
Eero Laukkanen

Java source code generation from OPC UA
information models

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of

Science in Technology.

Espoo 9.9.2013

Thesis supervisor:

D.Sc. (Tech.) Ilkka Seilonen

Thesis advisor:

M.Sc. (Tech.) Jouni Aro

.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80710072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aalto university

school of electrical engineering

abstract of the

master's thesis

Author: Eero Laukkanen

Title: Java source code generation from OPC UA information models

Date: 9.9.2013 Language: English Number of pages:7+57

Department of Automation and Systems Technology

Professorship: Information and Computer Systems in Automation Code: AS-116

Supervisor: D.Sc. (Tech.) Ilkka Seilonen

Advisor: M.Sc. (Tech.) Jouni Aro

OPC Uni�ed Architecture is an industrial communication speci�cation that in-

troduces information modeling capabilities. These capabilities allow modeling the

communicated data with an object model similar to object-oriented programming

languages. However, using the information modeling capabilities is not developer-

friendly in the current state of Prosys OPC UA Java SDK.

In this thesis, it is identi�ed how the usage of information models could be made

easier. First, requirements for source code generation from OPC UA information

models are elicited. After that, a type instantiation algorithm is designed to

support the generated code. Finally, a design for the source code generation tool is

constructed. Functional prototypes are constructed for both the type instantiation

algorithm and the source code generation tool.

The elicited requirements indicated that the type instantiation algorithm should

be separated from the source code generation. The designed type instantiation

algorithm creates instances of OPC UA types by reading the server address space

on run-time. The designed source code generation tool generates Java classes that

use the instances created by the algorithm.

The results of this thesis are used in the future development of the Prosys OPC

UA Java SDK. The protototypes are developed further by implementing miss-

ing requirements and the elicited requirements are used for validating the �nal

product.

Keywords: OPC UA, source code generation, information modeling, type in-
stantiation

aalto-yliopisto

sähkotekniikan korkeakoulu

diplomityön

tiivistelmä

Tekijä: Eero Laukkanen

Työn nimi: Java-ohjelmakoodin generointi OPC UA -tietomalleista

Päivämäärä: 9.9.2013 Kieli: Englanti Sivumäärä:7+57

Automaatio- ja systeemitekniikan laitos

Professuuri: Automaation tietotekniikka Koodi: AS-116

Valvoja: TkT Ilkka Seilonen

Ohjaaja: DI Jouni Aro

OPC Uni�ed Architecture on teollinen tiedonsiirtomäärittely, jonka eräs ominai-

suus on tiedon mallintaminen. Tämä ominaisuus mahdollistaa siirrettävän tiedon

mallintamisen oliomallilla, joka on samankaltainen kuin olio-ohjelmointikielissä.

Tietomallin hyödyntäminen on kuitenkin haastavaa tämänhetkisellä Prosys OPC

UA Java SDK:lla.

Tässä työssä tutkitaan mahdollisuuksia helpottaa tietomallien käyttöä. Ensin

muodostetaan vaatimuksia lähdekoodin generoinnille OPC UA -tietomalleista. Tä-

män jälkeen suunnitellaan tyyppien instantiointialgoritmi tukemaan generoitavaa

koodia. Lopuksi suunnitellaan lähdekoodin generointityökalu. Sekä instantiointial-

goritmille että generointityökalulle tehdään toiminnalliset prototyypit.

Kerättyjen vaatimusten perusteella tyyppien instantiointialgoritmin tulee olla eril-

lään lähdekoodin generoinnista. Suunniteltu instantiointialgoritmi luo instansseja

OPC UA -tyypeistä lukemalla palvelimen osoiteavaruutta ajonaikana. Suunnitel-

tu lähdekoodin generointityökalu generoi Java-luokkia, jotka käyttävät algoritmin

luomia instansseja.

Työn tuloksia tullaan käyttämään Prosys OPC UA Java SDK:n jatkokehitykses-

sä. Prototyyppejä kehitetään toteuttamalla puuttuvia vaatimuksia ja kerätyillä

vaatimuksilla todennetaan lopullisen tuotteen toiminnallisuus.

Avainsanat: OPC UA, lähdekoodin generointi, tietomallinnus, tyyppien instan-
tiointi

iv

Preface

I would like to thank my instructor Jouni Aro for mentoring me through the world

of OPC UA. We had many inspiring discussions about how things should be done

and how much work we still have to do. Another thanks goes to Ilkka Seilonen who

�rst gave me a glimpse of what the thesis should be about and later on became my

supervisor. All the comments and improvements were appreciated. Thanks Ilkka

and Jouni!

Siltamäki, 9.9.2013

Eero I. Laukkanen

v

Contents

Abstract ii

Tiivistelmä (in Finnish) iii

Preface iv

Contents v

Abbreviations vii

1 Introduction 1

1.1 Background . 1

1.2 Objectives and scope . 1

1.3 Research methods . 2

1.4 Structure of the work . 3

2 Background 4

2.1 Introduction to OPC Uni�ed Architecture 4

2.2 OPC UA object model . 6

2.2.1 Node model . 8

2.3 Instantiation in OPC UA . 11

2.3.1 Creating an instance declaration hierarchy 12

2.3.2 Merging instance declaration hierarchies 13

2.3.3 Creating instances and references based on modeling rules . . 14

2.4 OPC UA Services . 15

2.5 Source code generation . 16

2.5.1 Patterns . 17

2.6 Source code generation tools for OPC UA 20

3 Requirements 23

3.1 Prosys OPC UA Java SDK . 23

3.2 Type instantiation . 24

3.3 Source code generation . 25

3.3.1 Namespace handling . 25

3.3.2 Object and variable types on the server-side 26

3.3.3 Type information on the client-side 27

3.3.4 Custom data types . 28

vi

3.4 Scope of the thesis . 29

4 Type instantiation 30

4.1 Overview . 30

4.2 Creating an instance declaration hierarchy 31

4.3 Merging instance declaration hierarchies 33

4.4 Replacing browse paths . 37

4.5 Instantiating mandatory instances . 37

4.6 Instantiating optional instances . 38

4.7 Using the instance . 39

5 Source code generation 40

5.1 Overview . 40

5.2 Model structure . 41

5.3 Mustache templates . 43

5.4 Template structure . 44

5.5 Generator architecture . 45

5.6 Structure of the metamodels . 47

5.7 Applying the templates . 48

6 Conclusions and future work 50

6.1 Answering the research questions . 50

6.2 Future work . 50

References 52

Appendix A Source code generation example 55

vii

Abbreviations

API Application Programming Interface

AST Abstract Syntax Tree

COM Component Object Model

DCOM Distributed Component Object Model

DSL Domain Speci�c Language

GUI Graphical User Interface

IDE Integrated Development Environment

LINQ Language Integrated Queries

MVC Model-View-Controller

OLE Object Linking and Embedding

OPC OLE for Process Control

SCADA Supervisory Control And Data Acquisition

SDK Software Development Kit

UA Uni�ed Architecture

XML Extensible Markup Language

1 Introduction

1.1 Background

In industrial automation and control systems, devices and pieces of software from

di�erent manufacturers need to be able to communicate with each other. This ability

is called interoperability. The Classic OPC speci�cation enabled interoperability on

communication protocol level by using the DCOM technology which was available

on every Microsoft Windows PC. Nowadays, the interoperability is not a problem

anymore on the protocol level, but instead the information model used by di�erent

manufacturers varies. This means that software components cannot be reused be-

tween di�erent manufacturers. The usage of the successor of the Classic OPC, OPC

Uni�ed Architecture, can lead to interoperability on the information level too.

OPC Uni�ed Architecture introduces a concept of information modeling. Com-

pared to the Classic OPC, OPC UA enables usage of higher level semantics when

organizing information on the server. Variables are encapsulated into objects that

can be modeled with type hierarchies and inheritance, in a similar manner to object-

oriented programming languages. The objects can have references to other objects,

which allows modeling relations between objects. (OPC Foundation 2012b)

While the OPC UA speci�cation has enough features for achieving interoperabil-

ity on the information level, in practice all these features are not available yet. OPC

Foundation provides communication stacks that implement the low-level communi-

cation protocol of the OPC UA, but the stacks do not provide functionality for using

the information models. In some commercial OPC UA Software Development Kits

(SDKs), the usage of information models is achieved with source code generation

tools which exist for C# and C++ programming languages (Uni�ed Automation

2013; CommServer 2013; OPC Foundation 2011b). These tools enable users to cre-

ate information models with a graphic user interface (GUI) and then save the models

as standard information model XML �les (OPC Foundation 2012e). The tools gen-

erate C# or C++ classes that the server developers can use to create and use the

objects of the information models.

1.2 Objectives and scope

Prosys is a software company specialized in using the Classic OPC and the OPC

UA for products and services. Prosys OPC UA Java SDK in its current state

supports importing custom information models to the server address space, but

2

actually creating and using the objects de�ned in the information models has to be

done manually. The main objective of this thesis is to identify how the usage of

information models could be made easier with the Prosys OPC UA Java SDK.

To reach the main objective, this thesis tries to answer the following research

questions:

1. What are the requirements for source code generation from OPC UA informa-

tion models? The requirements would be a starting point for answering the

following questions.

2. How should the generated source code be used in OPC UA applications? The

answer to this question de�nes the format of the generated source code and

how the code integrates to other source code of the application.

3. How should the source code generation be done in practice? The answer to

this question de�nes a design for the source code generation tool.

The actual implementation of a �nished and tested source code generation tool is

not in the scope of this thesis. However, the presented requirements and designs can

be used as a base knowledge for future development.

Scope of this thesis does not include the creation of information models. Stan-

dard XML �les representing information models can already be created with GUI

tools (Uni�ed Automation 2013; CommServer 2013; HB-Softsolution 2011). Cur-

rently newest version of XML Schema (OPC Foundation 2011a) is used as a basis

for the source code generation.

1.3 Research methods

Previous knowledge about source code generation in the context of OPC UA is lim-

ited, because there does not exist published studies close to the subject. Therefore

this thesis is conducted as exploratory research. The OPC UA speci�cation is used

as a source of information to ensure compliance with the speci�cation. The existing

source code generation tools are studied and previous studies close to the subject in

the context of OPC UA and source code generation are examined.

Functional prototypes are constructed to examine practical limitations of the

proposed designs. Prototyping process was kept informal, to allow tight interac-

tion between the prototype and the design. Using prototypes validates that the

designs are feasible for implementation, but further testing of the designs is needed

to validate their usage in practice.

3

1.4 Structure of the work

The structure of this thesis is as follows. First, a literature study is performed,

to gain background understanding of the subject (Section 2). Then, based on the

gathered knowledge, use cases and requirements for using information models are

determined (Section 3). Based on the elicited requirements, an extension to the

Prosys OPC UA Java SDK is designed so that instances can be created from OPC

UA types (Section 4) and Java code can be generated from standard XML �les that

represent OPC UA information models (Section 5). Finally, conclusions and future

work are discussed (Section 6).

4

2 Background

In this section, subjects related to this thesis are studied and literature under those

subjects is examined and referred shortly to give the reader a brief but satisfactory

understanding. By reading this section, the reader should understand the concepts

and terms that are used in the later sections.

First subject related to the thesis is inevitably the industrial communication

speci�cation OPC Uni�ed Architecture. While there exist many introductions to

the subject (Wolfgang Mahnke, Leitner, and Damm 2009; Palonen 2010; Hiltunen

2012), another one is provided here in the context of this thesis. Second studied

subject is source code generation in general and in the context of OPC UA. Based

on previous implementations where code generation is done (Uni�ed Automation

2013; OPC Foundation 2011b), di�erent requirements of source code generation are

examined. Research by Goldschmidt and W. Mahnke (2012) is also introduced.

They studied use cases for domain speci�c languages in the context of OPC UA.

2.1 Introduction to OPC Uni�ed Architecture

OPC Uni�ed Architecture is an industrial communication speci�cation meant to re-

place the Classic OPC speci�cations which enabled users to read, write and monitor

data, transmit alarms and events and access historical data on a remote computer.

The motivation for the original speci�cation was to provide interoperability between

devices and software from di�erent manufacturers. While the functionality of the

Classic OPC speci�cations might have been su�cient, the dependency on COM and

DCOM technologies severely limits the communication possibilities between net-

worked computers nowadays. OPC UA solves the networking issues by using open

standardized protocols. (Wolfgang Mahnke, Leitner, and Damm 2009, p. 3�9)

The latest OPC UA speci�cation was released by OPC Foundation in 2012 and

it is divided in 13 parts (Table 1). Compared to the Classic OPC, OPC UA contains

multiple improvements:

� communication is based on open protocols, so there is no dependency on COM

and DCOM technologies (OPC Foundation 2012e)

� security model (OPC Foundation 2013e), that ensures that information can be

transferred over Internet safely by encrypting data and provides authentication

and authorization

5

� information model (OPC Foundation 2012b), that enables more sophisticated

modeling of the data.

In this thesis, the focus is set on the information model and its usage.

Table 1: The parts of the OPC Uni�ed Architecture speci�cation. (OPC Foundation
2012a)

Part Description

Part 1 � Overview and Concepts Self-explanatory.

Part 2 � Security Model De�nes how secure connection is ensured.

Part 3 � Address Space Model De�nes the underlying meta model that is
used in constructing the information model.

Part 4 � Services De�nes service interfaces between clients and
servers.

Part 5 � Information Model De�nes the default information model of OPC
UA servers.

Part 6 � Mappings De�nes how parts 2, 4 and 5 are implemented
using physical network protocols.

Part 7 � Pro�les De�nes pro�les that are subsets of services
that certain kind of, e.g. embedded, servers
have to provide.

Part 8 � Data Access De�nes how clients can read, write and moni-
tor data values on servers.

Part 9 � Alarms and Conditions De�nes how servers can send alarms and con-
ditions to clients.

Part 10 � Programs De�nes how programs can be modeled with
OPC UA.

Part 11 � Historical Access De�nes how clients can access historical values
on servers.

Part 12 � Discovery De�nes how clients can discover servers auto-
matically. At the time of writing, this part
was not released yet.

Part 13 � Aggregates De�nes how clients can request derived values
from raw historical or bu�ered real time data.

OPC UA communication adapts the client-server architecture, meaning that

there are always two identities communicating to each other and the one that starts

the communication is the client. There can be multiple clients communicating with

one server, but those clients cannot communicate with each other directly. An OPC

6

UA client communicates with the server by sending requests to which the server

answers by sending responses. The format of the requests and the responses are

de�ned as OPC UA services (OPC Foundation 2012c).

In Classic OPC, data values on a remote computer could be described only with

a tag name and some rudimentary information like the engineering unit (Wolfgang

Mahnke, Leitner, and Damm 2009, p. 19). The tags could be also put into folders and

hierarchies could be constructed with the folders. In contrast, OPC UA introduces

information modeling concept similar to object-oriented programming languages

with which it is possible to de�ne types and instantiate objects based on those types.

Types can be organized into hierarchies where subtypes inherit the properties of

supertypes (OPC Foundation 2012b). This allows clients to process data based on a

type, not only on a tag name. Next, the OPC UA information modeling capabilities

are described more deeply. After that, the OPC UA services are presented.

2.2 OPC UA object model

OPC UA information models are constructed with two metamodels with di�erent

abstraction levels. The high-level metamodel is the object model which is used

to semantically model the address space, similarly to the type systems in object-

oriented programming languages. The object model is constructed with the low-level

metamodel node model which is an implementation model of the address space. It

is not a general modeling structure but instead designed for modeling the object

model. (OPC Foundation 2012b)

OPC UA object model (Figure 1) has the following properties:

� Objects encapsulate variables, methods and other objects.

� Objects can have references to other objects.

� Objects can be instantiated from object types that de�ne the structure of their

instances.

Objects can have two kinds of variables:

Data variables are variables that represent the values of their parent and can have

child variables

Properties are variables that describe the characteristics of their parent and cannot

have child variables

7

Figure 1: OPC UA object model. (OPC Foundation 2012b)

Data variables behave like objects, in the sense that they can be instantiated from

variable types that de�ne their structure. Di�ering from objects, data variables are

not allowed to have methods or child objects and they always require an object that

encapsulates them.

Objects can be instantiated from object types, in which case an instance of the

object type is added to the server address space and it will have the same structure

the object type has. In addition, object types can be subtypes of other object types,

in which case also the variables and methods of the supertypes are added to the

instance. This is called inheritance; a subtype inherits the structure of its supertype.

With rich type hierarchies, UA clients can process objects on the server based on

not only the types of instances but also the supertypes of instances. Subtypes can

also override the components de�ned in the supertype, but then the component that

overrides has to have the same type or subtype as the component that is overridden.

(OPC Foundation 2012b)

Type information is always available for OPC UA clients to read from the server

address space. This way, the clients can understand the structure of the types

without sharing knowledge outside the OPC UA protocol.

OPC Foundation has speci�ed a base information model (OPC Foundation 2012d)

that all OPC UA servers should provide. Building on top of that, di�erent indus-

tries can model their common domain information models. Software can be built

to understand the common information model, achieving interoperability at the in-

formation level. If needed, the common information model can also be extended,

which does not break the interoperability.

8

OPC Foundation maintains companion speci�cations for information models for

devices (OPC Foundation 2013c), analyser devices (OPC Foundation 2013b), pro-

grammable logic controllers (OPC Foundation and PLCopen 2010) and the object

model of the ISA-95 speci�cation (OPC Foundation 2013d). Other parties have also

implemented information models for, e.g., building automation systems (Granzer

and Kastner 2012) and smart grids (Lehnho� et al. 2012).

While the data on UA servers is represented as objects, UA services are used

directly with the underlying data model, the node model of the server address space.

For example, when reading and writing variables of an object, the data access service

is used with a node identi�er of the variables, bypassing the object model (OPC

Foundation 2012c).

2.2.1 Node model

OPC UA node model (Figure 2) builds up the server address space. The address

space consists of nodes which have attributes and references to other nodes. Each

node has a node class attribute which represents an element of the object model.

There are seven di�erent node classes: objects, variables, object types, variable

types, data types, reference types and views. Others are self-explanatory, except

data types which represent types of the values of variables and views which represent

subsets of the address space.

Figure 2: The node model. (OPC Foundation 2012b)

In addition to node class, there are two other common node attributes that

should be introduced:

Node identi�er uniquely identi�es each node. It consists of a namespace and an

identi�er.

9

Browse name uniquely identi�es each node in the context of a parent node in a

type de�nition. It consists of a namespace and a name.

A namespace is a Uniform Resource Identi�er (URI) that identi�es the naming au-

thority. Namespaces are needed to make node identi�ers and browse names unique

among di�erent information models. Each information model should have a unique

namespace. This way, the maintainers of the information models need to care about

naming conventions only inside their own model. In service requests, the names-

paces are referred by the namespace index that corresponds to their position in the

namespace array of the server. The namespace of the base information model is

http://opcfoundation.org/UA/ and its namespace index is always 0.

Node classes have di�erent attributes according to the class. Other standard

attributes are introduced when needed in this thesis. Users of the OPC UA are not

allowed to extend the node attributes or create their own node classes.

References of a node point from the source node to the target node and have

a reference type (Figure 3). Source and target nodes are identi�ed by their node

identi�ers. Users of the OPC UA are allowed to create their own reference types.

The OPC UA speci�cation categorizes all reference types under speci�c two:

Hierarchical references are used to form hierarchies of nodes. Their only limi-

tation is that a node cannot have a hierarchical reference to itself. Thus, the

formed hierarchies are allowed to have loops in them. A property variable

cannot have structure, so it cannot be the source node of a reference of this

type.

Non-hierarchical references should not be presented as spanning hierarchies.

They can be used rather freely, because there are no restrictions how to use

them.

Figure 3: The reference model. (OPC Foundation 2012b)

10

The concrete reference types that are used to model the objects in the address

space are subtypes of either hierarchical reference type or non-hierarchical refer-

ence type (Figure 4). In the scope of this thesis the following reference types are

introduced:

HasChild is an abstract hierarchical reference type. It adds the restriction that no

loops are allowed in the hierarchy that is formed with the reference type.

HasSubtype is a concrete has-child reference type. Object and variable type hier-

archies are formed with this reference type.

HasComponent is a concrete has-child reference type. Parent objects and data

variables have this reference to their child objects, variables or methods.

HasProperty is a concrete has-child reference type. Parent objects and data vari-

ables have this reference to their properties.

HasModellingRule is a concrete non-hierarchical reference type. Every node that

is instantiated when a type is instantiated has a reference of this type to a

modeling rule object. Modeling rules de�ne how those nodes are managed

during instantiation.

HasTypeDe�nition is a concrete non-hierarchical reference type. Every instance

of a type has a reference of this type to its type de�nition node.

The OPC UA speci�cation de�nes a standard graphical notation for visualizing

nodes and their references (Figure 5). Each node class has an own symbol. Refer-

ences are either displayed as simple arrows with the name of the reference type on

it or as special arrows for certain reference types. The browse name of the node is

shown on the symbol.

The OPC UA object model can be represented with the node model. The fol-

lowing rules must hold:

� objects, variables, methods, object types and variable types are represented

as single nodes with the respective node classes

� object and variable nodes have a HasTypeDe�nition-reference to their type

� objects have HasComponent-references to their child objects, data variables

and methods

� objects have HasProperty-references to their properties

� types have HasSubtype-references to their subtypes.

11

Figure 4: Standard reference type hierarchy. (OPC Foundation 2012b)

Figure 5: Simple notation of nodes and references. The attributes of nodes are not
visible. (OPC Foundation 2012b)

2.3 Instantiation in OPC UA

So far in this section, it has been covered that in the address space of an OPC

UA server there can be types and instances of those types (Figure 6). However, it

has not yet been de�ned what does it actually mean that an instance has a type

de�nition.

12

Figure 6: A type de�nition AlphaType and its instance Alpha1. Modeling rules are
shown in the �gure as text below the browse names of the nodes. The E-node has
no modeling rule. (OPC Foundation 2012b)

The type instantiation process is split to three separate steps in the OPC UA

speci�cation (OPC Foundation 2012b):

1. Creating an instance declaration hierarchy

2. Merging instance declaration hierarchies

3. Creating instances and references

The steps are next introduced separately.

2.3.1 Creating an instance declaration hierarchy

An instance declaration hierarchy consists of the type de�nition node and its instance

declarations. An instance declaration is de�ned in the speci�cation as:

�An InstanceDeclaration is an Object, Variable or Method that refer-

ences a ModellingRule with a HasModellingRule Reference and is the

TargetNode of a hierarchical Reference from a TypeDe�nitionNode or

another InstanceDeclaration.� (OPC Foundation 2012b)

For example, in the Figure 6 the B-, the C-, and the D-node are instance declarations,

because they are connected through hierarchical references from the type de�nition

node and they have a modeling rule. The E-node is not an instance declaration,

because it does not have a modeling rule. Modeling rules specify the purpose of the

instance declarations. They are described thoroughly in Section 2.3.3.

Each instance declaration has a unique browse path that is constructed by fol-

lowing the hierarchical references from the type de�nition node and collecting the

browse names of the nodes. For example, the node D has a browse path �/B/D�

13

in the Figure 6 (Table 2). In the textual form of the browse path, the namespaces

of the browse names are often omitted. An instance declaration can have multiple

browse paths, because there can be loops in the hierarchy formed by hierarchical

references.

Table 2: Browse paths of the nodes in the instance declaration hierarchy of the
AlphaType in Figure 6.

Node Browse path

AlphaType /
B /B
C /C
D /B/D

Before the instance declaration hierarchies have been merged, it is important to

handle the instance declarations based on their browse paths. Thus, when the in-

stance declaration hierarchy is constructed, references to other instance declarations

are handled as reference to browse paths instead of node identi�ers.

2.3.2 Merging instance declaration hierarchies

Instances of a type inherit the structure of their supertypes too. Therefore instance

declaration hierarchies need to be merged to collect all the needed information for

instantiation. A fully inherited instance declaration hierarchy is formed when the

instance declaration hierarchy of a type is merged with the fully inherited instance

declaration hierarchy of its supertype. If a type has no supertype, then no merging

needs to be done.

Simpli�ed rules for merging are the following:

� An instance declaration is added from the supertype to the subtype, unless

there is already an instance declaration with the same browse path. All refer-

ences of the instance declaration are added as well.

� If there exists an instance declaration with the same browse path in the sub-

type, only the references of the instance declaration are merged from the su-

pertype to the subtype.

� A reference is added from the supertype to the subtype, unless there is already

a reference with the same source and target paths and with the same type or

subtype of it.

14

When a similar instance declaration or reference exists in the instance declaration

hierarchy of the supertype then the subtype overrides that instance declaration or

reference. There are quite a many speci�c rules for overriding that consider modeling

rules, attributes of the nodes and type de�nitions of the nodes. General idea of those

rules is that the subtypes cannot contradict the supertypes and can only make the

requirements for the instances more speci�c, not less speci�c. These rules should be

checked when the model is designed and before the instantiation is done.

2.3.3 Creating instances and references based on modeling rules

The fully inherited instance declaration hierarchy contains all the information that is

needed for creating instances of a type. The modeling rules of instance declarations

decide how the instance declarations are instantiated. Each modeling rule has a

special semantic meaning on their own, but they also have a property called naming

rule. This rule can be one of the three:

Mandatory means that a similar node with the same browse path as the instance

declaration shall be found from the instance.

Optional means that the instance may or may not have a similar node with the

same browse path as the instance declaration.

Constraint is used for modeling rules for instance declarations that typically are

not found in the instance. Instead, the instance declarations de�ne other kind

of semantics for the instance declaration.

The OPC UA speci�cation de�nes �ve modeling rules:

Mandatory has mandatory naming rule and ful�lls the speci�cation for that nam-

ing rule above.

Optional has optional naming rule and ful�lls the speci�cation for that above.

ExposesItsArray has constraint naming rule. It is used to model that a variable

type which has an array of values should expose each of those values as a

node in the address space. All the nodes should be similar to the instance

declaration marked with this modeling rule.

OptionalPlaceholder has constraint naming rule. It is similar to the Optional

modeling rule, but is used when the browse name of the instantiated node is

not known in the type de�nition. There can be multiple instantiated nodes

similar to the instance declaration marked with this modeling rule.

15

MandatoryPlaceholder has constraint naming rule. It is similar to the Option-

alPlaceholder modeling rule but means that there should exist at least one

similar node to the instance declaration marked with this modeling rule.

Users of the OPC UA are allowed to create their own modeling rules.

If only the standard modeling rules are used, then only the mandatory instance

declarations need to be instantiated. The OPC UA speci�cation leaves the OPC

UA server much to decide about the instantiation:

�The Nodes within the newly created hierarchy may be copies of the In-

stanceDeclarations, the InstanceDeclaration itself or another Node in the

AddressSpace that has the same TypeDe�nitionNode and BrowseName.�

(OPC Foundation 2012b)

The speci�cation does not actually de�ne that new nodes are created for the in-

stances. It just requires that the instances need to have the same structure as the

type de�nition. Similar to the overriding rules discussed in Section 2.3.2, the nodes

in the instances can have type de�nitions that are subtypes of the types of the

instance declarations.

Other things that the server must decide on instantiation are:

� Instance declaration with multiple browse paths can be represented with either

multiple nodes or a single node.

� Non-hierarchical references de�ned in the instance declarations can be either

present or not. However, HasTypeDe�nition-references are required.

2.4 OPC UA Services

OPC UA clients get access to data on servers through OPC UA services (OPC

Foundation 2012c) which are interface de�nitions between a client and a server.

Understanding the services is important in the context of this thesis, because the

meaning of source code generation is to create a mapping between objects and service

interfaces. On the server side, code generation could create a mapping between

service requests and objects that map the request to the underlying data. On the

client side, code generation could create objects with which service requests could

be made.

OPC UA services are de�ned as abstract services, meaning that the actual im-

plementation details have been left out. Because of this, OPC UA services can be

16

used with two di�erent implemented protocols, Binary TCP and XMLWeb Services.

One could implement his own protocol for UA services, but usually those provided

by the speci�cation are su�cient. (OPC Foundation 2012c)

Typical service usage scenario is when a client sends a request to a server and

after that the server sends a response back to the client. Exceptional situations

occur, if the network connection is broken or the request is invalid in some way.

These situations are handled with timeouts and status codes in service responses.

(OPC Foundation 2012c)

OPC UA services are organized into nine service sets (Table 3). Out of these,

Discovery, Secure channel and Session service sets are related to the underlying

connection and the rest are used to view, modify and use the data that is available

from the information model. In the context of this thesis, the latter ones are more

interesting:

Node management service set is meant for adding and deleting nodes and ref-

erences to and from the server address space.

View service set allows clients to browse and query the address space. By brows-

ing, nodes connected to a certain node can be requested. By querying, nodes

with a certain type can be requested.

Attribute service set contains services for reading and writing attributes of nodes.

Also historical values can be read and updated with this service set.

Method service set contains Call-service with which methods can be called.

Monitored item and subscription service sets are used to subscribe for noti-

�cations from the server based on attribute value changes or events. Pushing

data from a server to a client is done by long polling, meaning that the client

sends a request to the server and the server sends a response back only after

it has a noti�cation to send. (OPC Foundation 2012c)

2.5 Source code generation

Source code generation means creating source code automatically based on some

initial data model. By automatically generating source code, manual typing of the

code with similar structure is avoided. Source code generation has multiple use cases

such as

17

Table 3: The OPC UA service sets. (OPC Foundation 2012c)

Service set Use case

Discovery Discover servers and their security settings.

Secure channel Services related to the security model.

Session Maintain the session between a client and a
server.

Node management Modify the address space.

View Browse through the address space.

Attribute Read and write attributes of nodes.

Method Call methods.

Monitored item Setup monitoring for attribute value changes
or events.

Subscription Subscribe for attribute value changes or
events.

Reuse: the programming language does not support encapsulating the structure

into a reusable component (Völter 2003)

DSLs: the program is de�ned with a domain speci�c language (DSL) to give a

higher abstraction level syntax for domain speci�c requirements (Völter 2003)

Translation: the data model is de�ned in some other format than the programming

language (Sheard 2001)

Performance: instead of directly writing unclear e�cient code, the source code is

generated from a written speci�cation (Sheard 2001)

2.5.1 Patterns

Völter (2003) describes multiple patterns how to do source code generation. The

most relevant to this thesis are

Templates + �ltering where the source model is �rst �ltered and the data gained

from those �lters is applied to a template (Figure 7). An example of �ltering

would be XSLT (W3C 1999) where XML �le is read, �ltered for data and

another XML �le or text �le is formed. Users of the generator can modify the

templates and the �lters for their needs. The templates resemble the result

that is tried to achieve, but in place of the actual values fetched from the

source model the templates have variables or control code to get the data.

18

Templates + metamodel which is similar to the templates + �ltering -pattern

(Figure 8). Instead of just �ltering the source model, a metamodel is produced

from it and the data of this metamodel is applied to the templates.

API-based generators which do not use templates to produce source code, but

instead form an abstract syntax tree (AST) of the source code (Figure 9). The

AST can be either built by a compiler or unparsed to source code. The user

of the generator calls functions on an API that has a higher abstraction level

than the AST.

Figure 7: Templates + �ltering pattern. (Völter 2003)

Figure 8: Templates + metamodel pattern. (Völter 2003)

Other patterns that Völter describes are not useful in the context of this thesis,

because those patterns generate source code from other source code. In this thesis

the only input for the generation is an OPC UA information model.

19

Figure 9: API-based generators pattern. (Völter 2003)

When using templates to generate source code, the next question is which tem-

plate language is used. It is often required to have somewhat restricted template lan-

guage compared to Turing-complete programming languages (Arnoldus 2011; Parr

2004). A restricted template language enforces separation of the template and the

model and makes the templates inherently cleaner and easier to read. Some tem-

plate languages, such as Mustache (Wanstrath 2013), call themselves �logic-less�

to illustrate their restrictive nature. When logic inside the templates is limited, it

is usual that data needs to be preprocessed to �t into the templates. Thus, it is

common to use the templates + metamodel pattern with logic-less templates.

The generated source code is often used in conjunction with handwritten source

code. For example, code generation can be used to implement only a speci�c part of

a larger program and other parts are implemented by hand. The integration of the

generated and handwritten source code is not straightforward, because for example

if the generated code is modi�ed to achieve the integration, then regenerating the

code would erase those modi�cations. Thus, it is required that the integration is

not achieved by modifying the generated code, but instead by using a design that

makes the modi�cations unnecessary.

Völter (2003) describes multiple methods for integrating the generated code to

the non-generated code (Figure 10):

a) the generated code can call non-generated code in libraries

b) the opposite of a): non-generated code can call generated code

c) similar to b), but the generated code implements an interface which the non-

generated code uses

d) generated classes can be subclasses of non-generated classes

20

e) same as d), but the generated classes implement abstract methods de�ned in

non-generated classes

Figure 10: Ways to integrate the generated code to the non-generated code. (Völter
2003)

2.6 Source code generation tools for OPC UA

In the context of OPC UA, source code generation is mainly used for translating the

OPC UA information models to be used with target programming languages. Also

in the OPC UA Java Communication Stack (OPC Foundation 2013a), some parts

of the OPC UA speci�cation are used for source code generation.

The bene�t of generating source code from the information models is that the

developers of OPC UA applications can leverage the type information present in the

models in their applications. With the help of integrated development environments

(IDE), developers can use auto-completion to quickly type code that would otherwise

be prone to typing errors. The code will not compile if a developer tries to use a

variable that does not exist in the information model. The source code generation

needs to be static, meaning that it has to be done before compilation and results in

static source code �les (Sheard 2001).

There exist four commonly known tools related to OPC UA information modeling

and source code generation (Table 4). With the help of tools, OPC UA information

models can be created with a graphical user interface (GUI) and then code can be

21

generated based on the model. The format of the code depends on the generator

and the SDK for which the code is generated for. Models can be de�ned either

in ModelDesign-format which is used for the C# code generator called ModelCom-

piler or in UaNodeSet-format which is de�ned in the OPC UA speci�cation (OPC

Foundation 2012e) and is a generic way to de�ne OPC UA address spaces. There

exists also an older NodeSet-format which is similar to the UaNodeSet-format but

is not part of the OPC UA speci�cation. All mentioned model formats are de�ned

in Extensible Markup Language (XML), which enables saving the models as text

�les.

Table 4: Previous implementations related to source code generation.

Name Version
Modeling

GUI
Model format

Code

generation
Language

ModelCompiler 1.01 � ModelDesign ✓ C#

UaModeler 1.2.0 ✓ UaNodeSet ✓ C, C#, C++

CAS 3.0.2 ✓ ModelDesign ✓ C#

Comet 0.2 ✓ NodeSet � �

OPC Foundation ships a code generating tool with OPC UA SDK (OPC Foun-

dation 2011b) called ModelCompiler. With the tool, C# source code can be gen-

erated from information models de�ned in ModelDesign-format. OPC Foundation

has stated that ModelCompiler will become obsolete and is replaced with a tool

that uses the UaNodeSet-format (Armstrong 2013). Uni�ed Automation has made

an OPC UA modeling tool called UaModeler (Uni�ed Automation 2013). With it,

UA information models can be created with a GUI, the models can be saved in

UaNodeSet-format and C, C# and C++ source code can be generated from the

model. CAS Model Designer (CommServer 2013) by CAS has also a GUI for creat-

ing OPC UA information models. CAS Model Designer uses the ModelCompiler by

OPC Foundation to generate C# code. Comet UA Model Designer (HB-Softsolution

2011) has a GUI for creating OPC UA information models. The models can be saved

in the NodeSet-format, but source code cannot be generated with the Comet UA

Model Designer.

There are no standard guidelines which would specify what kind of code should

be generated from the OPC UA information model. Some guidance can be imitated

from the previous implementations. Since ModelCompiler is becoming obsolete,

only UaModeler is studied further to understand use cases for source code genera-

tion. Current version of UaModeler, 1.2.0, can generate code for OPC UA servers

22

implemented in C or C++ and OPC UA clients implemented in C#.

UaModeler generates C++ server code for each de�ned object and variable type

in the information model. Each type will generate a base class that contains all the

generated code and a subclass which can be extended safely without losing changes if

the code is regenerated. This is similar to the method d) described by Völter (2003)

(Figure 10). Base classes contain code for accessing the variables and methods of the

types. Using the generated code, applications can create new objects based on the

types and update cached values for variables which are then transmitted to clients

when requested. UaModeler also generates a node manager class which will manage

all nodes which have the namespace of the newly created information model. When

the OPC UA server is started, the node manager creates the type nodes of the new

types and all the instance objects that are de�ned in the information model.

UaModeler is currently the only code generator for OPC UA clients. In the

time of writing, the functionality of the generated code is limited; only constant

information, like node identi�ers, browse names and namespaces, is generated as

multiple static classes. Nonetheless, this information is useful for browsing the

address space and makes client development less error-prone.

Goldschmidt and W. Mahnke (2012) have studied what kind of domain speci�c

language (DSL) support should be implemented for OPC UA. Code generation can

be seen as a way to create a DSL that is used within a host programming language.

OPC UA information model represents a domain model and that model can be

leveraged via source code generation. Goldschmidt and Mahnke suggest multiple

DSLs, but the most relevant for source code generation are:

Server: Schema mapping DSL would help OPC UA server developers to map

the requests by clients to the data that is requested.

Client: Browse paths DSL would provide information about the structure of

types on the server. With this information, clients could request values of

components of objects.

Client: Calling methods & Properties DSL would provide object interfaces that

would contain the types and names of the methods and properties. This would

enable compile-time type and name checking for properties and methods.

In addition, Goldschmidt and Mahnke introduce a DSL prototype which uses gen-

erated code to make language integrated queries (LINQ). The prototype makes it

easy to construct OPC UA queries and event �lters, which is otherwise considered

rather complex.

23

3 Requirements

In this section, current state of the Prosys OPC UA Java SDK and software re-

quirements for improving the usage of information model capabilities are presented.

It is intended that relevant requirements are �rst presented comprehensively, and

afterwards it is decided which of the requirements are implemented in the scope of

this thesis.

3.1 Prosys OPC UA Java SDK

Prosys provides an OPC UA software development kit (SDK) for developing OPC UA

applications in Java (Prosys 2013). The SDK works on top of the Java stack (OPC

Foundation 2013a) maintained by OPC Foundation. The Java stack provides a

highly tested, low-level API for OPC UA communication, but the SDK makes the

development of OPC UA applications e�ortless. Both client and server development

can be done with the SDK.

Previously, two master theses have been done to develop the SDK further. Palo-

nen (2010) implemented a way to create the address space of an OPC UA server

from an XML-�le. Hiltunen (2012) created an OPC UA client which has a graphical

user interface so that OPC UA servers can be browsed easily.

Palonen (2010) studied how the basic support for information models could be

added to OPC UA servers. He implemented a way to loading the server address space

from an XML-�le in ModelDesign-format and showed how data could be bound to

the information model. He wrote his thesis in 2009 and in the current state of SDK,

loading XML-�les in UaNodeSet-format is already possible. Thus, in this thesis, it

can be taken for granted that the server address space can be loaded from XML-�les,

and the focus is set to develop other aspects of the SDK further.

The types of the standard information model, the companion speci�cations and

presumably the future standardized models are released in the UaNodeSet-format.

Also custom information models can be created with UaModeler (Uni�ed Automa-

tion 2013) and exported as UaNodeSet �les. The SDK can load these information

models on startup, and after that UA clients can browse the address space and see

what types does the server support and what structure those types have.

To use the types de�ned in information models, the SDK contains some hand-

written Java classes that represent standard object types. They map variable values

to the address space and implement certain standardized features, such as alarms

and conditions. The classes also instantiate the object types, by creating the child

24

instance nodes individually.

In the next sections, requirements for improvements to the SDK are discussed.

First, improvements for type instantiation are considered. Then, source code gen-

eration for server-side, client-side and custom data types are discussed. Finally, the

scope of this thesis is decided.

3.2 Type instantiation

While loading of type information is a critical feature, the SDK does not help the

developers to instantiate those types to the server address space (Figure 11). Instead,

the types need to be instantiated by hand now, which is error-prone and requires

rework when the types change.

Figure 11: Overview of the requirements on the server-side. The current state and
the state proposed by the requirements are illustrated.

UaModeler generates C++-code that handles type instantiation. However, this

approach has some limitations compared to doing the instantiation at run-time:

� When the types change, new code has to be generated and the server applica-

tion has to be rebuilt and restarted. Otherwise the instances re�ect the type

25

declarations at generation-time, not at run-time.

� Type instantiation algorithm is already rather complex and it becomes even

more complex when it is executed by the code generator. It is di�cult to verify

that the algorithm works correctly.

Because of these reasons, type instantiation should happen at run-time. This is

possible by implementing an algorithm that reads the type address space.

The OPC UA speci�cation does not specify whether new nodes are created during

instantiation or not. However, in most cases new copies of the instance declarations

are created, except for methods. Methods can be shared between instances, because

they do not contain any state. To support reusing old nodes, the instantiation

algorithm can be extended later on.

3.3 Source code generation

There are some common requirements for source code generation. First, like in the

code generation implementations introduced in the background section, it should be

possible to regenerate the code without losing any added code. Second, the generated

code should not handle any special cases. Instead, they should be handled by adding

custom code on top of the generated one. Third, source code generation should be

only used when the features of the programming language are not su�cient for the

task. Otherwise, maintenance of the code becomes unnecessarily dependent on the

generation process.

An exception to the third requirement is when source code generation is used

for performance optimization. While that can be the case for embedded OPC UA

servers, the main focus in this thesis is set to source code generation for other

purposes.

It should be possible to integrate source code generation to the build process

of an application. This way, any changes in the information model that require

modifying the application code have a potential to cause a compile error which

forces the developer to �x the application code.

3.3.1 Namespace handling

The OPC UA node identi�ers and browse names are made globally unique by their

namespaces. Namespaces are URIs, but OPC UA servers refer to them internally

by their namespace index, their position in the namespace array. This is done for

e�ciency.

26

In general, generated source code should use URIs when referring to namespaces,

because the namespace indexes might not be known at the time the code is generated.

For example, if source code for the SDK is generated, then the code is used by

OPC UA servers which use di�erent information models. Thus, their namespace

arrays are not equal and the namespace indexes cannot be known when the code is

generated. On the contrary, if code is generated just for a single application, then

the namespace array can remain constant and the namespace indexes can be �xed

during the generation.

In this thesis, source code for the SDK is generated, and therefore namespaces are

handled by their URIs. This way, the generated code is reusable between di�erent

OPC UA applications.

3.3.2 Object and variable types on the server-side

Source code generation could produce Java classes that represent the object and

variable types de�ned in OPC UA information models. OPC UA server developers

could use those classes to map data to the nodes of the address space. Instead of

mapping data by node identi�ers or browse names, developers could leverage the

Java type system to de�ne the data source for each variable on a certain object.

The Java classes could also be used to implement the methods of the objects and

send event noti�cations from the object.

The handwritten object types in the current SDK work well, but are hard to

maintain. They should be replaced with generated code and in addition, code could

be generated for the types in the companion speci�cations.

Currently data is mapped in the SDK depending on the used NodeManager-

and IOManager-components. One way to map data is to cache it: values are �rst

written to the node objects and when the client needs them, they are read from

the objects. Caching can be used in a current NodeManager implementation called

NodeManagerUaNode which stores every node of the address space as an object in

the memory of the server application.

Caching can be also seen as push based data mapping. Some part of the appli-

cation has to push values �rst to the cache before they are available to the client.

Pulling is another way to map data, meaning that the server actually pulls the data

from somewhere else, when it needs it (Figure 12).

Whether to push or pull is a decision that the application developer should

decide, because it depends on the data source and its properties. It is necessary to

know whether the values can be cached and what time and performance costs there

27

Figure 12: Di�erent ways to map data to service requests.

are for requesting new values.

For example, if the value is always in the memory of the server process, then it

could be requested from there whenever it is asked for. If the value is read from a

remote device but does not change frequently, then it can be read once and cached.

If the value is read from a remote device but changes, then it might be the only way

to read it every time from the remote location. However, if there is a large amount

of tags to be read and multiple clients, then the application developer might want

to have a short-term cache where the values are read for a certain period of time to

relieve the stress on the network.

The data mapping mechanism is not dependent on the type of an OPC UA

object but on the individual object itself. Therefore it is required that data mapping

implementation should be separated from the types.

3.3.3 Type information on the client-side

OPC UA client developers would bene�t if the type information from the server

address space would be available when the client application is developed. For

example, server data could be organized into native Java objects and those could

be used in UI applications as models in the common Model-View-Controller (MVC)

architecture.

Currently, the Prosys OPC UA Java SDK supports caching the server address

space on client-side (Figure 13). However, this is limited only to caching the nodes as

the basic node classes. It would be useful if the data from the server was organized as

whole OPC UA objects instead of individual nodes. This way, the client developers

could build their programs on a higher abstraction level. Each object could be a

data source for a UI component, for example.

To access the child nodes of an object, the clients need to use the Translate-

28

Figure 13: Overview of the requirements on the client-side.

BrowsePathsToNodeIds-service. This service returns the node identi�ers for the

child nodes, but the client has to provide all the browse paths of the child nodes.

Instead of having to manually provide those browse paths, either source code could

be generated for them or the type address space could be read to construct them

automatically.

One restriction to using UA data as objects on client-side is that the service calls

are designed to be used as mass operations. Therefore the client should not request

data for single objects separately, but instead for all the objects that are being used

on a speci�c time. It is also possible that a client is connected to multiple UA

servers that represent the same address space. Therefore it should be made possible

to abstract away the servers from the address space.

3.3.4 Custom data types

Each OPC UA variable has a data type for its value. The OPC UA speci�cation

provides standard data types, such as Boolean, DateTime, Double and String, which

are su�cient for most use cases. However, some use cases require using custom

Enumerations and Structures.

If UA application developers want to use custom Enumerations or Structures

29

with the SDK, they need to �rst de�ne the data types in the address space of the

server, then create Java classes for the data types and �nally create custom encoders

and decoders for structured data types. The encoders and decoders are used when

the structures are transmitted over network. The last two steps are generated for

the UA Java Stack, but the code generator does not support the UaNodeSet-format

as input. Thus, the new code generator should also generate the necessary code for

data types.

When custom data types are used, the encoders and decoders have to be available

on both client- and server-side. At the moment, this is achieved by sharing source

code when the applications are developed, which is not feasible when the client and

the server are developed independently of each other.

The OPC UA speci�cation de�nes OPC binary type dictionaries (OPC Founda-

tion 2012b) that make encoding information available at the OPC UA server address

space. This way, clients do not need to know how to encode and decode di�erent

data types beforehand. However, the type dictionaries are not currently supported

by any major SDKs, so OPC UA clients cannot be assumed to be able to use them

at the moment. Thus, initial support for source code sharing option would at least

make it possible to use custom structure data types when the server and the client

are developed together.

3.4 Scope of the thesis

It would not be feasible to discuss all the requirements more deeply in this thesis.

Therefore only the type instantiation algorithm and a general source code generator

are designed in the next sections. The type instantiation algorithm is important

for code generation, because the generated object type classes will require that the

nodes of the object type exist in the server address space. The general source code

generator can be used as a base for all the source code generation requirements in

this section.

30

4 Type instantiation

With type instantiation, the users of the SDK should be able to create instances

of the types speci�ed in the server address space. These instances are later on

used in conjunction with generated code. In this section, �rst an overview of the

designed type instantiation algorithm is given. Then, all the steps of the algorithm

are described individually. Finally, an example of how the instance is used from a

Java class is given.

The design of the type instantiation algorithm was done by implementing a

functional prototype and considering how it worked. The prototype could take a

type node from the server address space and create an instance of that type and all

its mandatory nodes. This ensured that most of the details needed for the design

were taken into account.

4.1 Overview

Type instantiation algorithm is described in the OPC UA Speci�cation Part 3:

Address Space Model (OPC Foundation 2012b). However, speci�cation leaves a lot

of open-ended questions of the implementation of the algorithm (Table 5). To be

able to design the type instantiation algorithm, those questions need to be answered.

First, it is decided that an instance declaration node should not be instantiated

as multiple nodes even if it had multiple browse paths. If the designer of the type

wants to have separate nodes, she can always create separate instance declaration

nodes. Second, it is decided that new nodes are always created when a type is

instantiated. Later on, the algorithm can be extended to use already existing nodes

for speci�ed instance declarations. Third, non-hierarchical references are also copied

to the instance. In future, this might depend on the modeling rules given for the

instance declarations.

Proposed type instantiation algorithm consists of �ve steps (Figure 14). First,

instance declaration hierarchy of each individual type is constructed. Second, in-

stance declaration hierarchies of the subtype and the supertype have to be merged

to a fully inherited instance declaration hierarchy. Third, browse paths are replaced

with references to the corresponding instance declarations. Fourth, all mandatory

instance declarations are instantiated. Fifth, optional instance declarations can be

optionally instantiated.

The designed algorithm takes for granted that the server type address space can

be read in its abstract form. Loading of the type address space to the memory of

31

Table 5: Comparison of the OPC UA Speci�cation (OPC Foundation 2012b) and
proposed type instantiation algorithm.

Speci�cation Proposed design

�Multiple BrowsePaths to the same Node

shall be treated as separate Nodes. An

Instance may provide di�erent Nodes for

each BrowsePath.�

If a node has multiple browse paths,

then only one node is created during the

instantiation. With this approach, mul-

tiple browse paths to the same node are

treated as a single node.

�The Nodes within the newly created hi-

erarchy may be copies of the Instance-

Declarations, the InstanceDeclaration it-

self or another Node in the AddressSpace

that has the same TypeDe�nitionNode

and BrowseName.�

If the instance declaration is the type

declaration, an object or a variable, then

a new copy of the instance declaration

shall be created. If the instance declara-

tion is a method, then the instance dec-

laration itself is used.

�Note that the ModellingRules de�ned in

this standard do not de�ne how to deal

with non-hierarchical References between

InstanceDeclarations, i.e. it is Server-

speci�c if those References exist in an in-

stance hierarchy or not.�

Non-hierarchical references to other in-

stance declarations are copied to the in-

stance hierarchy. Non-hierarchical refer-

ences to other nodes than instance dec-

larations shall have same target nodes as

de�ned in the instance declaration node.

the OPC UA server has been implemented in the SDK previously (Palonen 2010).

Thus, the type address space is represented just with the standard notation in this

section.

4.2 Creating an instance declaration hierarchy

An example of two type de�nitions are taken to demonstrate the type instantiation

algorithm (Figure 15). First, the instance declaration hierarchy of the AlphaType is

created. This means collecting all the relevant instance declarations and references

in the type de�nition hierarchy.

The initial instance declaration hierarchy consists of a set of temporary instance

declarations. The declarations are called temporary because they are replaced with

permanent declarations in the third step of the algorithm. Each temporary instance

declaration has a set of browse paths (Table 6), a set of internal references and

a set of external references (Table 7). Internal references target other temporary

32

Figure 14: The designed type instantiation process.

Figure 15: Example type hierarchy. Similar to the one in the OPC UA speci�cation
(OPC Foundation 2012b), but certain contradictions were �xed. Node identi�ers
are shown inside parentheses and the E-node which has no modeling rule is marked
with di�erent color. Reference types X and Y are non-hierarchical, whereas Z is
hierarchical.

instance declarations. Their targets are represented as browse paths, because it

is not yet known which instance declaration will really be the real target of the

reference. The target can be overridden in a subtype. External references, e.g. the

HasTypeDe�nition-references, are references to nodes outside the type de�nition.

They are always non-hierarchical.

It should be noted that neither the E-node nor the reference from C to E is added

to the instance declaration hierarchy. E-node is just part of the type hierarchy and

should not be added to the instances.

The form of the instance declaration hierarchy de�ned here di�ers from the one

33

Table 6: Temporary instance declarations of the AlphaType.

Node identi�er Browse name Browse paths

1 AlphaType /

2 B /B

3 C /C

4 D /B/D

Table 7: References of the temporary declarations in the AlphaType. HasModelling-
Rule-references are omitted here, because it is customary to not include them in the
instances of types.

Declaration Reference type Target

AlphaType (1) HasComponent /B

AlphaType HasNoti�er /B

AlphaType HasComponent /C

AlphaType Y /C

B (2) HasProperty /B/D

B HasTypeDe�nition BaseObjectType

C (3) HasTypeDe�nition BaseVariableType

D (4) X /C

D HasTypeDe�nition PropertyType

de�ned in the OPC UA speci�cation (OPC Foundation 2012b). In the speci�cation,

each browse path is represented as a single instance declaration. The same approach

would not be a good one in the design represented earlier, because it de�ned that

if a node has multiple browse paths, it should still be considered a single instance

declaration (Table 5).

4.3 Merging instance declaration hierarchies

The instance declaration hierarchy formed for the AlphaType would su�ce for cre-

ating instances. To create instances of BetaType, similar instance declaration hier-

archy has to be created and merged with the instance declaration hierarchy of the

AlphaType. In the BetaType, the H-node has two browse paths (Table 8). Both

paths appear in the internal references (Table 9).

Each temporary instance declaration of the AlphaType is compared to the dec-

34

Table 8: Temporary instance declarations of the BetaType.

Node identi�er Browse name Browse paths

6 BetaType /

7 F /F

8 B /B

9 H /F/H, /B/H

10 J /B/J

Table 9: References of the temporary declarations in the BetaType.

Declaration Reference type Target

BetaType (6) HasComponent /B

BetaType Z /B

BetaType HasComponent /F

F (7) HasProperty /F/H

F HasTypeDe�nition BaseObjectType

B (8) HasProperty /B/H

B HasProperty /B/J

B HasTypeDe�nition BaseObjectType

H (9) HasTypeDe�nition PropertyType

J (10) HasTypeDe�nition PropertyType

larations of the BetaType. If the BetaType does not have a temporary instance

declaration with any of the browse paths the declaration in question has, then the

declaration can be added to the BetaType. Otherwise the declaration is merged

with the existing declaration.

Declarations are merged by combining the browse paths and the references of

the declarations. Combining the browse paths is simple, but the references requires

more processing, because their equivalence is not so straightforward.

Usually a reference is overridden, if a reference in the subtype has the same source

and the target and its type is the same or a subtype. However, this does not apply

to all non-hierarchical references (Table 10). For example, a HasTypeDe�nition-

reference can be overridden even when it has a di�erent target in the subtype,

because each node is allowed to have only one HasTypeDe�nition-reference. It is

also possible to have multiple non-hierarchical references between two nodes with

identical types. Whether to allow multiple references or not can be determined for

35

each standard non-hierarchical reference type, but for custom reference types only

a default handling can be done.

Table 10: Summary of the rules for merging the references. Types are considered
same if they are same or if either is a supertype of another.

Hierarchical Same type Same target Action

✓ ✓ ✓ Override

✓ ✓ � Merge

✓ � ✓ Merge

✓ � � Merge

� ✓ ✓ May override

� ✓ � May override

� � ✓ Merge

� � � Merge

The only overridden instance declaration in the BetaType is the B-node (Table

11). C- and D-nodes are copied from the AlphaType. The type de�nition node

always overrides its supertype and gets all its references (Table 12). B-node gets

references from the node it overrides, except the HasTypeDe�nition-reference, be-

cause it is unique and already present in the BetaType. Other references are copied

from the AlphaType.

Table 11: Temporary instance declarations of the fully inherited BetaType. Nodes
from the AlphaType are highlighted.

Node identi�er Browse name Browse paths

6 BetaType /

7 F /F

8 B /B

9 H /F/H, /B/H

10 J /B/J

3 C /C

4 D /B/D

After merging, a fully inherited instance declaration hierarchy of the BetaType

has been formed (Figure 16). If the type hierarchy had more types than two, then

the instance declaration hierarchy of the next subtype could be merged with the

36

hierarchy of the BetaType. Thus, creation of fully inherited instance declaration

hierarchies is possible with this algorithm, in general.

Figure 16: Fully inherited instance declaration hierarchy of the BetaType.

Table 12: References of the temporary declarations in the fully inherited BetaType.
References from the AlphaType are highlighted.

Declaration Reference type Target

BetaType (6) HasComponent /B

BetaType Z /B

BetaType HasComponent /F

BetaType HasNoti�er /B

BetaType HasComponent /C

BetaType Y /C

F (7) HasProperty /F/H

F HasTypeDe�nition BaseObjectType

B (8) HasProperty /B/H

B HasProperty /B/J

B HasProperty /B/D

B HasTypeDe�nition BaseObjectType

H (9) HasTypeDe�nition PropertyType

J (10) HasTypeDe�nition PropertyType

C (3) HasTypeDe�nition BaseVariableType

D (4) X /C

D HasTypeDe�nition PropertyType

37

4.4 Replacing browse paths

After all the instance declaration hierarchies have been merged, the browse paths

are not needed anymore. It makes further type instantiation process easier if the

references to browse paths are replaced with references to instance declarations. In

this part of the algorithm, the temporary instance declarations are converted to

instance declarations by converting the internal references to instance references.

Converting the references is straightforward. The target browse path of each

internal reference is replaced with the corresponding instance declaration. Compar-

ison of the temporary and the �nal instance declaration is presented in Table 13.

The actual node in the type address space is still needed for the attributes and the

modeling rule of the instance declaration.

Table 13: Comparison of the temporary and the �nal instance declaration.

Field Temporary Final

Node ✓ ✓
Browse paths ✓ �

Internal references ✓ �

Instance references � ✓
External references ✓ ✓

4.5 Instantiating mandatory instances

In this step of the instantiation, an actual instance of a type is created. Node

identi�ers need to be supplied for all the nodes of the new instance. Since the type

of the node identi�ers and the method for generating them is server speci�c, it is

taken for granted in this algorithm that node identi�ers are available. Also display

names and descriptions for the new nodes can be supplied for the algorithm, but

they can be given to the nodes after the instantiation too.

First, the corresponding instance node of the type de�nition node is created.

The instance node shall copy all the relevant attributes from the type node. Second,

hierarchical instance references are followed from the type de�nition node instance

declaration. If the next instance declarations are mandatory, they are created too.

Finally, instance references are again followed from the mandatory instance declara-

tions. Since the instance reference hierarchy can contain loops, it should be checked

that an instance node has not been created before creating it again. If an instance

38

node is already created, the algorithm shall stop processing the following instance

references.

After all the hierarchical instance references have been processed, then all the

mandatory nodes have been created. Next, instance references are instantiated.

Each instance reference of a created instance node is instantiated, if the target of the

reference has been instantiated. This way, only references to other mandatory nodes

are created. Finally, external references are instantiated for the created instance

nodes.

4.6 Instantiating optional instances

Instantiation of optional instances is similar to instantiation of the mandatory in-

stances. Di�erence is that the instantiation does not start from the type de�nition

node but from the optional instance declaration node that is instantiated. Then

again hierarchical instance references are followed and mandatory instance nodes

are created if they have not been created before. Thus, the algorithm needs to know

corresponding instance nodes and instance declarations.

After all the mandatory nodes connected to the target optional node are created,

then all created nodes are iterated over again to create possibly missing instance

references. Some instance references might not have been created for the mandatory

nodes, because the optional node was not present at the time of instantiation of

mandatory nodes.

In addition to the Mandatory and the Optional modeling rules, OPC UA spec-

i�cation de�nes OptionalPlaceholder, MandatoryPlaceholder and ExposesItsArray

modeling rules. Placeholder modeling rules mark instance declarations that can be

present in instances, but with custom browse names. Thus, the instantiation algo-

rithm for optional instances can be used for placeholders too, providing that also

new browse names are supplied for the algorithm. In addition, it should be forced

that mandatory placeholders are instantiated before the instance is made available

to clients. Instances that expose their arrays should programmatically call the in-

stantiation algorithm when their array value changes. Custom behavior might have

to be coded to de�ne how to map the values of the array to the nodes of the address

space.

39

4.7 Using the instance

So far the algorithm has made the structure of the instance right in the address

space. The next step is to make this structure information available to the IDE which

programmers use to write OPC UA server software. The structure information can

be read by IDEs from Java classes that have the same structure as the OPC UA

types.

The Java class that represents the BetaType accesses its components by following

its component references 1. The type assumes that the components exist already.

This di�ers from the previous handwritten classes and other code generators, where

the instantiation was done separately in each class and the components were accessed

through member variables. Separate instantiation works for single classes, but when

components are overridden, it becomes complicated.

pub l i c c l a s s BetaType extends AlphaType {

pub l i c BaseObjectType getB () {

re turn getComponent ("B") ;

}

pub l i c BaseObjectType getF () {

re turn getComponent ("F") ;

}

pub l i c BaseVariableType getC () {

re turn getComponent ("C") ;

}

Listing 1: Sketch of a class to demonstrate how the instances of the BetaType

could be used.

It is questionable whether the BetaType class should contain getters for nodes

such as /B/D and /B/H. These are not properties of the BetaType but of its B-

component. However, now those properties cannot be accessed with exact Java

methods, because BaseObjectType does not contain information about them. If

the B-component had an object type which de�ned the D- and H-properties, then

they could be accessed, e.g. with code getB().getD(). Thus, the maker of the

information model can decide whether to leave the properties inaccessible directly

or not.

These Java classes could be written by hand, but to reduce manual workload,

the classes should be generated based on the type information. This is done with

source code generation in the next section.

40

5 Source code generation

In this section, a design for a generic source code generator is presented. The design

is applicable for most code generation requirements de�ned in Section 3, such as

server- and client-side type information and custom data types. However, discussing

the details of any individual requirement was not considered necessary in the scope

of this thesis. In this section, the code generator is presented to produce Java classes

for OPC UA object types.

The design was formed by building a functional prototype in conjunction with

the design. This ensured again that any details needed for the design were taken

into account. First o�, UaNodeSet XML-�les were preprocessed so that the data

would be easier to use for the code generation. Then, the handwritten classes in the

Prosys OPC UA Java SDK were used as the basis for prototyping the actual code

generator. The �nal prototype could produce usable Java classes of the object and

variable types.

5.1 Overview

Three code generation methods described by Völter (2003) were introduced in the

Background section: templates + �ltering, templates + metamodel and API-based

generators. In this section, it is decided which method is the most suitable for the

use case in this thesis. The handwritten source code �les that existed already in the

Prosys OPC UA Java SDK were examined to understand what kind of source �les

the generator should generate and thus what properties the use case has.

The main bene�t of the API-based generator would be that the produced source

code would always have a valid syntax. In contrast, writers of the templates can do

unintentional syntax errors which are not evident until the code is �rst generated

and after that compiled. However, API-based generator method is not feasible when

the size of the source code �les is large, which was the case in the handwritten source

code �les. It is hard to see the resulting source code from the program that uses the

API-based generator. The template methods were also considered easier to use and

modify.

When the �rst prototypes of the generator were made, it became soon clear that

the UaNodeSet XML-�les need to be processed quite much to get enough information

for the code generation. Thus, simple templates + �ltering method was not possible

because of the structure of the model and it was decided to use the templates +

metamodel method.

41

For templates, Mustache (Wanstrath 2013) templates were chosen. Self-made

and Turing-complete template languages were also in consideration. Self-made tem-

plate languages would be appropriate for simple search and replace code generation.

However, the use case required more sophisticated template features which exist in

the readily available template languages. Fleet (Ablamonov 2013) template lan-

guage was used for the �rst prototypes. Fleet allows using all the statements of

the programming language inside the templates. This made the templates harder

to read, so �nally Mustache was used, because it forces clear templates with simple

syntax, but does not restrict templates too much for the use case.

The overview of the code generation infrastructure is depicted in Figure 17. Clo-

jure (Hickey 2013) programming language was used to write the generator program

prototype, because it allowed �exibility for processing the model XML-�les and is

also interoperable with Java. In addition to the UaNodeSet �les and the templates,

the generation process also requires con�guration data.

Figure 17: Overview of the source code generator and its data sources.

5.2 Model structure

UaNodeSet XML-�les represent the actual nodes in the address space. They are used

to store information models by containing the type nodes of the address space and in

addition the standard instance nodes that are de�ned in the OPC UA speci�cation

(OPC Foundation 2012d). In general, they can be used to serialize or persist the

42

address space or some parts of it.

To make the size of the UaNodeSet �les smaller, the namespaces of the node

identi�ers and the browse names are represented in numeric form. The namespace

number corresponds to a namespace URI introduced in the namespace URI array in

beginning of the �le. For example, the node identi�er �ns=1;i=4001� in Listing 2 has

namespace index 1 and an identi�er part 4001. The namespace index corresponds to

the PLCOpen namespace. Node identi�ers in the �le can be aliased to make them

human readable. All the aliases are also de�ned in the beginning of the �le. An

example of that in the Listing 2 is the HasSubType-reference.

<?xml ve r s i on=" 1 .0 " encoding="utf−8"?>
<UANodeSet>

<NamespaceUris>

<Uri>ht tp : //PLCopen . org /OpcUa/IEC61131−3/</Uri>

<Uri>ht tp : // opcfoundat ion . org /UA/DI/</Uri>

</NamespaceUris>

<Al i a s e s>

<Al ia s A l i a s="Boolean">i=1</Al i a s>

<Al ia s A l i a s="SByte">i=2</Al i a s>

<Al ia s A l i a s="Byte">i=3</Al i a s>

. . .

<Al i a s A l i a s="HasSubtype">i=45</Al i a s>

. . .

</ A l i a s e s>

<UAReferenceType NodeId="ns=1; i =4001"

BrowseName="1 :HasInputVars ">

<DisplayName>HasInputVars</DisplayName>

<Refe rences>

<Reference ReferenceType="HasSubtype"

IsForward=" f a l s e ">i=47</Reference>

</Refe rences>

<InverseName>InputVarsOf</InverseName>

</UAReferenceType>

. . .

</UaNodeSet>

Listing 2: Example of a UaNodeSet �le, part of PLCOpen information model

(OPC Foundation and PLCopen 2010).

The rest of a UaNodeSet �le is a list of the nodes in the address space. Each

node de�nition is an XML element that has a tag name which corresponds to the

node class of the node. The attributes of the node are represented as attributes

or child elements of the XML element. The references of the node are represented

43

as a list of Reference-elements which contain the reference type and target as node

identi�ers. The Reference-elements can also indicate that the reference is an inverse

reference by setting the IsForward-attribute false, meaning that the node itself is

the target of the reference.

5.3 Mustache templates

Mustache template language uses a hash table as an input model. The hash table

contains keys which are names of the values. The names are used in the templates,

and when the templates are applied, the names are replaced with the values in the

hash table. A value can be either a text, a hash table, a list, a boolean or a lambda

function. Texts are used for simply replacing the names in the templates. Inner hash

tables allow structuring of the data as trees. Lists can be iterated in the templates

and an inner template can be applied for each element in the list. Booleans can

be used to conditionally include some text. Lambda functions are useful for simple

operations such as capitalizing text.

An example of a mustache template is given in Listing 3. All the mustache

tags are separated from static text with double curly braces. First, a simple text

replacement is done with the tag {{package}} for de�ning in what package the �le

resides. Next, with the {{#dependencies}} tag, a list of dependencies is iterated

and for each dependency, an import line is rendered. The elements of the list are

hash tables which contain keys �package� and �class�. Thus, the {{package}} tag

inside the iteration does not necessarily have the same value as the similar tag

outside the iteration. The ending of the inner template is marked with a closing tag

{{/dependencies}}.

package {{ package }} ;

import {{ package }} .{{ classname }} ;

{{#dependenc ies }}

import {{ package }} .{{ c l a s s }} ;

{{/ dependenc ies }}

Listing 3: Beginning of a Java class in a Mustache template.

Hash tables, booleans and lambdas are used with same notation as lists. For

hash tables, the inner template is applied with the inner hash table as the model.

For booleans, the inner template is applied only if the boolean value is true. Inverse

handling of booleans is also possible. For lambdas, inner template is given as an

input value before applying the template and the result will be the return value

44

of the lambda function. Lambda function can itself apply the inner template if

necessary.

5.4 Template structure

The generated source code needs to be integrated with the non-generated source code

in such a way that regeneration does not lose any non-generated code. In this thesis,

it was also required to generate the source code to replace already handwritten source

code �les. This causes an additional requirement, because the handwritten source

code has been part of a published public API which should not change because this

would a�ect the users of the SDK. One part of the API needs to be generated, but

another part should remain handwritten.

It is not possible in Java programming language to implement a class in two

separate �les. One way to overcome this is to mark the generated code with comment

blocks in the source code �le. The generator would generate these blocks, but leave

the rest of the �le untouched, thus preserving any handwritten code outside the

generated blocks. Other way, which is used by the C++ generator in the UaModeler,

is that the generated code resides in a base class and handwritten code is placed

in a subclass. This makes the type hierarchy more complex, but the integration of

generated code simpler. It also makes it possible to override generated code with

handwritten code.

Since it was not known whether the overriding of generated code would be nec-

essary or not, the integration was done with generated base classes and handwritten

subclasses. However, the requirement concerning the API applies only to the ex-

isting handwritten Java classes, and later on, another integration method could be

used for generated source code that has no public API yet.

To separate the generated and handwritten classes, it was designed that the

generated class names shall be appended with �Base� (Table 14). In addition, the

generated classes are put into a di�erent Java package by appending the original

package with �.base�. This way, the generated code stays out of sight, which is often

desired because the generated code is not usually read or written by the developer.

In the scope of this thesis, only the template for object types was studied more

rigorously. Variable types are similar to the object types which have no methods

or child objects and data types should resemble the classes used in the Java stack.

The generated base class for object types shall include:

Constructors that simply relay the constructor call to the super class.

45

Table 14: Comparison of the generated base class and the handwritten subclass for
object types.

Base class Subclass

Generated many times Generated once

Name is appended with �Base� Has name of the type

Package is appended with �.base� Has package based on the namespace

Extends from supertype Extends from own class appended with
�Base�

Getters and setters for components and
properties

�

Stubs for method calls Implementation of methods

No custom behavior Custom behavior can be added

Getters and setters for variables and objects. In addition, getters and setters for

the values of variables can be available too.

Stubs for method calls which handle the checking of node identi�ers of the meth-

ods and relay method calls to corresponding abstract Java methods. The

methods are implemented in the subclass.

When generated for the �rst time, the subclass shall include method stubs that

correspond to the abstract ones in the base class.

5.5 Generator architecture

The generator program consists of two parts: the parser and the generator (Figure

18). The parser is responsible for preprocessing the UaNodeSet �les and creating a

node identi�er index. The generator creates instances of metamodels based on the

data the parser provides, and then applies the Mustache templates to the instances

of the metamodels.

The parser preprocesses the UaNodeSet �les so that the namespace indexes are

replaced with the real namespace URIs in the node identi�ers and the browse names.

This has to be done because the namespace indexes are speci�c to the UaNodeSet

�les, but all the �les are used together when node identi�ers are searched from the

node identi�er index. The parser has to replace the aliases with the node identi�ers

�rst, because the aliases are also speci�c to the UaNodeSet �les.

The parser creates a node identi�er index. The index can be used to �nd out the

corresponding XML element of a node identi�er. With the node identi�er index, the

46

Figure 18: The generator program architecture. The program consists of two parts:
the parser and the generator. Boxes and arrows illustrate the data �ow through the
generator.

generator can take the target node identi�er of a reference and then transform the

identi�er to a corresponding XML element. This way, the components, properties

and methods of an object type can be found during construction of the metamodels.

The target UaNodeSet �le is the model that is used in source code generation.

Other UaNodeSet �les are needed just to build the node identi�er index. The

generated source code expects that all other types that it uses have been previously

generated and can be found in Java packages de�ned in the package de�nitions.

The generator takes four data sources: the parsed UaNodeSet target �le, node

identi�er index and package de�nitions. From these, the generator creates the in-

stances of the metamodels. There is one metamodel for each node class. Then, the

generator applies the templates to the instances of the metamodels, producing the

Java source code �les.

The package de�nitions map the namespaces of the UA nodes to Java pack-

ages. This way, the generator knows where the dependencies of a generated Java

class can be found and then the import statements can be added to the beginning

of the Java class. The OPC UA Java Stack (OPC Foundation 2013a) organizes

its types under several packages based on the supertypes of the types, so the �nal

mapping is done from a namespace and a supertype to a Java package. For exam-

ple, standard data types with Structure or Enumeration as their supertype reside

in the org.opcfoundation.ua.core package, but other data types reside in the

org.opcfoundation.ua.builtintypes package.

The generation process is the following (Figure 19). First, the generator looks

at the template directory and loads all the templates. Then, each template (1.) is

47

searched from the template data where it is de�ned that which XML elements the

template is applied to. Next, those XML elements are read from the parsed target

UaNodeSet �le and for each element (2.), an instance of a metamodel is formed (3.

and 4.). The instance is applied to the template which is currently being processed

(5.). The �nal result is a Java source code �le.

Figure 19: Demonstration of the relations between templates, UaNodeSet �les and
metamodels. The steps of the generation process are also shown.

5.6 Structure of the metamodels

The values in the metamodels should be almost so �ne-grained that the templates

need to just reference the correct values by name in the model. However, the meta-

models should be also so general that creating new kinds of source code �les should

not require editing the metamodels, but instead the templates. The metamodels for

the generator were formed by incrementally building the templates for the already

existing handwritten type classes in the SDK. If some information was needed, it

was added to the metamodels.

The metamodels are used as Mustache data sources, so they should be hash

tables. To provide all the information needed for the object type template described

in Section 5.4, the following data sources need to be used:

� information taken from the XML element directly

� information taken from XML elements accessible through the references or

other node identi�ers in the XML element

48

� some parts require a mapping from OPC UA to Java, such as namespaces to

packages and some OPC UA types to Java primitive types

When node identi�ers are followed, the resulting XML element can also be trans-

formed into an instance of a metamodel. However, the node identi�ers are usually

followed only once or twice and, e.g., the components of a component need not be

known in the metamodel (Figure 20).

Figure 20: A metamodel instance created from an example object type. Metamodels
of components are also created, but not of components of components. Still, a
metamodel instance of the variable datatype is created.

The metamodels do not contain exactly the same information that is de�ned for

each node class. Some of the information needs to be processed further to ful�ll the

needs of the templates. For example, OPC UA variables have a value rank, which is

a numerical representation of the fact whether the value is an array and how many

dimensions it has. This numerical representation is transformed so that it can be

presented as is required in Java.

5.7 Applying the templates

After an instance of a metamodel is created, the applying process is straightforward.

The instance is fed to Stencil (Santiago 2013), a Clojure implementation of Mus-

49

tache. Stencil applies a template to the instance, resulting in Java source code. An

example of this process is given in Appendix A.

In Java, each dependency has to be introduced by an import statement at the

beginning of the �le. The template data contains information about what kind of

dependencies are required for each template. For example, an object type template

can de�ne that it requires dependencies to its variables. However, there are situ-

ations when the template does not use all the dependencies. Usually it is desired

that any unused import statements are removed. This is achieved by removing them

after a template is applied. An unused import can be detected by searching the �le

for direct references to the classes in the import statements. If any direct references

cannot be found, the import is unused.

When the Java source code �les are saved, some templates require additional

information that is not present in the UaNodeSet �les. An example of this is the

generation of the base class, when it is required that the class name is appended

with �Base�. This information is not naturally found from UaNodeSet �les and is

actually dependent on the template �le. Therefore it is required that templates

contain metadata about possible modi�cations to the class and package names. In

addition, in the template metadata it is de�ned whether or not any existing Java

source code �les should be overwritten (Figure 19).

Finally, the generator creates the directory structure corresponding to Java pack-

age names and puts the �nal source code �les into those directories. By doing this,

there is no need to manually move �les to di�erent folders after the code has been

generated. This enables tighter integration with the build process of an OPC UA

application.

50

6 Conclusions and future work

Information modeling capabilities in the OPC Uni�ed Architecture are essential for

interoperable software development. Actually using the capabilities is not straight-

forward until a substantial development e�ort has been made for building a higher

level framework with which the developers can make use of the OPC UA information

models in their programs. In this thesis, requirements and design principles for such

a framework have been created.

6.1 Answering the research questions

First research question in this thesis was: "What are the requirements for source

code generation from OPC UA information models?" Requirements included hav-

ing the type information available when developing OPC UA applications on both

client- and server-side and being able to use custom structured data types. When

compared to other source code generation tools for OPC UA, the results of this

thesis have a clear distinction: the separation of type instantiation and using the

types. The distinction makes development of the type instantiation algorithm easier,

since the algorithm is not applied during code generation, but instead during run-

time. Another distinction to previous implementations was that the data mapping

implementation should be separated from the generated type information, but the

requirement was not studied any further in this thesis.

Second research question was: "How should the generated source code be used in

OPC UA applications?" As suggested in the requirements, the type instantiation

algorithm was implemented separately of the source code generation process. This

lead into a detailed design of the type instantiation algorithm itself, because the

generated source code still needed to use the instantiated structures.

Third research question was: "How should the source code generation be done in

practice?" A design for the source code generation tool was proposed in this thesis.

The design took note of several practical issues including namespace handling and

other source code generation requirements.

6.2 Future work

The type instantiation algorithm and the code generation system described in this

thesis were implemented as prototypes. These prototypes are used as a basis for

further development and the results will be released as part of the Prosys OPC UA

51

Java SDK. The �nal implementations can be validated to ful�ll the requirements

presented in this thesis. In addition to technical details, it is important to design

how the developers are expected to use the system. This will be taken into account

when the work is integrated to the product.

Out of all the requirements listed in Section 3, just type instantiation and source

code generation for server-side were discussed in this thesis. For instance, data

mapping and source code generation for client-side and custom data types are also

vital requirements but did not �t into the scope of this thesis. Full-�edged type

information usage would require implementation of those requirements too.

It shall take time until the OPC Uni�ed Architecture is widely adapted and

all the features in the speci�cation are implemented by the tools available in the

market. This thesis can be seen as a milestone in that process.

52

References

Ablamonov, Illia (2013). Fleet � Templating System for Clojure. url: https://

github.com/Flamefork/fleet (Last accessed July 24, 2013).

Armstrong, Randy (2013). UA SDK ModelCompiler distribution � topic on OPC

Foundation Message Board. url: http://www.opcfoundation.org/forum/

viewtopic.php?t=4733 (Last accessed Jan. 22, 2013).

Arnoldus, BJ (2011). �Less is more: unparser-completeness of metalanguages for

template engines�. In: Proceedings of the 10th ACM international conference on

Generative programming and component engineering (GPCE), pp. 137�146. url:

http://dl.acm.org/citation.cfm?id=2047887.

CommServer (2013). OPC UA Address Space Model Designer. url: http://www.

commsvr.com (Last accessed Jan. 10, 2013).

Goldschmidt, T. and W. Mahnke (2012). �Evaluating domain-speci�c languages for

the development of OPC UA based applications�. In: 7th Vienna International

Conference on Mathematical Modelling (MATHMOD) Special Session Modelling

and Model Transformation in Automation Technologies. url: http://seth.

asc.tuwien.ac.at/proc12/full_paper/Contribution433.pdf.

Granzer, W. andW. Kastner (2012). �Information Modeling in Heterogeneous Build-

ing Automation Systems�. In: Proc. of the 9th IEEE International Workshop on

Factory Communication Systems (WFCS' 12), pp. 291 �300. doi: 10.1109/

WFCS.2012.6242577. url: http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=6242577.

Hickey, Rich (2013). Clojure programming language. url: http://clojure.org/

(Last accessed July 24, 2013).

Hiltunen, Tuomas (2012). �Java Based OPC UA Client Development�. MA thesis.

Aalto University.

Lehnho�, Sebastian et al. (2012). �OPC Uni�ed Architecture: A Service-Oriented

Architecture for Smart Grids�. In: ICSE 2012 International Workshop on Soft-

ware Engineering Challenges for the Smart Grid, pp. 1�7. doi: 10.1109/SE4SG.

2012.6225723. url: http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=6225723.

Mahnke, Wolfgang, Stefan-Helmut Leitner, and Matthias Damm (2009). OPC Uni-

�ed Architecture. Springer. isbn: 978-3-540-68898-3. doi: 10.1007/978-3-540-

68899-0.

https://github.com/Flamefork/fleet
https://github.com/Flamefork/fleet
http://www.opcfoundation.org/forum/viewtopic.php?t=4733
http://www.opcfoundation.org/forum/viewtopic.php?t=4733
http://dl.acm.org/citation.cfm?id=2047887
http://www.commsvr.com
http://www.commsvr.com
http://seth.asc.tuwien.ac.at/proc12/full_paper/Contribution433.pdf
http://seth.asc.tuwien.ac.at/proc12/full_paper/Contribution433.pdf
http://dx.doi.org/10.1109/WFCS.2012.6242577
http://dx.doi.org/10.1109/WFCS.2012.6242577
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6242577
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6242577
http://clojure.org/
http://dx.doi.org/10.1109/SE4SG.2012.6225723
http://dx.doi.org/10.1109/SE4SG.2012.6225723
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6225723
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6225723
http://dx.doi.org/10.1007/978-3-540-68899-0
http://dx.doi.org/10.1007/978-3-540-68899-0

53

OPC Foundation (2011a). Information Model XML Schema. url: http : / /

opcfoundation.org/UA/2011/03/UANodeSet.xsd (Last accessed Jan. 10,

2013).

� (2011b). OPC UA SDK 1.01. url: http://www.opcfoundation.org (Last

accessed Jan. 10, 2013).

� (2012a). OPC Uni�ed Architecture Speci�cation, Part 1: Overview and Concepts,

Release 1.02. Tech. rep. url: http://opcfoundation.org/UA/Part1.

� (2012b). OPC Uni�ed Architecture Speci�cation, Part 3: Address Space Model,

Release 1.02. Tech. rep. url: http://opcfoundation.org/UA/Part3.

� (2012c). OPC Uni�ed Architecture Speci�cation, Part 4: Services, Release 1.02.

Tech. rep. url: http://opcfoundation.org/UA/Part4.

� (2012d). OPC Uni�ed Architecture Speci�cation, Part 5: Information Model, Re-

lease 1.02. Tech. rep. url: http://opcfoundation.org/UA/Part5.

� (2012e). OPC Uni�ed Architecture Speci�cation, Part 6: Mappings, Release 1.02.

Tech. rep. url: http://opcfoundation.org/UA/Part6.

� (2013a). OPC UA 1.02 Java Stack Source Code and Sample Applications. url:

http://www.opcfoundation.org/DownloadFile.aspx?RI=958 (Last accessed

July 5, 2013).

� (2013b). OPC Uni�ed Architecture for Analyser Devices (ADI) Companion Spec-

i�cation, Release 1.01. Tech. rep. url: http://www.opcfoundation.org.

� (2013c). OPC Uni�ed Architecture for Devices (DI) Companion Speci�cation,

Release 1.01. Tech. rep. Di. url: http://www.opcfoundation.org.

� (2013d). OPC Uni�ed Architecture For ISA-95 Common Object Model, Release

Candidate 1.01.00. Tech. rep. url: {http://www.opcfoundation.org}.

� (2013e). OPC Uni�ed Architecture Speci�cation, Part 2: Security Model, Release

1.02. Tech. rep. url: http://opcfoundation.org/UA/Part2.

OPC Foundation and PLCopen (2010). OPC UA Information Model for IEC 61131-

3. Tech. rep. url: http://www.opcfoundation.org.

Palonen, Otso (2010). �Object-oriented implementation of OPC UA information

models in Java�. MA thesis. Aalto University.

Parr, Terence John (2004). �Enforcing strict model-view separation in template

engines�. In: Proceedings of the 13th conference on World Wide Web - WWW

'04, p. 224. doi: 10.1145/988672.988703. url: http://portal.acm.org/

citation.cfm?doid=988672.988703.

Prosys (2013). Prosys OPC UA Java SDK. url: http://www.prosysopc.com/opc-

ua-java-sdk.php (Last accessed Jan. 22, 2013).

http://opcfoundation.org/UA/2011/03/UANodeSet.xsd
http://opcfoundation.org/UA/2011/03/UANodeSet.xsd
http://www.opcfoundation.org
http://opcfoundation.org/UA/Part1
http://opcfoundation.org/UA/Part3
http://opcfoundation.org/UA/Part4
http://opcfoundation.org/UA/Part5
http://opcfoundation.org/UA/Part6
http://www.opcfoundation.org/DownloadFile.aspx?RI=958
http://www.opcfoundation.org
http://www.opcfoundation.org
{http://www.opcfoundation.org}
http://opcfoundation.org/UA/Part2
http://www.opcfoundation.org
http://dx.doi.org/10.1145/988672.988703
http://portal.acm.org/citation.cfm?doid=988672.988703
http://portal.acm.org/citation.cfm?doid=988672.988703
http://www.prosysopc.com/opc-ua-java-sdk.php
http://www.prosysopc.com/opc-ua-java-sdk.php

54

Santiago, David (2013). Stencil � A Clojure implementation of Mustache. url:

https://github.com/davidsantiago/stencil (Last accessed July 26, 2013).

Sheard, Tim (2001). �Accomplishments and research challenges in meta-

programming�. In: Semantics, applications, and implementation of program gen-

eration. Pp. 2�44. url: http://link.springer.com/chapter/10.1007/3-

540-44806-3_2.

HB-Softsolution (2011). Comet UA Model Designer. url: http : / / www . hb -

softsolution.com (Last accessed Jan. 21, 2013).

Uni�ed Automation (2013). UaModeler. url: http://www.unified-automation.

com (Last accessed Jan. 10, 2013).

Völter, Markus (2003). �A Catalog of Patterns for Program Generation�. In: Eighth

European Conference on Pattern Languages of Programs (EuroPLop). url:

http://www.voelter.de/data/pub/ProgramGeneration.pdf.

W3C (Nov. 16, 1999). XSLT. url: http://www.w3.org/TR/xslt (Last accessed

July 29, 2013).

Wanstrath, Chris (2013). Mustache templates. url: http://mustache.github.io

(Last accessed July 5, 2013).

https://github.com/davidsantiago/stencil
http://link.springer.com/chapter/10.1007/3-540-44806-3_2
http://link.springer.com/chapter/10.1007/3-540-44806-3_2
http://www.hb-softsolution.com
http://www.hb-softsolution.com
http://www.unified-automation.com
http://www.unified-automation.com
http://www.voelter.de/data/pub/ProgramGeneration.pdf
http://www.w3.org/TR/xslt
http://mustache.github.io

55

A Source code generation example

In this section, a source code generation example is presented. First, a template used

for generation is shown (Listing A1). Then, an instance of a metamodel is shown

(Listing A2). The instance is rendered by applying the template to it. Finally,

the resulting generated Java class is shown (Listing A3). In practice, the actual

templates, metamodels and generated source code will be more complicated than

presented in this example.

package {{ package }} ;

{{#dependenc ies }}

import {{ package }} .{{ classname }} ;

{{/ dependenc ies }}

pub l i c c l a s s {{ classname }} extends {{ supertype . c lassname }} {

{{#va r i a b l e s }}

{{ type }} get {{name}}() {

re turn getComponent ("{{name}}") ;

}

{{ datatype }} get {{name}}Value () {

re turn get {{name}}() . getValue () ;

}

void s e t {{name}}Value ({{ datatype }} value) {

re turn get {{name}}() . setValue (va lue) ;

}

{{/ v a r i a b l e s }}

{{#methods}}

pub l i c Variant [] c a l l {{name}}(Variant [] inArgs) {

// TODO: Implement method

}

{{/methods}}

}

Listing A1: The example Mustache template used in this section.

{

"package" : "com . example . opcua . generatedtypes " ,

" classname" : "ValveType"

" dependenc ies " :

56

{

{"package" : "com . example . opcua . generatedtypes " , " classname" : "

DeviceType" } ,

{"package" : "com . prosysopc . ua . s e r v e r . nodes " , " classname" : "

UaVariable " } ,

{"package" : " org . opcfoundat ion . ua . bu i l t i n t y p e s " , " classname" :

"Variant "}

} ,

" supertype " : {" classname" : "DeviceType" } ,

" v a r i a b l e s " :

{

{" type" : "UaVariable " , "name" : " IsOpen" , " datatype " : "Boolean"

} ,

{" type" : "UaVariable " , "name" : "Flow" , " datatype " : "Double"}

} ,

"methods" :

{

{"name" : "Open"}

}

}

Listing A2: The example metamodel instance used in this section, presented in

Javascript Object Notation (JSON).

package com . example . opcua . generatedtypes ;

import com . example . opcua . generatedtypes . DeviceType ;

import com . prosysopc . ua . s e r v e r . nodes . UaVariable ;

import org . opcfoundat ion . ua . b u i l t i n t y p e s . Variant ;

pub l i c c l a s s ValveType extends DeviceType {

UaVariable getIsOpen () {

re turn getComponent ("IsOpen") ;

}

Boolean getIsOpenValue () {

re turn getIsOpen () . getValue () ;

}

void setIsOpenValue (Boolean value) {

re turn getIsOpen () . setValue (va lue) ;

}

UaVariable getFlow () {

57

re turn getComponent ("Flow") ;

}

Double getFlowValue () {

re turn getFlow () . getValue () ;

}

void setFlowValue (Double value) {

re turn getFlow () . setValue (va lue) ;

}

pub l i c Variant [] ca l lOpen (Variant [] inArgs) {

// TODO: Implement method

}

}

Listing A3: Resulting Java source code �le.

	Abstract
	Tiivistelmä (in Finnish)
	Preface
	Contents
	Abbreviations
	Introduction
	Background
	Objectives and scope
	Research methods
	Structure of the work

	Background
	Introduction to OPC Unified Architecture
	OPC UA object model
	Node model

	Instantiation in OPC UA
	Creating an instance declaration hierarchy
	Merging instance declaration hierarchies
	Creating instances and references based on modeling rules

	OPC UA Services
	Source code generation
	Patterns

	Source code generation tools for OPC UA

	Requirements
	Prosys OPC UA Java SDK
	Type instantiation
	Source code generation
	Namespace handling
	Object and variable types on the server-side
	Type information on the client-side
	Custom data types

	Scope of the thesis

	Type instantiation
	Overview
	Creating an instance declaration hierarchy
	Merging instance declaration hierarchies
	Replacing browse paths
	Instantiating mandatory instances
	Instantiating optional instances
	Using the instance

	Source code generation
	Overview
	Model structure
	Mustache templates
	Template structure
	Generator architecture
	Structure of the metamodels
	Applying the templates

	Conclusions and future work
	Answering the research questions
	Future work

	References
	Appendix Source code generation example

