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1 Introduction

1.1 Background and motivation

It is beyond doubt that the communication technologies are becoming mobile. The
number and type of mobile devices are increasing. Some studies state that the
number of mobile devices will be comparable with the total world population by the
end of this year [37]. This increase is caused by the adoption of video related services
in mobile devices. These services require high capacity and low latency which pose
new requirements to the mobile networks.

In order to supply this increasing capacity demand on LTE, a cell size reduction is
proposed to deploy a large number of base stations with backhaul high connectivity.
The deployment of this small cell scenario increases the network capacity in the
access network which is translated into a big challenge on current mobile transport
networks due to its rigidity and complexity.

Current implementations of mobile core networks rely on specialized network
equipment. This equipment is expensive, complex to manage and nearly impossible
to modify. The systems based on specialized hardware makes more di�cult the
return of investment as they become obsolete on shorter periods of time due to the
reduction of the hardware life cycle. A long life cycle on these systems hinders the
network evolution.

A new cost e�ective solution is required by network operators in order to satisfy
the increase of subscriber transport capacity demands. It is expected that virtual-
isation of the LTE network elements will deliver the required solution. Moreover,
a testbed is deployed to prove the virtualisation of LTE will bring the expected
bene�ts while still complying with the 4G latency requirements. The virtualization
of LTE network nodes allows the transfer of the functionality to data centers to
run on commodity servers, thus improving scalability and e�ciency of LTE network
elements. It is foreseen that a software based solution have the potential of speeding
up the mobile network evolution.

1.2 Scope

The goal of this thesis is to build an EPC testbed based on existing open source
LTE network elements running in a data center to study the feasibility of EPC
virtualisation. To build the EPC testbed only open source implementations have
been considered because of the advantages of having the source code available and
the possibility to modify it. There are some open source projects implementing
mobile network nodes, but the available open source projects including LTE nodes
are very limited.

The S-GW and P-GW nodes are available as an open source project [41], but
no open source implementation of the MME was available. This thesis designs
and implements the MME node logic, including the di�erent protocol stacks, the
required interfaces and the MME state machines. The objective of implementing
the full MME is to measure its performance as a virtualised node and provide the
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source code for its future extension with new functionality such as SDN controller.
The results obtained from the testbed show that is possible to virtualise the EPC

nodes on a data center and still comply the signalling latency requirements included
on the 3GPP standards [18].

1.3 Thesis structure

Chapter 2 provides the de�nition, background and types of virtualisation, the chap-
ter ends with possible features to take into account in order to deploy LTE using a
virtualisation environment. Chapter 3 describes LTE and summarizes technical de-
tails included in the standards de�nitions This chapter is intended as a state of the
art analysis. Chapter 4 exposes the design and implementation strategies used on
the MME development. Chapter 5 includes a description of the testbed built with
the implemented MME plus other open source LTE network elements. This chapter
also provides some measurement results in order to study the testbed performance
and compliance with the standards. Finally, chapter 6 provides �nal conclusions
and comments on future work.
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2 Virtualisation

The term �Virtualisation� is used to describe the creation of virtual resources by
the means of software. Virtualisation provides the required abstractions on a host
environment to emulate a required resource. Virtualisation can emulate resources
of di�erent kind, some of them are hardware platforms, operative systems, storage
devices and network resources.

This chapter introduces host virtualisation in Section 2.1, Section 2.2 describes
network virtualisation, Section 2.3 discusses LTE virtualisation and �nally the con-
clusions are in Section 2.4.

2.1 Host Virtualisation

The Virtualisation concept was introduced for the �rst time in the 60's by IBM while
developing time-sharing systems for mainframes [26], [27]. On the 50's computer
mainframes used to run batch jobs with punch cards, these jobs ran on sequence.
Time sharing concepts were introduced due to the need for scienti�c computing to
interact with the computer.

The �rst aim of virtualisation was to optimize the hardware resources for mul-
tiuser usage, it was a method to logically divide the available resources.

The mainframe IBM System/360 was designed to allow backward compatibility
with older IBM systems. At that time, that was a notable innovation because the
migration to a new system supposed a large cost for the companies due to the need
for rewriting programs and change all the printers, card readers, tape drives, etc.
The IBM System/360 was the IBM proposal to the MAC project.

The announcement of the MAC project by MIT opened a competition between
IBM and General Electrics (GE) to satisfy the computer hardware requirements.
Time sharing was not seen as important in IBM and the focus was on virtual memory.
The loss of the project by IBM provoked repercussions on IBM and they change their
strategy.

The �rst product of the new strategy was CP-40. CP-40 became the �rst virtual
machine OS in a fully virtualised hardware on an IBM System/360 but it had a
limited distribution because it was an internal solution. The architecture evolved
to CP/CMS, to separate the resource management and the user support. CMS
stated for �Cambridge Monitor System� and was responsible for virtual memory
time-sharing. CP-67 was launched in 1968 as the evolution of CP-40. These were
essentially research systems. The evolution continued to support MVS and UNIX.

In 1985, Intel 80386 microprocessor included a virtual machine monitor �Simul-
task�, by Locus Computing Corporation and AT&T, that enabled the execution of
a virtual i8086 guest OS on a UNIX System V OS host.

The hardware virtualisation evolution continued with SoftPC, VirtualPC, VMWare,
Xen and VirtualBox. However, the virtualisation on the application level must also
be noted. Solutions like Cygwin to run Linux applications on Windows or Wine to
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run Windows applications on Linux virtualise the system libraries of the original OS.
Java has to be mentioned as a special case of application level virtualisation. Java
was created by Sun Microsystems to enable applications to be executed on any OS
using a run-time environment, Java Virtual Machine (JVM). The Java application
is compiled to a platform independent bytecode binary that can be executed on the
JVM.

The software or �rmware to create a virtual resource on a host system is called
hypervisor. Virtualisation is intensively used on current data centers. It is imple-
mented with software, however, hardware vendors include virtualisation optimiza-
tion in their products.

The new tendencies explore the expansion of the virtualisation concept to new
levels. The most popular are the �Cloud� concept [28], Network Virtualisation [29]
and Network Functions Virtualisation [30].

The most common virtualisation nowadays is hardware virtualisation, a virtual
machine capable of running an unmodi�ed operative system (OS). This allows in
practice to have copies of real computers running at the same time on one physical
computer.

By means of virtualisation appeared other new concepts as Snapshotting or Tele-
portation. A snapshot stores the state of a virtual machine at an exact point of time.
The snapshot feature allows to backup the virtual machine before a risky operation.
Teleportation or migration uses the snapshot concept to restore a previous virtual
machine snapshot on a di�erent host, thus a virtual machine is temporary stopped,
snapshotted, moved and resumed on a new host on its own hypervisor. When the
snapshots are synchronized on di�erent hosts, they are able to provide a continuous
service when the source host is taken down.

The hardware virtualisation is divided into tree types depending on the virtual-
isation degree and how the host hardware is accessed. These types are detailed as
follows.

• Full virtualisation provides hardware emulation to allow a guest operating
system to run unmodi�ed.

• Partial virtualisation some hardware simulation is provided but not all,
some guest programs may need modi�cations to run on such environment.

• Paravirtualisation the hardware is not emulated, however the applications
are executed on isolated environments as they were running on di�erent sys-
tems. The applications running on a paravirtualised system require special
modi�cations.

Paravirtualisation is the most e�cient virtualisation type as the hardware is
directly accessed although it is more complex to develop applications for it.

On a full virtualised environment, the application development is simpler due to
the provided abstractions although these abstractions reduce the e�ciency of the
resources. On the other side paravirtualisation is the virtualisation type nearer to
the real host thus the hardware is accessed quicker but the management and the
software development on this framework is more complex.
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2.2 Network Virtualisation

This section introduces the state of the art of network virtualisation, based on
paper [31]. Section 2.2.1 introduces Network Virtualisation and explain the design
requirements identi�ed. Section 2.2.2 exposes the network virtualisation architecture
and its requirements. Section 2.2.3 include the di�erent implementations of network
virtualisation.

2.2.1 Network Virtualisation Perspective

Virtual Networks (VN) are de�ned as the concurrent use of physical networks for
multiple variants or instances of networks, slicing the physical network. Each slice
or network instance is a set of isolated resources for di�erent purposes on the same
shared physical infrastructure.

Currently, Internet fundamental innovation is limited by the deployment resis-
tance of the Service providers. It is referred to as Internet ossi�cation. The de-
centralized structure on multiple Internet Service Providers (ISP) require coordina-
tion for a wide-scale deployment of new services. The required coordination is not
achieved due to the little bene�ts the ISP obtain until the service is deployed on
other domains. The problem is that ISP doesn't control the entire end to end path.

Virtual Networks deployment on wide-scale is foreseen unsuccessful due to the
commented Internet ossi�cation. In order to address this problem a new business
architecture has been proposed. A decouple of the ISP role is required into two dif-
ferent entities, the Infrastructure Provider (InP) and the Service Provider (SP). The
InPs manage and deploy the physical network and o�er their networks to di�erent
SPs by means of programmable interfaces. The InPs compete with others with the
quality of their resources, and the programmable options they o�er. The SPs lease
the resources from di�erent InPs to o�er an end to end service to the �nal users.
The network resources of di�erent InPs are aggregated to create Virtual Networks.
These VNs suppose an abstraction to hide current heterogeneous network architec-
tures that limit Internet. The SPs are responsible for the protocols used on their
VNs to o�er the end to end service. The Virtual Network concept may become a
new networking paradigm.

Following are the identi�ed design criteria of a virtual network:

Flexibility Virtual networks should be �exible on every networking aspect. The
Virtual network manager should be allowed to deploy any topology without any
physical restrictions, provide any standard or custom protocol and routing, for-
warding functions. In addition, the manager of the virtual network should have
that freedom without the need to coordinate with any other.

Manageability The separation between InPs and SPs modularize management,
allowing a complete end-to-end control of the VN or accounting in the di�erent
layers. The management should be independent of the InPs to avoid the need of
coordination of di�erent InPs to establish an end-to-end service.
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Scalability The scalability is a basic requirement in order to deploy multiple VN
coexisting on the same infrastructure. The Virtualization technology must be scal-
able to be able to support the coexistence of VN without a�ecting their performance.

Isolation In order to deploy a fault tolerant environment and provide security and
privacy, the VN should be isolated by the virtualization technology. A network con-
�guration error on a VN should not a�ect other coexistent VN nor the virtualization
environment.

Stability and Convergence Related with the Isolation requirement, in the case
of a network virtualization environment error, all the coexistence VN can be a�ected.
The virtualisation design must ensure the stability of the network virtualisation
environment and in case of an error force the convergence of the VN to their stable
states.

Programmability is a basic requirement to ensure �exibility and manageability.
Network elements programmability is required to support custom protocols and
deploy new services. Di�erent levels of programmability can be considered during
the design of the network virtualisation environment. There is a trade-o� between
the security and the programmability of the network resources.

Heterogeneity may be present on di�erent parts of the network virtualisation.
The underlying network may be composed of di�erent heterogeneous networks, thus
the VN provides a uniform abstraction to work on. Heterogeneity may also be
present on the di�erent services, protocols and algorithms deployed on the VN.

Legacy Support or backwards compatibility is a great concern in order to facil-
itate the deployment of the designed virtualisation environment. It is common to
considerate the existing internet as another VN, but the e�ciency or the manner it
can be done is an open challenge.

2.2.2 Network Virtualisation Architecture

A VN is a subset of the physical network supporting it. VN is built with a collection
of virtual nodes connected using virtual links to deploy the desired topology. A
physical node may contain multiple virtual nodes. A virtual node may be either a
virtual host to represent the end point of a connection or a virtual switch to manage
the routing path. Virtual links use the network paths to connect the virtual nodes
on di�erent physical nodes, but they may also connect two virtual nodes on the
same physical node.

The described virtual architecture forces the following requirements:
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Coexistence A physical network should be able to support multiple VN simul-
taneously. The di�erent VN supported on the physical network share the available
resources without interfering with each other. A VN manager or a SP should be
able to con�gure the VN without interfering with other VNs, even in the case of VN
failure or con�guration error.

Recursion The recursion requirement refers to the possibility of spawning a new
VN on top of the existing one, creating a parent-child hierarchy between the VNs.
It is also known as VN nesting.

Inheritance The inheritance requirement is related with recursion. A child VN
inherits the architecture characteristics and constraints of the parent VN. This re-
quirement allow a SP to add value to the VN before reselling it to other SPs.

Revisitation The revisitation requirement represents the possibility hosting mul-
tiple virtual nodes on a single physical node. The VN is decoupled from the physical
network. Revisitation allow a SP to rearrange the VN topology without limits to
simplify the management. In addition, revisitation allow the creation of VN on a
single physical host.

2.2.3 Virtual Network Classes

The concept of multiple coexisting logical networks is common on networking liter-
ature [31] and can be categorized on the four following classes:

VLAN refers to Virtual Local Area Network. On layer 2, bridges form broadcast
domains, dividing the network. VLAN is a mechanism to expand or limit these
broadcast domains and decouple them from the physical location. A VLAN groups
physically distributed hosts on the same broadcast domain. VLAN is used to sim-
plify the network design grouping hosts with a common set of requirements. A
VLAN has the same characteristics as a normal LAN but the logical nature improve
the scalability, security and management issues present on normal LANs. VLAN is
de�ned in the standard IEEE 802.1Q [25].

The �rst implementations of VLAN were using switches with port level parti-
tioning support, known as port switching. This �rst approach required dedicated
cables for each VLAN. This type of VLAN is a layer- 1 VLAN. The withdraw of
that approach is that the mobility is not allowed.

The dedicated cables were substituted using tags on the packets, thus multiple
VLANs can be served using one single physical cable. The VLAN tag is included
in the MAC header of the network frames by the �rst switch supporting VLAN
and the last switch remove the tag. The switch acts as a di�erent switch for each
VLAN, hiding the tra�c of a VLAN to the rest of the VLANs, isolating the VLAN.
The VLAN is de�ned with the list of MAC address. This type of VLAN is known
as layer-2 VLAN. This approach provides full mobility for the users but the large
number of MAC addresses may be di�cult to manage.
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In order to simplify the MAC address management, the layer-3 VLAN is de�ned.
The VLAN membership is de�ned using the MAC protocol type �eld and the IP
subnet. The VLAN is de�ned for packets instead of hosts. The layer-3 VLAN
simpli�es the con�guration because the con�guration is learned by the switches.
Other high layer tagging exist depending of the transport protocol or even the
application.

Virtual Private Network is also known as VPN. A virtual private network is
a mechanism to extend a private network in public or shared networks as a WAN
or Internet. The main principle is to connect multiple geographically distributed
networks using tunnels. It is a point-to-point connection. VPN is widely used by
companies to connect di�erent corporate sites or to grant remote access to their
employers of local resources. To prevent the disclosure of private information, VPN
o�ers encryption and authentication.

In the edge of each VPN site there is a Costumer Edge (CE) device controlled by
the corporation and a Provider Edge (PE) device managed by the service provider.
These devices act as VPN tunnel endpoints depending on the VPN type.

A VPN can be classi�ed on di�erent classes depending on the protocols used,
the tunnel termination point location, the level of security, the OSI layer used on
the connection or whether they provide remote access or site-to-site connection.

Layer-2 VPNs (L2VPN) transport level 2 frames, usually Ethernet. L2VPN are
more �exible than VPN based on higher layers because there is no restriction on
layer 3 level. Layer-3 VPN transport layer 3 protocols and can be divided on two
classes depending whether the VPN is managed by the CE or by the PE. If the tra�c
is tunneled on the CE, the service provider is unaware of VPN existence. When the
service provider manages the VPN, the tunnel encapsulation is performed on the
PE and the CE acts as it is on a private network.

VPNs on higher layers are popular because their lightweight, easy install and
usage. On high layer VPNs, the remote location connection is a�ected by NAT and
Firewalls, therefore the con�guration o�ers higher granularity.

The VPN concept was introduced in RFC 4026 [23] and the terms generalized
in RFC 2547 [22].

Programmable Networks have a long research history and deployment attempts
[33]. Network Virtualisation and the Programmable Networks are two di�erent con-
cepts but their tight relationship has been considered in order to include the Pro-
grammable Networks in the current section. Network Virtualisation is one of the
possible use cases of Programmable Networks.

During the mid 90's, the frustration of many researches on the slow standard-
ization process of new protocols and the impossibility to test and deploy new ideas
for improving network services led them to the search of an alternative approach to
open the network control. The inspiration came from an analogy to the reprogram-
ming possibilities available on a single PC. The proposed solution was the Active
Network.
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Active Networks proposed a programming interface with an API to expose net-
work resources available on individual network nodes. The programming interface
should also support the de�nition of new custom functionality to process a subset
of packets passing through the node. The messages of such a network would include
the required code to implement that custom functionality in addition to the usual
data. The code inclusion on the messages was discriminated on two di�erent models:
1) the capsule model with the code encapsulated in-band with the messages, 2) the
programmable switch/route where the code was sent using out-band mechanisms.

Although interesting ideas involved, Active networks were not deployed on a wide
scale. The adoption of Active networks was stopped by the lack of a deployment
plan and a pressing need.

Next attempts try to solve smaller problems focusing on routing and con�gura-
tion management. The following technologies focus was to di�erentiate the control
plane and the data plane. In early 2000's, the network operators sought better ap-
proaches to certain network management function as path control due to the increase
of tra�c volumes. The innovations were the di�erentiation of the control plane and
data plane in addition to a logical centralized control of the network. These inno-
vations a�ected the network administrators. The control functionality was moved
from the network equipment to separate servers with centralized controllers. The
logical centralized controllers in addition to open source routing software lowered
the barrier to create prototype implementations.

On the mid-2000, Software De�ned Network (SDN) ideas emerged between the
Active Network and the pragmatism needed in order to deploy the technology in the
real world. In this context, one of the implementations, OpenFlow, gained popu-
larity (2011). Open�ow enabled more functionality than the early route controllers
using commodity network equipment. An OpenFlow switch contains packet han-
dling rules on di�erent tables. The packets are matched with a de�ned bit pattern
and the action associated is applied. In addition, the switch uses a set of counters
to track the number of packets and bytes and a set of priorities in case the packet
matches multiple rules.

The physical centralization of the SDN controller must be avoided in order to
increase scalability, reliability and performance, preventing a network failure due to
a controller error. The controller distribution introduces new challenges to maintain
a consistent network state. The physical distributed controllers should act as a
single, logically centralized controller.

Another concept related with SDN is the Network Operating System. The net-
work operating system software abstracts the network installation of state in network
switches to hide the applications and logic to control the behavior of the network.

Last tendencies in programmable networks, Network Functions Virtualisation
[30], show a return to the Active Networks early work.

Overlay Networks are logical networks deployed on top of an existing physical
network. Usually overlay networks are implemented on application level although
implementations on lower layers also exist. The most common implementation de-
sign is using tunnels to simulate the virtual links. Overlay networks do not require



10

changes on the lower layers in order to be deployed thus they have been used to
build inexpensive new network functionality and �xes.

The issues to be addressed with overlay networks include: performance insur-
ance, availability of internet routing, enabling internet multicasting, providing QoS
guaranties, denial of service attacks protection and network isolation. However, the
overlay networks inherit the restrictions of the physical network supporting it.

Overlay networks are widely used to deploy research testbeds to try new tech-
nologies. An example of an overlay network is X-BONE [34].

2.3 LTE possibilities

The most attractive gain of virtualising EPC is to deploy the core network func-
tionality on commodity servers, avoiding specialized hardware. EPC nodes can be
bundled on a single data center or split in di�erent locations, resulting on the re-
duction of CAPEX during LTE deployment.

Hypervisor functionality and virtual network controller could allow an improved
monitoring and operation of EPC nodes and its connections, allowing the allocation
of more resources during a peak of demand, including routing devices. The moni-
toring system should trigger the corresponding alarm when a potential problem is
detected. Both reactive and proactive strategies can be used in new virtualisation
technologies to solve punctual problems. In addition, the network programmability
may suppose a reduction of OPEX, simplifying the operation of the network due to
a logical centralized controller.

The �rst developed virtual EPC nodes may be virtualised on commodity servers
using cloud software such as OpenStack [49] using all virtualisation type. This
type simpli�es the development of the network element software implementing the
functionality of one of the required EPC nodes. On all virtualisation approaches
the software does not require any modi�cation. However, all virtualised approach
may not be e�cient enough, in such case the hardware access to the host resources
may be changed to allow a more direct access. The price to pay for speed is the
increase of the complexity of the guest application until paravirtualisation type is
reached. Whitepaper in [36] presents the results of a LTE deployment on a par-
avirtualised environment using specialized virtualisation hardware while managing
power management.

Current network virtualisation usually does not consider mobile networks. Most
of the network virtualisation implementations are not prepared to manage mobility,
but the �exibility requirements may be wide enough to support it. Further research
on network virtualisation could trigger the disruption of new mobile possibilities.

2.4 Conclusions

This chapter has exposed the virtualisation as the technology that provides software
abstractions to emulate a resource. Both hardware and network virtualisation are
potential disruptive technologies to be applied on mobile networks. Hardware vir-
tualisation is mature enough to start LTE node virtualisation testing, but network
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virtualisation needs more research and implementation e�orts in order to integrate it
with LTE hardware virtualisation and deploy a fully virtualised mobile core network.

The use of software resource abstractions provides new functionality impossible
in a physical framework such as snapshots and teleportation. These new functions
and the environment provide more �exibility on a LTE setup.

General design and architecture requirements of network virtualisation are in-
cluded and di�erent technologies are discussed. The logical network controller fea-
ture and the centralized network view are promising features in order to simplify
the operation and management of the network.

An improved VLAN technology merged with programmable networks may o�er
the mobility requirements to deploy a mobile network. The �nal solution should
involve lower layers to optimize the network and provide enough �exibility. In
addition, LTE network requires a granular network control to �ne tune it up to the
application level con�guration.
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3 LTE

This chapter provides an overview of LTE standards to build a functional LTE core
network. Section 3.1 provides an LTE de�nition. Section 3.2 describes the LTE
architecture and de�nes its network elements. Section 3.3 introduces the LTE bearer
concepts used to discriminate and manage the user tra�c. Section 3.4 details the
main LTE protocols used on the LTE core network. Finally, Section 3.5 explains
and depicts the main procedures implemented on the LTE testbed using network �ow
diagrams.

3.1 LTE Context

With the introduction of the smart devices into the market, the data transport re-
quirements have increased on the mobile networks. Multimedia services are being
moved to mobile devices such as smartphones or tablets. These requirements de-
mand an improvement of broadband technologies and Long Term Evolution (LTE)
is one of the proposed standards.

LTE is the mobile networks standard proposition of 3rd Generation Partner-
ship Project (3GPP) group as an evolution of Universal Mobile Telecommunications
System (UMTS). These standards are included in the 4th Generation (4G) of the
mobile networks. There are other 4G standards and standardization entities, such
as WiMAX, but LTE and 3GPP are the most accepted.

The LTE standards on its Release 10, called LTE-A (LTE Advanced), have
passed the ITU-R requirements IMT-A (International Mobile Technology Advanced)
for what is marked as 4G. The nominal data rate of these speci�cations is 100Mbit/s
with high mobility clients and 1Gbit/s with static clients.

As required by IMT-A, LTE is based on a packet switched network over IP on all
the nodes, from the User Equipment (UE) to the Packet Data Network (PDN). This
characteristic simpli�es the architecture and makes it more economic and scalable.
Although LTE is compatible with older 3GPP technologies, allowing the fallback
to circuit switched mode. This feature proposes LTE as the natural evolution of
current mobile networks.

3.2 LTE Architecture

The LTE architecture can be divided on Evolved Universal Terrestrial Radio Access
Network (E-UTRAN) and Evolved Packet Core (EPC). The whole system is called
Evolved packet system (EPS) and the non-Radio aspects are identi�ed under the
term �System Architecture Evolution� (SAE).

In Figure 1, we can observe a simple LTE non-roaming architecture. The stan-
dards de�ne the interfaces between the nodes and the protocols used to exchange
the correct information between them. The implementation of the node functional-
ity is speci�c for each vendor which relies on the standards to ensure compatibility.
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Figure 1: LTE network elements architecture

In addition, the network architecture between the nodes can be designed with the
requirements of the network operators.

A major change on E-UTRAN is the increase of the complexity of the eNodeB.
The new eNodeBs are capable of exchanging information between them to control the
UE mobility compared with the old NodeB that required a radio network controller
(RNC) for mobility management.

The tra�c can be divided on two planes, user plane and control plane. The user
plane transports the user data over IP protocol using a �virtual� connection called
EPS bearers explained in 3.3. The management of the EPS bearer is performed on
the control plane with Session Management procedures.

The following sections explain the network elements shown in Figure 1. For more
details see TS 23.002 [4].

3.2.1 MME

The Mobility Management entity is the main control plane node. It processes the
signalling between the Radio Access Network (RAN) and the EPC to manage the
available resources. The MME main functionality is the session management. It
manages the EPS bearers and the mobility processes to establish the required con-
nections. Other MME responsibilities are the security and authentication.

The main LTE interfaces of the MME node are S10, S11, S1-MME and S6a.
These interfaces are explained on the following section. There are other interfaces
related with the connection to non E-UTRA networks but are beyond of the scope
of this document which focuses uniquely on LTE network.

S10: This interface manages the connection between di�erent MME nodes. S10
is intended to allow the MME relocation when the UE moves out from one area
controlled by the origin MME to the new destination MME's area. The S10 inter-
face supports the transfer of the user information. The current implementation of
the MME does not consider the development of the S10 interface to transfer user
information to new MME but instead additional resources will be requested from
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Figure 2: S10 Protocol Stack, source TS 23.401 [3]

the data center where MME is running. However, when moving MME information
to di�erent data center the S10 interface might be required to allow the relocation
of subscriber information to a new virtually allocated MME. This interface uses the
GTP-C protocol speci�ed in TS 29.274 [8].

Figure 3: S11 Protocol Stack, source TS 23.401 [3]

S11: This interface connects the MME with the S-GW, to allocate new network
resources and route the EPS bearers on the data plane. The MME has no direct
connection with the P-GW, but it can con�gure the di�erent data plane routes
through the S11 interface. This interface uses the GTP-C protocol as in the S10
interface speci�ed in TS 29.274 [8].

S1-MME: It is the control interface between the MME and the eNB. S1-MME is
the signalling interface between the E-UTRAN and the EPC. This interface controls
the connection between MME and eNB and uses the S1AP protocol speci�ed in TS
36.413 [16]. The S1AP protocol uses the Non Access Stratum protocols (NAS)
speci�ed in TS 24.301 [6] between the UE and the MME.
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Figure 4: S1-MME Protocol Stack, source TS 23.401 [3]

Figure 5: S6a Protocol Stack, source TS 23.401 [3]

S6a: This is the reference point between the MME and the Home Subscriber Server
(HSS). The interface is used to exchange the UE location information and the sub-
scriber information. The MME sends the UE location information to the HSS and
the HSS sends to the MME the subscriber information needed to support the ser-
vices that the UE requires from the network. The data exchange is done using the
Diameter S6a/S6d Application as speci�ed in TS 29.272 [7] every time a new service
is requested by the UE or a UE mobility procedure is processed to refresh the UE
location.

3.2.2 eNB

The E-UTRAN Node B (eNB) is the network access element for E-UTRA. It pro-
vides the UE data and control plane terminations. The eNBs are grouped on a
network to form the E-UTRAN using the X2 interface. The E-UTRAN structure
has no centralized node, as opposite to the previous access architectures, it is a
�at structure. The eNB is connected to the EPC with the S1-MME interfaces as
explained on the MME section 3.2.1).

The eNB manages all the related radio functions to allow the access of the UE
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Figure 6: E-UTRAN Architecture and interfaces. Source: TS 36.401 [12]

to the EPC network. The protocols used between the eNB and the UE are known
as �Access Stratum� (AS) protocols.

Figure 7: S1-U Protocol Stack, source TS 23.401 [3]

S1-U The reference point between the eNB and the EPC is the S1-U interface.
This interface is on the data plane and is the endpoint of the tunnels used to trans-
port all the UE data. The tunnel protocol used is the GPRS Tunneling Protocol
User Plane (GTP-U) speci�ed in the TS 29.281 [9].

3.2.3 S-GW

The Serving Gateway (S-GW) is the EPC termination to the E-UTRAN. There is a
single S-GW for each associated UE on the EPS at a given time. The main function
of this node is to route and forward the user data to the selected P-GW's.

Other important functions of the Serving GW include Mobility anchoring, lawful
Interception, accounting on user and QCI granularity for inter-operator charging,
reporting to the PCRF, etc.

The interfaces of the S-GW are the S1-U, the S11 and the S5/S8.
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Figure 8: S5/S8 Protocol Stack, source TS 23.401 [3]

S5/S8 This interface is located between the S-GW and the P-GW for packet data
services. The S8 is the inter PLMN variant of S5. The protocols used are the GTP-C
and GTP-U for the control plane and the user plane. The Proxy Mobile IP (PMIP)
is another alternative to these protocols that can be used in this interface. The
PMIP is used by operators to simplify the inter-working with WiMAX/CDMA2000.

3.2.4 P-GW

The Packet Data Network Gateway (P-GW) is the LTE termination to the Packet
Data Network (PDN). A UE can access multiple P-GW if it is accessing more than
one PDN on the same PLMN. The P-GW main function is to decapsulate the UE
data of the GTP tunnel and forward UE data to the PDN. The P-GW will also
allocate the IP address of the UE. The P-GW has other functions as per-user packet
�ltering, deep packet inspection, lawful interception, Uplink (UL) and Downlink
(DL) rate enforcement by a rate policing / shaping, etc. The S5/S8, the Gx, and
SGi are the P-GW interfaces.

Gx is the reference point between the P-GW and the Policy and Charging En-
forcement Function (PCRF). The Gx Interface provides policy and charging rules
for the P-GW.

SGi is the interface between the P-GW and the Packet data network. The PDN
may be an operator external public PDN, private PDN or an intra operator PDN,
i.e. for IMS services. The UE IP address is exposed on this interface.

3.2.5 HSS

The Home Subscriber Server (HSS) is the main database containing the user infor-
mation on the Home Network.

Usually, a single server is required on a Home network, but the HSS can be split
on multiple nodes due to the organization of the network by the operator or to the



18

Figure 9: User Plane protocol Stack, source TS 23.401 [3]

number of subscribers that can limit the node performance.

The HSS stores the UE location information used to �nd the UE when needed by
applications, i.e. when UE has to receive a call. The HSS also stores the subscriber
information needed to support the services to the UE on the network. Subscriber
information contains the user identi�cations, the allowed bit rates and QoS, etc.
In addition, the HSS generates the security information required for the mutual
authentication including the ciphering and integrity keys.

S6a is the interface considered between the HSS and the MME, explained in
MME section (3.2.1).

3.2.6 PCRF

Policy and Charging Rules Function (PCRF) is the policy and charging control
element of the service data �ows and IP bearer resources.

PCRF functions are described in more detail in TS 23.203 [2].

The interfaces of the PCRF are the Rx and the Gx. The Gx interface has been
explained before in P-GW section (3.2.4).

Rx the interface between the PCRF and the operators IP services, i.e. IMS.

3.3 EPS bearer layered architecture

The EPS Bearer concept is considered as a connection-oriented transmission between
the User equipment (UE) and the Packet Data Network (PDN) endpoints. This
EPS Bearer is tunneled from the UE through the switching nodes up to the PDN.
Multiple EPS bearers can be established for a single UE. The key concept of the
EPS is the Quality of service parameter. Each bearer provides di�erent QoS for the
same or di�erent PDN and each QoS can be assigned to a di�erent service. The
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EPS bearers can be characterized by two endpoints, a QoS Class Identify (QCI),
the granted or maximum bit rate (GBR, MBR) and a tra�c �ow �lter.

When a UE requests the access to a PDN, a default EPS bearer is established
by the network to access the default PDN. This bearer is intended to be an always
on connection that will be available all the time during the UE connection. The
UE can request additional EPS bearers that will be established and those will be
dedicated Bearers.

Another classi�cation of the EPS bearers is the Granted Bit Rate (GBR) EPS
bearers and the non-GBR bearers. The GBR bearers provide a minimum bit rate
that allows special applications such as VoIP the required bandwith. Higher bit rates
are allowed but they can be limited using the Maximum bit rate parameter (MBR).
The non-GBR bearers allow a non real-time, best e�ort, delay tolerant services. The
default EPS bearer does not have any granted bit rate, thus is a non-GBR bearer.
The dedicated EPS bearers can be either GBR or non-GBR bearers.

Figure 10 shows EPS bearer service layered architecture to depict the relationship
between the di�erent bearers present on the EPS. The Radio data Bearer transports
the EPS Bearer packets from the UE to the eNB. The Evolved Radio Access Bearer
(E-RAB) is used to transport the EPS Bearer packets from the UE to the EPC.
There is a one-to-one mapping between the Radio Bearer and the E-RAB/EPS
bearer and between the E-RAB and the EPS bearer.

Figure 10: Bearer service architecture, based on clause 13.1 of TS 36.300 [11]

3.4 Protocols

This section includes the general characteristics and functions as summary of the
main protocols used on the EPC. A detailed description of the protocols is included
in the 3GPP speci�cations.

Following the de�nition of some common terminology is included.
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Elementary Procedure (EP) consists of an initiating message and it might also
include a response. EP is the basic element of the protocols. Therefore, protocols,
are de�ned as a set of elementary procedures.

There are three types of Elementary Procedures:

• Class 1: Elementary procedures with response, either successful or unsuccess-
ful.

• Class 2: Elementary procedures without response.

• Class 3: Elementary procedures with multiple responses reporting either suc-
cessful or unsuccessful outcome.

Message The data package send from one node to another in order to transfer
some information. The message is usually composed by a header and the Information
Elements of the protocol.

The messages shown on this section are sent using network octet order sending
�rst the bit 8, thus the most signi�cant one.

Information Element (IE) is the simplest encapsulation unit of the information
included in a message payload, which usually includes a set of IE's. The IE structure
and encoding vary depending on the protocol and IE type. A typical structure is a
TLV structure, type, length and value. The Value of an IE is the useful part of the
transported information.

3.4.1 S1AP

S1 Application Protocol (S1AP) is the signalling protocol used on the S1-MME
interface. The protocol is de�ned on TS 36.413 [16] using ASN.1 [19] [20] and en-
coded according to the Basic Packed Encoding Rules (BASIC-PER) Aligned Variant
speci�ed in ITU-T Rec. X.691 [21].

Transport The transport protocol of S1AP is the Stream Control Transmission
Protocol (SCTP) speci�ed on the RFC 4960 [24]. The Payload Protocol Identi�er
(PPI) assigned by IANA to be used by SCTP for S1AP is 18. A single SCTP
association is allowed per S1-MME interface and it is established by the eNB. The
SCTP destination port for S1AP is the 36412.

SCTP can manage multiple streams on a single association. These SCTP streams
are unidirectional and the maximum number of streams is negotiated during the
association process. S1AP reserves a pair of SCTP streams for non UE-associated
procedures and at least another pair of streams for the UE-associated signalling.
Although a few additional pairs of streams can be used for UE-associated signalling
added on top of the mandatory pair. (see clause 19.2 TS 36.300 [11] and clause 7 of
TS 36.412 [15]).

Following are described the most important functions of the S1AP protocol:
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• S1 UE context management functions to establish, modify or release a UE
context on the S1 interface.

• S1 interface management functions as error or overload indications, S1 Setup
function, load balancing or con�guration updates.

• Mobility Functions to manage di�erent handover types.

• Capability Info Indication function to transfer the UE capabilities to the MME.

• E-RAB management functions to setup, modify or release E-RABs.

• NAS Signalling transport function between the UE and the MME. S1AP trans-
ports a high layer signalling protocols, NAS.

Following is described the message structure of the S1AP protocol and S1SetupResquest
message is used as an example:

This is the basic message description using ASN.1:

S1AP-PDU ::= CHOICE {

initiatingMessage InitiatingMessage,

successfulOutcome SuccessfulOutcome,

unsuccessfulOutcome UnsuccessfulOutcome,

...

}

InitiatingMessage ::= SEQUENCE {

procedureCode S1AP-ELEMENTARY-PROCEDURE.&procedureCode ({S1AP-ELEMENTARY-PROCEDURES}),

criticality S1AP-ELEMENTARY-PROCEDURE.&criticality ({S1AP-ELEMENTARY-PROCEDURES}{@procedureCode}),

value S1AP-ELEMENTARY-PROCEDURE.&InitiatingMessage ({S1AP-ELEMENTARY-PROCEDURES}{@procedureCode})

}

The S1AP message is a choice structure with three possible message types, the
initiating message, the successful outcome and the unsuccessful outcome. This im-
plements the basic structure for a protocol with class 1 and class 2 elemental proce-
dures such as the current one. Each message type has the same structure, thus only
the Initiating Message de�nition is shown above.

The �elds included in every message type are the procedure code, the criticality
and the value. The procedure code is an integer to identify the procedure that will
help to interpret the value �eld. The criticality de�nes the required actions when
an error is found during the decoding. The value is a variable type depending on
the procedure code and the message type choice.

According to these rules, the header can be de�ned as the message type choice,
the procedure Code and the criticality. The header is encoded as depicted in Figure
11 using the BASIC-PER aligned encoding rules.

Below there are some value de�nitions for the given procedure.

s1Setup S1AP-ELEMENTARY-PROCEDURE ::= {

INITIATING MESSAGE S1SetupRequest

SUCCESSFUL OUTCOME S1SetupResponse

UNSUCCESSFUL OUTCOME S1SetupFailure

PROCEDURE CODE id-S1Setup

CRITICALITY reject

}
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Figure 11: BASIC-PER aligned encoding of the S1AP header

This de�nition of the value can be interpreted as an index. Thus the s1Setup
procedure links the message choice with a given structure and restricts the procedure
code and criticality values. Below there is the de�nition of the Initiating message of
the S1Setup procedure, linked to the S1SetupResquest value.

S1SetupRequest ::= SEQUENCE {

protocolIEs ProtocolIE-Container { {S1SetupRequestIEs} },

...

}

S1SetupRequestIEs S1AP-PROTOCOL-IES ::= {

{ ID id-Global-ENB-ID CRITICALITY reject TYPE Global-ENB-ID PRESENCE mandatory}|

{ ID id-eNBname CRITICALITY ignore TYPE ENBname PRESENCE optional}|

{ ID id-SupportedTAs CRITICALITY reject TYPE SupportedTAs PRESENCE mandatory}|

{ ID id-DefaultPagingDRX CRITICALITY ignore TYPE PagingDRX PRESENCE mandatory}|

{ ID id-CSG-IdList CRITICALITY reject TYPE CSG-IdList PRESENCE optional},

...

}

The S1Setup request has only one element, an IE-container. This IE container
bundles all the other IEs present on the message.

The last block in the message structure is a restriction that applies to the protocol
container. The restriction section of the message lists the allowed IE types with its
IE Id, the criticality,the required IE order and whether their presence is mandatory
or optional.

ProtocolIE-Field {S1AP-PROTOCOL-IES : IEsSetParam} ::= SEQUENCE {

id S1AP-PROTOCOL-IES.&id ({IEsSetParam}),

criticality S1AP-PROTOCOL-IES.&criticality ({IEsSetParam}{@id}),

value S1AP-PROTOCOL-IES.&Value ({IEsSetParam}{@id})

}

Finally, the above de�nitions describe the IE structure, which contains an IE Id,
a criticality �eld and a value �eld. The criticality �eld is again a variable type and
contains the information the IE is transporting. Every IE value has a de�ned type
on the S1AP standard. This value can be a container or a list to transport additional
IE structures, which enables IE nesting as common mechanism to exchange multiple
IE structures simultaneously.

The S1AP protocol is designed to be extensible in the future. The S1AP protocol
allows the communication between two machines with di�erent standard versions
using the extension marker �...� to indicate where the protocol can be extended.

The explained message structure is similar to all S1AP messages and can be
generalized. In this section only a summary of the protocol message structure is
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included, for more details see TS 36.413 [16]. The ASN.1 de�nitions of the protocol
can be found on the clause 9.3.

3.4.2 NAS

Non Access Statum (NAS) is the signalling protocol used to communicate the UE
with the MME. The protocol is de�ned on TS 24.301 [6].

The NAS is used to perform the following functions:

• EPS mobility management (EMM) of the user equipment (UE)

• EPS session management (ESM) to establish and maintain IP connectivity
between the UE and the P-GW.

• NAS security, integrity protection and ciphering of NAS messages

This functionality di�erences allow separating the NAS procedures on two di�er-
ent types, the EMM procedures and the ESM procedures. The ESM functions are
transported on an EMM IE. This separation of procedures with its own IE allows
the execution of these procedures in parallel. This parallel execution for ESM and
EMM allows creating two sublayers, i.e. the simultaneous execution of the EMM
Attach procedure and Activate Default Bearer ESM procedure between the UE and
the Network.

To implement the security function, the NAS message is ciphered and integrity
protected and �nally a modi�ed message header is added to encapsulate it.

The NAS protocol is transported by the radio interface and by the S1-MME
interface. On the S1-MME interface, the NAS messages are encapsulated on S1AP
messages.

Figure 12: Non Access Stratum protocol stack, source TS 23.401 [3]

All NAS messages shall be integrity protected, except for a non authenticated
UE. The ciphering on NAS messages in the network is an operator option.

The EPS security context groups all the security parameters. The EPS security
context is identi�ed by the Key Set Identi�er for E-UTRAN (eKSI). The EPS se-
curity context contains the requited parameters for mutual authentication and the
ciphering and integrity protection keys. The EPS authentication procedure between
the UE and the MME creates the EPS security context.
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The security context is taken into use by the UE and the MME after the security
command procedure.

EMM The EPS mobility management (EMM) sublayer manages the UE mobility.
The EMM procedures can be divided into three types:

• EMM common procedures: always initiated by the network, include GUTI
reallocation, authentication, security mode control, identi�cation, EMM in-
formation.

• EMM speci�c procedures: detach and combined detach and UE initiated,
include attach and combined attach, normal tracking area updating and com-
bined tracking area updating and periodic tracking area updating.

• EMMConnection Management procedures (ECM): transport of NAS messages
and UE initiated service request and paging procedure.

Figure 13: EMM state machine on MME, source TS 24.301 [6]

The EMM State Machine on the MME node is shown in Figure 13 and includes
the following states:

• EMM-DEREGISTERED state, the UE is detached from the network. The
expected procedures are attach, tracking area update or detach procedures.
The MME will answer the messages related to these procedures.

• EMM-COMMON-PROCEDURE-INITIATED state, the MME has initiated a
common procedure and it is waiting the response.

• EMM-REGISTERED state, the EMM context has been established and there
is an active default bearer on the MME.
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• EMM-DEREGISTERED-INITIATED state, the MME started a detach pro-
cedure and is waiting for the UE response.

Figure 14: EMM state machine on UE, source TS 24.301 [6]

The EMM State Machine on the UE is shown in Figure 14. The state machine
in the UE is similar to the EMM state machine in the MME node. Some states are
added to treat the class 1 procedures that the UE can initiate, Service request pro-
cesses, tracking area update process and a initiating point NULL state. In addition
to those procedures, there are some transition modi�cations.

ESM The EPS Session Management (ESM) sub layer handles the EPS bearer
contexts and following are the two types of procedures:

• The activation, deactivation and modi�cation of the EPS bearer contexts,
initiated by the MME.

• The request for resources by the UE. These resources include the IP connec-
tivity to a PDN or a dedicated bearer resource.

In addition, there are another two procedures, the ESM status procedure and
the noti�cation procedure that can not be included in these types.

The ESM state machine on the MME node is shown in Figure 15 and include
the following states:
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Figure 15: ESM state machine on MME, source TS 24.301 [6]

• BEARER CONTEXT INACTIVE state, no Bearer contexts exist

• BEARER CONTEXT ACTIVE PENDING state, the network has initiated a
bearer context activation procedure and it is waiting for the UE response.

• BEARER CONTEXT ACTIVE state, there is a bearer context active.

• BEARER CONTEXT INACTIVE PENDING state, the network has initiated
a bearer context deactivation procedure and it is waiting for the UE reponse.

• BEARER CONTEXT MODIFY PENDING state, the network has initiated
a bearer context modi�cation procedure and it is waiting for the UE reponse.

The ESM state machine on the UE is shown in Figure 16. The ESM state
machine depicted in the �gure shows the �rst type of procedures, the ones related
with the EPS bearer management. The second state machine at the bottom of the
�gure corresponds to the processing of the second type of procedures, handling the
resource requests of the UE to the network.

The structure of these state machines is simple, the �rst state machine stores the
status of the bearer contexts while the second one state machine in the bottom is
generic and handles a class 1 elemental procedure. The left part of the state machine
is the initial state and a transition is made when the procedure is initiated sending
the request message, and the right part of the state machine is the state waiting
response. The receiving of the network response triggers the transition to the initial
state.
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Figure 16: ESM state machines on UE, source TS 24.301 [6]

Figure 17: General message organization example for a plain NAS message, source:
clause 9 TS 24.301 [6]

Message structure The NAS message structure of a plain message is depicted
in Figure 17.

Protocol Discriminator (PD) indicates the type of the protocol of the message.
The values for the current protocols are: 2 for EPS session management messages
and 7 for EPS mobility management messages.

Figure 17 represents both the ESM and EMM plain message. The di�erences
on the header are the following. On the EMM messages, the higher part of the
�rst octet corresponds to the security header type and the depicted 1a octet is not
present. On ESM messages, the higher part of the �rst octet contains the EPS bearer
identi�cation and the 1a octet is present, containing the procedure transaction Id.

Security header type can contain the values shown in Table 1. There are some
restrictions on these values. The 0011 value can only be used on a SECURITY
MODE COMMAND message and the 0100 value can only be used on a SECURITY
MODE COMPLETE message.

EPS bearer ID value range is 5 to 15, using the value 0 when no EPS is bearer
assigned. The rest of the values are reserved. The other �elds are self-explanatory
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8 7 6 5
0 0 0 0 Plain NAS message, not security protected

Security protected NAS message
0 0 0 1 Integrity protected
0 0 1 0 Integrity protected and ciphered
0 0 1 1 Integrity protected with new EPS security context
0 1 0 0 Integrity protected and ciphered with new EPS security context

Non-standard L3 message:
1 1 x x Security header for the SERVICE REQUEST message

All other values are reserved.

Table 1: Security Header type

and they indicate the procedure and message type of the NAS message.

Figure 18: General message organization example for a security protected NAS
message, source: clause 9 TS 24.301 [6]

The ciphered and/or integrity protected message has a di�erent header as de-
picted in Figure 18. This header is added to the plain message in case of only
protecting the integrity or the header is added to the ciphered message in case of
ciphering and integrity protected message.

Message Authentication Code (MAC) is the information element containing the
required information to protect or check the integrity of the message. The integrity
protection algorithm is speci�ed on 3GPP TS 33.401 [10].

The Sequence number (SN) is the eight least signi�cant bits of the NAS COUNT
value. There are two NAS COUNTERs on a security context, one for the uplink and
the other for the downlink. The NAS COUNTER is represented by 24 bits and is
constructed by a NAS sequence number on the 8 least signi�cant bits together with
a NAS over�ow counter in the 16 most signi�cant bits. However, NAS COUNTER
is represented by 32 bits when the value is used on NAS ciphering and NAS integrity
protection algorithms and is constructed by padding the previous 24 bits with 8 bits
with the 0 value in the most signi�cant bits.

The next relevant components in the message structure are the Information
element structures which are described next.

Following are the di�erent formats de�ned on 3GPP TS 24.007 [5]: V, LV, T,
TV, TLV, LV-E, TLV-E. In these formats, the V corresponds to the Value �eld, the
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L to the length indicator (LI), containing the length of the encoded value, and the T
the Type �eld, containing the Information Element Identi�er (IEI). The E indicates
a new version of the IE structure whose length range has been increased (2 octets
instead of the normal 1 octet), thus allow larger values. In addition, 5 IE categories
are de�ned:

• Type 1: IEs of V or TV format with value part consisting of 1/2 octet.

• Type 2: IES of T format without value parts.

• Type 3: IEs of V or TV format with value part that has a �xed length of at
least one octet.

• Type 4: IEs of LV or TLV format with value part consisting of zero, one or
more octets.

• Type 6: IEs of LV-E or TLV-E format with value part consisting of zero, one
or more octets and a maximum of 65535 octets.

3.4.3 GTPv2

The GPRS Tunnelling Protocol (GTP) version 2 is the signalling protocol used to
manage the GTP tunnels over a GTP based interface. The protocol is de�ned on
TS 29.274 [8].

A GTP tunnel is identi�ed with a Tunnel Endpoint Identi�er (TEID), an IP
address and a UDP port. These parameters are also used on the GTPv2 signalling
protocol. The TEID is allocated by the receiving node and shall be used on further
messages by the transmitting node. When the peer's TEID is not available and a
TEID is required on the message, the TEID=0 is allowed.

The GTP protocol is used over UDP. The destination UDP port for an initial
GTP-C message is the 2123 and is a registered port only for GTP-C.

Message structure The General GTPv2 Header structure is detailed in Figure
19.

Figure 19: Format of the general GTPv2 Header, source: clause 5.1 TS 29.274 [8]

On the �rst octet, the highest 3 bits (6-8) correspond to the GTP version. The
current version is 2. The next bits are �ags to indicate the presence of optional
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�elds, the P �ag (bit 5) is the Piggybacking �ag and the T �ag (bit 4) represents
the TEID �ag. Finally, the spare bits are ignored on the decoding and are set to
0 by the sending endpoint. The spare octet at the end of the header has the same
explained conditions.

When the TEID �ag is active (set to 1), the TEID is present on the 5 to 8
octets. The TEID is present on all GTPv2 message, except the Echo Request, Echo
Response and Version Not Supported Indication messages.

If a Piggybacking �ag is set to 1, another GTPv2 message is present at the end
of the current message. The piggybacked message should have its own header and
body. The aim of the piggybacking is to speed up the message exchange between
the endpoints but this functionality is optional.

The second octet represents the GTPv2 message type. The message type values
can be consulted in the Table 6.1-1 "Message types for GTPv2" contained on TS
29.274 [8].

The 3rd and 4th octets indicate the message length in octets. The message
length excludes the mandatory header part, the �rst 4 octets.

If the TEID �ag is set to 1, the next 4 octets contain the TEID and the following
3 octets contain the sequence number, on some cases only the 3 octets with the
sequence number are included. Finally the last octet is a spare octet to align the
header structure.

After the header, the message continues with the body formed with a set of
individual or grouped IEs. All the GTPv2 IEs have the TLIV structure depicted in
Figure 20.

Figure 20: Format of the TLIV IE structure, source: clause 8.2 TS 29.274 [8]

The mandatory IE �elds are:

• Type: the �rst octet corresponds to the IE Type used to identify the IE. The
possible values are de�ned on the clause 8.1 of the GTPv2 standard.

• Length: the following 2 octets are the length �eld. The length �eld contains
the length of the IE excluding the �rst four common octets, thus containing
only the value length.

• Instance: on the 3rd octet, only the lower half is used as the instance �eld.
The instance is used to identify di�erent IE parameters with the same IE type
on a message [8].

Finally, the Value �eld contains the useful data. The value �eld is encoded
depending on the information that is carries. When the IE is a grouped IE type, it
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contains other nested IE structures. For more details, the TS 29.274 standard [8]
can be consulted.

3.4.4 GTP-U

The GPRS Tunneling Protocol User Plane (GTP-U or GTPv1-U) is the protocol
used to tunnel the UE data on the mobile core network. The GTP-U is de�ned on
the TS 29.281 [9] standard.

As seen on the GTPv2 description above, the GTP tunnel is identi�ed with a
Tunnel Endpoint Identi�er (TEID), an IP address and the registered UDP port 2152.
The GTP can be seen as a header added to the UE IP datagram to encapsulate the
user information. The encapsulated message is called G-PDU. The G-PDU contains
the GTP header and the T-PDU. A T-PDU is a user data package, i.e. a UE IP
datagram.

In addition some IE are available to form a limited set of signalling messages.
These signal messages are the Path Management messages: Echo request, Echo
response and Supported extension headers noti�cation; and the Tunnel Management
messages: Error indication and End marker.

Message structure The protocol Header is depicted in Figure 21.

Figure 21: Format of the GTP-U header, source: clause 5.1 TS 29.281 [9]

The GTP header is a variable header. The �ags PN, S or E signal the presence of
optional �elds on the header. The �rst 8 octets are the mandatory part and contain
the following �elds:

• Version �eld: Field to indicate the protocol version. It is set to 1.

• Protocol Type (PT): This �eld is used as protocol discriminator between the
GTP (with value 1) and GTP' (with value 0).
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• Extension �ag (E): This �ag indicates the presence of a meaningful extension
header when set to 1.

• Sequence Number �ag (S): This �ag indicates the presence of a meaningful
value of the Sequence Number �eld when set to 1.

• N-PDU Number �ag (PN): Indicates the presence of a meaningful value on
the N-PDU number �eld explained below when it is set to 1. If PN is set to
0, the N-PDU number �eld must be ignored.

• Message type: this �eld indicates the type of the G-PDU message.

• Length: This 2 octet �eld indicates the length of the message payload. The
optional �elds of the header are considered as payload thus included on this
�eld.

• Tunnel Endpoint Identi�er (TEID): This �eld unambiguously relates the tun-
nel with the UE context. On the signalling messages, except on the End
marker message, the TEID is set to 0.

When any of the optional �ags are set to one, all the optional �elds are included
in the header, but only the ones with the active �ag are processed. The optional
�elds are the following:

• Sequence Number: Used when transmission order is required. It includes an
increasing sequence number.

• N-PDU number: This �eld is not used on LTE. The exact meaning depends
on the scenario.

• Extension Header Type: this �eld indicates the type of the extension header
that follows this header.

The IE used on the signalling messages follow the structure TLV and TV. For
more information consult the GTPv1 speci�cations [9].

3.5 Procedures of Interest

This section describes the implemented procedures in detail. These procedures are
de�ned on TS 23.401 [3] but they have been simpli�ed to match the implemented.

The procedure explanation includes tra�c diagrams to show the message ex-
change between nodes graphically. The procedures are composed by elemental pro-
cedures.
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3.5.1 Attach Procedure

The attach procedure is used to register the UE/user on the network. Always-on
IP connectivity is established after con�guring a Default EPS Bearer. The message
�ow can be observed in Figure 22. The HSS messages have been removed to simplify
the �gure and because the HSS is emulated with a simple Database (DB) on the
current implementation of the MME.

Figure 22: Attach Procedure

The procedure is triggered when the UE sends an Attach request to the eNB with
a PDN connectivity request NAS messages (1), these messages are encapsulated on
the eNB inside a S1-AP Initial UE message (1a).

When the MME receives the initial UE message checks whether an active security
context is available. In the case there is no active context, the NAS layer triggers the
Authentication procedure (2a, 2b). This procedure is used for mutual authentication
and it is based on the Authentication and Key Agreement protocol [10].

After the authentication, the Security mode control Procedure (3a, 3b) initialize
the NAS signalling security using the corresponding EPS NAS security algorithm
and keys with the agreed EPS security context. The current MME implementation
doesn't use this procedure because the NAS security is not implemented on the NAS
library.

Once the UE is authenticated and the security context enabled, the MME starts
the con�guration of the Uplink tunnel endpoint. If the UE has an active Session on
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the S-GW, the MME triggers the Delete session procedure on the S11 interface. On
the �gure can be observed the involved messages between the MME and the S-GW
(4-7) and how the S-GW forwards the con�guration to the P-GW (5-6).

The attach procedure continues with the S1AP Create Context procedure to
setup the Uplink endpoint. The Create Context procedure follows the same sending
path as the Delete Session procedure, forwarding the con�guration to the P-GW if
it is decided by the S-GW (8-11).

After these procedures, the Uplink endpoint tunnel is half con�gured. The S1AP
initial Context Setup procedure informs the eNB about the S-GW endpoint tunnel to
�nish the Uplink tunnel (12). The Initial Context Setup Request transports the NAS
EMM and ESM replies of the Attach EP and Activate Default EPS Bearer Context.
These messages transport the information about the con�gured EPS Bearer to the
UE (13).

The next messages (14 - 15) doesn't have any speci�c order and the MME is
prepared for both, no matter the order. The message 14 is eNodeB reply to the Initial
Context Setup and contains the information required to con�gure the downlink
tunnel to the UE. The message 15 inform the MME about the success (or failure) of
the NAS attach procedure and Activate Default EPS Bearer Context. With message
15, the EPC has the knowledge that the Uplink tunnel is on use (16).

Finally, the MME forwards the Downlink Tunnel con�guration information to
the Gateways using the Modify Bearer procedure (17-20). After the success of this
procedure, the Downlink Tunnel is con�gured (21).

After these procedures, the UE is attached to the EPC and have connectivity to
the PDN.

3.5.2 Detach Procedure

The Detach procedure can be initiated by the UE or the EPC. In case the procedure
is initiated by the UE, it informs the EPC that it does not want EPS access any
longer. If the Detach procedure is initiated by the EPC, it informs the UE that it
does not have access to the EPC any longer.

In addition a detach can be either explicit or implicit. On the explicit detach the
UE or the MME request the detach, but on an implicit detach the EPC detaches
the UE without notifying it because it presumes the connection is not available any
longer, i.e. for radio conditions.

The message exchange on the detach procedure is depicted in Figure 23. The
arrows on the initial message (1) and the response message (6) are to illustrate the
possibility to initiate the procedure by both endpoints. These messages correspond
to the NAS detach procedure.

After the initiating message, the MME starts the deallocation of the tunnel
resources with the Delete Session Procedure (2 - 5). The S-GW is the responsible
to deallocate the tunnel resources on the P-GW.

After these messages, the UE is detached from the network but there is still a UE
context on the eNB. For this purpose, the MME initiates the UE Context Release
but this procedure is not included in the �gure.
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Figure 23: Detach Procedure

3.5.3 X2 Handover

The X2 based Handover procedure uses the X2 interface as a reference point to hand
over a UE from a source eNodeB to a target eNodeB. On the X2 base Handover,
the MME is unchanged and there are 2 di�erent variants depending if the S-GW is
reallocated. In addition to the X2 interface between the source and target eNodeBs,
this handover procedure relies on the S1 interface between the Source eNodeB and
the MME and the S1 interface between the MME and the Target eNodeB.

Figure 24 depicts the X2 based Handover message exchange. The S-GW reallo-
cation is not considered.

Figure 24: X2 based Handover Procedure

The Handover Preparation and Handover Execution is performed using the X2
interface. The downlink data is forwarded from the source eNodeB to the target
eNodeB using the X2 interface (1 - 2) until the Handover Completion. The uplink
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tunnel information con�guration is sent using the X2 interface so the uplink tunnel
is already con�gured when the UE arrives on the target eNodeB (3).

The EPC doesn't know about the handover until this last step when the UE
is already located on the target eNodeB. After the handover, the target eNodeB
request the modi�cation of the downlink tunnel on the S-GW endpoint using a
Path Switch Request procedure (4, 12).

When the MME receives the Path Switch Request with the E-RABs to be
switched it modi�es the S-GW and the P-GW tunnel endpoint con�guration with
the Modify Bearer procedure (5 - 8) as seen on the attach procedure. After the
Modify Bearer procedure, the downlink tunnel is operative.

The downlink data is sent to the UE after a reordering on the correct sequence
either the packet comes from the source eNodeB during the forwarding or directly
from the S-GW. The last packets from the old path are marked with the End Marker
by the S-GW (10 - 11) to inform both eNodeBs about the path switch.

Finally, the Target eNodeB send a Release Resource message (13) to inform the
Source eNodeB about the success of the handover and trigger the release of resources.

The UE initiates the Tracking Area Update (TAU) if it is required by one of the
conditions detailed on TS 23.401 [3].

3.5.4 S1 Handover

The S1 based Handover procedure is used when the X2 interface is not available or
a X2 based Handover can not be used. This procedure may reallocate the MME
and/ or the S-GW, but this case is not considered on current implementation.

The message exchange to perform the S1 based Handover procedure are depicted
in Figure 25.

The handover starts with the Handover preparation when the Source eNodeB
initiates the Handover Preparation procedure with the Handover Required message
(1). After this message, the MME prepares the resource allocation on the target
eNodeB with the Handover Resource Allocation procedure (2 - 3) and request either
an indirect or direct data forwarding tunnel on the S-GW depending if there is an
available X2 connection between the source and the target eNodeBs (4 - 5). The
Handover preparation ends with the Handover Command (6) message to the source
eNodeB informing the Source eNodeB about the allocated resources.

The Handover Command sent to the UE (7) marks the border of the Handover
Execution. The UE mobility is performed maintaining the downlink connectivity
with the con�gured forwarding tunnel, either direct (10) or indirect (11). At the
same time, the source eNode sends its current status to the MME (8) and the
MME sent the status to the target eNodeB (9). When the UE arrives at the target
eNodeB it sends the Handover Con�rm message (12) to the eNodeB. The Uplink
data was con�gured (13) during the resource allocation procedure on the Handover
Preparation period and the UE can use the uplink tunnel upon its arrival.

After the Handover execution starts the Handover completion with the Han-
dover notify (14) from the target eNodeB to the MME. The Handover completion
is similar to the explained on the X2 based Handover. The downlink is con�gured



37

Figure 25: S1 based Handover Procedure

using the Modify Bearer procedure (15 - 19) and the old or temporal resources are
deallocated with the UE Context Release procedure (21 - 22) or the Delete Indirect
Data Forwarding Tunnel procedure (23 - 24) if used. The TAU procedure may be
triggered by the UE.

3.6 Conclusions

This chapter introduced LTE de�nitions and technical descriptions included in the
3GPP standards needed for the MME implementation. The focus has been on the
EPC and the used protocols. The EPS bearer concept is important to be understood
to facilitate a future integration with SDN networks. Finally, the chapter describes
a basic set of procedures to be supported by the MME implementation.
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4 MME Design and Implementation

The current chapter details the MME design and implementation. Section 4.1 ex-
plains the basic architecture of the MME implementation. Section 4.2 describes the
basic software components of the MME, the engine and how the state machines are
implemented. Section 4.3 complements the previous section with some singularities
of the state machines implemented for each interface. Next section 4.4 includes
the description of the designed data base to simulate the HSS. Section 4.5 details
developed libraries to encode and decode the di�erent protocols used by the MME.

Finally, Sections 4.6 and 4.7 explain parallel tools and tests used to verify the
MME implementation.

4.1 Design decisions.

Before initiating any development, some open source initiatives that claim having
implemented LTE network elements were analyzed. An experimental project imple-
menting old 3GPP standards for mobile networks (openBSC [43]) has been found.
However, the conclusion was that there is no current open source implementation of
the MME available at the time of initiating this work.

The main goal is to develop a MME application to build an experimental EPC
with basic functionality that can be used for further development of LTE network
based on SDN technologies. We have available from a third party company an
emulator to simulate the UE and the eNB. We can then use the SAE-GW (S-GW
and P-GW) functionality from another open source project [41]. However, there is
no EPS compatible HSS open source project available so we will simulate the HSS
with a basic Database (DB).

In order to develop the desired EPC functionality with the available nodes, the
MME shall include the S1 and the S11 interfaces, but the S6a interface will be
internally emulated with an internal connection to the DB.

The required protocols on the interfaces are SCTP, S1-AP, NAS and GTPv2.
There is an SCTP protocol implementation on the Linux kernels, so to simplify the
development, the Linux platform has been chosen. The rest of the protocols are not
mature enough, thus there are no open source implementations available.

The Open BSC project has a GTP-C implementation on an Open GGSN subpro-
ject, but only the version 1 of the protocol is available. The GTPv2 coder/decoder
functions have been implemented considering the Open BSC architecture design.
The S1AP protocol is de�ned using ASN.1 so it can be compiled to get a coder/decoder
library of the protocol. However, the available open source ASN.1 compilers do not
work with the required BASIC-PER aligned encoding. Finally, some projects using
the NAS protocol have been found, but the lack of modularity and the immaturity
of them discourage their use and instead all the required components and protocols
had to be implemented from scratch.

Given the situation, the GTP library is upgraded to version 2 and the S1AP
and NAS encoder and decoder functions are developed from scratch on two libraries
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to achieve modularity and simplify the MME structure. That will allow the usage
of these libraries in other future projects. The main of the software structure are
MME, S1AP, NAS and libgtp, generating the mme executable and the libs1ap.la,
libnas.la and libgtp.la library binaries.

These libraries only implement the encoding and decoding functionality, hence
the state machines of the interfaces should be developed within the MME. The same
modularity strategy has been taken on the MME application. The di�erent state
machines are divided by interface and protocol, hiding the inner complexity but
maintaining a common structure.

Figure 26: MME structure design

An engine is de�ned to execute the states sequentially and common structures
are developed to allow the desired modularity. The S1, S11 and S6a modules use
the common state structures, but the NAS state machines are hidden on the S1
interface module because it is a higher layer protocol. The S6a interface module has
no external communication because it is an emulator of the real interface. Instead of
having a HSS, the MME accesses a database containing the subscriber information.

Other modules have been added to process more speci�c functionality, as access
to con�guration �les, the storage of the UE information on hash tables, etc. In
addition, the MME can receive operator commands on run time. To implement this
functionally another module is added, but it is simpler than the normal interfaces.
This command line module is meant to follow the same structure as the normal
interfaces, coder/decoder functions and state machine structures.

On the project folder, other folders can be found containing some parallel appli-
cations and tools:

• MMEcmd: Tool to send commands to the MME engine locally or remotely.

• Example applications such as eping to send GTPv2 pings.

• Testing framework to perform unit testing during the development and track
any improvement breaking a working functionality.



40

4.2 Engine

The engine is the main part of the MME where the rest of the functionality is built
on. It is basically a queue with priorities and a loop to process the states from the
state machine and detect any incoming packet.

A single thread process approach is chosen to simplify the development. This
can be changed in the future, creating a processing pool to handle multiple users
at the same time or a thread per MME interface to increase the incoming packet
acceptance rate. Even both approaches can be considered once the restrictions and
requirements are identi�ed.

To allow the maximum scalability, the libevent[44] library has been chosen to
receive the incoming packets. This library is used on some successful open source
projects and it is proven to be scalable1. It provides a mechanism to execute callback
functions when a new message is received.

In order to include the libevent's loop in the engine's loop, the library has some
options available to only iterate a single time. These options allow the developer to
include additional actions within the event processing. On the current engine, these
other actions are the processing of the states and the processing of a new received
command.

The explained loop structure is implemented on the engine_main() function of
MME_engine.c. This function loop is called from the engine_initialize() function
after starting all the required contexts and structures, thus this last one is the
function to start the mme from the main function. In addition, the engine provides
the structures of the state machines and some functions to start, modify or delete
them.

On the engine �les, the t_process and t_signal structs are included to store
the information during the state processing of the state machines. The t_process
contains the information of the current state and the storage of other signals, to
execute this process a signal should be send to the engine. That means that a new
or existing signal is included in the engine signal's queue. That signal has a reference
to the origin and destination process and a name to identify it.

This is the t_process structure:

struct t_process{

engine_stateFunc next_state;

struct t_process *parent;

void *data;

struct t_signal_queue *firstSignal;

struct t_signal_queue *lastSignal;

bool stop;

};

1 The libevent library provides the best event mechanism o�ered on the OS with a common
API. For more information about these mechanisms see Dan Kegel's "The C10K problem" webpage
[45].
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The parameters are next_state containing the function callback to process the
next state, the parent process reference, containing the process that has created the
current one, the data reference, usually an EndpointStruct_t struct, a signal queue
to store pendent signals for this process and �nally a stop �ag to free the process
structure on the next execution.

The t_signal structure has this format:

typedef struct t_signal{

enum t_signal_name name;

int priority;

struct t_process *processTo;

struct t_process *processFrom;

void *data;

void (*freedataFunc)(void *);

}Signal;

The �rst �eld, the signal's name identi�es the signal and communicates its pur-
pose to the receiving process. The priority �eld purpose is to order the signal queue
on the engine. The next �elds are self-explanatory since they contain the destination
and source process involved in this signal. Finally, a data reference and the func-
tion to deallocate it ends the signal format. Usually, the data contains the involved
decoded messages.

There are other complementary structures as this t_signal_queue, whose pur-
pose is to construct a signal queue, to perform other complementary functionality,
but the commented ones are the most important.

struct t_signal_queue{

struct t_signal *signal;

struct t_signal_queue *next;

};

Finally, all the state functions (except NAS) have this format to be executed on
the engine:

typedef int (*engine_stateFunc)(struct t_signal *signal);

The return parameter can be 1 or 0 depending if the current signal is saved
on the current process after its execution or it is deallocated. The parameter is a
reference to the signal send to the process.

The combination of the process structures to store the current state, the di�erent
signals available and the possibility to store them to continue its process on future
transitions form a complex and �exible state machine structure with memory.

On the interface modules, other functions are implemented to reduce the size of
the state functions and increase its modularity. The low level tasks are implemented
in functions like this one:

static uint8_t TASK_MME_S1___S1Setup(Signal *signal);
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These functions allow to group the parts of the code where the decisions are
taken on the state functions and isolate the packet creation, validation and other
functions on these TASK routines.

4.3 Interface State Machines singularities

4.3.1 S1 State Machine

This is the most complex interface on the MME. It receives the UE requests and is
connection oriented. In addition, with its NAS layers has the biggest protocol stack.

The connection oriented has been implemented using a process structure per
eNB association managing the end-point. In addition every UE has its own process
structure storing its state on the state machine. This process is maintained while
the UE context exists on the MME.

4.3.2 NAS State Machine

The NAS layer has its own state machine structure because it is on a di�erent level
of the stack.

The process structure is the same as the one used on the S1 because it is on the
same interface, but on di�erent levels of the stack. The API of its implementation
has only two entry points:

void NAS_process(uint8_t *returnbuffer, uint32_t *bsize, void *msg,

uint32_t size, Signal *signal);

void NAS_sessionAvailable(uint8_t *returnbuffer, uint32_t *bsize,

Signal *signal);

The �rst is to process a received message passed with the msg pointer and the
size parameter containing the bu�er length. The signal parameter is the same used
on the S1 state. Finally, if there is any result to be send to the lower layer it is
stored on the returnBu�er with the bsize size.

The second function is used to continue processing a NAS message, it is used to
return to NAS processing when a work�ow is needed to continue to the lower layer
in order to acquire some additional information. Usually, it is used when there is a
need to populate a NAS transport IE element without receiving any NAS message.
Due to this functionality, the parameters are the same as the other function without
the msg and size, because there is no input NAS message to be processed.

The �rst function is used to process both ESM and EMM messages, thus it is
also used within the internal implementation although the NAS messages received
on the S1 NAS IEs are EMM messages containing other IEs with the ESM messages.

Although being a higher layer, the state-task di�erentiation has been maintained
on the NAS state machine implementation.
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4.3.3 S11 State Machine

This interface is not connection oriented, thus the t_process structs are temporal,
there is no permanent t_process struct per user, instead a t_process struct is created
when a transition to the S11 state machine is required and it is dealocated when the
work�ow returns to the S1 state machine.

4.3.4 S16a State Machine

The same comments about the t_process structs on the S11 can be applied on the
S6a state machine. This interface state machine has a great di�erence from the
others, it is emulating the interface, thus there is no communication to any HSS.

The HSS is implemented using MariaDB [46], a MySQL open source substitute.
The state machine �les (MME_S6a) have been separated from the SQL queries and
HSS speci�c functions �les (HSS) in order to allow a future implementation of a real
interface. The HSS �les emulate the HSS features, thus in the future, these will be
deleted and the MME_S6a �les will be modi�ed in order to send and receive the
diameter packets. The Database design is shown in Section 4.4.

4.4 Database Design

The Database included in this project acts as an HSS emulator. The information to
be stored on the HSS is detailed on clause 5.7.1 of TS 23.401 [3]. The �elds of the
database have been selected according to the standard and the requirements of the
use cases.

In order to present the database structure, the �gures have a common notation.
The tables are displayed as square boxes and are called entities. The columns of the
tables are shown as spherical boxes and are called attributes. Only the termination
attributes have a representation of the database, thus the complex attributes such as
Subscriber Qos Pro�le show the logical aggregation of attributes on a higher logical
level. There are some special attributes called primary keys to read and write the
information on the database, these primary keys are represented with an underlined
attribute name and they are the index to query or modify the database information.

To avoid future performance issues, the database has been normalized during
its design until the Third Normal Form (3NF). The normalization process aims to
organize the information e�ciently, this is accomplished eliminating redundant data
and considering the data dependencies, thus only related data is stored on the same
table. A brief explanation of normalization can be found here [50].

The resulting general structure is presented in Figure 27. It has 4 tables repre-
senting the identi�ed entities during the design process. These entities are explained
bellow and the attributes for each entity are detailed in Figures 28, 29, 30, 31. A
complete structure of the database can be consulted in Appendix A.1.
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Figure 27: HSS database structure design

Subscriber Pro�le This is the main entity because the HSS functionality is to
store the mobile subscriber information. The primary key is of this table is the
IMSI, a compound key formed by the MCC, the MNC and the MSIN. The IMSI
is the adequate key because is identi�es a mobile subscriber on a unique way in
any mobile network in the world. This value has been split on its components to
facilitate its use on other tables.

Figure 28: Subscriber Pro�le entity with attributes

Operator The aim of this entity is to store the operator related information.
Almost all this information is related to security parameters like the OP and AMF.
As expected, a subscriber pro�le has a single operator, but an operator manages
many subscriber pro�les. The primary key of this table is a compound key formed
with the MNC and MCC. These attributes form the PLMN and are included in the
IMSI, thus the operator can be deduced from it.

Figure 29: Operator entity with attributes
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Authentication Vector It contains the authentication and security parameters
produced during the Authentication and Key Agreement (AKA) procedure. These
include the HSS level parameters required to derive the called Quintet, the Quintet
itself and other derived parameters. A subscriber can handle multiple Authentica-
tion Vectors and the Key Set Identi�er (KSI) is the parameter to recognize each,
thus the natural composite key is the bundle of the IMSI and the KSI.

Figure 30: Authentication Vector entity with attributes

PDN Subscription Context This entity contains all the information related
with the connection to the Packet Data Network (PDN). It is possible for a single
subscriber to maintain simultaneous connections to di�erent PDN, thus the PDN
subscription context should be a di�erent entity. The primary key is a composite
key using the IMSI and a Context ID.

Figure 31: PDN Subscription Context entity with attributes
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4.5 Protocol Libraries

This section describes the encoding and decoding functions of GTPv2, S1AP and
NAS and explains the API and its singularities.

4.5.1 GTPv2

The GTPv2 encoding and decoding functions have been implemented using Open
BSC project libgtp as a starting point. This library is used to implement the version
1 of the GTP protocol for the control and user plane on OpenGGSN project. Due
to that fact, it uses structures that are not needed in our project, for example the
struct gsn_t and struct pdp_t. Almost all the original API functions have the struct
gsn_t as an input parameter to store variables related to GGSN.

To implement the version 2 of GTP-C, only the encoding and decoding functions
have been developed, without any logic included nor other variables di�erent from
the GTP information contained on the packets.

The key point on this implementation is the de�nition of the structures used
to store the GTP messages. Using struct and union types and bit �elds, the bu�er
received or sent corresponds to the de�ned type. The packed header can be accessed
with a simple cast but the IEs must be decapsulated or encapsulated.

The decapsulation is implemented linking the received message with the available
IE types, thus after it, the result is a vector of IE pointers addressing the start of
the IE. This implementation introduces a restriction on the use of these IE types,
they cannot be used after the message dealocation.

In the encapsulation function, the �lled IE structures are copied to the message
structure, preparing it to be send as a simple bu�er.

Bellow is explained the library use with more detail.

Types

struct gtp2ie_tliv

{

uint8_t t; /* Type */

uint16_t l; /* Length */

uint8_t i; /* Instance */

uint8_t v[GTP2IE_MAX]; /* Value */

} __attribute__((packed));

The code above shows the implementation of the typical GTPv2 IE. This struc-
ture is combined with all the other possible on a union as seen bellow:

union gtpie_member {

uint8_t t; /* Type */

/***

Other GTPv1 IE memeber structs

***/
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struct gtp2ie_tliv tliv;

struct gtp2ie_tli tli;

}__attribute__((packed));

This allows the developer to access the data on a structured manner, indepen-
dently of the IE format.

The whole packet structure follows the same idea, bellow is included one of the
two di�erent header structures of the GTPv2:

struct gtp2_header_long { /* Descriptions from 3GPP 29274 */

uint8_t flags; /* 01 bitfield, with typical values */

/* 010..... Version: 2 */

/* ...1.... Piggybacking flag (P) */

/* ....1... TEID flag (T) */

/* .....0.. Spare = 0 */

/* ......0. Spare = 0 */

/* .......0 Spare = 0 */

uint8_t type; /* 02 Message type. */

uint16_t length; /* 03 Length tei(4)+seq(3)+1(spare)+IE length*/

uint32_t tei; /* 05 Tunnel Endpoint ID */

uint32_t seq : 24 ; /* 09 Sequence Number (3bytes bit field)*/

uint8_t spare1; /* 12 Spare */

}__attribute__((packed));

This struct de�nition can be compared with the protocol de�nition shown in Figure
19. We can see how the structure �elds correspond to the C de�nition in a manner
that the memory storage format of this type is the same, bit to bit, as the encoded
protocol header. Finally, this header is included in a packet structure and a general
union type allows the access to di�erent packets, thus the format can be chosen on
run time.

struct gtp2_packet_long {

struct gtp2_header_long h;

uint8_t p[GTP_MAX];

} __attribute__((packed));

union gtp_packet {

uint8_t flags;

struct flags_t nflags;

struct gtp0_packet gtp0;

struct gtp1_packet_short gtp1s;

struct gtp1_packet_long gtp1l;

struct gtp2_packet_short gtp2s;

struct gtp2_packet_long gtp2l;

} __attribute__((packed));

It must be noticed how the �rst union �elds correspond to a generic �eld in order
to choose the format to be accessed on run time.
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API After explaining the main types used, the API used to encode and decode
the GTPv2 messages is explained bellow:

unsigned int get_default_gtp(int version, uint8_t type, void *packet);

This AP generates a GPRS Tunneling Protocol signalling packet header, depending
on GTP version and message type. The packet parameter must be allocated by the
calling function and it has to be large enough to hold the packet header, after the
return contains the �lled header. This function returns the length of the header or
0 on error.

int gtp2ie_encaps(union gtpie_member ie[], unsigned int size,

void *pack, unsigned *len);

This function encapsulates the IE that are passed on the packet bu�er. The �rst
parameter ie contains the IEs to be encapsulated. The second parameter is the
number of IEs to be encapsulated. The pack and len parameters correspond to the
bu�er and length resulting of the previous function. These parameters are refreshed
with the new data. The functions return 0 on success.

int gtp2ie_encaps_group(int type, int instance, void *to,

union gtpie_member ie[], unsigned int size);

The purpose of this function is to encapsulate the IEs on a grouped IE, of the type
type and instance instance. The resulting IE is returned on the to pointer. The
input IE to be encapsulated are passed on the IE vector of containing size number
of IEs. The function returns 0 on success.

int gtpie_decaps(union gtpie_member* ie[], int version,

void *pack, unsigned len);

Function to extract the IE of a received message. The �rst parameter is a pointer
to a vector of union gtpie_memeber pointers. The vector must be allocated by the
calling function and will be �lled with the references to the �rst byte of each IE.
The version parameter indicates the protocol version, for GTPv2 use 2. Finally the
last parameters are the received bu�er and its length. The function returns 0 on
success.

int gtp2ie_decaps_group(union gtpie_member **ie, unsigned int *size,

void *from, unsigned int len);

This function decapsulates a grouped IE. The ie and size parameters contain the
outputs. The input parameters are from and len �lled with the grouped IE and its
length. The function returns 0 on success.

int gtp2ie_gettliv(union gtpie_member* ie[], int type, int instance,

uint8_t *dst, uint16_t *iesize);

Function to get the value of IE structure of type type and instance instance. The
value is copied on dst and has iesize length. All the IE of the message are on the ie
vector, this vector has been obtained with the gtpie_decaps function. The function
returns 0 on success.
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4.5.2 S1AP

This library has been developed from scratch as part of this project. The purpose
is to provide the S1-AP protocol structures of the messages and its information
elements and the functions to decode and encode these structures.

The S1AP protocol is de�ned using the abstract syntax notation (ASN.1). The
intention of this approach is to allow the developer to compile this de�nition using an
ASN.1 compiler in order to obtain encoding and decoding functions with the desired
programming language. The use of an ASN.1 compiler simpli�es the development
and facilitates the integration of future protocol versions with the current project.
Due to the unavailability of open source ASN.1 compilers for C with the required
encoding, it was decided to implement all the protocol from scratch.

Without the intended typical ASN.1 implementation approach, the considered
alternative is to implement the S1AP protocol manually. This alternative has other
advantages, it allows a dedicated implementation, thus the code can be more hu-
man readable and compact and some structures can be simpli�ed. In addition, the
development of the library requires more time, but it can be partly compensated by
the compiler and generated code usage learning time.

The library is implemented on C like all the other components of the project, but
it follows an Object Oriented paradigm to allow a modular, �exible and extensible
nature. This will simplify the implementation of future protocol versions.

The current S1AP implementation does not include the type constrains de�ned
on the protocol, a void pointer is used to allow the required modularity and the
constrains must be controlled by the developer on run time. The error management
is also limited on the current implementation, when an error is detected, a message
is printed on the logging system and the pointer involved is changed to NULL.

All these exposed limitations can be solved on future library versions, i.e. the
type constrain can be solved using the C union type to de�ne the allowed types on
a given structure when it is de�ned. Some examples of implementation details can
be found on the comercial ASN1C compiler whitepapers [39] [40].

Types To implement the Object oriented paradigm, almost all the types de�ned
on the library have a constructor function to allocate it. This constructor functions
have the new word on their name and link the destructor function and an additional
function to print the structure on the standard output to a function pointers included
in the struct. These function pointers usually include the words free and show on
their names.

The destructor function of a type is responsible for calling the destructor of
all dependent types included in the structure. This �waterfall� design allows the
dealocation of a message and all the lowest hierarchy types included in it, as the IE
types and its Value types, using only the message type destructor.

The most important types are introduced below. They are ordered from high to
low hierarchy.

typedef struct Message_c{

uint8_t extension;
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enum TriggeringMessage_c choice;

S1AP_PDU_t *pdu;

void (*freemsg)(struct Message_c*);

void (*showmsg)(struct Message_c*);

}S1AP_Message_t;

S1AP_Message_t *S1AP_newMsg();

The above structure de�nes the highest hierarchy struct on the library, the S1AP
message. The choice �eld with the procedure code on the next PDU struct de�ne the
message type, limiting the expected or allowed information elements. The construc-
tor function is also shown. The freemsg function pointer is the destructor function
and the showmsg function pointer is the function to print the struct. Both functions
have a reference to the object as a parameter.

/* This type correspond to InitiatingMessage, SuccessfulOutcome,

UnsuccessfulOutcome types of the standard*/

typedef struct S1AP_PDU_c{

ProcedureCode_t procedureCode;

Criticality_e criticality;

uint8_t ext;

ProtocolIE_Container_t *value;

void *extensionValue;

}S1AP_PDU_t;

The S1AP-PDU struct de�nes the protocol data unit (PDU) of the S2AP. The
criticality �eld de�nes the actions to be performed if a decoding error is detected.
This structure doesn't have any constructor function because it is allocated on the
S1AP message constructor.

typedef struct ProtocolIE_Container_c {

uint16_t size; /*< Number of IE expected*/

S1AP_PROTOCOL_IES_t **elem;

void (*freeContainer)(struct ProtocolIE_Container_c*);

void (*showIEs)(struct ProtocolIE_Container_c*);

void (*addIe)(struct ProtocolIE_Container_c*,

S1AP_PROTOCOL_IES_t* ie);

} ProtocolIE_Container_t;

ProtocolIE_Container_t *new_ProtocolIE_Container();

The protocolIE-Container is the struct used to store all the information element
structures. In addition to the expected constructor, destructor and show functions,
a new function is added. The addIE is a function pointer to append a new IE struct
on the container. The parameters of this function are the object reference and the
IE reference. This append function is also present on other IE lists and its usage is
common for all of them.
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typedef S1AP_PROTOCOL_IES_t ProtocolIE_SingleContainer_t;

There is a special container of a single IE struct, shown above. It is implemented
as an alias of the IE struct, S1AP_PROTOCOL_IES_t, explained below.

typedef struct S1AP_PROTOCOL_IES_c{

ProtocolIE_ID_t id;

Criticality_e criticality;

void* value;

Presence_e presence;

void (*freeIE)(struct S1AP_PROTOCOL_IES_c *self);

void (*freeValue)(void *);

void (*showIE)(struct S1AP_PROTOCOL_IES_c *self);

void (*showValue)(void *);

}S1AP_PROTOCOL_IES_t;

extern S1AP_PROTOCOL_IES_t * newProtocolIE();

The S1AP_PROTOCOL_IES_t is the type representing the Information ele-
ment on the S1AP message. It is composed by the protocol IE Id to identify the IE
type, the criticality to instruct the receiver how to act when the IE is not compre-
hended, the presence to inform about whether the IE is mandatory, conditional or
optional and �nally the value. The value is where the information is stored, it is a
void pointer to allow multiple value types.

On this structure there are other function pointer in addition to the expected
ones, freeIE and showIE refers to the usual destructor and structure print explained
before. The other function pointers freeValue and showValue are the destructor and
print functions of the value type. These functions are called on the IE related
functions. Using these functions the polymorphism object oriented characteristic is
emulated. A better way to emulate the polymorphism characteristic is to use an
interface type containing the common �elds of the child types, thus used as a parent.
The advantage of have the value related methods on this higher hierarchy class is to
have the possibility to unlink them as exposed on the s1ap_setValueOnNewIE API
function description bellow.

typedef struct ServedGUMMEIsItem_c{

void (*freeIE)(void *);

void (*showIE)(void *);

uint8_t ext;

uint8_t opt;

ServedPLMNs_t *servedPLMNs;

ServedGroupIDs_t *servedGroupIDs;

ServedMMECs_t *servedMMECs;

ProtocolExtensionContainer_t *iEext;

}ServedGUMMEIsItem_t;

ServedGUMMEIsItem_t *new_ServedGUMMEIsItem();
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The last struct is a value type used on the value �eld of S1AP_PROTOCOL_IES_t.
All the possible values to be used on S1AP_PROTOCOL_IES_t have their own
type and ServedGUMMEIsItem_t has been chosen to explain the common charac-
teristics.

With the explained polymorphism idea in mind the �rst �elds of the struct are
the ones expected to be common on all the value classes, allowing the de�nition of
an interface class. These common �elds are the function pointers to the destructor
and the show function. Other �elds that are similar in almost all the value classes
are the ext �eld and the opt �eld. The ext is a �ag indicating the presence of the
protocol extension container. The opt �eld indicates the presence of the optional
�elds.

Finally, the rest of the �elds are depending on the value type de�ned on the
standard. It is common to nest multiple value types thus the �waterfall design� is
really e�cient encapsulating the internals of the library, hence simplifying its use.

API In addition to the constructor, other functions are included in this library.
The API is explained on this section.

extern S1AP_Message_t *s1ap_decode(void* data, uint32_t size);

This function decodes a received information and returns an allocated Message
structure. The input parameters are data with the bu�er pointer and size with the
bu�er length. It returns a pointer to the decode message on a S1AP_Message_t
type. This object should be freed with the freemsg function pointer available on the
structure after its use.

extern void s1ap_encode(uint8_t* data, uint32_t *size,

S1AP_Message_t *msg);

The s1ap_encode function encodes the S1AP_Message_t type passed as a pa-
rameter and �lls a previous allocated bu�er passed as data bu�er with the size
size. The data bu�er should have enough space for the expected message when the
function is called.

extern void *s1ap_findIe(S1AP_Message_t *msg, ProtocolIE_ID_t id);

In order to �nd an IE of a received message, the s1ap_�ndIE function can be
used. It returns a pointer to the value type of the requested protocol Id id if it is
present on the msg object. The message is not modi�ed with this function, thus
after dealocating the message, the IE is not available.

extern void *s1ap_getIe(S1AP_Message_t *msg, ProtocolIE_ID_t id);

To solve the last problem a variation of the last function is introduced. The
s1ap_getIe only di�erence with s1ap_�ndIe is that this function unlinks the Value
destructor of the message IE, allowing its storage after the message deallocation.
The returned structure should be dealocated after its use with the corresponding
function pointer.
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extern void *s1ap_newIE(S1AP_Message_t *s1msg, ProtocolIE_ID_t id,

Presence_e p, Criticality_e c);

This function is intended to simplify the message creation before the encoding.
It allocates the required structures to include a new IE in the message and link
the necessary methods of the destructor and print functions. It returns a pointer
to the allocated value type depending on the IE identi�cation passed using the id
parameter. The function allocates the IE and its value objects and integrates them
on the passed S1AP message s1msg. The rest of the parameters are required to �ll
the IE object during its creation.

This function is the recommended way to build a S1AP message. This function
only works to allocate �rst level IE values and does not work for nested IE values or
IE groups. These cases have to be built manually. Allocating the required resources
and linking the function pointer �elds of the type. On future implementations, new
API functions could be developed to solve these use cases.

extern void s1ap_setValueOnNewIE(S1AP_Message_t *s1msg,

ProtocolIE_ID_t id, Presence_e p, Criticality_e c,

GenericVal_t *val);

The s1ap_setValueOnNewIE function is very similar to s1ap_newIE function
with the di�erence that the value object is not allocated in the function but passed
as a parameter. In addition the destructor of the value object is not linked to the
IE object. This allows the inclusion of an existing value on the message and the
possibility of maintaining it after the destruction of the message. This function
could be used to include certain long term values on a message to encode it with-
out allocating and copying the value on the message. The value reference on this
function is passed using an interface class commented before, GenericVal_t, using
polymorphism instead of a void pointer.

4.5.3 NAS

As the S1AP library, the NAS library has been developed from scratch as part of
this project. The library provides message structures and IE types for decoding and
encoding purposes as well as functions to create new packets or parse the received
ones.

The library is implemented using the C programming language. Only the used
procedures are implemented but the simple design allows the addition of new pro-
cedures really quick as the basic structures are implemented.

Following are the library details. All these de�nitions were extracted from the
source �les include in the shared folder of the NAS library.

Types The de�ned structures are common for EMM and ESM messages when it
is possible. The high level structures are even prepared to implement the security
protected messages.



54

typedef union GenericNASMsg_c{

NAS_Header_t header;

NASPlainMsg_t plain;

SecurityProtectedMsg_t ciphered;

}GenericNASMsg_t;

The GenericNASMsg_t is the high hierarchy type of this library. It is the
returned structure in the decoding function. It is a union prepared to contain both
a plain message or a ciphered message. The header �eld is intended to contain the
common header in order to identify whether the message is plain or ciphered.

typedef struct NAS_Header_c{

ie_v_t1_l_t protocolDiscriminator;

ie_v_t1_h_t securityHeaderType;

}NAS_Header_t;

The common header implementation can be observed above. It contains the
Protocol Discriminator to inform if the message is either EMM type or ESM type.
The second �eld is the security header indicating whether the message is plain or
ciphered as commented. The types of this struct �eld are IE types. The Header is
formed with the same IE structures.

typedef struct SecurityProtectedMsg_c{

ie_v_t1_l_t protocolDiscriminator;

ie_v_t1_h_t securityHeaderType;

uint8_t procedureTransactionIdentity;

ie_v_t3_t messageAuthCode;

uint8_t sequenceNum;

NASPlainMsg_t msg;

}SecurityProtectedMsg_t;

The SecurityProtectedMsg_t contains the �eld for a security enabled message.
This structure is not currently used because the security messages are not imple-
mented.

typedef union NASPlainMsg_c{

EMM_Message_t eMM;

ESM_Message_t eSM;

}NASPlainMsg_t;

The NASPlainMsg_t type is the �rst to separate the EMM and ESM messages.
It is a union that should be read/written according to the protocol Discrimination
Field.

typedef struct EMM_PlainMessage_c{

ie_v_t1_l_t protocolDiscriminator;
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ie_v_t1_h_t securityHeaderType;

ie_t_t2_t messageType;

union nAS_ie_member *ie[30];

}EMM_Message_t;

/** ESM Plain message */

typedef struct ESM_PlainMessage_c{

ie_v_t1_l_t protocolDiscriminator;

ie_v_t1_h_t securityHeaderType;

uint8_t procedureTransactionIdentity;

ie_t_t2_t messageType;

union nAS_ie_member ie[30];

}ESM_Message_t;

The EMM_Message_t and ESM_Message_t structures are generic protocol
structures implementing the speci�c protocol header. The IE types are used to
allow the cast mechanism with lower hierarchy structures de�ning a message.

typedef struct AttachComplete_c{

ie_v_t1_l_t protocolDiscriminator;

ie_v_t1_h_t securityHeaderType;

ie_t_t2_t messageType;

ie_lv_t6_t eSM_MessageContainer;

}AttachComplete_t;

The AttachComplete_t is an example of an Attach Complete message structure.
On speci�c messages, all the mandatory �elds are stored on the structure, thus no
allocation or deallocation is required.

union nAS_ie_member{

uint8_t iei;

ie_v_t1_l_t v_t1_l;

ie_v_t1_h_t v_t1_h;

ie_tv_t1_t tv_t1;

ie_t_t2_t t_t2;

ie_v_t3_t v_t3;

ie_tv_t3_t tv_t3;

ie_lv_t4_t lv_t4;

ie_tlv_t4_t tlv_t4;

ie_lv_t6_t lv_t6;

ie_tlv_t6_t tlv_t6;

}__attribute__((packed));

Finally, the union nAS_ie_member is a generic IE union formed by all the IE
possible types to allow IE modularity. The ie_tlv_t6_t type is included following
as an example.
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typedef struct ie_tlv_t6_c{

uint8_t t;

uint16_t l;

uint8_t v[NASIE_MAX16];

}__attribute__((packed)) ie_tlv_t6_t;

In addition to these types a group of enumerated types are included to simplify
the code readability, SecurityHeaderType_t, ProtocolDiscriminator_t, Procedure-
TransactionId_t, NASMessageType_t, ESMCause_t, EMMCause_t.

API The following functions are used to decode the NAS messages, either ESM
or EMM.

void dec_NAS(GenericNASMsg_t *msg, uint8_t *buf, uint32_t size);

This function �lls themsg struct pointer with the message information. The encoded
message is passed using the buf pointer and the length is passed with the size
parameter.

The dec_NAS function uses decoding functions for each message internally. The
dec_AttachComplete is the corresponding for the Attach Complete message.

void dec_AttachComplete(AttachComplete_t *msg, uint8_t *buffer,

uint32_t size);

The following functions are used to build a NAS message. These functions require
a previous allocated bu�er. The bu�er is used to store the encoded NAS message
and it is passed to the functions as a double pointer in order to modify it. The
bu�er pointer acts as an index and after the encoding function execution it points
to the next position to be written on the bu�er. This design allows the functions to
be called sequentially with the same pointer variable to aggregate new IE structures
to the message. This approach is possible because all the NAS �elds are encoded as
IE types, even the header ones, thus all the encoding functions are based on the IE
encoding functions.

void newNASMsg_EMM(uint8_t **curpos,

ProtocolDiscriminator_t protocolDiscriminator,

SecurityHeaderType_t securityHeaderType);

void encaps_EMM(uint8_t **curpos, NASMessageType_t messageType);

The newNASMsg_EMM encodes the header parameters of the EMM message
on the bu�er. The bu�er pointer is the curpos parameter. The other parameters
are the header �els of the EMMS. The EMM message encoding continues with the
encaps_EMM function to add the rest of the EMM header. These two functions
are not combined to allow a future security message encoding function.
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void newNASMsg_ESM(uint8_t **curpos,

ProtocolDiscriminator_t protocolDiscriminator,

uint8_t ePSBearerId);

void encaps_ESM(uint8_t **curpos,

ProcedureTransactionId_t procedureTransactionIdentity,

NASMessageType_t messageType);

The newNASMsg_ESM and encaps_ESM are the equivalent function of new-
NASMsg_EMM and encaps_EMM for ESM messages.

All the IE types have an encoding function following the explained mechanism.
The nasIe_tlv_t6 function is included as example.

void nasIe_tlv_t6(uint8_t** p, uint8_t t, uint8_t *v, uint16_t len);

4.6 MMEcmd

The MMEcmd tool is used to send commands to the MME remotely during its
execution. MMEcmd is intended to be an Operation and Management platform to
control the MME but the current functionality is limited as no use cases have been
de�ned yet. Currently, this tool can send signals to the MME engine. It has been
used to shutdown the MME application and to perform some basic functionally tests
during the development.

4.7 Metrics and testing

At the early stage of the project it was developed a methodology to track and expose
the project evolution through di�erent code metrics. The aim of the metrics is to
measure the quality of the code and detect possible issues as early as possible on the
development. The metrics are automatically triggered and shown on a continuous
integration server, Jenkins [47].

The code changes are uploaded to a control version software and the Jenkins
server polls it every night to detect changes in the code. The control version server
used is subversion. When new code is detected all the metrics are recomputed and
the metric changes over time are depicted on some graphics to have a project status
overview.

The following are the static metrics performed directly on the source code:

• Source lines of code (SLOC): The simplest metric is the number of source
lines of code on the project. This metric is important because a new added
functionality can be related with the added lines of code. This allows the
estimation of the e�ort to implement another similar functionality. In addition,
if the project or some module increases its size too much it may indicate the
need for a refactory or its break into new modules. This metric can be used
as input for some cost models as COCOMO [35].
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• Duplicated Code: It is a copy paste detector. It can even identify similar code
regions. If big sections detected, it means the code can be included in a new
function, thus increasing modularity.

• Cyclomatic complexity (CC): This metric counts the number of executable
paths on the application. Usually counting the number of if statements. Some
studies have proven a correlation between the number of bugs and the high
cyclomatic complexity.

• CppCheck: this tool detects errors that usually are not detected by the com-
piler such as memory leaks.

In addition to these static metrics, a testing framework is used. The tests can
be considered dynamic metrics because they measure the application functionality
executing a code fragment. The idea is to develop using unit tests de�ning a function
behavior and then implement the function in order to pass the test. This approach is
used on some new developing methodologies as extreme programming because allow
a quick implementation, an easy refactoring of the code and a method of detecting
a bug on a recent source code change. The framework used for this purpose is the
Check Testing Framework [48]. The last metric is the test coverage to check the
percentage of the code that is being tracked with the tests.

The tests structure hierarchy is the following. The unit tests check a function-
ality. The unit tests are grouped on a test case to check bigger entities. Finally the
test cases are grouped on a test suit to test a whole module. The MME project has
a test suite for each library, but the basic PER encoding and decoding functions
tests are included in a separated suite because they are considered critical.

4.8 Conclusions

This chapter describes the most important aspects of the MME implementation
including design ideas and strategies. The developed application requires future
testing to be mature enough to be used on production environments.

The encoding and decoding protocol libraries can also be improved but they are
mature enough to be used on other LTE node implementation projects due to its
modular design.

A possible bottle neck on the current implementation is the data base implement-
ing the HSS. A real MME connects to an optimized HSS thus if the DB becomes a
MME bottle neck it can be considered an emulation issue and its criticality reduced.
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5 Testbed performance results

This chapter shows the archived testbed and includes some measurements to prove the
compliance with the standard requirements. Section 5.1 describes the actual testbed.
Section 5.2 contains the overload measurements and �nally the sections 5.3 and 5.4
contain latency measurements on the testbed, the �rst on unload conditions and the
second on loaded conditions.

Almost all the measurements have been taken using the attach procedure as an
indication of the general performance

5.1 TestBed Setup

The current testbed is depicted in Figure 32. The blade servers are virtual servers
located on the university datacenter. These servers are running on a Xen server [42]
using a full virtualised environment.

Figure 32: TestBed diagram

The left part of the �gure is the host with the third party emulator application.
This application emulates the Radio Access network on the testbed and provides a
connection to an application PC to generate the User tra�c to be tunneled. The
Emulator host has two network interfaces (NIC), the �rst used to connect the emu-
lator to the EPC and the second to connect with the application PC. The emulator
runs on a Fedora 17.

The emulator is connected to the blade servers using a VLAN with private IP
addresses (10.12.0.0/4). This LAN transports the user data and the signaling, thus
it implements the S11, the S1-MME and the S1-U interfaces on the same network.

The Blade server number 1 executes the developed MME application. It only
requires one NIC because the S11 and S1-MME interfaces are separated using dif-
ferent protocols and ports. The ideal LTE setup is with 2 di�erent NICs. It runs an
Ubuntu 12.04.2 LTS 64 bit version although the MME application has been tested
on a Fedora 18 32 bits version. The application is expected to work on other UNIX
environments.
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Finally, the S-GW and P-GW functionality is performed by an open source SAE-
GW application [41] on the second blade server. This blade server has a connection
to the common private network 10.12.0.0/4 and another NIC with internet connec-
tivity through a NAT. The application SAE-GW application requires an IP address
for each LTE interface and IP alias have been used for this purpose. The used IP
addresses are the following:

10.12.0.142 Used on the S-GW's S1-U interface.
10.12.0.143 Used on the S-GW's S11 interface.
10.12.0.144 Used on the S-GW's S5 interface.
10.12.0.145 Used on the P-GW's S5 interface.

During the testing process, some bugs have been detected and corrected on the
SAE-GW.

The SAE-GW uses the NAT interface to o�er the PDN connectivity to the UE.
The SAE-GW detects UE assigned IP addresses on the received packets in order to
forward them to corresponding the UE GTP tunnel. Because the lack of a public
IP range to assign to the incoming UE a combination of private IP addresses and
a NAT is used to serve the UE. This solution simpli�es the UE packets routing
con�guration and o�ers a whole subnet IP range to allocate the IP addresses for the
UE pool.

The problem of the NAT approach is that the SAE-GW host does not respond the
UE IP address ARP request from the Switch thus the packets with UE destination
are not sent to the SAE-GW host. To solve this problem ARP spoo�ng techniques
are used to poison the switch ARP table and force the UE destination packets to
be forwarded to the host.

5.2 Overhead

User data In order to study the protocol overhead on the S1-U interface, the
di�erent protocol header sizes should be considered. Table 2 shows the size of the
message header per protocol. The considered overhead is the tunneling overhead
thus the transported layers above the GTP protocol are considered as the payload.

Protocol Header (B)
ethernet 16
IP 20
UDP 8
GTP 9
TOTAL 52

Table 2: Header Contribution per Protocol on S1-U

For each IP packet Table 2 shows that 52 bytes would be overhead. In this test
case, we consider a video stream over TCP. The captured TCP tra�c from the video
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stream includes the data packets from the PDN to the UE and the ACK packet back
from UE to PDN.

The ACK packet has an overhead of 56,52% as detailed on the �rst row of Table
3. This high overload is the expected one due to the small size of the packet.

Message Packet Payload(B) Header(B) Overhead(%)
ACK 92 40 52 56,52
Data 1552 1500 52 3,35

Table 3: S1-U Overhead on data

Another ine�ciency of using GTP-U happens when user data has to be frag-
mented. The UE application is sending IP packets with 1500 byte MTU which is
the Linux default MTU. These data packets have to be tunneled with GTP header
thus resulting in packets with 1552 bytes. These packets do not �t any more in a
MTU of 1500 bytes and have to be fragmented.

Message Packet Payload(B) Header(B) Overhead(%)
Fragment 1 1516 1464 52 3,43
Fragment 2 72 36 36 50,00

Table 4: S1-U Overhead with fragmentation

This results in two IP fragments of 1516 bytes and 72 bytes with the overheads
of 30,43% and 50% respectively as shown in Table 4.

The total overhead of the ACK packets together with the fragmented IP packets
results on an approximate overhead of 8%. An overhead of 8% is a good result
although it depends on the type of tra�c the tunnel is transporting.

Signalling We consider signaling overhead all the messages required to establish
and manage the data bearers. The transactions going through S1-MME, S11 and
S5/S8 interfaces are signaling procedures. Moreover, each of these interfaces have
their own overhead because S1-MME runs directly over IP/SCTP but S11 and S5/S8
run over GTPv2.

Table 5 contains the S1AP messages for the attach procedure and their overhead.
The cause of the large overhead is the small size of the signalling messages. These
small packets can become problematic as they may reduce the throughput or increase
the network latency when applying Nagle's algorithm.

Tables 6 and 7 contain the messages for GTPv2 tra�c of interfaces S11 and S5
respectively and their overhead.

Finally, in Table 8 we can observe the total signalling overhead from S1-MME,
S11 and S5/S8.
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Packet(B) Payload(B) Header(B) Overhead(%)
Initial UE Message 130 66 64 49.23
Authentication Request 138 60 78 56.52
Initial Context Setup Request 234 156 78 33.33
Initial Context Setup Response 118 38 80 67.80
Attach Complete 94 31 63 67.02
SACK 62 0 62 100.00
TOTAL S1AP 890 386 504 56.63

Table 5: Attach S1AP overhead

Packet(B) Payload(B) Header(B) Overhead(%)
Create Session Request 204 162 42 20.59
Create Session Response 141 99 42 29.79
TOTAL S11 345 261 84 24.35

Table 6: Attach S11 overhead

Packet(B) Payload(B) Header(B) Overhead(%)
Create Session Request 211 169 42 19.91
Create Session Response 119 77 42 35.29
TOTAL S5 330 246 84 25.45

Table 7: Attach S5 overhead

Packet(B) Payload(B) Header(B) Overhead(%)
TOTAL S1AP 890 386 504 56.63
TOTAL S11 345 261 84 24.35
TOTAL S5 330 246 84 25.45
TOTAL Attach 1565 893 672 42.94

Table 8: Attach Total overhead

Overhead conclusions The results show the signaling overhead 42,94% is bigger
than data overhead (aprox 8%) but signalling impact is negligible on the overall
data transfer between UE and PDN. Therefore focus should be on reducing the
data overhead once the signalling requirements (latency, etc.) are met.
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5.3 Latency on unload conditions

Usually, the latency is measured using network tools as ping but this approach is
not applicable on the current setup because there are multiple elemental procedures
involved.

The chosen methodology to measure the latency is to split the di�erent parts of
the procedure and calculate the elemental transfer delays. These delays are the time
stamp di�erence between messages captured with the network sni�er wireshark. The
latency of the EPC can be calculated as the addition of transfer delays between a
message with the emulator as source and a message with the EPC as source.

The transfer delay is composed by the transmission delay, the propagation delay,
the queue delay and the processing delay. Due to the short distance of the nodes,
the propagation delay is not signi�cant. In addition, the transmission delay is not
signi�cant too, because of signalling packet's short length and the high capacity link.
On unloaded conditions, the queue time is not considered thus the only component
of interest is the processing time.

This assumption has been checked using time stamps on the code to measure the
processing time and it is equivalent to the delays observed on the capture application.

On this section, the latency results are exposed and commented. The interme-
diate data has been included only in the �rst procedure, the attach procedure, and
only the �nal results are included on the other procedures.

Attach Procedure According to the requirements detailed on the standards [18],
the maximum allowed C-Plane latency on LTE-A is 50ms. This latency takes into
account the core network latency and the radio access latency and it is de�ned as
the transition time from Idle mode to connected mode excluding the S1 transfer
delay.

In Table 9 can be observed the relative time stamps of the attach procedure mes-
sages captured on the emulator host using the tra�c capture application wireshark.

Attach Req Auth Req Auth Resp Attach Accept Attach Complete
0 0.000776 0.120139 0.126351 0.155557
0 0.000752 0.118305 0.122051 0.154766
0 0.000740 0.119506 0.121718 0.249578
0 0.000763 0.118895 0.126644 0.155799
0 0.000815 0.119042 0.123016 0.150096
0 0.000798 0.118633 0.121944 0.151174

Table 9: Attach time stamps, expressed on seconds

The resulting transfer delays are exposed in Table 10.
As it can be observed, the transfer time does not comply with the required

standards for LTE-A. However, when observing the contributions of the EPC and
the RAN emulator, it can be noticed an important di�erence: the major contribution
is the emulator.
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t1 t2 t3 t4 EPC Emulator TOTAL
0.776 119.363 6.212 29.206 6.988 148.569 155.557
0.752 117.553 3.746 32.715 4.498 150.268 154.766
0.740 118.766 2.212 127.86 2.952 246.626 249.578
0.763 118.132 7.749 29.155 8.512 147.287 155.799
0.815 118.227 3.974 27.080 4.789 145.307 150.096
0.798 117.835 3.311 29.203 4.109 147.065 151.174

Table 10: Processing time, expressed on milliseconds

With these results it can be concluded the emulator does not �t the signalling la-
tency requirements. However, the EPC latency is small enough to be combined with
a real RAN if a latency lower than 47ms is granted to �t the LTE-A requirements.

Detach Procedure The detach procedure measured is the eNB initiated varia-
tion. It is de�ned as the transition from Active mode to Idle mode, this it is the
transfer delay of NAS detach procedure. The obtained result with an average of 6
measurements is a latency of 1,40 ms, thus the detach procedure is compliant with
the 50ms latency requirement.

During the detach procedure measurements, it has been noticed a large delay
on the EPC to start the UE context Release procedure. This delay is larger than
the 50ms and can be problematic on a high load scenario. The origin of this delay
is a performance problem caused by interaction between Nagle's algorithm and the
Delayed Ack 2. This issue has been solved disabling Nagle's algorithm with the
SCTP_NODELAY socket option but it needs further investigation on high load
cases as disabling Nagle's algorithm may increase network congestion.

X2 based handover The X2 based handover procedure latency is de�ned from
the �rst X2-AP message exchanged between the eNodeBs until the Path switch
accept message. The Tracking area update procedure is not included as does not
modify any con�guration, it only communicates the UE location.

The latency results are really high, more than 2 seconds, but observing the
EPC and RAN contributions, the same conclusions as the Attach procedure can be
derived. The EPC contribution to the latency is 1,36 ms with four measurements
average.

The emulator contribution to the latency cannot be studied because the source
code is not available and it uses a closed SCTP implementation.

S1 based handover The latency on the S1 based handover is de�ned from the
eNB message to the MME informing a handover is required until the MME commu-
nicates to the eNB that the uplink tunnel is available with the Handover Command.

2The detailed problem description can be found on this article [38]. The article describes the
problem on TCP but it applies to SCTP too.
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This latency de�nition is more appropriate because the handover notify depends
on the UE movement, thus the measure is more objective and stable. The other
messages are performed once the UE is changing eNodeB or has already changed,
thus are not considered on this latency measurement.

The results of this procedure show the usual di�erence between the EPC and
the RAN contribution, but the total is compliant with the 50 ms limit. The EPC
latency is 1,21 ms, the emulator latency is 34,01 ms, hence the total latency is 35,22
ms (< 50ms).

5.4 Latency on load conditions

In order to study the testbed response on load conditions, the loadWithAttach
application has been developed. This application is included in the exampleProgram
folder as it illustrates the S1AP library use. The application acts as an eNodeB and
triggers the attach of dummy UEs. These continuous attach procedures load the
testbed EPC allowing its characterization.

The loadWithAttach application inserts all the subscriber information required
by the MME for a successful attach procedure in the DB. Two di�erent DB load
strategies are considered, 1) insert the subscriber information before initiating each
attach, 2) insert the subscriber information before any attach in application's start
(-p option). A third option is considered (-r option) that allows a reset of the
database after a certain time after the initialization of the execution.

Figure 33: Number of Attachments per second

The results for the �rst strategy are depicted in Figure 33. The horizontal line on
20 attachments per second corresponds to the latency limit on unload conditions.
This 20 attachments per second is a reference to compare loaded and unloaded
measurements. The �gure shows a decreasing latency due to the UE data additions
to the system. The point where the measurements reach the 20 attachments per
second corresponds to approximate 12000 subscriber contexts on the system.

The end of the attachments at the right of the �gure corresponds to the testbed
break. The S/P-GW application stops without any error message.



66

Figure 34: Number of Attachments per second with 10000 UE preload

The second strategy allows the preload of the subscriber information on the HSS
emulated database, but not on the MME. With this test it is possible to discrimi-
nate whether the bottle neck is on the MME UE storage or on the emulated HSS
implemented with a MySQL database. The results are depicted in Figure 34.

The attachments per second with a UE data preload of 10000 subscription con-
text on the HSS are almost constant on 25 att/sec. On a real scenario, the subscriber
information is preloaded on the HSS by the operators to manage the subscribers.

Figure 35: Number of Attachments per second with UE data base reset on 200s

Figure 35 depicts the measurement results applying the database reset variation
on 200 seconds after the initialization of the test. The database reset is obvious in
the discontinuity upon 200 seconds. Although the reset peak is not as large as it was
expected. At the begin of every measurement, the database is rebuilt and without
this step the initial peaks are reduced on the following tests.

The decrease of the unloaded database peak may be related with a missing
database con�guration optimization for extensive reading / reading use cases.



67

5.5 Conclusions

This chapter has described the EPC testbed developed and contains some measure-
ments to characterize its performance according to the standard's requirements.

With these results it can be stated the standard's requirements are accomplished
for unloaded conditions. There are no requirements for loaded conditions but the
EPC is able to support at least 12000 subscribers with the current con�guration
maintaining the same condition requirements included in 3GPP standards.

This number of subscribers is not enough for large deployment where the MME
manages multiple Tacking Areas but the measurements show the bottle neck is on
the HSS emulator data base, thus the solution should be easily scalable with an op-
timized database or implementing the S6a interface and use real HSS infrastructure.

Another aspect to pay attention on future changes is the high ine�ciency of
S1AP signalling protocol as it can produce throughput and latency issues due to the
small size of the packets. In special, the delayed SACK in combination with Nagle's
algorithm may have a dramatic impact on the latency, increasing it four times.

The goal of implementing a virtualised EPC platform to provide an starting
point for future LTE studies has been reached successfully.
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6 Conclusions and future work

6.1 Conclusions

The Goal of the project was to build a virtualised LTE mobile core network (EPC)
testbed to study its feasibility and provide a platform to implement future modi�-
cations on LTE. The major part of the project has been focused on implementing a
MME application because it was the only pure LTE core node that was not imple-
mented as an open source solution.

The developed MME is not prepared for production environment yet as it does
not implement all the optional procedures detailed on the standards, but it imple-
ments the successful cases of the procedures described in Section 3.5, the Attach, the
Detach, the X2-based Handover and S1-based Handover. With these procedures,
the basic functionality to deploy basic UE connectivity is implemented. In addition,
the available S/P-GW source and the third party RAN emulator do not support all
the Handover related procedures. The �nal testbed is a valuable tool for studying
and developing new LTE possibilities on virtual environments.

The measurements of the EPC testbed show it is possible to virtualise the core
network functions while maintaining the expected performance required by 3GPP
standard. The testbed measurements expose a set of performance boundaries on
high load conditions and aspects to be observed on future tests. Nagle's algorithm
and SACK delay combinations has been solved disabling Nagle's algorithm on the
S1AP-MME interface. Future studies should take attention to them to avoid latency
issues. The other limitation found is related with the emulated HSS database, the
proposed future solution is to use a real HSS or to optimize the current MySQL
database for intensive reading and writing.

6.2 Future work

The integration of LTE virtualisation with Software De�ned Networking (SDN)
concepts is an attractive future scenario. The preferred de�nition of SDN is the
Scott Shenker's view that de�nes �SDN by the abstractions it provides to software
(and people writing it)�. The idea is to de�ne network abstractions to simplify the
development and operation of networks. These concepts are currently implemented
with a SDN controller that manages a set of switches.

The virtualisation o�ers freedom of deployment on standardized and open en-
vironments while SDN o�ers a central view of the network and the possibility to
program it by external applications. These technologies are complementary and
have the potential to transform the current network architecture and prepare it for
the mobile tra�c explosion. An LTE network with SDN integration could deploy
mobility, resource management and virtualisation using a shared infrastructure to
multiple operators.

There are two possible approaches to integrate the LTE core network, Evolved
Packet Core (EPC) with SDN. The SDN controller can be integrated within the
MME to be aware of the mobility requirements or can be located as part as the



69

S/P-GW to control the transport network. The integration of the SDN controller
on the MME o�ers the advantage to have access to the control plane of the LTE
architecture. In addition, this access may facilitate a seamless migration to a mobile
network with SDN integration or Software De�ned Mobile Network (SDMN). The
increase of complexity in the MME with the SDN controller will decrease the overall
complexity of the LTE network by eliminating some other network elements such
as the P/S-GW that becomes obsolete with a switch mesh network managed by the
SDN controller.

The SDN / LTE virtualisation integration challenge relies on combining the SDN
�ows with the EPS bearers. The design decisions taken in order to combine these two
concepts will a�ect the network topology and the interfaces, including its protocol
stacks.

The EPS bearer management is performed by the MME which has the access
to the location of the UE and manages the mobility. Proposed deployment is to
integrate the SDN controller on the MME because the MME has the global network
view required by the SDN controller. On large deployments with multiple MMEs
that SDN controller should be transformed on a slave controller subordinated to a
master controller. This scenario will require new technologies to maintain state con-
sistency between distributed controllers in order to maintain a logically centralized
controller.

Another important design decision is whether the GTP tunnels are maintained
or can be removed. If the GTP tunnels are maintained on the EPS bearer, the
solution deployment should be easily because no change is required on the eNodeBs
but a P-GW endpoint should be maintained in order to decapsulate the UE tunnel.
However, if the GTP tunnels are dismissed, the eNodeBs should be changed to
avoid the tunneling but another SDN mechanism should be de�ned to manage the
UE �ows. With the last solution, the PDN is taken up to the eNodeBs and it might
be more �exible depending on how the UE �ows are designed.
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A HSS Database

A.1 Database structure

Figure 36: HSS database structure design
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A.2 Database de�nition

Include scripts to create MySQL database.

-- MySQL dump 10.14 Distrib 10.0.3-MariaDB, for debian-linux-gnu (i686)

--

-- Host: localhost Database: hss_lte_db

-- ------------------------------------------------------

-- Server version 10.0.3-MariaDB-1~wheezy-log

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;

/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;

/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;

/*!40101 SET NAMES utf8 */;

/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;

/*!40103 SET TIME_ZONE='+00:00' */;

/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;

/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS,

FOREIGN_KEY_CHECKS=0 */;

/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;

/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;

--

-- Current Database: `hss_lte_db`

--

/*!40000 DROP DATABASE IF EXISTS `hss_lte_db`*/;

CREATE DATABASE /*!32312 IF NOT EXISTS*/ `hss_lte_db`

/*!40100 DEFAULT CHARACTER SET latin1 */;

USE `hss_lte_db`;

--

-- Table structure for table `auth_vec`

--

DROP TABLE IF EXISTS `auth_vec`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `auth_vec` (

`mcc` smallint(3) unsigned NOT NULL,

`mnc` smallint(3) unsigned NOT NULL,

`msin` binary(5) NOT NULL,

`ksi` bit(3) NOT NULL,

`ik` binary(16) DEFAULT NULL,
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`ck` binary(16) DEFAULT NULL,

`rand` binary(16) DEFAULT NULL,

`xres` binary(8) DEFAULT NULL,

`autn` binary(16) DEFAULT NULL,

`sqn` binary(6) DEFAULT NULL,

`kasme` binary(16) DEFAULT NULL,

`ak` binary(6) DEFAULT NULL,

PRIMARY KEY (`mcc`,`mnc`,`msin`,`ksi`)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `operators`

--

DROP TABLE IF EXISTS `operators`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `operators` (

`mcc` smallint(3) unsigned NOT NULL,

`mnc` smallint(3) unsigned NOT NULL,

`op` binary(16) DEFAULT NULL,

`amf` binary(2) DEFAULT NULL,

`name` varchar(20) DEFAULT NULL,

PRIMARY KEY (`mcc`,`mnc`)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `pdn_subscription_ctx`

--

DROP TABLE IF EXISTS `pdn_subscription_ctx`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `pdn_subscription_ctx` (

`mcc` smallint(3) unsigned NOT NULL,

`mnc` smallint(3) unsigned NOT NULL,

`msin` binary(5) NOT NULL,

`ctx_id` tinyint(3) unsigned NOT NULL DEFAULT '0',

`apn` varchar(30) DEFAULT NULL,

`pgw_allocation_type` bit(1) DEFAULT NULL,

`vplmn_dynamic_address_allowed` bit(1) DEFAULT NULL,

`eps_pdn_subscribed_charging_characteristics` binary(2) DEFAULT NULL,

`pdn_addr_type` bit(2) DEFAULT NULL,
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`pdn_addr` binary(12) DEFAULT NULL,

`subscribed_apn_ambr_dl` int(10) unsigned DEFAULT NULL,

`subscribed_apn_ambr_up` int(10) unsigned DEFAULT NULL,

`qci` tinyint(3) unsigned DEFAULT NULL,

`qos_allocation_retention_priority_level` tinyint(3) unsigned

DEFAULT NULL,

`qos_allocation_retention_priority_preemption_capability` bit(1)

DEFAULT NULL,

`qos_allocation_retention_priority_preemption_vulnerability` bit(1)

DEFAULT NULL,

PRIMARY KEY (`mcc`,`mnc`,`msin`,`ctx_id`)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `subscriber_profile`

--

DROP TABLE IF EXISTS `subscriber_profile`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `subscriber_profile` (

`mcc` smallint(3) unsigned NOT NULL,

`mnc` smallint(3) unsigned NOT NULL,

`msin` binary(5) NOT NULL,

`msisdn` bigint(16) NOT NULL,

`k` binary(16) DEFAULT NULL,

`opc` binary(16) DEFAULT NULL,

`imsisv` binary(8) DEFAULT NULL,

`mmec` tinyint(3) unsigned DEFAULT NULL,

`mmegi` smallint(5) unsigned DEFAULT NULL,

`network_access_mode` tinyint(3) unsigned DEFAULT NULL,

`ue_ambr_ul` int(10) unsigned DEFAULT NULL,

`ue_ambr_dl` int(10) unsigned DEFAULT NULL,

`apn_io_replacement` varchar(30) DEFAULT NULL,

`charging_characteristics` binary(2) DEFAULT NULL,

PRIMARY KEY (`mcc`,`mnc`,`msin`)

) ENGINE=MyISAM AUTO_INCREMENT=3 DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

/*!40103 SET TIME_ZONE=@OLD_TIME_ZONE */;

/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;

/*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;

/*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;

/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;
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/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;

/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;

/*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */;

-- Dump completed on 2013-07-12 19:37:25

# DB access rights

grant delete,insert,select,update on hss_lte_db.* to hss@localhost

identified by 'hss';

B SAE-GW patches

B.1 GTP-U Length Fix

diff -crB nwepc-0.16-old/nw-gtpv1u/src/NwGtpv1u.c

nwepc-0.16/nw-gtpv1u/src/NwGtpv1u.c

*** nwepc-0.16-old/nw-gtpv1u/src/NwGtpv1u.c

2011-05-30 16:16:14.000000000 +0300

--- nwepc-0.16/nw-gtpv1u/src/NwGtpv1u.c

2013-07-18 18:30:14.000000000 +0300

***************

*** 174,180 ****

(pMsg->npduNumFlag);

*(msgHdr++) = (pMsg->msgType);

! *((NwU16T*) msgHdr) = htons(pMsg->msgLen);

msgHdr += 2;

*((NwU32T*) msgHdr) = htonl(pMsg->teid);

--- 174,180 ----

(pMsg->npduNumFlag);

*(msgHdr++) = (pMsg->msgType);

! *((NwU16T*) msgHdr) = htons(pMsg->msgLen - 8);

msgHdr += 2;

*((NwU32T*) msgHdr) = htonl(pMsg->teid);

diff -crB nwepc-0.16-old/nw-gtpv1u/src/NwGtpv1uTrxn.c

nwepc-0.16/nw-gtpv1u/src/NwGtpv1uTrxn.c

*** nwepc-0.16-old/nw-gtpv1u/src/NwGtpv1uTrxn.c

2011-05-16 17:37:56.000000000 +0300

--- nwepc-0.16/nw-gtpv1u/src/NwGtpv1uTrxn.c

2013-07-18 18:30:25.000000000 +0300

***************
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*** 336,342 ****

(pMsg->npduNumFlag);

*(msgHdr++) = (pMsg->msgType);

! *((NwU16T*) msgHdr) = htons(pMsg->msgLen);

msgHdr += 2;

*((NwU32T*) msgHdr) = htonl(pMsg->teid);

--- 336,342 ----

(pMsg->npduNumFlag);

*(msgHdr++) = (pMsg->msgType);

! *((NwU16T*) msgHdr) = htons(pMsg->msgLen - 8);

msgHdr += 2;

*((NwU32T*) msgHdr) = htonl(pMsg->teid);

B.2 Ping response CheckSum Fix

diff -crB nwepc-0.16-old/nw-sdp/src/NwSdp.c

nwepc-0.16/nw-sdp/src/NwSdp.c

*** nwepc-0.16-old/nw-sdp/src/NwSdp.c

2011-09-16 10:51:08.000000000 +0300

--- nwepc-0.16/nw-sdp/src/NwSdp.c

2013-07-19 16:04:18.000000000 +0300

***************

*** 502,507 ****

--- 502,538 ----

return NW_SDP_OK;

}

+ static NwSdpRcT

+ nwChecksum(NwU8T *data, NwU16T checklen, NwU8T *chksm)

+ {

+ NwU32T sum = 0;

+ NwU16T answer = 0;

+ NwU16T wordData[checklen];

+ NwU16T *startpos = wordData;

+

+ memcpy(startpos, data, checklen);

+

+ while (checklen > 1)

+ {

+ sum += *startpos++;

+ checklen -= 2;
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+ }

+

+ if (checklen == 1)

+ {

+ *(NwU8T *)(&answer) = *(NwU8T *)startpos;

+ sum += answer;

+ }

+

+ sum = (sum >> 16) + (sum & 0xffff);

+ sum += (sum >> 16);

+ answer = ~sum;

+

+ memcpy(chksm, &answer,2);

+

+ return NW_SDP_OK;

+ }

+

NwSdpRcT

nwSdpProcessGtpuDataIndication(NwSdpT* thiz,

NwSdpFlowContextT* pFlowContext,

***************

*** 546,552 ****

memcpy(pingRspPdu + 14, pIpv4Pdu, pingRspPduLen);

memcpy(pingRspPdu + 14 + 16, pIpv4Pdu + 12, 4);

memcpy(pingRspPdu + 14 + 12, pIpv4Pdu + 16, 4);

! /* TODO: Add ip-checksum */

rc = nwSdpProcessIpv4DataInd(thiz, 0, pingRspPdu,

pingRspPduLen + 14);

}

else

--- 577,587 ----

memcpy(pingRspPdu + 14, pIpv4Pdu, pingRspPduLen);

memcpy(pingRspPdu + 14 + 16, pIpv4Pdu + 12, 4);

memcpy(pingRspPdu + 14 + 12, pIpv4Pdu + 16, 4);

! /* Add ip-checksum */

! *(pingRspPdu + 14 + 16 + 4 + 2)=0x00;

! *(pingRspPdu + 14 + 16 + 4 + 3)=0x00;

! nwChecksum(pingRspPdu + 14 + 16 + 4,

! pingRspPduLen - 20,

! pingRspPdu + 14 + 16 + 4 + 2);

!

rc = nwSdpProcessIpv4DataInd(thiz, 0, pingRspPdu,

pingRspPduLen + 14);

}

else
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