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Abstract 

 
In this written part of my final thesis I describe the production work I did in co-operation with 
Technical Research Centre of Finland. The aim of the production work was to develop a 
content creation work flow and virtual environments for Lumeportti virtual reality system 
developed by the Technical Research Centre of Finland. 
 
The final content creation work flow developed for the Lumeportti system consists of 
multiple work phases and tools. Work flow starts with a phase where the geometry of the 
virtual environment is modeled and ends to a phase where the building blocks of final virtual 
environment are compiled and packed. After this last stage the virtual environment is ready to 
be used in the Lumeportti system. The building blocks, i.e. the content of the final virtual 
environment consist of 3D geometry of the objects, textures of those objects, lighting of the 
environment and different functional elements placed in to the environment. Content creation 
work flow developed during the production work was tested and used for building several 
virtual environments. The main virtual environment I built during the production work was 
used for demonstrating the use of the Lumeportti system as a tool for architectural 
visualization tasks.  
 
This written part of my final thesis starts by explaining and defining some key topics related 
with my production work and research area of virtual reality in general. The Lumeportti 
virtual reality system is described in detail to make it easier for the reader to grasp what was 
the technological environment I worked on. Next the different goals, challenges and problems 
I faced in my production work are introduced and described. The key problems of the 
production are stated in this chapter and next chapter explains in detail the solutions I found 
for these problems or in some cases why complete solutions were left unfound. Main issues 
here are focused on the questions of how to increase the rendered image quality in the final 
virtual environment, how to bind together different content creation methods used by the 
Lumeportti system’s graphics engine and physics engine and also how to find a way to re-use 
already existing 3D data in the content creation work flow. Last there is a summary of the 
experiences gain during the production work and some speculations of what was done well 
and what could have been done better in the production. In this last chapter there is also some 
comments of what should be done in the future to push the work I did even further.  
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Introduction 

Human mind is easily lured to travel to the parallel worlds and realities of imagination. 
Everyone of us must have felt at times the urge to leap out of the everyday life into the 
universe of a good book, movie or a computer game. As Janet Murray pointed out in her book 
Hamlet on the Holodeck [Ref. 8], the age-long desire to be able to live out a fantasy aroused 
by a fictional world has been intensified by a participatory, immersive medium. By this 
medium she means the new medium generated by the development of computer technology 
and telecommunication. This participatory new medium has taken long steps from text based 
adventure games and wireframe graphics to the extensive multi-user worlds with spatial 
sounds and stereographic imaging of today. 
 
No matter how the technology evolves, the real power to take us into a journey to these dream 
worlds is in the hands of the artist creating the content for the medium. The real problem for 
the artist is still the same, how to translate the idea into the form of medium and do it so that 
the viewer will accept the illusion and get dwelled into it. As the technical development has 
made powerful interactive new medium available to us, it has also presented more demands to 
the content creation process. Interactive real time three-dimensional graphics require the 
content designer to be able to work on various tools and master new techniques of three-
dimensional modeling, texturing, lighting etc. On the top of this the interactive computer 
software systems are still quite restrictive and demand the designer to be aware of the 
different technical aspects of the hardware and software systems in use in order to get 
satisfactory results. All this creates a need to develop the content creation tools further with 
usability on mind to give more freedom to the content creation.  
 
At the moment it seems that the advantages provided by the virtual reality have only been 
utilized in some very tightly focused special cases, mainly in different simulator and design 
inspection applications. It’s easy to see the vast potential of the virtual reality; being able to 
examine, test and use nonexistent subjects in fully immersive environments in real life or just 
any chosen scale. At the moment there are however some major barriers keeping us from 
taking the best advantage of that potential. If we could surpass the biggest problems at the 
moment; the high costs of virtual reality systems, usability issues and the big workloads 
demanded for the content creation, there might be a sudden expansion in the areas where 
virtual reality systems are used.  
 
During the work on this thesis I have been fortunate to be able to work with the state of the art 
tools in the area of virtual reality systems and also had an opportunity to actually take part in 
effort of trying to solve some of the limitations related with the content creation of the virtual 
reality systems at the moment. This writing is an attempt to describe the work done on 
developing and using a content creation work flow for the virtual reality system Lumeportti. 
The starting point for creating Lumeportti system was an attempt to create cheaper and more 
generic virtual reality system, with high quality in the areas of rendered graphics, usability 
and physics simulation. My role and area of expertise within the Lumeportti development was 
the content creation side of the system. 
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Summary of the Chapters 

First chapter of this thesis will introduce some of the key concepts and terms related with 
virtual reality and real time 3D graphics. These concepts and terms are mainly ones that are 
substantially related to the production work done in this final thesis. Key terms used in this 
thesis are defined and explained briefly and their relation to my thesis work are discussed. 
Due to the relatively short history of virtual reality research many of the terms used here are 
not unambiguously defined and may cause some misunderstandings if not explained and 
defined clearly.  
 
In the second chapter the Lumeportti virtual reality system is introduced and explained in 
detail. In this chapter the hardware and software environments of the Lumeportti system are 
described and various development solutions are discussed. This rather detailed technical 
description chapter is included in this thesis for making it easier for the reader to grasp what 
was the technological environment I worked on. 
 
On the third chapter the different goals, challenges and problems that I faced during the 
production work are listed and explained. Since my production work was a part of a bigger 
challenge of developing the whole Lumeportti system and there were couple of projects under 
which this development took place there were number of factors involved which all set 
additional goals and challenges for my work.  
 
Fourth chapter describes the work done on the production and different solutions related with 
it. On previous chapter the different goals and problems faced during the production were 
lifted up and on this fourth chapter the key solution which were discovered are explained. 
This chapter should give the reader an overall impression of what kind of work phases and 
tasks the actual production work involved.  
 
In the fifth chapter the final results from the production work are described. There the 
developed final content creation work flow is explained in detail.  Also the virtual 
environments implemented for the Lumeportti system are introduced and specially the virtual 
environment I implemented for the pilot application of architectural visualization is described 
thoroughly. 
 
In the last chapter I summarize the lessons learned and experiences gained during the 
production work. In this last chapter I also included some speculations of what should have 
been done differently during the production work or what should be done in the future to push 
the work I did even further. 
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1 Theoretical Context 

Until recently virtual reality research has been focused primarily on technology and the 
usability issues of single virtual reality systems without the study of the content creation or 
general application areas. There is however a growing trend of re-focusing the research 
interest from pure technology of virtual reality systems towards the content and application 
areas of the virtual reality, in other words, to think up what can this technology be used for 
[Ref. 2]. This new direction of interest in virtual reality research has made the research area 
much more interdisciplinary and the current audience for this research has more diverse 
backgrounds. 
 
For this written part of my final thesis I have gathered information mainly from the areas of 
current virtual reality and computer game research publications. For the content designer the 
tools and outcomes in virtual reality content creation process are pretty much the same as with 
the current real time 3D game development and quite often the best information concerning 
this design process comes from the computer games industry. In addition I have been able to 
get information directly from experts working on the area of architectural visualization and 
3D computer games. 
 
In the following paragraphs I've explained some of the key topics related with this final thesis.  
 
 
1.1 Virtual Reality and Virtual Environment, the Definition and Background of the 

Terms 

One of the first visions of the virtual reality was presented by one of the pioneers in area of 
computer graphics, Ivan Sutherland, 1965 in his decree where he articulated the original 
dream of virtual reality: "The screen is a window through which one sees a virtual world. The 
challenge is to make that world look real, act real, sound real, feel real." [Ref. 1] 
 
The actual term 'virtual reality' was taken into use around mid 80's and the credit of coming 
up with the term has been given to Jaron Lanier. Since then there have been many attempts to 
define virtual reality explicitly. The debate over the various definitions however still seems to 
be going on at some extent. Many of the attempts to define what virtual reality is have been 
based on the technical characteristics of virtual reality systems. However that leads us into too 
limiting definitions and doesn't work universally. By my opinion Steve Bryson made a very 
good point in his writing about the history of the definition, that in general people are 
primarily interested in the effects that can be achieved with virtual reality systems, not the 
technology behind it. Therefore it makes sense to define virtual reality in terms of its 
cognitive effects. This has led to the definition of virtual reality as following: 
"Virtual Reality is the use of computer technology to create the effect of an interactive three-
dimensional world in which the objects have a sense of spatial presence." [Ref. 3] 
 
In this thesis term virtual environment is used to describe the 3D model and functional 
elements of a scene designed for the virtual reality system. Virtual environment is displayed 
to the user by the virtual reality system from an egocentric point of view using real-time 3D 
computer graphics [Ref.  21] 
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1.2 Application Areas of Virtual Reality  

There have been attempts to use virtual reality in many different application areas. One can 
find a wide range of documentation on the area of virtual reality research about virtual reality 
application tests from art creation to complex training tasks. At the moment the best results of 
using virtual reality are achieved with applications that enable the user to train some task 
which would be impossible otherwise [Ref. 2]. For example training of astronauts for 
assembly sequences that will be eventually carried out in zero gravity can only be trained 
effectively by using virtual reality systems. Of course different simulation systems in the 
areas of aeronautics and military uses have been widely used and can be considered as one 
area where virtual reality has been able to establish it’s status. Also one area where virtual 
reality has proved it’s usefulness is design pre-visualization in big manufacturing projects. 
For example automobile industry has actively developed their own virtual reality applications 
used for different design inspection uses with virtual models. 
 
Even with these good results many of the intended virtual reality applications are still not 
what they should be for serious use. There are problems with the usability issues, image 
quality and content creation that should be researched and developed further. During my 
production work with the Lumeportti system we faced some of these common problems. 
Later these issues are explained in more detail.  
 
 
1.3 Virtual Reality Systems 

As well as tight definition of term 'virtual reality' the universal definition of virtual reality 
system is somewhat complicated task. There are a great number of different set ups and 
collections of different techniques used and categorized under the term virtual reality system. 
In general it can be said that most common set up would consist of display device capable of 
producing stereo graphic images, some haptic input device and / or tracking device for 
tracking the position of users head. These former three components are most basic elements, 
but however not all the systems titling themselves as virtual reality system, include all three 
components.  
 
All of the virtual reality systems use some kind of software system which processes the input 
from the user and 3D computer graphics to display the virtual environment to the user. Virtual 
reality system capability of rendering stereo graphic images is always based on rendering two 
images, one for each eye, which are rendered from slightly different angles. This of course 
creates a need to be able to display different images to the corresponding eye of the user. For 
this purpose number of different kinds of alternative display devices has been developed. 
Often virtual reality systems are categorized according to the display devices they use. Most 
common categories are head mounted displays (HMD), BOOM (Binocular Omni-Orientation 
Monitor) devices and different kinds filter glasses which are used with normal monitors or 
large screens and data projectors. The latter of these are often referred as CAVE like systems. 
 
 
1.4 CAVE Like Systems 

The first CAVE system was developed at the University of Illinois. It was developed by 
Carolina Cruz-Neira, Thomas DeFanti and Daniel Sandin among some others. It was 
demonstrated for the public at the SIGGRAPH '92 [Ref. 6]. They had named their work 
CAVE, which is a recursive acronym "CAVE Automatic Virtual Environment". Since then 
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cave is used as a generic term to describe a virtual reality systems which use multiple 
projection walls as a display device. However at the moment the term CAVE has been 
trademarked by the company Fakespace [Ref. 22] and therefore general term CAVE system 
as a category has been transformed to a CAVE like system.   
 
Since 1992 there has been active development done with the CAVE like system in various 
universities and research institutes. During the few last years there has been a new direction to 
develop new system implementations, which build upon normal PC hardware and Windows 
operating system [Ref. 7] instead of cumbersome Unix based systems with expensive 
graphical work stations. The initial costs of these new setups are significantly lower than the 
first CAVE like systems built upon special hardware.  
 
Some of the current CAVE like systems have also developed into a commercial products, 
which are sold as ready to run packages. For example international Fakespace, Fraunhofer 
institute in Germany and Cyviz in Norway are selling technology derived from CAVE 
research.  
 
Lumeportti virtual reality system is a CAVE like system developed by the Technical Research 
Centre of Finland and the details of this system are discussed later in chapter 2. Helsinki 
University of Technology has also invested effort in VR research and development their own 
CAVE like system, called EVE.  
 
 
1.5 Presence and Immersion 

Presence is a term used to describe the effect of user experiencing that he/she is surrounded 
by the virtual environment and actually being part of that virtual environment [Ref. 5].  
 
When the differences between the virtual reality and traditional 3D computer graphics are 
compared the concept of presence is often seen as a key factor separating these two from each 
other. In virtual reality systems tracking devices are used to maintain information of the 
position and orientation of the users head. This information is required to maintain a sense of 
independent spatial presence as the user moves his head. The desired effect is that the virtual 
object (assuming it's not moving) stays put as the user moves around. [Ref. 3] 
  
Besides physical presence the user of virtual reality systems can have an experience of social 
presence. If the virtual world is inhabited by avatars controlled by artificial intelligence or 
virtual characters controlled by other users the feeling of presence can be very deep even if 
the virtual environment itself is not that immersive.  
 
Immersion and presence in the virtual environments are two closely linked terms. Immersion 
means the effect of user submerging into the virtual environment. Immersion is an experience, 
which can be triggered with different kinds of media, by watching a movie, reading a book or 
navigating a virtual environment. Immersion is a product of selectively focused attention, 
when user is purely interested about one medium and tries to block all the stimuli outside that 
medium he/she will feel submergence into it. 
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1.6 Multimodal Interaction and Navigation in Virtual Reality 

The obvious advantage of real time 3D graphics is that it enables the user to freely explore the 
virtual environment and that there can be interaction between the user and virtual 
environment. Especially with virtual reality applications where human-computer interface 
often cannot be implemented by using traditional input devices; keyboard and mouse, the 
design of alternative conventions can be surprisingly difficult. The user interface of 
Lumeportti virtual reality system originally was build on user position tracking, two data-
gloves and speech recognition system for command input. Navigation was mainly done by 
using hand gestures with data glows. Later Lumeportti system was modified to use 
3dConnexions SpaceMouse motion controller device for navigation in architectural 
visualization application since the hand gesture navigation proved to be too complicated for 
average user of the system. The ease of navigation is one of the key factor behind the usability 
of the virtual reality system. Even though this subject is important for the system 
development, it’s not the main scope of this thesis and therefore this subject is only lightly 
covered. 
 
 
1.7 Stereographic Viewing and Display Devices 

The development of the display devices has not been very radical if compared with the 
development of the computational power of computers or the rendering power of graphic 
display cards. Normal cathode-ray tube, a.k.a. CRT monitor is still the most commonly used 
display device in use and the one that provides the best resolution and color richness.  
 
To produce a stereographic image we have to be able to render and display separate images 
for both eyes. Normal computer monitor can be used to view stereographic rendering by using 
shutter glasses, but for virtual reality purposes it’s not the best solution. The computer 
monitor is after all quite small and cannot provide the sensation of presence and immersion as 
strongly as often desired. 
 
For the purpose of stereographic rendering number of different display devices have been 
invented. Most common categories are head mounted displays (HMD), BOOM (Binocular 
Omni-Orientation Monitor) devices and different kinds filter glasses which are used with 
normal monitors or large screens and data projectors 
 
There have been promises of usable head mounted displays for years, but still these devices 
tend to have problems preventing common use of them. There are still problems with image 
quality but more importantly they are still generally too expensive and they tend to cause 
often simulator sickness for the user.  
 
 
1.8 Tracking Devices 

Tracking devices allow a virtual reality system to monitor the position and orientation of the 
user or selected body parts of the user. Current tracking devices are based on electromagnetic, 
acoustic, mechanical, or optical technologies.  
 
Besides tracking devices used for tracking orientation and position there are also devices used 
for tracking human postures. These devices range from whole body suits that are used for 
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overall motion capture to smaller devices such as data gloves for tracking the postures of 
users fingers.  
 
The Lumeportti system uses both data glows and position and tracking devices. Tracking 
devices and how they are used in the Lumeportti system, is documented more closely on later 
chapters. 
 

1.9 Real Time 3D Graphics 

3D (three-dimensional) computer graphics is a term used to describe computer-generated 
images that represent three-dimensional space and objects rendered from a certain viewing 
point within that space. When the computer renders the displayed image on the fly, 10 to 60 
or even more times per second, it’s called real time graphics. 
 
Thanks to the rapid development in the area of real time graphics we are now able to interact 
with the computer generated environments. When the computer system can accept and 
process input from the user in real time and at the same time update the generated image 
according to the collected input it gives the user opportunity to interact with the computer via 
the generated virtual environment.  
 
The bottleneck for the interactive 3D world has always been the expensive processing tasks 
involved with 3D graphics. The real revolution on this area has been the development of the 
hardware graphics accelerators. At the 1998 when the second generation of personal computer 
graphics cards became available to the consumers, it was possible to build a single graphics 
processing unit chip capable of rendering over 1.5 million, textured and blended triangles per 
second at the cost of approximately 30 dollars per chip [Ref. 23]. Since then the graphic 
accelerators have been more or less standard components on personal computers and since 
then they have been developing at even accelerating phase.  
 
Over the past 15 years, on the software side of 3D graphics many of the advanced rendering 
techniques have also passed from being purely research topics to components of practical  
applications. For example the algorithms used for calculating radiosity global illumination, 
hidden surface removal, z-buffering and ray tracing were before dismissed as too complex 
and demanding to have any practical value for 3D graphics. Today all of these techniques are 
generally used and developed even further with real time 3D graphics.  
 
The development in the area of real time 3D graphics has also led to the common use of 
bigger components of graphic libraries and graphic engines for more complicated tasks. 
Graphics libraries are interfaces to the graphic card’s hardware and they are also called 
application programming interface, API. At the moment most commonly used and supported 
by graphics cards libraries are OpenGL and DirectX. 
 
Although the use of graphics libraries makes the programming hardware independent they are 
quite often still too low level for practical application development. The solution to this has 
been the introduction of 3D engines. 3D engines are software systems build upon the graphics 
libraries and they are a next abstraction level further away from the hardware. 3D engines 
provide the user with automated functions for many of the computer graphic’s tasks that 
would require loads of code when using graphics libraries. These functions include for 
example automated commands for controlling the display window, reading and writing of 
files, memory handling and loading and processing of 3D content.  



 11

 
In addition to these two categories, graphics libraries and 3D engines, there are also software 
packages used with 3D graphics called middleware engines. Middleware engines could be 
located somewhere between the two earlier mentioned types. Middleware engines are build on 
the top of graphics libraries but they are not as ready to run solutions as 3D engines. 
Middleware engines typically have some ready tools for the content creation, but they need 
more complete software framework to be coded and compiled for the execution.   
 

1.10 Virtual Reality Software and Game Engines 

Term engine has been used as a general term in association with the computer games to 
describe the complete software application responsible for some complex task, like for 
example rendering graphics, simulating physics etc. Term game engine or more specifically 
and generally used term 3D game engine was taken into use by the general public along with 
the rise of the 3D first person shooter game genre in the beginning of the 90’s.  
 
There are big variations between different game engines in their operational principles and 
tasks which they perform. Usually the game engine has high level functions for tasks such as 
loading content to the game, processing user input, rendering and displaying the graphics, 
executing game’s artificial intelligence, network operations, game physics calculations, etc. 
People often think that the game engines are mostly concerned with just rendering and 
displaying graphics of the game. However in modern game engines it’s often just one task of 
along with many others. The part of the game engine dealing with the graphics is often called 
graphics engine. Graphics engine can also be a whole separate system and not just part of the 
complete game engine.  
 
Current game engines are very large and complex software systems and even making just the 
graphics part of the engine from the scratch is a large task. Therefore in many cases it’s much 
more practical to buy ready engine that is ready to be used, well tested and already proofed 
its’ abilities in published games. It has been a growing trend in the game industry for the 
recent years that many of the game development companies build 3D games upon a game 
engine developed and sold by completely another company.  
 
As well as the games have the complete software system to run the game called game engine, 
virtual reality systems need a similar system as well. Often virtual reality systems and 3D 
games are very similar when comparing the tasks which has to be performed by the core 
software to run the system. Especially they are similar in the way how they store and process 
the 3D graphics data and display this data as 3D images. Even though these two application 
areas have similar requirements from the software it seems that serious development of 
complete engines is mostly done only on the area of computer games.  
 
In the case of the Lumeportti development it had been decided quite early on the development 
that game oriented 3D engine would be used for the implementation of the rendering modules. 
This decision had been done based on the experiences the original members of project team 
had from working with other virtual reality applications and especially lower level graphics 
libraries used traditionally in those projects. 
 
In this thesis I’ve used generic term engine to describe all software systems which can be seen 
as a single system component or module clearly responsible for one area of system operations 
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no matter if it’s for example responsible for rendering the graphics but also processing user 
input. 
 
 
1.11 Factors Behind the Image Quality in Real Time 3D Graphics 

By image quality of 3D graphics I mean simply an overall impression of how good the final 
rendered images looks in the same way as we look at a painting and have an overall 
impression if it’s good or not. This overall impression of image quality is of course a 
composition of many things, some of them controlled by the designer and some of them 
resulting from limitations of the hardware or software used for rendering. For example the 
composition of the virtual environment, objects in it, textures and lighting etc. are results of 
the design done by the artist creating  the virtual environment. Limitations derived from the 
hardware are for example resolution of the display device and processing power and memory 
in use which both restrict the complexity and richness the virtual environment may contain. 
Software limitations are limitations set by the 3D engine or other software used for rendering. 
No engine supports all the possible features available for real time 3D graphics or have 
capabilities to manage endless amounts of data. With virtual reality systems the subject of 
image quality can be bit more complex than with for example with PC games since virtual 
reality systems use wide range of different display devices which all may have an additional 
impact and restrictions to the image quality. However in the scope of this thesis I’m only 
interested in factors of image quality which can be manipulated and controlled by the designer 
of the content and therefore when I speak of image quality I only mean the image quality of 
rendered image without the effect which the display device in use may have to it. 
 
It seems to me that quite often it is misleadingly thought that the image quality of real time 
3D graphics is a direct result of the graphics engine used for rendering the image. Part of the 
factors summing up the image quality are of course direct results of the features supported by 
the graphics engine, but in most cases many of the graphics engine’s shortcomings can be 
compensated by a good design and careful thinking of details when implementing the virtual 
environment. 
 
I’m sure that anyone who has ever eyed through a feature list of modern 3D graphics engine is 
painfully aware of the overwhelming number of features related with the real time 3D 
graphics. In the following sub-chapters I have picked subjects of real time 3D graphics that I 
feel are the most important to consider when implementing the virtual environments and have 
biggest impact on the final image quality.  
 
 
Geometry Detail 
 
In real time 3D graphics all visible objects are constructed by number of flat planes called 
polygons. The number of polygons used in constructing objects geometry dictates how much 
detail can that geometry have. When aiming for photorealistic rendering the number of 
polygons needed for building the details into the geometry can raise to a very high level. 
Especially all the surfaces that must appear to be smoothly curved require large number of 
polygons to avoid the visible sharp edges between the polygons which can be seen especially 
in the silhouette of the objects. The limit of how many polygons the designer can use for 
constructing virtual environment depend on the processing power of hardware used for 
rendering the real time graphics and the effectiveness of the graphics engine.  
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Most of the modern graphics engines have features which help the designer to overcome the 
limits on the geometry detail by implementing some kind of level of detail algorithms or by 
supporting curved surfaces. Level of detail (LOD) algorithms are designed for automatically 
choosing an appropriate level of detail for each object depending on the viewing position. 
Objects which are viewed from a close distance have more polygons to show all the visible 
details, and objects further away have lower amount of polygons and so less details, which 
wouldn’t be visible anyway because of the longer viewing distance. Use of level of detail 
algorithm usually means that the designer must make several versions of each object with 
various amount of polygons and the algorithm chooses the version of each object to be shown. 
Some of the level of detail algorithms are able to automatically reduce the number of 
polygons in the objects depending on the viewing distance, but the end results with the 
reduced geometry detail are usually quite poor and may have strange errors. Polygon 
reduction is quite demanding operation in the means of processing power, which means that 
automatic LOD algorithms may require too much processing power to be used, or at least they 
are more expensive than rendering the high polygon amounts without the LOD algorithm.  
 
One solution for stretching the polygon limits has been the introduction of curved surfaces. 
Curved surfaces are modeled by defining a set of curves which represent the boundaries of the 
curved surface and then based on these curves the actual rendered surface is produced by 
algorithmically generating the polygons representing the surface in the run time during the 
real time rendering. Since the polygons are only approximating the detailed geometry and 
they are generated during the rendering, the number of polygons used for rendering each 
curved surface can be chosen freely. The use of curved surfaces make the use of level of 
detail algorithm much easier because the algorithm can choose the number of polygons used 
for rendering each object freely, and the designer doesn’t have to make several version of the 
objects. With curved surface there is also no need for the extra memory required when having 
many versions of each object. Objects can be bit harder to model with curved surfaces than 
with polygons and this technique is only just started to emerge. However some graphics 
accelerator cards already support curved surfaces and can process required operations on their 
own dedicated processing units, which means that this new technique can grow popular very 
rapidly.  
 

 
Figure 1 Effect of geometry detail 

 
Textures and Procedural Textures 

 

The geometry on real time 3D graphics usually doesn’t mimic real world objects very well by 
only copying their shape. We receive a lot of information from real world objects from the 
outlook of their surfaces. By the outlook of the surface we are able to tell many things about 
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the objects, like for example what material they are made of, are they hard or soft, smooth or 
rough, etc. In the real time computer graphics the designer uses textures to create an illusion 
of real world materials.  
 
Textures are 2D images that are projected on the surfaces of the 3D object’s geometry. 
Textures are images which represent surface colors and patterns seen on the real world 
objects. They can be generated as digital paintings or by editing digital photographs. Usually 
the graphics engine sets some limits on the textures; they are forced to be in certain format 
and size. Quite often the pixel size of texture bitmaps is required to be in a powers of two (32, 
64, 128 etc.) The maximum size for a single texture is usually 1024x1024 or 2048x2048 
pixels.  
 
Procedural textures are either images which are completely computer generated according 
some algorithmic rules or they are images which are based on normal textures described 
previously and transformed by some algorithmic rules. In the latter case the algorithmic rules 
are often used to merge several textures together with different blending effects. Procedural 
textures enable the designer to make much more complex textures and give the surfaces more 
realistic look by for example adding bumpmaps, reflections and opacity values for the surface. 
With 3D engines shader scripts are often used for describing the procedural textures. These 
shader scripts are text files which describe the mixture of different elements used for 
achieving a certain procedural texture. 
 

 
Figure 2 Effect of texturing 

 
 
Lighting 

 

Photorealism in computer graphics involves two elements: accurate graphical representations 
of objects and good physical descriptions of the lighting effects in a scene [Ref. 24]. Accurate 
graphical representation can be achieved by well designed object geometry and textures, and 
often good results can be achieved with tools available for the modern graphics engines. 
However achieving good physical description of the lighting of a scene is much more limited 
and difficult with current real time graphics’ techniques. The problem of lighting with the real 
time graphics is that to achieve photorealistic results, the lighting of the scene should be 
calculated as a whole, because each object in the scene affects the resulting complete lighting 
of the scene. Lighting solutions which are able to process the complete scene are far too 
computationally expensive to be calculated on the fly during the real time rendering. At the 
moment only local lighting which is calculated per object can be calculated on the fly during 



 15

the real time rendering. The more accurate global lighting solutions can be pre-calculated and 
pre-rendered for the static elements of the scene before the real time rendering and stored into 
the texture memory. These techniques are discussed in more detail in the following 
paragraphs.  
 

 

Local Lighting 

 
Local lighting is the only lighting model which can be calculated on the fly during the real 
time rendering. Global lighting methods, which simulate the lighting of the scene as a whole 
give much better end result when considering the image quality but they can’t be used for 
lighting dynamic objects or simulating dynamic lights because the lighting solution is only 
once pre-calculated before the real time rendering. If some object in the virtual environment 
can move or is animated, it’s surfaces location and alignment in relation with the light sources 
can change for each rendered frame and hence the effect of lighting must be calculated 
separately for each frame. The case is the same when light source itself is moving. For these 
cases the global lighting can’t be used. Local lighting methods are often also called dynamic 
lighting because they can be used in the cases where objects or light sources are moving.  
 
Local lighting methods are processed separately for each object and they calculate only the 
effect of direct light emitted from the light sources reaching the surface of the object. Local 
lighting models can’t create shadows cast by the other objects located between the surface and 
the light source and they can’t count in the effect of light reflected from other objects. 
However limited the local lighting methods are, they are essential for being able to add the 
lighting to every object in the scene. Without lighting the objects don’t even appear to be 
three dimensional as displayed on the following image.  
 

 
Figure 3 Effect of local lighting 

 
 
Dynamic Shadows 

 

Shadows are very important part of our way of determining the relationships and locations 
between objects. Without shadows the realism of a scene is lost and the spatial location of 
models can be ambiguous. As explained in the previous chapter the local lighting methods are 
the only way of adding lighting to the dynamic objects, and they are used although they can’t 
create shadows. However shadows can be created by additional methods for these dynamic 
objects. At the moment the methods used for creating dynamic shadows include techniques 
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such as planar projected shadows, shadow mapping and shadow volumes. Dynamic shadow 
creation methods are becoming increasingly popular and standard features of modern 3D 
graphics engines. The hardware manufacturers creating the graphics cards used in personal 
computers have been adding components on their products during the last few years which are 
dedicated for making these dynamic shadow generation techniques more effective.   
 

 
Figure 4 Effect of dynamic shadows 

 
Global Illumination 

 
Global illumination is a term used of lighting techniques which are trying to simulate real 
world lighting more accurately by constructing the lighting solutions for the whole scene and 
counting in the effect of indirect light bouncing of the object’s surfaces. In general global 
lighting is divided into two categories, ray tracing and radiosity, although neither of them is 
actually a full global illumination solutions alone [Ref. 9]. At least at the moment ray tracing 
is not generally well suited for use in real time graphics and it’s not supported by general 
graphics engines. Radiosity method is better suited and quite often used technique with real 
time graphics. 
 
In radiosity method the lighting is constructed by calculating the light energy emitted by the 
light sources and the light energy reflected by the surfaces. Calculating the lighting using 
radiosity is computationally very expensive but once the lighting has been calculated it can be 
stored and used independent of the viewing point as long as the light sources and objects in 
the scene remain static. Lighting created by radiosity method is viewpoint independent 
because radiosity method only calculates the effect of diffuse lighting and doesn’t count in the 
specular high-lights created by reflections of light from smooth and hard surfaces.  
 
Lighting calculated by the radiosity method can be stored in textures or vertexes of the 
objects. When using textures to store the lighting, the lighting can be added directly to the 
textures of the scene, or alternatively additional textures called lightmaps can be used. 
Lightmaps are added to the original base textures of the objects during the run time. If the 
lighting is stored in the vertexes, every vertex of the object is resigned with a light value 
which corresponds the light intensity and color at that vertex and these values are distributed 
smoothly on the surface and added to the original textures during the real time rendering. 
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Figure 5 Effect of global illumination 

 
1.12 Virtual Environment’s Geometry Representations 

In 3D computer graphics the geometry of the objects can be represented in various data 
structures and stored in data files. These geometry’s data files can have different formats and 
it’s up to the graphics engine which of the existing data formats it supports. In general the 
data formats of geometry representations can be divided into two main categories, polygonal 
and parametric formats.  
 
In polygonal format all the surfaces of the objects are constructed by using small planar 
triangles called polygons. Currently polygonal format is the working horse of the real time 3D 
graphics. Fast evolution of real time 3D graphics is much a result of being able to render 
polygons more efficiently [Ref. 9]. On personal computers this has been achieved by using 
hardware accelerated graphic cards. These graphic cards have their own processing units 
optimized for processing and rendering polygonal data.  
 
However suitable for real time visualization the polygonal geometry is not suitable format of 
representing object modeled for different engineering needs. Computer aided design, usually 
referred as CAD, is a term used for modeling process done with dedicated modeling tools, 
also referred as CAD –tools, in the different areas of engineering design. For example 
AutoCAD is one popular and widely used CAD program, often used for example in 
architectural design. CAD software emphasizes exact measuring and easy printing of 
instructions and blueprints. The three-dimensional geometry designed in CAD software is in 
parametric format, which means that the surfaces of objects are represented by parametric 
equations and therefore only define the outlines and measures of the surfaces rather than 
actual surface. 
 
When we want to visualize these objects designed in CAD software we have to transform the 
parametric data to a polygonal format. This is quite often the case with virtual reality 
applications where we want to visualize some design solutions and man made environments. 
This data format conversion from parametric to polygonal data not very easy task. During my 
production work the Lumeportti system was tested for architectural visualization and during 
this development we had a fair amount of experiences with these problems. 
 
The problems and incompatibility issues between different CAD formats and transformations 
from parametric to polygonal format are well known, but yet still unresolved at large scale. At 
the moment a big effort for finding solutions to these problems is done by the Web3d 
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Consortium, former VRML Consortium. Web3d Consortium has recently founded a CAD 3D 
Working Group, much by the drive from Intel and other industry’s big players who also take 
part into the research work. CAD 3D Working Group has stated it’s main motivation as 
following; “To enable technical cooperation between vendor companies to help resolve the 
issues of sharing and viewing of CAD/ 3D data via a common file format and viewing 
engine.” [Ref. 25] 
 
 
1.13 Content Creation Work Flow of a Virtual Environment 

By content creation work flow I mean in this written part of my final thesis the process of 
designing and implementing the virtual environment that will be experienced by the end user 
of the virtual reality system. This process of content creation starts from virtual environment’s 
3D geometry creation and ends to the point where the final file structure concealing the virtual 
environment is transferred and loaded into the graphic rendering engines and is ready to be 
displayed to the end user of the virtual reality system. Since we are using 3D engine for 
rendering originally designed and used for computer games, our content creation work flow 
doesn’t differ much from the content creation done when developing a modern 3D computer 
game’s environments if only comparing tools and methods used for the job. In computer 
game industry this process of content creation is often called level design and within 
computer game industry this content creation work flow is more explored and better 
documented than within the research community of virtual reality research.  
 
Content creation work flow can be broken down into smaller parts conveniently by examining 
the different design phases. Usual design phase sequence could be for example the following; 
initial design, geometry creation, texturing, lighting, defining functional elements of the 
environment, exporting files and building the final file structure. I’ve explained here shortly 
each of the main phases. Of course the work flow depends much on the 3D engine and 
content creation tools in use, so this model presented here is just one possible work phase 
sequence. 
 
 
Initial Design of Virtual Environment 

 
At the beginning of the virtual environment design it should be considered what is the 
implemented virtual environment meant to be used for. When designing the virtual 
environment starting from the usability point of view, it is easier to decide what level of 
realism is required, what kind of functionalities are required and can the geometry be 
imported from some source or will it be implemented from a scratch. Also the level of strived 
realism and functionalities should be designed to be in the balance with the resources that are 
available for the project. 
 
 
Geometry Creation 

 

When creating virtual environment designer is constantly solving a problem of how to build 
visually rich and realistic environment with minimum amount of data. Limits in 3D engine 
and processing power of computers running the virtual reality system restrict the amount of 
geometry, textures, light sources and all the other elements used for creating the virtual 
environment. Designer of the virtual environment has to be constantly aware of these 
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limitations and often is forced to compromise the quality of the designed environment for the 
sake of faster performance of the virtual environment.  
 
Geometry, i.e. all the graphical objects in the virtual environment are shaped by designer. 
Shaping can be done by either directly editing the geometry of the object i.e. modeling or by 
some indirect way when the actual geometry is generated algorithmically. Direct modeling is 
the usual method for geometry creation and algorithmic generation is used only in some 
special cases. Most usual case where algorithmic generation is used, is the generation of large 
landscape environments, where the shape of ground surface is created according to heightmap 
images or for example by some fractal methods.  
 
For direct editing of the geometry there are two main categories of tools available. These two 
modeling tool categories are level editors and general 3D modeling applications. Level editors 
are developed for the content creation of some specific 3D engine and they are closely tied 
with the file formats and functionalities used by that 3D engine. Typically popular and widely 
used 3D game engines like for example Quake and Unreal engines, have their own level 
editors. Problem with the level editors when used for virtual environment creation is that 
typically they are too game oriented and don’t support geometry import from alternative 
sources. 
 
General 3D modeling applications are often used with more middleware type of 3D engines. 
For example 3ds Max, Lightwave, Maya and SoftImage are popular general purpose 3D 
modeling applications used for building game levels and other real time content. General 
purpose 3D modeling applications are usually easier to use, or at least generally better known, 
than level editors and they support wide range of import data formats. Drawbacks of these 
applications when used for virtual environment creation is that data export for the 3D engine 
is more complicated than with level editors. Level editors also guide the designer more to 
make suitable geometry for the real time rendering than general 3d modeling applications 
which are not originally designed for real time geometry creation. Dedicated level editors also 
give better visual feedback of what the final environment will look like compared to the 
general 3D modeling applications which often require constant testing on the final 3D engine 
which can be quite time consuming process.  
 
The difference in geometry creation when creating virtual environment and not game level is 
that for virtual environment the content is often already modeled for some other purposes. In 
virtual environment scenarios it is often desired to be able to manipulate and test objects 
manufactured and existing in real world. Objects manufactured mechanically are quite often 
designed and modeled in some CAD software and therefore direct use of these CAD models 
for virtual environment geometry would ease the work load needed for content creation. As I 
explained earlier the CAD format data is not generally suitable directly for the real time 
visualization and therefore the designer must convert the geometry so that it can be used with 
3D engine. Usually level editors don’t support data import and therefore only general purpose 
3D modeling applications can be used in this case.  
 
If the 3D engine in use support some level of detail optimization method and requires that the 
designer models the different level of detail models manually, they should also be done 
during this stage of content creation.  
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Texturing 

 
Texturing is the work phase where textures and other surface material related parameters are 
applied to the geometry. Texturing may seem like a easy job, but in reality it is an art form. 
Very subtle changes in object’s materials used with well finished textures can make a great 
difference to the final image quality and realism of the virtual environment. In many cases I 
have learned that base textures done by editing digital photographs taken from real world 
surfaces give the best end results. Since digital photographs have all the small details that are 
hard to create artificially they give more realistic look to the virtual environment’s surfaces.  
 
 

Lighting 

 
As explained earlier there are few different lighting techniques which can be used with real 
time 3D graphics. No matter what techniques are used, the lighting should be designed as a 
one complete element of the virtual environment and different outcomes with different 
techniques should be tested carefully. If realistic image quality is desired from the virtual 
environment, some global illumination solution should be used to create the lighting to the 
static elements of the virtual environment. Dedicated level editors tend to have their own 
radiosity lighting methods implemented as integral part of the level editor. If some general 3D 
modeling tool is used for content creation, the radiosity has to be done with some radiosity 
tool available and then find a way to add the radiosity solution to the final scene. Lighting has 
a big impact on the mood of the virtual environment and it can be effectively used for 
controlling the user’s point of interest in the virtual environment. 
 
 
Adding Functional Elements 

 
Functionalities and in some cases different physics attributes are applied last to the designed 
virtual environment. Different functionalities can vary from simple animation of an object in 
the scene to more complicated functional element, like for example an elevator buttons which 
can be used to control an elevator in the virtual environment or light switches etc. These 
functional elements are placed in level editor or general modeling tool as just location points 
where the 3D engine will place the functionality. Functional elements can only be tested in 
the final virtual environment run by the virtual reality system and therefore testing of these 
elements can be quite time consuming especially if the compilation of the data from edit 
format to the final run time format of the virtual reality system takes long.   
 
 
Exporting and Building the Final File Structure 
 
After the virtual environment has been created with the content creation tools in use, it must 
be compiled to the file formats used by the virtual reality system. In many cases this 
compilation process can have many different steps and it can be the real bottleneck for the 
design process and testing of the virtual environment. With some virtual reality systems used 
for product inspection, a small adjustment in the environment geometry can cause extra work 
of several days just because of many time consuming data conversions and packaging 
operations needed to transform the data to a format which can be used by the virtual reality 
system. When choosing tools for virtual environment creation the ease of compilation and 
packing should be considered quite carefully.  
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2  Lumeportti Virtual Reality System 

Lumeportti is a CAVE –like virtual reality system that has been designed and built by the 
Product Information Management research group at the Technical Research Centre of 
Finland. During my production work the Lumeportti system was under development and the 
development was still ongoing when I finished my production work. This chapter describes 
the Lumeportti system as it was at the time I worked with it and there may be some changes 
done to the Lumeportti system after my production work that are not documented here.   
 
Initial goals of Lumeportti development were that the system should be build based on 
standard PC hardware, the software architecture of the system should be as modular as 
possible and that the software architecture should be build by using available already existing 
software components. In this chapter I describe the different parts of the Lumeportti system’s 
hardware and software setup. 
 
 
2.1 Overview 

As a virtual reality system, Lumeportti is a basic CAVE –like system. It has two large 2000 
mm x 2000 mm projection screens. Screens are used for rear screen projection and they are 
made of translucid material which is special made so that it will conserve the lights 
polarization. The images are projected to the screens with normal LCD data projectors, using 
two projectors for each screen. The system could be easily extended to have more screens on 
sides or to have a top screen as a roof to the side screens. It would be even possible to make 
the floor to be one screen, but that requires some special construction or the use of normal 
front projection from above.  
 
For the user to attain the stereographic effect there must be a way to display different images 
for both eyes. The Lumeportti system produces stereographic images by using polarization 
filtering. Each screen uses two projectors, one is displaying the image for the user's right eye, 
and the other projector is displaying the image for the left eye. Both of these images are 
polarization filtered, which is done by fitting polarization filters to the front of the projector’s 
lens. The user is wearing eye glasses that also have polarization filters. The polarization filters 
on the glasses separates the two overlapping images projected to the screen and makes only 
one image visible for each eye. 
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Figure 6 Lumeportti virtual reality system setup 

 

 
2.2 Lumeportti Hardware 

Lumeportti system's hardware is composed of computers, display screens, video projectors, 
tracking devices, data gloves and spatial sound system. Each of these components is selected 
bearing in mind relatively low costs and interoperability.  
 
The system is using two rear projection screens for display and two video projectors for each 
screen to have a stereographic ability. For each of these four video projectors there is a 
dedicated rendering computer. These four computer used for rendering are standard PCs with 
display cards normally used and optimized for 3D computer game graphics. Rendering 
computers run on Microsoft Windows 2000 operating system. Currently each of the rendering 
computers has approximately the following setup: 
- 2 GHz Intel Pentium 4 processor 
- 512 MB Ram memory 
- NVidia GeForce 4 Ti-4600 128 MB Display card 
 
Besides the four rendering computers the system has one computer dedicated for physics 
engine, one computer for main server and one laptop used for user input tracking. There is 
also a possibility to connect additional computers for audio engine and user input handling, 
currently they are however done in separate processes in the main server. 
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The whole system is controlled by the main server, which connects to the other PCs via high 
speed ethernet cabling and a switch. The main server setup is otherwise identical to the 
rendering PCs except that main server has 1024 MB of RAM memory.  
A separate laptop is used for processing data from data gloves and audio input device. This 
laptop could be attached to the user in cases where more freedom of movement is desired.  
 
The main tracking device used in this setup is IS-600 infrared / ultrasonic tracker. Tracking 
device is used for tracking the position of users head and also the position and orientation of 
the users hands.  
 
 
 

 
Figure 7 Lumeportti hardware component setup (original image by HUT Lumekirves project 

group) 
 
 
2.3 Lumeportti Software 

The software environment of the system has been developed as flexible as possible and all 
hardware dependencies have been avoided as far as possible. The software architecture of the 
system is modular which means that all the subsystems like for example graphics rendering 
and physics calculations, have each well defined interfaces and communicate with each other 
only through these interfaces. Use of these interfaces has made it possible to distribute the 
software architecture so, that the separate modules run on different processes and can be 
executed on separate computers connected to the system. Due to this modular architecture it's 
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for example possible to relatively easily replace physics engine with another one by totally 
different manufacturer. This flexibility also means that each of the single hardware 
component is relatively easy to replace or update. 
 
 

 
Figure 8 Lumeportti software architecture  
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3 Starting Points and Challenges of the Production 

Before I started the work on Lumeportti system I had earlier worked on a Technical Research 
Centre of Finland’s VIRIKE project, where a large outdoor virtual environment visualization 
was build. On that project Blueberry 3D engine [Ref. 26] was used for visualizing 
approximately 10 times 10 kilometer area of a historical landscape. On the beginning of this 
project I had done an extensive evaluation and comparison study of different available 
commercial and open source 3D engines. This study was used for selecting 3D engine used in 
the VIRIKE project. Due to this earlier work on 3D engines I had an adequate knowledge 
about 3D engines and real time graphics before I started to work on the Lumeportti system. 
 
When I first started working with Lumeportti system it was in a development stage where the 
hardware system was build and core software architecture used for connecting different 
software modules was implemented. At that time the software used for rendering on graphics 
computers and synchronization of these different modules was under development. The goals 
and challenges drawn forth by the development of the Lumeportti system had it’s impact to 
my production work. The goals and challenges that were raised form the projects under which 
the Lumeportti system was develop had as well their own effect on the challenges and 
problems that I faced on my own production work. In this chapter I first explain the goals and 
challenges of the Lumeportti development and projects related with it and then I’ll explain the 
main goals and challenges I faced on my own production work. 
 
 
3.1 Lumeportti Development 

The development of the Lumeportti system was started since compared with the prices of 
commercial CAVE –like systems sold as turn-key solutions the approximated price of 
building an own system from a scratch seemed like the only affordable solution within the 
VIEW projects budget. From this starting point the initial goal of the Lumeportti system 
development was to use as much already existing, ready to be used software components and 
compile the hardware architecture from standard PC hardware that one can find on the selves 
of any computer store. Using already existing, ready to be used software components, also 
saved a lot of work effort that would have been required if they would have been build in 
house. In addition to the savings achieved by this solution it was realized that advantages 
achieved by the modular structure of the system were certainly an improvement over the other 
existing virtual reality systems. Modularity allowed construction of the system’s software by 
different modules from different manufacturers and therefore improvements over the earlier 
CAVE-like systems in the areas of image quality and physics simulation could be easily 
achieved as a ready to be used features on the system. The big challenge of the Lumeportti 
development was how to fuse all the different modules together successfully.  
 
 
3.2 Projects Linked With Lumeportti 

Lumeportti system development was originally started under project called VIEW of the 
Future and later another project called PCVR was merged in to the same development work of 
the Lumeportti system. VIEW was an EU funded project and it aimed at developing virtual 
reality tools to be used for different training tasks. Under this project Lumeportti system was 
to be used as a training platform for assembly sequences that would be executed by astronauts 
building the International Space Station. In the PCVR project the focus was on researching 
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the different possible applications of virtual reality under the area of construction industry. 
One of the application possibilities to be demonstrated on the Lumeportti system was 
architectural visualization.  
 
The focus in the VIEW project was on complex training tasks of different assembly 
sequences, which drew forth a set of requirements for the Lumeportti system. During the 
VIEW project a pilot application was to be build to the Lumeportti system where one 
assembly sequence case was presented and possible to execute by the user. The case was from 
assembly sequence of International Space Station, ISS, which would be executed by an 
astronaut in zero gravity. Implementation of this training application required the Lumeportti 
system to provide features for multimodal interaction and realistic and comprehensive physics 
simulation of dynamic objects and their interaction. In addition to this, it was desired that 
already existing CAD –models of the objects in the scene could be utilized on pilot case’s 
virtual environment implementation. 
 
In the scope of the PCVR project architectural visualization seemed obvious application area 
of virtual reality for several reason. Different pre-visualization techniques are already used on 
regular basis on different stages of architectural design process. Quite usual visualization 
method used with bigger projects is a pre-rendered walk through animations for 
demonstrating designed building’s interior details and surrounding environment. Walk 
through animations are often aimed for public demonstrations and other design evaluations by 
people perhaps without experience in examining architectural plans and therefore giving them 
clearer and easier to grasp visualization of the design. When applying virtual reality for this 
purpose the architectural design could be examined in even more immersive and realistic 
manner. In virtual reality people can move around freely in the planned building and 
experience the space of it in truly three dimensional stereographic manner. In addition to this 
the use of virtual reality system for architectural visualization makes it possible to add and use 
different kinds of functional elements in the environment, people could use elevators, open 
doors etc. Applying Lumeportti for architectural visualization increased the requirements set 
for the system. The visual quality plays quite major role in the architectural visualizations and 
the visual quality of the rendered graphics must be enough realistic so that the representation 
of the design is valid compared to the building in reality. The overall quality of the graphics 
must also be high so that the visualized design looks good and visualization works in favor for 
the architectural plan in the eyes of the clients. In this project as well as in VIEW project it 
was desired that already existing 3D models in different CAD –format  could be used directly 
for the content creation of the Lumeportti system. 
 
When it was decided that I would be doing my production work of my final thesis under the 
PCVR project, it was agreed that I would be implementing one complete pilot environment 
used for demonstrating the use of Lumeportti for architectural visualization. This was the 
starting point for the production, but the situation changed soon and instead of building one 
pilot environment, it was seen that the whole content creation work flow needed some 
development and that I would be making content for both of the two separate projects dealing 
with the Lumeportti development for different uses. So both the development of the 
Lumeportti system and also the goals of the two projects related with it had their own impact 
on the challenges I met during my production work. 
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3.3 Goals and Challenges of the Production Work 

Now when subsequently considering the production work I did, it’s quite easy to see the key 
problems I faced and spent most of the time solving during the production. Some of the 
problems I faced during the production seem now trivial and some were left unresolved. Part 
of these problems and challenges were apparent right from the start of the project and some of 
them I realized only now as real problems or challenges when writing document about the 
production. Many of the requirements I had to consider when doing my production were 
direct results from the goals and challenges set by the Lumeportti development or the projects 
related with it, but also many of the challenges I faced during my work were purely generated 
by the separate area of content creation or design methods related with it. If I would try to 
compile a list of the problems, challenges and goals I set, faced and found out during the 
production, the list would look something like this: 
 �

What sort of content creation schema would suit the needs of virtual reality system 

best �
How to create content for a virtual reality system �
How to reorganize and develop the content creation work flow to make it more usable 

and efficient �
How to design the content creation work flow to best serve the content creation when 

in use for creating virtual environments for architectural visualization �
How to apply functional elements to the virtual environment  �
How to tie together the different content creation schemes of different Lumeportti 

software components �
How to utilize CAD models for the content creation �
How to increase the image quality of virtual reality system and how to provide control 

of factors behind image quality to the designer working on the content creation �
How to build a good virtual environment for the pilot case �
How well does the system as a whole suit the needs of architectural visualization �
How to create any of this with limited resources 
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4 Production Work and Key Solutions 

As I explained in previous chapter the starting point for my production work was to build one 
pilot case on the area of architectural visualization for the Lumeportti system. However it was 
soon realized that the whole content creation work flow needed to be set up, which proofed to 
be not so trivial work and also that the work flow needed additional development to work for 
the purposes of content creation for Lumeportti system as intended. So my responsibilities 
within my final thesis production work expanded to include also the actual work of setting up 
and developing the content creation work flow and during this work I implemented several 
different virtual environments instead of one pilot environment which was also implemented. 
But of course before all these additional development needs were fully discovered we did a 
hopeful try to implement the system with the first version of the Lumeportti software 
components and content creation tools associated with them.  
 
 
4.1 First Try; Ogre and Quake III 

When I started my production work, the Lumeportti system used free open source 3D engine 
called Ogre. Ogre is a community project aiming to implement an efficient 3D engine with 
clearly designed, object oriented programming structure. The project is still on going and the 
engine was and still is under development. However there were some positive experiences 
from using this engine and also the fact that there was a source code available for this engine 
made it favorable candidate for the Lumeportti system’s 3D engine and first version of 
Lumeportti system was implemented using Ogre engine for graphics rendering. 
 
At this stage of Lumeportti development it was desired that the system could be demonstrated 
as soon as possible to the groups possibly interested in joining the projects related with the 
Lumeportti development. For this demonstration there was a need for somewhat realistic and 
good looking building model which could be inspected from outside and inside. We knew that 
Ogre engine was able to load and render Quake III levels and so it was decided that I would 
try to build quickly a demo environment using Quake III level editor for the content creation. 
Quake III is a first person shooter game developed by ID Software [Ref. 17], and it was at that 
time one of the most commonly used game engines for the state-of-art computer games. 
 
I knew from the experience that it was possible to build fairly impressive game levels with the 
features that the Quake III engine had and from our tests with the Ogre engine it seemed that 
Ogre supported pretty much the same set of features in the levels as the Quake III engine. I 
also had some experience on using different Quake level editors and believed that the level 
editor was fairly good tool for the content creation. I chose to use Q3Radiant for the level 
editing [Ref. 18]. This tool is developed for pure game editing and widely used for content 
creation with Quake engine based games. It has a quite a good set of tools, but the ideology is 
that the level is build entirely within this tool and there is no way of importing environment 
geometry modeled on other applications to the editor. The editor is also forcing set of specific 
rules to the environment geometry that are needed to optimize the render process of the 3D 
engine.  
 
During the couple of weeks I worked with this first demo I got pretty familiar with the level 
editor tool and was able to work with it quite efficiently. My aim at this stage was to create as 
fast as possible somewhat decent looking environment that could be used as a demo of 
Lumeportti system navigation and stereographic display. Since I'm not an architect and was 
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working with a tool not really familiar, my starting point for this environment was to try to 
build something simple as possible that still had a strong feeling of scale and space. For this 
purpose I sketched quickly sort of generic modern office building layout. As soon as I had a 
vague idea sketched I started to work with the level editor, building quick mock ups and then 
trying different modifications. By this trial and error method I was able to put up a scene that 
was used in the demo. Here's a couple of screenshots of the final demo scene. 
 
 
 

 
Figure 9 Building created with Quake III level editor 
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Figure 10 Building created with Quake III level editor 

 
 

 
Figure 11 Building created with Quake III level editor 
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Figure 12 Building created with Quake III level editor 

 
If not counting in the time what it took me to learn to use the level editor, it took me 
approximately a week and a half to model the building to the point seen on the pictures. If I 
would have wanted to work on this model to finish it, it would have been a full month of 
work, or even more. 
 
During this implementation of the demo, it was noticed that the features of the engine and 
level editor were strictly designed with certain kind of first person shooter game genre in 
mind and level editor was really not suitable for building architectural environments, since it 
lacked tools for accurate modeling or measurements, which turned out to be a severe 
limitation when trying to create accurate architectural model. Also the modeling tools were in 
general all quite vague about the measures and finesse and lacked the features needed for fine 
tuning smaller details. A lot of time used for modeling was wasted on checking and correcting 
rules set by the BSP file format which was used by the engine. Also the fact that  there were 
no means to import models or CAD drawings made with  other programs to the editor meant 
that this model of content creation would not ever be ideal for architectural visualization. In 
addition to these limitations the lighting features of the editor were too insufficient and the 
result they produced were not quite realistic.  
 
During this stage of the production I learned that there had been research already done in 
studying how to apply 3D game engine for architectural visualization. Martin Centre for 
Architectural and Urban Studies [Ref. 19], at the University of Cambridge has done a research 
project where they studied the possibilities of real time architectural visualization using 
Quake II game engine [Ref. 20]. Their results from the project indicated that interactive 
visualization did offer advantages in understanding the overall structure, especially when 
communicating with people without architectural education. As well as having good results 
on the aid this model of visualization gave to the users they also ran into problems caused by 
the engine and content creation tools. The final results in their research project indicated that 
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game engines with emphasis on the very narrow game genre were not after all very suitable 
for use in virtual reality systems. 
 
In addition to these earlier mentioned problems the people working on the software of the 
Lumeportti system found out that they could not dynamically load objects in to the Ogre 
scenes build with Quake level editor, which made it impossible to connect the physics 
simulation to the environment. This and shortcomings on the image quality and lighting 
forced the people working on the Lumeportti development to face the fact that the Ogre 
engine was not perhaps the best choice for rendering the graphics on the Lumeportti system. It 
was decided that Synaptic Soup’s freshly released Cipher engine would be fitted to replace 
the Ogre engine in the Lumeportti system. This was a lucky turn for the work I did on the 
content creation side, because it gave much more possibilities in re-organizing the whole 
content creation process and gave much more freedom for me to modify the use of different 
tools on the content creation work flow. For the rest of the time I worked on my production 
work, Cipher was the rendering engine used in the Lumeportti system. 
 
 
4.2 Solution; Increasing image quality 

Cipher is a 3D engine released by Synaptic Soup. Synaptic Soup was a development company 
of videogames and videogame’s technology founded by few ex Electronic Arts employees in 
2000. Synaptic Soup released their first version of quickly developed 3D game engine Cipher 
on May 2001. The work at the Technical Research Centre of Finland for fitting the Cipher 
engine to the Lumeportti began on October 2002. The Cipher 3D engine had impressive 
feature list and it's performance seemed to be quite competent.  
 
The whole ideology of Cipher  was to be more generic middleware type of engine rather than 
full blown game engine for just one specific game genre like for example the Quake engine. 
Cipher relied strongly on using Discreets 3ds Max for content creation. The whole 3D object 
and environment modeling was to be done in the 3ds Max and then that data would be 
transferred for real time rendering with number of data conversions. For our needs this model 
of content creation fitted well since 3ds Max had an option of importing already existing 
models in various data formats. If we would like to use Lumeportti system for architectural 
visualization we would have to be able to work with various data formats and for that use 3ds 
Max was one of the best tools since it supports wide range of 3D data formats and there is 
available more import / export plug-ins for not so well known formats.  
 
From the experiences with the Ogre engine we also knew that if we wanted to model and 
manage realistic architectural environments, our editor would have to offer better tools for 
modeling than average game level editors do. The graphics quality that the Cipher engine 
rendered was also better than the render image quality of Ogre engine. However when the 
Cipher engine was put in to the test, it was realized that the image quality with the default 
features of the content creation tools provided with the engine were not high enough for the 
use in the areas we were trying to apply the Lumeportti system for. The biggest problem was 
the lack of tools for radiosity lighting. Since the Lumeportti system was going to be used for 
architectural visualization, radiosity lighting was going to be in a key role when considering 
the realism and image quality of the rendered environment especially with indoor scenes. 
 
Discreet had just earlier released version 5 of the 3ds Max and it had radiosity lighting and 
render to texture as new features implemented for that release. I decided to try to apply these 
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3ds Max features to the real time models of the Lumeportti system and have the radiosity 
lighting done in 3ds Max.  
 
The radiosity lighting done by 3ds Max was very good in image quality, the core 
functionalities of this feature are extracted from Lightscape, which is a lighting tool often 
used in traditional architectural visualization. The render to texture feature of 3ds Max made it 
possible to calculate the radiosity lighting solution and make this lighting a part of every 
objects material as an additional texture layer. In the lighting textures the pixel colors are 
interpreted as reflected light intensity and color. This additional texture layer is called 
lightmap. 
 
3ds Max render to texture feature can render only one texture per object, so the designer of 
the scene has to make sure that the environment consist of reasonably sized objects. 
Rendering one lightmap per object also means that there must be multiple texture mapping 
channels in the object. In order to be able to export these additional mapping channels I had to 
write couple of custom plug-in functions to the 3ds Max software. 3ds Max includes a 
scripting language called max script, which is relatively easy to use and yet powerful sort of 
programming tool. Using this scripting language I implemented functions for resetting the 
materials that the 3ds Max assigns to the object when render to texture feature is used. 
Another plug-in function had to be implemented for exporting shader scripts that included the 
information of different texture layers of the objects in a shader language which the Cipher 
engine could understand. Later I merged these two macro scripts into one function which did 
the both actions at the same time. 
 

 
Figure 13 Added macro script function in the 3ds Max’s user interface 
 
After I had the Max scripts finished and running I found out that the Cipher's file converter 
didn't work as expected. File converter handled multiple texture mapping channel faulty. This 
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problem was however quickly corrected by Synaptic Soup’s product support. After these 
adjustments the first test scene was build quite fast. 
 

 
Figure 14 First scene implemented for the Cipher engine 

 
 
4.3 Solution; Binding Together Different Software Modules’ Content Creation  

One big challenge for the whole Lumeportti development was the question of how to make all 
the different software modules work together. This challenge also had it’s impact to the 
development of the content creation work flow. The starting point was that the 3D engine 
responsible for the graphics rendering had it’s own content creation scheme and physics 
engine responsible for the physics simulation had it’s own file formats for scene 
representation. To make the whole content creation work easier and more usable it was 
desired that these two different types of contents could be designed in one tool and exported 
together concurrently. For this purpose also the function of the Lumeportti main engine was 
altered so that it managed the whole scene layout data centralized.  
 
The physics engine that the Lumeportti system used was a CMLabs Vortex engine [Ref. 27] 
which is a commercially sold physics simulation engine for different kinds of real time 
physics simulations. The starting point of Vortex engines scene representation was that the 
physics models of the objects had to be described inside the code by using either some 
geometric primitives; box, cone, cylinder etc. or more complex freely shaped object could be 
stored in .obj formatted polygonal geometry files. However the use of physics objects 
composed of primitives is far more effective than using complex freeform meshes in .obj 
format when executing physics simulation. This fact ruled out the possibility that all the 
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objects in the scene could be just simply re-exported to .obj format and then used for physics 
simulation. The big problem with the Lumeportti system was that the graphical representation 
of the scene i.e. the Cipher scene was done in 3ds Max but there was no way of defining 
physics primitive models bind with the graphical objects anywhere else than doing it from 
inside the code. When the scenes became more complex the effort it took to define all the 
physics objects in the code was becoming overwhelmingly big and the correct positioning of 
the physic and graphic models to fit together was very difficult.  
 
Because of these problems we decided to define and try to implement our own scene layout 
definition file, which could be used for defining the both graphic and physic models of the 
objects, object placement in the scene and relations between the both the physics and graphics 
objects. The Cipher engine already used similar idea on defining it’s scenes structure, called 
.seg file. Each object in scene exported to be rendered with the Cipher engine was exported as 
a separate file and the .seg layout file was used to list all of those objects, their placement and 
transformations. This list was interpreted by the Cipher engine and all the object files 
mentioned in the .seg file were loaded, transformations described in the .seg file were made 
for the objects and then placed in the coordinate points described in the .seg file. Here’s an 
example of the Cipher engine’s original .seg file: 
 
 
// Track Segment Reference List 

// Source file: temple.max 

 

segment_count 1 

 

segment 01 

{ 

 models/alcove_arch_lintel.mdl 

 { 

  priority 1 

  transform 0 -1 0  1 0 0  0 0 1  160 0 0    

 } 

 models/alcove_arch_lintel.mdl 

 { 

  priority 1 

  transform -1 0 0  0 -1 0  0 0 1  0 0 0    

 } 

 models/alcove_arch_lintel.mdl 

 { 

  priority 1 

  transform 1 0 0  0 1 0  0 0 1  0 0 0    

 } 

} 

 

 
We decided to use the basic structure of the .seg file as our starting point for our own scene 
layout definition file. For our own file we wanted to add also a definitions of physics objects, 
their placement and transformation, different kinds of physical attachment between physics 
objects and lighting and functional elements. To make our own scene layout file work we had 
to first define it’s syntax to a final format so that the necessary changes could be implemented 
into the scene loading side of the Lumeportti software and the changes needed into to the 
content creation tools inside the 3ds max. The final syntax of our scene layout file was a result 
of comparison what could be done in the Lumeportti’s software side and what could be done 
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in the 3ds Max side. The final syntax of the new scene layout definition file is like the 
following: 
 
#VTT Lume Portal / VEView Scene 

#Exported from 3d Max file 'testscene.max' 

 

 

UNIVERSE={ 

 GRAPHICS_SCENE=iss.seg 

 GRAVITY=0.0 0.0 0.0 

 PHYSICS_PATH=/phys/ 

 GEOM_PATH=/models/ 

 SOUND_SCENE=/sounds/ 

 SCALE_FACTOR=0.01 

END=} 

 

BSJOINT_RELATION={ 

 NAME=Dummy01 

 POBJECT=Box01;Box02 

 ORIENTATION=0 0 0 

 POSITION=35.0554,49.4649,-0.377228 

 UPPER_LIMIT=1.9 

 LOWER_LIMIT=1.05 

 MOTORED=false 

END=} 

 

POBJECT={ 

 NAME=Box02 

 OBJECT_TYPE=DYNAMIC 

 GEOM_TYPE=BOX 

 GOBJECT=objekti2 

 DIMENSION=58.3026, 39.8524, 53.8745 

 ORIENTATION=0 0 0 

 POSITION=67.8967,0.0,-0.738008 

 MATERIAL=METAL 

 MASS=1.5 

END=} 

 

GOBJECT={ 

 NAME=objekti1 

 ORIENTATION=0 0 0 

 POSITION=8.48709,0.0,-1.47601 

END=} 

 

GOBJECT={ 

 NAME=objekti2 

 ORIENTATION=-1.5708 0 0 

 POSITION=63.0996,12.9151,-5.64538e-007 

END=} 

 

POBJECT={ 

 NAME=Box01 

 OBJECT_TYPE=STATIC 

 GEOM_TYPE=BOX 

 GOBJECT=objekti1 

 DIMENSION=59.7786, 65.6827, 64.2066 

 ORIENTATION=0 0 0 

 POSITION=1.47601,14.0406,-2.22839 

 MATERIAL=METAL 

 MASS=2.75 

END=} 
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Basically our scene layout file has first header part which is used for defining global 
parameters for the whole environment. This initial part is under UNIVERSE header and it’s 
content comes from an initialization text file, where user can define these parameters. After 
the header there is a non-organized list of graphical objects, physics objects and different kind 
of joints and hinges that the physics simulation can use between different physics objects. 
GOBJECT header is used for graphics objects and POBJECT header is used for physics 
objects. The implementation of the function which is used for exporting this file was only one 
part of the modifications I had to implement to the 3ds Max. 
 

 
Figure 15 Added macro script function in the 3ds Max’s user interface 

 
I had to modify the original Cipher attributes modifier used for tagging graphics objects in the 
scene for the export and also I had implement completely new max scripted modifiers to be 
used for physics attributes descriptions and physics joints descriptions. In the appendix of this 
thesis there are examples of the max script codes I used for implementing these new features. 
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Figure 16 User interface of the implemented physics attributes modifier 

 

 
Figure 17 User interface of one of the physics joints modifier 
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4.4 Solution; Using CAD Data for Real Time Visualization 

Subjects visualized or otherwise used as a content in virtual reality applications are very often 
objects which have their real world counterparts. Very often these real world counterparts are 
some industrially manufactured or otherwise manmade buildings, vehicles, objects etc. Quite 
often today such objects are already modeled with some CAD software for manufacturing 
process or for some other, for example marketing uses.  
 
For a generic virtual reality software it would be a big advantage if it could use directly CAD 
models for content or had tools which could be used to easily convert the CAD data to a 
format which in turn could be used as a content in the virtual environment. Earlier in chapter 
1.12 I explained the difference between parametric geometry which is used in CAD models 
and polygonal geometry which is used with real time 3D graphics. At the moment the 
polygonal format is almost the only geometry format used with the real time 3D graphics, 
which means that all the CAD models have to be converted somehow to polygonal format if 
used as a virtual environment content. This conversion from parametric to polygonal format is 
far from trivial task and at the moment very poorly resolved in general level.  
 
One big problem with the conversion from parametric to polygonal geometry is the large 
number of different CAD formats, which are nearly all incompatible between each other. It’s 
very hard to find any software which could do the conversion and also supports all the needed 
file formats. Even bigger problem is that quite often this data format conversion is so complex 
task that the quality of the results is too poor to be used by any means. The conversion from 
parametric format to the polygonal format often causes too complex geometry objects with 
too much detail and high polygonal counts. Another problem is that the resulting polygonal 
geometry has often errors which are at times hard to detect and very slow to repair. These 
errors are for example missing polygons, polygons with inversed normals, overlapping 
polygons, isolated vertexes and so on. 
 
During the Lumeportti development we also had our share of these problems since in couple 
of the application cases we were working on the content data to be used was delivered to us in 
CAD format. One of the initial goals of the development of the Lumeportti system and it’s 
content creation work flow was to resolve this problem at least in some level. The main effort 
for finding a workable way of converting the data to a usable format was done by a student 
outside Technical Research Centre of Finland and the work was to be part of his final thesis. 
Although he was able to convert part of the objects in CAD format to a format we could use 
in 3ds Max the real workable general solution was never found. The objects that were 
converted to a format usable with 3ds Max were converted first between few different CAD –
formats and then imported to the 3ds Max. The actual conversion from parametric format to 
the polygonal format was done when the geometry was imported to the 3ds Max, and there a 
lot of correcting work and optimization had to be done for the geometry. Even thought this 
model was not usable for the general CAD –data import to the Lumeportti systems content 
creation work flow, it was very valuable work since the objects that were finally converted 
made it possible to implement the demo applications where this data was needed.  
 
I also tried to find some solution to this problem when working on the Lumeportti systems 
content creation work flow. I tried to find tools which would have produced better quality 
conversion from parametric to polygonal geometry or some tools which could be used for 
easily correcting the errors and optimizing geometry generated by the faulty conversion. It 
was nice to notice after I had also myself wrested with these problems without finding 
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solutions that the big players of the industry were as well battling with the same issues. As I 
explained earlier on the chapter 1.12 where I explained the basic difference between 
parametric and polygonal geometry, many of the big companies working on the different 
areas of the real time graphics or CAD have recently founded an consortium purely working 
on these problems. Web3d Consortium has a separate working group working to find a 
common data formats and tools for sharing and viewing of CAD and other 3D format data. 
 
Also much based on the experiences from this project Technical Research Centre of Finland 
has started new projects dealing only with these issues of CAD / 3D formats. The projects 
have had very good participation from the Finish and international companies working with 
CAD software or using it for different purposes. It seems that there is a large scale demand for 
some new solution on this area. So even thought this problem area was not solved under the 
Lumeportti development, the work done on it has had a good impact on raising the issue. 
 
 
4.5 Solution; Building the Pilot Application for the Architectural Visualization 

The goal set originally for my production work was to implement a virtual environment for a 
pilot application on the area of architectural visualization. Although during the production 
work the subject for this pilot case changed and there were lot of additional development 
needs which were to be done to achieve the other goals set for the Lumeportti system, finally 
also the pilot case environment was implemented.  
 
When I started my final thesis production work at Technical Research Centre of Finland, the 
international elevator manufacturer KONE corporation was taking part in to the PCVR 
project. It was agreed that my final thesis production work would be an implementation of 
one pilot case virtual environment where the subject of visualization would be a building with 
KONE’s panoramic elevators. However soon after I had started my work, KONE withdrew 
from the PCVR project. At that stage it was realized that Lumeportti content creation work 
flow needed further development and that I would be working on that work flow development 
and some other pilot application subject would be searched and implemented later.  
 
Later during the project I came across to hear about Finnish company Adactive Ltd. [Ref. 28] 
which is specialized in 3D modeling and visualization on the area of architecture. Adactive 
had also interest in the virtual reality applications and they had done some successful projects 
where they had build virtual reality visualizations about various buildings. Based on a 
meeting with Adactive’s managing director Jani Lahti, we agreed that Adactive would deliver 
some of the models they had build to be tested with the Lumeportti system at the Technical 
Research Centre of Finland.  
 
One of the models I received from Adactive was a quite large and detailed model of Finish 
office furniture company Martela’s new Business Centre in Pitäjänmäki, Helsinki. The 
building of Martela Business Centre building had just been finished and it is a modern office 
building designed by Tommila Architects. The 3D model was very good looking and well 
modeled, and best of all, it was already in 3ds Max format, so there would not be any 
problematic file format conversion to get the model into the starting point of the Lumeportti’s 
content creation work flow.  It was agreed that the Lumeportti’s pilot application about 
architectural visualization would be build with this model and it was agreed with Jani Lahti 
that Technical Research Centre of Finland could use the model to demonstrate the Lumeportti 
system.  
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Here’s couple of photographs of the actual building to give some point of comparison for the 
results achieved by different methods of rendering. 
 

 
Figure 18 Photograph of the Martela Business Center 

 
 

 
Figure 19 Photograph of the Martela Business Center 
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Figure 20 Photograph of the Martela Business Center 

 
The actual 3D model was modeled entirely in 3ds Max and lighting had been done with 
Discreet’s Lightscape which was a commonly used lighting tool used for creating more 
realistic lighting solutions than what the earlier version of 3ds Max were able to produce. The 
file size of the original 3D model delivered from Adactive was 18,9 MB and together with the 
textures used for the model the file size expanded to 66,4 MB. The model consisted of 51 
separate objects and it used total of over 138.000 polygons. 
 
Here some images of the original model rendered with 3ds Max: 
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Figure 21 3ds Max wireframe rendering of the Martela model 

 
Figure 22 Martela model rendered with 3ds Max 
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Figure 23 Martela model rendered with 3ds Max 

 

 
Figure 24 Martela model rendered with 3ds Max 
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First when I got the model I tested if it would ever run on the Cipher engine. I made the 
needed minimal settings to the objects in the scene and exported it for the Lumeportti system. 
I wanted to check if the data amounts that the scene would produce were anyhow controllable 
and would Cipher engine be able to render the scene with a decent frame rate. The first result 
with the Cipher was that the scale of the whole scene was wrong and it didn’t look really good 
since there were no textures, but the frame rate and loading times were really good, so I knew 
that there would not be any major technical problems that would have had to be first solved 
before the scene would have worked on the Lumeportti system.  
 
After I had tested that the Cipher engine would be able to render the model without big 
problems, I started to modify the model to fit the requirements set by the Cipher engine and 
the whole Lumeportti system. I started by rendering textures to the format which could be 
used by the Cipher engine. The lighting of the scene had already been done with Lightscape 
and the results were stored by combining the lightmaps with original base textures of the 
scene. In this technique where lighting and base texture of surface are combined into one 
texture, the resulting textures are called baked textures. Earlier when I combined the radiosity 
lighting of 3ds Max to the content creation work flow of the Lumeportti system, I used 
separate lightmaps to store the radiosity light. When using lightmaps, the light values stored 
into the lightmaps are added on the run time to the base textures of the objects. In the 
alternative technique of using baked textures both the base texture and lighting are rendered 
into a one texture and that texture is used as normal texture of the surface. Here’s an example 
of one of the original baked textures of the Martela model. The texture is part of the floor in 
the second floor. The base texture has been light brown floor tile and light and shadows 
caused by the sharp sun light from the windows is seen on the left side and some soft light 
from lamps in the ceiling is seen on the middle area of the texture. 
 
 

 
Figure 25 Original baked texture of Martela model 

 
Since there is no way of retrieving the original base textures from baked textures or mapping 
parameters of the base textures I was forced to use only these baked textures when modifying 
the scene for the Lumeportti system. In addition the model didn’t have the lighting model 
used for calculating the radiosity solution either, so there was no way I could have been able 
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to recreate the radiosity calculation with 3ds Max. The original baked textures were however 
very high quality, and I could have used them directly, but there were problems in their sizes. 
The Cipher engine demands that the pixel resolution sizes of all of the textures are in power of 
two (16, 64, 128, 256, ...) and the baked textures of the original model were in complete 
various sizes. Another problem was that some of the textures were absolutely too big to be 
used for real time rendering, some of them being in a resolution size of 3600 times 3600 
pixels. Size limit of the maximum texture resolution is a result of 3D hardware acceleration 
cards used by the computer. The 3D hardware acceleration cards can only process certain 
sized textures and textures exceeding this limit will slow down the real time rendering 
significantly or textures will not be rendered.   
 
I used 3ds Max’s render to texture feature to render the baked textures again in forced 
resolution sizes in power of two. The overall resolution of baked textures had to be reduced at 
some extent to fit the memory limits of our system. I did a few tests re-renderings to find a 
good compromise between the quality of the textures and memory usage. After I had the 
textures rendered I had to modify the shader export 3ds Max script so that the exported shader 
script file would use baked textures instead of base textures with light maps as previously. I 
Also had to add a new shader script to the exported shader file because Martela model had 
lots of transparent glass surfaces. First I used Shader Designer tools provided with the Cipher 
engine to create and test a good shader script that would render somewhat realistic looking 
glass. After I was satisfied to the transparent glass effect I had tweaked in Shader Designer 
tool, I copied the shader script to the shader list of the Martela model and assigned it to all the 
glass surfaces of the scene.  
 
After these tasks I tested the scene again in the Lumeportti system. The visual outlook of the 
scene was otherwise good, but now the errors in the model’s geometry became visible. There 
were number of missing polygons which appeared as holes in the walls and ceilings and also 
there were number of overlapping polygons, especially on windows of the building model 
which caused annoying flickers to the real time rendering. I spent some long hours with the 
3ds Max when I hunted down these errors and corrected them as well as I could. After these 
corrections I was satisfied to the outlook of the model in Lumeportti system. I still added a 
simple sky box to surround the building model to avoid rendering errors caused by the empty 
space. I also added a simple collision model on a top of the original building model. This 
collision model was to be used by the physics engine of the Lumeportti system in the physics 
simulation done in this environment.  
 
Here’s some pictures of the final Martela building model rendered with the Cipher engine. 
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Figure 27 Martela model rendered by Cipher 3D engine 

 

 
Figure 28 Martela model rendered by Cipher 3D engine 
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Figure 29 Martela model rendered by Cipher 3D engine 
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5 Final Results of the Production Work 

During the production work I did with the Lumeportti system I worked on two major tasks, 
one was developing the content creation work flow and another was the implementation of 
virtual environment for pilot application demonstrating the use of the Lumeportti system for 
architectural visualization. In previous chapter I explained the key solutions found for the 
problems and challenges I faced during the production work. In this chapter I try to give more 
complete overall description of what was the final outcomes of the production work. First I 
describe the final content creation work flow of the Lumeportti system and then I’ll say few 
words about the final pilot case virtual environment.  
 
 
5.1 Overview of the Final Content Creation Work Flow of Lumeportti System 

Overall the final content creation work flow is build on the top of the Cipher engine’s content 
creation work flow, and it’s more likely just a modification to the original content creation 
work flow of the Cipher engine rather than Lumeportti system’s completely own content 
creation work flow. However by this modification it has been possible to add the content 
creation of the physics engine to the same work flow and that has been far from trivial 
solution. Also the increase of image quality achieved by merging 3ds Max advanced lighting 
techniques to the work flow is a key factor for being able to use Cipher engine for 
architectural visualization.  
 
The final content creation work flow was used with small adjustments on implementation of a 
virtual environment for pilot application on the area of architectural visualization. After this 
first complete virtual environment implementation the same process of content creation has 
been reproduced in other project where similar environment was implemented. So it can be 
said that the functionality of the work flow has also been proven. 
 
The following diagram shows the different stages and sub tasks of the final content creation 
work flow of the Lumeportti system. On the diagram there are short descriptions of each stage 
and programs used in it. 
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Figure 30 Lumeportti system’s content creation work flow 

 
 
As can be seen from the diagram the content creation work flow has many different steps and 
it’s still far from easy process, but now the whole process has been centered in to the 3ds Max 
software where all the different elements of the scene can be edited concurrently in one 
environment with consistent measures and coordinate system. 
 
Shortly described the content creation work flow starts with the geometry creation in the 3ds 
Max. The geometry can be imported from different sources, but as I explained earlier, there is 
no general methods for importing CAD data. If user desires to use CAD data on 3ds Max they 
have to first find workable solution for converting the CAD data at hand to the format which 
can be imported to the 3ds Max. When I was trying to find some solution for the conversion I 
had best results with two applications; Polytrans [Ref. 29] and Rhino [Ref. 30]. Polytrans is 
commercial software developed purely for data format conversions and it supports wide range 
of data formats. Rhino is a NURBS (Non-Uniform Rational B-Splines) modeling software 
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which supports many of the common CAD formats. In some cases I had quite good results in 
the data conversion by using these applications.  
 
If data is imported to the 3ds Max by converting CAD data the next step is checking the 
geometry and fixing the problem that it might have. Alternative  is to build the geometry for 
the virtual environment from a scratch completely inside 3ds Max. Especially the geometry of 
the objects which are going to be used for generating dynamic shadows must be checked 
carefully. Cipher engine’s dynamic shadow generation algorithm requires that object’s 
geometry used for shadow generation must be completely closed without any holes in it. 
 
Next step in the content creation is the texturing of the objects in the scene. This is done with 
basic tools the 3ds Max offers for texturing and material definitions. Here the designer must 
take in to the consideration that if the base textures used here are also going to be used as base 
textures in rendering with Cipher engine these textures must comply with the texture rules of 
Cipher engine; pixel size resolution in power of two and correct file formats. 
 
After the geometry of the scene is modeled and textured the next step is the lighting of the 
scene. Here it must be decided which elements of the scene are going to be dynamic i.e. 
moving in some manner and which parts of the scene are static. The static elements of the 
scene can use pre-rendered radiosity lighting and dynamic objects must be lit by real time 
lighting. For lighting of the static objects designer can use any of the light source models 
available in 3ds Max and place them freely in the scene. If static lighting is used it is good 
idea to use radiosity lighting method to create more natural and coherent light for the whole 
scene. The lighting of the dynamic objects is done by the 3D engine in real time and here only 
the places of lights used for this purpose can be defined. Here the designer must remember 
that dynamic shadows are rendered according to these real time lights and therefore they 
should be placed compatibly with the lighting used with static objects. Of course the designer 
can choose not to use pre-rendered static lighting at all, but the image quality of real time 
rendering with only real time lighting is not very realistic or good.  
 
When lighting is done the lightmaps or baked textures should be rendered for the static 
elements of the scene. This is done by using 3ds Max’s render to texture feature. Here it must 
be checked that the render to texture parameter is set to produce textures with pixel resolution 
in powers of two and if using targa format for saving images that the file compression is set 
off. After rendering the lightmaps or baked textures the shader script file should be exported 
for the scene. The shader script file is for the 3D engine to know how the objects should be 
rendered. Shader scripts are exported with macro function implemented to the 3ds Max for the 
purpose. The macro function also resets the object materials so that they can be exported for 
Cipher engine. 
 
At latest in this point the designer should model the physics objects that are linked with 
graphics objects and used for calculating physics simulations. It’s good idea to use as much as 
possible basic primitives; box, sphere or cylinder, since physics engine performs simulation 
with them much faster than with custom shaped physics models. When all previous stages 
have been done the scene is ready to be prepared for export. Cipher attributes modifier must 
be added to all of the graphics objects in the scene. With Cipher attributes modifier designer 
can define whether object should produce real time dynamic shadows or not. Otherwise this 
modifier is just a tag for the level exporter indicating that the object is graphics object and 
should be treated as one. Physics objects are tagged similarly with VTT physics attributes 
modifier. With VTT physic attributes modifier designer must define all the necessary physics 
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parameters for physics objects so that it is processed correctly by the physics engine. Similar 
modifiers could be used in this stage for defining different functional elements to the final 
Lumeportti scene. At the moment modifiers for different physics joints between objects are 
implemented.  
 
Next step is that all of the objects in the scene are exported to different file formats according 
to their types. Graphics objects are exported as .ase files and non-primitive physic objects are 
exported as .obj files. All of these files should be placed in their own directories which should 
all be located in one root directory. The same root directory should also have directories for 
textures, shaders and .seg files.  
 
Last thing done in 3ds Max is the export of .seg layout file of the scene. This file is used by 
the Lumeportti system as an instruction of how the scene is constructed, where single objects 
are placed and what physics objects are linked to them. 
 
Finally Cipher engines file conversion tools are used to convert .ase formatted files which 
were exported from 3ds Max to a .mdl format. This file conversion is needed because here the 
objects are optimized for the Cipher engine and also for the objects which are set to cast 
dynamic shadows, the extra data needed for shadow generation is generated for the model. 
After this all the graphics elements are packed with zip archive application to a one package. 
By default these packages build with zip archive application have a .zip file extension which 
must be changed to .pak by just simple renaming the file.  
 
After these operations the final .pak formatted package and other files created during the 
process are moved in to the correct folders in the main engine of the Lumeportti system and 
.pak files are distributed to the rendering modules of the Lumeportti system. Then the scene 
can be executed on the system.   
 
 
5.2 Pilot Application on the Area of Architectural Visualization 

The final pilot application environment I built during my production work was first large 
scale environment built for the Lumeportti system and first environment built with the new 
content creation work flow. The environment has been used in several Lumeportti system 
demonstrations and received general acceptance and positive feedback.  
 
Lumeportti system was able to render the final environment with very good frame rates even 
though the environment included some complex geometry and lot a of objects with difficult 
material effects without any geometry reduction. In general the final image quality of the real 
time rendering done by the Lumeportti system is quite high. The biggest losses on the image 
quality between the original building model rendered with 3ds Max and the converted model 
rendered with Lumeportti system are in the texture resolution which had to be lowered for the 
Lumeportti system and in the semi-transparent reflecting glass surfaces. The Cipher engine 
cannot render the lighting or ray traced reflections to the glass surfaces. However the effect 
done with a simple transparency and a reflection map gave at least some illusion of glass 
surface material. Here’s an image for easier comparison of the difference between the two 
renderings: 
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Figure 31 Comparison of image quality between 3ds Max and Cipher 3D engine 

 
The overall experiences from this pilot case in the area of architectural visualization were 
very promising. My own experiences from using the Lumeportti system for navigating this 
environment and examining different details gave a feeling that this method was far more 
intuitive and gave better feeling for the space than a normal pre-rendered walk thru animation. 
Also the illusion of presence in this environment was quite strong but pleasant. Based on this 
pilot it was decided that Lumeportti system would be used for architectural visualization and 
design pre-examination tool during the design and architectural planning process of Technical 
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Research Centre of Finland’s information technology unit’s new office building project. On 
that project the actual virtual reality model was implemented by Adactive Ltd. and the content 
creation work flow developed during my final thesis production work was used for converting 
the environment to the Lumeportti system. On that project Lumeportti was actually used 
during the architectural planning stage and there were even some changes made to the plans 
based on examinations done in the Lumeportti system.  
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6 Conclusions and Future Work 

Like in every project I’ve heard about there were also in this production work parts that were 
successful, parts that will need further work and parts where the right solutions were left 
unfound. However when considering entire work I did with the Lumeportti system as a whole 
I feel that the work has been successful. Now afterwards considering the complexity and 
problems associated with 3D engines and tools associated with them I feel that the resulting 
work flow was very successful since it was able to fulfill most of the requirements set for it. 
Also the end results of the production work where I build the pilot application content with 
the final content creation work flow were quite positive. The content creation work flow 
proved to be workable and final image quality of real time rendering was good.  
 
Although during the whole production work the content creation work flow development had 
to be done based on requirements of the 3D engine and available tools, the construction of the 
final content creation work flow supports well the modular nature of the whole Lumeportti 
system since it could be applied to even totally different 3D engine with decent amount of 
modifications to the tools implemented to the 3ds Max. Also there are clear advantages for the 
designer working with the content creation of the Lumeportti system from the solution of 
concentrating many aspects of content creation under one tool, 3ds Max, since 3ds Max is one 
of the best known and generally mastered modeling tools and has good set of tools for various 
modeling tasks and styles.  
 
Choosing Cipher 3D engine to be used for graphics rendering was a really good choice for the 
Lumeportti system or maybe it can be even said now afterwards that it was a lucky choice 
since it was not possible to know all the aspects related with it at the time when the choice 
was made. In general middleware type of 3D engines work much better than full 3D game 
engines for some specific game genres for Lumeportti type of system development. The 
Cipher 3D engine made it possible to use 3ds Max for the content creation and that in turn 
made it possible to import data from various sources to the content creation work flow and 
also modify the content creation work flow with reasonable effort. The experiences I had on 
using dedicated level editors for some specific 3D game engine indicates strongly that in 
general that type of level editors are not suitable for building complex or realistically accurate 
virtual reality environments at least not in the area of architectural visualization. 
 
Although the final content creation work flow has proven to be working and improved during 
the production work I did with it, it’s still far from finished. To take full advantage from the 
content creation work flow it should be optimized to make working with it more efficient. The 
whole work flow process has still too many different file format conversions and separate 
export phases in it. Significant portion of designer time what is spend on the content creation 
is spend on different data conversions, transferring files to correct locations and exporting of 
separate elements of the scene one by one. However optimization of the work flow would 
require considerable work effort and new features would have to be implemented to the 3ds 
Max user interface with max script, different file format conversion would have to be 
automated and files would have to be distributed automatically to their final locations. 
However in some extent it would be most likely worth the effort to do some optimization to 
the work flow if it’s used more in the future.  
 
In general when building such a system as Lumeportti system it would be wise to consider the 
different aspects of content creation tools and work flow more during the design phase of the 
whole system. After all that is where the real value of the whole system comes from, without 



 57

the content used in the system there is only two empty screens. If the system is going to be 
used regularly for example for visualizing different subjects the major bottleneck for applying 
the system for that use is the time and work amount it takes to prepare the content for the 
visualization. With the Lumeportti system even the relatively final and ready to be used 
materials in 3ds Max take quite a lot of time to convert to the format the Lumeportti uses. The 
optimization of content creation work flow is required if the system would be practically used 
for example architectural visualization.  
 
The general parametric CAD geometry conversion to polygonal geometry solution was left 
unfound in the scope of this production work. Some models were converted by number of file 
conversions but there were also models which failed to be converted. As I’ve already 
mentioned earlier this is a problem commonly known and there seems to be some work going 
on to solve it in more general level. Based on the experiences that were gained during the 
development of the Lumeportti system, Technical Research Centre of Finland is now 
organizing a new project called CAD-Pipe, with focus on solving the problems of CAD 
format incompatibly issues. Within the scope of this project would be an attempt to build a 
new database system for storing and archiving all the different parts of a 3D virtual 
environment and objects data. All different CAD and modeling applications could 
communicate via this database which could transform the data for appropriate format for each 
application. Each application could use the data they can process and the complete dataset is 
always stored in the database. This model could be also connected to the Lumeportti system. 
Lumeportti could use this same database for it’s scene data storage instead of having separate 
.seg layout files. If this model of content distribution is developed further the whole 3ds Max 
would then be only one possible tools among all the other possible tools for content creation 
for the Lumeportti. Within the Lumeportti system’s development outside the development 
done during my production work the use of .seg files have already been developed one step 
further by  modifying the Lumeportti system so that instead of one .seg file the scene can be 
distributed to multiple .seg files and so the content can be organizing into more manageable 
chunks. 
 
I feel that based on the experiences gathered during this production it should also be 
mentioned that in general working with 3D engines can be at times very challenging. This is 
much because of the fast development in the area of the real time graphics and rapidly 
changing financial situations of the game industry linked with the development of the 3D 
engines. During the roughly six months time I worked with the Lumeportti system the 3D 
engine used with the Lumeportti system was changed or at least tested with different engines 
in purpose of changing it four times. For example the Cipher 3D engine which has been the 
primary 3D engine of the Lumeportti system was so expensive when the development was 
started that only evaluation license was a reasonable acquisition within the project’s budget. 
During the Lumeportti development the licensing prizes of Cipher engine dropped to only 
fraction of the original prizes before on 30th of May Synaptic Soup officially announced that it 
was forced to close it’s doors due the financial reasons and there would be no more licenses 
sold for the Cipher 3D engine. At this point the development of the Lumeportti was almost 
finished but this new turn forced the project to a temporary halt. At this point my production 
work was just finished and it didn’t suffer from this setback. Few months after this it was 
surprisingly discovered that Cipher 3D engine licenses were sold again, now under new 
management, and source code licenses were sold for 100$ instead of the old price which was 
10.000$. This tells something about the quick turns one might be facing when working with 
3D engines. 
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