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Ensuring the correct operation of a software system is a relevant part of any
software development process, but especially important for safety critical software
systems used in aircrafts where failures can have fatal consequences and extreme
reliability is required. As there is no official record of a software error being
the main cause of an aircraft crash up to date, these systems also seem to be
very reliable in practice. This success can at least partially be attributed to the
aviation software certification process, which places a set of strict requirements
on the system that must be taken into account during its development.
One such requirement, applicable only to the most critical systems, is showing
complete modified condition/decision coverage on the implementation of the system
using tests generated from the system specification. Modified condition/decision
coverage is a very demanding form of code coverage, whose purpose is to show
both that sufficient testing has been performed to ensure correct operation, and
that the implementation is correct in terms of the specification. As generating the
tests by hand is very demanding, in terms of this work we study how automation
can be used to facilitate this process.
This thesis presents goal constraints, a novel extension to dynamic symbolic
execution, which makes automatic generation of a set of tests satisfying modified
condition/decision coverage possible. The goal constraints are essentially addi-
tional constraints on the values of variables instrumented into the program source
code. They can be used during dynamic symbolic execution both to direct the
testing process, and to select test cases based on the code coverage they provide.
We present how goal constraints can be automatically generated and instrumented
into the source code of a program written in the C programming language, and
how support for goal constraints is implemented in an automated software testing
tool called LIME Concolic Tester. The implementation is also evaluated, and
the advantages and disadvantages of automated test generation in the context of
aviation software development are discussed.
Keywords: MC/DC, DSE, code coverage, automated software testing,
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Language: English
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Ohjelmistojärjestelmän oikean toiminnallisuuden varmistaminen on olennainen
osa mitä tahansa ohjelmistokehitysprosessia, mutta erityisen tärkeää lentokoneissa
käytettäville turvallisuuskriittisille järjestelmille, joissa ongelmilla voi olla vakavat
seuraukset. Koska yksikään lentokone ei ole vielä toistaiseksi pudonnut virallisten
lähteiden mukaan suoraan ohjelmistovirheen seurauksena, nämä järjestelmät
vaikuttavat myös täyttävän niille asetetut luotettavuusvaatimukset erittäin hyvin.
Hyvästä menestyksestä voidaan ainakin osittain kiittää lentokoneohjelmistojen
kelpoistamisprosessia, joka määrittelee järjestelmille joukon tiukkoja vaatimuksia,
jotka on otettava huomioon niiden kehityksen aikana.
Yksi näistä vaatimuksista on täydellinen MC/DC-peittävyys järjestelmän toteu-
tukselle käyttäen testejä, jotka on tuotettu järjestelmän määritelmästä. Tämä
vaatimus koskee ainoastaan kaikista kriittisimpiä järjestelmiä, ja sen tarkoitus
on osoittaa paitsi että toteutus on määritelmän mukainen, myös että toteutus ei
sisällä ei-toivottua toiminnallisuutta. Koska MC/DC-testien tuottaminen käsin
on hyvin työlästä, tutkimme tämän työn puitteissa miten automaatiota voidaan
soveltaa helpottamaan tätä prosessia.
Tämä työ esittelee tavoiterajoitteet, uuden laajennksen dynaamiselle symboliselle
suoritukselle, joka mahdollistaa automaattisen MC/DC-testien tuottamisen. Ta-
voiterajoitteet ovat olennaisesti ohjelman lähdekoodiin lisättyjä lisävaatimuksia
siinä esiintyvien muuttujien arvoille, ja niitä voidaan käyttää dynaamisen symbo-
lisen suorituksen aikana sekä ohjaamaan testausta, että valitsemaan kiinnostavia
testejä.
Esitämme miten tavoiterajoitteet voidaan automaattisesti tuottaa ja instrumen-
toida C-kielisen ohjelman lähdekoodiin, ja miten tuki tavoiterajoitteille on toteu-
tettu automaattiseen ohjelmistotestaustyökaluun nimeltä LIME Concolic Tester.
Esitämme myös miten arvion toteutuksesta, ja keskustelemme mitä hyviä ja huo-
noja puolia liittyy automaattiseen ohjelmistotestaukseen lentokoneohjelmistojen
kelpoistamisprosessin näkökulmasta.
Asiasanat: MC/DC, DSE, peittävyys, automaattinen ohjelmistotestaus,

lähdekoodin instrumentointi
Kieli: Englanti
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Abbreviations and Acronyms

API Application Programming Interface
AST Abstract Syntax Tree; an abstract source code repre-

sentation
CPU Central Processing Unit
CUTE Concolic Unit-Testing Engine; an automated software

testing tool
DART Directed Automated Random Testing; an automated

software testing tool
DO-178B Software Considerations in Airborne Systems and

Equipment Certification; the official documentation of
development practices necessary to obtain certification
for an aviation software system

DSE Dynamic Symbolic Execution; an automated directed
software testing method

FAA Federal Aviation Administration
LCT LIME Concolic Tester; an automated software testing

tool
LLVM Not an acronym (originally Low Level Virtual Ma-

chine); a compilation framework
MC/DC Modified Condition/Decision Coverage; a source code

coverage criterion
NASA National Aeronautics and Space Administration
NIST National Institute of Standards and Technology
RAM Random Access Memory
SAGE Scalable, Automated, Guided Execution; an auto-

mated software testing tool
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Chapter 1

Introduction

As various software systems play an important role in virtually every aspect
of the modern society, software errors have become something most of us
have to deal with on a daily basis. Whereas a bug in the operating system
of a mobile phone might lock up the device and force a reboot — resulting
in mild annoyance to the user — a failure in a safety critical [53] software
system controlling the cooling in a nuclear power plant for instance can
have more serious consequences. These consequences can be anything from
significant financial losses at best to even the endangerment of human lives
at worst, as was the case with a series of accidents caused by the Therac-25
radiation therapy machine between 1985 and 1987 [38]. The combination of
severe oversights with some of the safety mechanisms in the machine and
extremely bad software development practices lead to six cases of massive
radiation overdose on patients, which resulted in serious injuries and several
deaths. Some less dramatic examples from more recent history include several
instances of space exploration equipment being lost as a direct consequence of
a software failure, such as the case of Ariane-5 flight 501, which self-destructed
only moments after launch in 1996 after an integer overflow veered it off
course [18]. Another very memorable incident is NASA’s Spirit rover becoming
unresponsive shortly after landing on Mars in 2004 [46], even though this time
the issue, a problem with the device’s flash memory, could be fixed remotely
and more severe losses avoided.

According to a study made by the National Institute of Standards and
Technology (NIST) in 2002, software errors cost the United States economy
59.5 billion dollars every year [55]. As errors in software systems are very
undesirable for aforementioned reasons, significant research effort has been
spent on developing tools and practices that help with finding and avoiding
them. It is generally recommended that at least some of these quality control
activities are included in most software development processes [44]. The
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CHAPTER 1. INTRODUCTION 2

most commonly used method for finding and fixing software errors is software
testing [41]. In short, software testing is the process of obtaining some level
of assurance that a piece of software is working correctly by executing it
repeatedly in different configurations and making sure it behaves as expected.
In order to make software testing more systematic, a concept called code
coverage can be used to measure the quality of the performed tests by observing
how much of the program behaviour is covered by the test executions. The
idea was first published in [40], in which the authors demonstrated a method
of generating tests for a program based on a tree representation of the program
logic. These days code coverage has become more established, and usually
refers to the usage of a well defined coverage criterion. A more in-depth
introduction to software testing with examples of some of the most commonly
used coverage criteria is provided in Section 2.1.

Proper software testing is naturally important for all safety critical software
systems, but one field where it is of extreme importance is aviation software
development. As software failures on aircrafts are extremely undesirable for
obvious reasons, all systems on an aircraft must go through a very strict
certification process. This process places a set of requirements on the system
that must be taken into account during its development, and must be fulfilled
in order to eventually obtain certification for the system. The requirements
depend on the role of the system on the aircraft, and are listed in a document
called DO-178B [47]. One particularly interesting requirement, applicable
only to the most critical systems, is that a set of tests derived from the
specification of the system must achieve complete modified condition/decision
coverage [15, 25] (MC/DC) on the system implementation. MC/DC is a very
demanding form of code coverage, and the purpose of this requirement is to
ensure the correct operation of the system by making sure an extremely close
match exists between the specification and the implementation. It has been
shown that MC/DC is effective at finding otherwise hard to locate errors in
satellite software that is very similar to aviation software in terms of safety
concerns and requirements [19]. The details of the coverage criterion and its
usage in the certification process are covered in Sections 2.2 and 2.3.

There are two significant problems with software testing that should be
taken into account when the reliability of a software system is a concern.
The first one is that software testing can only be used to find errors; it can
not be used to prove that no errors exist. This is an inherent limitation in
the way software testing works, and there is little that can be done about
it. The reason for this is simply that regardless of the number of correct
executions that are observed, incorrect executions might still exists (unless all
executions are evaluated, which is an impossible feat in most cases). This fact
also implies that in order to obtain any reliable assurance of correctness, the
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test executions should be chosen carefully to cover as much of the program
behaviour as possible, which is something code coverage can help with. If
even extensive software testing is not sufficient, further assurance of program
correctness can be obtained via formal methods such as model checking [16].
The idea in model checking is to create a model based on the structure of the
system and use a specialised tool called a model checker to check if certain
properties hold in the model. If a property, such as not reaching an erroneous
state, does not hold, a counterexample is obtained and can be traced back to
an execution in the original system. The downside of model checking is that
it is very demanding to use in practice in terms of both computational and
professional resources that are required.

The other problem with software testing is its high cost. Software testing
is very difficult to do properly, and it takes a significant amount of time
during the software development process (some estimates claim up to 50%
of total development time [41]). Automation of the testing process can be
used to alleviate this issue, and has thus been a topic of intensive research.
There are several different ways to automate software testing, one of which is
dynamic symbolic execution [22, 51] (DSE). In DSE, a symbolic representation
of the program is constructed during the testing process, and used to select
interesting input values that direct the test executions to cover additional
program behaviour. The details of the DSE process are explained in greater
detail with examples in Section 3.2, and a brief overview on other automated
software testing methods and tools is provided in Section 3.1.

Our goal in this work is to consider how automated software testing can
be applied to aviation software development, where the requirements on
the testing process are very demanding. More specifically, we examine how
DSE can be augmented to automatically generate a set of tests satisfying
MC/DC for a program written in the C programming language [34], through
the use of additional constraints in the program source code. Our tool
implementation is based on an automated software testing tool called LIME
Concolic Tester [29, 32] (LCT), which is introduced in greater detail later
in Section 3.3. The idea of directing the DSE process to provide additional
value is not exactly new, but so far the efforts have been mostly focused on
better scalability [10] or faster error detection [60]. Automatic test generation
based on code coverage has also been explored before with an method based
on model checking [45]. However, because of the nature and the complexity
of the coverage criterion, this approach proved to be somewhat impractical
for MC/DC in evaluation [26]. As far as we are aware, our method of
implementing a test selection mechanism on top of DSE based on additional
constraints in the source code with the intent of satisfying a specific coverage
criterion is novel.
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The rest of this work is structured as follows: Chapter 2 provides an
introduction to code coverage on a general level, and presents MC/DC along
with a brief coverage of its role in the aviation software certification process.
After this, Chapter 3 first introduces a few popular automated software testing
tools, and then describes the DSE process through the use of an example.
Once the background has been established, Chapter 4 covers how our coverage-
based test generation process is designed and implemented, after which a brief
evaluation of the implementation is presented in Chapter 5. And finally, a
summary of the work along with some thoughts on the philosophical aspects
of automated test generation for aviation software and possible directions for
future work are provided in Chapter 6.



Chapter 2

Modified Condition/Decision
Coverage

The purpose of this chapter is to serve as a general introduction to software
testing and code coverage, to define and introduce MC/DC, and to argue why
it is an interesting coverage criterion in terms of automated test generation.
The chapter is opened with Section 2.1, which introduces several commonly
used coverage criteria and provides definitions for concepts used throughout
the rest of the chapter. After the background has been established, the formal
definition of MC/DC is provided and explained in Section 2.2. The chapter
is closed with Section 2.3, which covers how MC/DC is used in practice
by taking a closer look at the aviation software certification process. The
section also briefly considers some of the implications the role of MC/DC in
certification process has on automated test generation.

2.1 Background
Formally, software testing is a process in which the executions of a program
are sampled and compared with the specification to find mismatches that
can be reported as errors [43]. In practice, this can be translated to running
the program with different input values and making sure it does what it is
supposed to. Even though software testing can never be used to guarantee
the absence of errors in a program, short of executing the program with all
possible combinations of input values and verifying the correct operation in
each case, it is a practical and widely used tool for improving the quality
of software systems. As software testing in itself is a huge area of research
inside the field of computer science, providing extensive coverage of all its
aspects is not the intent of this introduction. However, it should be made
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CHAPTER 2. MODIFIED CONDITION/DECISION COVERAGE 6

clear that in terms of this work we are specifically interested in automated
unit testing of white-box software systems. White-box testing, in contrast
to black-box testing, happens in a setting where complete information on
the implementation details of the system (i.e. the source code) is available.
This is different from black-box testing, in which the system is treated as a
“black-box” and analysis based on the structure of the system is considerably
more difficult. The definition of unit testing varies slightly depending on the
source, but it usually refers to the process of testing an individual software
component as completely as possible with the intent of finding errors in the
program logic. [41]

As covering all executions of a program during the software testing process
is often difficult, code coverage can be used to measure how well the program
source code has been tested. The testing process (a set of program executions)
is said to achieve certain code coverage, if the executions in the test set cover
a sufficient subset of all possible executions of the program. What constitutes
as “sufficient” actually depends on the selected coverage criterion, and it can
be practically anything from covering all individual statements to covering all
execution paths in the program. The basic idea behind code coverage is that
the test executions can be divided into groups of similar executions based
on some property they have in common. If the testing process succeeds in
covering at least one execution from each group, it can be considered to cover
the whole program in terms of that property. This means that, providing the
property is something sensible, a set of tests that satisfies a coverage criterion
has a better chance of finding an error in the program than a set of tests
that does not. Satisfying more complex coverage criteria requires more work
during the testing process, but it also usually improves the probability of
finding errors. [43]

Since possibly the best way to clarify any complicated concept is through
examples, the rest of this section is dedicated to presenting a selection of
commonly used coverage criteria. Each criterion is first defined formally,
after which an example test set satisfying the criterion for a running example
program, available in Figure 2.1, is provided. This program takes three input
values as parameters, and returns true if either the first parameter or both
the second and the third parameter are positive. If this is not the case, the
program returns false. Each individual test case in the test set is given as
a combination of values for the input parameters x, y and z. Even though
the program might seem very simple, the underlying logic is sufficiently
complex to demonstrate the most important differences between the coverage
criteria presented in this section. It should also be noted that since the input
parameters are integer-valued, verifying the correct operation via exhaustive
testing (verifying all possible executions) is infeasible even for a program as
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simple as this. Assuming 32-bit integers, there is a total number of (232)3

different combinations of input values, all of which would have to be tested
in order to verify the correct outcome in each case. (Strictly speaking, this
is not exactly true in white-box testing as a better estimate for the number
of required test executions can be obtained through analysis of the program
structure. However, the number of execution paths is still extremely high for
most practical programs, which will become more apparent later.)

1 bool example (int x, int y, int z) {
2 bool result = false;
3 if (x > 0 || (y > 0 && z > 0)
4 result = true;
5 return result ;
6 }

Figure 2.1: A simple example program

2.1.1 Statement Coverage
Definition 1. A testing process provides statement coverage for a program,
if and only if each executable statement in the program is executed at least
once during the testing process. [43]

Statement coverage (Definition 1) is the simplest and the least demanding
of the commonly used coverage criteria. For the example program (Figure 2.1),
complete statement coverage can be achieved with just one test, as seen in
Table 2.1. The limited usefulness of statement coverage as an assurance of
correctness for a program is already apparent with a program as simple as
this, as not even both return values are covered by the test set.

x y z Return value

1 0 0 true

Table 2.1: Statement coverage for example

Despite its limitations, statement coverage also has its uses. For instance,
statement coverage can be used during the testing process to discover the
presence of dead code in a program. Dead code (also known as unreachable
code) is a part of the program source code that is never executed, and as such
an indication of a potential problem in either the design or the implementation
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of the program. Even though analysing a program for the presence of dead
code is an undecidable problem (see [43]), meaning that it can not be done
conclusively, incomplete statement coverage can be used as an indication of
it. When a part of the program is not executed during the testing process,
it means that either the part is unreachable, or that the testing process is
not sufficiently thorough to cover that part of the program. In either case, a
potential problem in either the program or the testing process is uncovered.

2.1.2 Branch Coverage
Definition 2. A testing process provides branch coverage for a program, if
and only if each branch in the program is covered at least once during the
testing process. [43]

In contrast to statement coverage, branch coverage is already far more
efficient in covering the different behaviours of a program. A branch in
Definition 2 is a point in execution where the next statement or the set of
statements to be executed is chosen from two or more alternatives, such as a
if-then-else or a switch-case statement. For the example program (Figure 2.1),
this means that in the test set there must be at least one test run where the
then-branch of the if-statement is taken, and at least one where it is not. This
can be done for instance by varying the value of the parameter x in a way
which causes the boolean expression to evaluate to both true and false, as
seen in Table 2.2.

x y z Return value

0 0 0 false
1 0 0 true

Table 2.2: Branch coverage for example

Even though branch coverage does better than statement coverage, the
effect of parameters y and z on the return value in the example program are
not necessarily covered by the test set. This is because the boolean expression
is structured in a way which makes it possible for the parameter x to make
it true regardless of the values of the other parameters. Thus some of the
intended program behaviour is still left uncovered by the test set.
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2.1.3 Path Coverage
Definition 3. A testing process provides path coverage for a program, if and
only if each execution path in the program is explored during the testing
process. [43]

Path coverage is considerably more demanding than statement and branch
coverage. An execution path in Definition 3 refers to the sequence of state-
ments and branching points encountered, as well as the branching decisions
made during a single execution of the program. In other words, this means
a path from an entry point to an exit point, with each branching decision
considered to be a part of the path.

As is seen in Table 2.3, for the example program (Figure 2.1) path coverage
is actually provided by the same set of tests that provides branch coverage.
This follows from the fact that there is only one branch and thus only two
different execution paths in the program. The difference between these two
code coverage criteria becomes more apparent when looking at a slightly
more complex variant of the running example, available in Figure 2.2. The
new program does essentially the same thing as the old program; the only
difference between them is the structure of the boolean expression. Now
branch coverage can again be achieved with only two test cases (Table 2.5),
but in order to achieve complete path coverage, four test cases are necessary.
This is because all four different ways of evaluating the boolean formulas must
be covered (Table 2.6). For reference, statement coverage on this program
can again be achieved with only one test case (Table 2.4).

x y z Return value

0 0 0 false
1 0 0 true

Table 2.3: Path coverage for example

Even though path coverage is effective in covering program behaviour,
its biggest limitation is that the number of different execution paths for a
given program is often enormous, possibly infinite if certain kinds of loops
(e.g. while statements that never terminate) are involved. In addition, not all
execution paths in the program are necessarily even executable in practice.
This means that achieving complete path coverage, even when technically
possible, is difficult as the number of required test cases is often very large.
Path coverage is of special importance in this work, as it is the code coverage
provided by the dynamic symbolic execution process (see Section 3.2).
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1 bool branchexample (int x, int y, int z) {
2 bool result = false;
3 if (x > 0)
4 result = true;
5 if (y > 0 && z > 0)
6 result = true;
7 return result ;
8 }

Figure 2.2: A simple example program with multiple branches

x y z First branch Second branch Return value

1 1 1 true true true

Table 2.4: Statement coverage for branchexample

x y z First branch Second branch Return value

0 0 0 false false false
1 1 1 true true true

Table 2.5: Branch coverage for branchexample

x y z First branch Second branch Return value

0 0 0 false false false
0 1 1 false true true
1 0 0 true false true
1 1 1 true true true

Table 2.6: Path coverage for branchexample

2.1.4 Condition/Decision Coverage
Condition/decision coverage is a complicated and perhaps slightly artificial
coverage criterion, which is covered here mostly because it is the basis for
MC/DC, presented later in Section 2.2. Condition/decision coverage is less
straightforward than the aforementioned coverage criteria, and in order to
define it properly, we must first define what conditions (Definition 4) and
decisions (Definition 5) mean.
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Definition 4. Condition is a boolean-valued expression which does not
contain any boolean operators. This means that a condition can not be
broken down into simpler boolean-valued expressions. [13, 15, 25]

Definition 5. Decision is a boolean-valued expression with zero or more
boolean operators. A decision with zero boolean operators is a condition. If a
condition appears more than once in a decision, each occurrence is a distinct
condition. [13, 15, 25]

According to above definitions, x > 0, y > 0 and z > 0 in the simple
example program (Figure 2.1) are conditions, and the whole expression x >
0 || (y > 0 && z > 0) is a decision. In order to cover every condition and
every decision, the testing process must show that each condition and decision
evaluates to all possible values. Formally, condition/decision coverage can be
defined as follows (Definition 6):

Definition 6. A testing process provides condition/decision coverage for a
program, if and only if all entry and exit points in the program are covered,
and every condition and decision in the program evaluates to both true and
false at least once during the testing process. [25]

For the example program (Figure 2.1), a test set satisfying condition/de-
cision coverage is given in Table 2.7. All individual condition evaluations for
each test are included in the table. This example illustrates the limitations of
condition/decision coverage rather well. Even though the test set technically
covers all branches (decision coverage) in the program and even shows that
all atomic boolean expressions evaluate to both values (condition coverage), it
still fails to show the effect each individual condition has on the program logic.
Imagine a scenario where the first disjunction (||) in the example program
would be accidentally replaced with an conjunction (&&), resulting in the
expression x > 0 && (y > 0 && z > 0). If the testing process relies solely
on condition/decision coverage, the same test would still provide complete
code coverage and this error would go completely unnoticed, even though the
behaviour of the program would be completely different.

x y z x > 0 y > 0 z > 0 Return value

0 0 0 false false false false
1 1 1 true true true true

Table 2.7: Condition/decision coverage for example
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Another coverage criterion, multiple condition coverage, requiring the
testing process to cover all possible combinations of values of conditions in
each decision, could be used to solve the problem experienced with condi-
tion/decision coverage. However, there is a bigger problem associated with
multiple condition coverage, which is the extremely large number of tests it
requires. If a program contains a decision with n conditions, 2n distinct tests
is necessary to show complete multiple condition coverage for that condition
alone. This fact makes this particular coverage criterion impractical in most
applications. [25]

2.2 Definition
Modified condition/decision coverage is a complex code coverage criterion,
which can be used to provide some of the benefits of multiple condition
coverage without as large blowup in the size of the test set. As the name
suggests, MC/DC is basically condition/decision coverage slightly modified
with an additional independence requirement. This requirement makes sure
that in addition to everything required by condition/decision coverage, the
testing process must also show that each condition in each decision actually
affects the outcome of the decision. Formally, MC/DC can be defined as
follows (Definition 7 according to [15, 25]):

Definition 7. In order to provide modified condition/decision coverage, the
testing process must fulfill each of the following requirements:

(i) Every entry and exit point in the program must be covered at least
once.

(ii) Every condition in the program has taken all possible outcomes at least
once.

(iii) Every decision in the program has taken all possible outcomes at least
once.

(iv) Every condition in a decision has been shown to independently affect
the outcome of the decision.

The discussion here focuses mainly on the fourth requirement, as the first
three requirements follow directly from condition/decision coverage and have
already been covered in Section 2.1.4. The key idea behind the independence
requirement is that each condition in a decision should be there for a reason.
This means that for each condition in a decision, all other conditions in the
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decision should have at least one combination of values such that changing only
the value of the selected condition changes the value of the whole decision.
Two value combinations that show the independent effect of a condition
in a decision (by changing only the value of the condition and showing it
changes the value of the decision) are called an independence pair [25] for
that condition. In order to show the individual effect of each condition in a
program, the test set must include independence pairs for all conditions. This
means that the number of tests required in order to provide MC/DC on a
program is linear in the number of conditions, which is significantly less than
the exponential number of tests required my multiple condition coverage. [15]

Table 2.8 shows a test set satisfying MC/DC on the example program
(Figure 2.1). As the program only has one entry and exit point, and as
each condition and decision is true and false at least once during the testing
process, MC/DC Requirements (i), (ii) and (iii) are clearly satisfied. In order
to satisfy Requirement (iv), the test set should contain an independence pair
for each of the three conditions, labelled with X for x > 0, Y for y > 0 and
Z for z > 0. The pairs can be formed as depicted in the last column (notice
here that the pairs may actually overlap as is the case with the third test), so
the independent effect of each condition is shown and MC/DC is provided.

x y z x > 0 y > 0 z > 0 Decision Pair

0 0 0 false false false false X
1 0 0 true false false true X
0 1 1 false true true true Y,Z
0 0 1 false false true false Z
0 1 0 false true false false Y

Table 2.8: Modified condition/decision coverage for example

There is a common misconception regarding the meaning of a decision
in the context of MC/DC, which should be clarified here. The confusion
stems from the fact that the term “decision” is traditionally associated with
a branching point, whereas in this context it actually refers to any boolean-
valued expression in the program. Unless the correct interpretation is used,
the amount of program logic covered by MC/DC can be severely limited
in some cases. This issue can be illustrated rather nicely with yet another
variant of the running example, available in Figure 2.3. In this program,
the boolean expression in the branching point is separated into two sub-
expressions (decisions), A and B. Since the program logic is actually the same
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as in the original program (Figure 2.1), the test set providing MC/DC for
this program should be very similar to the one presented in Table 2.8. If
we use the correct interpretation of decision this is indeed the case, as all of
the following requirements must be satisfied at least once during the testing
process:

1. Condition y > 0 has the correct independence effect on decision A.

2. Condition z > 0 has the correct independence effect on decision A.

3. Decision A has been assigned both true and false.

4. Condition x > 0 has the correct independence effect on decision B.

5. Condition A has the correct independence effect on Decision B. Note here
that even though A in the program is also a decision, A in this context
is a condition because it is an atomic boolean-valued sub-expression of
decision B.

6. Decision B has been assigned both true and false.

The different decision structure changes the actual value combinations
slightly from Table 2.8, but the individual effect of each condition is still
shown correctly. Now if we would use the incorrect interpretation of a decision,
limiting our consideration to just the decision in the branching point, only
the last requirement (6) would have to be satisfied during the testing process
in order to provide “complete” MC/DC. In this case MC/DC reduces to
essentially branch coverage, and the individual effect of each condition in the
program is not shown. Thus, It is important that all boolean expressions in
the program are treated as decisions in order to make sure MC/DC works
as intended for all kinds of programs. More detailed coverage of this issue is
available in [13].

1 bool decisionexample (int x, int y, int z) {
2 bool result = false;
3 bool A = y > 0 && z > 0;
4 bool B = x > 0 || A;
5 if (B)
6 result = true;
7 return result ;
8 }

Figure 2.3: A simple example program with multiple decisions
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2.2.1 Different Variants
There is one detail in the literal definition of MC/DC regarding the meaning
of a condition that causes some problems when the code coverage criterion
is used in practice. Looking back at Definitions 4 and 5, we can see that
each atomic boolean valued sub-expression in a decision is considered to be a
distinct condition, regardless of the actual structure of the expression. This
means that if the underlying sub-expressions happen to be similar or refer to
the same variables, we obtain two “different” conditions whose values can not
be changed independently. If changing the value of one condition affects the
value of another condition, we say that those two conditions are coupled. [25]

If a decision in a program has coupled conditions, satisfying the inde-
pendence requirement according to the literal definition of MC/DC becomes
difficult. This is because the individual effect of each condition must be
shown with an independence pair during the testing process, and constructing
an independence pair where only the value of one condition changes is not
possible if the condition is coupled. This form of MC/DC is called unique-
cause MC/DC [14], and providing it for programs with coupled conditions is
actually impossible.

Unique-cause MC/DC has also other issues in addition to the limited
support for boolean expressions, again caused by the strict requirements on
the independence pairs. If we take another look at the decision in the example
program in Figure 2.1, we can observe that the individual values of the
conditions in the sub-expression (y > 0 && z > 0) do not actually affect the
outcome of the decision unless they are both true. Using this observation, the
first test in Table 2.8 could actually be removed, as the independence effect
of the condition x > 0 can be demonstrated using the second test and either
of the last two tests instead. However, since the definition of an independence
pair strictly requires that only the value of one condition changes, the first
test is necessary for unique-cause MC/DC.

Another form of MC/DC, called masking MC/DC [14], has been developed
to work around the aforementioned issues. The idea behind masking MC/DC
is that the independent effect of a condition can be shown with an indepen-
dence pair where the values of other conditions are also allowed to vary, if
they do not have an effect on the truth value of the decision (i.e. they are
[masked]). In the previous example, the values of y > 0 and z > 0 can vary
freely in the independence pair for x > 0, as long as the sub-expression (y >
0 && z > 0) remains false, since then the outcome of the decision is decided
by the value of x > 0 alone as is intended. The downside of this is that
recognising when a condition is masked in a decision requires some analysis
on the structure of the decision, which makes finding the independence pairs
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potentially more difficult.
Coupled conditions are not a problem with masking MC/DC, as they

can be treated like all other conditions. An important thing to note is
that the definition of a condition does not change, so the independent effect
of each coupled condition must still be shown during the testing process.
Masking MC/DC only makes it possible to find independence pairs for
coupled conditions; it does not guarantee that they exist. Also, because of
the relaxed requirements on the independence pairs, there are more potential
independence pairs that can be used to satisfy the independence requirement
with masking MC/DC than with unique-cause MC/DC. What this means is
that we can choose the independence pairs with as much overlap as possible
for the conditions, resulting in a smaller test set. This effect was already
visible to a degree in the previous example, where we could remove one test
if masking MC/DC was used.

The downside of masking MC/DC is that the probability of finding an
error in a decision (e.g. a wrong boolean operator) can be slightly lower than
with unique-cause MC/DC. The reason for this is not covered here as the
analysis is rather involved and not very relevant in the context of this work,
but more details are available in [14]. Whether masking MC/DC is a suitable
replacement for unique-cause MC/DC or not is somewhat debatable, but the
consensus [12, 14] seems to be that this is indeed the case.

2.3 Usage
All aforementioned code coverage criteria are commonly used in software
development, but what makes MC/DC especially interesting to us is its
position in the aviation software certification process. In this section we take
a closer look at this certification process to see how MC/DC is used in practice,
and to find out what consequences this has on automated coverage-driven
test generation.

Covering all the details of the aviation software certification process is
not possible in the scope of this work, as the process is quite complex and
the details may vary from aircraft to aircraft. The basic idea is that the
regulations and possible special conditions applicable to an aircraft model
or type are initially defined in certification basis, which is established by
the certification authority (i.e. Federal Aviation Administration or FAA in
the United States) together with the aircraft developer when the aircraft
model or type is submitted for certification. This means that a software
system is always certified as a part of the complete aircraft. The aircraft
developer must then provide means of compliance, which defines how the



CHAPTER 2. MODIFIED CONDITION/DECISION COVERAGE 17

certification basis is satisfied by the development process. The aviation
software certification process is largely based on standards, and historically
very effective in producing safe software systems. In fact, no aircraft crashes
can be attributed to software errors up to date. [49]

One important step in the aircraft design process is safety and hazard
analysis. Each system on the aircraft performs a specific function. This means
that a failure in a system will lead to either malfunction, unintended function
or loss of function on the aircraft. Safety and hazard analysis considers these
failure states in terms of failure conditions, ranging from “catastrophic” (i.e.
aircraft crash) through “hazardous”, “major” and “minor” to “no effect”,
depending on the effect they have on the safety of the aircraft, crew or
passengers. The primary goal of the analysis is to help in the system design
process, so the number and severity of failure conditions can be minimised.
This is done by refining the design of a system according to the results
of the analysis, and increasing the reliability of subsystems (by providing
backup systems for instance) as necessary. When the design of a component
is no longer refined for safety, it is required that the implementation of the
component is correct in terms of the specification (meaning it does what it
is supposed to do). The current guidelines for ensuring the correctness of
the implementation are defined in DO-178B [47], “Software Considerations in
Airborne Systems and Equipment Certification”, which can be considered to
be the “standard” for aviation software development and certification. [49]

DO-178B outlines several software development and analysis processes that
can be used by aviation software developers as means to obtain approval for
a software system. A new version of the document, DO-178C [48], has been
recently released in order to bring DO-178B up to date with current software
development practices. However, as the changes in the update are not covered
extensively in literature as of this writing, and verifying the exact nature
of the differences between the old and the new version is difficult (neither
version is publicly available), we shall focus on DO-178B instead. DO-178B
identifies five different design assurance levels (or software levels) ranging from
A (highest) to E (lowest), and a set of objectives that the software development
and analysis processes should satisfy for each level. The level of a software
system is determined by the failure condition associated with the system, level
A corresponding to “catastrophic”, level B to “hazardous” and so on. The
specification of a software system can be expressed as a set of requirements,
describing the features of the system and how it should behave. One basic
objective in DO-178B which is used to ensure the correct implementation of
a level A-D software system is showing requirements coverage for the system,
which basically consists of generating a set of tests from the requirements
and using it to show that the implementation satisfies the requirements. [25]
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The biggest limitation with requirements coverage is that it is not alone
sufficient to guarantee that a software system has been tested thoroughly.
This is because the set of requirements from which the test set is generated
might not be a complete representation of all possible behaviours of the
implementation, or the implementation might simply contain unintended
functionality. This is where another objective, showing structural coverage for
the system, comes in. Structural coverage is somewhat similar to requirements
coverage, but now it must be shown that the test set generated from the
requirements provides certain code coverage on the implementation. The
objective is to show that the test set exercises the structure of the program
code to a sufficient level, and also to reveal parts of the program code which
are not covered by the test set. Together requirements and structural coverage
provide a great level of confidence that a software system both does what
it is supposed to do and does not contain any unintended functionality.
An additional benefit of structural coverage is that it implicitly enforces a
relatively close match between the requirements and the implementation, as
all tests are traceable both ways between the two. [25]

The type of code coverage criterion used with structural coverage varies
with the level of the software system which is being tested, ranging from state-
ment coverage for level C systems to MC/DC on level A systems. Analysing
the structural coverage of a test set generated from the requirements by
hand is very tedious, but possible by for example using the method based on
boolean circuits described in [25]. Automating the complete test generation
and coverage measurement processes might seem like an enticing idea, but is
actually pretty dangerous unless the capabilities and limitations of the used
tools are well known in advance. Most notably, all the confidence provided
by requirements and structural coverage does not mean much if the code
coverage is not measured correctly. This is the primary reason why we, in the
scope of this work, are only concerned with automating the test generation
part of the process. Our idea is that the generated test set can be used as a
sensible starting point for the testing process, but also that we do not have to
provide any guarantees on the completeness of the test set, as the coverage
measurement part must still be performed separately.



Chapter 3

Dynamic Symbolic Execution

This chapter provides the background for our coverage-based test generation
process by introducing the method and tool our solution is based on, namely
dynamic symbolic execution and LIME Concolic Tester respectively. As a
small introduction to automated software testing and to provide an overview
on the related work on the field, Section 3.1 first covers some other well known
automated software testing tools and the methods they utilise. After the
introduction, DSE is presented through an example in Section 3.2, and the
important details of LCT are covered in Section 3.3.

3.1 Automated Software Testing
In order to properly discuss automated software testing, a couple of important
definitions are necessary. The first thing that should be clarified is the
distinction between “automated software testing” and “test automation”.
Even though the terms can sometimes be used somewhat interchangeably,
the latter usually refers to the automation of the actual testing process, i.e.
the execution of a predetermined set of test cases, whereas the former also
covers the automatic generation of said test cases. Since we are not primarily
interested in the practical aspects of software testing in terms of this work,
the discussion in this section is mostly limited to the test generation part of
the process. Another important notion is the difference between static and
dynamic analysis of a program. Static analysis is based on the structure of
the program and is performed on the program source code (or sometimes
object code), and dynamic analysis is based on the program execution. These
two practices are far from exclusive however, and as a matter of fact most
of the methods presented here are a combination of the two. It should also
be noted that the availability of source code is crucial for most automated
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software testing methods, which is the primary reason why we are mostly
dealing with white-box testing (as mentioned in Section 2.1).

The problem of automating the software testing process can be broken
down into several parts. First is the extraction of the program interface and
identification of the so called inputs or test inputs, which determine what the
execution path during the test execution will look like. Even though any value
of a variable that is not decided exclusively by the execution history of the
program can technically be considered an input, sources of nondeterminism
that are not part of the program interface (such as values from a random
number generator) are usually left outside the consideration since they are
more complicated to identify and handle. Some automated software testing
tools provide more automation in the program interface extraction than others,
but in the scope of this work the inputs are always indicated explicitly to
avoid confusion. Second part of the process is the selection of interesting input
values that exercise as much of the program structure as possible. This is the
most interesting part of automated software testing, and also the part that
differs the most between different methods. The third and final part of the
process is the actual execution of the program with the selected input values,
which usually also includes additional analysis of the program structure which
is necessary for the selection of input values for subsequent test executions.

Possibly the simplest way of doing automated software testing is ran-
domization of the input values, also known as random testing or fuzzing [8].
Despite its apparent simplicity, random testing can be effective in finding
actual errors [20] and is generally useful thanks to its applicability to all kinds
of programs (it also works with black-box testing). However, its biggest limi-
tation is that it struggles with certain kinds of relatively common branching
structures, and is thus far from excellent in achieving good code coverage [42].
For instance, an if-statement with a comparison between an integer variable
and a specific value, such as x == 5, is rarely covered in random testing, as
the range of possible values for x is huge and randomly selecting any single one
is extremely unlikely. A tool called DART [22] (Directed Automated Random
Testing) solves this issue with a clever combination of concrete and symbolic
execution of the program. The approach utilised by DART is commonly
known as dynamic symbolic execution or concolic testing (a combination of
concrete and symbolic), and is demonstrated in greater detail through an
example in the next section. In short, symbolic constraints on the input values
are collected during concrete executions based on the encountered operations,
after which they are combined into path constraints. These path constraints
can then be solved with a constraint solver to obtain new input values that
should direct the execution down a particular execution path. This idea is
very similar to the traditional symbolic execution [36], the primary difference
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being the fact that in this case the path of the concrete execution is always
followed [51].

In practice DART works by first using static analysis to instrument the
target program source code written in the C programming language with
additional statements that enable the symbolic execution. After this the
program is executed, first with random input values, and then with values
obtained from the path constraints collected during previous executions.
During the execution, DART keeps track of both the concrete and the
symbolic value of each variable. The concrete value is obtained from the actual
execution, and the symbolic value is constructed based on the encountered
operations. Symbolic variables are managed based on their locations in
memory, which allows for similar handling of constants, expressions and
pointers. The downside of this method is that it does not allow expressions
with side effects or pointer dereference when the value of a pointer depends
on an input. If the symbolic evaluation of a variable fails for some reason, the
concrete value of the variable is used instead. The testing process terminates
when an error is found or all execution paths have been covered, and is
restarted with new random input values if a situation that might lead to
incompleteness is encountered. [22]

The basic ideas from DART are also utilised in several other automated
software tools with their own variations and additions. CUTE [52] (Concolic
Unit-Testing Engine) is one such tool. Even though CUTE is similar to
DART in many respects, namely it also works with C programs and is based
on dynamic symbolic execution with source code instrumentation, it supports
a wider variety of programs thanks to several key improvements. Instead of
plain memory addresses, the inputs in CUTE are logical input maps, which
can be used to represent any finite memory graph as a collection of symbolic
variables, and thus allow the symbolic execution to tackle for instance dynamic
data structures with complicated pointer operations. Another important
improvement in CUTE is the separation of pointer and integer constraints,
which allows for more simplified constraints and therefore makes the symbolic
execution more efficient. A slightly more recent take on automated software
testing is provided by SAGE [23] (Scalable, Automated, Guided Execution)
and Pex [57], both of which improve the dynamic symbolic execution process
with additional heuristics. SAGE is heavily focused on performance; it works
on the level of x86 instructions [27], uses a search heuristic to quickly maximise
code coverage, and includes several optimisations that make it able to handle
large applications. Pex also improves code coverage with heuristics, but the
main thing that makes it different from the other tools is its close relationship
with the constraint solver Z3 [17], which allow for efficient reasoning of safe
and unsafe features in .NET [56] programs.
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The traditional symbolic execution [36], on which dynamic symbolic exe-
cution is also based on, is another popular approach to automatic generation
of tests for software systems. As mentioned previously the primary difference
between dynamic and non-dynamic symbolic execution is the utilisation of
concrete executions to explore the program structure. Although this difference
might seem relatively minor, it actually has significant effect on how these
methods actually work in practice. More specifically, with plain symbolic
execution the program must be executed symbolically from the start, which
requires more careful management of symbolic values as the execution does
not have concrete values to fall back to if something goes wrong. At the start
of the symbolic execution the symbolic value of each input is unrestricted,
and as the execution proceeds the value is refined with additional constraints
based on the encountered operations. If the program branches, the symbolic
execution must also fork and consider both cases separately. Notice that this
behaviour is different from dynamic symbolic execution, where the execution
always follows the path of the concrete execution. Whenever a bad state is
observed in the program, the constraints collected on that execution path
can be solved to obtain concrete input values that lead to said bad state.
Conversely, if the constraints are not satisfiable, the error is not reachable
with any input values (providing the symbolic execution is correct). There
are a few tools based on this idea, the most popular of which probably be-
ing KLEE [11] and Java PathFinder [58]. Both of these tools work on the
object code, or compiled source code, representation of the program, namely
on LLVM [4, 37] bitcode and Java [24] bytecode respectively. The defining
features of the tools include clever constraint and environment management
methods to heavily increase performance in KLEE, and the use of model
checking to provide support for advanced programming language features in
Java PathFinder.

3.2 DSE Through an Example
As mentioned previously, dynamic symbolic execution is an automated soft-
ware testing method whose purpose is to discover errors in a program by
automatically exploring as many of execution paths as possible. In practice
this is done by executing the program simultaneously concretely and symboli-
cally, first with random and then with carefully selected input values, and
collecting information on the structure of the program during the execution.
This information, represented as symbolic constraints, can then be used to
select new input values which lead the execution down a particular path. [51]

As this process is rather involved, it is best illustrated with an example.
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Figure 3.1 represents the source code and the control flow structure of a
simple example program with two error conditions and one input value. As
was already discussed, the input values and the error conditions are indicated
explicitly in the example for the purpose of clarity. This does not limit our
consideration of the testing process in any meaningful way, since the interface
extraction process required to identify them automatically is not strictly a
part of DSE. As a matter of fact, manual definition of at least the input
values is actually required by most automated software testing tools. In this
example the input value is obtained from the input() method, and the error
conditions, which can be considered similar to assertion failures, are indicated
with the error() method. Note that the first error in the program is actually
unreachable regardless of the value of the input, and that the second error
is only encountered with a very specific value. The purpose of this is to
demonstrate how these different situations are handled by DSE, and to show
how the method is able to rather easily find errors that are nigh impossible
for e.g. random testing to detect. In the example, the symbolic constraints
are expressed in terms of traditional logic and arithmetic operations. A more
detailed overview of the constraint language is available for instance in [29].

The progress of the testing process with DSE is depicted in Figure 3.2.
Since nothing is known before the first execution, the initial input value is
chosen at random and the initial path constraint is empty. Assume that
in this case the input value happens to be -3, which means that the first
execution path is 2, 3, 4, 7, 8, 14 and the return value is 9 (Figure 3.2a).
The symbolic constraints collected during the execution are listed next to
the corresponding edges in the graph. Now the testing process observes two
uncovered branches, 5 and 9, and attempts to cover them systematically.
Assume that the path to 5 is attempted first. The path constraint for the
next execution is formed based on the symbolic constraints on the path
2, 3, 4, 5, which results in (x0 = input0) ∧ (y0 = x0 ∗ x0) ∧ (y0 < 0).
This constraint is unsatisfiable, which means that the path is unreachable
regardless of the value of the input and does not have to be considered again
(Figure 3.2b). The path to 8 however, with the corresponding path constraint
(x0 = input0) ∧ (y0 = x0 ∗ x0) ∧ ¬(y0 > 0) ∧ (x1 = x0 + 2) ∧ (x1 > 0), is
satisfiable with any input value ≥ −1. Assume that the value 1 is chosen,
so the next execution path is 2, 3, 4, 7, 8, 9, 12 and the return value is 3
(Figure 3.2c). Since a new uncovered branch, the path to 9, is found, the path
constraint for the next execution is (x0 = input0) ∧ (y0 = x0 ∗ x0) ∧ ¬(y0 >
0) ∧ (x1 = x0 + 2) ∧ (x1 > 0) ∧ (y0 = x1). This constraint is satisfiable with
the input value 2, which results in the execution path 2, 3, 4, 7, 8, 9, 10
(Figure 3.2d). This execution finds and error in the program, and the testing
process is terminated.
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1 int example () {
2 int x = input ();
3 int y = x * x;
4 if (y < 0) {
5 error ();
6 }
7 x = x + 2;
8 if (x > 0) {
9 if (x == y) {

10 error ();
11 }
12 return x;
13 }
14 return y;
15 }

2

3

4

57

8

914

1012

Figure 3.1: An example program with graph representation

The biggest limitation of DSE is that if the symbolic execution is not able
to track the concrete execution for some reason, then the testing process can
not guarantee complete coverage of all the execution paths in the program.
This situation can arise if the program does an operation that is not supported
by the symbolic execution, or executes a library function that has not been
instrumented. The traditional solution in this case is to simply fall back to the
concrete input values and proceed with the concrete execution. Fortunately
these situations can usually be recognised during the testing process, and the
user can at least be made aware of the incomplete coverage. Another related
problem is that a branch that is unreachable during the testing process (i.e.
the corresponding path constraint is unsatisfiable) might not necessarily be
unreachable in practice if the program has sources of nondeterminism that
are not treated as inputs. This only happens if the inputs are not defined
correctly and is thus usually an user error, but it is still very possible in
practice as sometimes some sources of nondeterminism are hard to recognise
if the program uses values from a random number generator for instance.
However, if the whole program is within the scope of the symbolic execution
and all inputs are defined correctly, DSE should be able to find any error
that is reachable with any combination of input values (and thus provide
exhaustive testing for the program).

Another common issue with DSE is again the fact that the number of
different execution paths in a program can be extremely large. This means
that even when DSE is technically not limited by the aforementioned issues,
complete coverage might still be computationally infeasible for any reasonably
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Figure 3.2: Progress of the DSE process

complicated program. This problem is amplified by the fact that DSE is
unable to recognise a situation where two distinct execution paths converge
to the same program state, and instead treats all execution paths individually.
These problems can be circumvented to a degree with heuristics methods that
select execution paths that increase code coverage quickly during the testing
process (as is the case with some of the testing tools presented in Section 3.1),
but the fact remains that complete coverage is still difficult to achieve.
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3.3 LIME Concolic Tester
LIME Concolic Tester is yet another automated software testing tool that is
based on DSE. LCT is of special importance in the context of this work, as it
is the tool our coverage-based test generation process is based on. This section
introduces the primary features of the tool, and provides the background on
the relevant implementation details that are necessary to understand how the
test generation process presented in the next chapter works in practice.

At its heart, LCT is very similar to the automated software testing
tools presented earlier. It is developed in the Department of Information
and Computer Science in the Aalto University School of Science, and its
primary features include automatic instrumentation of the program that
enables symbolic execution, a distributed architecture that supports several
concurrent test executions, and integration with the bitvector constraint solver
Boolector [9] that makes more precise symbolic execution possible [29, 32].
LCT can technically work with both Java and C programs, but several of
its advanced features currently only work with Java, as the support for C
is a very recent addition and thus partially incomplete. LCT also supports
automated testing of multithreaded Java programs with a modified dynamic
partial order reduction algorithm [50], which has also recently been extended
with support for unfoldings [33]. The tool has been evaluated as a part of
a study that compares the DSE approach with random testing on a set of
smart card Java applets, in which DSE was found to be significantly more
effective [30]. LCT is open source and freely available as a part of the LIME
TestBench [3] toolkit under the MIT license. In addition to LCT, the toolkit
also contains a runtime monitoring tool for Java and C programs that is
based on the LIME interface specification language [31]. As our goal in this
work is to provide an automated test generation process specifically for C
programs, the implementation details provided in the next section also focus
on the C programming language support in LCT.

3.3.1 Implementation
Perhaps the most defining feature of LCT is its distributed architecture, which
allows for several test executions to be performed simultaneously on the same
workstation, or even on different workstations inside the same network. The
basic idea is that a central test server keeps track of the symbolic execution
and the global progress of the testing process, and most of the practical work,
including the concrete execution, is delegated to one or more test clients.
Each client receives a path constraint corresponding to a test execution from
the test server, solves it, and executes the program (previously instrumented
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for symbolic execution) with the solved input values. Instead of tracking
the symbolic execution locally, the client communicates information on the
encountered operations (and the associated concrete input values) back to
the server. Once the concrete execution on the client terminates, the client
notifies the server and also terminates. If the path constraint was unsatisfiable
in the first place, a new path constraint is requested. The server keeps track
of the symbolic execution by constructing an execution tree based on the
messages received from the client. The execution tree consists of execution
nodes, which represent the points in the program that are interesting in terms
of the symbolic execution. This includes initializations, assignments and
comparisons involving symbolic variables, synchronization points, branching
points and so on. Each time a branch is encountered in the program, a
corresponding branch is also created in the tree and the related symbolic
constraints are assigned to the appropriate nodes. An unvisited leaf in the tree
represents an uncovered execution path in the program, and the corresponding
path constraint can be generated based on the constraints on the path from
the leaf to the root of the tree. Once all the children of a node have been
visited in a test execution, the node is considered finished and pruned from
the tree to keep the size of the tree manageable.

The default search order or the order in which new execution paths are
explored by the test server is basic depth first search. This means that the
next node to be visited is always the node that was added to the tree most
recently. The advantage of this method is that it keeps the tree relatively
small as nodes can be pruned often, but the big downside is that is scales very
poorly to large programs. The reason for this is that the testing process can
spend a lot of time exploring a tiny branch of the program if the execution
paths are very long, which can result in poor coverage of the program as a
whole. Other search orders, such as breadth first search and random search,
are also available, but they all are essentially just different trade-offs between
the size of the tree (i.e. memory usage of the test server) and the provided
coverage on the program.

One nice advantage of the server-client-architecture is that the server can
be relatively agnostic of most of the implementation details of the client as long
as the information it receives is correct and accurate in terms of the program
under test. One corollary of this is that support for additional programming
languages can be implemented mostly with changes on the client. The original
LCT only supports automated testing of Java programs, but a client has also
been implemented for C programs based on the LLVM [4, 37] framework.
LLVM, originally Low Level Virtual Machine, is a sophisticated software
compilation framework which provides a low-level source code representation
and a set of tools that can be used to easily perform transformations on
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said representation. The compilation process with LLVM essentially consists
of a front-end that transforms the program source code into this internal
representation, a series of optimisations that are transformation passes on
the internal representation, and a back-end that transforms it into executable
machine code. The LCT instrumentation process for C programs, which adds
additional statements to the program to allow the client-server-communication,
is implemented as an LLVM optimisation pass.

3.3.2 Code Coverage
As our goal in terms of this work is to automatically generate a set of
tests satisfying MC/DC on a program, it is beneficial to spend some time
to consider the code coverage provided by LCT. Since LCT is based on
DSE, DSE provides path coverage and path coverage seems far removed
from MC/DC, this discussion might seem pointless, but when we take into
account that LCT provides path coverage on the program object code (LLVM
internal representation is essentially object code), the situation becomes more
interesting. An important detail in MC/DC is that it is defined exclusively
on the program source code, which makes sense when its application in the
aviation software certification process is considered as discussed in Section 2.3.
This means that instead path coverage and MC/DC, we should consider the
relationship between path coverage on the object code and MC/DC, which
are actually closer to each other than it initially seems.

The reason for this is the fact that during the compilation from source
code to object code, the boolean expressions in branch conditions are broken
down according to the short-circuit semantics of the programming language
in question. With C this means that if a boolean expression is already
known to be true or false, the correct branch should be taken immediately
and the expression should not be evaluated further. In the object code
representation of a program this means that each branch with a complicated
boolean expression is separated into a series of branches with sub-expressions
of the original expression that are only evaluated if necessary. This process
can be seen in action in the running example provided in the next chapter
(Section 4.3), which is not needlessly repeated here. When this is taken into
account, complete path coverage of the branching structure on the object
code level, which is something LCT provides, actually covers most of the
requirements of MC/DC (Section 2.2) directly. Namely all entry and exit
points in the program are covered (i) and all conditions (ii) and decision (iii)
evaluate to both true and false at some point during the testing process. The
only requirements that is missing is the last one (iv), but even it is almost
covered, as taking all paths through the branching structure ends up exercising
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many combinations of condition evaluations. However, unlike the first three,
the fourth requirement is not something we can count on being covered, so the
test generation process must still make sure that all requirements are satisfied
completely. This observation has several implications on the implementation
details of the coverage-based test generation process, which is presented in
the next chapter.



Chapter 4

Coverage-Based Test
Generation

In this chapter we present how our coverage-based test generation process,
based on DSE with additional goal constraints, is designed and implemented.
Section 4.1 first discusses the practical issues that should be taken into account
when automated test generation for MC/DC is considered. After this, the
framework of our solution is presented in Section 4.2, which defines what goal
constraints actually are and describes how they can be used to implement a
test selection process for DSE. Once the background has been established,
the test generation process itself is presented through the use of a running
example in Section 4.3, and finally the interesting implementation details are
provided in Section 4.4.

4.1 MC/DC and Test Generation
Automatically generating a set of tests to provide MC/DC for a software
system is not exactly straightforward, especially if applicability to the aviation
software certification process is also taken into account. The very strong
safety culture behind this certification process clearly dictates how MC/DC
should be both interpreted and used in practice, and some of the details
are particularly difficult for the automated test generation process to handle.
Here we consider some of these problems and propose solutions to them
accordingly. There are also a few issues that are less practical and more
philosophical in nature associated with applying automated test generation
to MC/DC, including the one discussed in Section 2.3 involving the reduced
effectiveness of the testing process as a reliability metric if expertise is blindly
replaced with automation. These kinds of problems do not generally have

30
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clear solutions, and as such are not discussed here. Instead, they are covered
later in Chapter 6.

The biggest problem in automating the test generation process for MC/DC
while taking the aviation software certification process into account is that the
tests for a system should be generated from the requirements (or specification)
of the system. Even though the requirements in this case should be quite
detailed (they should have the same branching structure as the source code,
see Section 2.3), automatically extracting a set of tests from an essentially
arbitrary set of requirements is very difficult, even when not considering the
fact that the tests should also provide a decent degree of code coverage on the
implementation. This problem can be solved with a slight reinterpretation
of the term “specification”, and generating the tests based on the source
code of the system instead. With this change, we can do coverage-driven test
generation by taking an existing automated software testing tool (namely
LCT, see Section 3.3), directing its testing process to provide MC/DC and
implementing a way to extract the interesting test executions into a set of
executable test cases. Even though this is pretty much the best we can do in
the scope of this work, the whole idea does go very much against the intent
of DO-178B, and the meanings of requirements and structural coverage for
a system are diminished as a result. This is the primary reason why our
methods are not a suitable replacement for the traditional testing process
and should not be used as such.

One issue with this test generation method is that that LCT works on the
object code of the program. This is problematic because we are specifically
interested in the coverage of the source code, and the structure of the program
can change considerably during the compilation process. A standard solution
for handling this particular problem is covered in [25]: Even though MC/DC
on object code level does not necessarily equal MC/DC on source code level,
demonstrating MC/DC on the object code is sufficient if analysis showing the
equivalence between the two levels of coverage is also provided. This means
that in order to satisfy the testing process requirements, nontrivial analysis
arguing why code coverage on object code level implies code coverage on source
code level should be performed. Such analysis is fortunately not necessary in
the case of our test generation process, as the part of the process directing
the testing and measuring the code coverage can actually be implemented
completely on source code level. This means that even though the underlying
testing tool works on the object code, any MC/DC provided by the produced
tests is proper code coverage on the source code.

As a final note, it should be exclaimed again that we do not give any
guarantees on the completeness of the generated set of tests. There are several
reasons for this, the most important being the fact that the testing tool works
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during the execution of the program. This alone limits our consideration to
executions that actually exist, meaning that for instance the presence of dead
code can not be shown with the test set. We can provide an estimate on the
amount of MC/DC achieved during the testing process, but since coverage
measurement is not the primary function of the testing tool, this value should
be taken with a grain of salt.

4.2 Goal Constraints
The basis of our coverage-based test generation process is a new concept called
goal constraints, or simply goals, which are essentially additional constraints
on the values of variables that can be inserted directly into the program
source code. It is up the testing process to decide how the goals are used, but
in our case they are treated as requirements that state “this constraint should
be satisfied at this point in the execution at least once during the testing
process”. This means that the goals are thought of as suggestions rather than
restrictions on the actual values of variables.

As was already hinted at in Section 3.3.2, plain DSE, especially when
performed on the program object code, is not directly applicable to automated
test generation for a specific coverage criterion because it is so closely tied
to path coverage. In the case of MC/DC, a test set that provides complete
path coverage has both too many and too little test cases. On one hand
many of the test cases are unnecessary as coverage of all execution paths is
not required by MC/DC, and on the other hand the independence effect of
each condition in each decision is not necessarily shown. This means that in
order to apply DSE to automated test generation for MC/DC, we need a way
to filter out uninteresting test runs and to perform additional test runs as
necessary. Both of these issues can be solved with goal constraints, as long as
the complete structure of the desired coverage criterion can be expressed in
terms of constraints in the program source code.

The goals are intended to be used as an additional layer on top the DSE
process as follows: Every time a goal is encountered during a test execution,
the associated constraint is evaluated with the current concrete input values.
If the constraint is satisfied, we know that the execution is interesting in
terms of the coverage criterion, and a test case is generated and included in
the test set based on the input values of the execution. Since each goal is
only required to be satisfied once during the testing process, the global state
of satisfied goals has to be stored outside the individual test executions. This
way goals that have already been satisfied by some earlier test execution can
safely be ignored. If a goal is not satisfied naturally during the testing process,
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additional test executions are performed by combining the goal constraint
with the path constraint of the goal statement. This makes sure that if
the goal can be satisfied on a particular execution path, input values that
both reach and satisfy it are selected, and a test case for it is generated.
Together with the path coverage provided by DSE, this process guarantees
that every reachable goal in the program that is satisfiable in the first place
has a corresponding test case, and that not unnecessary test cases are included
in the test set.

The process is made slightly more complicated by the fact that even
though the goals are defined in terms of the program source code, the actual
testing process still operates on the object code. This means that goals,
which appear only once in the source code, may actually be encountered
in several different contexts in the object code after the program has been
compiled. This is a small problem because variables are only considered to be
symbolic if they depend on input values, which means that the goal constraint
can change depending on the execution path it appears at. The details of
how the situation is handled are provided in Section 4.4.1, but the result is
that each goal is also accompanied by a unique identifier which can be used
to recognise different instances of the same goal during the testing process.
These identifiers also have an additional benefit to them, as they can be used
to provide a rudimentary measure of code coverage. Normally a goal that is
outside the reachable part of the program is never executed and thus rendered
completely invisible to the testing process. With the identifiers however, if
the testing process is aware of the total number of goals in the program, the
number of goals that are either satisfied, encountered but not satisfied, or not
encountered at all can all be reported at the end of the testing process.

4.3 Test Generation Process
This section describes our coverage-based test generation process step by
step with the help of a running example. The example program, available in
Figure 4.1, is very similar to the first example program presented in Chapter 2.
The program contains three input parameters (the initialisation of which is
omitted to reduce the size of the example), and no error conditions. The lack
of error conditions does not actually limit the meaningfulness of this example
in any way, as our primary goal is not to find errors in the program but to
generate a set of tests that provides MC/DC. The test generation process can
be split into two distinct parts, the constraint generation and instrumentation
(covered in Section 4.3.1) and the test execution (covered in Section 4.3.2).
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1 bool test(x, y, z) {
2 if (x > 0 || (y < 0 && z == 0)) {
3 return true;
4 }
5 return false;
6 }

Figure 4.1: Test generation example

4.3.1 Constraint Generation
As a small reminder from Section 2.2, the four requirements of MC/DC are:
all entry and exit points in the program must be covered (i), all conditions
(ii) and decisions (iii) must take all possible outcomes, and each condition
in each decision must be shown to independently affect the outcome of the
decision (iv). The first requirement is easily covered by a goal with an empty
(always satisfiable) constraint in each entry and exit point of the program.
The situation is similar with requirements two and three, as two goals that
require the value of the condition or decision to be true and false can be
inserted before or after every condition or decision in the program source code.
It turns out this is actually not even necessary in practice, as the constraints
generated for the last requirement also guarantee that every condition and
decision is both true and false at least once during the testing process. The
fourth requirement is again the one that the most interesting, and also the
one that requires the most work.

The easiest way to show the independence effect of each condition would
be to simply add goals for all possible combinations of condition evaluations
before each decision in the program. This approach is similar to multiple
condition coverage, and it also suffers from the same downside, namely the
extremely large number of test cases that would be required to satisfy all
such goals. Instead, we opt for a more clever approach presented in [59],
which involves the generation of positive and negative sets of constraints
based on the structure of the decision. The intuition behind this approach
is that the boolean expression in the decision can be analysed recursively,
and depending on the operations it contains two constraints forming the
independence pair for each condition can be obtained. This method works
according to the masked MC/DC semantics, which means that the positive
and negative constraints are sufficient to show the effect of the condition even
though the values of the other conditions are not necessarily held constant.
The constraint sets are constructed according to the following equations:
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x+ = {x} (4.1)
x− = {¬x} (4.2)

(¬A)+ = A− (4.3)
(¬A)− = A+ (4.4)

(A ∧B)+ = {a ∧B | a ∈ A+} ∪ {A ∧ b | b ∈ B+} (4.5)
(A ∧B)− = {a ∧B | a ∈ A−} ∪ {A ∧ b | b ∈ B−} (4.6)
(A ∨B)+ = {a ∧ ¬B | a ∈ A+} ∪ {¬A ∧ b | b ∈ B+} (4.7)
(A ∨B)− = {a ∧ ¬B | a ∈ A−} ∪ {¬A ∧ b | b ∈ B−} (4.8)

Two first equations state that the positive set of a single condition is
simply the condition itself, and respectively the negative set is the negation
of the condition. The rest of the equations show how all the basic logic
operations, negation, conjunction and disjunction, are handled. The equations
for conjunction and disjunction are more complicated, as they split the set
into two parts (one for the left and one for the right sub-expression). In the
case of the running example we have one decision, (x > 0 || (y < 0 &&
z == 0)):, which consists of three conditions: X: x > 0, Y : y < 0 and Z:
z == 0. The positive and negative sets for this decision are constructed as
follows:

(X ∨ (Y ∧ Z))+ = {a ∧ ¬(Y ∧ Z) | a ∈ X+} ∪ {¬X ∧ b | b ∈ (Y ∧ Z)+}
= {X ∧ ¬(Y ∧ Z)} ∪ {¬X ∧ b | b ∈ {c ∧ Z | c ∈ Y +} ∪ {Y ∧ d | d ∈ Z+}}
= {X ∧ ¬(Y ∧ Z)} ∪ {¬X ∧ b | b ∈ {Y ∧ Z} ∪ {Y ∧ Z}}
= {X ∧ ¬(Y ∧ Z)} ∪ {¬X ∧ b | b ∈ {Y ∧ Z}}
= {X ∧ ¬(Y ∧ Z)} ∪ {¬X ∧ (Y ∧ Z)}
= {X ∧ ¬(Y ∧ Z),¬X ∧ Y ∧ Z}

(X ∨ (Y ∧ Z))− = {a ∧ ¬(Y ∧ Z) | a ∈ X−} ∪ {¬X ∧ b | b ∈ (Y ∧ Z)−}
= {¬X ∧ ¬(Y ∧ Z)} ∪ {¬X ∧ b | b ∈ {c ∧ Z | c ∈ Y −} ∪ {Y ∧ d | d ∈ Z−}}
= {¬X ∧ ¬(Y ∧ Z)} ∪ {¬X ∧ b | b ∈ {¬Y ∧ Z} ∪ {Y ∧ ¬Z}}
= {¬X ∧ ¬(Y ∧ Z)} ∪ {¬X ∧ b | b ∈ {¬Y ∧ Z, Y ∧ ¬Z}}
= {¬X ∧ ¬(Y ∧ Z)} ∪ {¬X ∧ (¬Y ∧ Z),¬X ∧ (Y ∧ ¬Z)}
= {¬X ∧ ¬(Y ∧ Z),¬X ∧ ¬Y ∧ Z,¬X ∧ Y ∧ ¬Z}
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Notice that the positive set has one constraint less than the negative set.
This follows from the fact that with this decision, the positive effect of the
conditions Y and Z can be shown with the same constraint. When the sets
are combined, the set G = {X ∧¬(Y ∧Z),¬X ∧Y ∧Z,¬X ∧¬(Y ∧Z),¬X ∧
¬Y ∧ Z,¬X ∧ Y ∧ ¬Z} is obtained. This is the set of goal constraints that
are necessary to satisfy the fourth MC/DC requirement for this decision, and
as the program only has one decision, also for this program. Each of these
constraints is then assigned an identifier and inserted into the source code,
which results in the program available in Figure 4.2.

1 bool test(x, y, z) {
2 goal (0, x > 0 ∧ ¬(y < 0 ∧ z = 0));
3 goal (1, ¬(x > 0) ∧ y < 0 ∧ z = 0);
4 goal (2, ¬(x > 0) ∧ ¬(y < 0 ∧ z = 0));
5 goal (3, ¬(x > 0) ∧ ¬(y < 0) ∧ z = 0);
6 goal (4, ¬(x > 0) ∧ y < 0 ∧ ¬(z = 0));
7 if (x > 0 || (y < 0 && z == 0)) {
8 return true;
9 }

10 return false;
11 }

Figure 4.2: Test generation example with goals

4.3.2 Testing Process
Before the testing process begins the program is instrumented and compiled,
which means that we move from source code to object code. For the running
example this means that the structure of the boolean expression in the branch
is broken down according to the short-circuit semantics as was discussed
in Section 3.3.2. As the details of the actual LLVM internal representation
are not the point of this example, the approximate effect is replicated with
a slight rewrite of the program structure, available in Figure 4.3. Even
though the effect of the instrumentation process, which enables the symbolic
execution, is also omitted in the example, it should be noted that that the
goal statements are mostly unaffected by this process. The details of how
goals area instrumented are provided later in Section 4.4.1.

Goals are managed during the testing process according to a relatively
simple strategy: Every time a goal is encountered during a test execution,
it is handled as described in Section 4.2 (the constraint is evaluated and if
it is satisfied a test case based on the execution is generated). However, if
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1 bool test(x, y, z) {
2 goal (0, x > 0 ∧ ¬(y < 0 ∧ z = 0));
3 goal (1, ¬(x > 0) ∧ y < 0 ∧ z = 0);
4 goal (2, ¬(x > 0) ∧ ¬(y < 0 ∧ z = 0));
5 goal (3, ¬(x > 0) ∧ ¬(y < 0) ∧ z = 0);
6 goal (4, ¬(x > 0) ∧ y < 0 ∧ ¬(z = 0));
7 if (x > 0) {
8 return true;
9 }

10 if (y < 0) {
11 if (z == 0) {
12 return true;
13 }
14 return false;
15 }
16 return false;
17 }

Figure 4.3: Test generation example with goals after compilation

the constraint is not satisfied, the goal is stored in the execution tree. More
specifically, the goal is associated with the previous execution node on the
same execution path. This is important because of the observation made
in Section 3.3.2, which points out that the path coverage provided by DSE
covers almost all of the MC/DC requirements essentially for free. This means
that it is beneficial to only perform additional test runs to satisfy goals when
absolutely necessary. Thus our strategy for coverage-based test generation
is to proceed with the DSE process until a node which has unsatisfied goals
associated with it is pruned from the tree. When this happens, the testing
process attempts to satisfy each unsatisfied goal in the node before it is
removed. If a goal can not be satisfied, it is not necessarily a problem since
the same goal might still be satisfiable on some other execution path. A
goal is reported as unsatisfiable only if it is still unsatisfied at the end of the
testing process. With this strategy, we use minimal effort to make sure each
goal is attempted to be satisfied on each execution path it appears at.

The progress of the goal augmented DSE process on the example program
is provided in Figure 4.4. As DSE of a similar example program was already
covered in Section 3.2, this example places a greater focus on the details of
the test selection process. The only difference between these two examples in
terms of DSE is that this case also includes the removal of completely explored
execution nodes, since it is an important detail for the coverage-based test
generation process for reasons explained above. Instead of listing the input
value of each variable separately, the test executions are given as calls to
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the method test(x,y,z), which can also be used to uniquely identify the
generated test cases.

As nothing is known of the structure of the program before the first
execution, the testing process starts with random input values. In this case
the first execution (Figure 4.4a) happens to be test(1,-1,-1). At the very
start of the execution, the testing process notices the goal statements, which
are evaluated and associated with the previous execution node in the execution
tree. Since the tree is initially empty, the goals are stored in the root. The
constraint in goal 0 is actually satisfiable with these input values, which means
that the execution is marked as interesting and a new test case is generated at
the end of the execution. The path taken by the first execution is 2, 7, 8, and
as the node 8 does not have any unvisited children, it is pruned from the tree.
This means that the path constraint for the second execution (Figure 4.4b)
is constructed from the path 2, 7, 10, which can be satisfied with the input
values test(-1,-1,1) for instance. This execution satisfies both goals 2 and
4, so a new test case is obtained. After the execution the node 14 can be
pruned from the tree, but the node 11 can not as it still has one unexplored
child, namely the node 12. The third execution (Figure 4.4c) attempts to
reach that node, which is possible with the input values test(-1,-1,0). A
new test case is also generated based on this execution, since goal 1 is satisfied
with these input values. Now the nodes 12 and 11 can be removed, which
means that there is only one unexplored branch and only one unsatisfied goal
left in the tree. The last branch, 2, 7, 10, 16, can be reached with the input
values test(-1,1,1). The fourth execution (Figure 4.4d) does not result in
a new test case, since the input values do not satisfy the last goal constraint.
As the remaining nodes are removed from the tree, the testing process notices
that there is one unsatisfied goal left in the root. This means that an extra
test execution (which is not shown in the figure) is performed, with input
values obtained from the path constraint (which is empty) combined with
the goal constraint. The input values test(-1,1,0) satisfy this constraint,
which means that the goal is also satisfied during the execution and the last
test case is obtained.

The resulting test set contains four test cases, namely test(1,-1,-1)
(goal 0), test(-1,-1,1) (goals 2 and 4), test(-1,-1,0) (goal 1) and
test(-1,1,0) (goal 3). It should be noted that the maximum number
of generated test cases is equal to the number of goals in the source code,
which is in turn equal to two times the number of conditions in the program.
This is because a test case is only generated if at least one goal is satisfied dur-
ing a test execution, and the goal constraint generation algorithm generates
at most two constraints for each condition. In practice this number is usually
lower, but it is still higher than the optimal n + 1 for n conditions obtained
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with maximal overlap between each independence pair (see Section 2.2). Some
techniques for reducing this number further are discussed as topics for future
research in Chapter 6.
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(d) Fourth execution (no goals)

Figure 4.4: Progress of the testing process

4.4 Implementation
The coverage-based test generation process is implemented as an extension
to the automated software testing tool LCT (see Section 3.3). Like the
process itself, the implementation can also be roughly split into two parts:
the generation and instrumentation of goal constraints on the test client
(Section 4.4.1), and the management of goals during the testing process
on the test server (Section 4.4.2). Some changes are also made to the test
case generation support in LCT, which are covered in Section 4.4.3. The
limitations of the test generation process are discussed in Section 4.4.4. It
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should be noted again that even though LCT technically supports both Java
and C programs, our solution is currently designed to only support C. The
source code instrumentation techniques presented below could also be used to
provide Java support, but as the test clients are completely different, this is
left as a topic for future work. All software developed as a part of this work,
including the contributions to LCT described in this section, are open source
and released as a part of the LIME TestBench [3] toolkit.

4.4.1 Instrumentation
The goal generation and instrumentation into the program source code is done
with a new tool called mcdc-rewriter, which is one of the main contributions
of this work. The tool is written in the C++ programming language [54],
and it uses the utilities provided by the LLVM front-end Clang [1] to analyse
and transform the program source code according to our needs. Clang is the
LLVM front-end for C, C++, Objective C and Objective C++ languages,
and it essentially performs the first steps of the compilation process by
translating the program from source code to LLVM internal representation.
The modular architecture of Clang is based on a set of libraries with open
application programming interfaces (APIs), which make easy customisation
of the compilation process and limited static analysis of the program source
code possible.

The design of mcdc-rewriter is heavily inspired by a basic source-to-source
transformation tool for C and C++ programs written by Eli Bendersky [7].
This translator is essentially a demonstration of the capabilities of the Clang
API, and even though the transformation it provides is not especially inter-
esting in itself, it is remarkably close to what is required of mcdc-rewriter in
practice. The translator implements a custom visitor for the abstract syntax
tree (AST) representation of the program generated during the compilation
process, which adds a couple of comments around several types of interesting
statements (specifically function definitions and if-statements) encountered in
the AST. The AST of the program is a representation in which the structure
of the program is laid out in tree form. The AST representation is especially
convenient to us, as the boolean expressions in the program are also broken
down according the short-circuit semantics of the programming language,
which makes the constraint generation process significantly easier. What
makes the AST modification process interesting is that Clang also provides
a sophisticated Rewriter API for the AST, which tracks the changes and
makes it possible to turn the modified AST back into valid source code with
the changes still in place. To sum this up, the translator takes the program
source code and, as the name suggests, automatically translates it into a copy
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with a set of comments added to certain places.
A similar approach can also be used to identify the statements in the

program that are interesting in terms of MC/DC and to insert goal statements
next to them as specified in Section 4.3.1. The step by step instrumentation
process in mcdc-rewriter goes as follows: The AST representation of the
program is first obtained by parsing the source code with Clang like in the
normal compilation process. After this the AST is traversed by a custom
recursive AST visitor, which recognises all the relevant points of interest
in the program, specifically entry and exit points and boolean espressions,
and generates appropriate goal constraints based on them. The AST is then
carefully modified using the rewriting utilities in the Clang API in order to
add the goal statements to their correct places. The same rewriting utilities
are then used to produce a copy of the source code with the goal statements
in place, which in turn can be processed by the test client like any other
program. It should be noted that even though all entry and exit points are
automatically covered during the testing process thanks to the properties of
DSE, the always satisfiable goal statements associated with them are still
useful as they guarantee that corresponding test cases are generated. After
all the goals have been generated, one additional statement is added to the
entry point of the program. This statement conveys the total number of
goals to the test server, which allows us to accurately report statistics on the
number of covered goals even if some of them are never encountered during
the testing process.

In addition to the source code instrumentation, a separate instrumentation
pass is performed on the program during the actual compilation process by
the test client to make the communication with the test server and the
symbolic execution possible. The only change the addition of goals imposes
on this instrumentation process is that the constraints in the goal statements
must be updated according to the state of variables on each execution path.
This is important because the same goal can appear on many execution
paths, and some variables that are symbolic on some execution paths are
not necessarily symbolic on others. The problem here is that if a seemingly
symbolic constraint containing non-symbolic variables is communicated to the
test server, the test server is actually unable to know what to do with it, as
it only keeps track of symbolic variables (even though the test server is aware
of the concrete values of the symbolic variables, the non-symbolic variables
are largely handled by the test client during the testing process). This issue
is solved by replacing each occurrence of each variable that is not symbolic in
each goal constraint with its concrete counterpart, which means that instead
of the variable, the constraint communicated to the test server contains the
value of the variable. This results in a setting where each variable the testing
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process can not affect is always evaluated according to its actual value on
each execution path, which is in line with the intent of the DSE process.

4.4.2 Goal Management
Each time a goal is encountered during a test execution, the test client sends
a message that contains the goal identifier and constraint to the test server.
After this the constraint is evaluated on the test client, and another message
is sent if the constraint was satisfied. The test server keeps track of the goals
in the execution tree by storing them in the previous execution node on the
same execution path, with each execution node able to contain an unspecified
number of goals. In order to track the global state of which goals have already
been satisfied and covered during the testing process efficiently, a separate
goal tracker is generated and stored in a manner similar to the execution tree.
The goal tracker contains two bit fields with one bit reserved for each goal
(the goal identifiers are consecutive integers starting from 0), and they are
initialised at the start of the testing process according to the message received
from the test client which contains the total number of goals. It should be
noted that even though the test client sends this message at the start of every
test execution (as the test client is unaware of the global state of the testing
process), the goal tracker is only initialised once and the message is ignored
on each subsequent test execution. Each bit in the bit fields is initially zero,
and is set to one when the goal is satisfied or covered. Every time the test
server receives a message regarding a goal, it first checks the goal tracker to
find out if the goal has already been satisfied. If this is the case, the message
is ignored.

One potential downfall of storing the goals in the execution nodes is that
it might lead to an infinite loop in the testing process. A situation might arise
where the test server notices an unsatisfied goal in a node that is about to
be pruned from the tree and attempts to satisfy it, which leads the next test
execution down the same path and adds the same goal back to the node. In
order to avoid this undesired situation, the goals are stored in the execution
nodes in two separate lists: one for goals that have been added to the node at
some point during the testing process, and one for goals that have been added
but have not been attempted yet. When an unsatisfied goal is encountered
during the testing process, it is added to both lists, and when a test execution
to satisfy a goal is performed, the goal is removed from the second list. If
a goal can be found in the first list, it is not added to the node again. This
guarantees that each goal is only attempted once in each execution node, and
thus solves the aforementioned problem.

When a goal is satisfied during a test execution, the goal is marked as
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satisfied in the goal tracker and a new test case is generated (the details of this
process are available below in Section 4.4.3). It should be noted that the test
server does not walk through the whole execution tree to remove instances
of the satisfied goal from the execution nodes, as it is sufficient to simply
consult the goal tracker each time just before a test execution to satisfy a goal
is attempted. Our strategy for satisfying goals was already largely covered
in Section 4.3.2, but the short story is that extra test executions are only
performed when a node with unsatisfied goals is about to be removed from
the tree. When this happens the lists in the node are updated, and a new test
execution is performed with the constraint obtained by combining the path
constraint in the node with the goal constraint. If input values that satisfy
the constraint can be solved, the following test execution will encounter the
same goal on the same execution path and satisfy it. Even if this is not the
case, the goal is still removed from the node and the testing process proceeds
as usual. Not being able to satisfy a goal is not a problem, as the goal might
still be satisfiable in some other node. One important detail regarding the
extra test executions is that, unlike with normal symbolic executions of the
program, the execution tree is not updated during them. Even though this
behaviour could sometimes be desired, as the addition of goal constraints
to path constraints might lead the execution down a previously unexplored
path and thus save time in terms of the whole testing process, we decided
against it to make the goals as nondisruptive as possible for normal LCT
operation, which allows the goals to work nicely with most of the search
strategies supported by LCT. Some ideas on the possible benefits of using
goals as a part of the search strategy are discussed in Chapter 6.

As the test server supports multiple concurrent test clients, the execution
tree, the goal tracker and the goal lists in the execution nodes can all be
updated simultaneously by different test executions. The underlying data
structures in the case of the goal tracker and the goal lists are not inherently
thread safe, so all access to them is synchronized in order to keep the data
consistent. The goal lists are also initialised lazily (they are created just
before they are accessed the first time) to avoid unnecessary memory usage,
which is efficient because the goals are relatively clustered in the program
source code, and thus the majority of execution nodes do not actually contain
any goals during the testing process.

4.4.3 Test Case Generation
The last piece of the coverage-based test generation process is the generation
of the test cases themselves. As our goal is to develop a test generation
process which is practically useful in the context of the aviation software
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certification process (which is the main application of MC/DC), the produced
test set should be independent in the sense that it can be executed without
the test server. This is necessary to make the test cases comply nicely with
different code coverage measurement tools, as the accurate measurement of
code coverage often involves sophisticated dynamic analysis of the program,
which is not necessarily compatible with the symbolic execution provided
by the test server. LCT has rudimentary support for repeating the testing
process without the test server by generating a set of unit tests based on the
input values solved during the testing process. This is done by saving the
input values into a special test input file, which can be parsed with a separate
tool to generate a set of JUnit [2, 21] test cases. The downside of this process
is that the JUnit framework is exclusive to Java programs, which means that
the same test case generation is not directly applicable to C programs.

In terms of this work, the test case generation support in LCT is extended
to also cover C programs. The idea behind the new test case generation process
is largely similar to the one described above, with the exception that instead
of relying on a dedicated unit testing framework, the program is compiled
against a special library that provides a custom test client implementation,
which reads the input values directly from the test input file instead of solving
them based on the constraints obtained from the test server. This makes it
possible to execute the tests executions performed during the testing process
without the overhead of the client-server-communication, and also allows us
to choose which test cases are included in the test set by filtering them on
the test server during the actual testing process. When LCT is configured to
generate a MC/DC test set, the input values are written to the test input file
only if the test execution satisfies some previously unsatisfied goal. This is
done by keeping track of which goals are satisfied during each test execution
on the test server. This also allows us to augment the file with additional
information containing the identifiers of the goals that are the reason each
test case is included in the test set, as well as the identifiers of all other
goals satisfied by each test case. The information is currently not used for
anything, as we feel that including at most one test case for each goal in
the program source code should provide a sufficiently concise test set, but it
could be used to reduce the size of the test set even further by identifying
and removing redundant test cases. One additional improvement to the test
input file generation process is an optional configuration option, which makes
the test server generate an independent test input file for each test case. This
is mostly a practical improvement, which makes the execution of individual
test cases slightly easier in the case the repetition of the entire testing process
is not desired.

As the coverage-based test generation process is implemented as an op-
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tional feature on top of LCT, the test server can also be configured to ignore
the goals either completely or partially during the testing process. This means
that even if the program source code includes goal statements, the program
can still be tested like any other program with LCT without the need to
make additional changes to the source code. If the goals are ignored partially,
the test server operates in a mode in which it tracks the goals as usual, but
does not attempt to satisfy them with extra test executions. This allows us
to use the goals as a basic coverage measurement tool for the normal LCT
testing process to find out how much the goal management improves the
size and quality of the generated test set. This functionality does not have
many practical uses, but it is a central part of our tool evaluation, which is
presented in the next chapter.

4.4.4 Limitations and Assumptions
The final thing that should be considered before the implementation evaluation
is presented is the limitations of our test generation process. In the current
state of the tool, the class of programs it supports is relatively small. This
is mostly a result of the limited support for the C programming language
in LCT, which means that for instance floating point numbers, arrays and
dynamic memory allocation are not completely supported during the symbolic
execution. Besides these limitations, there is one very important detail in
the way goals are handled during the testing process that should be taken
into account if our tool is to be used in practice. Recall that every time a
goal is encountered during the testing process, the associated goal constraint
is evaluated on the test client to find out if the goal is satisfied or not. As
the goal constraint is obtained from a boolean expression in the program
source code, this means that the boolean expression (or strictly speaking, the
part of the boolean expression that is used to form the goal constraint) is
evaluated twice during the testing process: once when the goal constraints
is evaluated, and once when the expression itself is evaluated. This means
that if the expression contains side effects, the side effects also happen twice.
There are no immediately obvious workarounds to this issue, so we just have
to assume the program does not contain boolean expressions with side effects
or otherwise the test generation process might behave unexpectedly.

The constraint generation process in mcdc-rewriter is also somewhat
limited and not thoroughly tested. The biggest limitation in the current
implementation is that the only branching construction it supports is the if-
statement. Most notably, switch-case-statements are not handled by the tool,
even though they might also contain boolean expressions that are relevant in
terms of MC/DC. The reason for this is that there is no clear direction to
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how switch-case-statements should be handled, as MC/DC test generation
should generally be performed based on the specification of the system rather
than the implementation. Fortunately switch-case-statements can always be
rewritten as a series of if-statements, so one way to work around this limitation
is to do exactly that. This process could also technically be automated, but
it has not been implemented in the current version of mcdc-rewriter.



Chapter 5

Evaluation

This chapter presents an evaluation of our coverage-based test generation tool
on a set of test programs. The experimental setup is described in Section 5.1,
after which the results of the experiments are presented and analysed in
Section 5.2.

5.1 Experiments
As our primary intention is to provide a tool that can be actually useful in
the context of aviation software development, the performance of the test
generation process, as long as it is sufficient, is largely secondary in importance
to the quality of the generated test set. In the ideal situation, this evaluation
should thus be able to show that our tool (and the underlying coverage-based
test generation method) is reasonably sound and complete. This means that
the tool should report complete MC/DC only if the generated test set actually
provides it, and conversely that if such a test set exists for a program, the
tool should be able to generate it. If we assume that the goal constraints
instrumented in the program represent the MC/DC requirements accurately,
we are able to find out if our tool implementation is sound and complete
rather easily based on the statistics on satisfied and unsatisfied goals it reports.
However, this is not sufficient to guarantee that the test generation process
satisfies these properties, as the initial assumption might not necessarily be
correct. So, in order to determine that the test generation process itself is
sound and complete, we must resort to a separate coverage measurement
tool to find out the actual MC/DC provided by the generated test set and
compare it with the measured goal coverage. The good news is that there
are tools, such as the Rapita Verification Suite [5], that are able to measure
MC/DC and are sufficiently reliable to be used in practice, but the bad news
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is that these tools are generally not freely available. This is actually not
too surprising if the expenses required to develop and verify such a tool are
considered, but it also means that proper evaluation of our test generation
tool is not possible in terms of this work. Due to these practical issues, this
evaluation focuses instead on the other benefits the goal extension provides
on top of the regular LCT testing process.

Since the current implementation of our test generation tool is rather
limited as discussed in Section 4.4.4, finding suitable test programs that are
complicated enough to be interesting in terms of MC/DC, simple enough to
conform to these limitations and freely available proved to be difficult. In
order to demonstrate the effect of the goal extension on a reasonably wide
range of traditional program archetypes, this evaluation is performed on a set
of five test programs specifically engineered with the limitations of the test
generation process in mind. These test programs are included in the LIME
TestBench [3] toolkit, and for the time being also available separately [6].
Each test program (augmented with a test harness that takes care of the
initialisation of the input values) is first instrumented with goal constraints,
after which two sets of tests are generated for it with LCT in two different
modes: In the first mode LCT simply uses goals as a coverage measurement
device as described in Section 4.4.3, and in the second mode additional test
executions to satisfy goals are performed and the test set is also filtered based
on goal coverage.

The first test program, mcdc-example, is basically identical to the example
program in Figure 4.1 of Section 4.3. This program is not very practical as it
does not do anything interesting by itself, but it is included in the experiments
to make sure the test generation process works as expected. The second test
program, mcdc-expression, is essentially a slightly more complicated variant
of the first test program. This program takes five input values, and checks
if they form a series in which each value is the product of its predecessors.
The purpose of this test is to find out if there are practical cases where the
object code path coverage provided by LCT is significantly different from the
source code MC/DC provided by the extended test generation process. The
third test program, mcdc-search, is an implementation of the golden section
search [35] algorithm for integer-valued functions. The golden section search
is a method for finding a minimum or maximum of a function inside a given
range, provided that the function is strictly unimodal (has only one minimum
or maximum) inside that range. The algorithm is similar to Fibonacci search,
and it gets its name from the use of the golden section to guarantee that the
search interval shrinks by a constant factor on each iteration. In our test
program, input values are used as factors for a second degree polynomial which
is minimised inside a fixed range. The last two test programs, mcdc-search-5
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and mcdc-search-7, are traditional in-place quicksort implementations for an
array of integers. The size of the array which is sorted is 5 and 7 respectively,
and the contents of the array are initialised with input values. These last
three test programs are examples of traditional program archetypes, and are
included in the experiments to find out what are the expected effects of the
goal extension in practical applications.

The experiments are performed on a workstation with 8GB of RAM and
a 3.30GHz Intel Core i5-2500 CPU with four cores and 6MB of L3 cache.
The CPU usage is limited to only one core in the experiments, since the test
generation process is not configured to utilise the distributed architecture of
LCT to its full potential and is instead performed one test execution at a
time. Each experiment measures the amount of CPU time in seconds required
to generate the test set, the size of the test set and the number of goals
satisfied and encountered during the test generation process. An estimate
of the MC/DC provided by the test generation process is also reported as
a percentage based on the number of goals that are satisfied from the total
number of goals included in the test program source code. As the default
search strategy of LCT is able to prune the execution tree efficiently and thus
keep the size of the execution tree almost constant, we decided to not include
the memory usage of the test generation process in these measurements. It
should also be noted that since the workstation is included in a pool of
computational resource available to the department, some variance might
be introduced to the measured CPU time based on increased load on the
workstation at certain times. To combat this, each experiment was repeated
ten times and the reported CPU time is the average of these repetitions.

5.2 Results
The results of the experiments are presented in Table 5.1. Before each exper-
iment is examined more closely, some initial observations can immediately
be made from the results as a whole. It is evident that the object code path
coverage provided by LCT is in most cases sufficient to provide complete goal
coverage, unless extremely complicated boolean expression are included in
the program. This is actually very much in line with the initial observation
we made in Section 3.3.2, but it also indicates that the practical benefits
of MC/DC over path coverage are somewhat limited if the program only
contains decisions with few conditions. It seems that the CPU times between
the experiments with and without goals are largely similar, with only small
overhead caused by the additional test executions in some cases. This also
relates most likely to the close relationship between object code path coverage
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Program Time Tests Goals

Satisfied Found Total Coverage

mcdc-example 0.1216 4 8 8 8 100.0
with goals 0.1184 4 8 8 8 100.0

mcdc-expression 2.0636 17 15 22 22 68.18
with goals 2.5364 11 19 22 22 86.36

mcdc-search 18.5982 33 20 20 20 100.0
with goals 18.9266 3 20 20 20 100.0

mcdc-sort-5 4.9336 120 6 6 6 100.0
with goals 4.9436 1 6 6 6 100.0

mcdc-sort-7 225.6868 5040 6 6 6 100.0
with goals 226.3736 1 6 6 6 100.0

Table 5.1: Results of the experiments

and source code MC/DC, which means that additional test executions to
satisfy goals are rarely necessary as most of the goals are already satisfied
during the DSE process. This also supports our decision to only attempt to
solve goals at the last possible moment rather well. It should also be noted
that none of the test programs seems to have unreachable goals, as the number
of found goals matches the total number of goals in all experiments. This is
not surprising either, as the presence of unreachable goals would indicate that
a part of the test program is beyond the reach of the DSE process, which is
not the case with any of the test programs.

For the mcdc-example test program, the results are pretty much as ex-
pected. The only curious thing is that the test generation process was able
to reach full goal coverage even when it did not attempt to explicitly satisfy
goals, which did not happen in the example presented in Section 4.3.2. This
disparity can be explained with the fact that the input values are chosen
essentially randomly when they are not constrained, and here the values were
chosen in such a way that all the goals were satisfied during the initial four
test executions. This test programs also contains three additional goals that
were not present in the example. These goals are the always satisfiable goals
associated with the various entry and exit points of the program, that were
not included in the example for the purpose of clarity.
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In the case of mcdc-expression, the differences in CPU time and goal
coverage are more noticeable. It seems that programs such as this, ones
that contain complicated boolean expression, are the ideal candidates to
demonstrate the difference between path coverage and MC/DC. The additional
test executions were able to satisfy four additional goals, which results in a
significant increase in the MC/DC provided by the test set. This experiment
also shows that our test selection method is working as expected, as the
higher goal coverage could be reached with a reduced number of test cases.
The fact that all the goals in the program could not be satisfied indicates
either that something is wrong in the implementation of the test generation
tool, or that complete MC/DC is simply not possible for this program. If the
latter is true, then the program contains decisions with conditions that can
not affect the outcome of the decision by themselves, which is quite possible.

The results of the last three experiments are largely similar and can be
analysed together. The common theme in these experiments is that the LCT
testing process is able to easily provide complete goal coverage with and
without additional test executions, but the amount of regular test executions
necessary to provide path coverage for the test program is extremely high.
This results from the fact that even though these programs do not contain
any complicated boolean expressions, they still contain multiple branches
and very many possible execution paths. This is especially apparent with
mcdc-sort-5 and mcdc-sort-7, where the addition of two elements into the
array resulted in a substantial increase in the number of test cases for the
regular LCT testing process. However, the important observation to make is
that the number of test cases requires to satisfy all goals in the program source
code is extremely small in each of these experiments. The reason for this is
that even though complete path coverage is likely to also provide MC/DC as
a side effect, the relationship does not hold in the other direction: A test set
that provides MC/DC is not likely to provide path coverage, and similarly
the vast majority of test cases in the test set that provides path coverage
are completely unnecessary in terms of MC/DC. In these experiments, it
turns out complete goal coverage is already provided by the very first test
executions, which renders most of the testing process unnecessary if goal
coverage is the only desired outcome. This means that our test generation
process could be modified slightly to terminate the testing process when
complete goal coverage has been achieved, which could very likely translate
to a significant reduction in the CPU-time required to generate the test set
for a certain class of programs.



Chapter 6

Conclusions and Future Work

This work presented an automated MC/DC-based test generation process for
C programs based on DSE with additional goal constraints in the program
source code. An existing software testing tool called LCT was extended with
goal support, and a completely new tool was developed to automatically
generate and instrument a set of goals into the source code of a program. The
implementation was evaluated on a set of test programs, and the results showed
a significant reduction in the size of the test set and a slight improvement in
code coverage for certain types of programs, with only minimal overhead in
performance.

The main contribution of this work is the concept of goal constraints, which
is a novel approach to test case selection and generation based on the extensive
code coverage provided by DSE. We already showed how a demanding coverage
criterion such as MC/DC can be expressed in terms of goal constraints, but the
real versatility of this method was left largely unexplored. What we did not
previously emphasise is that most of the commonly used coverage criteria are
relatively easily defined in terms of constraints on the values of variables in the
program source code, which means that the same goal-based DSE process can
be used to generate test sets for a wide variety of different applications. From
the coverage criteria presented in Section 2.1, condition/decision coverage
is expressible with a subset of the set of constraints generated for MC/DC,
and branch and statement coverage can be expressed with always satisfiable
constraints in each branch and next to each executable statement in the
program respectively. Path coverage is slightly more complicated, but it is
also slightly less interesting as it is already provided directly by plain DSE.
If explicit path coverage on the source code and not on the object code is
required, goal constraints for it can be constructed in a manner similar to
how path constraints are constructed during the DSE process, even though
this requires significantly more work.
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Goal constraints can also prove to be useful beyond their intended ap-
plication as a test selection mechanism, which became apparent with the
coverage measurement process described in Section 4.4.3 and used in our tool
evaluation. Even though this particular process is not extremely interesting,
the underlying idea could be extended to provide a dedicated coverage mea-
surement tool for a separately created test set by simply evaluating the goal
constraints during the testing process and observing how many of them are
satisfied. There are also other approaches to goal constraints that could prove
to be interesting topics for future research, such as the integration of goals
into the search strategy of LCT. As goal constraints essentially describe com-
binations of variable values that are interesting by design, a search strategy
built around the idea of satisfying goals as aggressively as possible could prove
to be better at directing the testing process to cover interesting program
behaviour than a simple search algorithm. Even though this would mean
that most of the benefits gained from the current nondisruptive approach
described in Section 4.4.2 would be lost, the improved coverage could prove
to be a worthy trade, especially for very large programs that are already
problematic for DSE.

There are also some limitations in the implementation of our coverage-
based test generation process that should be addressed in possible future work.
The most pressing issue is that the quality of the generated test cases was
not properly evaluated, since we did not have access to a dedicated coverage
measurement tool that could accurately measure the MC/DC provided by
a test set. This is definitely something that should be addressed, as it is
technically possible that our test generation process is somehow inherently
flawed and fails to provide reasonable code coverage in some case that was not
considered in this work. Besides solving the limitations of the tool discussed in
Section 4.4.4, some improvements could also be made to the test set generation
as discussed in Section 4.4.3. Since our tool already provides information
on which goals are satisfied by which test case, a separate filtration method
for the produced test set, or even a more general improvement for the test
selection process, could be implemented based on a number of methods studied
in the literature [28]. Another obvious topic for future work is the extension
of the coverage-based test generation process to other programming languages
besides C. As the Clang front-end also supports the programming languages
C++, Objective C and Objective C++, our tool should technically work with
any of these with little to no modification. The limiting factor in the range
of supported languages is likely LCT itself, as some of the features present
in more advanced programming languages might not be supported by the
symbolic execution process.

All in all, the coverage-based test generation process developed around
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the concept of goal constraints turns out to be a practical solution to an
otherwise difficult problem. As a final thought, the implications of using
automated test generation for MC/DC in the context of the aviation software
certification process should be considered. Section 4.1 already covered most
of the practical problems associated with this process, but the more difficult
philosophical problems were left mostly unanswered. The common core of
these issues is that even though MC/DC is decent at finding errors, it is still
lacking compared to similar but slightly more demanding coverage criteria [61].
This idea is further enforced by a study on the effectiveness of the certification
process [49], in which the author states that even though there is no official
record of a software error being the primary cause of an aircraft crash up to
date, this success can more likely be attributed to the extremely strong safety
culture in aviation software development and less likely to the use of MC/DC
specifically. Combined with the result that a significant number of errors
found in safety-critical software systems in general are not caused by incorrect
implementation but either incorrect or misunderstood specification [39], what
follow is that the selected coverage criterion is far less important than the fact
that a person has to take the time to actually look through the specification
and generate the test cases. Automating the test generation process can thus
have an adverse effect on the reliability of the software system, unless extreme
care is taken to verify that the original intent of the testing process is still
satisfied. For our tool this means that even though it can make the test
generation process significantly less demanding on the software developers,
using it in practice is not necessarily an inherently good idea. The conclusion
is that the same way MC/DC should not be considered to be a magic bullet
that solves all reliability issues, our tool should not be treated as a one-button
solution to the entire testing process, but merely as a reasonable starting
point.
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