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Abstract 

 
Mineral fertilizers are a powerful tool in guaranteeing world’s food supply but their 
production and use also cause a significant environmental burden. A possible substitute 
for mineral fertilizers are organic fertilizers, the production of which does not consume 
virgin, non-renewable raw materials. This master’s thesis studies an organic fertilizer 
which is produced by reusing industrial waste originating from a factory site of which the 
main activity is pulp and paper production. This fertilizer is named as the BioA fertilizer. 
 
The study had two objectives. The first objective was to determine the composition of the 
BioA fertilizer. The second objective was to conduct an environmental assessment which 
compares the environmental impacts that arise during the life cycle of the two research 
targets: the BioA fertilizer and the reference mineral fertilizer. A Life Cycle Assessment 
(LCA) was selected for the assessment method and the analyzed environmental impacts 
were calculated in proportion to the quantity of fertilizer required to obtain a crop yield of 
3000 kg of barley per hectare. 
 
The NPK rating for the BioA fertilizer was calculated to be 5-1-1, which is quite similar 
compared to the organic fertilizers on the Finnish market. In addition, the composition of 
the fertilizer did not exceed the maximum permitted limit for heavy metals in cadmium. 
Thus, according to the design criteria used in the present study, the BioA fertilizer is a 
technically feasible product.  
 
The environmental assessment studied the environmental impacts of the following five 
modules: 1) raw material consumption, 2) energy consumption, 3) emission generation, 
4) waste generation, and 5) usage and nutrient release. In the present study, no single 
value representing the total environmental impact balance could be provided, rather 
environmental impacts were compared according to the above modules. It can be stated 
that from an environmental perspective, in terms of nitrogen content, energy 
consumption and required quantity, the reference mineral fertilizer appeared to be 
superior. On the other hand, the BioA fertilizer proved to be superior in raw material 
consumption, limiting of waste generation and probably in emission generation. 
 

Keywords Organic fertilizers, mineral fertilizers, Life Cycle Assessment (LCA), Life Cycle 

Inventory Analysis (LCI), biorefinery 
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Maailman ruokatuotanto pohjautuu mineraali- eli väkilannoitteiden tehokkaaseen 
käyttöön. Kasvintuotannon tehostamisen lisäksi mineraalilannoitteet aiheuttavat 
kuitenkin myös ympäristöhaittoja. Vaihtoehtona mineraalilannoitteille ovat orgaaniset 
lannoitteet. Tämä diplomityö tarkastelee tapaustutkimuksena orgaanisen 
BioA-lannoitteen tuottamista paperi- ja selluteollisuuden jätevirroista.  
 
Tämän työn tavoitteet oli jaettu kahteen osaan. Ensimmäisenä tavoitteena oli määrittää 
BioA-lannoitteen koostumus ja toisena tavoitteena oli suorittaa vertaileva 
ympäristöarviointi elinkaaren aikaisista ympäristövaikutuksista BioA-lannoitteen ja 
vertailuun valitun mineraalilannoitteen välillä. Ympäristöarviointimenetelmänä 
käytettiin elinkaariarviointia (eng. Life Cycle Assessment, LCA). Analysoidut 
ympäristövaikutukset suhteutettiin lannoitekohtaiseen satovasteeseen, joka kuvaa 
tarvittavaa lannoitteen määrää, jotta pellon tuotto on 3000 kg ohraa hehtaarilta. 

 
BioA-lannoitteen NPK-arvoksi saatiin 5-1-1, joka on samantasoinen verrattuna 
Suomessa markkinoilla oleviin orgaanisiin lannoitteisiin. BioA-lannoitteen koostumus 
ei myös ylittänyt kadmiumin ylintä sallittua pitoisuutta. Täten BioA-lannoite on 
teknisesti toteuttamiskelpoinen tuote tässä diplomityössä käytettyjen 
tuotekoostumuksen suunnittelukriteereiden mukaan.  
 
Ympäristöarviointi keskittyi viiden eri moduulin ympäristövaikutusten arviointiin. 
Moduulit olivat 1) raaka-aineen kulutus, 2) energian kulutus, 3) päästöt, 4) jätteiden 
synty ja 5) käyttö ja ravinteiden vapautuminen. Tämän tutkimuksen perusteella ei 
pystytty arvioimaan lannoitteiden kokonaisympäristövaikutusta, vaan 
ympäristövaikutuksia vertailtiin moduulikohtaisesti. Tulosten perusteella voidaan 
todeta, että ympäristön kannalta vertailuun valitun mineraalilannoitteen typpipitoisuus, 
energian kulutus ja tarvittava määrä olivat parempia kuin BioA-lannoitteen vastaavat 
arvot. Toisaalta BioA-lannoite oli ympäristön kannalta parempi raaka-aineen 
kulutuksessa ja jätteiden synnyssä sekä todennäköisesti myös päästöjen suhteen. 
 

Avainsanat Orgaaniset lannoitteet, mineraalilannoitteet, elinkaariarviointi (LCA), 

elinkaari-inventaario (LCI), biojalostamo 
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1 INTRODUCTION 

Between 1950 and 2010 the world population grew by 170% (UN, 2013). A salient factor 

enabling the steep population growth has been the intensive use of mineral fertilizers, 

which positively correlates with population growth (Dawson and Hilton, 2011).  Fertilizers 

provide essential nutrients for plants and thus promote plant growth in terms of both, 

quality and quantity (Finck, 1982). Albeit the mineral fertilizers are a powerful tool to 

improve the global food security, they also cause an environmental burden and thus 

alternatives to them are required (Dawson and Hilton, 2011; Lukehurst et al., 2010). The 

Bio Refine Tech project provides one solution to alleviate dependency on mineral 

fertilizers by affording a novel approach to produce an organic fertilizer – the BioA 

fertilizer.  

 

Bio Refine Tech is a research project which objective is to integrate a biorefinery into an 

existing factory site of which the main activity is pulp and paper mill operations – this 

concept is named as BioA. The term biorefinery has been established to denote a facility 

which utilizes biomass for production of both, energy and bioproducts (Naika et al., 2010; 

Kahiluoto et al., 2011). In the BioA case, the purpose of the biorefinery is to exploit 

energy and nutrients bound to the organic waste streams originating from the existing 

factory site. The biorefinery activities that are maintained by the energy and nutrients 

recovered from the waste streams are algae cultivation, biogas production, and organic 

fertilizer production. The core idea of the BioA concept is to capture and refine energy and 

nutrients embedded in the non-product output into profitable forms, and simultaneously 

reduce the amount of industrial waste. 

 

The BioA concept addresses to the current structural change in Finnish pulp and paper 

industry and also to political issues at a national and international level. The changing role 

of the Finnish pulp and paper industry forces companies to innovate new business strategies 

as the economic importance of forest products is decreasing. At an international level, the 

climate and energy policy of Finland is guided by a set of binding legislation by the 

European Union. The targets of the European Union Climate and Energy Package are often 

referred as “20-20-20” targets due to the three objectives by 2020: a 20% reduction in EU 

greenhouse gas emissions from 1990 levels, a 20% improvement in the EU’s energy 

efficiency, and increasing the proportion of the energy produced from renewable sources 

to 20% of the total energy production (EC, 2013a). The BioA concept is in line with these 

targets with the key objective being the improved energy efficiency and the increased 

production of renewable energy. In addition to the “20-20-20” targets, the BioA concept 

also complies with the EU Waste Framework Directive (EC, 2013b) and the Finnish Waste 

Tax Act (Ministry of the Environment, 2011) both of which restrict waste disposal and 

enforce the utilization of exploitable waste streams. As a consequence of the structural 

change in Finnish industry and politics, there is a need for BioA concept type of solutions. 
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Accordingly, the present study concentrates on one of the three end products of the BioA 

concept, the organic fertilizer. 

 

In addition to the political issues, another motivation to study organic fertilizers is the 

strong reliance of the world food security on mineral fertilizers. The fertilizer markets of 

today are dominated by mineral fertilizers the production of which is generally based on 

the utilization of non-renewable natural resources and intensive use of fossil fuels (Roy et 

al., 2006; Heffer and Prud´homme, 2012). Due to the accelerating depletion of non-

renewable nutrient resources, the prices of mineral fertilizers are increasing (Vaneeckhaute 

et al., 2013). In addition, the residues of mineral fertilizers in nature are pollutants 

degrading the ecosystem (Gilliam et al., 1985). On the other hand, the nutrient 

concentration is remarkably higher in the mineral fertilizer than in organic fertilizers due to 

the differences in their manufacturing methods and mobility of nutrient compounds. 

Contrary to the synthetized mineral fertilizers, production of organic fertilizers mainly 

consists of minor processing of organic waste streams. Consequently, the nutrient 

concentration of organic fertilizers is dependent on the raw material streams locally 

available. Thus, despite the potential environmental advantages of organic fertilizers over 

mineral fertilizers, there are some doubts as to whether organic fertilizers can provide 

enough nutrients to guarantee the world food security. (Finck, 1982; Roy et al., 2006) 

 

This master’s thesis studies the production of the organic BioA fertilizer from industrial 

waste in the BioA concept. First, the manufacturing processes and composition of the BioA 

fertilizer are examined and secondly, a comparative environmental assessment of the 

organic BioA and the reference mineral fertilizer is conducted. The analysis of the 

composition of the BioA fertilizer aims to determine, if a technically feasible organic 

fertilizer product can be produced in the BioA concept. The objective of the comparative 

environmental assessment between the BioA fertilizer and the reference mineral fertilizer is 

to analyze how the environmental impacts differ between the BioA fertilizer and the 

reference mineral fertilizer and, whether the environmental impacts of the BioA fertilizer 

are smaller compared with those of the reference mineral fertilizer. A streamlined version 

of the Life Cycle Assessment (LCA) was selected for the method for the environmental 

assessment. The LCA method was selected because it recognizes the different 

environmental impacts of a product during its complete life cycle. This is essential as the 

environmental impacts of organic and mineral fertilizers are assumed to ensue during 

different phases of their life cycles. In addition, being an established method, the LCA 

provides a structured framework which facilitated its adaption for the present case study. 

 

The topic of the master’s thesis is approached first by the literature survey, followed by the 

case study. Different types of fertilizers and options for their production and application 

need to be studied in order to assess both positive and negative environmental impacts that 

ensue during the life-cycle of a fertilizer product. This data is used to suggest ways in which 

production and use of fertilizers could be optimized from an environmental perspective. 
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2 BIOA CONCEPT 

The BioA concept is a part of the Bio Refine Tech project which was initially developed by 

Cursor Ltd. The BioA concept aims at the utilization of industrial residual streams in order 

to capture and refine valuable nutrients and energy embedded in these streams and to 

reduce the quantity of industrial waste. The BioA concept consists of two parts: an existing 

factory site and a plan for a future biorefinery. The aim is to reuse the residual streams of 

the original factory site in the future biorefinery. (Bio Refine Tech, 2012a) 

 

The existing factory site located in Finland is a pilot project of the design phase of the BioA 

concept with a view to possibly expand the concept to other similar factory areas. 

Currently, the main end products from the factory site are the pulp and paper products and 

in addition heat and power. Integration of the biorefinery next to the existing factory site 

would allow for the production of three new end products, namely microalgae extracts, 

biogas and organic fertilizer. The schematic illustration of the BioA concept is presented in 

Figure 2-1. 
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Figure 2-1. Process description of the BioA concept. The manufacturing facilities in the existing factory 

site are numbered from 1 to 3 and the biorefinery facilities from 4 to 6. Raw material streams for the 

fertilizer production are italicized. 
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As shown in Figure 2-1, the existing factory site consists of three facilities, 1) a pulp and 

paper mill integrate, 2) a waste water treatment plant and, 3) a power plant. Similarly, the 

future biorefinery site will also include three facilities, namely 4) a photobioreactor, 5) a 

biogas reactor and, 6) a fertilizer blending unit. The existing factory site also includes some 

other infrastructure, which, however, is not related to the BioA concept. (Bio Refine Tech, 

2012a) 

 

In the biorefinery, waste materials are utilized from all three existing factory facilities, as 

identified above. Effluent waters from the pulp and paper mills as well as municipal waste 

waters from the nearby town are redirected to the waste water treatment plant. In addition 

to effluent waters and municipal waste waters, the waste water treatment plant also 

processes effluent waters from a nearby tall oil distillery and a flue gas condensate from the 

power plant. In the waste water treatment plant, waste activated sludge is separated and 

redirected to the biogas reactor. The end products from the anaerobic digestion in the 

biogas reactor are biogas, which is mostly methane (CH4), and digestate. (Bio Refine Tech, 

2012a) Ammonia is removed during anaerobic digestion by biogas stripping and the 

recovered nitrogen is utilized in the fertilizer production (Järvinen, 2013). Heat from the 

filtrate waters of the pulp and paper mill is directly led to the photobioreactor. Possible 

surplus heat can be utilized in the drying operations in the fertilizer production. (Bio Refine 

Tech, 2012a)  

 

Subsequent to anaerobic digestion in the biogas reactor, raw biogas is recovered and 

digestate is separated into liquid and solid fractions, and nutrients are spread over both 

fractions. The liquid fraction is directed to the photobioreactor whereas the solid fraction is 

directed to the fertilizer blending unit. The liquid fraction of the digestate and flue gases 

from the power plant both serve as nutrient sources for algae and the latter also contributes 

as a carbon dioxide source for the algae. Subsequent to algal cultivation, high-value algal 

extracts are separated and the remaining algal biomass is again redirected to the biogas 

reactor for digestion. (Bio Refine Tech, 2012a) The liquid fraction of the digestate and 

algal biomass circulate in the closed loop structure, as shown in Figure 2-1. 

 

In addition to the flue gases, also fly ash from the power plant is utilized for fertilizer 

production. The operation of the power plant produces a substantial amount of ash which 

is classified and used for fertilizer production. Ash is separated into a heavy metal 

containing a light fraction and a heavy fraction with lower heavy metal concentrations and 

then mixed with the solid fraction of the digestate in order to produce organic fertilizer. 

Currently, the disposal of ash occurs in the form of landfilling substance without any 

earnings or costs. As licensed by the Environmental Administration of Southern Finland, 

the landfilling option is available about ten years more. (Bio Refine Tech, 2012a) 
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3 MICROALGAL BIOTECHNOLOGY 

The studied biorefinery in the BioA concept is based on the cultivation of microalgae. 

Microalgae are among the most abundant organisms and the earliest life forms on earth. 

They form a rich assemblage of organisms where variation among the group is high as 

regards appearance, distribution or cell organelles. (John et al., 2011; Falkowski et al., 

2004) Utilization of microalgae for human consumption dates back 2000 years but 

concerted efforts for development of microalgal biotechnology started only in the mid-20th 

century. At present, algal products comprise a vast array of applications. In addition to 

direct consumption as food, microalgae have applications in areas of supplementary 

nutrients, cosmetics, fertilizer industry, animal feed, metabolic engineering and biofuels. 

(McHugh, 2003; Spolaore et al., 2006) 

 

The advantages of microalgal based biomass over other biomass options are high growth 

rates and productivity. In addition, microalgal species can be adapted to live in diverse 

environmental conditions with reference to temperature ranges and feedstock options. 

Consequently, their cultivation requires less arable land than cultivation of other current 

biomass options and cultivation of algae does not compete with terrestrial crop production 

for human consumption. (Mata et al., 2010)  

3.1 ALGAE CLASSIFICATION 

A precise taxonomic definition of the diverse polyphyletic group of algae is controversial. 

Commonly algae are divided into macroalgae and microalgae, the former ranging from few 

centimeters to 20 meters and the latter being microscopically small (McHugh, 2003; John 

et al., 2011). Another categorization divides algae into bacteria-type prokaryotes, which do 

not have a nucleus and plant-like eukaryotes, which do have a nucleus. However, for 

example Barsanti and Gualtieri (2006) classify prokaryotic cyanobacteria and 

prochlorophytes as algae whereas Madigan and Martinko (2006) do not consider them as 

algae at all. Either way, eukaryotic algae are more dominant by the number of the species. 

Due to the uncertainties of what to be called alga and abundance of these organisms in all 

existing earth ecosystems, estimations of the number of algal species have great variations, 

mostly ranging between 30,000 to one million. According to the estimation based on the 

on-line taxonomic database AlgaeBase (Guiry and Guiry, 2013), the number of algal 

species is likely to be about 72,000, most of the species being microalgae. (Guiry, 2012) A 

taxonomic classification of algae based on Barsanti and Gualtieri (2006) and Guiry and 

Guiry (2013) is presented in Table 3-1. 

http://www.algaebase.org/
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Table 3-1. Classification of algae (modified from Barsanti and Gualtieri (2006) and Guiry and Guiry 
(2013)).The most potential microalgae alternatives for the BioA concept are made bold. 

Empire Phylum Class Common name 

Prokaryota Cyanophyta Cyanophyceae Blue-green algae 

  Prochlorophyta Prochlorophyceae n.a. 

Eukaryota Glaucophyta Glaucophyceae n.a. 

  Rhodophyta v.a. Red algae 

  Heterokontophyta Chrysophyceae Golden algae 

    Xantophyceae Yellow-green algae 

    Bacillariophyceae Diatoms 

    Phaeophyceae Brown algae 

    Eustigmatophyceae n.a. 

    Dictyochophyceae n.a. 

    Raphidophyceae n.a. 

  Haptophyta Haptophyceae Coccolithophorids 

  Cryptophyta Cryptohyceae Cryptomonads 

  Dinophyta Dinophyceae Dinoflagellates 

  Euglenophyta Euglenophyceae Euglenoids 

  Chlorarachniophyta Chlorarachniophyceae n.a. 

  Chlorophyta v.a. Green algae 

n.a. not available, v.a. various available 

 

According to the information received between April and September 2013 from the 

University of Turku (BioA research group), the most potential microalgae for the 

cultivation are Euglena gracilis, Pheodactylum tricirnutum, Nannochloropsis oculata and 

Monodopsis subterranea of which the first is an Euglenoid, the second a Diatom and the third 

and fourth represent the class Eustigmatophyceae (Tyystjärvi, 2013, Guiry and Guiry, 

2013). These four potential eukaryotic microalgae are made bold in Table 3-1. 

3.2 CHARACTERISTICS OF MICROALGAE 

Microalgae form a heterophyletic group and consequently their characteristics are diverse. 

The principal common factor among organisms is oxygenic photosynthesis. (Barsanti and 

Gualtieri, 2006) It is the capability to the effective photosynthesis which drives the 

microalgae into the center of the biotechnology solutions for energy and climate questions. 

Microalgae are capable of synthetizing large quantities of carbohydrates, proteins and lipids 

over a relatively short period when compared with terrestrial plants. This is possible 

because algae have a high photon conversion efficiency which expedites the utilization of 

light energy in photosynthesis, which consequently expedites the accumulation of biomass. 

In addition, many microalgal species are unicellular and do not have to spend energy on 

distribution and transportation of storage molecules between tissues. (John et al., 2011)  
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The cell structure of prokaryotic and eukaryotic microalgae varies greatly and there is also 

variation among these subgroups. Typical cell organelles of eukaryotic microalgae are the 

nucleus, chlorophyll-rich chloroplasts, mitochondria, Golgi bodies, an endoplasmic 

reticulum, and membrane-bound vacuoles. (Barsanti and Gualtieri, 2006; Andersen, 2013) 

In addition to the green chlorophyll α pigment, which all photosynthetic microalgae 

contain, many microalgae appear as brown or red due to other pigments such as 

xanthophylls and carotenoids which mask the green color (Madigan and Martinko, 2006).  

 

Microalgae commonly grow in aquatic environments, where they can exploit nutrients and 

water, also such which are unsuitable for human consumption, and tolerate a wide range of 

pH and temperatures. Their vital requirements are only light, CO2 and H2O, which are the 

starting materials for oxygenic photosynthesis – a common feature of nearly all algae. 

During photosynthesis light energy is converted into chemical energy which fuels the 

activities of the organisms. In addition, the high energy algal compounds provide a 

feedstock option for example for biofuel and food production. Photosynthesis is essential 

for ecosystems as it maintains atmospheric CO2 and O2 levels and supplies organic 

compounds. Algae are responsible for approximately half of the photosynthetic 

productivity on earth, most of the production occurring in the oceans. (Masojídek et al., 

2013) A simplified process of photosynthesis is presented in Equation 3.1 (Barsanti and 

Gualtieri, 2006): 

nCO2 + nH2O + light 
Chlorophyll  α
           CH2O n + nO2 , ( 3.1) 

where (CH2O)n represents carbohydrates. Microalgae which carry out photosynthesis 

obtaining their energy from light and fixing CO2 into organic materials such as 

carbohydrates, are called phototrophs. Some algae are chemoorganotrophs, which means 

that they obtain energy by catabolizing simple sugars, organic acids or even carbon from 

CO2 without the requirement of light. (Madigan and Martinko, 2006; Masojídek et al., 

2013) Certain algal species can be either phototrophic or chemoorganotrophic, depending 

on the availability of light for energy metabolism, and are thus called mixotrophs (John et 

al., 2011; Mata et al., 2010).   

3.3 COMMERCIAL APPLICATIONS OF MICROALGAE 

Microalgae provide a rich source of potential chemical compounds for a wide range of 

industries, such as, food, feed, nutritional, cosmetics, pharmaceutical, bioengineering and 

biofuels. On the other hand, despite the great potential of microalgal applications, 

commercial achievements have been modest due to the fact that from a biotechnological 

point of view microalgae are not a well-studied group (Spolaore et al., 2006; Olaizola, 

2003). This has hindered the development of microalgal based compounds to marketable 

products (Olaizola, 2003). Apt and Behrens (1999) and Spolaore et al. (2006) both 
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emphasize that important developments have taken place in recent years in microalgal 

biotechnology. Currently, the predominant microalgal product is the biomass of 

microalgae sold as pastilles or powder in the human health food market (Pulz and Gross, 

2004). 

 

Pulz and Gross (2004) have divided microalgal products into four groups which are 

biomass, coloring substances, antioxidants and special products (Table 3-2). Olaizola 

(2003), Spolaore et al. (2005) and Apt and Behrens (1999) highlight the same promising 

microalgal products in their studies. In Table 3-2, soil conditioner product is the closest 

reference to the fertilizers. 

Table 3-2. Potential commercial microalgal products (Pulz and Gross, 2004). 

Product group Product Retail value (US $ x 10⁶) Development 

Biomass Health food 1,250-2,500 Growing 

  Functional food 800 Growing 

  Feed additive 300 Fast-growing 

  Aquaculture 700 Fast-growing 

  Soil conditioner n.a. Promising 

Coloring substances Astaxanthin <150 Starting 

  Phycocyanin >10 Stagnant 

  Phycoerythrin >2 Stagnant 

Antioxidants β-Carotene >280 Promising 

  Tocopherol n.a. Stagnant 

  Antioxidant extract  100-150 n.a. 

  ARA 20 Growing 

  DHA 1,500 Fast-growing 

  PUFA extracts 10 n.a. 

Special products Toxins 1-3 n.a. 

  Isotopes >5 n.a. 

n.a. not available 

3.4 POTENTIAL MICROALGAL PRODUCTS IN THE BIOA CONCEPT 

All three end products from the BioA biorefinery site; microalgal extracts, biogas and 

organic fertilizer, are partly or entirely based on microalgal biomass (see Figure 2-1). High 

value microalgae extracts play a pivotal role in the BioA concept because it is estimated that 

algal cultivation is not commercially lucrative for biogas and fertilizer production alone as 

they are products of low profit margin (FAO, 2006; Suominen et al., 2013). To improve 

the cost-effectiveness of the BioA concept, the algal species, which will be selected for the 

cultivation, must also produce some high-value components. According to current 

understanding, polyunsaturated fatty acids (PUFA) would be the most potential microalgal 

extracts suitable for the BioA concept (Tyystjärvi, 2013). According to the literature 
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survey and personal communication (Tyystjärvi, 2013), commercial potential is also 

offered by extractable natural pigments of algae.  

3.4.1 Polyunsaturated fatty acids 

The most studied and prominent algae-derived polyunsaturated fatty acids (PUFAs) are 

docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). DHA is composed of 22 

carbon atoms with 6 double bonds (22:6) and EPA is composed of 20 carbon atoms with 5 

double bonds (20:5). (Apt and Behrens, 1999; Sijtsma and de Swaaf, 2004) They are both 

omega-3 fatty acids, which signifies that the first double bound in a molecule chain is 

located at the third carbon-carbon bond calculated from the distal carbon atom at the 

methyl group end of the molecule (Berg et al., 2007). The human body cannot synthetize 

PUFAs in excess of chain lengths of 18 carbons, and thus, these fatty acids must be obtained 

from dietary sources. The best dietary sources of DHA and EPA are mainly fish and fish 

oils. However, fish do not synthetize DHA or EPA, rather the accumulated DHA and EPA 

in fish originate from the consumption of algae. The advantages of algal oils over fish oils 

are 1) reduced risk of accumulated contaminants (e.g. heavy metals and lipid-soluble 

environmental pollutants which accumulate in fish), 2) a higher purification potential and, 

3) a tendency of algae to accumulate one specific PUFA rather than a mixture of various 

PUFAs, which is beneficial for further use. (Pulz and Gross, 2004; Apt and Behrens, 1999; 

Sijtsma and de Swaaf, 2004) 

 

DHA is essential for infants as it is a major structural fatty acid in the grey matter of the 

brain and in the retina of the eye, and also a key component of the heart muscle tissue. The 

primary nutrient source of DHA for a human infant is breast milk. If breast milk is not 

available, infant formulas containing the highly purified DHA are important substitutes.  

For adults, DHA maintains cardiovascular health. EPA is harmful for infants affecting 

growth rates and causing other developmental difficulties. For adults, EPA affects 

positively on the coronary vascular status due to its metabolic products, such as 

eicosanoids, which have antithrombotic and antiaggretory effects. (Apt and Behrens, 1999; 

Spolaore et al., 2006; Sijtsma and de Swaaf, 2004)  

 

When selecting the algal species for PUFA production, it is important to know whether the 

algal fatty acids occur as components of triacylglycerol in intracellular fluids or as 

components of membrane lipids (e.g. phospholipids). It is preferable to have a high lipid 

content in triacylglycerols than in membrane lipids as the PUFA content in triacylglycerols 

can be modified by optimizing the nutrient levels and environmental conditions during 

cultivation, whereas the quantity of membrane lipids is more stable. (Sijtsma and de Swaaf, 

2004; Tyystjärvi, 2013) The location of fatty acids in cell structure also affects the 

processes selected for downstream processing (Sijtsma and de Swaaf, 2004). As DHA and 

EPA affect adults and infants in different ways, it is necessary to be able to purify DHA and 

EPA separately (Apt and Behrens, 1999; Spolaore et al., 2006). 
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3.4.2 Natural pigments 

Natural pigments, such as carotenoids and phycobiliproteins, are the second best high-value 

microalgal extracts to be produced in the BioA concept. They are light-gathering accessory 

pigments which help algae to capture light across a broader spectrum in comparison to the 

narrower spectrum of chlorophylls. Carotenoids are mainly used as food coloring agents 

and phycobiliproteins as molecular probes. (Madigan and Martinko, 2006; Spolaore et al., 

2006; Apt and Behrens, 1999) 

 

A typical example of a carotenoid is astaxanthin, which is an extended polyene: a chain of 

conjugated double bonds where single and double bonds alternate. In nature, astaxanthin 

normally occurs either as conjugated to proteins or esterified with one or two fatty acids, 

which stabilizes the molecule. The human body and mammalian cells on general cannot 

synthetize astaxanthin. (Madigan and Martinko, 2006; Spolaore et al., 2006) The main 

consumer of astaxanthin is the salmon industry where it is fed to fish to enhance the color 

of the flesh. In addition to being a strong coloring agent, astaxanthin has antioxidant, UV-

light protection and anti-inflammatory properties, and thus it has important applications in 

the nutraceutical, cosmetics and food industries. (Spolaore et al., 2006; Guerin et al., 

2003) 

 

Similar to microalgae-derived fatty acids, microalgal carotenoids are also competing with 

corresponding synthetic forms. Thus far it has not been possible to stabilize the market 

share of microalgae-derived astaxanthin over the synthetized version in the salmon industry 

due to the much higher production costs. However, there are some applications in the 

animal feed industry where natural astaxanthin is preferred due to its’ enhanced deposition 

in tissues, regulatory requirements and consumer demand for natural products. (Spolaore 

et al., 2006) As a rule, synthetic forms are generally more commercially profitable whereas 

microalgal derived forms are superior in terms of purity, and in some cases in terms of 

natural chemical composition, which can be hard to achieve via synthetic chemistry 

(Olaizola, 2003). 

 

Another pigment product studied in the BioA concept are phycobiliproteins which are 

light-harvesting red or blue pigment molecules which function as components of the 

photosynthetic apparatus in the microalgae. Phycobiliproteins consists of a chain of 

tetrapyrroles which are coupled to the proteins. (Madigan and Martinko, 2006) 

Phycobiliproteins are used as natural dyes (e.g. phycocyanin), in pharmaceutical 

applications and in the immunological industry.  From an immunological perspective, the 

advantages of phycobiliproteins are their capability to create stable conjugates with 

antibodies, receptors and other biomolecules and thus function as fluorescent tags for 

highly specific probes. Some other significant applications in immunology are in flow 

cytometry and fluorescence-activated cell sorting. (Spolaore et al., 2006; Apt and Behrens, 

1999) 
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4 FERTILIZERS 

The present study examines fertilizer production in the BioA concept and compares 

environmental impacts of organic and mineral fertilizers. Due to the central role of 

fertilizers in the present study, these products are dealt in detail in the following. 

 

A fertilizer can be defined as any natural or synthetized material which contains at least 5% 

in total one or more of the three primary nutrients which are nitrogen (element symbol 

N), phosphorus (P) and potassium (K) (FAO and IFA, 2000).The purpose of fertilizers is to 

enhance or replenish the nutrient supply of plants by providing essential nutrients, which 

consequently results in higher yields and quality of crops. The application of fertilizers aims 

at maintaining the nutrient balance in soil since nutrients are constantly depleted from the 

soil as crops are harvested. (Ludwick et al., 1990; Roy et al., 2006; Finck, 1982) As 

Dawson and Hilton (2011) have stated “fertilizers do not make plants grow but the lack of 

the nutrients can prevent the plant from expressing its full productive potential”. The crop 

production scale can be improved in two manners: by increasing the area cultivated and by 

increasing the crop yield per area, where the latter contributes relatively more. The 

quantity and quality of crop yield per area can be improved by accelerating the movement 

of requisite nutrients through the ecosystem, and this can be done with the aid of 

fertilizers. (Byrnes and Bumb, 1998; Finck, 1982) 

4.1 FERTILIZER TYPES 

Fertilizers can be divided into two types, 1) mineral fertilizers and 2) organic fertilizers. In 

addition, there are also biofertilizers which do not contain nutrients per se but are 

microbial inoculants affecting soil structure and the mobility of nutrients. (Roy et al., 

2006) The present study encompasses mineral and organic fertilizers but biofertilizers are 

excluded from the inspection. 

 

Mineral fertilizers are also called inorganic, synthetic or chemical fertilizers and are defined 

as a product which is synthetized from inorganic natural compounds. They contain 

inorganic compounds. (Roy et al., 2006; Finck, 1982) As a rule, inorganic fertilizer 

compounds do not contain carbon and they are mainly derived from non-biological mineral 

sources (Finck, 1982). Common inorganic fertilizer compounds are mineral salts, oxides 

and sulfides which readily yield charged ions when dissolved in water (Finck, 1982; FAO 

and IFA, 2000). Some inorganic fertilizer compounds exist in nature (e.g. urea and crude 

phosphates) but for fertilizer purposes they are mainly produced or modified synthetically 

(FAO and IFA, 2000). 

 

Contrary to artificially manufactured mineral fertilizers, organic fertilizer is defined as a 

substance of a biological nature which is used in the form in which it is formed in nature or 
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with minor processing. Organic fertilizers can also contain mineral materials, thus they 

must be unprocessed. (Finck, 1982; Roy et al., 2006) Thus with reference to fertilizers, 

the word organic does not strictly refer to organic compounds albeit organic fertilizers are 

mostly composed of them, rather the reference pertains to the organic raw materials. In 

organic fertilizers, nutrients are bound to relatively large and complex organic molecules, 

which contrary to inorganic compounds, do contain carbon. During the decomposition of 

organic matter by microorganisms in the soil, properties of the organic substances change 

and the nutrients bound to organic matter are slowly released as inorganic compounds. 

(Roy et al., 2006; Palojärvi et al., 2002; Madigan and Martinko, 2006) Common examples 

of organic fertilizers are such as crop or food residues, manure, animal waste slurry, 

sewage sludge, peat, ash and their processed forms (Roy et al., 2006; Finck, 1982). Both, 

the concentration and release rate of nutrients, are significantly lower in organic fertilizers 

than in mineral fertilizers (Roy et al., 2006; Ludwick et al., 1990; Palojärvi et al., 2002). 

 

The borderline between mineral and organic fertilizers is not always a clear-cut, partly 

because both mineral and organic fertilizers can be naturally occurring or synthetically 

manufactured substances. A good example of this is the nitrogen compound urea 

(CO(NH2)2). Urea is a naturally occurring substance but it can also be manufactured by a 

chemical synthesis from inorganic starting materials: ammonia and carbon dioxide. In most 

cases, the synthetized urea is categorized as mineral fertilizer, albeit according to its 

chemistry, it is an organic compound. (Finck, 1982; Roy et al., 2006; Parnes, 1990) 

4.2 NUTRIENTS 

The number of essential nutrients for successful plant growth is 16. Three of them, oxygen 

(O), carbon (C) and hydrogen (H), are obtained from water and carbon dioxide, and the 

other 13 from soil, animal manure and/or fertilizers. (FAO and IFA, 2000; Ludwick et al., 

1990) Although oxygen, carbon and hydrogen collectively compose from 90 to 95% of the 

dry matter of the plant and are in constant abundant supply, organisms cannot remain 

viable without the rest of the 13 nutrients (Dawson and Hilton, 2011). 

4.2.1 Macro and micronutrients 

The 13 nutrients obtained from soil, animal manure and/or fertilizers are divided into 

macro and micronutrients. Macronutrients are further subdivided into primary and 

secondary nutrients. The primary nutrients are nitrogen (N), phosphorus (P) and 

potassium (K) and they are all needed in large amounts for adequate plant growth. They 

are also in the dominant position from the fertilizer industry’s point of view. The 

secondary nutrients are magnesium (Mg), sulfur (S) and calcium (Ca) and as primary 

nutrients, plants also take up these in considerable amounts. The micronutrients, which are 

also called the trace elements, are iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), 

molybdenum (Mo), chlorine (Cl) and boron (B). Also the micronutrients are equally 
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important substances for plant growth, even though they are only needed in minute 

amounts. Although there are significant differences in required quantities of different 

nutrients, none of the macronutrients or micronutrients can be substituted for another 

without negative impact on plant growth. (FAO and IFA, 2000; Ludwick et al., 1990; 

Dawson and Hilton, 2011) 

 

Ionic forms of the macro and the micronutrients as well as their typical concentrations in 

plant dry matter are presented in Table 4-1. Since 1984 also selenium (Se) has been added 

to Finnish NPK-fertilizers due to the low selenium content in Finnish soils (Riistama et al., 

2005). In addition to the 13 essential nutrients, fertilizer products contain inert additives, 

the most common ones being dolomite and limestone (Kongshaug, 1998).  

Table 4-1. Typical ionic forms of macro and micronutrients in soil solution (Roy et al., 2006). 

Nutrient Ionic form Concentration in plant dry matter 

Macronutrients     

Primary nutrients     

Nitrogen (N) NH₄⁺, NO₃⁻ 1.50 % 

Phosphorus (P, P₂O₅) H₂PO₄⁻, HPO₄²⁻ 0.1-0.4% 

Potassium (K, K₂O) K⁺ 1-5% 

Secondary nutrients     

Sulfur (S) SO₄²⁻ 0.1-0.4% 

Calcium (Ca) Ca²⁺ 0.2-1.0% 

Magnesium (Mg) Mg²⁺ 0.1-0.4% 

Micronutrients     

Boron (B) H₃BO₃, H₂BO₃⁻ 6-60 µg/g (ppm²) 

Iron (Fe) Fe²⁺ 50-250 µg/g (ppm) 

Manganese (Mn) Mn²⁺ 20-500 µg/g (ppm) 

Copper (Cu) Cu⁺, Cu²⁺ 5-20 µg/g (ppm) 

Zinc (Zn) Zn²⁺ 21-150 µg/g (ppm) 

Molybdenum (Mo) MoO₄²⁻ < 1 µg/g (ppm) 

Chlorine (Cl) Cl⁻ 0.2-2% 

 

Three primary nutrients, nitrogen (N), phosphorus (P) and potassium (K), have different 

effects on plants. Nitrogen is one constituent of chlorophyll (C33H72O5N4Mg) and hence 

responsible for a dark green leaf color and lush vegetative growth. It is also vital for fruit 

and seed formation and promotes aerial vegetative growth and improves the top/root 

ratio. Nitrogen is also essential for protein synthesis, which cannot proceed in the absence 

of nitrogen. (Boswell et al., 1985) Phosphorus stimulates early plant growth and it is 

essential for proper root development (Parnes, 1990; Ludwick et al., 1990). Lack of 

phosphorus leads to delayed maturity which can cause a significant visual disorder affecting 

crop market quality (Young et al., 1985). At the molecular level, phosphorus affects the 

formation of nucleic acids (DNA and RNA). Phosphorus also plays a pivotal role in the 
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function of ATP molecules and hence the energy metabolism of cells. (Ludwick et al., 

1990; Parnes, 1990) Potassium is vital for the translocation of photosynthesis and hence 

promotes starch formation. Potassium is also required for adequate water intake of plants. 

In addition, it hastens root growth, increases plant resistance to disease, improves winter 

hardiness and increases size and quality of fruits and vegetables. (Ludwick et al., 1990; 

Parnes, 1990; Barber et al., 1985) 

4.2.2 Nutrient release in soil 

Mineral and organic fertilizer compounds have different release modes and distribution 

rates in the soil solution due to the different chemical nature of inorganic and organic 

compounds. Eventually, all nutrients, whether derived from inorganic or organic sources, 

must be converted into inorganic ionic forms because this is the only form in which they 

are usable by plant roots (Roy et al., 2006).  

 

Common inorganic compounds in mineral fertilizer products are such as salts and oxides 

which are formed by ionic bonding which can readily dissolve in water. After the 

dissolution of inorganic compounds, the nutrients are in soil solution as positively or 

negatively charged ions in which form they are available for plants. (Zumdahl and 

Zumdahl, 2003; Roy et al., 2006) In addition to plants, also soil microbes utilize inorganic 

compounds converting them into organic compounds – this process is called 

immobilization and it prevents nutrients being accessible to the plants. Due to the water 

solubility of inorganic compounds, they can be washed away lakes, rivers and other water 

bodies and consequently contribute eutrophication. (Roy et al., 2006)  

 

In organic matter, nutrients are mainly bound with covalent bonds to relatively large 

carbon containing molecules. In addition to the strong covalent bonds, there are also weak 

bonds, such as hydrogen bonds, van der Waals forces and hydrophobic interactions. It is 

the chemical nature of covalent bonds which makes organic compounds rather stable. 

Contrary to the water solubility of inorganic compounds, the main breakdown route of 

organic compounds is decomposition by microorganisms. (Madigan and Martinko, 2006) 

Decomposition of organic compounds to inorganic compounds is called mineralization, and 

it is the opposite process to immobilization. Degradation of organic compounds by 

microorganisms, often by oxidation-reduction reactions, leads to a vast array of more 

simple compounds. Hereby complex organic compounds are converted into more simple 

inorganic ones which can then further be broken down into ions. (Palojärvi et al., 2002) 

Some organic molecules, such as amino acids or metal chelates, can be taken up by plants as 

entire molecules (Roy et al., 2006). Figure 4-1 presents a simplified illustration of the 

release modes of inorganic and organic compounds in soil. 
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Figure 4-1. Simplified illustration of the release modes of inorganic and organic compounds in soil. The 
illustration is based on the information provided in Palojärvi et al. (2002) and Roy et al. (2006). 

In the case of organic fertilizer compounds, the ratio of carbon to nitrogen (C:N ratio) can 

expedite or hinder the release of organic compounds. The C:N ratio of both, of an organic 

fertilizer and of soil, affect the decomposition rate of the organic compounds. If the organic 

fertilizer has too high a C:N ratio in comparison with the soil, there is not enough nitrogen 

for microbes and instead of decomposing fertilizer compounds, microorganisms will utilize 

more easily available nitrogen sources from soil which leads to immobilization instead to 

the desired mineralization. While C:N ratio of the organic fertilizer is low, organic matter 

is easier to decompose and nitrogen is released more than microbes require, and surplus 

nitrogen is utilized by plants. An optimum C:N ratio of arable land is from 10 to 16. 

(Palojärvi et al., 2002) In addition to degrading the organic compounds into more usable 

forms, microbial activity also nourishes the soil. Decomposition of organic matter 

improves the soil structure and aeration, increases soil water holding capacity, assists in 

regulation of soil temperature and protects against erosion. (Roy et al., 2006; FAO and 

IFA, 2000)  

 

To summarize, crops can utilize mineral fertilizer compounds faster than organic fertilizer 

compounds because the ionic bond dissolves readily in water and thus nutrients are quickly 

released in charged ionic form. The breaking down of organic compounds is a much slower 

process and hence nutrition release occurs during a longer period and concentration of 

nutrients remains moderate. Crops can also utilize some organic complexes as such, but 

their rate of absorption is relatively slow. (Roy et al., 2006; Madigan and Martinko, 2006; 

Palojärvi et al., 2002) The differences between mineral and organic fertilizers are 

recapitulated in Table 4-2. 
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Table 4-2. Differences between mineral and organic fertilizers. Compiled from data in Zumdahl and 
Zumdahl (2003), Roy et al. (2006), Madigan and Martinko (2006), Palojärvi et al.(2002) and FAO and IFA 
(2000). 

  Mineral fertilizer Organic fertilizer 

Chemical bond Ionic bond Covalent bond 

Release mode Dissolution 
Decomposition by microorganisms, 

dissolution 

Release rate Fast Slow 

Leaching probability High Low 

Required quantity Small High 

Nutritional value  High Moderate 

Quantity of organic matter Zero High 

Improvement of soil No Yes 

4.2.3 NPK rating 

The quantity of primary nutrients in the fertilizer product is expressed by NPK rating 

where the letters stand for the percentage by weight of N, P and K in the fertilizer product. 

The N value is always a percentage of elemental nitrogen (N) whereas P and K values can 

be expressed as percentages of elemental compounds (P and K) or oxidized compounds 

phosphate (P2O5) and potash (K2O), respectively. Either way, the primary nutrients do not 

exist in fertilizer products in the above mentioned elemental or oxidized forms. Such forms 

are only a convenient calculation basis which allows the comparison between different 

fertilizer products. The NPK rating plays a salient role in fertilizer industry as its definition 

is consistent in all regions which consequently enables the comparison between different 

fertilizer products. (FAO and IFA, 2000; Ludwick et al., 1990; Finck, 1982) In this thesis, 

all NPK ratings are expressed on an elemental basis unless otherwise stated.  

4.3 MANUFACTURING 

Although the use of simple organic fertilizers has long historical roots, it was the 

development of the mineral fertilizers manufacturing processes which enabled a rapid 

population growth and development of society during the 20th century. The production 

scale of mineral fertilizers has increased in line with population growth since 1960s, and 

both are expected to continue to increase. (Byrnes and Bumb, 1998; FAO, 2006) On the 

contrary to established mineral fertilizer production processes, a vast array of different 

methods as well as raw materials exists for organic fertilizer production (Roy et al., 2006). 

Production of organic fertilizers is mainly based on recycling of nutrients whereas 

production of mineral fertilizers relies on utilization of virgin raw materials (Roy et al., 

2006; Windridge, 1996).  
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4.3.1 Mineral fertilizers 

Industrial scale manufacturing of the main components of mineral fertilizers dates back to 

the early 20th century. Naturally, the processes have improved substantially during the 

years, but for example the breakthrough of the Haber-Bosch process for ammonia 

production was achieved in 1909 and a wet process for phosphoric acid production was 

developed in 1920s. (Dawson and Hilton, 2011; Schrödter et al., 2013; Kongshaug et al., 

2013) According to the International Fertilizer Association (IFA) (2013), the world major 

producing countries of mineral fertilizers and their raw materials are China, Russia, India, 

Morocco, US, Canada, Indonesia and Belarus. The demand for the mineral fertilizers is 

growing at an annual rate of 2.1% estimated to grow from the current 177 million tonnes 

to 193 million tonnes by 2016 (Heffer and Prud´homme, 2012; Dawson and Hilton, 

2011). In 2010-2011, the global fertilizer consumption of three primary nutrients was 

104.1 Mt (60.5%) nitrogen, 40.5 Mt (23.5%) phosphate and 27.6 Mt (16.0%) potash 

nutrients (Heffer and Prud´homme, 2012). 

 

The global production of mineral fertilizers consumes approximately 1.2% of the world’s 

total annual energy produced and fertilizer production is responsible for approximately the 

same proportion of the global greenhouse gas emissions (Kongshaug, 1998). Albeit 

production processes of mineral fertilizers are today in Europe energy efficient as they 

operate close to a theoretical thermodynamic limit, they can still be considered energy 

intensive (Dawson and Hilton, 2011; Kongshaug, 1998). According to Ramírez and 

Worrell (2006), the energy embedded in the global fertilizer industry in 2001 was about 

3660 PJ. As a comparison, the total energy consumption in Finland in 2001 was 1389 PJ 

(Motiva Ltd, 2013). Fertilizer production processes presented below serve as examples of 

typical mineral fertilizer production processes of three primary nutrients. 

4.3.1.1 Nitrogen fertilizers 

Although almost 80% of the atmosphere consists of nitrogen, most of plants cannot convert 

the highly stable nitrogen atom (N2) into utilizable form. Nitrogen fertilizers contain 

nitrogen in absorbable form for plants, the most important compounds being those which 

yield ammonium (NH4
+) or nitrate (NO3

-) ions. (Finck, 1982) In Finland, the most 

common compounds in nitrogen fertilizers are ammonia (NH3) and nitric acid (HNO3) and 

also occasionally urea (CO(NH2)2) (Riistama et al., 2005). Other common nitrogen 

fertilizer compounds are urea-ammonium nitrate (UAN), ammonium nitrate (AN), 

calcium ammonium nitrate (CAN) and ammonium sulfate (Windridge, 1996; Kivelä, 

2013). Below, a method for ammonia synthesis is presented as it is the most salient 

nitrogen compound in the fertilizer industry. 

 

The foremost method for ammonia (NH3) synthesis is the Haber-Bosch process which is 

based on combining atmospheric nitrogen with hydrogen commonly originating from 

natural gas, oil or coal. The previously mentioned hydrogen sources also serve as an energy 
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sources, the natural gas option being the dominant route with about 77% share of world 

ammonia production. (EFMA, 2000a) The best available technique (BAT) for hydrogen 

separation from hydrocarbon source is steam reforming of natural gas or other light 

hydrocarbons. The process air used in steam reforming also functions as a nitrogen source. 

Nitrogen is acquired from air through a liquid air distillation or an oxidative process. The 

end product of steam reforming is ammonia synthesis gas: a purified gas containing only 

hydrogen and nitrogen. (EFMA, 2000a; Harnisch et al., 2006) Ammonia synthesis is 

conducted in the presence of ammonia synthesis gas and an iron catalyst under high 

pressure ranging from 100 to 250 bars and temperature ranging from 350˚ to 550˚C. The 

yield of reacted pass is rather low, 20-30%, and thus ammonia synthesis gas is recycled 

numerous times. To accomplish the synthesis, ammonia vapors are liquefied in the 

refrigeration compressor.  The simplified reaction of ammonia synthesis is presented in 

Equation 4.1. (Boswell et al., 1985; EFMA, 2000a)  

N2  + 3H2  → 2NH3 ( 4.1 ) 

Two key factors for successful process are a) an iron-based catalyst which makes it possible 

to perform the process at lower temperatures, and b) the removal of ammonia from batch 

as soon as it has formed: both factors favoring a reaction equilibrium where ammonia 

formation is maintained. A newly developed alternative catalyst for iron is ruthenium on-a-

graphite which has higher activity per unit of volume. Furthermore, an efficient heat 

exchanger is required due to the exothermic nature of the reaction and the wide 

temperature range applied in the process. (EFMA, 2000a) 

4.3.1.2 Phosphate fertilizers 

Phosphate fertilizers contain compounds which yield phosphate anions (PO4
3-) when 

dissolved (Young et al., 1985). Common phosphate fertilizer compounds are phosphoric 

acid (H3PO4) and Single and Triple Superphosphates (SSP and TSP), of which the two 

latter ones are upgraded from the former (Windridge, 1996; Kongshaug, 1998). Phosphate 

raw materials for fertilizer production are commonly derived from apatite containing 

phosphate rocks, phosphate containing ores and other P-compounds in nature (Finck, 

1982). Apatite minerals have been formed in volcanic processes and therefore do not 

contain heavy metals (Riistama et al., 2005). North America, Russia, Morocco, Jordan, 

South-Africa and China are known to have rich apatite deposits (Young et al., 1985; 

Dawson and Hilton, 2011). Non-renewable and hence finite resources of rock phosphate 

scattered only in few countries can cause political and commercial issues already in the 

foreseeable future due to depletion of reserves at an accelerating rate (Dawson and Hilton, 

2011). 

 

Phosphate compounds are obtained from raw materials by fine grinding or chemical 

treatment such as wet process or thermic process (Finck, 1982; Young et al., 1985; 

Riistama et al., 2005). In Finland, only the wet process is used which is the only 
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economically feasible way to produce phosphoric acid (Riistama et al., 2005). In the wet 

process, phosphate mineral is decomposed with nitric, hydrochloric or sulfuric acid, the 

sulfuric acid route being the dominant in Europe. The sulfuric acid wet process can still be 

divided into three subcategories upon the condition of the calcium sulfate produced in the 

process. These subcategories are anhydrite, hemihydrate and dehydrate process where 

name of the subcategory refers to the condition of calcium sulfate produced. The 

hemihydrate process is considered as the best available technology for phosphoric acid 

production. (Kongshaug, 1998; EFMA, 2000d; Riistama et al., 2005)  

 

The wet process starts by dissolving apatite mineral derived calcium phosphate in the 

sulfuric acid (H2SO4). The reaction releases phosphoric acid (H3PO4) and calcium sulfate 

(CaSO4) from which calcium sulfate is filtered out. The concentration of phosphoric acid 

lies between 39 and 41% H3PO4. (EFMA, 2000d; Riistama et al., 2005) The simplified 

reaction of the wet process is presented in Equation 4.2. Phosphoric acid can be utilized as 

such or it is used as a phosphate raw material for other upgraded phosphate compounds. 

(EFMA, 2000d) 

Ca3 PO4 2  + 3H2SO4  → 2H3PO4  + 3CaSO4 ( 4.2) 

A challenge for the phosphate fertilizer industry is the great variety in the quality of raw 

materials. Phosphate ores mined from different geographical locations differ both in 

content of minerals and impurities. The irregularities of raw materials force phosphoric 

acid producers to constantly readapt technologies. (EFMA, 2000d) Another reason for the 

irregularities of raw materials is their increasingly extensive use. Decreases in deposits of 

phosphate rock and, on the other hand, a constant increase in demand, has created a 

situation in which lower grade phosphate rock is utilized by improved technology of mining 

and beneficiation. However, despite the adaption of new technologies, phosphate rock 

costs may arise in future. (Dawson and Hilton, 2011) 

4.3.1.3 Potash fertilizers 

Potash fertilizers contain compounds which yield potassium cations (K+) when dissolved 

(Barber et al., 1985). Common potash fertilizer compounds are potassium chloride (KCl, 

trade name MOP) and potassium sulfate (K2SO4, trade name SOP) (Riistama et al., 2005; 

Kongshaug, 1998). Ores and brines are the most important sources of potassium minerals 

for fertilizer production. Contrary to phosphate rock deposits, potassium reserves are 

abundant and it is anticipated that supply is guaranteed for many hundreds of years. The 

largest deposits are found in Canada and in the countries of the former Soviet Union. 

(Schultz et al., 2013; Barber et al., 1985)  

 

Basically, the recovery of potassium chloride from underground ores consists of shaft 

mining followed by physical separation operations such as flotation techniques, or by 

precipitation in the case of brine sources (Finck, 1982; Schultz et al., 2013). Potassium 
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chloride is the most popular of potash fertilizers but it can also be upgraded by the 

Mannheim process in which potassium chloride (KCl) reacts with sulfuric acid (H2SO4) 

yielding potassium sulfate (K2SO4) and hydrochloric acid (HCl) (Freilich and Petersen, 

1996). Potassium chloride is imported to Finland mostly from Germany and Russia 

(Riistama et al., 2005). The reaction equilibrium of the Mannheim process is presented in 

Equation 4.3. 

2 KCl + H2SO4 → K2SO4  + 2 HCl ( 4.3 ) 

The advantage of the potassium sulfate over the potassium chloride is a low concentration 

of chloride, which is essential for some plants, such as tomato and root vegetables. 

(Riistama et al., 2005) However, potassium sulfate has slightly lower potassium content 

than potassium chloride: 41.5% K and 49.8% K, respectively (Barber et al., 1985; Schultz 

et al., 2013).   

4.3.2 Organic fertilizers 

Examples of production processes of typical organic fertilizers are not available in contrast 

to those described for mineral fertilizer production. This is due to the fact that 

manufacturing processes of organic fertilizers are not uniform, as they rely on the use of a 

high variety of raw materials and their processing technologies. In addition, the raw 

materials for organic fertilizers are also often country-specific, depending on which kind of 

biomass streams are locally available. Organic fertilizers are also not nutrient specific but 

they contain various nutrients depending on the raw materials. (Roy et al., 2006; Finck, 

1982) The International Fertilizer Industry Association (IFA) only reports official statistics 

on the use of mineral fertilizers and thus the total global production of organic fertilizers 

per annum is unknown. However, it is evident that the global food supply strongly relies 

on use of mineral fertilizers, and not organic fertilizers (Roy et al., 2006; Dawson and 

Hilton, 2011).  

 

Treatment of organic material in order to produce organic fertilizers can be divided into 

three approaches. First, the organic matter, such as crop residues or farmyard manure, can 

be used as such, secondly, it can be aerobically composted or third, it can undergo 

anaerobic digestion. Other processing methods are drying, shredding, mixing, granulating, 

odor removal and/or pH modification. Many of these are associated with aerobic 

composting or anaerobic digestion. (Roy et al., 2006) In developing regions manure and 

crop residues are used as such as organic fertilizers, but processing of organic matter is 

preferable as processing alters nutrient compounds thus that they will be better utilized by 

plants (Roy et al., 2006). In addition to organic material, a common compound in organic 

fertilizers is ash. Ash is not organic material per se, but inorganic residues remaining after 

the combustion of organic material. Thus, ash is obtained by minor processing of organic 

material formed in nature and therefore recognized as a suitable substance for organic 

fertilizers. (Roy et al., 2006; Parnes, 1990) 
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In the following, processing methods which are essential from the perspective of the BioA 

concept are presented. The present study focuses on the anaerobic digestion of organic 

matter because organic raw material for the BioA fertilizer is digestate which is the by-

product of the biogas production. The other raw material for the BioA fertilizer is ash and 

therefore common techniques for ash processing are dealt. From this point onwards this 

thesis will refer to the organic fertilizer produced in the BioA concept as the BioA 

fertilizer.  

4.3.2.1 Anaerobic digestion 

Anaerobic digestion is a series of biochemical processes in which microorganisms 

decompose organic matter and its intermediate products in the absence of oxygen under 

anaerobic conditions. There are two types of anaerobic digestion: dry fermentation which 

is used when the dry matter content of biomass is between 20 and 50% and wet 

fermentation which refers to biomass of which dry matter content is between 5 and 15%.  

Of these two options, the latter one is employed in the BioA concept. Anaerobic digestion 

can also be performed in two different temperature ranges: mesophilic (35-37˚C) or 

thermophilic (50-55˚C), of which the mesophilic conditions are used in the BioA concept. 

(Latvala, 2009) 

 

The main end products from anaerobic digestion are methane (i.e. biogas) and carbon 

dioxide. In addition, digestate, which is residues of unvolatilized organic matter, is formed 

as by-product. Prior to obtaining these end products, four process steps are needed: 

hydrolysis, acidification, acetogenesis and methanogenesis. Anaerobic digestion starts with 

hydrolysis during which carbohydrates, lipids and proteins are broken down into sugars, 

amino acids and long chain fatty acids. From the fertilizer point of view, particular interest 

lies in the degradation of amino acids because nitrogen bound to them is converted into 

inorganic ammonia. During the second step, acidification, hydrolyzed products are 

converted into more simple molecules, for instance volatile fatty acids such as propionic 

and butyric acid, alcohols and aldehydes. During the third step, acetogenesis, the products 

formed during the acidification step are converted into acetic acid and hydrogen. Finally, in 

the last methanogenesis step, methane-producing bacteria utilize acetic acid and hydrogen 

to produce final products, methane (CH4) and carbon dioxide (CO2). (Latvala, 2009) 

 

In the BioA concept, the by-product of the anaerobic digestion, digestate, is used for the 

fertilizer production. Although the total quantity of nutrients remains same prior and 

subsequent to anaerobic digestion, digestion alters structures of organic compounds and 

enhances their availability to crops (Iivonen et al., 2013; Marttinen et al., 2013). During 

anaerobic digestion some of organic compounds are mineralized into inorganic ones which 

is important as the nutritional value of digestate depends on the nutrients present in 

digestate and plants can better utilize nutrients in their inorganic form. Digestate can be 

utilized in fertilizer production as such, or it can be separated into solid and liquid fractions 
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of which one or both can be used in fertilizer production (Marttinen et al., 2013). As a 

rule, inorganic compounds are dissolved in the liquid fraction whereas organic compounds 

are found in the solid fraction (Iivonen et al., 2013; Lukehurst et al., 2010). A typical 

nutritional composition of the digestate cannot be given as it depends on the raw materials 

fed to the anaerobic digestion. 

4.3.2.2 Ash processing 

In addition to the digestate, another key substance of the BioA fertilizer is fly ash from the 

power plant. Ash is inorganic residues which is the result of combustion and hence the 

composition of ash is always fuel-specific. In addition to fuel type, also combustion 

temperature, type of boiler and fly ash capturing mechanisms all modify the fly ash 

composition. (Dahl et al., 2009) In energy production, fuels combusted are rather 

mixtures than one single fuel only, common bio-combustibles in Finland being for example 

peat, woodchips and bark (Hynönen et al., 2008). Ash which is the result of combustion of 

fuel combinations should not be assumed to represent a sum of the properties of each fuel, 

rather, it is always combination-specific (Steenari and Lindqvist, 1999). It is worth 

acknowledging, that the composition of ashes also varies greatly among bio-combustibles, 

for instance the nutrient concentrations are significantly lower in peat-fired ash than wood-

fired ash (Hynönen et al., 2008). 

 

Stenaari and Lindqvist (1997) measured the content of major elements of wood ashes in 

various Finnish and Swedish combustion facilities and according to their survey, the 

principal elemental components are calcium (17%), potassium (4.2%) and silicon (7.6%). 

Other key elements are magnesium (1.9%), sodium (0.7%), aluminum (1.4%), iron 

(1.0%), manganese (1.2%), phosphorus (0.9%) and sulfur (0.5%). Thus, the nutritional 

value of ash is mainly based on the primary nutrients phosphorus (P) and potassium (K) and 

on the liming effect of calcium (Ca) which raises the pH of the soil. In ashes, 

macronutrients Ca and K exist as oxides, carbonates, chlorides and sulfates, which are 

mostly bound by ionic binding and thus have a good mobility in soil solution. Contrary to 

Ca and K, solubility of P, which is tightly bound to apatite type compounds, is rather low. 

Low release of P is partly explained by the high alkalinity of wood ash: at high pH P is 

bound to calcium phosphate compounds which have low solubility. However, when pH 

decreases below 8, phosphates are released and become available for plants. (Steenari and 

Lindqvist, 1997; Steenari and Lindqvist, 1999; Dahl et al., 2008) Alkalinity of wood ash 

can be explained by the high concentration of calcium, which exists mainly as calcium 

oxide – a strong alkaline compound. In soil solution, alkaline ash acts as soil conditioners as 

Scandinavian soils are recognized to have relatively acidic pH, which can hinder availability 

of nutrients for crops and thus decrease soil fertility. (Hynönen et al., 2008; Nurmesniemi 

et al., 2008; Steenari and Lindqvist, 1999)  

 

Prior to use ash as a fertilizing substance, at the minimum two processing steps are 

required: classification and stabilization (Steenari and Lindqvist, 1997; Dahl et al., 2008). 
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Due to the heavy metal compounds found in ash, ash must be classified into a heavy metal 

containing fraction and a heavy metal free fraction of which the latter can be used in 

fertilizer production (Dahl et al., 2008). One method for the ash classification is an air 

classification which is the method used in the BioA concept. In the air classification the 

separation of ash particles into fractions is based on the size of ash particles (Korpijärvi et 

al., 2009). Heavy metals are accumulated into the small particles during the combustion. 

During combustion heavy metals are first vaporized and then cooled. When cooling occurs, 

the vaporized heavy metals are condensed and they adsorb on the surface of ash particles. 

As smaller particles have greater surface area to volume ratio, heavy metal concentration is 

highest in the smallest particles. (Korpijärvi et al., 2009; Dahl et al., 2009)  

 

Another important processing step is stabilization of ash which facilitates handling of dust-

like ash material, and establishes some reactive compounds which can cause undesirable 

effects in soil solution (Steenari and Lindqvist, 1999). As most simplified, stabilization can 

be carried out by adding water in ashes as wood ash materials have ability to solidify when 

combined with water (Hynönen et al., 2008). One of the most important reactions 

occurring during the stabilization is the conversion of calcium oxide and calcium hydroxide 

into calcium carbonate, of which solubility is more moderate compared with its 

precursors. Lower solubility extends the liming effect and prevents the pH shock. (Steenari 

and Lindqvist, 1999) The hydrated ash can be left as it is to self-harden without further 

processing, or it can be granulized or pelletized according to the purpose of the final 

application. Granulation or pelletization accelerates the hardening process and the water 

content of a final product is lower compared to self-hardened ash. Alternatively, the self-

hardening process is cheaper hence it requires less processing steps. Stabilization carried 

out by hydration and solidification reduce the accessible surface area of ash particles and 

produce a pore fluid with a high pH – both effects encouraging low leachability which can 

be desirable from a heavy metal point of view, but a hindering effect from a nutrient point 

of view. (Steenari and Lindqvist, 1997; Hynönen et al., 2008) 
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5 BIOA CASE STUDY 

The BioA case study had two objectives and thus the case study was dealt with two parts. 

The first objective was to determine the composition of the BioA fertilizer. The second 

objective was to conduct an environmental assessment which compares the environmental 

impacts of the BioA fertilizer with one reference mineral fertilizer. The assessment method 

was a Life Cycle Assessment (LCA), with particular focus placed on a Life Cycle Inventory 

Analysis (LCI). The ambition of the comparative environmental assessment was to evaluate 

how the environmental impacts that ensue during the life cycle of the BioA fertilizer differ 

from those of the reference mineral fertilizer.  

Research questions 

According to the evaluation report on the emission reduction potential of the BioA 

concept, the BioA fertilizer has the potential of causing less environmental impacts during 

its life cycle than conventional mineral fertilizers (Bio Refine Tech, 2012d). The author has 

predicted that the production and use of the BioA fertilizer could have advantages over 

mineral fertilizers in the following four sectors: 1) recycling of nutrients embedded in 

industrial waste streams instead of utilizing virgin raw materials, 2) utilization of the 

surplus heat energy from the existing factory site in the fertilizer production processes 

instead of utilizing imported energy alone, 3) utilization of digestate and fly ash as raw 

materials for the fertilizer production instead of their disposal and, 4) low nutrient leaching 

potential of the organic nutrient compounds in soil solution compared to the high leaching 

potential of mineral fertilizer compounds. On the other hand, mineral fertilizers have 

remarkably higher nutritional value per volume than organic fertilizers due to which 

mineral fertilizers need to be produced and applied in less volume than organic fertilizers 

(Roy et al., 2006). Smaller volume of production and application is an advantage to the 

mineral fertilizers from an environmental perspective. Nevertheless, production processes 

of mineral fertilizers are considered energy intensive (Dawson and Hilton, 2011; 

Kongshaug, 1998). 

 

The aim of the present case study was to determine accuracy of the above arguments. To 

fulfill the objective, following two research questions were set: 

 

1) What is the composition of the organic BioA fertilizer and is it a technically feasible 

product? 

 

2) How do the environmental impacts that ensue during the life cycle of the BioA 

fertilizer differ from those of the reference mineral fertilizer?  

 

The first question addresses the first part of the case study which is the definition of the 

composition of the BioA fertilizer (Section 5.1) and the second question is linked to the 
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second part of the case study which is the environmental assessment (Section 5.2). The two 

research questions are also linked together as possibly smaller environmental impacts 

during a life cycle of the BioA fertilizer compared to the reference mineral fertilizer are not 

worthwhile, if the BioA fertilizer is technically not feasible product. The production of the 

BioA fertilizer is also assumed to improve the cost-effectiveness of the whole BioA concept. 

This economic perspective is recognized, but not examined in the present thesis. 

5.1 COMPOSITION OF BIOA FERTILIZER 

Assessment of the composition of the BioA fertilizer was based on assumptions and 

estimations in addition to the experimental data. This is due to the fact that at the time of 

writing this thesis, the BioA concept was at the design phase and not much process-specific 

data was available. However, it is essential to estimate the product composition at the 

present design phase in order to adjust the design criteria and consequently production 

processes so, that the BioA fertilizer will be a technically feasible product. The adjustment 

of the design criteria at the early stage of the project is important as it affects further 

process planning of the BioA concept. 

 

The BioA fertilizer is composed of two raw materials which are the solid digestate fraction 

from the biogas plant and the heavy metal poor ash fraction from the power plant. In 

addition, ammonia is removed in anaerobic digestion in the biogas plant by biogas stripping 

and a part of this surplus nitrogen is added to the fertilizer product in order to balance its 

nutrient composition (see Figure 2-1) (Järvinen, 2013). However, from this point onwards 

in the present thesis only digestate and ash will be referred as raw materials and the 

stripped nitrogen flow is dealt separately. 

5.1.1 Data collection 

The data used for the definition of the composition of the BioA fertilizer was obtained from 

the BioA concept related experiments (Bio Refine Tech, 2012b, 2012c), Kouhia’s (2013) 

master’s thesis studying the BioA concept, and the prefeasibility report of the BioA concept 

(Bio Refine Tech, 2012a). In addition, Järvinen (2013) provided essential information. The 

documents used in the data analysis for the definition of the composition of the BioA 

fertilizer are listed in Table 5-1. 
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Table 5-1. Summary of data collection. 

Document Type Information Reference 

Fly ash analysis Experiment Nutrient content of the fly ash Bio Refine 
Tech 2012c 

Anaerobic digestion analysis Experiment Composition of the output flow of 
the anaerobic digestion, nitrogen 
stripping 

Bio Refine 
Tech 2012b 

Personal communication Personal 
communication 

Composition of the output flow of 
the anaerobic digestion, nitrogen 
stripping 

Järvinen 2013 

BioA prefeasibility report Report Quantities of the material flows, 
design criteria 

Bio Refine 
Tech 2012a 

Integration of a microalgae-
utilizing biorefinery to a pulp and 
paper mill 

Master's thesis Nutrient contents of the raw 
material flows, design criteria 

Kouhia 2013 

1Kouhia’s Master’s thesis (2013) is partly based on the other documents listed in Table 5-1. 

 

Key results of the fly ash analysis are presented in Table 5-2. According to the analysis, the 

coarse fraction, which is the ash accept used in the fertilizer production, contains 1.17% P 

and 1.21% K. Fly ashes do not contain N.  

Table 5-2. Results of the fly ash analysis (Bio Refine Tech, 2012c). 

  Nutrients (mg/kg) Heavy metals (mg/kg) Moisture  

Fly ash P  K  Cd  Pb  Ni  (%) 

Fly ash total 9000 14300 4.1 45.6 52.7 0.3 

Light fraction (reject)  12100 19800 8.5 76.9 62.0 0.7 

Coarse fraction (accept) 11700 12100 2.7 49.7 46.0 0.4 

 

According to Kouhia (2013), the solid digestate fraction, which is used for fertilizer 

production, contains 6.8% N and 0.64% P. However, it is doubted that there might have 

occurred nitrogen leaching in the form of volatilization during the anaerobic digestion 

experiment because the nitrogen concentration in digestate remained significantly lower 

than expected (Bio Refine Tech, 2012b). For the present, the reason for the low nitrogen 

concentration is not verified and thus the question remains unsolved. A new digestion 

experiment is being performed but results were not as yet available at the time of writing 

the thesis. Due to the uncertainty of the results of the anaerobic digestion experiment, an 

estimate received from Järvinen (2013) is used for the nitrogen content of the digestate. 

According to this estimate, digestate and stripped ammonia flow from the biogas reactor 

together contain 10% N. Due to the early stage of the project, the exact quantities of 

nitrogen in both flows, digestate and stripped ammonia, were not known. Thus, to 

facilitate the process calculations, in the following data analysis it has been presented that 
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the nitrogen concentration of the digestate is 10% albeit in practice a part of the 10% 

originates from the stripped ammonia flow.   

5.1.2 Design criteria and limiting factors 

On the basis of the information provided by Järvinen (2013) and Kouhia (2013), three 

design criteria for the composition of the BioA fertilizer were chosen. The first design 

criterion is that the BioA fertilizer is composed of 50% digestate and 50% ash on a dry 

matter basis. The second design criterion is that the BioA fertilizer does not contain any 

synthetized fertilizer compounds. However, the ammonia which is recovered from the 

anaerobic digestion by stripping can be added to the fertilizer product in order to balance 

the nutrient composition. This is possible because stripped nitrogen flow does not 

represent synthetized compound rather organic fertilizer compound obtained within the 

BioA concept. Due to the absence of synthetized fertilizer compounds, the fertilizer type of 

the BioA fertilizer is organic, not mineral. In terms of marketability, it is essential that the 

fertilizer type of the BioA fertilizer is organic because the nitrogen content of the BioA 

fertilizer cannot compete with nitrogen contents of mineral fertilizers and thus, the BioA 

fertilizer would not have a market value as a mineral fertilizer. According to the third 

design criterion, the total solids content of the final fertilizer product is 80%. 

 

In addition to the design criteria, the product composition of the BioA fertilizer was 

controlled by two limiting factors. The first limiting factor is the minimum quantity of 

nitrogen (N) in a fertilizer product. According to Kivelä (2013), the lowest commercially 

feasible NPK rating for fertilizer is 4-X-X. If the nitrogen content of a fertilizer remains 

below 4%, the required quantity of fertilizer per hectare is so large that the labor 

expenditures exceed positive impacts of fertilizer use on crop yield. The second limiting 

factor is the cadmium (Cd) concentration which maximum permitted limit is 1.5kg Cd/ t 

fertilizer (Ministry of Agriculture and Forestry, 2011). 

 

Thus, the design criteria are adjustable whereas the limiting factors are set by the legislation 

(Cd concentration) or by the commercial feasibility of the product (N content). The design 

criteria and the limiting factors for the BioA fertilizer are illustrated in Figure 5-1. It is also 

depicted how both raw material streams contribute to the nutrient and heavy metal content 

of the fertilizer product.  

 



 

29 
 

DESIGN CRITERIA

50%

50%

LIMITING FACTORS

Solid digestate 

fraction

Coarse fraction of 

fly ash

P

N

P

K

Cd

BioA fertilizer 

· Total solids 

content 80%

· Addition of 

stripped 

nitrogen if 

required

· No additional 

synthetized 

fertilizer 

compounds

N

Cd

K

≥ 4%

Not relevant

Not relevant

≤1.5kg/t fertilizer 

P

 

Figure 5-1. Design criteria and limiting factors for the composition of the BioA fertilizer. 

Maximum permitted concentrations of heavy metals in Finnish fertilizer products are 

provided in Table 5-3. It can be seen that according to the results of the fly ash analysis (see 

Table 5-2) the concentration of cadmium in coarse fraction exceeds the limit value 

1.5mg/kg set for fertilizer products.  

Table 5-3. Maximum permitted concentration of heavy metals in fertilizer products (Ministry of 
Agriculture and Forestry, 2011). 

Heavy metal Maximum permitted concentration (mg/kg) 

Cadmium (Cd) 1.5 

Lead (Pb) 100 

Nickel (Ni) 100 

Arsenic (As) 25 

Mercury (Hg) 1 

Chromium (Cr) 300 

Copper (Cu) 600 

Zinc (Zn) 1500 

5.1.3 Data analysis 

The aim of the data analysis was to determine the NPK rating for the BioA fertilizer. NPK 

rating expresses the percentages by weight of N, P and K in a fertilizer product and it is a 

critical parameter in defining the composition of a fertilizer (FAO and IFA, 2000; Ludwick 
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et al., 1990). In addition to the NPK rating, also the heavy metal concentration of the BioA 

fertilizer was studied. The analysis of the heavy metal concentration was limited to the 

cadmium (Cd) as it is the only heavy metal which concentration exceeds the maximum 

permitted limit according to the fly ash analysis (see Table 5-2 and Table 5-3). If not 

otherwise stated, all the following values are reported on a dry matter basis. 

 

The nutrient contents of the raw material streams and the final fertilizer product on a 

tonne basis are presented in Table 5-4.  The nutrient content of the final fertilizer product 

is obtained by multiplying the nutrient content of the digestate or ash by the proportion of 

that raw material in the final product (see Figure 5-1). P is the only nutrient of the three 

primary nutrients which is found in both raw material streams.  P and K content of the ash 

accept were obtained from Table 5-2. P content of the digestate was obtained from Kouhia 

(2013) and N content of the digestate from Järvinen (2013). Distribution of nutrients 

between the ash accept and solid digestate is presented in Table 5-5. Distribution factors 

were calculated on the basis of the information provided in Table 5-4. According to the 

information presented in Table 5-4, the NPK rating for the BioA fertilizer is 5.0-0.9-0.6, 

which is rounded up to be 5-1-1. 

Table 5-4. Concentrations of the primary nutrients in the raw material streams and in the fertilizer on a 
tonne basis (Kouhia, 2013; Bio Refine Tech, 2012c; Järvinen, 2013). 

Material flow  

  Nutrient (kg/t material flow)  

t N total P total K total 

Ash accept  1 – 11.7 12.1 

Solid digestate  1 100.0 6.4 – 

Fertilizer 1 50.0 9.1 6.1 
1 N content of the solid digestate also includes the nitrogen obtained by biogas stripping 

Table 5-5. Distribution of the primary nutrients between the ash accept and solid digestate.  

Material flow 

Share of nutrient (%) 

N P K 

Ash accept – 65 100 

Solid digestate 100 35 – 

 

Cadmium (Cd) is accumulated to the fertilizer product from the coarse fraction of the fly 

ash. According to the fly ash analysis (Bio Refine Tech, 2012c), the coarse fraction contains 

2.7 mg Cd/kg. As it is known that the BioA fertilizer is composed of 50% ash, the Cd 

concentration in the final fertilizer product is 1.35 kg Cd/ t fertilizer. 
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5.2 ENVIRONMENTAL ASSESSMENT 

Improved sustainability is the overall goal of the BioA concept fertilizer production. In the 

BioA case study, the environmental impacts of the BioA fertilizer and the reference mineral 

fertilizer were analyzed and compared. The objective was to find key differences in the 

environmental impacts between the two fertilizer types in order to facilitate the 

optimization of the manufacturing and use of the BioA fertilizer.  

5.2.1 Method 

There are a wide array of methods for environmental assessment, which have been applied 

at many levels of society to assist decision making and to track comprehensive 

performance. Examples of the environmental assessment methods include Life Cycle 

Assessment (LCA), Environmental Impact Assessment (EIA), Energy analysis (En), 

Ecological Footprint (EF), and Material Flow Accounting (MFA). The fundamental 

purpose of the assessment tools is to direct performance towards sustainability. The focus 

of assessment tools can vary from a whole nation to something more specific, such as a 

business, a service, a project or a product. The environmental assessment tools aim at to 

evaluate the impacts of complex interactions between environmental, social and economic 

issues related to a phenomenon under scrutiny. Despite the aim to bring all three 

perspectives – the environment, society and economics – under scrutiny simultaneously, 

many of the analysis methods focus more on one of the aspects rather than on the others. 

As some of the assessments tools are more procedural and other analytical, whereas some 

retrospective and others prospective, it is sometimes necessary to complete the coverage of 

the selected tool with the aid of another tool. (Finnveden and Moberg, 2005; Ness et al., 

2007) 

5.2.1.1 Selection criteria 

On the basis of the objective and research targets of the present environmental assessment 

study, two selection criteria were emphasized in the selection of the environmental 

assessment method for the case study. According to the first design criterion, the main 

focus of the environmental assessment method used in the BioA case must be on 

environmental impacts and on the use of natural resources. According to the second design 

criterion, the target or object of the assessment method must be a product, such as a 

fertilizer. In addition, it was preferred that the assessment method is well established. The 

assessment method was not required to cover the socio-economic dimension.  

 

Finnveden and Moberg (2005) have classified different environmental system analysis tools 

according to two variables: the object or scope of a tool (e.g. policy, nation, organization, 

product) and which types of impacts are measured (e.g. natural resources, environmental 

impacts, economics aspects, or different kinds of combinations of the previous mentioned).  

The selection of the environmental assessment method for the BioA case was founded on 
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this classification provided by Finnveden and Moberg (2002) which is presented in Figure 

5-2. According to the selection criteria and the options provided in Figure 5-2, the most 

suitable environmental assessment tool in the BioA case is a Life Cycle Assessment (LCA). 
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TMR Total Material Requirement

LCA

 
Figure 5-2. Different environmental system analysis tools in relation to their objects and impacts measured 

(modified from Finnveden and Moberg, 2005). The LCA is highlighted as it is the environmental assessment 

method used in the present case study.  

 

Life Cycle Assessment (LCA) is a product-related, iterative assessment tool which allows 

both retrospective and prospective inspection. It is the most established and well-known 

tool to evaluate natural resource use and environmental impacts during the life cycle of a 

product. However, the LCA underemphasizes socio-economic issues despite its strong 

focus on environmental issues. (Ness et al., 2007) Nevertheless, of all the sustainability 

assessments methods presented extensively by Finnveden and Moberg (2005), the LCA is 

the most suitable for the BioA case due to this strong focus on environmental impacts, its 
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comprehensive vision of the life cycle of a product, and the possibility to use it for 

comparing similar products (Finnveden and Moberg, 2005; Pennington et al., 2004). An 

ISO standard, ISO 14040:2006, has been developed for the LCA methodology (ISO, 

2013). 

5.2.1.2 Life Cycle Assessment (LCA) 

The core idea of the LCA is to aggregate natural resources used and environmental impacts 

caused throughout the life cycle of a product. This life cycle perspective is also called the 

cradle to grave approach. LCA is comprised of four phases which are 1) Goal and Scope 

Definition, 2) Life Cycle Inventory Analysis (LCI), 3) Life Cycle Impact Assessment 

(LCIA) and 4) Interpretation. An LCA is a continuous iterative process and hence more 

accurate results can be obtained when the loop of four phases is repeated. (Koskela et al., 

2010; Finnveden et al., 2009; Rebitzer et al., 2004) The four phases and their interactions 

and interdependencies are presented in Figure 5-3. In the following, the phases will be 

introduced in more detail.  

 

 

3. Life Cycle Impact 

Assessment (LCIA)

1. Goal and Scope 

Definition

2. Life Cycle Inventory 

Analysis (LCI) 4. Interpretation

 

Figure 5-3. Four phases of LCA (Rebitzer et al., 2004). 

Goal and Scope Definition 

In the first phase of an LCA, the goal and scope of a study are defined and the system 

boundaries are selected. It is also defined who will be informed about the results and in 

which form they will be delivered. A complete product system includes all material and 

energy flows associated to a life cycle of a product. It is also possible not to include all 

material and energy flows to the system boundaries but to select those inputs and outputs 
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which best cover the scope of a study. Definition of system boundaries is a subjective 

choice and can strongly affect results obtained. (Finnveden et al., 2009)  

 

The first phase also covers definition of the functional unit. A functional unit is a 

measurable unit for the output of a product system. A representative functional unit 

describes both the physical properties and function and efficiency of the product. To 

illustrate this with an example, a functional unit emphasizing physical properties can be 

defined as quantity of end product delivered (e.g. t fertilizer) whereas a functional unit 

which also describes the functions of the product can be defined as quantity of fertilizer 

applied per hectare (e.g. t fertilizer/ha). The purpose of a functional unit is to serve as a 

reference to which input and output flows of a system are related and thus to allow goods 

or services under scrutiny to be comparable. Comparativeness among similar products or 

services facilitates to distinguish differences between them. (Grönroos and Voutilainen, 

2001; Finnveden et al., 2009; Rebitzer et al., 2004) 

Life Cycle Inventory Analysis (LCI) 

The second phase of an LCA is a Life Cycle Inventory Analysis (LCI) which compiles the 

inputs (e.g. consumption of resources, required energy) and the outputs (e.g. products, 

emissions, waste flows) related to a life cycle of one functional unit of a product. To 

organize the data gathered about the inputs and the outputs, it can be divided into modules 

of which each represent one unit operation or group of similar unit operations. The 

quantity of each input and output flow is measured or estimated and presented in a flow 

chart: this is called an inventory data. A flow chart can further be divided into specific unit 

processes. Thus, each material, energy and emission flow can be addressed to a specific 

unit process, at least theoretically. (Koskela et al., 2010; Grönroos and Voutilainen, 2001) 

 

Common characteristics of input and output flows are that they are likely to occur at 

multiple sites and regions, at different times and over different time periods. This 

complicates both data gathering and addressing it to a correct module. LCI is a challenging 

phase in an LCA and it normally demands co-operation and communication across several 

organizational levels involved in a project. (Rebitzer et al., 2004; Finnveden et al., 2009; 

Grönroos and Voutilainen, 2001) 

Life Cycle Impact Assessment (LCIA) 

The objective of the third phase, a Life Cycle Impact Assessment (LCIA), is to evaluate 

importance of LCI data. Importance is defined by allocating and weighting LCI data 

according to three key elements of an LCIA: 1) impact categories, 2) category indicators 

and 3) characterization factors.  Impact categories represent sites or phenomena affected 

due to the environmental impacts related a product. Generally recognized impact 

categories are, for instance, climate change, stratospheric ozone depletion, photochemical 

ozone formation, acidification, nutrient enrichment (or eutrophication), human toxicity, 
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and ecotoxicity. Selected impact categories should encompass aspects of three broad areas 

of protection which are resource use, human health consequences and ecological 

consequences. (Stranddorf et al., 2005; Pennington et al., 2004; EC, 2010) Impact 

categories and their association with the areas of protection are illustrated in Figure 5-4.  
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consequences

Resource use

Elementary flows

 
 

Figure 5-4. Overall scheme of the LCI data linked via the impact categories to the areas of protection (EC, 
2010). 

When impact categories are defined, one or several category indicators for each impact 

category are selected. The category indicators represent substances which negatively 

contribute to the phenomena of which impact categories represent. For example, category 

indicators related to the impact category which represent climate change are greenhouse 

gases such as CO2, CH4 and N2O. Finally, the characterization factors for category 

indicators are calculated or obtained from the literature. The idea of the characterization 

factors is to weight importance of each category indicator. (Pennington et al., 2004) For 

instance, the category indicators CO2, CH4 and N2O can all be converted into carbon 

dioxide equivalents (CO2-e) by multiplying each of the category indicators by a compound 

specific characterization factor (Wood and Cowie, 2004).There is no agreement about 

universal impact categories, category indicators or characterization factors and a large 

number of supportive methodologies exist for their evaluation (Pennington et al., 2004). 

Table 5-6 gives an example of one impact category and its possible category indicators and 

characterization factors. 
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Table 5-6. Category indicators and characterization factors for the climate change impact category 
(compiled from data in Norris (2003) and Solomon et al. (2007)). 

Impact category Equivalent type 
Category 
indicator 

Characterization factor 

Climate change CO₂ 

CO₂ 1 

CH₄ 21 

N₂O 310 

 

In addition to the mandatory elements of an LCIA, which are impact categories, category 

indicators and characterization factors, optional elements can be employed. Optional 

elements of an LCIA are for instance calculation of the category indicator results relative to 

the reference values (normalization), grouping and weighting of the category indicator 

results, and data quality analysis. (Pennington et al., 2004) 

 

The last phase of an LCA is interpretation of the results which concentrates on evaluation 

of the results with relation to the goal and scope defined on the first phase (Rebitzer et al., 

2004).  

5.2.1.3 Methodological limitations 

The LCA which was conducted in the present case study is a streamlined version for three 

reasons. First, the LCA deliberately excludes some phases of a life cycle and consequently 

those input and output flows which are located outside of the selected system boundaries 

were not examined. Thus, the LCA performed in the present case study do not cover the 

complete product system. Secondly, the LCA was not applied for all the possible activities 

occurring inside the selected system boundaries, but for the central ones from the research 

questions perspective. The third limitation is that the LCA performed in the present case 

study do not cover the third phase of an LCA which is the Life Cycle Impact Assessment 

(LCIA). A preliminary framework for the LCIA is provided but the phase was not 

examined in detail. The performance of the complete LCIA was excluded from the study as 

it requires both, a substantial amount of additional case-specific information, and 

professional knowledge on the LCA method. Consequently, the importance of each 

environmental impact could not be evaluated and one single environmental impact 

indicator representing all measured environmental impacts cannot be provided. Instead of 

the total environmental impact indicator, impact-specific results are given. 

5.2.2 Research targets 

The present BioA case study had two research targets: the organic BioA fertilizer and the 

reference mineral fertilizer. The composition of the BioA fertilizer was defined in 

Section 5.1 and the reference mineral fertilizer was selected on the basis of the 

characteristics of the BioA fertilizer. In the following, the composition and the 
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manufacturing processes of the both research targets are presented. In addition, the 

selection criteria for the reference mineral fertilizer are presented. 

5.2.2.1 BioA fertilizer 

Composition used in the environmental assessment 

The NPK rating for the BioA fertilizer was calculated to be 5-1-1 (see Section 5.1.3) and 

this NPK rating was used in the present case study for the composition of the BioA 

fertilizer. The composition of the BioA fertilizer is in line with reference organic fertilizers 

on the market in which the nitrogen content is between 4 and 8% (Elosato Ltd., 2013; 

Novarbo Ltd., 2013).  

Manufacturing process 

The manufacturing of the BioA fertilizer is rather straightforward and no technically 

demanding process steps are needed. Simplified, the main processing steps are dewatering 

of digestate and separation of fly ash by air classification. Finally, these two streams, 

processed digestate and ash, are blended together and the product is granulated. If the N 

content of the fertilizer remains below 5%, ammonia obtained by biogas stripping is added 

to the granulated fertilizer product in order to reach N content 5% (see Figure 2-1). 

According to the design criteria for the composition of the BioA fertilizer, the total solids 

content of the final fertilizer product is 80% and the fertilizer is composed of 50% ash 

accept and 50% solid digestate. 

 

The digestate originates from the anaerobic digestion in which a mixture of waste activated 

sludge originating from the waste water treatment plant and algal biomass originating from 

the algae cultivation site are co-digested in the biogas reactor. The total solids content of 

the outflowing digestate from the biogas reactor is assumed to be 8%. (Kouhia, 2013) 

After anaerobic digestion, the digestate undergoes two process steps which prepare the 

mass to be blended with ash. The two steps are hygienization and mechanical dewatering. 

In the hygienization step, the digestate is led to a hygienization tank where it is kept for a 

period of one hour at a temperature above 70˚C. After hygienization, the hot digestate is 

taken to a heat recovery exchanger and after cooling the stream is redirected to a buffer 

tank. Next, the digestate is separated into a solid and a liquid fraction by mechanical 

dewatering which is conducted using a screw press. (Bio Refine Tech, 2012a; Järvinen, 

2013) According to the literature, a degree of up to 60% total solids can be achieved with 

this dewatering technique (Lohiniva et al., 2001). In the BioA case, the objective is to 

increase the total solids content of the solid digestate up to 50% (Järvinen, 2013). After 

mechanical dewatering, the liquid fraction of the digestate is redirected to the algal 

cultivation and the solid fraction is used in the fertilizer production (Järvinen, 2013). 
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In addition to the digestate, another raw material of the BioA fertilizer is ash. Power plant 

ashes are divided into bottom ash and fly ash (also called flue ash) of which the latter is 

partly used for fertilizer production. Utilization of bottom ash from the power plant has 

not studied. The main combustibles in the power plant located in the existing factory site 

are bark, bio sludge, logging residues and recycled fuels (Bio Refine Tech, 2012a). As the 

fly ash coming from the power plant exceeds some limit values for heavy metals (see Table 

5-2 and Table 5-3), it cannot be used for fertilizing purposes per se. The fly ash must be 

separated into a nearly heavy metal free coarse fraction (accept) and a heavy metal 

containing light fraction (reject). In the BioA concept, ash separation is carried out with an 

air classification method in which ash particles are separated into two or more fractions 

according to their size (Bio Refine Tech, 2012a; Korpijärvi et al., 2009). It is estimated 

that ash accept will be 75% and ash reject about 25% of the total quantity of the fly ash 

(Kouhia, 2013). The coarse fraction is used in fertilizer production and the light fraction 

goes to landfilling. A possibility to use ash reject in cement production is studied by one of 

the project partners (Bio Refine Tech, 2012a). In addition to the air classification, another 

required processing step is the stabilization of ash. In the present study the decision was 

made that no particular stabilization unit is required as the stabilization occurs when the 

solid digestate is blended with the coarse fraction of the fly ash. 

 

Finally, separately processed digestate and ash are blended together in order to yield the 

final fertilizer product. According to the author’s decision, the blending method used in 

the present case study is steam granulation. Subsequent to the steam granulation, the 

nutrient content of the fertilizer is analyzed and stripped ammonia is added if the nitrogen 

content is below 5%. The adjustment of the nitrogen content with the aid of the stripped 

ammonia is important in order to maintain a uniform product quality.  

 

Subsequent to the blending of the solid digestate (TS 50%) and the coarse fraction of the 

ash (TS 99.6%), the total solids content of the final product is 67%. Total solids content of 

the final product was calculated using Equation 5.1 when the total solids content of the 

digestate and ash and their proportional quantities in the final fertilizer product were 

known.  

𝑇𝑆(%)𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟 =
𝑚𝐷𝑊 𝑑𝑖𝑔𝑒𝑠𝑡𝑎𝑡𝑒 +𝑚𝐷𝑊 𝑎𝑠𝑕

𝑚𝑊𝑊 𝑑𝑖𝑔𝑒𝑠𝑡𝑎𝑡𝑒 +𝑚𝑊𝑊 𝑎𝑠𝑕

 ( 5.1 ) 

In the Equation 5.1 TS is the total solids percentage, 𝑚 is the mass and DW refers to the dry 

weight and WW to the wet weight. However, according to the design criteria, the total 

solids content of the final product was set at 80%. The increase of the total solids content 

from 67% to 80% is assumed to occur in the form of vaporization of water as the 

temperature of the ash is about 150oC when it is blended with the digestate (Järvinen, 

2013). In summary, Figure 5-5 illustrates a general view of the BioA fertilizer production 

processes used in the present case study. 
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Figure 5-5. Flow chart of the manufacturing process of the BioA fertilizer.Initial data for process 

calculations obtained from Kouhia (2013) and Järvinen (2013). 
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5.2.2.2 Reference mineral fertilizer 

Selection criteria 

Successful selection of the reference mineral fertilizer is an essential part of the study as 

when the two research targets, the BioA fertilizer and the reference mineral fertilizer, are 

as equivalents as possible, an accurate comparison between these two fertilizers can be 

performed. The selection of the reference mineral fertilizer for the case study was based on 

the three criteria. The first criterion is that a reference mineral fertilizer is used for the 

same purpose and under the same conditions as the BioA fertilizer. Secondly, the NPK 

rating of a reference mineral fertilizer should correspond to the typical NPK ratings of 

commercial mineral fertilizers available on the market. Finally, the third criterion is that 

the ratio of N to P of a reference mineral fertilizer should correspond to the ratio of N to P 

of the BioA fertilizer.  

 

The reference mineral fertilizer used in the present case study was selected from fertilizer 

manufacturers operating in Finland for products destined for professional use. Of this 

selection, a fertilizer having a NPK rating 24-4-4 was chosen for the case study. The NPK 

rating of the selected reference mineral fertilizer is in line with the selection criteria as the 

ratio of N to P is close to that of the BioA fertilizer: 24-4 vs. 5-1. The selected reference 

mineral fertilizer is also used under the same environmental conditions and for the same 

purpose as the BioA fertilizer: cultivation of cereal crops. Henceforth, in this thesis, the 

selected reference mineral fertilizer is referred to as mineral fertilizer. 

Composition used in the environmental assessment 

At the time of writing this thesis, there was no specific information available on the 

composition of the reference mineral fertilizer. It was assumed, that in the mineral 

fertilizer the N compound is ammonium nitrate (AN, NH4NO3) and the P compound is 

single superphosphate (SSP, Ca(H2PO4)2 + 2CaSO4).  

 

Due to the NPK rating (24-4-4), it was known that the mineral fertilizer contains 24% N 

and 4% P. To calculate the required quantity of AN and SSP in fertilizer, the percentage by 

mass of N in AN and the percentage by mass of P in SSP were calculated according to 

Equation 5.2:   

𝑥𝑒 𝑖𝑛  𝑐 % =
𝑛𝑒 ∙𝑀𝑒

𝑛𝑐𝑀𝑐
∙ 100%, ( 5.2 ) 

where 𝑥 is the nutrient content in fertilizer expressed in percentage,  𝑛 number of atoms 

and 𝑀 molar mass. The lower index e refers to a element (N or P) and 𝑐 to a compound 

(AN or SSP). The percentage by mass of N in AN is 35% and the percentage by mass of P 

in SSP is 12%. Consequently, to contain 24% N and 4% P, the mineral fertilizer must 
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contain 69% AN and 33% SSP. In the present case, the total amount of AN and SSP 

exceeds 100% which is not possible. Thus, the author has decided to set the amount of SSP 

to 31%, which together with 69% of AN yield exactly 100%. The decrease of SSP content 

from 33% to 31% does not have a significant impact on the NPK rating. 

 

Fertilizer manufacturers do not provide specific information which N and P compounds are 

the basis of their products. It could be assumed that N and P compounds used in industrial 

scale are more concentrated than AN and SSP used in the present study. In the present 

study, the quantities of N and P compounds are based on their stoichiometric quantities. 

For example, the mineral fertilizer also contains K compounds, some other macro and 

micronutrients and inert additives. However, the required amounts of AN and SSP already 

compose 100% of the fertilizer product and no other substances can be added without 

decrease in N and P contents. This strongly indicates that N and P compounds used in 

industrial scale differ from those used in the present study. 

Manufacturing process 

There was no specific information available on the manufacturing process of the reference 

mineral fertilizer at the time of writing the thesis. Thus, below described manufacturing 

processes are based on the literature.  

 

AN is produced by an exothermic reaction in which nitric acid (HNO3) is neutralized by 

ammonia (NH3) (Kongshaug, 1998). In ammonia synthesis, atmospheric nitrogen is 

combined with hydrogen commonly originating from natural gas, oil, or coal (EFMA, 

2000a). HNO3 is produced by catalytic oxidation of NH3 with air at high pressure and 

temperature (EFMA, 2000b). The overall reaction equations to produce NH3 (5.3), HNO3 

(5.4) and finally AN (5.5) are presented below. 

N2  + 3H2  → 2NH3 ( 5.3 ) 

12NH3  +  21O2  → 8HNO3 + 4NO + 14H2O ( 5.4 ) 

NH3  + HNO3  →  NH4 NO3 ( 5.5 ) 

In addition to AN, another nutrient compound under scrutiny is SSP. SSP is produced by 

reacting powdered apatite mineral (Ca3(PO4)) with sulfuric acid (H2SO4). Sulfur raw 

material for H2SO4 production can be obtained either by mining or as a co-product 

recovered from oil and gas production. Of these two options, the latter is the main route 

for sulfuric raw material acquisition and thus employed in this case study. Apatite mineral 

is obtained from phosphate rock which is acquired by mining activities. (Dawson and 

Hilton, 2011; Kongshaug, 1998; Windridge, 1996) A simplified reaction equation of SSP 

production (Equation 5.6) is presented below. SSP product includes both end products of 
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the reaction: monocalcium phosphate (Ca(H2PO4)2) and calcium sulfate (CaSO4). 

(Finck,1982) There exist variations of chemical formula of SSP in the literature. This might 

be due to the heterogeneous nature of phosphate rock which affects the final composition 

of the end product. 

 

Ca3 PO4 2  + 2H2SO4  → Ca H2PO4 2 + 2CaSO4 ( 5.6 ) 

 

Finally, AN and SSP are blended together to yield the mineral fertilizer. In this case study, 

it was assumed, that the mineral fertilizer does not contain any other substances in addition 

to AN and SSP. In summary, Figure 5-6 illustrates a general view of the mineral fertilizer 

production processes used in the present case study. 
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Figure 5-6. Flow chart of the manufacturing process of the mineral fertilizer. 

5.2.3 Evaluation boundaries 

Definition of the evaluation boundaries includes definition of the system boundaries and 

definition of the functional unit. The evaluation boundaries in conjunction with the 

selection of the assessment method and definition of the research targets provide a 

framework for the performance of the Life Cycle Inventory Analysis (LCI). 

5.2.3.1 System boundaries 

A complete product system of a fertilizer covers its life cycle from cradle to grave, more 

specifically articulated from raw material acquisition and processing to the fertilizer 

application on field and till inspection of impacts caused by mobility of nutrients in the soil 

solution phase, such as leakage to water bodies. However, within the timeframe of the 

present thesis, it was not possible to conduct an environmental assessment to full extent 

and only limited parts of a life cycle of a fertilizer were therefore examined. It is 
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recognized, that limited system boundaries can misrepresent environmental impacts caused 

during a life cycle of a fertilizer and this limitation should always be taken into account 

when comparing the differences between the BioA and reference mineral fertilizers that 

may emerge as a result of the present examination. A complete life cycle of a fertilizer 

product and the two selected system boundaries for the present case study, named as 1 and 

2, are presented in flow diagram in Figure 5-7.  
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Figure 5-7. The complete life cycle of a fertilizer product and the selected system boundaries 1 and 2 for 

the case study. 
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There are two major reasons for the selection of the two system boundaries 1 and 2 for the 

case study. The first reason is that the system boundaries 1 and 2 represent the phases of a 

life cycle during which the foremost differences between the mineral and the organic 

fertilizer products occur. The second reason is that for these selected phases data was 

available.  

 

The packaging phase was not accounted for, because of its impact on a unit base is 

considered to be similar in both cases but dependent on the required quantity of a 

fertilizer. Similarly, the logistics phase was not taken into consideration for the same 

reason. However, the difference in the required quantities of the BioA and the reference 

mineral fertilizer was acknowledged in other phases due to the selection of the functional 

unit. Thus, the requisite information to evaluate packaging and logistics related impacts is 

readily obtainable for possible further studies. Nutrient mobility in soil solution was not 

mathematically evaluated, but the principles of nutrient mobility and factors influencing 

mobility are presented in the literature part. 

 

In addition to the process system boundaries 1 and 2, the present case study had other 

limitations too. Of the three primary nutrients N, P and K, the study only covers N and P. 

K was excluded due to its lesser nutritional importance when compared with N and P 

(Kivelä, 2013). Because the main interest of the fertilizer production is to recycle N and P, 

K is not the limiting factor in fertilizer composition. Production of inert additives of 

fertilizer product, such as filling agents and anticaking agents, was also excluded from the 

study. Thus, of all of compounds which a fertilizer product includes, this case study was 

limited to examine only N and P. 

5.2.3.2 Functional unit 

A functional unit is a quantitative measure of the functions that the product under scrutiny 

provides (for a more detailed definition, see Section 5.2.1.2). The quantitative measure, to 

which environmental impacts are allocated in LCA studies, is the functional unit. (Rebitzer 

et al., 2004) 

 

Many important features of a functional unit are case specific. The scope that the functional 

unit should cover in the present BioA case is divided into four topics. Firstly, the 

differences emerging from the raw material acquisition should be acknowledged. Raw 

material acquisition is one of the key points, because in mineral fertilizer production virgin, 

non-renewable raw materials are used whereas organic fertilizer production utilizes 

recycled waste streams. Secondly, the functional unit must take into account nutrient 

concentration of a fertilizer product. The ratio of nutritional value to volume of a product 

has a major significance, because mineral fertilizers are much more concentrated in 

nutrients than organic ones. Thirdly, the nutrient concentration also determines 

production and application volume which are interdependent: a fertilizer low in nutrients 
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needs to be produced and applied more frequently and in more volume than a fertilizer 

which is high in nutrients. Fourthly, the functional unit should cover the differences which 

occur during release mode and distribution rate between mineral and organic compounds 

in soil solution.  

 

According to these four criteria, the suitable functional unit options in the BioA case are for 

instance one tonne of fertilizer product (t fertilizer), nitrogen content per tonne of 

fertilizer product (kg N/ t fertilizer), quantity of fertilizer applied per hectare 

(t fertilizer/ ha) or crop response which demonstrates the crop yield harvested per hectare 

(t crop/ha). Definition of crop response can be altered to fit better for the purpose of the 

case. Adding fertilizer use to the crop response, the term converts to: fixed level of crop 

yield achieved by the use of known quantity of fertilizer ((t crop/ha)/ t fertilizer)). Of 

these options, it is the modified crop response which best matches the criteria and hence it 

was selected to be the functional unit in the BioA case. Matching of different functional unit 

options to the selected criteria is presented in Table 5-7. 

Table 5-7. Different function unit options and their capability to response to the set criteria in the present 
case study. Matching to the criteria is marked grey. 

                                   Criterion 
 
Functional unit 

Raw material 
acquisition for 

production 

Nutrient 
concentration 

Production and 
application 

volume 

Nutrient release 
mode and rate 

One tonne of fertilizer 
product (t fertilizer)         

Nitrogen content per tonne of 
fertilizer product                    
(kg N/ t fertilizer)         

Quantity of fertilizer applied 
per hectare                                 
(t fertilizer/ ha) 

        

Crop response                          
((t crop/ha)/ t  fertilizer)         

 

Crop response was set equal for both, mineral and organic, cases and the required quantity 

of fertilizer to obtain this set level of crop response was calculated. Fertilizer manufacturers 

provide information of expected crop responses at a given application quantity of certain 

fertilizer or nutrient. Due to the early development stage of the BioA concept, real case-

specific data of the crop response of the BioA organic fertilizer was not available. The 

cereal, for which a crop response was calculated, is barley. Barley was selected due to its 

popularity in Finnish agriculture and because information about barley crop responses was 

readily available.  
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Based on the information obtained from the manufacturer of the selected mineral fertilizer 

for comparison and from the network organization of Finnish agriculture professionals 

(Farmit), the target crop response was selected to be 3000 kg barley per hectare (Farmit 

Website Oy, 2013; Yara Suomi Ltd., 2012). It was assumed that crop response is directly 

proportional to the quantity of fertilizer applied. According to the information published 

on a website of Farmit (2013), to obtain crop response 3000 kg barley per hectare, 

69 kg N and 13 kg P are needed per hectare. The required quantities of the BioA and 

mineral fertilizers to fulfill the N or P requirement were calculated by using Equation 5.7. 

Results are presented in Table 5-8. 

𝑞𝑓 =  
𝑥𝑛

𝑚𝑛
, ( 5.7 ) 

where 𝑞 is the required quantity of fertilizer per hectare to achieve set crop response level, 

𝑥 is the required quantity of nutrient per hectare to achieve set crop response level and 𝑚 

is the quantity of nutrient in a fertilizer on a tonne basis; all expressed in kilograms. The 

lower index 𝑓 refers to a fertilizer and 𝑛 to a nutrient (N or P). For the both fertilizer 

types, 𝑚 was obtained from their NPK ratings.   

Table 5-8. Required quantity of the BioA fertilizer and the reference mineral fertilizer per hectare on a 
functional unit basis. 

  Fertilizer type 

  BioA Mineral 

NPK rating 5-1-1 24-4-4 

Target crop reponse 3000 kg/ha 3000 kg/ha 

Quantity of fertilizer needed      

Limiting factor N (69 kg N/ha) 1380 kg/ha 288 kg/ha 

Limiting factor P (13 kg P/ha) 1300 kg/ha 325 kg/ha 

Values are reported on a dry matter basis. 

 

According to the limiting nutrient factor, the required quantity of the BioA fertilizer is 

1.38 t/ha and the same figure for the mineral fertilizer is 0.33 t/ha, both on a dry matter 

basis. The required quantity of the BioA fertilizer is already 1.73 t/ha if the total solids 

content of the product is calculated to be 80% instead of 100%. In the case study, dry 

weight values were employed. To summarize, the functional unit for the BioA fertilizer is 

1.38 t fertilizer/ha and for the reference mineral fertilizer it is 0.33 t fertilizer/ha. 
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5.2.4 Life Cycle Inventory Analysis (LCI) 

The focus of the environmental assessment study was on the second phase of an LCA: a Life 

Cycle Inventory Analysis (LCI). The idea of an LCI is to study the environmental impacts 

by aggregating resources used and products and by-products generated during a life cycle 

of a product, or in this case within the selected system boundaries. In the BioA case, the 

following five modules were selected for the LCI study:  

 

Input modules Output modules 

• Raw material consumption  • Atmospheric emissions 

• Energy consumption  • Waste generation  

• Usage and nutrient release 
  

Data related to the selected inputs and outputs was gathered and divided under input and 

output modules. The selected modules have been modified from the generally recognized 

modules applied in LCA studies (Grönroos and Voutilainen, 2001). The input and output 

modules in relation to the system boundaries 1 and 2 are illustrated in Figure 5-8. 

Figure 5-8 also indicates nutrient, energy and material flows which were analyzed in the 

present case study. The nutrient, energy and material flows occurring outside the system 

boundaries are not depicted. 
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The complete life cycle of a fertilizer 

product

System boundary 1

System boundary 2

Fertilizer 

production
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processing of raw 
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Waste generation
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Input modulesInput modules Output modulesOutput modules
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emissions

Use

Nutrient mobility 

in soil solution

Usage and nutrient 

release 

Nutrients Energy Material

 
Figure 5-8. The relation between the input and output modules, system boundaries 1 and 2 and nutrient, 

energy and material flows. 
 

The information to evaluate the environmental impacts was obtained from the literature 

and from the experimental data, of which the latter was available only in the case of the 

BioA fertilizer. Two factors which were emphasized in information retrieved from the 

literature were location of data sampling point (preferred Europe) and modernity of 

technology (preferred best available technology, BAT). All five studied modules were 

divided into two subcategories, the BioA fertilizer and the reference mineral fertilizer, and 

the same inspection was performed for both subcategories. Fertilizer manufacturing 



 

49 
 

processes which were utilized in the LCI study are illustrated in Figure 5-5 for the BioA 

fertilizer and in Figure 5-6 for the mineral fertilizer. All environmental impacts were 

calculated in proportion to the required quantity of a fertilizer by functional unit. 

According to the functional unit, the required quantity of the BioA fertilizer was 1.38 t and 

the same figure for the mineral fertilizer was 0.33 t.  

5.2.4.1 Raw material consumption 

The production processes of the mineral fertilizer are mainly based on non-renewable 

energy and raw material sources whereas production of the BioA fertilizer can simplified to 

be seen as utilization of waste streams, which are generated regardless of fertilizer 

production. Hereby, in the case of the mineral fertilizer, environmental impacts arising 

from acquisition and processing of raw material were taken into account while in the case 

of the BioA fertilizer it was assumed that digestate and ash exist regardless of fertilizer 

production. It is axiomatic, that this illustration is partly biased, but on the other hand it 

emphasizes the phases of a life cycle in which mineral and organic fertilizers differ, which 

was one objective of the study.  

BioA fertilizer  

The BioA fertilizer contains 50% ash accept and 50% solid digestate on a dry weight basis 

(see Figure 5-1). Thus, 1.38 t fertilizer consists of 0.69 t ash accept and 0.69 t solid 

digestate. In air classification, 75% of the ash is classified as ash accepted and 25% as ash 

rejected. Consequently, 0.92 t ash must be classified in order to have 0.69 t ash accept. 

Raw material requirements are illustrated in Figure 5-9. 

 

 

Ash accept
Dewatered solid 

digestate

0.69 t DW (1.38 t WW)

BioA fertilizer

1.38 t

0.69 t

Fly ash Solid digestate

0.92 t 0.69 t DW (8.63 t WW)

 

Figure 5-9. Raw material consumption of the BioA fertilizer. 
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Mineral fertilizer 

The raw material requirements of the mineral fertilizer are based on the mass fractions of 

starting materials to yield 0.33t of the end product, which is the required amount of the 

mineral fertilizer according to the functional unit. Mass fraction is defined in Equation 5.8 

as:  

𝑤a =
𝑚a

𝑚𝑎+𝑚𝑏
 , ( 5.8 ) 

where 𝑤 is mass fraction, 𝑚 is mass and the lower indices 𝑎 and 𝑏 refer to compounds 

which compose the total mass of starting material of the reaction in question. Mass is 

defined as (5.9): 

𝑚𝑎 =  𝑛𝑎 ∙ 𝑀𝑎  , ( 5.9 ) 

where 𝑀 is molar mass and 𝑛 moles of component 𝑎 in reaction.  

 

AN and SSP requirements are based on Equation 5.2 and NH3 and HNO3 requirements in 

AN production are based on mass fractions: 𝑤𝑁𝐻3 
is 0.21 and 𝑤𝐻𝑁𝑂3

 is 0.79. Similarly, 

H2SO4 and phosphate rock requirements in SSP production are based on mass fractions: 

𝑤𝐻2𝑆𝑂4 
 is 0.39 and 𝑤𝑝𝑕𝑜𝑠𝑝𝑕𝑎𝑡𝑒  𝑟𝑜𝑐𝑘  is 0.61. Phosphate ore requirement is based on 

assumption that 5 tonnes of phosphate ore must be mined and beneficiated to produce one 

tonne of phosphate rock (Kongshaug, 1998). NH3 requirement in HNO3 production is 

based on literature value 0.28 t NH3/t HNO3 (Wiesenberger, 2002). Requirements of 

natural gas, nitrogen, air and by-products of oil and gas industry were not known at the 

present time. Raw material requirements of the mineral fertilizer are depicted in 

Figure 5-10. 

 



 

51 
 

N compound: 
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0.05 t

Mineral fertilizer

0.33 t
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Figure 5-10. Raw material consumption of the reference mineral fertilizer. 

5.2.4.2 Energy consumption 

The energy consumption can be expressed as two different units: joules (J) or watt-hours 

(Wh), both of which are energy units. It was decided that in the present study only one 

unit is used, the joule. The energy consumption presented as watt-hours in the studied 

literature was thus converted to joules according to the conversion factor 1 Ws = 1 J 

(1 kWh = 3.6 MJ).  

BioA fertilizer 

Energy consumption in the production of the BioA fertilizer origins from downstream 

processing of its two raw materials: digestate and ash. The processing steps for the 

digestate are hygienization and mechanical dewatering, whereas fly ash has only one 

downstream processing step: air classification. Both raw material streams are first 

processed separately, and then blended together by steam granulation to yield the final 

fertilizer product. In the present case study, the hygienization step was excluded from the 

energy consumption calculations as at the time of writing this thesis it was being studied 

whether the hygienization could be conducted simultaneously with the anaerobic digestion. 

(Bio Refine Tech, 2012a; Kivelä, 2013) 

 

The outflowing digestate from the biogas reactor have total solids content 8%. In the 

mechanical drying step, digestate is dried from total solids content 8% to total solids 

content 50%. Wet weights (WW) of the digestate in each processing step were calculated 
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by using Equation 5.10 as the total solids percentages in each processing step were known 

and the mass of total solids was assumed to be stable. Calculations were performed on a 

basis to obtain one tonne of fertilizer. 

𝑚𝑊𝑊 =
𝑚𝑇𝑆

𝑋𝑇𝑆  
%

100
 
, ( 5.10 ) 

where 𝑚𝑊𝑊  is a mass expressed on a wet weight basis, 𝑚𝑇𝑆   is a mass of total solids and 

𝑋𝑇𝑆  is a total solids percentage. The quantity of reduced water in each drying step was 

calculated by using Equation 5.11: 

𝑚𝐻2𝑂 =  𝑚𝑤𝑤 𝑖𝑛
−𝑚𝑤𝑤 𝑜𝑢𝑡

,  ( 5.11 ) 

where 𝑚𝐻2𝑂  is a mass of reduced water and 𝑖𝑛 refers to the inflowing digestate and 𝑜𝑢𝑡 to 

the outflowing digestate prior and subsequent to a drying step, respectively. In Table 5-9, 

the compositions of digestate, ash and fertilizer subsequent to each processing step are 

presented. 

Table 5-9. Mass flows and total solids content (%) of the digestate, ash and BioA fertilizer during the 
manufacturing processes.  

Flow 
Total solids Total solids  Wet weight  

(%) (t flow/t fertilizer) (t flow/ t fertilizer) 

Digestate subsequent to:       

Anaerobic digestion 8 0.5 6.25 

Hygienization 8 0.5 6.25 

Mechanical dewatering 50 0.5 1 

Ash prior to:       

Air classification 99.7 0.67 0.67 

Ash subsequent to:       

Air classification 99.6 0.5 0.5 

Fertilizer subsequent to:       

Steam granulation 80 1 1.25 

 

According to Lohiniva et al. (2001), the heat energy requirement for mechanical 

dewatering techniques is about 0.1-0.2 GJ/t for removed water. In the present case study, 

the average value of the above mentioned energy consumption figure was employed. At the 

time of writing this thesis, there was no extensive information available on energy 

consumption of air classification. According to one survey conducted by The Technical 

Research Centre of Finland (VTT), energy consumption in air classification was about 

26.3 kWh/t classified ashes, corresponding to 0.1 GJ/ t classified ashes (Korpijärvi et al., 

2009). Finally, processed digestate and ash accept are blended by steam granulation to yield 
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BioA fertilizer. According to Kongshaug (1998), energy requirement of steam granulation 

is 1.1 GJ/t product. Energy consumptions in each processing step are collected in 

Table 5-10.   

Table 5-10. Energy consumption in each processing step of the raw materials of the BioA fertilizer. 

Processing step Quantity 
Heat energy Energy Energy 

(GJ/t removed H₂O) (GJ/t ash) (GJ/t product) 

Processing of digestate Edigestate       

Mechanical dewatering EMD 0.15 – – 

Processing of ash Eash       

Air classification EAC – 0.10 – 

Processing of fertilizer  Eblending       

Steam granulation ESG – – 1.10 

 

Total energy consumption in the production of the BioA fertilizer is illustrated in Equation 

5.12. All energy consumption values were calculated on a tonne basis (GJ/t fertilizer). 

𝐸𝐵𝑖𝑜𝐴 = 𝐸𝑑𝑖𝑔𝑒𝑠𝑡𝑎𝑡𝑒 + 𝐸𝑎𝑠𝑕 + 𝐸𝑏𝑙𝑒𝑛𝑑𝑖𝑛𝑔  ( 5.12 ) 

Energy consumption in digestate processing consists of energy consumption in mechanical 

drying. Equations 5.13 and 5.14 present this energy consumption. 

𝐸𝑑𝑖𝑔𝑒𝑠𝑡𝑎𝑡𝑒 = 𝐸𝑀𝐷  ( 5.13 ) 

𝐸𝑀𝐷 = 𝐸 𝑕𝑒𝑎𝑡  𝑀𝐷 ∙ 𝑚𝐻2𝑂𝑀𝐷
 ( 5.14 ) 

Energy consumption in ash processing only includes energy consumption in air 

classification, which was calculated according Equation 5.15: 

𝐸𝑎𝑠𝑕 = 𝐸𝐴𝐶 ∙ 𝑚𝑤𝑤 𝑎𝑠𝑕  (𝑝𝑟𝑖𝑜𝑟  𝑡𝑜  𝐴𝐶 )
 ( 5.15 ) 

Energy consumed in fertilizer blending is presented in Equation 5.16: 

 
𝐸𝑏𝑙𝑒𝑛𝑑𝑖𝑛𝑔 = 𝐸𝑆𝐺 ∙ 𝑚𝑤𝑤𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧 𝑒𝑟

, ( 5.16 ) 

Thus, energy consumption in the production of the BioA fertilizer on a tonne basis was 

obtained as follows (5.12):  

𝐸𝐵𝑖𝑜𝐴 = 𝐸𝑑𝑖𝑔𝑒𝑠𝑡𝑎𝑡𝑒 + 𝐸𝑎𝑠𝑕 + 𝐸𝑏𝑙𝑒𝑛𝑑𝑖𝑛𝑔  

𝐸𝐵𝑖𝑜𝐴 = 𝐸 𝑕𝑒𝑎𝑡  𝑀𝐷 ∙ 𝑚𝐻2𝑂𝑀𝐷
+ 𝐸𝐴𝐶 ∙ 𝑚𝑤𝑤 𝑎𝑠 𝑕  (𝑝𝑟𝑖𝑜𝑟  𝑡𝑜  𝐴𝐶 )

+ 𝐸𝑆𝐺 ∙ 𝑚𝑤𝑤 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟
 (5.12) 
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Energy consumption in the production of the BioA fertilizer on a functional unit basis was 

obtained by multiplying the energy consumption in each step by 1.38 which is the required 

quantity of the fertilizer according to the functional unit. To summarize, energy 

consumption in production of 1.38 t BioA fertilizer is 3.08 GJ. Energy consumptions on a 

tonne basis and on a functional unit basis are presented in Table 5-11. 

Table 5-11. Total energy consumption in the production of the BioA fertilizer. 

Processing step 

Energy consumption 

On a tonne basis On a functional unit basis 

(GJ/t fertilizer) (GJ/1.38 t fertilizer) 

Digestate     

Mechanical dewatering 0.79 1.09 

Ash     

Air classification 0.07 0.09 

Fertilizer      

Steam granulation 1.38 1.90 

Total 2.23 3.08 

Mineral fertilizer 

The energy consumption in the mineral fertilizer production consists of production of N 

and P compounds, a strong emphasis being on the production of the former. It has been 

decided that in the present case study the N compound is ammonium nitrate (AN, 

NH4NO3) and the P compound is single superphosphate (SSP, Ca(H2PO4)2 + 2CaSO4). If 

not stated otherwise, all energy consumption values including those obtained from the 

literature as well as those based on process calculations refer to energy which is consumed 

to produce one tonne of 100% substance (GJ/t substance (100%)). The process 

calculations are based on 100% conversion efficiency. Required quantities of compounds in 

reactions are based on either stoichiometric mass fractions, or literature references. Total 

energy consumption figures further presented describe total fuel requirements, including 

energy content of both fuel and feed. 

 

AN is produced from ammonia (NH3) and nitric acid (HNO3). Thus, to calculate total 

energy consumption in AN production, energy consumption in NH3 and HNO3 production 

must also be calculated. The energy consumption values concerning NH3 production cover 

both, fuel and feed requirements to yield one tonne of NH3. According to IFA (2009), who 

surveyed 93 ammonia plants worldwide in 2008, the average energy consumption in 

ammonia plants was 36.6 GJ/t NH3, ranging from 27.0 to 58.2 GJ/t NH3. According to 

EFMA (2000a), energy consumption in a reforming ammonia plant employing BAT is 

approximately between 28.8 and 31.5 GJ/t NH3. Eggleston et al. (2006) conclude that 
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energy consumption in NH3 production in modern plant in Europe is about 30.2 GJ/t NH3 

whereas Kongshaug (1998) states that energy consumption in modern plant is 

28.3 GJ/t NH3. In conclusion, in the present case study it was assumed that energy 

consumption in NH3 production is 31.3 GJ/t NH3, which is the average of the above 

mentioned literature references.  

 

Contrary to energy consumption values of NH3 production, energy consumption values of 

HNO3 production include only fuel requirement to produce one tonne of HNO3. Thus, 

feed requirement for HNO3 production must be added to fuel requirement to give total 

energy consumption. Due to the exothermic nature of the HNO3 reaction chain, net 

energy balance of reaction is negative, i.e. reaction produces more energy than it 

consumes. In practice, net energy export of HNO3 production is between 0 and 

2.4 GJ/t HNO3, the theoretical maximum being 6.3 GJ/t HNO3. (Kongshaug, 1998; 

Wiesenberger, 2001) In this case, the state-of-the-art energy export level was applied and 

the net energy balance of HNO3 production was set to be -2.4 GJ/t HNO3, including only 

the fuel requirement. The feed requirement is 0.28-0.29 t NH3/t HNO3 depending on the 

process technology (Wiesenberger, 2001). The feed requirement 0.28 t NH3/t HNO3 was 

used in the present case study. 

 

The fuel energy consumption in the AN reaction (Equation 5.17) is modest: 0.15 GJ/t AN 

(Kongshaug, 1998). Total energy consumption in AN production was calculated as follows 

(5.17 and 5.18):  

𝐸𝐴𝑁𝑡𝑜𝑡𝑎𝑙
= 𝐸𝐴𝑁𝑓𝑢𝑒𝑙

+ 𝐸𝐴𝑁𝑓𝑒𝑒𝑑
 ( 5.17 ) 

𝐸𝐴𝑁𝑓𝑒𝑒𝑑
= 𝑤𝑁𝐻3

∙ 𝐸𝑁𝐻3𝑡𝑜𝑡𝑎𝑙
+ 𝑤𝐻𝑁𝑂3

∙ 𝐸𝐻𝑁𝑂3𝑡𝑜𝑡𝑎𝑙
 ( 5.18 ) 

In HNO3 production, fuel and feed requirements were calculated separately (5.19 and 

5.20):  

𝐸𝐻𝑁𝑂3𝑡𝑜𝑡𝑎𝑙
=  𝐸𝐻𝑁𝑂3 𝑓𝑢𝑒𝑙

+ 𝐸𝐻𝑁𝑂3𝑓𝑒𝑒𝑑
 ( 5.19 ) 

𝐸𝐻𝑁𝑂3𝑓𝑒𝑒𝑑
= 0.28 ∙ 𝐸𝑁𝐻3𝑡𝑜𝑡𝑎𝑙

 ( 5.20 ) 

An extended version of Equation 5.17 is given below and it yields the total energy 

consumption of AN production: 11.9 GJ/t AN. Energy consumption figures of AN 

production are recapitulated in Table 5-12.  

𝐸𝐴𝑁𝑡𝑜𝑡𝑎𝑙
= 𝐸𝐴𝑁𝑓𝑢𝑒𝑙

+ 𝐸𝐴𝑁𝑓𝑒𝑒𝑑
 (5.17) 

𝐸𝐴𝑁 𝑡𝑜𝑡𝑎𝑙
= 𝐸𝐴𝑁𝑓𝑢𝑒𝑙

+  
𝑀𝑁𝐻3

𝑀𝑁𝐻3
+ 𝑀𝐻𝑁𝑂3

 ∙ 𝐸𝑁𝐻3𝑡𝑜𝑡𝑎𝑙
+  

𝑀𝐻𝑁𝑂3

𝑀𝑁𝐻3
+ 𝑀𝐻𝑁𝑂3

 ∙  𝐸𝐻𝑁𝑂3 𝑓𝑢𝑒𝑙
+ 0.28 ∙ 𝐸𝑁𝐻3𝑡𝑜𝑡𝑎𝑙
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Table 5-12. Fuel and feed requirements ofthe ANproduction. 

Substance 
Energy (GJ/t substance) 

Fuel  Feed Total (fuel + feed) 

NH₃ – – 31.3 

HNO₃ -2.4 8.8 6.4 

AN 0.15 11.7 11.9 

 

It is worth acknowledging that the calculated total energy consumption is not completely 

realistic because it is based on theoretical reaction equation, not on plant-based data. 

However, calculated energy consumption is rather well in line with the literature values. 

According to Kongshaug (1998), the accumulated energy consumption of ammonium 

nitrate production is 10.7 GJ/t AN and Kuesters and Jenssen (1998) report energy 

consumption to be 12.6 GJ/t AN. 

 

The P compound of the mineral fertilizer, SSP, is produced from sulfuric acid (H2SO4) and 

phosphate rock (Ca3(PO4)2). Sulfur raw material for H2SO4 production can be obtained 

either by mining or as a co-product recovered from oil and gas production, the latter 

option employed in the case study. (Dawson and Hilton, 2011) Because the sulfur raw 

material obtained by this manner is a co-product of another process, no energy 

consumption is linked to the sulfur feed, but only to the fuel consumed in H2SO4 

production processes. Net energy balance of H2SO4 production is negative because 

production processes are exothermic and generate steam to be exported. In plants 

employing BAT technology, a net energy export is equivalent to 6.0 GJ/t H2SO4. 

(Kongshaug, 1998)  

 

The energy consumption value of SPP production presented by Kongshaug (1998) includes 

fuel and feed energy consumption of phosphate rock mining activities and fuel energy 

requirement of SSP production, but not fuel and feed energy consumption of H2SO4 

production. According to Kongshaug (1998), energy consumption in SSP production 

processes is 6.7 GJ/t P2O5 which according to the author of the reference corresponds to 

1.4 GJ/t SSP. However, when applying the chemical formula of SSP presented in this 

thesis, 6.7 GJ/t P2O5 corresponds to 1.9 GJ/t SSP which is the value employed in further 

calculations. Conversion of energy units from GJ/t P2O5 to GJ/t SSP is based on following 

Equation 5.21: 

 

𝐸

𝑚𝑃2𝑂5

∙ 𝑚𝑃2𝑂5
=

𝐸

𝑚𝑆𝑆 𝑃
∙ 𝑚𝑆𝑆𝑃  ↔  

𝐸

𝑚𝑃2𝑂5

∙ 𝑛𝑃2𝑂5
∙ 𝑀𝑃2𝑂5

=
𝐸

𝑚𝑆𝑆𝑃
∙ 𝑛𝑆𝑆𝑃 ∙ 𝑀𝑆𝑆𝑃  (5.21 ) 
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According to Kongshaug (1998), phosphate concentration of SSP is about 21% P2O5 which 

corresponds to 9.2% P. However, according to the chemical formula of SSP employed in 

the case study (Ca(H2PO4)2 + 2CaSO4), P2O5 concentration of SSP is 28% which 

corresponds to 12% P. This implicates that Konsghaug (1998) has utilized different 

chemical formula of SSP than has been employed in the present cases study. The literature 

reference (Kongshaug, 1998) do not provide specific information on the chemical formula 

of SSP applied in that study, but it was assumed that chemical formulas of SSP applied by 

Kongshaug (1998) and in the present case study are rather similar and thus data obtained 

from Kongshaug (1998) is reliable.  

 

Calculations of the total energy consumption in SSP production consists of following 

Equations 5.22-5.24: 

𝐸𝑆𝑆𝑃𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑆𝑆𝑃𝑓𝑢𝑒𝑙 + 𝐸𝑆𝑆𝑃𝑓𝑒𝑒𝑑  ( 5.22 ) 

𝐸𝑆𝑆𝑃𝑓𝑒𝑒𝑑 = 𝐸𝑚𝑖𝑛𝑖𝑛𝑔𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 𝑡𝑜𝑡𝑎𝑙
+ 𝑤𝐻2𝑆𝑂4

∙ 𝐸𝐻2𝑆𝑂4𝑓𝑢𝑒𝑙
 ( 5.23 ) 

𝐸𝐻2𝑆𝑂4 𝑡𝑜𝑡𝑎𝑙
= 𝐸𝐻2𝑆𝑂4𝑓𝑢𝑒𝑙

 ( 5.24 ) 

The total energy consumption of SSP production is presented in Table 5-13. Fuel and feed 

requirements of SSP production are not reported separately because specific information of 

fuel and feed energy requirements was not available at the present time. 

Table 5-13. Fuel and feed requirements of the SSP production. 

Substance 
Energy (GJ/t substance) 

Fuel  Feed Total (fuel + feed) 

H2SO4 -6.0 – -6.0 

SSP  – – 1.9 

Total SSP – – -0.4 

1Energy consumption (GJ/t substance) ) includes fuel and feed consumption of phosphate rock mining activities and 

fuel requirement of SSP production, but not fuel and feed consumption of H2SO4 production. 

 

To conclude, the total energy consumption in SSP production is -0.4 GJ/t SSP. Applying 

the chemical formula of SSP presented in this thesis, it corresponds to -1.6 GJ/t P2O5. 

However, according to Kongshaug (1998), the total energy consumption would be 

-3.8 GJ/tP2O5. The difference between energy consumption figures is probably due to two 

issues. Firstly, an energy consumption 1.9 GJ/t SSP was used in the case study whereas 

Kongshaug (1998) used energy consumption equal to 1.4 GJ/t SSP. Secondly, in the 

present case study mass fraction of H2SO4 in the SSP reaction was calculated with reference 

to the reaction stoichiometry (0.39 t H2SO4/t SSP) whereas Kongshaug (1998) reports a 

H2SO4 consumption of 1.75 t H2SO4/t P2O5 which corresponds to 0.49 t H2SO4/t SSP. 
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The reference did not provide information on what the basis of the H2SO4 consumption is 

in the study by Kongshaug (1998).  

 

It was assumed that AN and SSP are mixed together by a bulk blending method. Bulk 

blending was chosen because there was no accurate information on mixing process and bulk 

blending is a common method. Energy consumption in bulk blending is negligible and it 

was rounded to be 0 in the present study (Kongshaug, 1998).  

 

The required quantity of the mineral fertilizer is 0.33 t/ha which consists of 0.23 t AN and 

0.10 t SSP (see Figure 5-10). Thus, the total energy consumption in production of 0.33 t 

mineral fertilizer was obtained as follows (5.25):  

𝐸𝑚𝑖𝑛𝑒𝑟𝑎𝑙  0.33𝑡 = 0.23 ∙ 𝐸𝐴𝑁𝑡𝑜𝑡𝑎𝑙
+ 0.10 ∙ 𝐸𝑆𝑆𝑃𝑡𝑜𝑡𝑎𝑙  ( 5.25 ) 

The total energy consumption and the sources of energy consumption are summarized in 

Table 5-14. In conclusion, energy consumption in production of 0.33 t mineral fertilizer is 

2.7 GJ. 

Table 5-14. Total energy consumption in the production of the reference mineral fertilizer. 

Substance 

Energy consumption 

On a tonne basis On a functional unit basis 

(GJ/t fertilizer) (GJ/0.33 t fertilizer) 

NH3 4.60 1.518 

HNO3 3.48 1.148 

Fuel 0.10 0.033 

∑AN 8.18 2.699 

      

Fuel + mining activities 0.59 0.195 

H2SO4 -0.73 -0.241 

∑SSP  -0.14 -0.046 

      

∑Fertilizer 8.04 2.653 

5.2.4.3 Atmospheric emissions 

This module exclusively covers gaseous emissions generated in manufacturing processes 

but, for instance, not the emissions arising from use of the fertilizer and the application. 

The fertilizer use and application cause emissions through leakage of nutrient compounds 

into air and the surrounding water bodies. Nutrient leakage to water bodies contributes 

significantly to eutrophication (Roy et al., 2006). Despite the significance of use and 

application associated emissions, those emissions were excluded from the present study. 
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Also emissions emitted in the production and combustion of energy, which is utilized in 

fertilizer production, were excluded from the study. 

 

Emissions are either output products of manufacturing processes, or waste gases released 

during processing. The three main greenhouse gases (GHG) arising from fertilizer 

production are carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) (Wood and 

Cowie, 2004). Other typical atmospheric pollutants are ammonia (NH3), ammonium salt 

aerosols, nitric oxides (NOx), fluorines (as SiF4 and HF), oxides of sulfur (SOx), fertilizer 

dust, acid mists, and radiation (Windridge, 1996). This study analyzed CO2, CH4, NOx 

(including N2O), SOx and NH3 emissions arising from fertilizer production. 

BioA fertilizer  

The potential emission sources in the production of the BioA fertilizer are the processing 

steps of the digestate and ash and final fertilizer product. Hygienization tanks are gas and 

waterproof and do not emit discharges. The drying steps of the digestate mostly emit water 

vapor. (Bio Refine Tech, 2012a) There was no information available concerning possible 

emissions related to the air classification method for ash separation and thus it was assumed 

that air classification does not have airborne emissions. It was not known that there would 

be emissions associated with the fertilizer blending unit (Kongshaug, 1998). In summary, 

according to the current state of knowledge of the BioA concept, the BioA fertilizer 

production does not cause atmospheric emissions. 

Mineral fertilizer 

The possible emission sources in the mineral fertilizer production are the production of AN 

and its raw materials HNO3 and NH3, of which the latter is also used as a raw material in 

HNO3 production. Similarly, possible emission sources are the production of SSP and its 

raw materials H2SO4 and phosphate rock. Because there was no information about raw 

material consumption of natural gas, nitrogen, air and by-products of oil and gas industry, 

emissions related to them were not evaluated (see Figure 5-10). 

 

Airborne emissions of AN production are NH3 and AN (Wiesenberger, 2002). If BAT is 

employed, these emissions are 0.5 kg for AN particulates and 0.2 kg for NH3 per tonne of 

AN (EFMA, 2000e). Major atmospheric emissions related to NH3 production are CO2 and 

NO2. CO2 is generated in two stages in NH3 production: firstly, as a by-product of 

manufacturing, and secondly, it is released within the flue gas. (Windridge, 1996) Use of 

by-product CO2 for other processes would give an emission credit for CO2 emissions 

linked to NH3 production. However, in this case no emission credit was given and no reuse 

of CO2 was recognized. The most significant emissions of HNO3 production are NOx, 

particularly nitrous oxide (N2O). However, N2O emissions were here not studied 

separately but are included in NOx emissions. Other emissions associated with HNO3 

production are negligible. (Windridge, 1996; Harnisch et al., 2006) 
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The production of SSP from phosphate rock and sulfuric acid generate dust and fluorides, 

mostly hydrogen fluoride (HF) and silicon tetrafluoride (SiF4) (Wiesenberger, 2002). 

H2SO4 production emits SO2 and acid mist, other emissions are not significant (Windridge, 

1996). Phosphate rock mining and beneficiation emit dust particles, but no other emissions 

are associated with the mining operations (Wiesenberger, 2002). 

 

Emission levels obtained from the literature for the NH3, HNO3 and H2SO4 production are 

presented in Table 5-15. Variation among HNO3 production related NOx emission levels 

arise from different HNO3 production technologies and emission abatement technologies 

depending on different literature sources. In the present case study, the averages values of 

those values presented in Table 5-15 were used: 1.69 t CO2/t NH3 and 

0.95 kg NOx/t NH3 for NH3 production, 4.8 kg NOx/t HNO3 for HNO3 production and 

2.7 kg SOx/t H2SO4 for H2SO4 production.  

Table 5-15. Emissions associated with the production of AN, NH3, HNO3 and H2SO4. 

Production Emission Unit Value Reference 

AN NH3 kg NH3/ t AN 0.5 EFMA, 2000e 

NH3 CO2 t CO₂ /t NH3 1.65-1.80 Windridge, 1996; EFMA, 2000a 

  1.65 Kongshaug, 1998 

  NOX kg NOX /t NH3 0.6-1.3 Windridge, 1996; EFMA, 2000a 

  SOX kg SOX/t NH3 0.01 Windridge, 1996 

HNO3 NOX kg NOX/t HNO3 6.7 Kongshaug, 1998 

      1.4 EFMA, 2000b 

      4.2 Windridge, 1996 

      7 Eggleston et al., 2006 

H2SO4 SOX kg SOX/t H2SO4 2.15-3.15 Windridge, 1996 

      1.6-4.0 EFMA, 2000c 

 

Based on the mass fractions of the substances introduced in Equation 5.8 and 5.9 (see also 

Figure 5-10) and on the emission levels presented in Table 5-15, total emissions of CO2, 

NOx, SOx and NH3 were calculated. The results are summarized in Table 5-19. 

Table 5-16. Total emissions associated to the production of 0.33 t mineral fertilizer. 

Emission Value Unit 

CO2 0.17 t CO₂/0.33 t fertilizer  

NOX 0.96 kg NOX/0.33 t fertilizer  

SOX 0.11 kg SOX/0.33 t fertilizer 

NH3 0.05 kg NH3/0.33 t fertilizer 
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5.2.4.4 Waste generation 

Two types of waste generated in fertilizer production are solid waste and liquid waste 

waters, which both are co-products and by-products from fertilizer production. The 

present study does not class water or steam produced during fertilizer production as waste 

products. Also co-products or by-products which can be recovered and recycled back to 

the process were excluded from the study. The gaseous waste products are included in 

atmospheric emissions.  

 

The major waste product of mineral fertilizer industry originates from the production of 

phosphoric acid which generates as by-products large quantities of phosphogypsum 

(calcium sulfate) (Windridge 1996). However, no phosphoric acid is needed in AN or SSP 

production and calcium sulfate generated in SSP production is part of the end product.  

BioA fertilizer  

The manufacturing of the BioA fertilizer has two possible sources of waste generation: 

processing of the fly ash and processing of the digestate. Fly ash is air classified into ash 

accept and ash reject of which only the former is used in fertilizer production and the latter 

is considered as solid waste. In the air classification fly ash is separated into accepted and 

rejected in the ratio of 75% to 25%, respectively. On the functional unit basis, the ash 

accept requirement in the fertilizer production is 0.69 t (see Figure 5-9), in which case 

0.92 t ash must be classified. Thus, the ash reject is 0.23 t rejected ash/0.69 t accepted ash. 

 

Not all the digestate is used in the fertilizer production, but it is separated into solid and 

liquid fraction of which the former is used in the fertilizer production and the latter is 

redirected to the algal cultivation (see Figure 2-1). Due to the recycling of the liquid 

fraction, it is not considered as waste. All solid digestate is planned to utilize in the 

fertilizer production (Kouhia, 2013). To summarize, waste generation in production of 

1.38 t BioA fertilizer is limited to 0.23 t ash reject. 

Mineral fertilizer 

In the following, waste generation in AN and SSP production, and in production of their 

raw materials, NH3, HNO3, H2SO4 and rock phosphate, are studied. There are no 

significant solid or liquid waste products associated with AN, SSP, NH3 and H2SO4 

production. In these manufacturing processes negligible quantities of waste are generated, 

for example, as spent catalyst. There is no solid waste production in HNO3 production 

either, but minor liquid waste waters containing dissolved salts and small amounts of 

ammonia exist. However, the recovery rate of liquid waste waters is high and 

environmental significance of waste waters is negligible. (Windridge, 1996) Phosphate 

rock is mined and beneficiated from phosphate ore: 5 t of the latter is needed to yield 1 t of 

the former. In the BioA case, phosphate rock requirement is 0.06 t (see Figure 5-10) and 
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thus waste generation linked to phosphate rock is 0.30 t phosphate ore/0.06 t phosphate 

rock. Therefore, waste generation in production of 0.33 t mineral fertilizer is 0.24 t 

phosphate ore. 

5.2.4.5 Usage and nutrient release 

Environmental impacts related to the fertilizer usage and nutrient release were dealt with 

two parts. First, the impacts which originate from application were studied, and secondly, 

impact of nutrient release was examined. It was assumed that the same field application 

technique is used both for the BioA and the mineral fertilizer. The possibility to use the 

same application technique is important from the perspective of the end user as it facilitates 

the combined use of both fertilizer types if needed. In Finland, a general fertilizer package 

size intended for professional use is 650 kg and the maximum limit for spreading machines 

is in general 1200 kg/ha (Kivelä, 2013).  

 

Nutrient compounds of organic and mineral fertilizer have different release modes and 

distribution rates (see Table 4-2). Detailed nutrient mobility in soil solution was not 

studied but release rates of nutrient compounds were evaluated based on the literature. 

Nutrient release rate describes the ratio of the quantity of a nutrient in a fertilizer which is 

easily released in soil solution to the total quantity of nutrient in a fertilizer, as presented in 

Equation 5.26: 

𝑋𝑖 % =
𝑚 𝑖𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑

𝑚 𝑖 𝑡𝑜𝑡𝑎𝑙

, ( 5.26 ) 

Where 𝑋 is release rate percentage,  𝑚 is mass and the lower index 𝑖 refers to a nutrient.  

BioA fertilizer  

The 1.38 t of BioA fertilizer needs to be applied per hectare to satisfy nutrient 

requirements of N and P which equals to 2.1 fertilizer packages. Particularly in the case of 

organic fertilizers, it is essential to define release rates of nutrients. Release rate is not 

always equal to solubility rate because organic compounds have two routes via which they 

may become available for plants: decomposition and dissolution, and release rate covers 

both of these. The release rates of four compounds were studied: P and K compounds 

found in the fly ash and N and P compounds found in the digestate. The release rate of the 

N obtained by biogas stripping was not studied because, in order to facilitate the process 

calculations, it was supposed that all N origins from the digestate. 

 

Because ash is inorganic material, nutrients bound to ash compounds are released mainly by 

dissolution, not by decomposition. Thus in the case of ash, release rate equals solubility 

rate. In the present case study, solubility rate is defined as the ratio of the quantity of easily 

soluble nutrients to the total quantity of nutrients. Easily soluble plant nutrients in ash are 

commonly determined using ammonia acetate extraction (Dahl et al., 2009). Solubility 
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rates of fly ash containing P and K compounds collected from the literature references are 

presented in Table 5-17. Based on the information provided in Table 5-17, the average 

solubility rate for P compounds is about 8% and for K compounds about 45%. These 

average values were used in the present case study.  

Table 5-17. Solubility rates of the primary nutrients found in fly ash. 

Fuel composition Solubility rate (%) Reference 

  P K   

Wood waste (43%)  9.8 48.9 Nurmesniemi, Pöykiö et al. 2008 

Peat (57%)     

Wood (30-40%) n.a. 37.7 Steenari, Lindqvist 1999 

Peat (60-70%)     

Wood n.a. 55 Ohno 1992 

Wood 5.7 40 Ohno, Erich 1990 

Average value 7.8 45.4   

n.a. not available 

 

The primary nutrient compounds of organic digestate are N and P. The main release mode 

for digestate bound compounds is decomposition, or mineralization, but dissolution also 

occurs. Anaerobic digestion alters nitrogen compounds so that they are more readily 

available for plants. This is essential as the mineralization rate of insoluble organic nitrogen 

compounds is rather low. (Kapuinen, 2013) Lukehurst et al. (2010) have reported that N 

utilization percentage was on average 80% for 20 samples of digestate originating from a 

co-digestion of slurry and organic wastes from the food industry. The nutrient utilization 

percentage is defined as the relative quantity of mineral fertilizer nutrient necessary to 

obtain the equivalent crop yield as the total quantity of nutrients in the digestate (Lukehurst 

et al., 2010). Because in mineral fertilizers nutrients are 100% available for plants, the 

nutrient utilization percentage is equal to the release rate. Kivelä (2013) estimates that the 

general release rate of N in the digestate is between 80 and 90%.With reference to the 

information provided by Lukehurst et al. (2010) and Kivelä (2013), in the present case 

study it was assumed that 85% of total N in the digestate is usable for plants. According to 

the instructions administrated by Agricultural Environmental Aid, 40% of P originating 

from the waste water treatment plant sludge is considered to be released in soil solution 

and this valued was used in the present case study (Nummela and Tuononen, 2009).  

 

Four studied release rates are recapitulated in Table 5-18. These release rates were 

employed in the present case study but they do not hold true universally, because nutrient 

release is also influenced, for instance, by downstream processing techniques of the raw 

material streams, soil microbial activity, and soil C:N composition (Roy et al, 2006; 

Palojärvi et al., 2002). The release rate of P in the BioA fertilizer was obtained by 

multiplying the total P mass flow in ash accept and in solid digestate by their flow specific 
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release rates and then based on those values and to the fact that the fertilizer is composed of 

50% of digestate and 50% of ash, release rate of P in final product was calculated according 

to Equation 5.26. The total P mass flows were obtained from Table 5.4. 

Table 5-18. Release rates of N, P and K. 

Flow 
Release rate (%) 

N P K 

Ash accept – 8 45 

Solid digestate  85 40 – 

Fertilizer 85 19 45 

 

To illustrate the impact of the release rates on the nutrient content of the fertilizer, both 

the total quantities of nutrients and the released quantities of nutrients for the BioA 

fertilizer are presented in Table 5-19.  

Table 5-19. Concentrations of the primary nutrients in the ash accept and solid digestate and in the final 
BioA fertilizer product. Concentrations of the nutrients are presented both on a total quantity basis and on a 
released quantity basis. 

Material flow 

  Nutrient  (kg/t material flow)  

t N total N released P total P released K total K released 

Ash accept  1 –   11.7 0.9 12.1 5.5 

Solid digestate  1 100.0 85 6.4 2.6 – – 

Fertilizer 1 50.0 42.5 9.1 1.8 6.1 2.7 

All values are reported on a dry matter basis. 

Mineral fertilizer 

The 0.33 t mineral fertilizer, which needs to be applied per hectare to satisfy the nutrient 

requirements of N and P, is equal to 0.5 fertilizer package, which spreading to fields 

presents no problem. Mineral fertilizers only contain inorganic nutrient compounds which 

are assumed to be completely available for plants; consequently, their release rates were 

assumed to be 100%. Thus, in the case of mineral fertilizer, the total quantity of a nutrient 

equals to the released quantity of a nutrient. 
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5.2.5 Framework for Life Cycle Impact Assessment (LCIA) 

The third phase of an LCA, a Life Cycle Impact Assessment (LCIA), facilitates evaluation of 

the importance of the data gathered on the input and output modules in the previous LCI 

phase. In LCIA, the inventory analysis data is allocated to the impact categories for which 

category indicators and characterization factors are selected. Complete accomplishment of 

the LCIA includes definition of the impact categories, the category indicators and the 

characterization factors and their employment for the inventory data.  

 

Within the present case study, only a preliminary LCIA study indicating the most relevant 

impact categories in the present case was outlined. In the preliminary LCIA, it was 

estimated to which impact categories the environmental impacts studied in the LCI are 

related to. Evaluation of the suitability of different category indicator options and 

methodologies to estimate characterization factors was not examined within this study. The 

BioA fertilizer and the reference mineral fertilizer were not studied separately because the 

LCIA framework is suitable for the both cases. 

 

The interconnections between inventory data, impact categories and areas of protection are 

depicted in Figure 5-11. In the BioA case, the most significant impact categories appeared 

to be resource depletion, climate change and eutrophication. Significance of the impact 

categories was evaluated according to the amount of inventory data linked them. This 

preliminary outline can be utilized in possible further studies concerning the performance 

of the complete LCA of the fertilizer production. 
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Figure 5-11. Preliminary outline of the LCIA study. The most significant impact categories in the present 

case study are made bold. 
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6 RESULTS AND DISCUSSION 

Results and discussion of the BioA case study are dealt in two parts because the case study 

was also performed in two parts. As in the case study, the first part concentrates on the 

composition of the BioA fertilizer and the second part on the results of the environmental 

assessment. 

6.1 COMPOSITION OF BIOA FERTILIZER 

The first objective of the case study was to determine the nutrient content of the BioA 

fertilizer according to the design criteria applied to the present study and to evaluate if the 

calculated product composition meets the requirements set by the limiting factors (see 

Figure 5-1).  

 

According to the process calculations, the NPK rating for the BioA fertilizer is 5-1-1 and 

the fertilizer product contains 1.35 kg Cd/t fertilizer. Consequently, the composition of 

the BioA fertilizer does comply with the requirements set by the two limiting factors 

according to which the nitrogen content of the fertilizer must be above 4% and the Cd 

concentration below 1.5 kg Cd/t fertilizer. Thus, according to the design criteria used in 

the present study, the BioA fertilizer is a technically feasible product. 

 

The composition of the BioA fertilizer can be altered by changing the proportions of ash 

and digestate. According to the design criteria employed in the present study, the BioA 

fertilizer contains 50% ash accept and 50% solid digestate on a dry matter basis; values also 

respectively corresponding to the inorganic and organic matter of the fertilizer. On a wet 

weight basis both the inorganic and organic matter contents of the BioA fertilizer are 40% 

as the moisture content of the fertilizer is 80% (see Table 5-9). However, comparison of 

the BioA fertilizer with commercial organic fertilizers shows that the organic matter 

content of the BioA fertilizer is lower and the moisture content higher than those of the 

reference organic fertilizers (see Table 6-1). The N source of the BioA fertilizer is the 

digestate and stripped ammonia flow and consequently one explanation for the rather low 

N content of the BioA fertilizer is the low organic matter content, or the digestate content, 

and the high inorganic, or the ash, content.  
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Table 6-1. Comparison of the compositions between the BioA fertilizer and two commercial organic 
fertilizers Viljo and Arvo. Compositions of Viljo and Arvo are obtained from Elosato Ltd. (2013) and 
Novarbo Ltd. (2013), respectively. 

  BioA (5-1-1)1 Viljo (8-5-1)2 Arvo (4-1-2)2 

Primary nutrients       

Nitrogen (%) 

 
    

Total 5 8 4 

Easily available  4.3 2.5 2 

Phosphorus (%)       

Total 1 5 1.2 

Easily available 0.19 0.15 1 

Potassium (%)   
 

  

Total 1 1 2 

Moisture content (%) 20 5 10 

Organic matter content (%) 40 65 70 
1Easily available defined by release rate (see Table 5-18) 
2Easily available defined as water soluble 

 

Figure 6-1 depicts the influence of the proportions of ash and digestate on the nutrient 

content of the BioA fertilizer. In order to have the nitrogen content above 4%, the BioA 

fertilizer can contain maximum 60% ash and consequently the digestate content must be 

minimum 40%. Figure 6-2 illustrates the dependence of Cd concentration of the fertilizer 

product on the proportion of ash accept. To maintain the Cd concentration below the 

maximum permitted limit 1.5 kg/t fertilizer, the BioA fertilizer can contain maximum 

55% of ash accept. Thus, of the two limiting factors, the Cd concentration sets a more 

strict restriction for the proportion of ash accept and thus it is the dominating limiting 

factor. 
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Figure 6-1. Effect of the proportion of ash on nutrient composition. 

 

 

Figure 6-2. Effect of the proportion of ash on Cd concentration. 

Beyond the current project plan, one scenario to increase nitrogen content of the digestate, 

and hence nitrogen content of the fertilizer, is to exploit nitrogen embedded in the 

digestate effluent (the liquid fraction of the digestate). Currently, the digestate is separated 
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into a solid fraction and effluent in the mechanical dewatering and the effluent is redirected 

to the algal cultivation. The fertilizing value of nitrogen embedded in the digestate effluent 

corresponds to mineral nitrogen compounds as it is mostly in inorganic form (Marttinen et 

al., 2013). The employment of the digestate effluent for fertilizer production would 

increase nitrogen content of the fertilizer, but simultaneously preclude the algal cultivation 

option since no nutrients would be returned to the algae cultivation site. However, 

separation of nitrogen and phosphorus from the digestate effluent is a common practice in 

biogas plants which aim to utilize digestate for fertilizing purposes (Latvala, 2009).  

6.2 ENVIRONMENTAL ASSESSMENT 

In the environmental assessment, a Life Cycle Inventory Analysis (LCI) was performed. 

The LCI studied the environmental impacts of five modules which were raw material 

consumption, energy consumption, atmospheric emissions, waste generation and use and 

nutrient release. Results are presented by modules except raw material consumption and 

waste generation modules which are examined jointly. If not mentioned otherwise, results 

are given on a functional unit basis. Finally, a summary of the environmental assessment is 

provided. 

Raw material consumption and waste generation 

The raw material consumption and waste generation are linked together due to the 

manufacturing method of the BioA fertilizer. In the case of the BioA fertilizer, ash and 

digestate can be considered both as raw materials for fertilizer production and as waste to 

be eliminated. From the LCI perspective, definition of the type of these streams is 

recommended as it facilitates allocation of material streams to one module and thus double 

calculation is avoided. Definition of the ash and digestate streams only as waste, instead of 

the current situation in which they are recognized both as raw materials and waste, would 

give an environmental credit for the BioA fertilizer production. The basis of the 

environmental credit would be that no raw materials would need to be produced and in 

addition waste would be eliminated.  

 

Within the mineral fertilizer production, there is now overlap between raw material 

consumption and waste generation in the present study. According to the literature, waste 

generation in mineral fertilizer production is not a major issue and possible by-products are 

often redirected to other processes in which they are reused (Windridge, 1996; 

Wiesenberger, 2002). 

 

Figure 6-3 presents the raw material consumption and Figure 6-4 the waste generation of 

the BioA and the reference mineral fertilizers on a functional unit basis. In the case of the 

waste generation of the BioA fertilizer, the ash accept and solid digestate used for the 

fertilizer production are defined as eliminated waste and thus indicated as negative flows. 
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Ash reject is the heavy metal containing fraction of the fly ash which is not used for the 

fertilizer production. 

 

Abbreviations: SSP = single superphosphate, AN = ammonium nitrate, PO = phosphate ore, H2SO4 = sulfuric acid, 

HNO3 = nitric acid and NH3 = ammonia. 
 
Figure 6-3. Raw material requirements to yield the required amount of the BioA and the reference mineral 

fertilizers on a functional unit basis. 

 

 

 
Figure 6-4. Waste generation in the production of the BioA and the reference mineral fertilizers on a 

functional unit basis. 
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In the raw material consumption and waste generation the BioA fertilizer is superior to the 

mineral fertilizer as the production does not consume raw materials but eliminates waste. 

In addition, the raw materials for the BioA fertilizer are recycled renewable materials 

whereas the raw materials for the mineral fertilizer are mainly virgin, non-renewable 

materials. Consideration of ash and digestate in the BioA case as eliminated waste instead of 

consumed raw materials leads to a negative material balance. A negative material balance 

can be a significant contributor in the total environmental impact balance of the BioA 

fertilizer. However, the significance of the material balance in the total environmental 

impact balance remains unsolved within this study since its evaluation would require 

performance of a complete Life Cycle Impact Assessment (LCIA).  

Energy consumption 

The energy consumption consists of different type of activities in the BioA and mineral 

cases. In the BioA case, the energy consumption is related to the unit operations, such as 

mechanical processes, whereas in the mineral fertilizer case unit operations play a minor 

role and the most significant contributors to the energy consumption are feed and fuel 

requirements of chemical reactions. 

 

Contrary to the expected result, on a functional unit basis production of the BioA fertilizer 

consumes more energy than production of the mineral fertilizer. On a tonne basis, energy 

consumption is to the contrary: production of the mineral fertilizer consumes more energy 

than production of the BioA fertilizer. The energy consumption on a functional unit basis is 

3.1 GJ/1.38 t BioA fertilizer and 2.7 GJ/0.33 t mineral fertilizer but on a tonne basis same 

values are 2.2 GJ/t and 8.0 GJ/t, respectively. This confirms that production of the 

mineral fertilizer is energy intensive, but also efficient concerning the nutrient content of 

the product. The energy consumptions of the BioA and mineral fertilizers both on a 

functional unit and on a tonne basis are illustrated in Figure 6-5.  

 

Total energy consumption in the production of the BioA fertilizer may still increase due to 

the hygienization step which was presently excluded from the calculations. On the other 

hand, it is estimated that the waste heat from the pulp and paper mill integrate could be 

utilized in the drying steps of the fertilizer production and consequently the total energy 

consumption in the production of the BioA fertilizer would be decreased.  
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Abbreviations: FB = fertilizer blending, AC = ash classification, MD = mechanical drying, SSP = single 
superphosphate, MA = mining activities, AN = ammonium nitrate, HNO3 = nitric acid, NH3 = ammonia, and 
H2SO4 = sulfuric acid. 

Figure 6-5. Energy consumption on a functional unit basis and on a tonne basis. 
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study, the averages of available values were employed. As a consequence, the margin of 

error in emission level values may be assumed to be rather large. 

 

In the mineral fertilizer production, CO2 (170 kg) is responsible for over 99% of the total 

emissions. Depending on the literature cited, the possibility to reuse CO2 in other 

processes is recognized and thus the quantity of CO2 emissions linked to the fertilizer 

production could be reduced. However, in the present study, the decision was made not to 

give an emission credit for reuse of CO2 and therefore CO2 emissions may have become 

exaggerated. In the mineral fertilizer production, CO2 emissions exclusively originate from 

the NH3 production. Other emissions are NOx (0.96 kg), NH3 (0.05 kg) and SOx (0.11 kg) 

of which NOx are linked to the NH3 and HNO3 productions, NH3 to the AN production 

and SOx to the H2SO4 production (see Table 5-19). The quantities of emissions in a 

compound level are depicted in Figure 6-6.  

 

N compound: 
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Figure 6-6. Sources of emission releases and quantities of emissions in a compound level associated with 

the production of the mineral fertilizer. 

 

The CO2 emissions compose over 99% of the total emissions when emissions are measured 

in kilograms. However, the use of kilograms as the basis of the calculations overestimates 

the role of the CO2 emissions whereas the significance of other emission compounds is 

underestimated. This can be corrected by using emission equivalents which take into 

account both, the quantity and the quality of the emission. Emissions expressed in 

kilograms can be converted into emission equivalents by multiplying them by emission 



 

75 
 

specific characterization factors. Emission equivalents were not calculated in the present 

study because the calculation requires more accurate information of emission compounds. 

In addition, the calculation of emission equivalents is part of the LCIA. 

Use and nutrient release 

The required quantity of the BioA fertilizer, 1.38 t/ha, exceeds the estimated maximum 

limit for fertilizer spreading machines which is 1.20 t/ha (Kivelä, 2013). However, the 

required quantities of the reference organic fertilizers are similar to that of the BioA 

fertilizer: Arvo 4-1-2 requires 1.5 - 2.7 t/ha (Novarbo Ltd., 2013) and Viljo 8-4-8 

requires 0.75 - 1.25 t/ha (Elosato Ltd., 2013). This indicates that application volumes 

larger than 1.20 t/ha may not hamper use of fertilizer and the estimated maximum limit of 

fertilizer machines should be verified. However, due to the over fourfold required quantity 

of the BioA fertilizer (1.38 t/ha) compared to the required quantity of the mineral 

fertilizer (0.33 t/ha), environmental impacts related to the application of fertilizer are 

larger in the case of the BioA fertilizer. 

 

Due to the complicated release mode of organic fertilizer compounds, actually fewer 

nutrients are available for plants than NPK rating indicates. Figure 6-7 illustrates the 

quantities of the primary nutrients in 1.38 t of the BioA fertilizer and in 0.33 t of the 

mineral fertilizer. In the case of the BioA fertilizer also the ratio of the released nutrients to 

the total nutrients is presented. The release rates of N, P and K in the case of the BioA 

fertilizer were obtained from Table 5-21.  

Figure 6-7. Quantities of N, P and K in the BioA and mineral fertilizers on a functional unit basis. In the 

case of the mineral fertilizer, the total quantity of a nutrient equals to the released quantity of a nutrient. 
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Although organic fertilizers cannot compete with mineral fertilizers in quantity of 

nutrients, they have other important characteristics. Organic fertilizers increase the 

amount of organic matter in soil and activate microbiological population; which both have 

various positive effects on soil structure which may be difficult to evaluate. Nevertheless, 

the capability of organic fertilizers to improve soil structure should be acknowledged and 

an environmental credit given as compared to mineral fertilizers, which nourish plants but 

not soil.  

 

From an environmental life cycle perspective, mobility of fertilizer compounds in soil 

solution is an important factor which, however, was not studied. The slow release of 

organic compounds in soil solution diminishes nutrient leaching into water bodies. 

Contrary to the organic compounds, inorganic compounds are quickly released in soil 

solution. Due to their water solubility, some of inorganic compounds are washed away into 

water bodies and thus contribute eutrophication. To conclude, some salient characteristics 

of organic fertilizers are not readily measurable and thus evaluation of their importance is 

demanding. Notwithstanding these difficulties, their impacts on total environmental 

balance of the fertilizer should not be undervalued.   

Summary of environmental assessment 

According to the results obtained, the undeniable differences between the BioA and 

mineral fertilizers are in energy consumption and use and nutrient release. Raw material 

consumption and waste generation also pose a point of difference but the magnitude of this 

depends on whether the raw material streams of the BioA fertilizer are defined as waste 

streams which exist regardless of fertilizer production or as raw materials produced in 

order to produce fertilizer. The importance of atmospheric emissions is challenging to 

evaluate as there was no information about the possible emissions related to the BioA 

fertilizer production. However, emission-free production may pose a significant advantage 

to the BioA fertilizer. Figure 6-8 describes the BioA and mineral fertilizers in regard to 

nitrogen content, energy consumption and required quantity. In addition to the x and y 

values, three dimensional graph contains z value which is represented in the size of the 

bubble. 
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Figure 6-8.  BioA and mineral fertilizers in regard to N content, energy consumption and use. The bubble 

size represents energy consumption. All values are presented on a functional unit basis. 

7 CONCLUSIONS AND RECOMMENDATIONS 

The aim of the thesis was to analyze organic fertilizer production in the BioA concept. Two 

research questions were set in order to determine the composition of the BioA fertilizer 

and to examine its environmental impacts compared to one reference mineral fertilizer. To 

summarize the results of the study, these research questions are now answered and 

recommendations for further actions are provided.  

 

1) What is the composition of the organic BioA fertilizer and is it a technically feasible 

product? 

 

The composition of the BioA fertilizer was calculated within the limits of the following 

design criteria. First, the BioA fertilizer was composed of 50% solid digestate and 50% fly 

ash, and no synthetized fertilizer compounds were added. However, additional nitrogen 

which is obtained by biogas stripping could be added to the fertilizer in order to balance the 

nutrient composition of the fertilizer. Secondly, the total solids content of the BioA 

fertilizer was set at 80%. In addition to the design criteria, the composition of the BioA 

fertilizer was restricted by the requirements of two limiting factors. According to the 

limiting factors, the lowest acceptable nitrogen content of the fertilizer was 4% and the 

cadmium concentration could not exceed 1.5 kg Cd/ t fertilizer. As a result of the study, it 

was calculated that the NPK rating for the BioA fertilizer is 5-1-1 and the fertilizer 

containes 1.35 kg Cd/t fertilizer. Thus, according to the design criteria used in the present 
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study, the composition of the BioA fertilizer does comply with both of the requirements set 

by the limiting factors and thus the BioA fertilizer is technically feasible product. 

 

The composition of the BioA fertilizer can be altered by adjusting the proportions of ash 

and digestate. To simultaneously maintain the nitrogen content above 4% and the cadmium 

concentration below 1.5 kg/t fertilizer, the proportion of the ash in the BioA fertilizer can 

be maximum 55%. Consequently, the proportion of the digestate is then 45%. However, 

if the nitrogen content of the BioA fertilizer is desired to be increased, it is recommended 

to modify the present design criteria for the BioA fertilizer so that the proportion of the 

digestate is increased and the proportion of the ash is decreased. The adjustment of the 

proportions of ash and digestate also affects the environmental impacts of the BioA 

fertilizer due to the varying quantities of the processed raw materials.  

 

The objective of the second research question was to study the environmental impacts that 

ensue during the life cycle of a fertilizer and to conduct a comparison between the 

environmental impacts of the BioA fertilizer and the reference mineral fertilizer in order to 

determine their differences.  

 

2) How do the environmental impacts that ensue during the life cycle of the BioA 

fertilizer differ from those of the reference mineral fertilizer?  

 

The complete life cycles of the fertilizers were not undertaken. Instead, the assessment of 

the environmental impacts was limited to the following five modules: raw material 

consumption, energy consumption, emission generation, waste generation, and usage and 

nutrient release. The module selection was successful as all five modules contributed 

towards the environmental impacts of the BioA fertilizer and the reference mineral 

fertilizer. The analyzed environmental impacts were calculated in proportion to the 

quantity of fertilizer required to obtain a crop yield of 3000 kg of barley per hectare. 

Consequently, the required quantity of the BioA fertilizer was 1.38 t/ha whereas the same 

figure for the mineral fertilizer was 0.33 t/ha. 

 

No unambiguous conclusion can be drawn about the results obtained as to whether the 

BioA or the reference mineral fertilizer is superior from an environmental perspective. 

However, it can be stated that concerning nutrient content, energy consumption and 

required quantity, the mineral fertilizer appeared to be superior, whereas, in terms of raw 

material consumption, waste generation and assumedly emission generation, the BioA was 

superior. It is worth acknowledging that the advantages of both fertilizers, the BioA 

fertilizer and the reference mineral fertilizer, appeared at different phases of their life 

cycles. The environmental impacts of the BioA fertilizer also depend on the definition of 

the purpose of the production: whether it is seen as the consumption of raw materials or as 

the elimination of waste.  
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Within the limitations of the present case study, the environmental impacts of the BioA and 

mineral fertilizers were compared only according to the five studied modules since no 

single value representing the total environmental impact balance can be provided. To 

calculate the total environmental impact balance of a fertilizer, a Life Cycle Impact 

Assessment (LCIA) should be conducted. Thus, it is recommended to continue the 

evaluation of environmental impacts of the BioA and mineral fertilizers by performing the 

LCIA based on the data provided in the present study. 

 

In summary, it appears to be possible to produce a technically feasible organic fertilizer 

product within the BioA concept. According to the environmental assessment conducted in 

the present study, the BioA fertilizer has smaller environmental impacts compared to the 

reference mineral fertilizer in three of the five studied environmental impact modules. 

However, environmental impacts were studied by their quantity and the results were not 

weighted according to their significance. Thus, within the limitations of the present study, 

it cannot be concluded that the total environmental impact balance of the BioA fertilizer is 

smaller than that of the reference mineral fertilizer. However, it can be stated that the 

BioA fertilizer has the potential of having reduced environmental impacts when compared 

to the reference mineral fertilizer and the evaluation of the potential requires the 

performance of a more complete Life Cycle Assessment study.  

 

Overall, compared to the mineral fertilizers currently dominating the markets, the 

production and use of the organic BioA fertilizer better complies with the tightening 

environmental politics which promote recycling of exploitable waste streams (EC, 2013b; 

Ministry of the Environment, 2011) and diminished reliance on non-renewable energy 

(EC, 2012a). Thus, it is recommended to continue the study of the BioA fertilizer and its 

environmental advantages over conventional mineral fertilizers. 
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