of physiological factors, including changes in cerebral
blood flow, cerebral blood volume and oxygen metabolic rate. Since the changes can
vary to a great extent between brain regions and individuals, it is not convenient
to measure the exact physiological responses caused by certain stimulus patterns.
Instead, mathematical models for the hemodynamic response function (HRF) are
used for detecting changes in brain activity. By modeling the HRF with appropri-
ate functions it is possible to detect regions in which the activation patterns are
significantly correlated with the stimulus paradigm.

3.6 Echo-planar imaging

Echo-planar imaging (EPI), originally introduced by Mansfield [1977], is currently
the most popular imaging sequence in fMRI. EPI allows rapid image acquisition
and sufficient spatial resolution for functional images. Whole-brain images can be
acquired within a single TR of 2–3 s. This temporal resolution is sufficient for de-
tecting changes in brain hemodynamics, which typically occur within a few seconds
from the stimulus onset.

EPI is performed by collecting multiple lines of imaging data after a single exci-
tation RF pulse [Poustchi-Amin et al., 2001]. A train of gradient echoes is formed
by rapidly oscillating gradients, and all phase-encoding steps are acquired within
one TR. Because the RF refocusing pulse is not applied, gradient echo EPI is sensi-
tive to T ∗2 decay [Chavhan et al., 2009]. The rapid switching of gradients requires a
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Figure 4: A) An illustration of an EPI pulse sequence. B) The corresponding k-space
trajectory. Figure modified from [Lahnakoski, 2010].

strong gradient system of at least 25 mT/m [Huettel et al., 2004], which is nowadays
implemented in most MRI scanners used for clinical and research purposes.

EPI enables a very fast image collection, but both resolution and SNR are poor
compared to standard SE and GE sequences. EPI images typically have a spatial
resolution of 3-4 mm. Therefore, statistical maps of functional images are usually
overlaid on anatomical high-resolution images in order to localize brain activations.

Higher resolution and better image quality (decreased distortion and signal loss
due to susceptibility differences, T2 relaxation and main field inhomogenity) can be
achieved by using multiple RF pulses instead of a single one. However, the single-
shot technique is more commonly used. EPI is sensitive to off-resonance artifacts
due to the lack of refocusing pulses. A usual artifact in EPI images is a chemical
shift due to fat protons, and therefore fat suppression techniques are used by default
in most EPI types [Huettel et al., 2004].

3.7 Noise sources in fMRI

Signal-to-noise ratio (SNR) in general defines the proportion of signal intensity inside
the imaged object and the signal outside the object. However, in fMRI the SNR
usually describes the intensity of the signal originating from the neural process of
interest divided by the intensity of other signal sources, such as the brain activity
unrelated to the stimuli. Noise in fMRI can arise from thermal fluctuations within
the subject and scanner electronics, discrepancies in scanner hardware, artifacts
originating from physiological processes and subject motion, and variations in the
intrinsic neural activation [Huettel et al., 2004].

Thermal noise occurs as the electrons collide with atoms within the scanner and
subject, and it increases linearly with temperature and field strength [Huettel et al.,
2004]. Thermal noise is uniformly distributed over space and introduces additive
noise to the images. Thermal noise cannot be avoided, but by adjusting the imaging
parameters (TR, TE, flip angle, voxel size, receiver bandwidth) the signal intensity
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can be increased.
System noise is caused by variations in the scanner hardware, such as static

field inhomogeneity, nonlinearity in the gradient fields and off-resonance or loading
effects in the transmitter and receiver coils. Changes in the static field can cause
scanner drift over time, which affects the signal intensity. If the resonant frequency
of the RF coils does not match the Larmor frequency of protons, the excitation will
be imperfect, causing intensity variations in the MR images. Therefore, it is very
important to conduct regular quality control checks for both the field homogeneity
and the RF coils.

The most common and most disruptive noise sources in fMRI are subject mo-
tion and physiological artifacts, such as heart pulsation and breathing. Physiologi-
cal signals are problematic because they occur at frequencies higher than the fMRI
sampling rate. As a result, the cardiac and respiratory signals appear aliased in the
BOLD signal. Prewhitening of the signal [Woolrich et al., 2001] is commonly used
to correct for aliasing. Head motion during scanning causes variability in the fMRI
time series. It can partly be eliminated by careful preprocessing, but large motion of
more than one voxel size usually disrupts the data, making it unusable in the anal-
yses. Motion is especially problematic if it is correlated with the experimental task.
It is difficult to reduce even with signal processing and might lead to spurious inter-
pretations about the brain activity. Therefore, it is easier to avoid motion artifacts
than eliminate them after scanning. Careful planning of the experiment, support-
ing the subject’s head with paddings during the measurement and instructing the
subject to remain still are crucial for preventing unnecessary motion.

3.8 Preprocessing of fMRI data

Slice timing correction

Nowadays many fMRI studies use an interleaved slice acquisition protocol, in which
the scanner first collects consecutively all odd-numbered slices and then even-numbered
slices. The purpose of the interleaved acquisition is to avoid cross-slice excitations.
However, this approach causes a time lag of TR/2 between the acquisition of the
first and second slice. This results in different HRF estimations in consecutive slices,
even if the hemodynamic response was nearly identical in them. Without correction,
this time lag can severely violate the interpretation of the signal.

The correction for slice timing is done using temporal interpolation, which utilizes
the signal from nearby time points to approximate the amplitude of the HRF in
each slice. The middle time point of TR is typically used as a reference point. Sinc
interpolation is commonly used for slice timing correction because of its capability
to reduce noise-related variation in the signal.

Realignment

The purpose of volume coregistration is to minimize the artifacts caused by head
motion. The realigmnent is performed by aligning a time series of successive volumes
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into a single reference volume. A commonly used approach is a six-parameter rigid-
body transformation, which assumes that the volume and shape of the brain are
constant during imaging, and the only tranformations are translations along x-, y-
and z-axes and rotations through the three imaging planes. Each volume is aligned
to the reference volume by optimizing a cost function between the reference and
the rigid-body transformed volume. There are several cost functions and algorithms
available in the current fMRI processing software packages. Mutual information,
which measures the mutual dependence of two random variables, is an example of
a cost function that is maximized during realignment.

Coregistration

Functional MRI data are typically low resolution and lack contrast between anatom-
ical structures. In order to account for these limitations, the functional volumes are
coregistered by aligning them with each subject’s high-resolution anatomical im-
ages. A six-parameter rigid-body transformation can be used if the contrasts of
high- and low-resolution images are similar; in that case the optimal transformation
is found by minimizing a cost function. However, if the contrasts are different in
the two imaging modalities, algorithms based on mutual information should be used
instead. In addition, if the functional images involve linear geometric distortions, it
is appropriate to use a nine-parameter linear transformation, which includes three
additional parameters for scaling differences along x-, y- and z-axes.

Spatial normalization

The anatomy and size of the brain vary largely between individuals. Despite that,
the experimental studies usually have to involve a large number of subjects to achieve
a sufficient statistical power. In order to compare the brain activity between sub-
jects, their brains are normalized by a registration into a common space. The nor-
malization minimizes the effects of anatomical differences by stretching, squeezing
and warping the brain volumes until they match the reference volume. Usually a
standard brain atlas is used as the common space; the most popular standard atlases
are Talairach [Talairach and Tournoux, 1988] and Montreal Neurological Institute
(MNI, [Evans et al., 1992]) atlases.

Spatial smoothing

Most fMRI analyses involve spatial filtering in order to decrease high-frequency spa-
tial components and smooth the images. The filtering is useful, because the BOLD
signal has spatial correlation between adjacent voxels due to functional similarity
and vascular spreading of oxygenated hemoglobin. Activation at a single cortical
area typically results in a signal increase in two or more voxels, indicating that the
activity observed at a single voxel is not strictly located in that particular region.
A filter that accounts for the spatial correlation of the signal can increase the SNR
without a loss in spatial resolution. Another advantage of spatial filtering is that
it reduces the probability for local intensity maxima, which further decreases the
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number of false positives in the statistical activation analysis. In other words, if the
data are spatially smoothed it is less likely that spurious activations in single voxels
will be interpreted as significant activation changes, because the high signal intensity
is spread over multiple voxels. The most common approach for spatial smoothing
is a Gaussian filter, which distributes the intensity of a single voxel into nearby
voxels using a normal distribution. The width of the Gaussian filter determines the
distance of its effect, and it is expressed in millimeters at half of the maximum value
(full width at half maximum, FWHM).

Temporal filtering

Temporal filtering is an important preprocessing step in the fMRI analysis, since
aliasing and high-frequency noise can substantially reduce the signal quality. A
low-pass filter with a cutoff at Nyquist frequency (1/2TR) will eliminate aliasing
artifacts in the signal. Furthermore, physiological signals, such as heart pulsation
and breathing, typically occur at higher frequencies than the BOLD signal and
can thus be eliminated by low-pass filtering. However, in task paradigms with rapid
presentation of stimuli these signals might have a similar frequency with the stimuli.
Therefore, the filter parameters should be dependent on the experimental design.
Very low-frequency (<0.01 Hz) noise, usually caused by the scanner drift, can be
removed with a high-pass filter.
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4 fMRI signal analysis
This chapter presents the concept of an event-related experimental design for fMRI.
Also, we present two of the most popular signal analysis methods for fMRI: the
general linear model (GLM) and independent component analysis (ICA). The gen-
eral principles and mathematical formulations of both methods are overviewed, and
their applicability for group-level studies is evaluated.

4.1 Event-related paradigms

An event-related fMRI design attempts to measure the BOLD responses related to
transient stimuli. A trial consists of one or several events, and an event-related
stimulus sequence typically involves tens or hundreds of trials. When the events are
separated in time, the time-locked hemodynamic responses can be effectively aver-
aged over trials; this method was originally applied to the event-related potentials
(ERP) in EEG. Averaging over multiple trials emphasizes the event-related signal
and attenuates the noise unrelated to the events. The segment of fMRI occurring
time-locked to the onset of an event is called an epoch [Huettel et al., 2004], and it
is assumed to contain the hemodynamic response associated with the event.

The interstimulus intervals (ISI) may range from seconds to tens of seconds,
and nowadays a common approach is to use jittered time intervals between events.
In the first studies using event-related fMRI, very long interstimulus intervals were
used to prevent overlapping of individual BOLD responses. However, Dale and
Buckner [1997] showed that by using a linear time invariant assumption about the
BOLD signal, the responses can be robustly estimated for randomly intermixed
events separated only by 2 seconds. Shortly after that, Bandettini and Cox [2000]
estimated the optimal fixed ISI for a periodically presented 2 second stimuli to be
10–12 seconds, and showed that very short ISIs in periodic design deteriorate the
detection of event-related responses. The reason for this is that the BOLD signal
quickly saturates to its maximum value when stimuli are presented periodically.
Using variable length ISIs this effect can be minimized. According to these findings,
it is justified to use short, temporally jittered ISIs in event-related fMRI designs.
Furthermore, randomization and counterbalancing of different events in an event
sequence is important when the goal is to robustly elicit neural activation related to
the different stimuli.

Event-related designs have several advantages compared to blocked paradigms.
First, estimations for shape and timing of the hemodynamic responses are better
in event-related designs, allowing for the accurate characterization of the waveform
and latency of the HRF elicited by a certain stimulus. Second, the event-related
design is more feasible for studying specialized brain functions, since different as-
pects of the stimuli, such as faces, colors and buildings in a photograph, can be
separately modelled. If the events are sorted according to one of the features and a
corresponding explanatory variable is constructed, brain responses evoked by that
particular feature can be detected. However, the blocked designs generally have a
better detection power for brain activity than the event-related designs. This dis-
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advantage can partly be overcome by increasing the number of events, but since the
percent signal change in event-related BOLD responses is much lower (<1%) than
the change elicited by continuous block stimuli (2–3 %), the statistical power in the
event-related paradigms remains poor [Huettel et al., 2004].

4.2 General linear model

The conventional approach for mapping stimulus-related activations in fMRI is to
construct one or several regressors for the general linear model (GLM) and statis-
tically fit their linear combination into the BOLD signal of each individual voxel.
This procedure is referred to as statistical parametric mapping (SPM, [Friston et al.,
1994]). The model for a response variable (i.e. HRF at at given voxel) can be ex-
pressed as:

xij = gi1β1j + gi2β2j + ...+ giKβKj + eij (10)

where i denotes the number of a scan and j the number of a voxel. Explanatory
variables gik are related to the measurement conditions and can be either covariates,
such as the global signal change and the scanner noise, or indicator variables, such
as the stimulus time courses convolved with the standard HRF. The values βKj are
the parameters to be estimated. They can be interpreted as weights representing
the contribution of each explanatory variable to the variation of the total signal.
Signal errors eij are assumed to be statistically independent and identically normally
distributed.

Equation (10) can be written in a matrix form:

X = Gβ + ε (11)

where X contains the measured fMRI data (one column for each voxel, one row for
each scan), G is the design matrix containing the regressors (one column for each
explanatory variable, one row for each scan) and ε contains the normally distributed
error terms.

The model is fitted to the data by ordinary least squares estimates b for β. These
estimates satisfy the normal equations:

GTGb = GTX (12)

If G has a full rank the least squares estimates are uniquely defined as

b = (GTG)−1GTX (13)

Since the parameter estimates are normally distributed and the error term can be
determined, it is possible to infer if the model b for the activation differs significantly
from the null hypothesis, which is tested by t-statistics. A significant p-value in a
given voxel indicates that the voxel BOLD signal is significantly modulated by the
model waveform.

The design matrix may include one or several experimental conditions as columns.
By contrasting the parameter estimates of different regressors it is possible to infer
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the difference between task and baseline or between two tasks. In the latter case,
the regressors corresponding to different conditions must have opposite signs. GLM
can be extended to a group level using individual parameter contrast maps in a
random- or mixed-effects analysis, which estimates significant activations averaged
over the group.

GLM is an efficient approach for most block designs and simple event-related
designs, as it is possible to include the stimulus parameters and additional noise into
the model. However, in more complicated designs GLM is insufficient for modeling
the produced neural activations. For example, in many naturalistic paradigms the
model does not have a unique form or the responses cannot be reliably predicted,
which makes the construction of the regressors very difficult or even impossible.

4.2.1 FIR and other convolution models for HRF

Convolution models estimate the BOLD signal by a hemodynamic response func-
tion (HRF). The shape of a typical canonical HRF is shown in Fig. 5. Individual
responses to two transient stimuli are linearly summated when the stimuli are pre-
sented with a short interstimulus interval. The responses peak approximately 4–5 s
after stimuli and the undershoot lasts up to 30 s post-stimulus. A continuous 10–s
stimulation causes an HRF with a similar shape, but a longer duration of peak acti-
vation. An initial undershoot of the HRF is not shown here, although some models
include it.
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Figure 5: A) Canonical hemodynamic responses elicited by two transient stimuli 1
and 2 (solid lines), and the linear sum of their responses (dashed line). B) A canon-
ical hemodynamic response resulting from 10 seconds of continuous stimulation.
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When multiple stimuli are presented in a rapid succession, their responses overlap
and are expected to add up linearly. Therefore, the BOLD signal can be modelled
as an output of a linear time-invariant system, stating that the HRF caused by a
transient stimulus has a finite duration and is independent of time. The BOLD time
course can be expressed as a convolution of the stimulus function u(t) with the HRF
estimate h(τ):

X(t) = u(t)× h(τ) =

∫ T

0

u(t− τ)h(τ)dτ (14)

where τ is the estimated time window of the BOLD response. Stimulus func-
tion is a stick (or boxcar) function indicating the onsets (and offsets) of stimuli.
The strength of the stimuli can be included in the functions by parametric mod-
ulation, i.e. weighting the stick functions with appropriate magnitudes before the
convolution.

As the shape of the HRF varies over individuals and brain regions, the convolu-
tion model has to include some flexibility to account for this variation. The easiest
approach is to use temporal basis functions fk(τ) in the model HRF. Basis functions
express the complicated signal as a linear combination of simple functions:

h(τ) =
K∑
k=1

βkfk(τ) (15)

The neural activation resulting from the stimuli can be expressed as a series of
J impulses at times oj, and the stimulus function is:

u(t) =
J∑

j=1

αjδ(t− oj) (16)

where αj includes the parametric modulations of the stimuli and δ(t) is the Dirac
delta function. The convolution of the two previous functions gives the following
GLM equation:

y(t) =
J∑

j=1

K∑
k=1

βkfk(t− oj) + ε(t) (17)

where βk represent the parameters to be estimated.
There are several sets of basis functions. The most flexible basis sets are finite

impulse response (FIR) and Fourier sets, which do not make any a priori assump-
tions about the shape of the HRF. The FIR basis set contains a series of contiguous
timebins, which produce the averaged HRF in each post-stimulus timebin, corre-
sponding to the parameter estimates [Henson et al., 2001]. The FIR model can
detect responses of any shape within the given temporal window. The Fourier set
consists of a constant term and multiple sine and cosine functions, and it is able
to capture any response within a predefined frequency range. A slightly more con-
strained basis set is the set of gamma functions, which includes several possible
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HRFs with different phase delays. Using gamma functions requires fewer basis func-
tions, because the model makes initial assumptions about the shape of the HRF. It
is also possible to use a basis set including the canonical HRF and its partial deriva-
tives [Henson et al., 2001]. However, when in doubt about the shape of the HRF
or the location of activated brain regions, more general basis sets should be used.
In particular, when modelling the neuronal activations corresponding to complex
stimuli, flexible HRF models are useful, since there is probably high variability in
the responses across brain regions. In this study we modelled the BOLD responses
with FIR basis functions.

When the convolution model has been determined, the design matrix for the
GLM can be constructed. Each basis function is represented as a separate regressor
in the design matrix. Contrasts between different stimulus conditions can be mod-
elled by setting appropriate weights for the corresponding regressors. For example,
if the purpose is to examine the difference in activity between task A and task B, the
corresponding regressors should have weights 1 and -1, respectively. Additional vari-
ables, such as motion parameters and the mean signal, can also be included in the
design matrix. If it is assumed that different stimuli are correlated, the correspond-
ing regressors should be orthogonalized such that they do not share any common
signal. Motion parameters and other additional explanatory variables should always
be orthogonalized with respect to the stimulus variables.

4.3 Independent component analysis

Independent component analysis (ICA) is a non-parametric signal analysis method
commonly applied to fMRI data in order to extract spatially and temporally separate
components from the measured voxel-wise signals. Under the assumption that the
signals are linear combinations of statistically independent source signals, ICA at-
tempts to decompose the original signal into the source components [Hyvärinen and
Oja, 2000]. Two widely used algorithms for performing ICA are FastICA [Hyvärinen
and Oja, 2000] and Infomax [Bell and Sejnowski, 1995]. Each algorithm uses slightly
different nongaussianity measures and parameter estimations.

4.3.1 Estimating statistical independence

The ICA model consists of the measured signals x, the mixing matrix A and the
source signals s, and can be expressed in a matrix form:

x = As (18)

A major problem in this model is that both A and s are usually unknown.
Therefore, A has to be estimated in order to find s. Thereafter, the components
can be solved using the inverse matrix W = A−1:

s = Wx (19)

The ICA model involves two ambiguities. First, the signs and scales of the
independent components cannot be determined, i.e. multiplying the components by
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any scalar variable does not affect the results. Second, the order of the components
cannot be determined, as the order of the terms in the linear sum can be freely
changed.

A fundamental requirement for estimating the ICA model is nongaussianity of the
source components. Most ICA algorithms attempt to maximize an objective function
estimating nongaussianity. Examples of nongaussianity measures are kurtosis and
negentropy. Kurtosis measures the peakedness of a statistical distribution and is
defined as:

kurt(s) = E{s4} − 3E{s2}2 (20)

For Gaussian distributions, kurtosis equals to zero. Kurtosis is easy to compute,
but it is not a very robust method, since it is sensitive to outliers in the data.
Negentropy (negative entropy) is based on the measure of entropyH, which describes
the uncertainty of the data. Since gaussian distributions are highly predictable and
thus tend to have a high entropy, maximizing nongaussianity is equal to minimizing
entropy. Negentropy, or differential entropy, is defined by:

J(s) = H(sgauss)−H(s) (21)

where sgauss is a random Gaussian variable having the same covariance matrix
with s. Negentropy is non-negative and zero if and only if s is Gaussian. Negentropy
is a well-defined quantity in terms of the statistical theory, but it is very difficult to
compute. Therefore, in practice some approximations of negentropy are used.

Besides estimating nongaussianity, independence can be validated by minimizing
mutual information. Mutual information I is a measure of dependence between
random variables and it is defined as:

I(s1, s2, ...sn) =
m∑
i=1

H(si)−H(s) (22)

Mutual information is always non-negative, and zero if and only if the variables
yi are statistically independent. Minimizing mutual information is equivalent to
maximizing nongaussianity of the variables.

4.3.2 Data preprocessing for ICA

It is usually necessary to perform certain preprocessing steps before performing ICA.
First, the data is centered by subtracting the mean. Second, the data is whitened,
i.e. vector x is transformed such that its components are uncorrelated and have
a unit variance. The whitening transformation can be done using the eigenvalue
decomposition of the covariance matrix ExxT=EDET, where E is the eigenvector
matrix and D a diagonal matrix containing the eigenvalues of xxT. The whitened
vector is thus obtained by

x̃ = ED−1/2ETx (23)

The whitened ICA model becomes
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x̃ = ED−1/2ETAs = Ãs (24)

The white mixing matrix Ã is orthogonal and contains only n(n− 1)/2 degrees
of freedom, compared to n2 in the original mixing matrix. Therefore, the whiten-
ing substantially reduces the number of independent components and decreases the
complexity of the problem. Furthermore, it is useful to do a dimension reduction
by principal component analysis (PCA) in parallel with the whitening. PCA can
be used to estimate the eigenvalues of ExxT and preserve only the largest ones, on
which the data is then projected. Reducing dimensions usually diminishes noise and
prevents overfitting [Hyvärinen and Oja, 2000], which can be a problem with large
data dimensions.

4.3.3 Group ICA

ICA cannot be generalized to a group level in a straightforward way, as the voxel
time courses are different for individual subjects. However, [Calhoun et al., 2001]
introduced a method for performing group ICA, and used it to separate spatial com-
ponents in fMRI data. The method consists of data reduction, ICA and component
back reconstruction. In the data reduction step, PCA is used to reduce dimensions.
First each subject’s functional data is reduced by PCA. After that, all subjects are
concatenated into a single group and the data reduction is performed again in a
group level. ICA is applied to the reduced dataset in order to find independent
components for the whole group. In the back reconstruction step, individual sub-
jects’ components are calculated using aggregate group ICA components and the
results from data reduction for each subject. ICs of individual subjects are used
for calculating the group statistics, such as t-statistics and mean values, and the
resulting statistical maps are thresholded for visualizing meaningful components.
Component time courses can additionally be fitted to the stimulus model to find
stimulus-related components.
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5 Materials and methods

5.1 Subjects

Twenty-two healthy volunteers (21–50 years, mean 25.5 years, 10 females and 12
males) participated in the study. The subjects reported no current neurological or
psychiatric diseases or medication affecting the central nervous system. In addition,
all subjects had normal or corrected-to-normal vision. Permission for the study was
acquired from the ethical committee of Aalto University. The study was carried
out in accordance with the guidelines of the declaration of Helsinki, and informed
written consent was obtained from each subject prior to scanning. The subjects
were paid 20 e/h for participating. One subject was unable to complete the scan
due to an uncomfortable sensation felt inside the scanner and was excluded from
the analysis.

5.2 Stimuli and experimental procedures

The experiment consisted of three tasks, presented in the same order for all subjects.
None of the tasks included auditory stimuli. In the first task the subjects played
a simple video game by pressing buttons with their both index fingers. The game
scene included a background picture of a garden and two holes on both sides of the
screen. Two cartoon characters, a rabbit and a mole, appeared from either of the
holes one at a time in a pseudo-random sequence. The participants were instructed
to whack the mole with a club by pressing the button on the side where the mole
appeared, and avoid hitting the rabbit by whacking the empty hole on the opposite
side when the rabbit emerged. Whacking the rabbit and failing to whack the mole
were considered errors, as well as not reacting within 700 ms while the cartoon
characters appeared on the screen. Subjects received visual feedback (green "%"
indicating success and red "X" indicating error) on the screen after each trial. The
total trial duration was 2 s, consisting of the stimulus (up to the reaction time, max
700 ms), response (200 ms), feedback (500 ms) and null time up to 2 s. Intertrial
intervals were pseudo-randomly jittered to 0, 1, 2, 3, 4 or 5 s, average ITI being 1.86
s. The total duration of the game was approximately 15 minutes. Timings for error
and success trials were collected during the game from each subject.

In the second task the subjects passively watched a 15–minute video recording of
the previously described game. The video only presented the game as it appeared on
the screen, i.e. the player was not visible. The task was to observe errors occurring
in the game; the video included 26 errors in total. The visual appearance and the
timing of the stimuli were identical to the first task, but the subjects were not
supposed not press any buttons during the observation task.

In the third task the subjects watched short video clips depicting errors in nat-
uralistic situations, such as figure skaters falling down, people slipping on an icy
street and someone accidentally hitting a wrong person in the face. The concept
of ’error’ in this paradigm was quite wide; we defined errors generally as failures to
achieve current goals. The video included 35 errors in total. Because we wanted
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to ensure that the subjects did not expect errors to occur in every video clip, the
video also included clips containing successful performance. The order of ’success’
and ’error’ clips was randomized. The total duration of the video was 19 minutes
20 seconds.

The stimuli were controlled using Presentation software (Neurobehavioral Sys-
tems Inc., Albany, California, USA) and projected on a semi-transparent screen
behind the subject’s head via a 3–micromirror data projector (Christie X3, Christie
Digital Systems Ltd., Mönchengladbach, Germany). Image width was 28 cm and
the distance to the screen 34 cm from a mirror above the subject’s eyes. LUMI-
touchTM fMRI optical response system was used as the response device, and the
subjects had a keypad with one active response button on each hand. The subjects
had earplugs for hearing protection and foam paddings on both sides of their head
to suppress head movement. They were instructed to avoid moving during the scan.

5.3 Data acquisition

The fMRI scanning was conducted in the Advanced Magnetic Imaging (AMI) Cen-
tre of the Aalto University School of Science. BOLD fMRI was performed with a
3.0 T Siemens Magnetom Skyra MRI scanner (Siemens Healthcare, Erlangen, Ger-
many) using a 30-channel head coil and a standard T2* weighted EPI sequence.
The imaging area consisted of 32 whole-brain functional gradient echo echo-planar
oblique slices (slice thickness 4.5 mm, in-plane resolution 3.5 mm x 3.5 mm, field of
view (FOV) 224 x 224, voxel matrix 64 x 64, TE 30 ms, TR 2000 ms, flip angle 75◦).
The slices were acquired in an ascending interleaved order. In addition, anatomical
whole-brain T1 images with 176 oblique slices were acquired using a magnetization
prepared rapid acquisition gradient echo (MPRAGE) sequence (TR 2530 ms, TE
3.3 ms, TI 1100 ms, flip angle 7◦, slice thickness 1.0 mm, FOV 256 x 256).

5.4 Preprocessing

Functional Magnetic Resonance Imaging of the Brain Centre (FMRIB) software
library (FSL, release 5.0; www.fmrib.ox.ac.uk/fsl; [Smith et al., 2004]) was used
to preprocess the fMRI data. First three volumes of each run, corresponding to
the presentation of the instruction trials, were removed in order to account for
T1 stabilization. Slice timing was corrected with FSL’s sinc interpolation using
the middle slice as a reference. Motion parameters were extracted with Motion
Correction using FMRIB’s Linear Image Registration tool (MCFLIRT; [Jenkinson
et al., 2002]. Runs with more than 2.0 mm replacement, 2.0 mm translation or
2◦ rotation were discarded from further analyses. As a result, the final datasets
included data from 18 subjects in the game playing task, 19 subjects in the game
observation task and 18 subjects in the naturalistic task.

Non-brain matter was removed from both anatomical and functional images
using Brain Extraction Tool (BET; [Smith, 2002]). The intensity threshold and
threshold gradient in BET were manually adjusted and the anatomical images were
visually inspected to achieve optimal brain extraction results. The signals were
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temporally high pass filtered with Gaussian-weighted least-squares straight line fit-
ting and sigma = 100 s. The volumes were spatially smoothed with a 8.0 mm
FWHM Gaussian kernel. Functional images were registered with FMRIB’s Linear
Image Registration tool (FLIRT; [Jenkinson et al., 2002]) to the brain extracted
T1 weighted images of each subject using 9 degrees of freedom (DOF). This data
were further registered into FSL’s 2.0 mm MNI152 standard space template using 9
DOF. The signals in each voxel were prewhitened with FMRIB’s Improved Linear
Model (FILM) to eliminate autocorrelation and obtain maximal detection efficiency.
Finally, motion parameters obtained from MCFLIRT were used to regress motion
artifacts out of the data.

5.5 Statistical analyses

5.5.1 GLM

The GLM analysis was performed with FSL’s FMRI Expert Analysis Tool (FEAT).
FIR estimates of the event-related hemodynamic responses were calculated for errors
and successful trials in the game playing and game observation tasks. The FIR model
included five contiguous basis functions, each having a duration of one TR (2 s). We
did not use any orthogonalization of the regressors, as the random jittering of the
stimuli ensured that there was no significant correlation between them. An example
of a design matrix is presented in Fig. 6.

The model was fitted to each voxel’s signal using ordinary least squares estima-
tion. As a result, the average signal intensity at the five post-stimulus time points
was obtained. Five parameter estimates were calculated corresponding to the sig-
nificance of activity at each post-error time point. In addition to the parameter
estimates for errors and correct trials, contrasts for error vs. correct and correct vs.
error were calculated for both self-committed and observed game conditions in order
to eliminate confounding factors, such as the activity caused by button presses.

Before constructing the design matrices for the naturalistic paradigm, we col-
lected subjective ratings about the video attributes from the participants. The
ratings were collected after scanning, since it was assumed that reviewing the video
clips would not substantially affect the subjective responses to them. In-house soft-
ware was used to collect ratings for 1) the intensity of error, 2) error anticipation,
3) amount of pain in the video clips. Ratings for each attribute were collected on
separate runs. The subjects watched the video clips on a computer screen and gave
ratings continuously by moving a cursor up and down on the edge of the screen. Rat-
ings were collected at 5 Hz using a scale from 0 (no error/prediction of error/pain)
to 1 (very intense error/high prediction of error/very intense pain). We included
ratings for pain in the analyses because it is commonly acknowledged that many
regions contributing to error processing, including dACC and insula, also respond
to observed pain in other people [Jackson et al., 2005; Lloyd et al., 2004]. Therefore,
the pain rating was used as a confounding regressor when examining the responses
to errors.

The event-related design matrices were constructed using individual ratings as
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Figure 6: An individual subject’s design matrix used in the GLM analysis of the
game playing task. Errors and correct trials are represented by the first and last
five regressors, respectively. The errors have a positive sign and the correct trials a
negative sign, corresponding to the error>correct contrast.
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parametric modulators of the regressor functions. The rating time series were first
downsampled to match the TR of 2 s. Next, the ratings were normalized to Z scores
and averaged over subjects. In the cases of error and pain ratings, the regressor time
courses were set to the average value of ratings at time points which were manually
labeled as error onsets, and zero elsewhere. In the case of error anticipation, time
points on which the average rating exceeded 0.5 were included in the design matrix
as ’anticipation events’. The regressors were convoluted with a FIR set including
five contiguous basis functions. For each subject, activation maps were constructed
corresponding to the following contrasts: error vs. baseline, error vs. anticipation,
anticipation vs. baseline and error vs. pain.

In the group-level analysis, individual contrast estimates were subjected into a
mixed-effects model using FMRIB’s Local Analysis of Mixed Effects (FLAME) to de-
tect the mean group effect. Z (Gaussianised T/F) statistic images were thresholded
using clusters determined by Z>2.3 and a corrected cluster significance threshold of
p=0.05, using Gaussian Random Field theory [Worsley et al., 2004]. Similar thresh-
olds were used when contrasting activations between different conditions in a group
level.

For visualization of the results, the statistical maps were projected onto an av-
erage cortical surface with the use of multifiducial mapping using CARET software
[Van Essen, 2005]. Transverse slices were constructed with MRIcron ([Rorden et al.,
2007], http://www.mccauslandcenter.sc.edu/mricro/mricron/) by overlaying the ac-
tivation maps on the standard template brain.

5.5.2 ROI-based analyses

Spherical (6 mm radius) regions of interest (ROIs) were constructed around 23 voxels
showing significant activation in one or several error conditions. Because we were es-
pecially interested in striatal activation, subregions of the striatum (putamen, globus
pallidus and caudate nucleus) were defined as separate ROIs in the analyses. All
ROIs, except the medial frontal cortex, were defined in both hemispheres separately
for examining the effect of lateralization.

Percent signal change was calculated within the predefined ROIs for each sub-
ject in a time window spanning 10 s post-error. Mean signal change and standard
error of the mean (SEM) at 4 s were calculated for both errors and correct trials.
Error-related BOLD responses were compared between different conditions to find
out which ROIs showed significantly (p<0.05, FDR corrected) different responses.
In addition, the correlations of BOLD responses between all pairs of ROIs were cal-
culated within a 10 s time window. The correlation coefficients were first calculated
individually for each subject and then averaged using Fisher’s Z transform [Corey
et al., 1998] to account for a skewed sampling distribution.

5.5.3 ICA

ICA was performed with GroupICA of fMRI toolbox (GIFT,
http://icatb.sourceforge.net/groupica.htm). Using the Minimum Description Length
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(MDL) algorithm implemented in GIFT, the optimal numbers of components corre-
sponding to game playing, game observation and naturalistic tasks were determined
to be 115, 129 and 141, respectively. However, running GroupICA with these dimen-
sionalities yielded very unstable component estimates, probably due to overfitting
[Hyvärinen and Oja, 2000]. Therefore, the final number of ICs was selected post hoc
by repeating the bootstrap calculation with several dimensionalities. In the game
playing and game observation conditions the most stable estimates were obtained
with 20 components, and in the naturalistic condition with 25 components.

Two data reduction steps were performed with expectation maximization PCA
prior to running GroupICA. In the first step, data from each subject and dataset
were reduced to the optimal number of dimensions given by MDL. In the second
reduction step, the compressed data for each subject were concatenated with each
other and reduced again into the most stable numbers of components. The procedure
was performed for each dataset separately.

ICA was applied to the reduced datasets using FastICA algorithm. Group ICA
was performed 20 times with random initialization and bootstrapping implemented
in the ICASSO package in GIFT. The resulting components represented the most
robust estimates obtained with multiple ICASSO runs. All components shown in
the results had a robustness index of higher than 0.9. The components were finally
back-reconstructed into individual subject maps using GICA3 algorithm. However,
group statistics (mean, standard deviation and t-maps) were calculated over the
number of subjects. The group average maps were visually inspected to discard
ICs primarily containing artifacts, such as signal from white matter, signal from
ventricles or residual motion. The resulting arbitrary component time courses and
spatial maps were scaled to Z-scores. The spatial maps for each IC represented the
strength of the component on each brain region, high Z-scores indicating a strong
regional contribution to the component time course.

The resulting group-level ICs were subjected to a multiple regression analysis
in order to detect error-related components, following the procedure presented in
[Kim et al., 2009]. The stimulus functions were similar to the ones used in the GLM
analysis, i.e. included ones at the event onsets and zeros elsewhere. The design
matrices were constructed by convoluting the stimulus functions with a standard
canonical HRF implemented in SPM5. The component time courses were first sorted
according to the regression coefficients. After that, a multiple regression analysis
was carried out to obtain a set of beta weights for each subject and regressor. In
the game playing and game observation conditions, the beta weights were then
subjected to a one-way analysis of variance with respect to the regressors in order to
determine how much each time course was modulated by errors relative to correct
trials. In the naturalistic condition, the contrast was made between errors and a
baseline constant. In addition, one-sample t-tests were performed separately to all
components and regressors against the null hypothesis of no event-related signal
change.



30

6 Results

6.1 Behavioral performance

The subjects made 48.56 errors on average (SEM 5.66) in the game playing task.
All subjects made ten or more errors, which was required for reliable averaging of
the event-related BOLD response.

6.2 GLM

6.2.1 Error-related activation in different conditions

Robust BOLD responses were elicited in several cortical and subcortical brain re-
gions by self-committed errors and observed naturalistic errors. The FIR model
revealed that the peak of the BOLD response occurred 4 s after errors in these
two conditions. Self-committed errors elicited significant activation in dACC, me-
dial frontal cortex, bilateral insula, bilateral putamen, red nucleus, visual cortex
and inferior temporal cortex at 4 s. The Z-statistical maps representing significant
(Z>2.3, cluster threshold p<0.05) error-related activation in the self-committed con-
dition at 4 s are presented in figure 7. Also when contrasted with correct responses,
self-committed errors produced increased activity in dACC, bilateral insula, medial
frontal cortex, putamen and superior temporal gyri at 4 s. However, correct trials
elicited increased activity in bilateral putamen and medial orbitofrontal cortex at 6
s. The activation maps corresponding to the contrasts between errors and correct
trials are presented in Fig. 8.

Naturalistic observed errors caused significant activity in bilateral middle tem-
poral gyri, medial frontal gyrus, visual cortex (mostly in lingual gyrus) and cere-
bellum. The Z-statistical maps representing significant (Z>2.3, cluster threshold
p<0.05) error-related activation in the naturalistic condition at 4 s are presented in
figure 7. When the effect of pain observation was regressed out, additional activa-
tion foci were detected in rACC and right angular gyrus at 4 s. The corresponding
Z-statistical activation map is presented in Fig. 9.

Observed game errors produced significant activity in right middle temporal
gyrus, right inferior frontal gyrus, left superior and inferior parietal lobules and bi-
lateral fusiform gyrus at 4 s. The contrast between errors and correct responses
showed significant activity only in the right inferior frontal gyrus at 4 s. The acti-
vation maps corresponding to the contrasts between errors and correct trials at 4
s are presented in Fig. 8. At 2 s this contrast showed activity in bilateral inferior
frontal gyri and bilateral middle temporal cortices as well. However, considering
that the latency of BOLD response is typically 4-5 seconds, this activity was most
likely insignificant noise and therefore not shown.

The tables corresponding to all aforementioned activation maps are shown in
Appendix A.
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Figure 7: Z-statistical maps of error-related activations 4 s after A) self-committed
errors, B) observed game errors, C) observed naturalistic errors.
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Figure 9: Z-statistical maps of error-related activations at 4 s in the naturalistic
condition with the effect of pain regressed out.

6.2.2 Differences between experimental conditions

There were certain significant differences in the error-related activation patterns cor-
responding to the different conditions. Self-committed errors, compared to observed
game errors, caused higher activity in dACC, medial frontal cortex, insula, puta-
men, cuneus and visual cortex, but observed game errors did not cause increased
activity in any brain region. Naturalistic errors, compared to observed game errors,
produced increased activity in rACC, anterior medial frontal cortex and visual cor-
tex, whereas observed game errors caused increased activity in right inferior frontal
gyrus and left superior parietal lobule. Self-committed errors, compared to natu-
ralistic errors, caused more significant activity in dACC, insula, red nucleus, right
inferior temporal gyrus and right middle frontal gyrus, whereas naturalistic errors
caused increased activity in posterior cingulate, superior frontal gyrus and supe-
rior temporal gyrus. The Z-statistic maps representing pairwise differences between
conditions are shown in Fig. 10, and the corresponding tables in Appendix A.

6.2.3 Effect of error anticipation

Error anticipation in the naturalistic task elicited significant activation in bilateral
insula and striatum, as well as in dorsal ACC and supplementary motor area. In
addition, activity during error anticipation was increased in the aforementioned
regions and additionally in precentral gyrus, when contrasted with error occurrence
(2 s from the maximum of anticipation vs. 2 s from error). Error occurrence,
contrasted with error anticipation, caused increased activity in rACC and visual
cortex (4 s from the maximum of anticipation vs. 4 s from error). Unexpected errors
caused increased activation in the rACC, whereas anticipated errors elicited activity
specifically in the occipital visual areas. Z-statistical maps of contrasts representing
anticipation vs. baseline, anticipation vs. error and anticipated vs. surprising errors
are shown in Fig. 11. The corresponding tables of activation clusters are shown in
Appendix A.
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committed (red-yellow) vs. observed game (blue-cyan), B) naturalistic (red-yellow)
vs. observed game (blue-cyan), C) self-committed (red-yellow) vs. naturalistic (blue-
cyan).
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6.3 ROI-based analyses

The correlations between ROIs differed across conditions. In general, the highest
correlation values were obtained during self-committed errors. Naturalistic errors
resulted in slightly higher between-region correlation values than observed game
errors. Correct trials produced lower correlation between the medial frontal gyrus
and other ROIs during both self-committed and observed game errors. Matrices
including pairwise correlation coefficients between error-related BOLD responses in
the 23 ROIs are presented in Fig. 12.

Coordinates p-values
x y z game vs. nat obs vs. nat game vs. obs

Dorsal ACC L -8 20 30 0.00430 0.05126 0.00000
Dorsal ACC R 6 20 30 0.00107 0.05135 0.00000
Inferior frontal gyrus L -44 16 2 0.00157 0.73573 0.00042
Inferior frontal gyrus R 46 14 8 0.00319 0.03900 0.16755
Insula L -44 10 -4 0.06679 0.24315 0.00308
Insula R 32 26 0 0.00039 0.52674 0.00036
Medial frontal gyrus 0 48 24 0.00250 0.00403 0.99010
Middle temporal gyrus L -54 2 -20 0.05150 0.00736 0.46777
Middle temporal gyrus R 52 8 -32 0.00476 0.00003 0.23043
Supramarginal gyrus L -66 -28 20 0.00601 0.31590 0.06065
Supramarginal gyrus R 60 -40 18 0.04864 0.83610 0.05333
Superior frontal gyrus R 6 14 56 0.00019 0.27011 0.00104
Superior frontal gyrus L -6 16 56 0.00060 0.27918 0.00451
Putamen L -18 8 -8 0.08712 0.01999 0.00017
Putamen R 18 10 -8 0.01517 0.03626 0.00004
Pallidum L -22 -8 0 0.42397 0.14732 0.01042
Pallidum R 20 -4 0 0.08515 0.08391 0.00028
Caudate L -14 12 12 0.73298 0.47484 0.60795
Caudate R 16 20 4 0.53613 0.30931 0.04456
Visual Cortex L -12 -74 -12 0.93752 0.00179 0.00086
Visual Cortex R 12 -74 -12 0.66873 0.00008 0.00122
Rostral ACC L -2 34 2 0.08409 0.01063 0.14451
Rostral ACC R 2 34 2 0.08722 0.00591 0.07477

Table 1: MNI coordinates of ROIs and the significance values for peak activation
differences between conditions.

Also the percent signal change at 4 s in several ROIs differed significantly be-
tween conditions. During self-committed errors, activation in the dACC, superior
frontal gyrus, right insula, left inferior frontal gyrus and right putamen was signif-
icantly higher than during either of the observed errors. Naturalistic errors caused
significantly higher activity in the medial frontal gyrus and right middle temporal
gyrus compared to the other conditions. Observed game errors did not cause signifi-
cantly higher activity in any of the ROIs compared to the other two conditions. The
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coordinates for ROIs (MNI space) and the p-values reflecting the significance of the
between-condition difference are presented in table 1. Mean percent signal changes,
standard errors of the mean (SEM) and significance levels of the between-condition
differences are presented in Fig. 13.
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Figure 12: Correlations between error-related BOLD responses in 23 ROIs in during
A) self-committed errors, B) observed game errors, C) naturalistic errors.
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Figure 13: Error-related % signal change +/- SEM 4 s after errors in 23 ROIs in
different error conditions. Stars above bars indicate the significance of the difference.
*=p<0.05, **=p<0.01, ***=p<0.001.
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6.4 ICA

The results of ICA reflected the results of the GLM analyses. Error-related com-
ponents, indicated by significant contrasts of beta weights, were detected in self-
committed and naturalistic error conditions. In the observed game condition, none
of the components was more modulated by errors than correct trials. However,
IC04, including mostly visual cortical areas (occipital pole, lingual gyrus, occipital
fusiform gyrus), was significantly modulated by both errors (p<0.001, t=6.826) and
correct trials (p<0.001, t=6.730).

Observed game

C Observed naturalistic

L R

IC05

IC07

L R

error - baseline
A Self-committed

IC20

L R

error - correct

B

IC04

L R

Observed game

error - baseline & correct - baseline

IC23

L R

Figure 14: Z-statistical maps of independent components significantly related to A)
self-committed errors, B) both errors and correct trials in the observed game, C)
naturalistic errors. The colors represent the contribution of each voxel to the IC
time course.

One component was significantly related to the self-committed errors. IC20
(F1,17=4.555, p=0.040) included the dACC, frontal pole, bilateral inferior frontal
gyrus, left thalamus and orbitofrontal cortex.

Naturalistic observed errors were significantly associated with three distinct com-
ponents. IC05 (F1,17=47.262, p<0.001) included visual cortical regions (lingual
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gyrus, occipital fusiform gyrus), IC07 (F1,17=14.704, p<0.001) included the lat-
eral occipital cortex, cuneus and PCC, and IC23 (F1,17=39.779, p<0.001) included
prefrontal regions (frontal pole, superior and middle frontal gyri), middle temporal
gyrus, posterior superior temporal gyrus and paracingulate gyrus.

Spatial maps of all error-related ICs are presented in Fig. 14. As the focus of
this study was strictly on the neural circuits subserving error processing, we did not
analyze the ICs unrelated to errors, e.g. the default mode network or somatosensory
networks.

6.4.1 Comparison between GLM and ICA results

The activation patterns found by GLM and ICA were similar, but not identical.
Neither GLM nor ICA revealed significant error-specific activation in the observed
game condition, and naturally the activation maps from the two approaches do not
overlap in this condition. In the self-committed and naturalistic conditions, the IC
maps included mostly the same regions as the statistical parametric maps obtained
by GLM.

However, the IC maps contained also additional regions that were not found by
GLM, and vice versa. For example, in the self-committed condition IC20 included
the rACC, although in the GLMmap showed significant activation only in the dACC.
Also, the IC map was more extensive in the right inferior frontal cortex. In contrast,
IC20 did not include activation in the dACC or SMA. In the naturalistic condition
the three error-related components largely overlap with the regions shown the GLM
map. However, the spatial maps of IC07, containing the cuneus and precuneus, and
IC23, containing the medial and inferior frontal cortices, were clearly more extensive
than the GLM activation in these regions.

The GLM activation maps, overlaid on IC spatial maps for the corresponding
task conditions, are presented in Fig. 15.
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Figure 15: ICA spatial maps (purple) overlaid on maximal GLM activation maps
(yellow) corresponding to A) the self-committed condition, B) the observed game
condition, C) the naturalistic condition. The colors are arbitrary and represent only
the spatial extent of the maps.
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7 Discussion
In this study, we examined the neural correlates of self-committed and observed
errors with fMRI. The aim was to investigate whether the human brain processes
errors differently depending on the viewpoint, i.e. whether errors committed by
oneself and others produce different activation patterns. Using subjective ratings
for error intensity and anticipation, both the likelihood of errors and the degree of
incorrectness in the naturalistic video clips were evaluated and used as modulators of
the GLM regressors. In addition, analyses of functional connectivity were performed
with ROI-based correlation measures and data-driven independent component anal-
ysis.

7.1 Error-related BOLD responses in different conditions

The GLM analyses revealed robust error-related hemodynamic activity in self-committed
and naturalistic conditions, but not in the observed game condition. Error-related
activity during self-committed errors was significant in regions usually implicated
in error monitoring, i.e. dACC, inferior frontal gyrus, insula and putamen. Activ-
ity in the dACC was expected, as the region is previously found to encode on-line
performance evaluation [Shackman et al., 2011; Taylor et al., 2006; van Veen and
Carter, 2002]. Activation of bilateral insula was especially interesting, as it is as-
sumed that simultaneuous activity of ACC and insula modulates awareness and
motivation [Medford and Critchley, 2010]. It is likely that errors in the video game
enhanced the subjects’ focus on the game, which was reflected in their brain activity.

Perhaps even more intriguing was the activation pattern of the striatum: error
trials produced increased activity in the bilateral putamen at 4 s when compared
with correct trials, but the correct trials elicited increased activity in the whole
striatum at 6 s. As the striatum is responsible for processing reward and punishment
[Delgado, 2007], it is not surprising that striatal activation was produced by both
emotionally positive correct trials and negative error trials. The resulting contrast
images can be interpreted such that the BOLD activation peaked strongly after
errors and then gradually decreased, whereas after correct trials both the peak and
the decrease of the response were lower. These different responses resulted in slightly
higher error-specific activity at 4 s and higher correct-specific activity at 6 s. A
highly consistent finding was done by Delgado et al. [2000]. In their study the
striatal BOLD activity peaked rapidly and then decreased after punishment, but
remained nearly constant after reward, resulting in a higher BOLD signal 6 s after
correct trials. Furthermore, in our study the self-committed errors caused increased
activity in the midbrain, specifically in the red nucleus and substantia nigra. This
finding agrees with the suggestion that activation of the midbrain dopamine system
is a main modulator of ACC activation and a generator of the ERN [Holroyd and
Coles, 2002].

Observed game errors failed to produce robust BOLD responses in ACC and
other regions implicated in performance monitoring. A plausible explanation for
this finding is that the task was simply not engaging enough to elicit significant
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activity. Even though the contrast between errors and correct trials showed activity
in the inferior frontal gyri and bilateral middle temporal cortices at 2 s, it was
considered noise because of the short latency. It is unlikely that the peak of BOLD
response would occur at 2 s even though the stimulus was very short. However, it is
not extremely surprising that this kind of task did not produce error-related activity
in the ACC or striatum, as in a simple task it is quite difficult to learn from the
mistakes of others, let alone empathize with the invisible player. Considering these
aspects, it is justified to use naturalistic stimulus paradigms in further studies of
processing observed errors.

The activation caused by naturalistic errors was especially prominent in visual
cortical areas (lingual gyrus) and cerebellum. Similar activity was detected in these
regions during self-committed errors. According to Danielmeier et al. [2011], errors
might enhance activity in perceptual areas encoding task-relevant stimulus features,
which would explain the increased hemodynamic activity in visual regions after
errors. Another significantly activated region during naturalistic errors was the an-
terior medial frontal gyrus, which was located close to the rACC. Our hypothesis
about enhanced emotional valence related to observed naturalistic errors is sup-
ported by this finding, since rACC is frequently implicated in affective processing
of errors [Bush et al., 2000; Manoach and Agam, 2013]. It seems that watching
people failing in everyday situations produced empathetic responses, as expected.
When the effect of pain was regressed out of the data, the activity in rACC and
medial prefrontal cortex was diminished, indicating that watching someone feeling
pain was enhancing the emotional responses. Pain intensity is known to increase
the affective responses in ACC [Jackson et al., 2005; Lloyd et al., 2004]. However,
the previous studies localized pain responses to the dACC, whereas our findings
suggested increased activity in the rACC.

7.2 Differences between conditions

There were several remarkable differences in the activation of peak ROIs between
error conditions. Dorsal ACC was significantly (p<0.001) more activated during
self-committed errors than during observed game or naturalistic errors. This gives
further evidence about the role of this region in on-line performance monitoring.
Errors in the active playing task probably signaled an immediate need for behav-
ioral adjustments, which were not required after observed errors. Thus, it is logi-
cal that the region mediating performance monitoring activated only in the game
playing condition. However, rostral ACC activation did not show any difference
between self-committed and naturalistic errors, although it differed significantly be-
tween observed game and naturalistic conditions. In light of this finding, it can be
hypothesized that the affective component of errors is quite similar when the sub-
jects fail themselves and watch other people fail, but almost nonexistent when they
are watching simulated, non-naturalistic game errors where human beings are not
visible.

The contrast between self-committed and observed naturalistic error responses
revealed increased activity in the bilateral insula and medial frontal gyrus during self-
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committed errors and increased activity in the posterior cingulate, superior frontal
gyrus and superior temporal gyrus during naturalistic errors. Also the comparison
between error-related percent signal changes revealed significant differences between
self-committed and naturalistic errors in the right insula (p<0.001). Also, activation
of the right putamen was significantly (p<0.05) stronger during self-commmitted
errors, but other striatal subregions did not show significant differences between
conditions. As a conclusion, the striatal activity was quite similar, but not identical,
during self-committed and observed naturalistic errors. Regarding this result, it can
be hypothesized that similar reward and punishment signals might be elicited during
both conditions, but the striatal activity is more robust after self-committed errors.
Perhaps the timing of naturalistic errors was not specific enough to distinguish
accurate BOLD responses; in the self-committed condition the response was always
clearly time-locked to the error, but that was not necessarily the case for naturalistic
errors. The latency of the striatal response might have differed between subjects,
depending on their subjective experience about the reward value of observed errors.

7.3 Effect of error anticipation

The contrasts between error anticipation and observation in the naturalistic condi-
tion yielded interesting results. Several regions associated with performance mon-
itoring, including insula, striatum, dorsal ACC and primary somatosensory cortex
(postcentral gyrus), were activated already during error anticipation. However, vi-
sual cortical regions and rostral ACC showed increased activation after errors com-
pared to error anticipation. When anticipated and surprising errors were contrasted
with each other, quite similar distinction was detected: anticipated errors activated
mainly the visual cortical areas, whereas surprising errors elicited activation in the
anterior dACC. This result agrees to a great extent with the findings done by Schiffer
et al. [2013]; they showed that unexpectedness of errors is the main factor contribut-
ing to the activation of the rostral cingulate zone, which highly corresponds to the
location of activity in our study.

In addition, the current results suggest differential roles for rostral and dorsal
ACC in error monitoring: the former showed increased activation during error oc-
currence and surprising errors in the naturalistic condition, and the latter during
error anticipation and self-committed errors. We can speculate that dACC responds
specifically to the increased likelihood of errors, as the probability of erroneous ac-
tion was maximal during self-generated errors and increased during anticipation of
errors. Thus, dACC might indeed encode the increased need for cognitive control
in the presence of high error likelihood, as proposed by Brown and Braver [2005].
In contrast, rACC seems to signal the affective significance of errors: it was acti-
vated similarly during commitment of errors and observation of naturalistic errors
and showed increased activity due to painful observed errors, which probably elicit
strong emotions. The distinction between dACC and rACC has been observed in
neuroanatomical studies, e.g. by [Palomero-Gallagher et al., 2009], and the differ-
ential contributions of these regions to error monitoring was validated in an fMRI
study [Polli et al., 2005]. Our findings support the previous theories and shed fur-
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ther light on the distinct components of the error processing circuit. The results are
also consistent with the ’action-outcome predictor’ model introduced by Alexander
and Brown [2011], as dACC responded both to the anticipation of errors and the
occurrence of unexpected self-generated errors.

7.4 Functional connectivity during error monitoring

Error-related functional connectivity was investigated using both ICA and ROI-
based correlation analyses. The results are not directly comparable due to method-
ological differences, but the inferences drawn from both analyses support the findings
from the GLM analysis.

The correlations between BOLD responses were high within a network containing
dACC, insula, prefrontal cortex and striatum during self-committed errors. The
connectivity between striatal subregions and dACC/inferior frontal gyrus was also
very high during naturalistic errors, but the correlations between the striatum and
the dACC/mPFC network were quite low. The connectivity between all ROIs was
the weakest during observed game errors, implying a generally less coordinated brain
activity in that condition. Furthermore, the correlations between striatal subregions
were lower during observed successful trials than self-committed successful trials.
This result can be interpreted such that the observed game was not capable of
eliciting reward sensations mediated by the striatum, whereas self-made correct
trials elicited instant feelings of reward.

The results obtained by ICA reflected another perspective about error-related
brain function. The finding that similar regions appeared in both the GLM acti-
vations and the most error-related ICs indicates that the significantly error-related
brain regions were also functionally connected during error processing. Thus, the
ICA results imply that these regions are parts of a synchronized error-monitoring
network, rather than isolated regions functioning independently of each other. Fur-
ther support for this finding was given by the high correlations between the most
activated ROIs in each condition.

Self-committed errors showed significant associations with a single component
consisting of the rACC, paracingulate gyrus, bilateral inferior frontal cortex, supra-
marginal gyrus and thalamus, implying the contribution of these regions to the error
monitoring circuit. The result is consistent with the finding that these regions also
showed high correlations between each other in the ROI analysis.

Interestingly, the naturalistic observed errors were associated with three distinct
ICs, which together covered the activated regions found by GLM. This finding sug-
gests that processing of observed errors recruits multiple spatially separate neural
circuits. IC05 included the visual cortex, IC07 the cuneus and precuneus, and IC23
the paracingulate gyrus, inferior frontal gyrus, bilateral middle temporal gyrus and
thalamus. We can thus suggest that these networks are functioning simultaneously,
but independently of each other, probably encoding different stimulus aspects. Re-
ducing the predefined data dimensionality would perhaps result in larger components
and group these segregated networks together. However, the dimensionality was
fairly small (25 components), implying that the statistical independence between
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the resulting components was already high.
In the observed game condition, none of the ICs showed error-specific modula-

tions of activity. Instead, a component in the visual cortex showed significant acti-
vation in response to both errors and correct trials, possibly reflecting an enhanced
focus on visual stimuli due to the visual feedback after each trial. The absence of
error-related components is consistent with the GLM results, which did not indicate
significant differences in ACC or other error monitoring regions between responses
to errors and correct trials in the observed game condition.

In all experimental conditions, ICA found several regions not detected by the
GLM analysis. The explanation for this arises from the nature of ICA: all voxels
belonging to the same component do not necessarily have identical activation time
courses, but they are not different enough to be statistically independent. In GLM
the regressor model is fitted to the time courses of each voxel separately, so even the
slightly deviating voxels may not exceed the significance level. In ICA the regressor
model is fitted to the average time course of each component, i.e. the significance
levels are calculated for the whole component regardless of the contribution of in-
dividual voxels. On the other hand, voxel time courses used in GLM may have a
low SNR, which causes bias in the results if not included in the design matrix. ICA
is able to separate the noise components from the meaningful signals and may thus
detect even minor underlying activations.

According to these findings, ICA can detect similar activation patterns as GLM
and probably even expand the GLM results, if conducted with appropriate param-
eters and data dimensionality. A great benefit of ICA is the ability to provide
information about event-related functional connectivity. Also, IC time courses gen-
erally have a higher SNR than voxel time courses. Therefore, ICA can detect minor
event-related signal changes better than GLM as long as the requirement of sta-
tistical independence between signal and noise components is fulfilled. However, it
should be emphasized that the optimal number of components is still rather diffi-
cult to determine. In this study the automated MDL algorithm failed to produce
stable component estimates and the dimensionality had to be reduced manually.
However, regarding that the components obtained with the reduced dimensionali-
ties were very stable over multiple ICASSO runs, it is likely that they reflect the
actual independent signal sources. As a conclusion, methods for group-level ICA and
dimensionality estimation should be improved in order to accomplish more reliable
results from event-related fMRI studies.

7.5 Limitations

The current study included certain limitations, which might affect the statistical
significance of the results. The most prominent limitation was the inhomogeneity
of the subject groups in different experimental conditions. Several subjects made
excessive head motion during some of the three tasks, but it was not desirable to
discard all runs of the subject because of one unusable run. Instead, each task
was processed separately, including only the motion-free subjects. However, this
procedure was problematic only when comparing the activations in different task
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conditions. Especially, the significance levels in the between-condition comparison
of error responses were somewhat biased, because they were defined by a two-sample
t-test instead of a paired t-test.

The fact that the subjects made different numbers of errors could also be criti-
cized when evaluating the significance of activity produced by self-committed errors.
Some subjects made almost the same number of errors and correct trials. In this case
the unexpectedness of errors was practically absent, as it was equally probable to
commit an error and a correct response. However, most subjects performed reason-
ably well and made less errors than correct trials, so this confound was not likely to
affect the group-level results. In the following studies the stimulus paradigm could
be modified by adjusting the game speed according to the error rate; this approach
is commonly used in so-called speeded response selection tasks.

Another considerable limitation arised from the number of errors in the natural-
istic task. The video clips included in total 35 errors, but only about 20 of them
were rated as relevant (rating >0.5) by the subjects. Out of these 20 errors, 10 were
considered surprising and 10 anticipated, according to the values of anticipation
ratings preceding each error rating. This number is rather low, considering that the
aim was to average error-related responses and make contrasts between anticipated
and surprising errors. The small sample size increases the risk for type II errors,
i.e. not detecting the existing responses. Therefore, increasing the number of errors
might enhance the detection accuracy in similar studies.

7.6 Applications for further research

This study provided new information about the neural mechanisms of error process-
ing in healthy individuals. As the errors in naturalistic video clips elicited significant
brain activity in this subject group, we could consider the possibility of extending
this study into clinical patients. It would be intriguing to study the error responses
of e.g. Parkinson’s disease patients having deficits in the midbrain dopamine system,
as these deficits might affect processing of both self-committed and observed errors.
On the other hand, more complex psychiatric disorders, such as schizophrenia and
OCD, would be worth investigating in terms of observed error processing, since it is
already known that both diseases cause abnormal responses to self-committed errors
[Fitzgerald et al., 2005; Sanders et al., 2002].

Considering the high accuracy required in clinical studies, we could improve the
analysis methods by using combined fMRI-EEG. The great advantage of this mul-
timodal imaging method is the possibility to construct the fMRI regressors based
on the ERP peaks. When conducting an fMRI analysis, it has to be assumed that
all errors produce a similar BOLD response. However, some errors might be left
unnoticed by the subject, thus not producing a response; this factor is especially
noteworthy when studying patients with attention deficits. As a result, the prede-
fined regressors will be biased, which may lead to spurious results. The EEG signal
could be used to predict the waveforms of the BOLD signal (and probably vice
versa) in the multimodal approach, which could improve the accuracy of detecting
error responses. The majority of error processing research is ERN studies based on
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EEG, and a great amount of fMRI measurements have confirmed the ERN findings.
The EEG-fMRI analysis would give a sound proof about the relationship between
the ERN and the error-related BOLD activity. The conjoint analysis could also
refine our findings about the activation related to error anticipation. Thus, it would
be worth studying, even though the multimodal method requires a rather difficult
set-up and more signal processing.

It could also be useful to apply multimodal ICA [Eichele et al., 2008; Moeller
et al., 2011] to EEG-fMRI for spatio–temporal segregation of event-related activation
patterns. The results from the current study showed that ICA is able to detect
event-related activations in fMRI data, so it would be interesting to apply it in
the multimodal approach. Multimodal ICA has already been used in a performance
monitoring task by [Huster et al., 2011]. By using a cross-modal correlation between
the ICs from EEG and fMRI data, they were able to accurately distinguish multiple
task-related networks.

Another possibility for the future is to bring the naturalistic scenario even further
and utilize multi-subject scanning methods (see a review by Konvalinka and Roep-
storff [2012]) in the observation condition. For example, two persons in separate
MRI scanners or MEG shielded rooms could play a simple game and communicate
in real time via a video call. The subjects could play the game in turns and observe
each other’s mistakes, either expected or unexpected. The most novel possibility
for multi-subject experiments is two-person fMRI, in which both subjects are lying
face-to-face in the same scanner and being scanned simultaneously. In a two-person
set-up, it would be possible to design a task involving some kind of social interac-
tion. The observed errors could be e.g. inappropriate responses or breaking of social
norms and expectations. Since this study showed that striatal activity was evoked by
error observation during the naturalistic scenario, it would very likely that erroneous
or unexpected responses in real time social interaction would activate the striatum
as well. This kind of interactive task would also propose an effective method for
studying inter-subject correlation during error monitoring, which would yield new
insights about the neural mechanisms related to social behavior.
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8 Conclusions
The results of the current study suggested that similar neural mechanisms are re-
cruited during processing of errors committed by oneself and others. Activation of
the striatum and rostral ACC during both self-committed and observed naturalis-
tic errors constitutes a hypothesis that the affective significance of errors is similar
in these situations. Furthermore, increased activity of the dorsal ACC, insula and
inferior frontal gyrus during self-committed errors and anticipation of observed nat-
uralistic errors suggests that these regions encode the likelihood of errors and a need
for behavioral adjustments. The absence of an error-related BOLD response during
the observed game condition implies that naturalistic paradigms are more effective
in eliciting empathetic responses to errors made by others, and should therefore be
used instead of controlled stimulus paradigms.

The GLM approach was efficient in revealing error-related BOLD responses.
With the FIR model it was easy to extract responses of any shape and detect
the moment of peak error-related activation. Furthermore, implementing multiple
contrasts between explanatory variables and experimental conditions was straight-
forward with the GLM model. ICA could also be used to detect similar error-related
networks, but the difficulty to determine the optimal data dimensionality decreased
the reliability of ICA in this study. ROI-based correlation analysis could be used as
a good complementary method for investigating functional connectivity during error
monitoring, especially when the regions of peak activation were used as ROIs. To
conclude, GLM is a good analysis method for event-related fMRI studies, especially
if conducted with flexible convolution models.
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Appendix A: Tables of activation clusters
This appendix contains the tables representing clusters of activation in each GLM
contrast image. The tables include names of the anatomical regions, numbers of cor-
responding Brodmann areas (BA), x-, y- and z-coordinates, hemisphere (left/right),
numbers of voxels in a cluster and Z-values representing the significance of activa-
tion.

Cluster centroids are written in bold, and the other regions represent the local
maxima within clusters. All coordinates are in MNI space.
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Self-committed, error > baseline
Region BA x y z Hemisphere Voxels Z-value
ACC/Medial Frontal Cortex 32 24 -2 R,L 8491
Claustrum - 32 24 -2 R 5.97
Cingulate Gyrus 32 -2 22 30 L 5.89
Cingulate Gyrus 32 -8 20 34 L 5.53
Medial Frontal Gyrus 32 4 10 46 R 5.49
Precentral Gyrus 6 40 6 26 R 5.44
Sub-Gyral 6 20 0 58 R 5.36
Inferior Parietal Lobule/Precuneus 36 -38 44 R 3945
Inferior Parietal Lobule 40 36 -38 44 R 5.28
Precuneus 7 20 -66 36 R 5.25
Precuneus 7 20 -70 48 R 5.09
Superior Temporal Gyrus 13 62 -42 16 R 4.96
Inferior Temporal Gyrus - 46 -66 2 R 4.93
Insula 13 56 -34 18 R 4.9
Inferior Temporal Gyrus -46 -74 0 L 3828
Inferior Temporal Gyrus 37 -46 -74 0 L 5.6
Inferior Occipital Gyrus 19 -42 -82 0 L 5.1
Inferior Parietal Lobule 40 -48 -28 34 L 5.01
Inferior Occipital Gyrus 19 -40 -76 4 L 4.96
Cuneus 7 -14 -74 36 L 4.91
Middle Occipital Gyrus 19 -40 -82 8 L 4.89
Putamen -30 4 -2 L 2110
Putamen - -30 4 -2 L 5.22
Putamen - -20 4 -4 L 5.1
Precentral Gyrus 6 -54 4 12 L 4.9
Lateral Globus Pallidus - -12 4 4 L 4.87
Lateral Globus Pallidus - -10 6 -4 L 4.76
Insula 13 -44 10 -4 L 4.61
Red Nucleus -4 -28 -10 R,L 1180
Red Nucleus - -4 -28 -10 L 5.1
Red Nucleus - 6 -26 -12 R 4.86
Thalamus - -10 -24 -2 L 4.62
Red Nucleus - -2 -24 -8 L 4.62
Red Nucleus - -8 -24 -6 L 4.56
Substantia Nigra - -12 -24 -10 L 4.56
Cuneus/Fusiform Gyrus -16 -78 -10 L 842
Declive - -16 -78 -10 L 4.79
Cuneus 18 -2 -78 10 L 4.64
Fusiform Gyrus 19 -20 -66 -8 L 4.55
Fusiform Gyrus 19 -24 -64 -6 L 4.33
Cuneus 18 -16 -70 18 L 4.17
Lingual Gyrus 18 -6 -78 4 L 4.13
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Self-committed, error > correct
Region BA x y z Hemisphere Voxels Z-value
ACC/Medial Frontal Gyrus 6 14 56 R,L 3530
Superior Frontal Gyrus 6 6 14 56 R 4.57
Medial Frontal Gyrus 6 14 10 64 R 4.26
Cingulate Gyrus 32 -4 22 30 L 4.16
Medial Frontal Gyrus 32 4 14 46 R 4.07
Precentral Gyrus 6 8 2 58 R 4.0
Middle Frontal Gyrus 6 -24 0 46 L 3.93
Insula 32 26 0 R 2853
Insula 13 32 26 0 R 4.73
Extra-Nuclear 47 40 22 -8 R 4.71
Putamen - 20 14 -6 R 4.52
Claustrum - 32 24 -6 R 4.49
Insula 13 36 18 -10 R 4.44
Insula 13 42 20 4 R 4.21
Insula -44 10 -4 L 2375
Insula 13 -44 10 -4 L 4.12
Inferior Frontal Gyrus 47 -28 18 -18 L 4.08
Putamen - -30 4 -2 L 4.01
Precentral Gyrus 6 -54 6 10 L 3.93
Inferior Frontal Gyrus 47 -36 32 -6 L 3.91
Putamen - -20 6 -4 L 3.81
Superior Temporal Gyrus 60 -40 18 L 646
Superior Temporal Gyrus 13 60 -40 18 R 3.83
Superior Temporal Gyrus 13 60 -40 22 R 3.78
Insula 13 56 -36 20 R 3.69
Superior Temporal Gyrus 13 56 -40 22 R 3.63
Inferior Parietal Lobule 40 64 -18 22 R 3.42
Superior Temporal Gyrus 39 52 -50 12 R 3.32
Postcentral Gyrus -66 -28 20 L 394
Postcentral Gyrus 40 -66 -28 20 L 4.12
Inferior Parietal Lobule 40 -60 -28 28 L 3.36
Insula 13 -50 -38 20 L 3.17
Postcentral Gyrus 2 -60 -26 42 L 3.16
Postcentral Gyrus 40 -56 -26 20 L 3.16
Superior Temporal Gyrus 22 -64 -38 20 L 3.08
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Self-committed, correct > error
Region BA x y z Hemisphere Voxels Z-value
Caudate 24 -26 26 R 793
Caudate - 24 -26 26 R 3.47
Caudate - 20 -18 26 R 3.43
Caudate - 20 2 28 R 3.22
Claustrum - 30 -12 16 R 3.2
Caudate - 20 -6 26 R 3.17
Caudate - 16 -14 20 R 3.14
Caudate - 24 -4 28 L 567
Claustrum - -28 -2 20 L 3.36
Caudate - -22 -28 24 L 3.36
Caudate - -22 -28 28 L 3.31
Medial Frontal Gyrus -2 24 -26 R,L 527
Medial Frontal Gyrus 25 -2 24 -26 L 3.88
Medial Frontal Gyrus 10 -2 46 -16 L 3.85
Medial Frontal Gyrus 11 -4 34 -20 L 3.81
Medial Frontal Gyrus 11 4 32 -22 R 3.79
Medial Frontal Gyrus 11 0 40 -24 L 3.45
Subcallosal Gyrus 25 8 24 -22 R 3.07
Putamen 26 6 -4 R 510
Putamen - 26 6 -4 R 4.35
Putamen - 28 2 0 R 3.98
Putamen - 24 6 2 R 3.82
Putamen - 30 2 -4 R 3.82
Putamen - 24 4 -12 R 3.77
Putamen - 22 8 -12 R 3.67
Putamen - 28 6 -8 L 426
Putamen - -28 6 -8 L 3.94
Putamen - -20 8 -8 L 3.87
Putamen - -26 10 -4 L 3.8
Putamen - -28 0 -4 L 3.78
Putamen - -22 4 4 L 3.73
Parahippocampal Gyrus 34 -26 2 -14 L 3.67
Superior Frontal Gyrus -30 30 44 L 374
Middle Frontal Gyrus 8 -30 30 44 L 3.54
Superior Frontal Gyrus 6 -20 32 54 L 3.48
Superior Frontal Gyrus 6 -14 36 54 L 3.33
Superior Frontal Gyrus 8 -18 42 46 L 3.19
Superior Frontal Gyrus 8 -24 32 48 L 3.18
Superior Frontal Gyrus 8 -20 30 46 L 3.09
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Observed game, error > baseline
Region BA x y z Hemisphere Voxels Z-value
Middle Temporal Gyrus 48 -54 8 R 1206
Middle Temporal Gyrus 39 48 -54 8 R 4.11
Middle Temporal Gyrus 39 54 -60 8 R 4.02
Inferior Temporal Gyrus 37 54 -66 0 R 3.85
Middle Temporal Gyrus 37 50 -62 4 R 3.67
Fusiform Gyrus 37 48 -58 -18 R 3.62
Middle Temporal Gyrus 21 54 -42 12 R 3.62
Inferior Frontal Gyrus 52 16 14 R 1006
Inferior Frontal Gyrus 44 52 16 14 R 4.25
Insula 13 46 16 8 R 4.17
Precentral Gyrus 44 54 14 8 R 3.85
Inferior Frontal Gyrus 44 54 20 8 R 3.75
Precentral Gyrus 44 50 10 8 R 3.7
Inferior Frontal Gyrus 47 50 18 -10 R 3.65
Fusiform Gyrus -38 -56 -14 L 899
Fusiform Gyrus 37 -38 -56 -14 L 4.08
Fusiform Gyrus 37 -44 -62 -16 L 4.07
Inferior Temporal Gyrus 37 -52 -68 2 L 3.61
Declive - -44 -64 -20 L 3.55
Middle Occipital Gyrus 37 -46 -70 -6 L 3.51
Inferior Temporal Gyrus 37 -46 -68 -2 L 3.5
Precuneus 18 -68 44 R 380
Precuneus 7 18 -68 44 R 3.56
Superior Parietal Lobule 7 26 -62 54 R 3.56
Precuneus 7 28 -46 48 R 3.54
Precuneus 7 28 -64 32 R 3.41
Superior Parietal Lobule 7 22 -66 60 R 3.38
Inferior Parietal Lobule 40 36 -50 42 R 3.37
Superior Parietal Lobule -32 -58 60 L 227
Superior Parietal Lobule 7 -32 -58 60 L 3.51
Inferior Parietal Lobule 40 -32 -44 42 L 3.43
Superior Parietal Lobule 7 -14 -60 68 L 3.23
Inferior Parietal Lobule 40 -36 -44 50 L 3.2
Superior Parietal Lobule 7 -38 -54 60 L 3.09
Superior Parietal Lobule 7 -24 -56 66 L 3.02
Inferior Parietal Lobule -48 -40 54 L 222
Inferior Parietal Lobule 40 -48 -40 54 L 3.89
Inferior Parietal Lobule 40 -50 -36 52 L 3.86
Inferior Parietal Lobule 40 -56 -38 46 L 3.44
Inferior Parietal Lobule 40 -44 -36 38 L 2.59
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Observed game, error > correct
Region BA x y z Hemisphere Voxels Z-value
Inferior Frontal Gyrus 46 14 8 R 384
Insula 13 46 14 8 R 3.46
Inferior Frontal Gyrus 45 50 16 14 R 3.33
Inferior Frontal Gyrus 9 44 14 20 R 3.23
Precentral Gyrus 44 52 10 8 R 3.22
Inferior Frontal Gyrus 44 54 20 6 R 3.18
Middle Frontal Gyrus 9 50 18 26 R 3.03

Naturalistic, error > baseline
Region BA x y z Hemisphere Voxels Z-value
Visual cortex/Cerebellum -12 -74 -12 R,L 12308
Declive - -12 -74 -12 L 4.87
Declive - -18 -76 -16 L 4.79
Culmen - 8 -72 -6 R 4.67
Lingual Gyrus 18 -12 -80 2 L 4.66
Lingual Gyrus 18 -2 -84 2 L 4.64
Culmen - -8 -72 -6 L 4.53
Middle Temporal Gyrus 52 8 -32 R 3092
Middle Temporal Gyrus 21 52 8 -32 R 4.41
Superior Temporal Gyrus 38 52 6 -28 R 4.34
Sub-Gyral 21 46 -12 -16 R 4.21
Superior Temporal Gyrus 21 58 -6 -16 R 3.96
Middle Temporal Gyrus 21 52 -2 -26 R 3.92
Inferior Frontal Gyrus 47 44 24 -22 R 3.91
Medial Frontal Gyrus 0 48 24 R,L 1456
Medial Frontal Gyrus 9 0 48 24 L 3.6
Medial Frontal Gyrus 9 -8 50 24 L 3.41
Medial Frontal Gyrus 9 -6 50 12 L 3.39
Medial Frontal Gyrus 9 4 58 12 R 3.38
Medial Frontal Gyrus 9 -2 48 12 L 3.31
Medial Frontal Gyrus 10 6 62 16 R 3.3
Middle Temporal Gyrus -54 2 -20 L 378
Middle Temporal Gyrus 21 -54 2 -20 L 3.65
Middle Temporal Gyrus 21 -56 6 -30 L 3.45
Middle Temporal Gyrus 21 -54 8 -24 L 3.32
Middle Temporal Gyrus 21 -50 -20 -18 L 3.26
Middle Temporal Gyrus 21 -58 -8 -20 L 3.25
Middle Temporal Gyrus 21 -60 -20 -16 L 3.19
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Naturalistic, error > pain
Region BA x y z Hemisphere Voxels Z-value
Visual cortex/cerebellum -26 -70 -16 R,L 21012
Lingual Gyrus 18 12 -72 6 R 4.89
Declive - -26 -70 -16 L 4.89
Declive - -28 -64 -14 L 4.73
Lingual Gyrus 18 10 -76 0 L 4.71
Lingual Gyrus - -4 -84 4 L 4.66
Culmen - 10 -74 -6 R 4.63
ACC/Medial Frontal Gyrus 0 30 34 L 1497
Cingulate Gyrus 32 0 30 34 L 3.43
Medial Frontal Gyrus 9 0 48 24 L 3.37
Medial Frontal Gyrus 8 -8 28 46 L 3.34
Cingulate Gyrus 32 0 40 24 L 3.27
Superior Frontal Gyrus 9 -2 62 28 L 3.26
Cingulate Gyrus 24 -6 22 24 L 3.25
Middle Temporal Gyrus 38 -62 32 R 653
Middle Temporal Gyrus 39 38 -62 32 R 3.42
Angular Gyrus 39 44 -62 40 R 3.36
Precuneus 39 40 -64 38 R 3.35
Angular Gyrus 39 46 -56 24 R 3.35
Middle Temporal Gyrus 39 44 -60 24 R 3.32
Middle Occipital Gyrus 19 36 -82 16 R 3.31
Middle Frontal Gyrus -26 18 36 L 591
Middle Frontal Gyrus 8 -26 18 36 L 3.86
Precentral Gyrus 9 -40 10 38 L 3.51
Sub-Gyral 8 -18 26 38 L 3.5
Middle Frontal Gyrus 9 -42 14 40 L 3.49
Middle Frontal Gyrus 8 -28 24 46 L 3.38
Precentral Gyrus 9 -36 28 38 L 3.14
Middle Temporal Gyrus -50 -16 -20 L 582
Sub-Gyral 20 -50 -16 -20 L 3.62
Middle Temporal Gyrus 21 -58 -6 -20 L 3.55
Fusiform Gyrus 20 -64 -20 -30 L 3.45
Middle Temporal Gyrus 21 -58 -12 -14 L 3.41
Inferior Temporal Gyrus 20 -64 -26 -20 L 3.35
Middle Temporal Gyrus 21 -62 -26 -12 L 3.23
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Self-committed > Observed game
Region BA x y z Hemisphere Voxels Z-value
ACC/Medial Frontal Cortex 6 2 46 R,L 20933
Cingulate Gyrus 24 6 2 46 R 4.76
Precentral Gyrus 6 36 -8 54 R 4.7
Medial Frontal Gyrus 6 -6 4 52 L 4.65
Medial Frontal Gyrus 6 8 4 54 R 4.64
Precentral Gyrus 4 -38 -12 50 L 4.63
Cingulate Gyrus 24 4 8 34 R 4.6
Putamen 18 12 -6 R,L 5608
Putamen - 18 12 -6 R 4.98
Putamen - -20 8 -6 L 4.75
Putamen - -30 6 -4 L 4.7
Red Nucleus - 6 -18 -18 R 4.23
Globus Pallidus - -12 4 4 L 4.12
Precentral Gyrus -54 0 20 L 267
Precentral Gyrus 6 -54 0 20 L 3.49
Precentral Gyrus 6 -58 6 28 L 3.37
Precentral Gyrus 6 -54 4 8 L 3.1
Precentral Gyrus 6 -54 4 12 L 3.09
Precentral Gyrus 6 -60 4 6 L 3.01
Precentral Gyrus 6 -52 4 26 L 2.92
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Naturalistic > Observed game
Region BA x y z Hemisphere Voxels Z-value
Precuneus/Lingual Gyrus 0 -62 22 L 5554
Precuneus 23 0 -62 22 L 5
Posterior Cingulate 30 0 -64 16 L 4.64
Lingual Gyrus 18 -2 -80 2 L 4.62
Lingual Gyrus - -6 -82 4 L 4.55
Culmen - -10 -72 -6 L 4.55
Lingual Gyrus 18 -4 -76 2 L 4.54
ACC/Medial Frontal Gyrus -2 24 -22 R,L 1080
Medial Frontal Gyrus 25 -2 24 -22 L 3.85
Superior Frontal Gyrus 9 0 60 26 L 3.65
Anterior Cingulate 24 -8 30 -6 L 3.48
Caudate - -6 26 -4 L 3.39
Medial Frontal Gyrus 10 -8 42 -16 L 3.18
Anterior Cingulate 32 6 42 -16 R 3.16
Parahippocampal Gyrus -22 -38 -14 L 564
Culmen - -22 -38 -14 L 3.69
Amygdala - -30 -6 -24 L 3.62
Substantia Nigra - -14 -18 -14 L 3.4
Parahippocampal Gyrus 35 -24 -26 -22 L 3.36
Parahippocampal Gyrus 28 -24 -22 -16 L 3.34
Parahippocampal Gyrus 36 -32 -36 -18 L 3.33
Middle Temporal Gyrus -48 -12 -18 L 349
Sub-Gyral 21 -48 -12 -18 L 3.74
Superior Temporal Gyrus 22 -50 -12 -14 L 3.35
Middle Temporal Gyrus 21 -54 -14 -24 L 3.25
Sub-Gyral 20 -50 -20 -20 L 3.19
Middle Temporal Gyrus 21 -54 2 -20 L 3.14
Middle Temporal Gyrus 21 -54 -4 -14 L 3.05
Observed game > Naturalistic
Superior Parietal Lobule -24 -56 66 L 477
Superior Parietal Lobule 7 -24 -56 66 L 4.36
Inferior Parietal Lobule 40 -40 -46 62 L 3.86
Inferior Parietal Lobule 40 -48 -42 56 L 3.73
Superior Parietal Lobule 7 -30 -52 64 L 3.64
Superior Parietal Lobule 7 -14 -60 68 L 3.51
Inferior Parietal Lobule 40 -52 -34 50 L 3.42
Inferior Frontal Gyrus 56 12 8 R 248
Precentral Gyrus 44 56 12 8 R 3.77
Insula 13 46 16 8 R 3.67
Inferior Frontal Gyrus 44 54 18 10 R 3.2
Inferior Frontal Gyrus 9 48 8 18 R 3.18
Inferior Frontal Gyrus 44 54 20 6 R 3.09
Inferior Frontal Gyrus 44 58 20 16 R 2.94
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Self-committed > Naturalistic
Region BA x y z Hemisphere Voxels Z-value
Medial Frontal Cortex -4 4 52 R,L 28808
Medial Frontal Gyrus 6 -4 4 52 L 5.95
Claustrum - 32 24 -2 R 5.71
Medial Frontal Gyrus 6 -4 0 56 L 5.67
Sub-Gyral 6 20 0 58 R 5.51
Middle Frontal Gyrus 6 -30 -2 50 L 5.48
Medial Frontal Gyrus 6 8 -4 62 R 5.41
Red Nucleus -8 -22 -6 R,L 997
Red Nucleus - -8 -22 -6 L 4.15
Substantia Nigra - -6 -16 -12 L 4.11
Red Nucleus - -4 -26 -12 L 4.09
Red Nucleus - 8 -26 -14 R 3.88
Thalamus - 10 -14 -2 R 3.61
Red Nucleus - 6 -16 -14 R 3.56
Inferior Temporal Gyrus 46 -64 2 R 577
Inferior Temporal Gyrus - 46 -64 2 R 3.94
Inferior Temporal Gyrus 37 48 -52 -2 R 3.9
Middle Temporal Gyrus 39 46 -56 6 R 3.79
Sub-Gyral - 42 -56 0 R 3.63
Sub-Gyral - 38 -66 4 R 3.5
Inferior Temporal Gyrus 19 52 -58 0 R 3.4
Middle Frontal Gyrus 36 44 18 R 575
Middle Frontal Gyrus 10 36 44 18 R 4.04
Middle Frontal Gyrus 10 40 42 8 R 3.66
Middle Frontal Gyrus 10 38 48 8 R 3.55
Middle Frontal Gyrus 9 36 36 24 R 3.5
Middle Frontal Gyrus 9 40 30 24 R 3.4
Superior Frontal Gyrus 10 42 56 12 R 3.3
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Naturalistic > Self-committed
Region BA x y z Hemisphere Voxels Z-value
Posterior Cingulate -4 -42 32 R,L 857
Cingulate Gyrus 31 -4 -42 32 L 4.22
Cingulate Gyrus 31 -10 -50 24 L 4.12
Posterior Cingulate 31 -8 -50 20 L 4.06
Posterior Cingulate 23 4 -52 18 R 3.95
Cingulate Gyrus 31 2 -34 32 R 3.61
Precuneus 31 4 -46 32 R 3.47
Superior Frontal Gyrus 0 48 26 R,L 543
Medial Frontal Gyrus 9 0 48 26 L 3.94
Superior Frontal Gyrus 9 -12 56 32 L 3.77
Superior Frontal Gyrus 8 -8 48 40 L 3.63
Superior Frontal Gyrus 9 -8 52 34 L 3.6
Superior Frontal Gyrus 9 12 58 26 R 3.22
Medial Frontal Gyrus 10 4 62 14 R 3.15
Superior Temporal Gyrus 46 -64 40 R 221
Inferior Parietal Lobule 39 46 -64 40 R 3.54
Angular Gyrus 39 52 -60 34 R 3.27
Superior Temporal Gyrus 39 52 -58 30 R 3.21
Supramarginal Gyrus 40 60 -54 26 R 3.08
Superior Temporal Gyrus 39 52 -56 24 R 3.05
Supramarginal Gyrus 40 54 -54 30 R 3.04
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Anticipation > baseline
Region BA x y z Hemisphere Voxels Z-value
ACC/Medial Frontal Gyrus -6 -10 64 L 1759
Medial Frontal Gyrus 6 -6 -10 64 L 3.69
Paracentral Lobule 31 -6 -18 44 L 3.66
Medial Frontal Gyrus 6 0 -4 52 L 3.56
Medial Frontal Gyrus 6 -4 -6 56 L 3.5
Medial Frontal Gyrus 6 -8 -8 60 L 3.42
Cingulate Gyrus 24 -8 0 38 L 3.42
Insula/Inferior Frontal Gyrus -46 8 4 L 1548
Precentral Gyrus 44 -46 8 4 L 3.81
Inferior Frontal Gyrus 47 -44 22 -2 L 3.7
Inferior Frontal Gyrus 47 -42 22 -6 L 3.66
Insula 13 -42 4 -4 L 3.63
Insula 13 -46 0 0 L 3.6
Precentral Gyrus 44 -42 8 2 L 3.5
Precentral Gyrus 52 8 6 L 1451
Precentral Gyrus 44 52 8 6 R 3.9
Superior Temporal Gyrus 22 54 10 2 R 3.77
Inferior Frontal Gyrus 47 38 30 -10 R 3.61
Claustrum - 38 4 -4 R 3.6
Insula - 38 20 -2 R 3.59
Inferior Frontal Gyrus 47 34 22 -10 R 3.57
Inferior Parietal Lobule 42 -34 50 R 508
Inferior Parietal Lobule 40 42 -34 50 R 3.54
Precuneus 7 14 -62 54 R 3.34
Postcentral Gyrus 5 38 -42 64 R 3.34
Superior Parietal Lobule 7 22 -48 64 R 3.31
Superior Parietal Lobule 7 28 -48 62 R 3.29
Precuneus 7 20 -56 54 R 3.28
Insula/Postcentral gyrus 54 -18 26 R 416
Insula 13 54 -18 26 R 3.64
Postcentral Gyrus 2 62 -18 34 R 3.41
Postcentral Gyrus 40 64 -26 20 R 3.39
Postcentral Gyrus 2 58 -20 34 R 3.36
Inferior Parietal Lobule 40 60 -28 30 R 3.33
Insula 13 54 -30 22 R 3.3
Insula/Postcentral gyrus -58 -20 18 L 365
Postcentral Gyrus 40 -58 -20 18 L 3.52
Insula 13 -52 -30 20 L 3.49
Postcentral Gyrus 2 -56 -22 38 L 3.36
Postcentral Gyrus 2 -60 -20 32 L 3.14
Inferior Parietal Lobule 40 -58 -24 30 L 3.13
Postcentral Gyrus 3 -60 -20 44 L 3.11
Fusiform Gyrus 50 -64 -8 R 205
Fusiform Gyrus 37 50 -64 -8 R 3.57
Inferior Temporal Gyrus 37 52 -54 -4 R 3.33
Middle Temporal Gyrus 37 56 -60 -10 R 2.98
Middle Occipital Gyrus 19 56 -60 -4 R 2.9
Fusiform Gyrus 19 44 -70 -6 R 2.85
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Anticipation > Error
Region BA x y z Hemisphere Voxels Z-value
Middle Frontal Gyrus -24 -4 56 L 1839
Middle Frontal Gyrus 6 -24 -4 56 L 3.98
Sub-Gyral 6 -18 -2 54 L 3.88
Middle Frontal Gyrus 6 -22 -12 62 L 3.87
Precentral Gyrus 6 -24 -12 66 L 3.69
Middle Frontal Gyrus 6 -20 -2 50 L 3.62
Medial Frontal Gyrus 6 -10 -4 60 L 3.59
Postcentral Gyrus/Precuneus -24 -48 60 L 892
Sub-Gyral 7 -24 -48 60 L 3.66
Postcentral Gyrus 5 -30 -42 64 L 3.62
Inferior Parietal Lobule 40 -40 -38 60 L 3.52
Precuneus 7 -8 -56 66 L 3.52
Inferior Parietal Lobule 40 -30 -36 54 L 3.43
Precuneus 7 -16 -50 62 L 3.39
Insula -46 0 2 L 800
Insula 13 -46 0 2 L 3.69
Superior Temporal Gyrus 22 -52 0 0 L 3.59
Inferior Frontal Gyrus 47 -32 22 -14 L 3.4
Insula - -42 22 -4 L 3.38
Insula 13 -38 -4 12 L 3.33
Extra-Nuclear 47 -34 22 -6 L 3.23
Brainstem -6 -30 -10 R,L 629
Brainstem - -6 -30 -10 L 3.43
Brainstem - 8 -30 -14 R 3.37
Postcentral Gyrus 40 -38 64 R 553
Postcentral Gyrus 5 40 -38 64 R 3.35
Postcentral Gyrus 5 40 -44 62 R 3.33
Inferior Parietal Lobule 40 36 -36 54 R 3.31
Postcentral Gyrus 3 34 -34 50 R 3.3
Superior Parietal Lobule 7 34 -50 62 R 3.29
Inferior Parietal Lobule 40 36 -38 58 R 3.27
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Error > Anticipation
Region BA x y z Hemisphere Voxels Z-value
Visual cortex/Cerebellum -10 -80 2 L 4823
Lingual Gyrus - -10 -80 2 L 4.33
Declive - -10 -76 -12 L 4.03
Cuneus 17 12 -94 6 R 3.98
Declive - -18 -78 -16 L 3.93
Declive - -30 -72 -14 L 3.87
Culmen - -10 -72 -6 L 3.85
ACC -8 48 2 R,L 518
Anterior Cingulate 32 -8 48 2 L 3.46
Anterior Cingulate 24 4 38 -8 R 3.34
Medial Frontal Gyrus 10 -10 46 8 L 3.33
Anterior Cingulate 32 -4 42 8 L 3.08
Anterior Cingulate 24 -6 42 2 L 3.08
Anterior Cingulate 32 8 38 -12 R 3.06
Putamen 26 10 -14 R 355
Putamen - 26 10 -14 R 3.51
Putamen - 28 8 -10 R 3.44
Claustrum - 32 8 -14 R 3.34
Claustrum - 36 0 -14 R 3.33
Amygdala - 38 -6 -16 R 3.32
Putamen - 32 6 -10 R 3.25
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Surprising > Anticipated
Region BA x y z Hemisphere Voxels Z-value
ACC/Medial Frontal Gyrus -2 54 28 R,L 254
Superior Frontal Gyrus 9 -2 54 28 L 3.56
Anterior Cingulate 32 -2 46 12 L 3.34
Medial Frontal Gyrus 9 -2 56 20 L 3.18
Medial Frontal Gyrus 9 4 44 28 R 2.85
Medial Frontal Gyrus 9 -6 46 28 L 2.8
Medial Frontal Gyrus 8 -8 40 36 L 2.78
Anticipated > Surprising
Cuneus/Lingual Gyrus 10 -86 8 R 7460
Cuneus 17 10 -86 8 R 5.14
Lingual Gyrus 18 12 -80 6 R 4.88
Cuneus 18 8 -90 14 R 4.53
Culmen - 14 -72 -8 R 4.36
Lingual Gyrus 18 10 -72 2 R 4.35
Lingual Gyrus 18 10 -78 -6 R 4.28
Precuneus 32 -60 34 R 289
Precuneus 7 32 -60 34 R 4
Superior Parietal Lobule 7 26 -60 50 R 3.94
Sub-Gyral 39 34 -58 44 R 3.46
Superior Parietal Lobule 7 34 -58 56 R 3.06
Precuneus 7 24 -58 40 R 2.85
Precuneus 7 26 -62 42 R 2.67


