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Organizations today are trying to manage the many risks they percieve to be
threatening the security of their valuable information assets, but often these
risks realize into security incidents. Managing risks proactively is important,
but equally important and challenging is to efficiently respond to the incidents
that have already occurred, to minimize their impact on business processes.

A part of managing security incidents is the technical analysis of any related
computer systems, also known as digital forensic investigations. As a result of
collecting evidence such as log files from these systems, the analysts end up
with large amounts of data, which can form a timeline of events. These events
describe different actions performed on the system in question. Analysing the
timelines to find any events of interest is challenging due to the vast amount of
data available on modern systems. The goal of this thesis is to create a software
program to support the analysis of very large timelines as a part of digital forensic
investigations.

As a result, we have implemented a software with an efficient query interface,
which supports iterative exploration of the data and more complex analytical
queries. Furthermore, we use a timeline visualization to compactly represent dif-
ferent properties of the data, which enables analysts to detect potential anomalies
in an efficient way. This software also serves as a platform for future work, to
experiment with more automated analysis techniques.

We evaluated the software in a case study, in which it proved to show a great level
of flexibility and performance compared to more traditional ways of working.
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Language: English
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Tärkeä osa nykypäivän organisaatioiden riskienhallintaa on tietopääoman turvaa-
miseen liittyvien riskien tunnistaminen. Näitä riskejä ei kuitenkaan usein oteta
tarpeeksi vakavasti, sillä monesti ne myös realisoituvat tietoturvapoikkeamina.
Kattava etukäteisvalmistautuminen on tärkeää, mutta poikkeamien vaikutusten
minimoimisen kannalta oleellista on myös valmius tehokkaaseen poikkeamatilan-
teiden hallintaan.

Osana tietoturvapoikkeamien hallintaa toteutetaan siihen liittyvien järjestelmien
tekninen analyysi. Todistusaineiston, kuten erilaisten lokitiedostojen, keruun tu-
loksena tutkijat muodostavat aikajanan järjestelmässä suoritetuista toiminnoista.
Koska modernien järjestelmien sisältämä tiedon määrä on poikkeuksetta suuri,
on aikajanan analysointi mielenkiintoisten jälkien löytämiseksi erityisen haasta-
vaa. Tämän diplomityön tavoitteena onkin luoda ohjelmisto tukemaan kooltaan
erityisen suurten aikajanojen analysointia.

Työn tuloksena luotiin ohjelmisto, joka tarjoaa tehokkaan kyselyrajapinnan, tu-
kee tutkimukselle tyypillistä iteratiivista tiedon etsintää ja monimutkaisempia
analyyttisia kyselyitä. Lisäksi ohjelmisto mahdollistaa monipuolisen aikajanan vi-
sualisoimisen, mikä helpottaa huomattavasti käytöspoikkeamien löytämistä. Ta-
voitteena oli myös tuottaa alusta, jota voidaan käyttää jatkossa uusien automaat-
tisten analyysitekniikoiden kehittämisessä.

Ohjelmiston toimivuus todennettiin tapaustutkimuksessa, joka osoitti ohjelmis-
ton olevan erityisen joustava ja suorituskykyinen verrattuna aikaisempiin toimin-
tatapoihin.

Asiasanat: digitaalinen forensiikka, tietoturvapoikkeaminen hallinta, tie-
toturva, tietokannat, visualisointi

Kieli: Englanti
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Abbreviations and Acronyms

ACID Atomicity, Consistency, Isolation, Durability
API Application Programming Interface
CD Compact Disk
CERT Computer Emergency Response Team
CPU Central Processing Unit
CSIRT Computer Security Incident Response Team
CSS Cascading Style Sheets
CSV Comma Separated Value
DBMS Database Management System
FTP File Transfer Protocol
GUI Graphical User Interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
I/O Input/Output
IDS Intrusion Detection System
IIS Internet Information Services
IP Internet Protocol
IT Information Technology
ITIL Information Technology Infrastructure Library
JSON Javascript Object Notation
OLAP Online Analytical Processing
OLTP Online Transaction Processing
OS Operating System
RAM Random Access Memory
REST Representational State Transfer
SHA Secure Hashing Algorithm
SIEM Security Information and Event Management
SQL Structured Query Language
UI User Interface
URL Uniform Resource Locator
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USB Universal Serial Bus
WAH Word Aligned Hybrid
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Chapter 1

Introduction

Business processes today are increasingly dependent on information. The ef-
ficient management of information reduces the risk of interruptions in these
processes and also the related costs. Information is therefore also an im-
portant asset, which organizations need to protect just as any other busi-
ness critical asset, and which needs to be managed as a part of everyday
risk management. However, most organizations are still not adequately pro-
tected, which is made especially noticeable from the increased reporting of
information security incidents in the media. Even if they were adequately
protected, security incidents would still occur. There has to be an efficient
way to manage these incidents to minimize the damage and restore opera-
tions to the normal level of service. This is the objective of security incident
management.

The technical analysis of the incidents, known as digital forensic investi-
gations, is an important part of the security incident management process.
It is performed to understand the full impact of an incident and even to
collect evidence admissible in court. In that respect, it can seen as a digital
equivalent to more typical crime scene investigations. What makes digital
forensic investigations challenging, though, is the vast amount data available
on modern computer systems. Collecting this data is relatively easy due
to the many tools created for this very purpose. However, processing and
analysing the data to find events or artifacts of interest can be a daunting
task without efficient supporting tools.

As a result of collecting evidence, the analysts typically end up with a
single, very large timeline of events. These events are collected from all the
possible logs saved on a system, and describe in detail what has happened
and what kind of actions have been performed on that system. The goal of
this thesis is to implement an efficient software program, which assists the
analysts during digital forensic investigations to analyse these timelines or

9



CHAPTER 1. INTRODUCTION 10

other individual log files. The software should help to find good starting
points to guide the analysis and support iterative exploration of the data.
In addition, we want to develop a platform for the experimentation of more
automated analysis techniques.



Chapter 2

Responding to computer secu-
rity incidents

The following sections will introduce the reader to management of computer
security incidents and digital forensics. First, section 2.1 explains how in-
cidents are managed within organizations in general and how they relate
to operations of an organization. Next, section 2.2 expands the concept of
an incident to security incidents and describes what kind of challenges they
pose for today’s organizations. Chapter 2.3 will then define different concepts
around managing security incidents, and chapter 2.4 introduces an incident
management process from a security point-of-view. After the general intro-
duction, the term incident is used interchangeably with the term security
incident.

As a result of understanding the process, we will notice the importance
of efficient technical analysis of these incidents and take a closer look into
the triage phase of the process in the form of digital forensics in section 2.5.

2.1 Incident management in general

As a part of everyday operations of an organization, it will regularly face
events that cause interruptions or reductions in the quality of their services.
These unexpected interruptions are also called incidents, and are normally
first handled by the Service Desk function of an organization. Because of the
general problem-solving nature incident management process spans through
all of the functions of an organization. [49]

In the context of information technology (IT), Information Technology
Infrastructure Library (ITIL), which provides practices for IT service man-
agement, defines incident in the following way: [49]

11



CHAPTER 2. RESPONDING TO COMPUTER SECURITY INCIDENTS12

An unplanned interruption to an IT service or a reduction in the
quality of an IT service. Failure of a configuration item that has
not yet impacted service is also an incident. For example, failure
of one disk from a mirror set.

The following sections first introduce the objectives of incident manage-
ment in chapter 2.1.1, then explain the basic concepts of prioritization (sec-
tion 2.1.2) and escalation (section 2.1.3).

2.1.1 Objectives

The objective of incident management is to restore the operations of an or-
ganization to the normal level of service with the smallest possible impact,
which is either defined for the organization itself or committed to the cus-
tomers. Efficient and controlled intervening to deviations on service level is
crucial to not only constrain the direct costs related to resolving and incident,
but also for maintaining the productivity of the whole organization. [49]

Naturally, when talking about possible risks that an organization might
be facing, the foremost action is to first identify them. Only after knowing
the risks, one is able to work pro-actively to prevent them from realizing
into incidents. However, almost never it is possible to remove all of the
risk, because some of the parameters are always out of the hands of an
organization. That is why there must be a way to respond efficiently when
all the preventive measures have failed. Furthermore, only being prepared
helps to constrain the costs of a possible incident. [49]

Incident response in general terms is an organized and managed approach
to addressing these unexpected events of emergency (incidents). Incident re-
sponse team (IRT) is then a group of people which is trained and prepared
to respond to these incidents. Team consists of pre-selected members with
different capabilities to fill roles needed to handle the situation in question.
For instance, there needs to exist an incident commander who takes respon-
sibility of managing the situation, team and other resources.

2.1.2 Prioritization

Prioritization is an important part of the incident management process. As
there will always be multiple incidents submitted to be resolved at the same
time, being able to recognize the overall importance and priority of an inci-
dent helps to resolve the most threatening incidents much more efficiently.
It is important to realize that the priority is actually a sum of two different
factors: impact and urgency.
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Impact of the incident is the overall disruption for the level of service in
terms of the number of business process affected. Furthermore, an incident
is considered to have major impact also when timespan of the disruption is
remarkable, even when the number of affected users is low.

Urgency of the impact, on the other hand, is the acceptable delay for the
affected functions in solving the incident.

This means that event though a certain incident might at first sight seem
to threaten the whole organization, its urgency might be very low and allow
more urgent incidents to be dealt with first. Incident management may
approach the overall risk by reducing either impact or urgency of the incident.
It has to be understood that impact or urgency may also change during the
lifetime of an incident. [49]

2.1.3 Escalation

Another important part of managing incidents is the concept of escalation.
To resolve an incident, it is not necessary to engage more resources than ab-
solutely required, because constant interruptions of, for instance, certain ex-
perts will decrease their productivity substantially. That is why a structured
approach will yield more efficient results, but on the other hand requires clear
policies to be defined. When the incident cannot be resolved by the first line
within a certain time span, it will be escalated, that is, more expertise will
be involved to resolve the incident. Functional escalation will involve per-
sonnel with more specialist skills or authority. Hierarchical escalation means
involving personnel with a higher level of authority in the organization. [49]

2.2 Security incidents

In the previous section we introduced the notion of incidents and important
basic concepts related to management of incidents. This section will con-
centrate on opening the notion of security incidents and the challenges they
pose for today’s organizations.

Most of the business process today are fully dependent on supply of infor-
mation, and the true value of information increases at the same time. Failing
to protect one of the three basic factors of security (confidentiality, integrity
and availability) leads to security incidents, where one of the factors is either
threatened or already compromised.

However, information security should not be seen as a goal of its own,
but rather linked to the operational efficiency where correct and complete
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information is available where needed, and to the quality of service provided
to the customers. [49]

The following chapters will discuss the history and lessons from past
security incidents based on reported data (section 2.2.1), and the potential
risks and reasons for preparing to security incidents (section 2.2.2)

2.2.1 Lessons from past incidents

In 1986 occurred the first well-documented international security incident on
ARPANET, the predecessor of Internet. Only two years later, the first auto-
mated security incident called ”the Morris worm” spread on the ARPANET
and caused a first known denial-of-service on about 10 % of the computers
connected to the ARPANET. This major event of the time triggered founding
of the first computer emergency response team known as CERT Coordina-
tion Center, to help responding to computer security incidents. After that,
we have witnessed an explosive growth in security incidents. [11] Already in
1995 the number of reported incidents to CERT was at a level of 2500. After
that, the problem has exploded, and most of the small incidents go either
unnoticed or are left unreported. [18]

What is notable here, is that the majority of the breaches reported to
Verizon’s Data Breach Investigations Report 2012 [62] are opportunistic and
low difficulty [62], which has been the case since the very beginning [11].
In 85 % of these cases it took more than two weeks before the breach was
noticed and in over half of the cases months. Furthermore, 97 % of the
breaches were not detected by the organizations themselves, but rather by
third-parties, mainly by the law enforcement. After the breach is detected, 42
% of the problems are fixed within days. This strongly implies that in most
of the organizations incident prevention and detection are not adequately
taken care of.

The report also notes that even though being a very typical driver behind
preparing to incidents, the vast majority of the victims did not suffer any
extensive financial losses in addition to the incident handling costs, or long
term brand damage because of the breach. However, a few reported losses
of hundreds of millions and some companies went out of business because of
a breach. One has to remember though, that a lot of the costs may impact
other organizations indirectly and more severely, as it is the case in payment
card breaches where the card issuer might have to absorb the costs of the
compromised credit cards. [62]
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2.2.2 Risks

Unfortunately many organizations realize the importance of proper security
management only after their first severe incident. Even if the possible risks
have been considered, they are often times widely neglected. Proper inci-
dent management should be an integral part of organizations’ normal risk
management strategy. [48]

Some of the important risks are introduced below. [15]

Direct costs A clearly understandable risk, however not that obvious to
fully recognize, is the direct costs of the incident. Handling and fully
resolving an incident and all of its after-effects might result in major
financial expenses. Even though, as noted in chapter 2.2.1, in most of
the cases the expenses stay relatively low, they are still always present
and hard to estimate.

Business impacts Perhaps even bigger threats are all the unclear indirect
effects on the business itself. A breach may have an effect on daily
operations of the business making it hard or impossible to operate. In
addition, it can cause permanent damage on the reputation and brand
of the organization or a product, and result in loss of confidence in the
eyes of stock owners and clients.

Legal reasons Legal concerns may also require an organization to recog-
nize security risks and prepare oneself to respond to incidents. For
instance, entities handling credit cards, healthcare-related information
or being part of a critical infrastructure might be required to obey
certain regulations and even individuals may be held accountable for
severe incidents. Furthermore, privacy concerns in general have be-
come a major driving force behind preparing organizations to face this
risk. European Union, for instance, has taken actions to strengthen
privacy in its member countries by enforcing it in a specific regulation
(on proposal stage). [19]

2.3 Security incident management

Typically, the term incident response has been used to describe the activi-
ties of a Computer Security Incident Response Team (CSIRT), which is an
organization or a team taking care of performing the response within an or-
ganization. However, in [4] the definition is restructured into the following
phrase:
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a capability or team that provides services and support to a de-
fined constituency for preventing, handling and responding to
computer security incidents

The authors wanted to emphasize that the response ”team” can exist
in many forms, depending on the organization and operational purpose in
question, and it should be seen more as a capability therein. Nevertheless,
CSIRT is the entity formed to take care of the handling of security incidents
within an organization.

However, this definition also resulted in reconsideration of the term inci-
dent response, as it was seen as too narrow to include all the possible services
a CSIRT might provide. The authors of [4] consider incident response to be
part of a more general incident handling service, among other preceding func-
tions such as detecting and reporting, triage and analysis. That is, incident
response is the last process of incident handling.

Even further, CSIRT may provide many other services outside of the scope
of only reacting to incidents and handling them. Term covering everything
around managing incidents is incident management and it includes also all
the pro-active services such as vulnerability handling and awareness training.
Division of these concepts is illustrated in figure 2.1.

Incident Handling Notifications

Vulnerability
Handling Alerts

Artifact Handling Other services

Detection

Triage

Analysis

Response

Reporting

Resolve

Mitigate

Recover

Incident Handling

Incident Management

Incident Response

Figure 2.1: Incident management concepts

Building a well functioning capability is not a trivial task, since typically
knowledge is needed from many different divisions, such as management, IT,
Security, HR, legal and public relations. Thus, the capability must consist
of knowledge from many different disciplines. Having such as a dedicated
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multi-disciplinary capability might be hard to accomplish and that is the
reason why it can take so many forms within an organization and only a
strictly dedicated team might not be a reasonable form for it. [58]

It is even possible that the capability exists in a distributed form without
the organization realizing it. This means that some processes and plans are
in place, but not in a coordinated way. Depending on the level of imple-
mentation, the capability can be a comprehensive collection of policies and
procedures, or more loose group responsible of handling incidents.

Furthermore, management is often under pressure to implement the secu-
rity strategy of the organization as cost-efficiently as possible. This typically
leads to centralization of the IT related tasks to avoid duplication and out-
sourcing of the tasks that cannot be executed efficiently in-house. Outsourc-
ing, however, results in a situation where the managers are not anymore in
direct control of the execution, but still responsible for the completion of the
security strategy. [4]

2.4 Management process

During the years, many different authors have published their own view about
efficient incident handling processes, thoroughly summarized in [4]. All of
the authors agree on a high level, but differences can be seen in granularity.
The process introduced in [4] and illustrated in Figure (2.2) is based on this
summary and experience of its authors, and designed to support existing
organizational mission, policies and procedures. Here, detailed descriptions
of underlying subprocesses are omitted and instead introduced on a general
level.

Prepare Protect

Detect Triage Respond

Figure 2.2: Incident management process

1. Prepare: In this phase, incident management or CSIRT capability is
implemented in an organization and kept up-to-date. Plans are made
and iteratively improved based on feedback from previous incidents.
Information about found improvements is passed to the protect process.
The base for effective response to incidents is built here and should
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include planned processes on areas such as notification, communication,
coordination, analysis of incidents and responding to incidents.

2. Protect: This phase implements changes in infrastructure to stop an
on-going incident or to prevent incidents in future. Also, the infrastruc-
ture is pro-actively inspected and risks are evaluated. Any previously
unknown security related information is transferred to the next detect
process. Protection process ensures that the organization is adequately
protected in advance and is aware of possible risks involved within its
infrastructure.

3. Detect: Detection process actively monitors and analyzes events, for-
wards any suspicious events to the triage process and possibly reassigns
events to other areas outside incident management processes. It is en-
sured that the organization is capable of detecting possible intrusions
efficiently and communicating this information to responsible parties
for further analysis.

4. Triage: Here, the overall impact of an event is investigated. Events
arriving to this process are categorized, prioritized, correlated and for-
warded to the responsible process depending on the context. This can
mean responding, reassigning or closing unimportant events. Typically,
this process is part of responding itself, but the authors argue that be-
cause it can be done in many different ways and by many different
parties, even outsiders, it should be separated.

5. Respond: In this process, actions are taken to respond to an event.
It is first analyzed to understand the full context, and then a response
strategy is designed and executed. Actions concerning all the partici-
pating entities are coordinated and any actions required to resolve and
recover from the incident are taken. Information to learn from is passed
back to prepare process.

Especially important is to understand the links and communication be-
tween the processes. For instance, an important question when performing
the analysis and responding is how and when should the system be contained
to constrain the incident surface and preserve evidence. This is again only a
matter of clearly defined and understood policies and procedures.

Detect and Triage phases of this process are the most technically chal-
lenging ones. As noted previously in the chapter 2.2.1, most of the security
incidents typically remain unnoticed for a long period of time or even com-
pletely from the organization. And even though the issue is fixed relatively
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shortly after, gaining a thorough understanding of what has really happened
in the triage phase may be extremely challenging.

2.5 Digital forensics

In the previous section we introduced the reader to incidents, security in-
cidents and their management. We identified that detection and triage or
analysis phases of the management process are the most technically challeng-
ing and important for a successful handling of incidents.

This section will take describe how the actual analysis of incidents is
performed on a general level, in the context of digital forensic investigation.
It will first introduce forensics as a concept in section 2.5.1 and then look in
more detail into a forensics process and an its many phases in section 2.5.2.

2.5.1 Forensics and digital investigation

Forensic science (or forensics) is typically defined as the application of a broad
spectrum of sciences to answer questions of interest to a legal system. That
is, the goal of forensics is to identify, collect, examine and analyse evidence
that makes it possible to prove a certain chain of events. In addition, all this
must happen while preserving the integrity of the evidence and information,
and while maintaining a strict chain of custody for the evidence. Chain of
custody means a chronological documentation of handling of the evidence.

This general definition applies as well to digital forensics, where the evi-
dence is however, ”information stored in binary form that may be introduced
and relied on in court” [45]. Term data here refers to distinct pieces of in-
formation in a certain format.

Digital investigation is the process where hypothesis, which answer ques-
tions about digital events, are developed and then tested. Due to the complex
nature of digital evidence and the technology underneath, analysts must re-
alize the importance of fully understanding the results of the analysis, which
means not only trusting the tools used, to be able to draw holding conclu-
sions. [10]

Even though the definition of digital investigation lacks the aspect of
proving the results in court, we will use the term interchangeably with digital
forensics because the main difference is in management of the evidence.

In addition to using digital forensics in response to incidents, the same
techniques can be used in plenty of other cases too, such as general trou-
bleshooting, data recovery or regulatory compliance. In this case, however,
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we limit our interest to firmly and efficiently proving a certain chain of events
or finding other digital artifacts of interest.

2.5.2 Forensics process

A general forensics process is illustrated in figure 2.3. The phases of the pro-
cess are collection, examination, analysis and reporting. A short description
of each is given in here, and more in depth in the following sections.

Collection Examination Analysis Reporting

Figure 2.3: Forensics process

1. Collection: This phase includes identifying, labeling, recording and
acquiring relevant information from different sources, while preserving
the integrity of the data.

2. Examination: In this phase, collected data is processed using au-
tomated and manual methods and particularly interesting data is ex-
tracted for further analysis.

3. Analysis: Next, information is derived and conclusions are drawn from
the results of the examination. This phase finds answers to the research
questions, which were the reason to start the investigation in the first
place.

4. Reporting: Finally, the results of the analysis are presented. The
report should describe how the data was processed, what tools and
procedures were used and what are the following actions to take. In
addition, recommendations for improving the forensics process may be
given.

2.5.2.1 Collection

The first phase of the forensics process identifies relevant sources and collects
data from them. Even identifying all the possible sources may be a daunting
task considering the wide adoption of a variety of technologies in organi-
zations. In addition to the obvious sources such as workstations, laptops,
mobile phones and servers, one has to also consider the variety of transfer-
able medias and other devices. External hard drives, USB memory sticks,
memory cards and CDs may store vast amounts of data outside the control of
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an organization. One problematic source, which has seen a quick adoption in
many organizations, is all the different software and services hosted by other
external service providers, from where the acquisition of data might be hard
or even impossible. That is why one has to be able think alternate sources
that might provide the same information and circumvent possible legal and
ownership considerations.

Today, what even small organizations have in their hands is an explosively
growing amount of data that they do not know even existing. Having enor-
mous amounts of data, however, results in equally big challenges when trying
to analyse and extract information and evidence out of that data. Indeed,
these facts are forcing analysts to begin using live-analysis data collection
techniques, pinpointing important pieces of data remotely and retrieving
only those absolutely necessary for further analysis. Full copies of all the
data available might not be feasible or even possible anymore. [54]

If the organization has realized the need for preparing to the worst and
taken proactive measures to respond to incidents they should have identi-
fied important systems and enhanced logging and audit capabilities in these
systems. This data is typically extremely valuable for the forensics process.

Valuable sources for forensics data are:

Filesystem In addition to the files themselves, filesystems provide plenty
of other information about the data it stores (metadata), which occa-
sionally proves to be even more valuable than only the content of the
files. Depending on the filesystem in question, this metadata includes
information such as timestamps for file creation, access and modifica-
tion. In addition, information about deleted files is usually preserved
for a relatively long period of time. All this time information helps to
build an detailed picture of actions performed on the filesystem, and
on the system itself.

Network Because practically every computer is connected to a some kind of
network, data exchanged between different systems might reveal useful
information about network-based attacks. Even though all the data
within organizations usually cannot be saved due to the vast amount
data produced every day, routers, firewalls, Intrusion Detection Sys-
tems (IDS) and other systems produce lots of event data about what is
happening inside an organization. In case more detailed data is needed
for instance after a breach is suspected, a packet collection system or
more specialized network forensics system can be set up, in case such
a system is not already in place.

Application Most of the applications produce a log of their actions, which
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is used for troubleshooting in error situations. These logs are often very
useful for forensics as they reveal more in detail how a user was using
the system. Not all applications are interesting nor produce a detailed
log, but especially server applications such as web servers, keep a log
that can be used to investigate how the application running behind it
was used on a higher level.

Operating system In addition to the OS level logging, operating systems
provide information about what is happening on a particular system
at the very moment. Most of this data is volatile and can be lost due
to any actions taken. Important volatile data are for example network
connections, login session, contents of memory, running processes and
open files. Furthermore, any changes in configuration might be a sign
of a potential issue.

Acquiring the data should follow a three-step process: developing a plan,
acquiring data and verifying integrity of the data. This process is illustrated
in figure 2.4

Develop a plan Acquire data Verify integrity

Figure 2.4: Collection process

Making a plan beforehand helps to better understand the environment
and prioritize the sources. As mentioned previously, one of the issues in data
collection is handling the enormous amounts of data available. This is why
identifying the right sources is important, instead of collecting everything
available. The collection plan should take into account all the information
and pointers available to detect the right sources. These pointers may in-
clude, for instance, any suspicious events or alerts from virus or intrusion
detection systems.

Prioritization should take into consideration the following elements:

Value Estimating relative value of the data from each source helps to focus
on most important sources.

Volatility Volatile data means all the data that is lost or modified due to ac-
tions performed on a running system or when the system is shut down.
Because the data might be lost unexpectedly, it should be preserved
earlier than non-volatile data. Also, data saved on non-volatile media
might also have a volatile nature if it is modified often. [46] One has to



CHAPTER 2. RESPONDING TO COMPUTER SECURITY INCIDENTS23

remember that actions that at first might not seem to be harmful might
still modify the state of the system and lose valuable information. For
instance, only accessing a file might destroy an important timestamp
from the metadata of the file. So at first, one should collect information
only by observing the running system and systems interacting with it,
with no active actions taken.[60]

Effort Some sources might be a lot harder and costly to get access to, and
thus taking a lot of time and effort. It might be more useful to focus
on sources within an organization rather than trying to access, for
instance, networks of third-parties.

Data acquisition is normally performed using automated forensics tools,
which collect volatile data and takes copies of non-volatile data. Acquisition
can be performed also over the network, but generally doing it locally is the
preferred way because of the additional control and the certainty it brings.

However, one has to keep in mind that every action performed on the
system in question will have an effect on its running state. That is why all
the interaction has to be kept to minimum and it has to be verified that the
actions of the tools used are understood correctly.

After the collection, integrity of the data needs to be verified to ensure
that the data was transferred correctly and has not been tampered with.
This is typically done by calculating a digest of the original and the copy,
using algorithms such the SHA family [47].

2.5.2.2 Examination & Analysis

After the collection, what analysts typically have in their hands is a exten-
sive collection of different types of data from many different sources. Next,
the relevant pieces of information are extracted and conclusions are drawn.
Having vast amounts of data makes finding the relevant pieces difficult and
time-consuming, just as finding a needle from a haystack. This is true espe-
cially when the amount of initial, prior knowledge is limited or non-existent.
Of the millions of events, only a couple might end up being relevant to the
case. That is why the help and quality of supporting tools and techniques is
particularly important.

Different types of data require their own specific domain knowledge and
analysis techniques. Figure 2.5 introduced in [10] illustrates a layered model
of the different types of analysis for digital evidence. This model first sepa-
rates the analysis of storage devices from communication devices. The next
level makes a difference between volatile, RAM memory, and persistent stor-
age, such as hard drives. Volume analysis is a general term for the analysing
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of ”collections of storage locations”, under which the real data is stored,
most typically under file systems. This layer tells where the actual data is
located, and where possibly hidden data could exist. Inside volumes are the
actual file systems (or other structured layers). The last important layer is
application and OS layer, which links files from file systems to applications.
This layer also includes all the log data generated by applications or different
monitoring systems. [10]

Network Physical Storage media

Volume

File System

Application/OS

Swap Space Database

Memory

Figure 2.5: Analysis types

All these layers may provide a lot of information about the activities oc-
curred on a system, but they all require their own tools and techniques to
extract the relevant information. Despite the differences, even the tools typ-
ically output a vast amount of data that needs to be filtered and interpreted
by the analyst. And this can be daunting task to perform especially without
any helpful prior knowledge. Nevertheless, many times the output of these
tools resemble a log of any normal application.

As explained previously, the result of the analysis is typically to discover
a chain of events that prove certain incident or event in detail. All this log
data collected or extracted from the sources is chronological by nature and
typically contains some sort of time information. This allows to combine
that data into a single timeline, giving a deep view on the use of a system or
many systems. The resulting timeline is then analyzed to prove or disprove
certain defined hypothesis.

One point which characterizes the analysis phase is its ad-hoc nature.
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In other phases, known steps are followed to first find the sources, prioritize
and collect the data. Here, however, it is not known beforehand what kind of
information or patterns are found, which makes entirely automated analysis
difficult. Instead, tools and different methods are applied creatively to test
hypothesis, and that is why the tools should also support this kind of iterative
exploration of the data.

2.5.2.3 Reporting

After having gained a thorough understanding, conclusions are reported.
This report contains the discovered issues, methods used to find them, and
actions that needs to be taken to remedy these issues. Suggested improve-
ments can be related to policies and procedures of the organization, or to the
infrastructure itself. This important to prevent possible future incidents and
to learn from the experience.

It might happen that the research questions were not fully answered, and
more information is still needed to remedy that. In this case, the needed
sources are reported and collection is continued.



Chapter 3

Analyzing compromised systems
in practice

In the previous chapter we learned how organizations manage the risks re-
lated to security incidents. In addition, we described how these incidents
are investigated on a very general level. This chapter will give a brief in-
troduction to digital forensics investigations in practice. First, we describe
how the investigations typically begin in section 3.1. Then we describe what
methods are used in different cases in chapter 3.2. And finally, we describe
the methods needed for efficient forensic investigations in chapter 3.3.

3.1 Beginning for a forensic investigation

As explained previously, in an ideal situation an organization has a man-
agement process for security incidents in place and the incidents should be
discovered in the detect phase of the process (section 2.4). In practice this
typically happens through an automated monitoring system. In case of a
malware infection this system can be an anti-virus software and other types
of attacks might be detected by firewalls or intrusion detection systems (IDS).
These systems generate alerts containing information about the origin of the
event and about the reason, which makes a certain event suspicious. The
events are then taken further in the process and responded to.

As explained in section 2.2.1, however, this is not how these situations
typically proceed. Most of the organizations are not able to detect or handle
the incidents themselves. Rather, a third-party, such as law enforcement or
an internet service provider, might detect the incident months later, when
the worst might have already happened. Only at this point, when the organi-
zation realized the importance and impact of the incident, a full investigation
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is started to minimize the damage and to understand what has happened and
how.

It is also possible that the organization has been a target of a more
directed attack, even by an insider. These cases can be very hard to detect
because the actions might not be directly malicious by nature at all, and
thus not detectable by any monitoring systems.

3.2 Methods for investigations

When an incident has been detected, the goal of the started investigations is
to try to find answers, for instance, to the following questions. Has a breach
or infection happened at all? How and when? What has a particular user
done? Is there any evidence of certain actions executed? Depending on the
question, different methods can be used to look for an answer.

From the different analysis types introduced in 2.5.2.2, in practice the
most common ones are analysis of volatile memory (RAM), analysis of an
individual application or operating system, and analysis of a full hard drive.

Volatile memory is analyzed typically in cases where a malware infection
or a direct attack is suspected, and a full image of the running system is
needed. Analysing artifacts from the volatile memory can reveal many in-
teresting things that simply are not available on the disk or application logs.
This is due to advanced hiding techniques of modern malware and hackers,
there might be data available only on volatile memory and hidden from nor-
mal ways of accessing it through the operating system. For instance, we
might find hidden processes, files, or network connections. The Volatility
Framework [59] is an open source toolkit used for this purpose.

Similar individual artifacts can also be found from the hard drive. We
might be interested to look for certain keywords from the files available on
a system, find certain types of files or suspicious executables created by
malware. Tools such as EnCase [24] and FTK [3] can be used to index the
entire contents of a hard drive and then execute queries against this data.

More importantly, a forensic investigation is typically interested in prov-
ing a certain chain of events. For this, we must be able to build some kind
of a timeline of all the events occurred in a system. As explained previously,
most of the applications and operating system and file systems save a great
amount of information on disk in different log files and formats. All this
information can be combined to build a full timeline of events occurred on
a system. Log2timeline [39] is able to combine logs from at least 35 differ-
ent sources, including for instance, WWW-browser usage, Apache and IIS,
Windows event log, anti-virus engines, firewall logs and generic linux logs,
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among many others. The result is called a super timeline. This timeline is
then analyzed in detail to understand what has happened on a system or
what kind of actions or chain of actions a particular user has taken.

3.3 Efficient analysis

What is typically needed here, in addition to manual exploration of the raw
events or artifacts, is support for more analytical queries and more compact
ways of representing the timeline. We might want to know what moments of
time differ from the normal use, based on a selected property of the events.
For example, if the overall level of activity has changed, if a distinct amount
of data was transferred out of the system or if suspicious files or other artifacts
were brought into the system. Representing these results visually can benefit
the analyst considerably, because of the capabilities of humans to process
visual information efficiently, explained in detail in the following chapter.
However, no such ready system currently exists for analysing these kinds of
timelines in detail.

What typically complicates all these methods, is the vast amount of data
available for analysis. Without an efficient tool to support this kind of ex-
ploration and more intelligent analytical queries, it is very time taking and
difficult to find relevant information from the data. In addition, it is impor-
tant to be able to efficiently find starting points for the investigation. This
is where visualizations can be of a great help.

It is very possible, however, that no usable results are found at all within
the time reserved for analysis. Analysing very large datasets is challenging,
but often the biggest issue is the lack of relevant logging enabled in the
configuration of the system.



Chapter 4

Analysis methods

The previous chapters gave background for the problem we are solving. We
now understand incident management and digital forensics on a general level
and the challenges present in that context. We also gave an introduction to
investigations more in practice. We chose to look into solving the technical
challenges of a digital forensic investigation, more specifically the challenge
of handling big amounts of data either the systems under investigation have
produced or the tools used to extract information produce.

The following sections will give the reader an overview into technical
themes we identified to be of importance in designing an investigation sup-
porting system. First, we study efficient storing and querying of data in
section 4.1. Then, we look into compact representation of data in forms of
visualizations, which help the analyst to find anomalies in the data, in sec-
tion 4.2. Further, we will introduce automatic anomaly detection in section
4.3.

Finally, we will first introduce currently existing software solutions for
forensic analysis in section 4.4 and then evaluate their suitability for our
purposes in section 4.5.

4.1 Storing and querying event data

As explained in section 2.5.2, after the collection of many different types
of data, the evidence is examined and analyzed. To be able to efficiently
process the vast number of data collected, the underlying system must be
designed for highest possible performance and to support specific needs. The
raw data itself, for instance a log file with potentially millions of lines, may
be hard to process in the original format. However, the lines are typically
formatted in an unified way and thus have an internal structure that contains
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more meaningful information. This is where database systems come into
the picture. They provide means to store this structured data in a way
that enables execution of complex queries against the data and information
represented by the structure.

The following sections will introduce different types of data management
systems and features related to the efficient analysis of event data. Section
4.1.1 will look into database systems in general, section 4.1.2 introduces
different indexing techniques for efficient querying, and finally section 4.1.3
will discuss background for a novel technique of progressive queries to support
efficient exploration of the data in an iterative investigation process.

4.1.1 Databases

By definition, database is a collection of related data, that have an implicit
meaning. Further, the common meaning of database also includes the follow-
ing properties: database represents some aspect of the real world, database is
a logically coherent collection with an inherent meaning and database is de-
signed, built and populated with data for a specific purpose. A database itself
represents only the collection of data and is unusable on its own. Database
management system (DBMS) defines a collection of programs or routines
to enable defining, constructing and manipulating databases. Combining a
database and software yields a full database system. The main idea behind
database system is to provide a data abstraction and representation through
a standard interface based on the defined data model. This means that a
database system hides the details of storage access behind the system, thus
making accessing it more feasible to access. [52]

A general purpose database is typically meant to allow concurrent use
from many users at the same time through a unified interface. This means
that the database system must implement some kind of transaction process-
ing, which follows so called ACID properties [31]:

• Atomicity: It is required that either all or none of the parts of a
transaction are executed.

• Consistency: The system must assure that after a transaction, the
database satisfies all of the defined consistency requirements.

• Isolation: Two or more concurrent transactions must be isolated from
one another in a way that the result would be the same when ran
sequentially.

• Durability: After a successful transaction, the effects most not get
lost in case of a system failure.
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In our case, we want to store and query very large collections of events,
that have an order (time) and a description of what happened (event). In
addition, the event is typically carrying other pieces of data, defined by a
data model, that describe the event in more detail.

There are many types of database systems meant to be used for different
purposes. These systems can be categorized using many criteria, but here
we are interested in high performance analytics, so we are going to focus
on the difference between online transaction processing (OLTP) and online
analytical processing (OLAP), and row versus column oriented databases.

4.1.1.1 Row and column orientation

Traditional databases store records in a row-oriented fashion. This means
that pieces of data related to an individual record are stored sequentially
allowing efficient processing of these full records. The design is well suited
for the general-purpose databases, traditionally processing transactions on
records (OLTP). However, for more analytical needs (OLAP) this is not
optimal.

Along with the growth in need for efficient analytical data processing we
have seen an emergence of new DBMSs focusing on delivering the highest
performance on read-intensive analytical workloads. These new technologies
like MonetDB [42] and InfiniDB [43] are promising and can provide even
an order-of-magnitude gains on certain workloads. These column-oriented
databases store the data of each column or field sequentially, which enables
I/O efficiency and better CPU and cache performance. This difference in
efficiency is true even when using techniques such as vertical partitioning,
index-only plans or a specific collection of materialized views on row ori-
ented databases. Other optimizations related to column-oriented design are
late materialization of the records, block iteration and column compression
techniques. [2]

4.1.1.2 Full-text search engines

Full text search engines are a special type of document databases that employ
special indexing structures to allow fast searching against different fields in
its documents. What makes them relevant here is their optimized string
search performance and the ability use them also as a more typical document
database.

The most known and widely used such database is Lucene [6], and its
derivates Solr [7] and elasticsearch [16]. However, as these systems are mostly
search oriented and optimized to return only a few top matching results, they
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lack many more analytical features present in traditional database systems.
Although features such as Field Collapsing [8] are available in, for instance,
Solr, they cannot match the performance of traditional databases and thus
they are many times used to add certain search functionalities on top of
traditional databases.

4.1.2 Indexing

Indexes are access structures used to speed up retrieval of records. When
queries are executed to retrieve records based on values on certain column,
that is, the primary organization cannot be used, a full scan over the records
is needed. To avoid scanning through all the records, an index may be
constructed to map values of a column to individual records, thus enabling
efficient queries.[52]

Efficient retrieval of interesting data is crucial when performing an iter-
ative investigation. The goal of this section is to understand what kind of
techniques are available for efficient querying and retrieval of records from
the database. Commonly used indexing techniques are introduced in the
following sections.

4.1.2.1 Single level index

The most simple access structure is an ordered file with two fields. The first
one, also by which the file is sorted, is the indexing field containing the value
of the column in the indexed record. The second field acts as a pointer to
the original record. The index file contains one entry for each record, thus
allowing a quick traversal by the column values.

Because the index is sorted by the indexing field, search can be performed
using binary search, which has a logarithmic execution time. This is already
a great improvement over the linear search in the case of no indexing at all.
[52]

4.1.2.2 B-trees

Single level index provides already a significant performance improvement.
However, to reduce the number of different blocks accessed during a search,
we can introduce additional levels to the index. These multilevel indexes
reduce the search space even faster. They are typically implemented as a
tree structure, where each node guides the search to the next subtree of the
search tree. Generally, a node in a search tree contains a field value and
the corresponding pointer to the record itself. In addition, node contains
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pointers to the next level in the tree, for both smaller or larger values than
stored in the node in question. The details then vary a lot, how the tree is
structured and maintained. The most common version of a search tree used
in databases is a B-tree and its variants B+-tree and B*-tree. [52]

B-tree is a constrained instance of a tree structure, which ensures that
the tree stays balanced, meaning all the leaf nodes are at the same level.
This holds for both insert and delete operations. The basic B-tree stores
the indexed values on nodes of all the levels, along with a pointer to the
record itself. B+-tree, which is the most used variant, takes another kind of
approach. It stores all the data pointers only at the leaf nodes, creating a
leaf node for every unique value of the index. In case of a not unique search
field, an extra level of indirection is added from the leaf node, pointing to
a block containing all the data pointers (row identifiers). In addition, leaf
nodes form a linked list, which allows efficient ordered traversal on the search
field. [52]

Figure 4.1: B+-tree [23]

4.1.2.3 Hash maps

Hash map is a data structure that maps keys with their corresponding values
using a hash function. Hashing derives a compact representation of the key
and is used internally, for instance as a table index, to efficiently find the
corresponding value. Due to its great performance, hash map is widely used
for cases where functionality of an associative array is needed.

Generally, hash map performs better than tree based structures as its
average cost of each operation is independent of the number of elements
stored in the structure. However, even though the average cost is very low,
the optimal performance is achieved mainly in cases where the use pattern
can be predicted. Furthermore, hash map lacks other features of trees as
well, such as ordered traversal. [52]
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4.1.2.4 Bitmaps

Typical indexing, as explained for instance in section 4.1.2.2, reference each
row individually in the structure using a row identifier, which is a pointer
to the storage system (disk). This means that for very large databases, as
encountered for instance in data warehousing, indexes typically grow very
large in size and become hard to maintain. Bitmaps have become an inter-
esting solution for very large scale database indexing for read intensive use
patterns. [50]

In this case, bitmap is basically a compact representation of the set of
row identifiers. For a given set of rows, nth bit in the bitmap is set when
the corresponding nth row has a certain property. An example of a bitmap
index is illustrated in figure 4.2. This is especially efficient for columns with
low cardinality, such as boolean columns, as the required number of bitmaps
is low. In case of a column with unique values, one bitmap is needed for
each value, thus the number of bitmaps would equal the number of rows and
can become inefficient. However, proper use of compression and encoding
techniques have been shown to overcome this inefficiency and yield better
performance for columns of any cardinality. Indeed, using bitmaps or not
is mainly a question of application. [50, 63] FastBit project [20] uses Word-
Aligned Hybrid (WAH) code, analyzed in [64], for compression and a multi-
level encoding [65]. The authors argue that these are the most efficient
methods known in literature.

Figure 4.2: A sample bitmap index [64]

In addition to the space efficiency, handling bitmaps benefit of CPUs
performant bit operations, and for instance boolean operations on bitmaps
become extremely efficient. Furthermore, as needed in analytical use cases,
bitmaps are well suited for grouping and calculating aggregates in ad hoc
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queries. For OLTP applications normal B-tree indexes are a better fit be-
cause the data changes more, but the executed queries are typically known
beforehand [50, 63].

4.1.3 Progressive queries

Data exploration is typically an iterative process. The queries are not nec-
essarily known beforehand, and thus supporting data structures to answer
the queries cannot be constructed in advance. Iterative querying also implies
that the results of the next slightly modified query is many times a subset of
the previous query. If the result set is populated entirely, it could be possible
to use this set as a starting point for the following queries and reduce the
number of records to be inspected radically.

Four general level techniques to support these kinds of queries are pre-
sented in [67].

1. Repeated evaluation via query merging: In this strategy, the
previous results are not used in the following step queries. Rather,
a new query is evaluated fully with only the differing conditions, and
later the results are merged with all the previous step queries.

2. Incremental evaluation via sequential scan: This technique uses
the results of a previous step query as an input for the following step
query. For each subsequent step, a sequential scan has to be performed
because the intermediate results are temporary and thus the indexes
created for the original data cannot be employed.

3. Incremental evaluation via dynamically created indexes: Dy-
namic creation of indexes resolves the problem of the previous tech-
nique. This would make the query evaluation itself faster but decrease
the overall performance, because of the dynamic index creation.

4. Incremental evaluation via dynamically maintained indexes:
This technique transforms the indexes dynamically to suit the needs of
the subsequent queries.

The last technique was considered to be the most promising one in the
same paper [67]. The authors introduced an additional layer between the
actual records and indexes, which they named as ”router”. This router adds
a layer of indirection that can be dynamically updated to support progressive
queries.
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Typically this kind of functionality is constructed over the view function-
ality of the database systems. Another paper [66] investigates the use of
dynamic materialized views to speed up the execution of progressive queries.
The authors build a superior-relationship graph based on historical queries
and deploy an algorithm to decide if the sub result set should be materialized
as a view or not. Using views to speed up queries is well studied subject and
summarized in the same paper.

Another approach [28] studies automatic recycling of intermediate results
of a query plan to speed up any following queries with overlapping interme-
diates.

4.2 Information visualization

This section will introduce the reader to information visualization. The goal
is it understand, what kind of techniques and information are needed to
create supporting visualizations, that would help the analysts to process vast
amounts of information more efficiently.

We will first briefly explain theory behind visualizing data in sections
4.2.1 and 4.2.2. Then, we will take a closer look into useful visualization
techniques in the context of security visualizations in the following sections.
Section 4.2.3 introduces visualizations of timelines, section 4.2.4 explains
visualizations related to network flow data, and finally section 4.2.5 shows
techniques to detect attacks using visualizations.

4.2.1 Visualization

Information visualization produces visual representations of abstract data,
with a goal of reinforcing human cognition to enable the viewer to understand
the structure and relationships in the data.

visual representations and interaction techniques take advantage
of the human eye’s broad bandwidth pathway into the mind to
allow users to see, explore, and understand large amounts of in-
formation at once. Information visualization focused on the cre-
ation of approaches for conveying abstract information in intu-
itive ways. [29]

This means that because visualizations make use of the human mind itself,
analysts do not need to learn any specific skills to interpret the data. They
are able to quickly draw conclusions or generate hypothesis to later verify
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with more formal analysis. Visualization is thus an important part of data
analysis techniques, among with other tools such as statistics. This ability
of humans was successfully exploited, for instance, to solve an previously
unknown structure of a protein, which had troubled scientists for more than
a decade. This breakthrough was achieved by playing a game called Foldit.
[13, 22, 33]

In addition to more basic tools of representing data, such as charts (pie
chart, bar chart, histogram, etc.), plots and graphs, the information visu-
alization community has come up with plenty of other intelligent ways of
visualizing different types of data. Examples of these include treemap, which
can be used for hierarchical data, and heatmap, which illustrates intensity of
a value in an matrix.

Information security is facing the same problems as for instance business
corporations. Plenty of data is available or generated in data collection,
but the problem is to make a good use of it. After a security incident, the
analysts might be facing an amount of data that cannot be handled only
through manual inspection, and looking only the raw data might be very
hard to interpret any clear patterns in the data. Visualization is a useful
way of getting a quick insight of the data to guide the investigation further.

Security visualization is still relatively young area of research and the
techniques used are mainly based on the results of more traditional informa-
tion visualization research. The following chapters will present techniques to
support the analysis and to detect attacks, anomalies and structures. The in-
formation presented here is mainly based on the work done by Raffael Marty
[51] and the SecViz-community.

Benefits of visualization include: [51]

Answer and pose questions It is possible to create a visualization for
each of the question that needs to be answered during an investiga-
tion. Very often these visualizations then make the viewer to pose new
questions, which makes the process iterative by nature.

Explore and discover Visualizations make it possible to explore very large
datasets through a compact representation. Different representations
are needed to highlight different properties and relationships of the
underlying data.

Communicate information Due to the fact that visualizations encode a
lot of information into a easy to understand format, they are a way to
communicate information efficiently.

Increase efficiency Visualizations can speed up the investigation process
dramatically compared to for instance raw log analysis, because the
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pattern and relationship recognition capabilities of humans are in full
use.

However, these described benefits are only valid when the visualization
in question is created properly and by recognizing how human eye processes
information. Visualizations done wrong can even misguide the analyst and
result in completely incorrect conclusions. Human visual system has a certain
set of rules that define how visual perception works.

Some elements in an image are detected immediately when the image
is first viewed. These so called pre-attentive visual properties require no
concious attention to interpret. These basic visual properties can be grouped
into four groups: form, color, position and motion. Each of the groups have
additional sub-elements to consider, and they are illustrated in figure 4.3
Important information should be presented using these properties to make
the viewer spot important parts immediately.

Figure 4.3: Pre-attentive visual properties [51]

Keeping these basic features of human vision in mind, we are able to
present a set of basic principles of graph design [51]. Following these princi-
ples results in better quality and understandable graphs.

Reduce nondata ink The less ink is used to draw the graph the better.
All the ink spent should be used to present the data, everything else
should be removed.

Distinct attributes Previously presented visual properties are used to high-
light important parts of the graph. However, humans cannot remember
too many features of a graph, so one should not try to encode too many
properties into a single graph.
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Gestalt principles Gestalt principles are a set of visual characteristics that
help viewer to find a graph and detect important parts of it. Gestalt
principles are proximity, closure, similarity, continuity, enclosure and
connection.

Emphasize exceptions One should make exceptions stand out even more,
because usually those are the things the graph tries to communicate in
the first place.

Show comparisons Instead of presenting only the raw data, showing some-
thing to compare with allows the viewer to understand the differences
better and find the interesting anomalies.

Annotate data Graph should also state what the data is about by using
legends and axis labels. Sometimes even a text explaining certain values
can be used.

Show causality When a graph shows an exception, the next questions typ-
ically are looking for a reason for it. Graph should try to give an expla-
nation for the root cause behind the exception. Here, one graph might
not be enough and a second one is needed to clarify the interpretation.

4.2.2 Visualization process

Previous section discussed the basic elements that make a good visualization.
The path from a collection of data to highly informative visualization is,
however, not just a easy single step, but requires a careful processing of the
data through a complete visualization process.

Marty introduces a six-step information visualization process in [51].

1. Describe the problem: First, define the questions that need to be
answered by the resulting visualization.

2. Assess available data: Find out what data is available and what
additional information is needed.

3. Process information: In this phase, information is extracted from
the source, filtered and processed into a format that can be visualized.

4. Visual transformation: Next, the extracted data is transformed into
a graph, based on the selected visual properties.
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5. View transformation: If the previous phase did not result in already
easily interpretable result, it can be modified by zooming, aggregating
the data or for instance modifying the selected properties to better
represent the interesting parts. This phase is also iterative in nature,
since the result is viewed in between and then further modified to better
represent the wanted features.

6. Interpret and decide: Finally, the conclusions are drawn based on
the result from previous phases. Often, however, the result may be
hard to interpret on its own and needs other graphs or verifying to
support the decision. At this point it is also useful to remind oneself
if the result really answered to the original questions posed, or did it
reveal some other features of the data that should be investigated with
new question and perhaps with a better suiting graph.

4.2.3 Timelines

When performing a forensic analysis, the time factor is strongly present.
Analysis tries to discover when and in which order certain events happened,
thus a timeline is generated from the data obtained from different sources.
Log entries typically carry a timestamp revealing when that entry was writ-
ten, and often the tools used to extract data from the inspected system also
are able to attach a time for the data.

Analyzing this kind of timeline, that is, a sorted set of log events, by only
looking at the entries does not easily give a good image about the level of
activity of the system at a given point of time. A visualization of the level
of activity over a selected field and aggregation function can help to better
understand the time relations between entries. Furthermore, many times
anomalous activities can be seen to differ from the normal activity profile of
the system, either as a increase or decrease, by looking at different metrics.
These points of time are good pointers to focus the investigation to. Figure
4.4 shows an example of activity visualization, clearly indicating an increased
level of activity.
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Figure 4.4: Visualization showing an increased level of activity [51].

Count is the basic aggregate function that can be applied for every set of
log entries. Increased logging activity implies increased activity of the system
and can reveal an ongoing attack. In addition, a specific log type may carry
other information that is suitable for visualization. For instance, WWW
server log typically includes fields such as bytes transferred and response
time. Aggregating, for example, bytes transferred by summing or response
time by averaging can reveal other types of anomalous activity that only the
event count is not revealing.

Combining these kinds of activity measures with the raw data allows a
better understanding of the system and relations between the activity level
and certain events.

4.2.4 Network flow data

As previously described in section 2.5.2.2, network forensics can be seen as
one of the main areas of digital forensics that needs its own analysis tech-
niques. This is mainly because individual log entries in a packet capture have
very little information in themselves about the overall events. Entries need
to be aggregated to produce meaningful information, and even then the in-
formation might be hard to interpret. This is where meaningful visualization
can be of great help.

Steps to analyze network flow data using visualizations are presented in
[51] and shortly described below.

1. Gain an overview

2. Analyze overview graphs

3. Discover services of target machines
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4. Verify running services

5. Hypothesis-based analysis

The first point, gaining an overview, can be done quickly using three
different visualizations: top talkers, services overview and machine relation-
ships. Top talkers and services overview can of course be done without any
visualization, but understanding ratios between the results can be done better
using a graph. The third part, understanding which machines are commu-
nicating with whom, in other words the network topology, is very hard to
understand without a link graph showing them explicitly. Figure 4.5 shows
these graphs in a single image.

Figure 4.5: Overview visualizations [51]

Having these graphs it is already possible to identify anomalies in the
form of unexpected hosts, services or their relationships.

After analyzing the overview, the hosts are investigated more in detail. It
is possible to see what kind of services were used in each host and investigate
if there is any suspicious traffic. This is best achieved by visualizing the
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data using a treemap, which shows the distribution of protocols between the
network machines. An example of a treemap is shown in figure 4.6.

Figure 4.6: Treemap showing an overview of services used in a network [51]

After gaining an overview, hypothesis are formed and tested using custom
generated visualization for each individual case.

4.2.5 Attack visualization

Expressiveness of parallel coordinates for visualizing different types of net-
work attacks was presented in [12]. The authors argue that parallel coordi-
nates is a relevant visualization for many attacks, because the attacks impose
one-to-many relationship between some of the characterizing variables. By
analysing different attacks types, they selected four variables that are enough
to detect those attacks: source address, destination address, destination port
and packet size. For instance, typical port scan includes one source, one
destination, many ports of that destination and constant packet size. Figure
4.7 illustrates signatures of different attacks using parallel coordinates.
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Figure 4.7: The upper image shows network traffic to a single host visual-
ized with parallel coordinates [51]. The lower image shows different attack
signatures seen from visualizations such as the upper. [12]

Another research investigated detecting distributed scans using query-
driven visualization.[56] The authors reasoned that the current tools (typical
shell utilities) are not sufficient considering the fast increase in data vol-
umes. As a result, they generated multi-dimensional histograms from very
large datasets (almost 300 GB) using the FastBit-library [20] to identify the
scans and the attacking hosts visually. Even though they had a pre-defined
assumptions to investigate in their research, we believe that these results
may be usable in a more broad context too. Figure 4.8 shows some of their
visualizations, clearly indicating malicious activity.

Network and port scans were also researched in [44], where the focus was
limited to port activities in a few levels of detail. Figure 4.9 shows the differ-
ent visualizations used. The level of detail between the views increases from
left to right, from a summary timeline to individual port details. This imple-
mentation, however, is not as self-explanatory as other simpler visualizations
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Figure 4.8: Distributed scans [56]

and thus requires more domain understanding from the analyst.

4.3 Anomaly detection

The previous section introduced visualization techniques to help an analyst
to interpret data more efficiently. Visualizations present high volumes of
data in a very compact form and allow the analyst to use visual capabilities
of humans to detect anomalies and different relationships effortlessly. This
way, however, the detection is still done manually and could be improved
even further.

Automatic detection of intrusions have been widely researched in the
context of firewalls, intrusion detection and intrusion prevention systems.
Generally, the techniques can be divided into two categories: misuse detection
and anomaly detection. [53]

Misuse detection is based on an extensive collection of fingerprints that
represent activity that is considered harmful. This means that the system
is only able to catch activities that are already identified and known before.
It requires a very good knowledge of what is suspicious and what is not,
and keeping the collection of fingerprints up-to-date can be a difficult task.
To be able to detect misuse behaviour in data previously unknown or not
completely understood, we need more elaborate techniques. [53]
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Figure 4.9: Visualizations of port activity [44]

Anomaly detection tries to overcome this issue by creating a profile of
the activity that is considered normal. Profile here is a set of metrics that
measure certain aspects of the behaviour. New data is then compared against
this profile representing a typical activity pattern to detect deviations from
it. In other words, anomaly detection assumes that the behaviour of users
can be predicted and modelled. Flawless modelling is, however, very difficult.
Often the most reliable approach is a hybrid one, combining many different
techniques starting from misuse detection. [53]

The following sections will explain different methods for automatic de-
tection of anomalies. Section 4.3.1 introduces a historically important model
for intrusion detection. Then, section 4.3.2 explains basic quantitative and
statistical methods. Section 4.3.3 gives an overview to modern techniques
for extracting features from data and automatic classification. Finally, sec-
tion 4.3.4 shows that the most reliable results are achieved using techniques
exploiting application-specific features.

4.3.1 Denning’s model

The first remarkable research in the field of intrusion detection happened
when Denning published her intrusion detection model, now known as Den-
ning’s model. It is widely used as a base for intrusion detection systems,
although its focus is more on detection of malicious activities on hosts rather
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than network. It consists of four models that are suitable for different metrics
of the system. [53]

• Operational model: Operational model gives certain metrics a thresh-
old that is considered normal behaviour within a timespan. Any devia-
tions from it are considered anomalous. This model is mainly suitable
for different event counters.

• Mean and standard deviation model: This model assumes that
mean and standard deviation are enough the describe the behaviour
patterns. Observations outside the confidence level characterized by
these parameters are then marked abnormal. According to Denning
this method is relevant for event counters, timers and resource usage
measures.

• Multivariate model: Multivariate model extends the previous model
by adding correlations between different metrics.

• Markov process model: The last method is a stateful model that
builds a matrix of possible states in the system, transitions between
the states and their probabilities. This means that the model is not
focusing on detection of single suspicious events but rather anomalous
sequences of events. When the probability of a certain sequence is very
low, it is considered abnormal. Use of this model is limited to event
counters.

4.3.2 Quantitative and statistical methods

Commonly used and the simplest technique in anomaly detection is quanti-
tative analysis of certain numeric features. For instance, the overall activity
measured needs to stay within a specified threshold for the activity to be
considered normal. This is called threshold detection and can be applied to
any numeric, also calculated, features. This simple threshold is user defined
and static, thus probably hard to define reliably. Applying a simple heuristic
can make this more adaptive to different scenarios by utilizing more elaborate
functions to define what is normal and what is not. For instance, rather than
defining that a certain static number of login failures are allowed within a
timespan, it might be more accurate to make that number vary as a function
of the time or even based on statistical deviations. [53]

Statistical methods, described in [30], take the inspection of individual
features one step further. They create a complete statistical profile from
the individual metrics. In addition to comparing absolute values of these
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individual measurements, they take into account all the metrics and their
relationships, that is, the correlation between metrics. This means that the
system creates an alert only if a metric has a value that is not expected
considering the system’s full state and historic values.

These techniques in their simple forms are included in the Denning’s
model introduced in section 4.3.1.

4.3.3 Data mining and machine learning

Quantitative and statistical methods described in the previous section can
only be used with strictly measurable metrics, such as event counts. How-
ever, the events might be carrying much more features than these metrics
can directly present. Typically expert knowledge about the inspected data
provides the most accurate modeling, but in cases where it is not feasible,
automatic feature extraction techniques can be used. Data mining is the
discipline commonly used to perform this kind of classification, link analysis
and sequence analysis over large datasets.

Many techniques for this purpose have been studied, including classifica-
tion and regression trees [9], support vector machines and neural networks
[57]. In addition, [38] concluded that mined frequent patterns can be used
as reliable detection models for detecting anomalies. Frequent episodes for
intrusion detection have been studied also studied in [25] and [34].

Machine learning, on the other hand, is a term used for prediction based
on already known properties of the data. It shares many of techniques of data
mining, and is partially overlapping discipline. Once a model is constructed
using data mining on the existing data, new events can be classified using
machine learning algorithms.

4.3.4 Application specific techniques

In the previous chapters we introduced techniques that are applicable for
the general purpose anomaly detection. However, the problem typically with
these techniques is accuracy, which means that they may result in a high
number of false-positives. To achieve very low levels of false-positives, it
is required to create techniques that take into account other characterizing
features of the application data and not only the raw numbers. This was
researched in [36] and continued in [35] where the authors introduced anomaly
detection techniques for web application traffic and were able to achieve false-
positive rate as low as 0.2 %.

Intrusion detection systems typically inspect web traffic utilizing misuse
detection techniques, using a large collection of signatures describing different
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attacks. The problems is that these collection quickly become obsolete as new
attacks emerge at a remarkable speed. This is where anomaly detection can
be a great help. The techniques presented in [35] take a close look into
the web request and their parameters to detect unusual parameter content.
These techniques are shortly described below.

1. Attribute length: This technique assumes that the parameters are
mostly defined by the application and should remain relatively static
in length. Thus, it is possible to approximate the distribution of these
lengths and detect deviations from the typical behaviour.

2. Character distribution: This technique finds a ”normal” structure
for the query parameters by looking at the characters in query param-
eters. Typical parameters consist of relatively restricted set of charac-
ters, and just as in normal languages their relative frequencies are not
constant. This way, it is possible to detect in a flexible way when the
parameters contain unusual content.

3. Structural inference: The previous method looked only on the char-
acter distribution without considering the more specific structure of
the parameters. This can be taken into account by building a grammar
that describes the legitimate structural behaviour of the parameters.

4. Token finder: Often the attributes are tokens or flags that can have
a few different values. Discovering these value sets allows immediate
detection of illegal values and a possible attack. However, if no such
rule can be discovered, the values for the field in question has to be
considered as completely user-defined.

5. Attribute presence, absence and order: Assumption that the user
is not writing the queries by himself and they are rather generated by
the application implies that a change in the presence or absence of an
attribute is a sign of tampering of the request. Hence checking that
parameters that normally are found together in the request are there
and in the right order can effectively reveal an attack.

4.4 Existing solutions

The previous sections have introduced important themes related to the capa-
bilities that an analysis supporting software product has to consider. These
themes are taken into account in our implementation. This section will in-
troduce currently available products for different use cases.
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Log management is a big and growing area for software systems. Many
organizations, partially due to compliance requirements, have understood
the benefits of centralized management of logs and security events. These
log management systems typically extend their capabilities from only storing
the events to intelligent querying, aggregation and correlation. In addition
to log management, so called security information and event management
systems (SIEM) have much in common with these systems. Many compa-
nies have their own solution in their offering, but also many open source
options are available. Some of these solutions include Arcsight [27], OSSIM
[5], ELSA [17] and Splunk [55], which is known for its flexible querying and
reporting system. However, none of these products have been designed for
high-performance analysis of a fixed set of events, but rather to support a
continuous flow of events and reporting without strict performance require-
ments.

Some tools exist for analysing individual log formats only. Probably one of
the most powerful software, in addition to Splunk, supporting many different
formats and allowing analytical querying using a SQL-like syntax is Microsoft
Log Parser [41]. Log Parser integrates especially well to Microsoft environ-
ment, but has use also outside of that. However, it has a very strong focus on
analytics, rather than analysis of individual log entries. On contrary, Man-
diant Highlighter [40] focuses on manual analysis of any line-oriented data
files with features such as searching, filtering and highlighting. However, it
lacks any advanced analytics that the Log Parser has.

Furthermore, computer forensics is another special field for software.
There are two main commercial software packages for performing forensic
analysis for hard drives: FTK [3] and Encase [24]. Both offer extensive
indexing and analysis of artifacts found from a hard drive, but neither of
them support full analysis of a timeline built from the events and artifacts
discovered.

Open source tool log2timeline [39] is probably the most used tool in com-
puter forensics community for building these types of timelines. However,
the output from this tool is simply another log file containing all the differ-
ent events combined from the system’s files. The analysis of this result is
left for the analyst, and is often performed using traditional shell tools (less,
grep, sed, awk), Microsoft Excel or in some limited cases Splunk, due to its
strict licencing based on the amount of data indexed. Very recently a project
trying to solve this challenge emerged. L2t Review [37] generates a database
from the output of log2timeline and allows querying over this database using
a designated GUI. However, it is strictly limited to be used with log2timeline.
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4.5 Suitability of existing solutions

We presented and briefly evaluated many existing tools in the previous sec-
tion. This section summarizes the differences to our requirements and clari-
fies the motivation for our implementation.

The only tool satisfying our functional requirements is Splunk. It has a
very extensive query interface and can be extended to support almost any
type of log entries. However, based on our initial testing, performance of a
single system is inadequate for iterative exploration of big datasets. In addi-
tion, it is a commercial product with inflexible licencing for varying indexing
needs. Furthermore, it is not easily extendable to support experimentation
and adaption for varying use cases.

What we are trying to achieve is a combination of Microsoft Log Parser
and Mandiant Highlighter with better support for interactive querying and
inspection of individual events with supporting visualizations. However, also
these are closed source products that do not allow extending the features to
better fit our needs.

The first version of L2t Review was released only after we had investi-
gated the current offering. As log2timeline is able, or extendable, to parse
almost any format, and this tool is open source, it could have been a good
candidate as a starting point for our customizations. However, considering
our requirements for example for performing progressive querying, we be-
lieve that our choices of technologies introduced later are more suitable and
scalable for this specific use.



Chapter 5

Design and implementation

This chapter explains the design and implementation of the software we cre-
ated to support the analysis of large datasets during forensic investigations.
We will first present the two most important contributions: the query inter-
face in section 5.1 and timeline visualization in section 5.2. Then, the basic
architecture of the whole application is explained in section 5.3

We decided to select Python as our language of choice, because it is widely
used by scientific communities and corporate users. Furthermore, the wide
and open community and availability of thousands of ready software packages
and libraries allows to focus on solving the problem itself without having to
reinvent everything from scratch.

5.1 Flexible query interface

In this section we will introduce the most important contribution of this the-
sis: implementation of a query language to support analysis of large datasets.

Instead of having complex and static forms used for building queries, a
flexible ”pipe based” language is used, widely used on unix shell environ-
ments. The language is based on commands that produce results, which can
then be given as input for a subsequent command. That is, the commands
are piped together to form a so called pipeline. Instead of piping only text
or other unstructured data, as done in unix shells, the commands produce
objects. This allows more flexible, efficient and lazy population of the end
result. In addition, this language is extendable in a way, that lets the user
easily define new commands on the fly and use these new commands as part
of the pipeline.

For instance, the following query demonstrates the core features we are
going to support. The result shows the amount of transferred data per month,

52
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excluding certain images, only from specified IP address, and ordered by the
amount of data.

filter .jpg .png .gif

| where ip=’127.0.0.1’

| groupby year, month, sum(bytes) as bytes

| orderby bytes

We will first introduce our database system of choice in the section 5.1.1,
which we are then querying using our language. Then, we will introduce the
query pipeline in detail in section 5.1.2, and the features implemented on top
of the database system.

5.1.1 Database

Because the end result, the application, is basically an easy to use user inter-
face on top of a very capable database system, the choice of a correct system
was seen as crucial to be able to fulfill the goals for our implementation..
Based on the research done in chapter 4 we understood that our use case,
querying over a static set of entries, allowed us to abandon most of the typ-
ically important properties of a general purpose database system. We also
understood that column orientation and bitmap indexing technologies will
help to deliver the best possible performance from a single system, that is,
without employing a bigger cluster of computing power.

In addition, we discovered that certain requirements, such as exploration
of data using progressive or iterative querying, are features that no currently
available, fully SQL-based system is able to deliver easily. These reasons
made us select Fastbit [20] as our database of choice.

Fastbit is a C++ based database library, one of the pioneers in taking
the most out of bitmap indexing technologies. Its performance for more
analytical workloads, as needed by us as well, is well evaluated in [1] and
supports our choice. Being a library it also allows easier experimentation on
a lower level to meet all the requirements, without sacrificing performance.
The only limitation with very large datasets is that the data needed for a
query needs to fit into the memory to be efficient. For most queries this is
not an issue, since they can be answered solely with indexes, but for instance
aggregate queries might bring more data into memory.

Because Fastbit is a library implemented in C++ rather than a typical
database system, we need ways to program with it using Python. We de-
cided to use Cython [14] to develop the bindings between Python and C++.
Cython is a full language, a superset of the Python language, which allows to
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interact with C or C++ code in an easy and efficient way. An extension writ-
ten in Cython is first compiled into C code using many optimizations. The
resulting code can then be compiled normally with any C or C++ compiler
and used as a Python extension. Cython can also be used in our implemen-
tation to optimize other critical parts.

5.1.2 Query pipeline

Implementing a query pipeline itself is a fairly simple task considering the
flexibility of the Python language. Most of the challenges we are facing only
when trying meet the efficiency and other specified requirements.

The pipeline is simply constructed by implementing all the commands
as functions inside a specific module and dynamically locating the function
by the string representation of its name. Then the commands are executed
step by step, passing the results of a previous command as input for the next
one. However, the biggest challenge here is to ensure efficient resource usage
between the commands.

Solutions to this and other challenges on a lower level are presented in
the following sections. However, for Python commands generator-objects
are returned where feasible to allow lazy evaluation of commands and to
reduce processing needs. We will first look into efficient data reduction in
section 5.1.2.1. Then, the implementation of progressive queries is explained
in section 5.1.2.2. Implementation of efficient paging is explained in section
5.1.2.3. Finally, the core commands are introduced in section 5.1.2.4.

5.1.2.1 Data reduction

One of the main use-cases for the software is filtering the set of events, ex-
cluding uninteresting pieces of information and on the other hand finding the
relevant information. The user can filter or search events matching certain
criteria using the query language either by matching a string against the full
log lines or by querying more efficiently against the parsed fields stored in
bitmap indexed columns.

However, the biggest challenge is to store the result of these filtering
queries in an efficient way, because the following commands may want to use
the results for further filtering or more analytical queries. This means that
we cannot bring the data itself into memory until the very last moment and
that there must be a way to efficiently represent the individual query results
and use them as a starting point for subsequent queries.

Fastbit makes this possible because it can answer all the simple filtering
queries by using its bitmap indexing technology only. The resulting set of
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entries is represented by a data structure called bitvector, which is a vector
of single bits, having a nth bit set for the nth record in the data partition
matching the query in question. This allows us the pass a result set forward
in the pipeline in the most compact form, without any of the data itself.
Once the data is needed, it is brought into memory as Python’s objects.

As a simple benchmark, let us assume that we have dataset of 10 million
records, and a query returns a subset of 8 million records. A typical way
to represent this result set without bringing the data itself into memory,
is a set of row identifiers, which is typically a vector of 64 bit integers. 8
million such ids would take approximately 8 ∗ 106 ∗ 8 ∗ 8bits = 512 ∗ 106bits
of memory to represent, which is approximately 64 megabytes. Storing that
much data for every intermediate result would incur a significant overhead.
Representing the same result set as a bitvector takes only 10 million bits,
which is approximately 1 megabytes in uncompressed form. After Fastbit’s
compression the memory requirements are typically in hundreds of kilobytes,
depending on compressibility even only kilobytes or bytes, and thus already
on a very low level.

5.1.2.2 Progressive queries and caching

The idea of progressive queries was introduced in section 4.1.3. Basically,
as data exploration is an iterative process, we want to efficiently use the
previously calculated results for the following, slightly modified queries.

We decided to implement progressive queries using the technique ”re-
peated evaluation via query merging” introduced in section 4.1.3. This is
currently possible because most of the queries can be executed very fast and
the merging process is also extremely fast due to the use of bit operations
only. Fastbit’s programming interface currently does not support the use of
bitvectors as a starting point for new queries, so the merging is done manu-
ally in the query pipeline, but implementing it is investigated as future work.
However, if the query can be answered using the indexes only, having an
initial row set does not yield in any better performance.

As explained previously, the most expensive operation for Fastbit is filter-
ing by string matching, because it cannot be answered using bitmap indexing
and a full sequential scan is required. Typically, filtering or data reduction is
done incrementally, so that new filtering strings are added when new uninter-
esting entries are encountered. Fastbit seems to implement these multi-term
queries by doing a full scan for each of the strings. This means that the
query time increases linearly with the number of strings in the query. To re-
solve this and better support progressive queries, we implemented a separate
bitvector cache for string filtering. The string terms used and the resulting



CHAPTER 5. DESIGN AND IMPLEMENTATION 56

bitvector are saved in memory, and when a new query is executed, the cache
is first searched for a subset of the string terms needed. If an intermediate
result is found, only the differing strings are used in the query and the result
is merged with the result of the subset query to form the final result. This
results in a great performance improvement for iterative exploration of the
data.

5.1.2.3 Paging

When analysing the results of a query executed, there is only a limited
amount space on the screen to display the results. In addition, the ana-
lyst might be interested to inspect only a small number of results to see if
the query was satisfying or not. This is why paging is an important feature
for the end user, but also for performance of the whole system because less
data can be brought into memory and less data needs to be processed later
in the pipeline.

To follow the technique of avoiding construction of python objects until
the very last moment and bringing only the required entries into memory,
paging has to be an integral part of the query pipeline. This is because as
bitvectors are passed through the pipeline, the data selecting command has
to be aware of the requested offsets and counts, and the selection cannot be
done later in the application efficiently. We chose to implement paging as
efficiently as possible using bitvector masks that are constructed and applied
just before selecting the data to memory.

Paging masks are constructed as follows. We first take the requested
offset and create a bitvector mask having all the bits set starting from that
offset. We then perform an AND bit operation with the bitvector resulting
from the filtering operations. The resulting vector of the operation then
represents all the entries starting from the given offset. We then iterate
through the bitvector’s set bits decrementing the given count at the same
time. This way we are able to find the given number of bits and the offset
of the first and the last matching entry. Now, we take these offsets and
construct a mask having all bits set between the offsets. Performing and
AND bit operation between this bitvector and the original bitvector, which
was the result of filtering, gives as the final result, which contains only the
requested number of entries starting from the given offset.

The same routine can also be performed to other direction, in case we need
to find a certain number of entries starting from a given offset but counting
backwards. This situation if represented by a negative count parameter in
the paging system.
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5.1.2.4 Core commands

The core commands supported by the query interface are introduced below.
In addition to these commands, of course many others are needed to support
an extensive investigation. However, these are the commands that are pro-
vided by the system, mostly executed efficiently on a lower level, and used as
a base for new, more expressive commands. More detailed usage examples
are introduced in the case study in section 6.

where This command takes a string of conditions as an argument. This
string is passed directly to the Fastbit query processor and follows the
syntax of WHERE-clause in SQL-language. The result of this com-
mand is a bitvector.

filter This command is a special case of the where command. It takes a
set of strings as arguments and uses these strings as either excluding
or including filters against the full text representation of entries. As
explained previously, it also intelligently caches the results and is able
to use previous subset queries to optimize performance. The following
is a valid example of the arguments given to this command.

filter foo +"foo bar"

Plus sign (’+’) represents an including term, and terms containing spe-
cial characters like spaces can be quoted.

The result is a bitvector.

select This command is used to select data from the database. The argu-
ment follows the syntax of SELECT-clause of SQL-language. Input
for this command is a bitvector, which is used together with the ar-
guments to bring only relevant information into memory. The results
are not directly instantiated as Python objects, but instead kept inside
the Fastbit engine as a so called table-object. This command returns a
Python wrapped table object that can be iterated through normally in
Python. This ensures that no unused Python objects are created too
early because they are instantiated lazily when needed.

groupby Groupby command acts very much in a same way as the select
command. The only difference is that it allows the use of aggregate
functions in the select clause. Here, the functionality differs from typ-
ical SQL-statements. Fastbit performs implicit grouping operation if
any aggregate functions are defined in the select clause. For instance,



CHAPTER 5. DESIGN AND IMPLEMENTATION 58

the statement ”foo, bar, sum(baz)” first groups records by ”foo” and
”bar” columns. After that, within the resulting groups, the operation
”sum(baz)” is performed and the result is represented by a single row
per group. The result, like in the select command, is a table-object
allowing lazy instantiation of Python objects.

orderby This command takes a table-object as input and sorts it according
to the column names given as arguments. The result is also a table-
object.

5.2 Timeline visualization

Because the log entries can be considered as an timeline with large amount
of information, an important supporting feature for analysis is visualization.
Timeline visualization allows to encode very large amounts of information
into a compact representation, which can be analyzed visually.

We implemented a flexible timeline element according to the theory intro-
duced in section 4.2 that allows the analyst to visualize different properties
of the log entries easily to understand how they develop over a given period
of time. The visualized data is calculated using the standard query interface
introduced previously and thus allows the use of more complex aggregate
functions to derive more information from the data. In addition, multiple
timelines can be drawn at the same time, which allows correlation between
the selected properties.

Figure 5.1: Two timeline visualizations showing event count (blue) and bytes
transferred (red) and revealing suspicious activity (cropped)

For instance, figure 5.1 shows two timeline visualizations from a web
server log file of 8 days of data. We can clearly identify the working days
and identify suspicious activity during the weekend.

In addition, as the timeline visualizes different moments of time, the user
can select a moment from the timeline and the events from that moment are
shown and can be inspected more in detail.
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5.3 Application

The application itself was divided into two pieces: a server and a client
serving the user interface. The idea is to separate the core system from
the user interface, and only provide a clean interface for the use of a client
application. The details of this separation is explained in the following two
sections. First, we will describe the implementation of the server in section
5.3.1, followed by description of the currently implemented client in section
5.3.2

5.3.1 Server

The main functionality of the server is to integrate the database and the
query pipeline together and provide a simple interface for different clients to
use. It takes the query in, executes it through the query pipeline and returns
the result to the client, possibly extending the query pipeline if the result
was nothing useful for the client. For instance, selecting default values from
the database if only a bitvector was returned from the pipeline.

We decided to use the currently popular method of exposing application
programming interfaces (API) through REST-like (representational state
transfer) interface over HTTP-protocol. However, we expose only one re-
source, the query interface, which all of the different functionalities imple-
mented in the client must use. The only addition to the interface, which can
be done outside the query string, is paging. A query is executed by send-
ing a POST-request to the resource ”/query/[count]/[offset]”, where count
and offset are parameters given to the paging system. The result is a text
response formatted in JSON (javascript object notation).

The server is implemented using the Flask [21] microframework for web
development, because of its great simplicity and our modest requirements for
the interface.

The server is also used to transfer the default client code to a web browser,
which is explained in detail in the following section.

5.3.2 Client

We selected web browser as our default client for one simple reason: platform
independence. Web browsers are available for every operating system and
their capabilities are now on a level that meets our requirements for a client.
Full applications can be run completely inside a browser using Javascript,
without any specific needs from the server side.
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However, as browsers can be considered as application platforms, devel-
opment using only raw Javascript, HTML and CSS can be relatively labo-
rious. We decided to select a couple of libraries to speed up the develop-
ment and improve experimentation and maintainability. The current devel-
opment stack includes the following libraries: jQuery [32] (a general purpose
Javascript library), Bootstrap [61] (user interface framework) and Highcharts
[26] (Javascript charting and visualization library).

The user interface (UI) currently consists of three parts: timeline, query
input field and data viewer. These elements are shown in figure 5.2

Figure 5.2: User interface of the client

With the timeline, the user is able to easily visualize different properties
of the underlying data over time. Basically any query result having a times-
tamp column and another column with numeric values can be drawn into the
timeline. In addition, the user can select any point of time from the timeline
and the current query is paged to show entries from that point of time.

The query input field is used to write queries, which are then executed
on the server. The result of the query is shown in the data viewer. The
client decides how the result is rendered and has different output modes for
different situations. For instance, when the log entries are inspected, the
lines rendered directly and highlighted using a syntax highlighter. If on the
other hand different columns are selected by hand, they can be viewed as a
table. Further, the results of more analytical queries can be even visualized
in the client.

5.3.3 Parser and importer

Fastbit stores the data in so called data partitions, using a partition specific
schema. To be able to import the data entries, the schema must be specified
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first. This means that whenever we meet a new file format, we look for
fields and their types in the entries and define the schema based on that
information. Once that is done, reusing the information later is easy.

Fastbit includes a fast importer for CSV (comma separated values) file
format, so we decided to use that instead of populating the partitions our-
selves. This means that, for each different file format, we only need to first
define the schema and write a parser that converts the file into CSV format.
We use Python’s standard regular expression library to parse and extract
field information from the data entries and write them to a file. Support for
new file formats can be easily added by implementing a regular expression
for the format in question. After that, population of a new data partition
out of an input file can be done by a simple script integrating the schema
information and a parser.



Chapter 6

Case study

We have now implemented an application to support digital forensic investi-
gations. This application basically acts as a query interface to a very efficient
database system allowing efficient iterative investigation and timeline visu-
alization. In this chapter we will evaluate the suitability of this application
for real investigations.

We were provided with a dataset from a real security incident. The next
chapters will look into that dataset with a goal of not completing the full
assignment with our application, but rather evaluating its capabilities in
finding first signs of possible breaches as fast as possible.

For the evaluation, no exceptionally powerful or dedicated server was
used, but instead we wanted to see how a typical work computer would
perform. The evaluation was executed with a normal MacBook Pro laptop
having 6 GB of memory and a Intel Core 2 duo (2.66 GHz) processor. All
the measurements reported are measured by the client (web browser), and
therefore include also all the overhead of processing the data in Python,
possible paging and the transfer from the server to the client. We decided to
measure the whole request time because it is the time the user perceives.

6.1 Background

In this case the assignment was to analyse a hard drive of a server where
an anti-virus system had detected malware. This system was not part of a
business critical infrastructure but still inside an isolated network which no
malware should be able to enter. The customer wanted to know how and
when the system was infected. As background information, initially only the
time when the customer detected the issue was known.

Because only a hard drive of the system was provided for investigations,
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copies of the drives were created and log2timeline and Sleuthkit were used to
generate a timeline of the information available on the drive. The timeline
generated was about 1.2 GB in size and included approximately 3.3 million
events. This data was then analysed manually to answer the questions posed
by the client.

Parsing and importing the generated timeline to our tool took 15 minutes
and generated approximately 20MB of additional data for the indexes.

6.2 Investigation

The following sections will describe how we used our software for analysis of
the generated data. The goal is to show how our tool enables very flexible and
iterative analysis of any log data. As a result of the investigation performed
for this evaluation, we will have clear signs of infection, a few moments of time
when these suspicious events occurred and a few potential attack vectors.

Signs of infection

We started the investigation by filtering out any events that we considered
not to have meaningful input in this phase. This data reduction, however,
is an iterative process and thus new rules are added when uninteresting and
repeating events are encountered. After the data is in memory, filtering with
a single string takes 2-4 seconds and is still very efficient for this purpose.
Queries involving parsed fields are fast by design and the evaluation itself does
not take almost any time but the request returns to the client in typically
under 100 milliseconds.

As a result, we were left with the following initial query:

filter "[EXIF metadata]" "[SetupAPI Log]" | where year=2012

This query visualized in the timeline, using day as a grouping precision
gave us the following picture (figure 6.1) and returned almost immediately
because of the filter cache and fast aggregation capabilities of our database
system. The whole query took about 100 milliseconds.

This visualization shows two clear spikes in the level of activity. On the
right side of the image, however, we can see an increase in the activity over
a longer period of time, which is about a month. In addition, the time when
the client detected the infection is inside this period, so we will take a closer
look into that first. This can be done by clicking the highest bar, which takes
the query viewer to that point of time.
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Figure 6.1: Activity of the system on the timeline (cropped)

We then started to browse the raw events and add new filtering terms.
Retrieval of the next page takes only under 100 milliseconds. We were quickly
faced with very suspicious events and could verify that the system was indeed
infected. These events are shown in figure 6.2

Figure 6.2: Suspicious events

As we can see, suspiciously named executables are created under system32
and downloaded using Internet Explorer. We can easily query all the exe-
cutables created under system32 during that specific year with the following
query:

filter [...] +system32 +.exe "Event Log"

| where year=2012 and birth=1

As a result, we found 12 executables, shown in figure 6.3, created during
the very same day and those files were later verified as malware using anti-
virus software. This information could have been also found by running
anti-virus software against the provided hard drive in the very beginning.
Nevertheless, it was only a matter of minutes with our tool, and having
this information and after additional browsing of the events, we are able to
discover the time when the first malware activated. However, this still does
not answer the questions how or when the system got infected.
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Figure 6.3: Files created under system32 by the malware.

Internet browsing activity

After confirming the infection, we are faced with the challenge of finding how
the system got infected. During the time of activation of the malware, we
also saw events showing use of the web browser (Internet Explorer). This is
suspicious because the system in question should not be used for anything
else than running a specific server software. We then decided to see when
exactly has the browser been used using the timeline. (figure 6.4).

Figure 6.4: Internet Explorer activity (cropped)

From this timeline we can see some individual activities starting from the
year 2006. On the right side of the image, however, there are two interesting
time timeframes. During 2011 we can see a clearly raised level of activity,
and then on the day of activation there is a clear spike. As the formatting of
log2timeline for these events is quite verbose, we decided to extract all the
URLs accessed and inspect them closer. This was done using the following
query:

filter +"[Internet Explorer]"

| where year>=2006

| select_all default

| field default

| extract https?://\S+

The request took about 350 milliseconds to complete when the filter was
already cached. We immediately see in figure 6.5 that the browser has visited,



CHAPTER 6. CASE STUDY 66

among others, a lot of Chinese websites. This raises suspicions of the original
attack vector being the web browser, although the URLs do not show any
clear and extensive use of the browser. However, a few other URLs, which
are shown in figure 6.6, caught our attention.

Figure 6.5: Suspicious visits to Chinese web sites

Figure 6.6: Suspicious URLs

The parameter Ver in the request to bicycledebt.info is clearly the date
when the malware activated. This indicates that the initial infection might
have been occurred a lot before and the activation has been only deferred to
a time later in the future. When we create a filtering query using that URL,
we see that the first occurrence of this URL is indeed about a month earlier
from the activation (20.07.2012). When browsing the events before that we
cannot, however, find any interesting events in the near past.

IIS log entries

Trying to figure out other possible attack vectors, we remember seeing IIS
(Microsoft Internet Information Services) log entries near the activation date.
We can take a look a closer look at those using the following query:

filter +"[IIS Log File]"

And drawing a timeline out of these events gives us a visualization shown
in figure 6.7.

Browsing through the first events shows us only local events of an internal
system, but clicking one of the higher bars on the right side of the timeline
gives us interesting events showing (in figure 6.8) a brute force attack against
the FTP service running under IIS. Notice that log2timelines’s IIS plugin has
a bug, since the event line is so unclear.
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Figure 6.7: IIS server activity (cropped)

Figure 6.8: Brute force attack against IIS

This output also shows a public IP address, which is suspicious, because
the system was not supposed to be connected to public Internet. The fol-
lowing query gives all the IP addresses from IIS log entries and their corre-
sponding physical locations:

filter +"[IIS Log File]"

| select_all default

| field default

| extract_ip

| uniq | geoip | csv

This query has a lot of previously unpresented commands and details
specific to the current implementation of the query pipeline, but the basic
idea is simple: get all IIS entries, ignore paging, select only a single column
from the database, extract unique IP addresses using a regular expression,
add IP geolocation information and output in CSV format.

As we can tell from the figure 6.9, there are entries from almost all around
the world, 141 unique IP addresses in total. This strongly suggests that the
system has indeed been connected to public Internet and leaves IIS as one
potential attack vector.
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Figure 6.9: IP addresses and their geolocations from IIS log entries (cropped)

6.3 Comparison

Comparing the features of our implementation to the traditional way of work-
ing is difficult, because no other product offers the same kind of functionality
in a single package. However, we will present some simple benchmarks of sim-
ilar kind of queries executed using traditional shell tools, which is a common
way of analysing this kind of log data. We will query against the CSV file,
which we used for importing to our application.

Lets first start with the initial query of our investigations. We translated
the query into the following grep pipeline:

cat l2tdata.csv| grep -vF "[EXIF metadata]"

| grep -vF "[SetupApi Log]"

| grep -F "[2012-"

> intermediate.csv

Runtime of this query was about 1.5 minutes, which is considerably higher
than our 2-4 seconds. One of the reasons for this could be the amount of
data also written out. The size of intermediate.csv was approximately 135
megabytes.

We did not have tools to visualize these results, but we built the following
query to calculate the same information needed for visualization:

cat intermediate.csv |cut -d "," -f 1-3 | uniq -c > timeline.res

This query took 3 seconds to complete, compared to our hundred mil-
liseconds for the whole request.
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Finally, we decided to compare the URL extraction query and came up
with the following grep pipeline:

cat l2tdata.csv | grep -F "[Internet Explorer]"

| awk -F "," ’{ if ($1 >= 2006) print $0 }’

| egrep -o "https?://\S+"

> urls.txt

Evaluation of this took about 35 seconds, as our tool was able to deliver
the same results in a few hundred milliseconds, or a few seconds if we include
the time used for the filtering.

6.4 Summary

In this case, the timeline visualization immediately gave us a clear starting
point to begin investigations, where we were able to detect plenty of mali-
cious executables brought into the system. We followed the creation of these
executables and were able to detect the time when the malware activated.

We then looked more in detail one possible attack vector, the web browser.
As a result, we detected signs showing that the initial infection had possibly
been deferred in the past, and verified these moments of time.

We then followed another lead, IIS server log entries, and discovered
that the server had been publicly accessible and under a brute force attack.
This gave us another potential attack vector and many moments of time to
investigate further.

This is where we stopped the evaluation, because the following leads
started to spread outside the scope of this the evaluation, and customer in-
formation would have to be revealed. However, this was already enough for
us to be convinced that the flexibility of the tool is sufficient for performing
these kinds of investigations. Furthermore, the query performance was more
than sufficient for this particular use and allowed responsive and iterative
exploration of the dataset, which was not the case using traditional meth-
ods. Query times of about a minute are not flexible enough for iterative
investigations.



Chapter 7

Conclusions

In the very beginning of this thesis, in chapter 2, we began by introducing
the concept of security incidents and their management in organizations.
After the introduction, main focus was put on the analysis phase, which was
identified as the technically most challenging phase. We then dived deeper
into digital forensics, its challenges and the general process needed to execute
such investigations. We came to the conclusion that currently the biggest
challenge is not managing or collecting the evidence but rather the amount
of data available for investigations. Analysis of growing amounts of data is
becoming more and more difficult by using traditional methods. Chapter 3
gave more practical information of the investigations.

Having these challenges as a background, chapter 4 then presented tech-
niques and methods to store and query data, compactly represent the data
to human analysts and automatically detect of anomalies. In addition, we
presented existing tools and evaluated their suitability. Efficient and flexi-
ble, but also more analytical querying, was seen as the key functionality for
solving the challenges presented. However, as analysing only raw data can
be a daunting task, using the visual capabilities of humans to detect different
anomalies in visualizations was identified to play an important role in effi-
cient data analysis. Taking this even further, possibility to detect the same
anomalies automatically by algorithms could still speed the analysis process.

Chapter 5 then combined the challenges and techniques, and presented
the design and implementation of our software, which supports efficient anal-
ysis of large amounts of data. It was built around three main ideas: efficient
and flexible query pipeline, timeline visualization and inspection of raw query
results. In this phase, automatic anomaly detection was left as future work.
Furthermore, we implemented a novel idea of caching intermediate sets of
rows as bitvectors from queries not employing indexes, and recycling these
results also for new superset queries.
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Finally, in chapter 6, we evaluated the suitability of our software for in-
vestigation of a real incident. We showed that performance of the software
as a whole and flexibility of the query pipeline is well suitable for performing
such investigations. In addition, the timeline visualization allows very effi-
cient detection of possibly interesting points of time to investigate in detail.
We showed query comparisons to traditional shell tools and concluded that
our tool greatly outperforms these tools. Still, the dataset used for the eval-
uation was relatively small and future work will include more testing with
considerably larger datasets to research the scalability of our approaches.

As a conclusion, we were able to meet the specified goals for this thesis,
which resulted in a concrete working software and a platform for future work,
especially considering more automated analysis techniques.
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