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Abstract

A complete optimization procedure for a multi-objective problem essen-
tially comprises of search and decision making. Depending upon how the
search and decision making task is integrated, algorithms can be classi-
fied into various categories. Following ‘a decision making after search’
approach, which is common with evolutionary multi-objective optimiza-
tion algorithms, requires to produce all the possible alternatives before a
decision can be taken. This, with the intricacies involved in producing
the entire Pareto-front, is not a wise approach for high objective problems.
Rather, for such kind of problems, the most preferred point on the front
should be the target. In this study we propose and evaluate algorithms
where search and decision making tasks work in tandem and the most
preferred solution is the outcome. For the two tasks to work simultane-
ously, an interaction of the decision maker with the algorithm is necessary,
therefore, preference information from the decision maker is accepted pe-
riodically by the algorithm and progress towards the most preferred point
is made.

Two different progressively interactive procedures have been suggested
in the dissertation which can be integrated with any existing evolution-
ary multi-objective optimization algorithm to improve its effectiveness in
handling high objective problems by making it capable to accept prefer-
ence information at the intermediate steps of the algorithm. A number of



high objective un-constrained as well as constrained problems have been
successfully solved using the procedures. One of the less explored and
difficult domains, i.e., bilevel multi-objective optimization has also been
targeted and a solution methodology has been proposed. Initially, the
bilevel multi-objective optimization problem has been solved by develop-
ing a hybrid bilevel evolutionary multi-objective optimization algorithm.
Thereafter, the progressively interactive procedure has been incorporated
in the algorithm leading to an increased accuracy and savings in compu-
tational cost. The efficacy of using a progressively interactive approach
for solving difficult multi-objective problems has, therefore, further been
justified.

General Keywords: Evolutionary multi-objective optimization algorithms,
multiple criteria decision-making, interactive multi-objective optimization
algorithms, bilevel optimization

Additional Keywords: Preference based multi-objective optimization, hy-
brid evolutionary algorithms, self-adaptive algorithm, sequential quadratic
programming, algorithm development, test problem development
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1 Introduction

Many real-world applications of multi-objective optimization involve a
high number of objectives. Existing evolutionary multi-objective opti-
mization algorithms [7, 34] have been applied to problems having mul-
tiple objectives for the task of finding a well-representative set of Pareto-
optimal solutions [6, 4]. These methods have been successful in solving a
wide variety of problems with two or three objectives. However, these
methodologies tend to fail for high number of objectives (greater than
three) [8, 22]. The major hindrances in handling high number of objectives
relate to stagnation in search, increased dimensionality of Pareto-optimal
front, large computational cost, and difficulty in visualization of the ob-
jective space. These difficulties are inherent to a multi-objective problem
having a high number of dimensions and cannot be eliminated; rather,
procedures to handle such difficulties need to be explored.

In many of the existing methodologies, preference information from
the decision maker is utilized before the beginning of the search process
or at the end of the search process to produce the optimal solution(s) in
a multi-objective problem. Some approaches interact with the decision
maker and iterate the process of elicitation and search until a satisfactory
solution is found. However, not many studies have been performed where
preference information is elicited during the search process and the infor-
mation is utilized to progressively proceed towards the most preferred
solution.

This dissertation is an effort towards development of progressively in-
teractive procedures to handle difficult multi-objective problems, combin-
ing concepts from the fields of Evolutionary Multi-objective Optimization
(EMO) and Multi Criteria Decision Making (MCDM). The fields of Evolu-
tionary Multi-objective Optimization and Multi Criteria Decision Making
have a common goal, but researchers have shown only lukewarm inter-
est, until recently, in applying the principles of one field to the other. In
the dissertation, emphasis has been placed on integration of methods and
development of hybrid procedures that are helpful in the extension of the
existing algorithms to handle challenging problems with multiple objec-
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tives. The utility of the procedures has also been shown on bilevel multi-
objective optimization problems. The amalgamation of ideas has pro-
found ramifications and addresses the challenges posed by multi-objective
optimization problems.

The dissertation is composed of five papers which have been summa-
rized in this introductory chapter. Before providing a summary, a short
review of the basic concepts necessary to understand the papers will be
given in the following sections.

1.1 Multi-objective Optimization

In a multi-objective optimization problem [30, 19, 6] there are two or more
conflicting objectives which are supposed to be simultaneously optimized
subject to a given set of constraints. These problems are commonly found
in the fields of science, engineering, economics or any other field where
optimal decisions are to be taken in the presence of trade-offs between
two or more conflicting objectives. Usually such problems do not have a
single solution which would simultaneously maximize/minimize each of
the objectives; instead, there is a set of solutions which are optimal. These
optimal solutions are called the Pareto-optimal solutions. A general multi-
objective problem (M ≥ 2) can be described as follows:

Maximize f(x) = (f1(x), . . . , fM (x)) ,
subject to g(x) ≥ 0,h(x) = 0,

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, . . . , n.

(1.1)

In the above formulation, x represents the decision variable which lies
in the decision space. The decision space is the search space represented
by the constraints and variable bounds in a general multi-objective prob-
lem statement. The objective space f(x) is the image of the decision space
under the objective function f . In a single objective optimization (M = 1)
problem the feasible set is completely ordered according to the objective
function f(x) = f1(x), such that for solutions, x(1) and x(2) in the decision
space, either f1(x(1)) ≥ f1(x

(2)) or f1(x(2)) ≥ f1(x
(1)). Therefore, for two

solutions in the objective space there are two possibilities with respect to
the ≥ relation.

However, when several objectives (M ≥ 2) are involved, the feasible
set is not necessarily completely ordered, but partially ordered. In multi-
objective problems, for any two objective vectors, f(x(1)) and f(x(2)), the
relations =, > and ≥ can be extended as follows,

• f(x(1)) = f(x(2)) fi(x
(1)) = fi(x

(2)) : ⇔ i ∈ {1, 2, . . . ,M}
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• f(x(1)) ≥ f(x(2)) fi(x
(1)) ≥ fi(x

(2)) : ⇔ i ∈ {1, 2, . . . ,M}

• f(x(1)) > f(x(2))⇔ f(x(1)) ≥ f(x(2)) ∧ f(x(1)) 6= f(x(2))

While comparing the multi-objective scenario with the single objective
case [5], in contrast we find that for two solutions in the objective space
there are three possibilities with respect to the ≥ relation. These possibili-
ties are: f(x(1)) ≥ f(x(2)), f(x(2)) ≥ f(x(1)) or f(x(1)) � f(x(2)) ∧ f(x(2)) �
f(x(1)). If any of the first two possibilities are met, it allows to rank or
order the solutions independent of any preference information (or a deci-
sion maker). On the other hand, if the first two possibilities are not met,
the solutions cannot be ranked or ordered without incorporating prefer-
ence information (or involving a decision maker). Drawing analogy from
the above discussion, the relations < and ≤ can be extended in a similar
way.

1.2 Domination Concept and Optimality

1.2.1 Domination Concept

Based on the established binary relations for two vectors in the previous
section, the following domination concept [14] can be constituted,

• x(1) strongly dominates x(2)⇔ f(x(1)) > f(x(2)),

• x(1) weakly dominates x(2)⇔ f(x(1)) ≥ f(x(2)),

• x(1) and x(2) are non-dominated with respect to each other⇔ f(x(1)) �
f(x(2)) ∧ f(x(2)) � f(x(1)).

The above domination concept is also explained in Figure 1.1 for a two
objective maximization case. In Figure 1.1 two shaded regions have been
shown in reference to point A. The shaded region in the north-east corner
(excluding the lines) is the region which strongly dominates point A, the
shaded region in the south-west corner (excluding the lines) is strongly
dominated by point A and the unshaded region is the non-dominated re-
gion. Therefore, point A strongly dominates point B, points A, E and D are
non-dominated with respect to each other, and point A weakly dominates
point C.

Most of the existing evolutionary multi-objective optimization algo-
rithms use the domination principle to converge towards the optimal set
of solutions. The concept allows us to order two decision vectors based
on the corresponding objective vectors in the absence of any preference
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A

f2

f1

D

C

B

EDominated by A
Region

Dominating A
Region

Figure 1.1: Explanation for
the domination concept for a
maximization problem where A
strongly dominates B; A weakly
dominates C; A, D and E are
non-dominated.

1 2 3 4 52

f2

f1

Pareto−optimal
Front

Non−dominated
Set

4

2

1

5

3

indifference incomparable preference

Figure 1.2: Explanation for the
concept of a non-dominated set
and a Pareto-optimal front. A hy-
pothetical decision maker’s pref-
erences for binary pairs are also
shown.

information. The algorithms which operate with a sparse set of solutions
in the decision space and the corresponding images in the objective space
usually give priority to a solution which dominates another solution. The
solution which is not dominated with respect to any other solution in the
sparse set is referred to as a non-dominated solution.

In case of a discrete set of solutions: the subset whose solutions are
not dominated by any solution in the discrete set is referred to as the
non-dominated set within the discrete set. The non-dominated set consists
of the best solutions available and form a front called a non-dominated
front. When the set in consideration is the entire search space, the result-
ing non-dominated set is referred as a Pareto-optimal set and the front is
referred as the Pareto-optimal front. To formally define a Pareto-optimal
set, consider a set X, which constitutes the entire decision space with so-
lutions x ∈ X. The subset X∗ : X∗ ⊂ X, containing solutions x∗, which
are not dominated by any x in the entire decision space forms a Pareto-
optimal set.

The concept of a Pareto-optimal front and a non-dominated front are
illustrated in Figure 1.2. The shaded region in the figure represents f(x) :
x ∈ X. It is the image in the objective space of the entire feasible region
in the decision space. The bold curve represents the Pareto-optimal front
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for a maximization problem. Mathematically, this curve is f(x∗) : x∗ ∈ X∗

which are all the optimal points for the two objective optimization prob-
lem. A number of points are also plotted in the figure, which constitute
a finite set. Among this set of points, the points connected by broken
lines are the points which are not dominated by any point in the finite
set. Therefore, these points constitute a non-dominated set within the fi-
nite set. The other points which do not belong to the non-dominated set
are dominated by at least one of the points in the non-dominated set.

In the field of Multi-Criteria Decision Making, the terminology slightly
differs. For a given set of points in the objective space, the points which
are not dominated by any other point belonging to the set are referred
as non-dominated points, and their corresponding images in the decision
space are referred as efficient. Based on the definition of weak and strong
domination for a pair of points, the concept of weak efficiency and strong
efficiency can be developed for a point within a set. A point x∗ ∈ X, is
weakly efficient if and only if there does not exist another x ∈ X such
that fi(x) > fi(x

∗) for i ∈ {1, 2, . . . ,M}. Weak efficiency should be dis-
tinguished from strong efficiency which states that a point x∗ ∈ X, is
strongly efficient if and only if there does not exist another x ∈ X such
that fi(x) ≥ fi(x

∗) for all i and fi(x) > fi(x
∗) for at least one i.

The terminologies, efficiency and non-domination, are used differently
in different fields. The researchers in the field of Data Envelopment Anal-
ysis tend to call the points in the objective space as efficient or inefficient.
Some researchers prefer to call only the pareto-optimal points as efficient
or non-dominated points. To avoid any confusion, we shall not be differ-
entiating between efficiency and non-domination and the terminologies
will be used only in reference to points belonging to a set. The two ter-
minologies will be used synonymously for points in the objective space as
well as the decision space, based on domination comparisons performed
in the objective space. If the set in which domination comparisons are
made, encompasses the entire feasible region in the objective space, then
the efficient or non-dominated points for that set will be referred as pareto-
optimal points.

In Figure 1.3, for a set of points {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, the points
{1, 2, 3, 4, 5, 6, 7, 8, 9} are weakly efficient and the points {1, 2, 3, 4, 5} are
strongly efficient. Note that the set of all strongly efficient points is a sub-
set of the set of all weakly efficient points. The point {10} is inefficient as
it is dominated by at least one other point in the set. It should be noted
that the notion of efficiency arises while comparing points within a set.
Here the set in consideration consists of 10 number of points with few as
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Figure 1.3: Explanation for efficiency

strongly efficient. The efficient points are not necessarily Pareto-optimal
as it is obvious from the figure. The frontier ABCD represented in the fig-
ure is a weak Pareto-frontier and the subset BC shown in bold is a strong
Pareto-frontier.

1.3 Decision Making

Even though there are multiple optimal solutions to a multi-objective prob-
lem, there is often just a single solution which is of interest to the decision
maker; this is termed as the most preferred solution. Search and decision
making are two intricacies [18] involved in handling any multi-objective
problem. Search requires an intensive exploration in the decision space to
get close to the optimal solutions; on the other hand, decision making is re-
quired to provide preference information for the non-dominated solutions
in pursuance of the most preferred solution.

In a decision making context the solutions can be compared and or-
dered based on the preference information, though there can be situations
where strict preference of one solution over the other is not obtained and
the ordering is partial. For instance, consider two vectors, x(1) and x(2), in
the decision space having their images, f(x(1)) and f(x(2)), in the objective
space. A preference structure can be defined using three binary relations
�, ∼ and ‖,
• x(1) � x(2) ⇔ x(1) is preferred over x(2),
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• x(1) ∼ x(2) ⇔ x(1) and x(2) are equally preferable,

• x(1) ‖ x(2) ⇔ x(1) and x(2) are incomparable,

where the preference relation, �, is asymmetric, the indifference relation,
∼, is reflexive and symmetric and the incomparability relation, ‖, is ir-
reflexive and symmetric. A weak preference � relation can be established
as �=� ∪ ∼ such that,

• x(1) � x(2) ⇔ x(1) is either preferred over x(2) or they are equally
preferred.

As already mentioned, preference can easily be established for pairs
where one solution dominates the other. However, for pairs which are
non-dominated with respect to each other, a decision is required to estab-
lish a preference. The following are the inferences for preference choice
which can be drawn from dominance:

• If x(1) strongly dominates x(2)⇒ x(1) � x(2),

• If x(1) weakly dominates x(2)⇒ x(1) � x(2).

The binary relations �, ∼ and ‖, are also explained in Figure 1.2 for
a two objective case. Multiple points have been shown in the objective
space and when comparisons are made between solutions in pairs then
one of the binary relations will hold. For example, points 1 and 2 are close
to each other; therefore, a decision maker may be indifferent between the
two points. Points 3 and 4 lie on the extremes and are far away from
each other; therefore, a decision maker may find such points incompara-
ble. When points 2 and 5 are considered, a decision maker is not required
as 2 dominates point 5; it can be directly inferred that a rational decision
maker will prefer 2 over 5.

It is common to emulate a decision maker with an non-decreasing
value function, V (f(x)) = V (f1(x), . . . , fM (x)), which is scalar in nature
and assigns a value or a measure of satisfaction to each of the solution
points. For two solutions, x(1) and x(2),

• If x(1) � x(2) ⇔ V (f(x(1))) > V (f(x(2))),

• If x(1) ∼ x(2) ⇔ V (f(x(1))) = V (f(x(2))).

9



1.4 Evolutionary Multi-objective Optimization (EMO)
Algorithms

An evolutionary algorithm is a generic population based optimization al-
gorithm which uses a mechanism inspired by biological evolution, i.e.,
selection, mutation, crossover and replacement. The common underly-
ing idea behind an evolutionary technique is that, for a given popula-
tion of individuals, the environmental pressure causes natural selection
which leads to a rise in fitness of the population. A comprehensive dis-
cussion of the principles of an evolutionary algorithm can by found in
[16, 24, 12, 1, 25]. In contrast to classical algorithms which iterate from
one solution point to the other until termination, an evolutionary algo-
rithm works with a population of solution points. Each iteration of an
evolutionary algorithm results in an update of the previous population by
eliminating inferior solution points and including the superior ones. In
the terminology of evolutionary algorithms an iteration is commonly re-
ferred to as a generation and a solution point as an individual. A pseudo
code for a generic evolutionary algorithm is provided next:

Step 1: Create a random initial population

Step 2: Evaluate the individuals in the population and assign fitness

Step 3: Repeat the generations until termination

Sub-step 1: Select the most fit individuals (parents) from the popu-
lation for reproduction

Sub-step 2: Produce new individuals (offsprings) through Crossover
and Mutation operators

Sub-step 3: Evaluate the new individuals and assign fitness

Sub-step 4: Replace low fitness members with high fitness members
in the population

Step 4: Output

Along with the pseudo code presented above, a flowchart for a general
evolutionary algorithm has also been presented in Figure 1.4. A pool of
individuals is generated by randomly creating points in the search space
which is called the population. Each member in the population is evalu-
ated and assigned a fitness. For instance, while solving a single objective
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Figure 1.4: A flowchart for a general evolutionary algorithm

maximization problem, a solution point with a higher function value is
better than a solution point with lower function value. Therefore, in such
cases, the individual with higher function value is assigned a higher fit-
ness. The function value can itself be treated as a fitness value in this case,
or they can be transformed through a quality function to give the fitness
measure. Similarly, for a multi-objective maximization problem a solution
point which dominates another solution point is considered to be better.
There is also a measure for crowdedness [6] which is used for individuals
which cannot be ordered based on the domination principle. A multi-
objective evolutionary procedure, therefore, assigns fitness to each of the
solution points based on their superiority over other solutions points in
terms of domination and crowdedness. Different algorithms use different
approaches to assign fitness to an individual in a population. Once an ini-
tial population is generated and the fitness is assigned, few of the better
candidates from the population are chosen as parents. Crossover and mu-
tation is performed to generate new solutions. Crossover is an operator
applied to two or more selected individuals and results in one or more
new individuals. Mutation is applied to a single individual and results in
one new individual. Executing crossover and mutation leads to offsprings
that compete, based on their fitness, with the individuals in the popula-
tion, for a place in the next generation. An iteration of this process leads
to a rise in the average fitness of the population.

Using the described evolutionary framework, a number of algorithms
have been developed which successfully solve a variety of optimization
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problems. Their strength is particularly observable in handling multi-
objective optimization problems and generating the entire Pareto front.
The aim of an evolutionary multi-objective optimization (EMO) algorithm
is to produce solutions which are (ideally) Pareto-optimal and uniformly
distributed over the entire Pareto-front so that a complete representation
is provided. In the domain of EMO algorithms these aims are commonly
referred to as convergence and diversity. The researchers in the EMO com-
munity have so far regarded an a posteriori approach to be an ideal ap-
proach where a representative set of Pareto-optimal solutions are found
and then a decision maker is invited to select the most preferred point.
The assertion is that only a decision maker who is well informed is in a
position to take a right decision. A common belief is that decision mak-
ing should be based on complete knowledge of the available alternatives;
current research in the field of EMO algorithms has taken inspiration from
this belief. Though the belief is true to a certain extent, there are inher-
ent difficulties associated with producing the entire set of alternatives and
performing decision making thereafter, which many a times renders the
approach ineffective.

1.5 Integrating Search and Decision Making

Search and Decision Making can be combined in various ways to generate
procedures which can be classified into three broad categories [19]. Each
of the approaches to integrate the search and decision making will be dis-
cussed in the following sub-sections.

1.5.1 A posteriori Approach

In this approach, after a set of (approximate) Pareto-optimal solutions are
obtained using an optimization algorithm, decision making is performed
to find the most preferred solution. Figure 1.5 shows the process followed
to arrive at the final solution which is most preferred to a decision maker.
This approach is based on the assumption that a complete knowledge of
all the alternatives helps in taking better decisions. The research in the
field of evolutionary multi-objective optimization has been directed along
this approach, where the aim is to produce all the possible alternatives for
the decision maker to make a choice. The community has largely ignored
decision making aspects, and has been striving towards producing all the
possible optimal solutions.

There are enormous difficulties in finding the entire Pareto-optimal
front for a high objective problem. Even if it is assumed than an algo-
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rithm can approximate the Pareto-optimal front for a high objective prob-
lem with a huge set of points, the herculean task of choosing the best point
from the set still remains. For two and three objectives where the solu-
tions in the objective space could be represented geometrically, making
decisions might be easy (though even such an instance could be, in reality,
a difficult task for a decision maker). Imagine a multi-objective problem
with more than three objectives for which an evolutionary multi-objective
algorithm is able to produce the entire front. The front is approximated
with high accuracy and high number of points. Since a graphical represen-
tation is not possible for the Pareto-points, how is a decision maker going
to choose the most preferred point? There are of course decision aids avail-
able, but the limited accuracy with which the final choice could be made
using these aids, questions the purpose of producing the entire front with
a high accuracy. Binary comparisons can be a solution to choose the best
point out of a set, but this can only be utilized if the points are very few
in number. Therefore, offering the entire set of Pareto-points should not
be considered as a complete solution to the problem. However, the diffi-
culties related to decision making have been realized by EMO researchers
only after copious research has already gone towards producing the entire
Pareto-front for many objective problems.

Computational

Resources Solutions

Pareto−optimal

Decision

Maker

Most Preferred

Solution

Minimize/Maximize

F(x) = (f1(x), f2(x))

Figure 1.5: A posteriori approach.
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1.5.2 A priori Approach

In this approach, decision making is performed before the start of the al-
gorithm, then the optimization algorithm is executed by incorporating the
preference rules, and the most preferred solution is identified. Figure 1.6
shows the process followed to arrive at the most preferred solution. This
approach has been common among MCDM practitioners, who realized
the complexities involved in decision making for such problems. Their ap-
proach to the problem is to ask simple questions from the decision maker
before starting the search process. The initial queries usually include the
direction of search, aspiration levels for the objectives, or preference infor-
mation for one or more given pairs. After eliciting such information from
the decision maker, the multi-objective problem is usually converted into
a single objective problem. One of the early approaches, that is, Multi-
Attribute Utility Theory (MAUT) [21] used the initial information from
the decision maker to construct a utility function which reduced the prob-
lem to a single objective optimization problem. Scalarizing functions (for
example, [32]) are also commonly used by the researchers in this field to
convert a multi-objective problem into a single objective problem. Other
techniques which are used to elicit information from a decision maker can
be found in the review [23] on multi-criteria decision support.

Since information is elicited towards the beginning, the solution ob-
tained after executing the algorithm is usually a satisfactory solution and
may not be close to the most preferred solution. Moreover, the decision
makers’ preferences might be different for solutions close to the Pareto-
optimal front and the initial inputs taken from them may not confirm it.
Therefore, it will be difficult to get close to the actual solution which con-
firms to the requirements of the decision maker. The approach is also
highly error prone as even slight deviations in providing preference in-
formation at the beginning may lead to entirely different solutions. To
avoid the errors due to deviations, researchers in the EMO field used the
approach in a slightly modified way. They produced multiple solutions in
the region of interest to the decision maker [2, 11, 31, 17], instead of a sin-
gle solution, therefore, giving choices to the decision maker at the end of
the EMO search. However, researchers in the MCDM field recognized the
enormous possibilities which could lead to erroneous results and therefore
there exists a different school of thought which focusses on interactive ap-
proaches.
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Figure 1.6: A priori approach.

1.5.3 Interactive Approach

In this approach, the decision maker interacts with the optimization algo-
rithm and has multiple opportunities to provide preference information
to the algorithm. The interaction between the decision maker and the op-
timization algorithm continues until a solution acceptable to the decision
maker is obtained. The process is represented in Figure 1.7. Based on the
type of interaction of the decision maker with the optimization algorithm,
a variety of interactive approaches can exist. The dissertation discusses a
special kind of an interactive approach referred as Progressively Interac-
tive Approach.

Progressively Interactive Approach

A progressively interactive approach involves elicitation of preference in-
formation periodically from a decision maker. While the optimization al-
gorithm is underway, preference information is taken at the intermediate
steps of the algorithm, and the algorithm proceeds towards the most pre-
ferred point. This is a more effective integration of the search and decision
making process, as both work simultaneously towards the exploration of
the solution.

This approach overcomes the limitations of the previously discussed
approaches as it allows actual interaction of the decision maker with the
algorithm. The algorithm takes decision maker’s preferences into account
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Figure 1.7: Interactive approach.

after every small step it takes towards the Pareto-optimal front. The ap-
proach offers a major advantage, as it allows the decision makers to change
their preference structure as the algorithm progresses and more solutions
are explored. Though the algorithm allows the decision maker to be seated
in the driver’s seat and have a greater control over the algorithm, it does
not get mis-directed by a few errors which any human decision maker
is prone to make. A progressively interactive approach with small step
sizes (or frequent elicitation) is guaranteed to take a decision maker very
close to the most preferred solution, as shown in the dissertation. The
dissertation suggests two procedures which use a progressively interac-
tive approach. In the first procedure, the decision maker value function
is approximated after each step, and the second procedure constructs a
polyhedral cone after each step. The progressively interactive approach
is promising, as it avoids the drawbacks present in the other approaches.
Some previous work which has been done in a similar vein in the MCDM
field are [15, 33]. Little work [26, 13, 20, 3] on progressively interactive ap-
proach has been done in the field of EMO and calls for more contributions
from researchers.

The iterations of a simple algorithm using a progressively interactive
approach has been shown in the Figure 1.8. The decision maker is pre-
sented with a set of points and is expected to choose one of the points to
start the search. The decision maker picks the point P1. Based on answers,
to the questions posed to the decision maker, a direction D1 to perform
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the search is chosen. A scalarizing function is formulated based on the
information and a search is performed with a fixed number of function
evaluations (say nf ). This leads to a progress from point P1 to P2. At this
instant, another decision maker call is made and more questions are asked
from the decision maker. Based on the answers provided, the search di-
rection is modified to D2, and another scalarizing function is formulated
based on point P2 and new direction D2. With nf number of function eval-
uations, further progress is made from P2 to P3. Another decision maker
call is executed and the process is repeated until no further progress is
possible. In the figure it is shown that a satisfactory point is found in four
decision maker calls. The point finally achieved by the algorithm is very
close to the most preferred point. If the step size (P1 to P2, P2 to P3, P3 to
P4 and P4 to P5 are the steps) of the algorithm is reduced, an even higher
accuracy could be obtained, but with a higher number of decision maker
calls. This procedure has potential to get close to the most preferred point
which is, otherwise, difficult in other approaches.

f2

f1

Decision Making Instances

Final
Solution

Most
Preferred

Point

P1

P4
P2 P3

D1

D2

D3

D4
P5

Figure 1.8: Progressively Interactive Approach.

1.6 Motivation

As already pointed out, the target of the EMO algorithms has been to find a
set of well-converged and well diversified Pareto-optimal solutions. Once
the optimization process is started there is no interaction involved with
the decision maker until a set of representative Pareto solutions are found.

17



However, it is never guaranteed that a set of representative Pareto-optimal
solutions can be obtained. There can be difficulties involved, for example,
the algorithm is unable to converge to the optima, or the entire Pareto-
front is not represented by the set of solutions. Though EMO procedures
have shown their efficacy in solving multi-objective problems, they are not
equipped to handle a high number of objectives. The challenges posed by
high objective problems make the evolutionary multi-objective algorithms
suffer in convergence as well as maintaining diversity. Moreover, the deci-
sion making task also becomes demanding when the non-dominated front
cannot be represented geometrically. The difficulties necessitate coming
up with procedures which can effectively handle the challenges offered
by high objective optimization problems.

As there is just a single point which is most preferred to a decision
maker, and finding the entire Pareto-optimal front has its own difficulties,
there is motivation to aim for the most preferred solution by judiciously
using search and decision making. The manual and the computational re-
sources available can be effectively mobilized if the single point of interest
is perpetuated as the target right from the start of the optimization pro-
cess. It also alleviates the problems associated with generating the entire
Pareto-optimal set. Therefore, it would be advisable to begin with the ex-
ploration along with inputs from a decision maker and advance towards
the region or point of interest. Moreover, the conjugation is expected to
find the most preferred solution with less computational expense and a
high accuracy for difficult problems.

1.7 Summary of Research Papers

The dissertation consists of five papers which concern multi-objective op-
timization in general, and specifically deal with progressively interactive
methods and bilevel optimization. The first paper is about a progressively
interactive methodology which uses an implicitly defined value function
and the second paper is an extension of the work. The third paper pro-
poses a different progressively interactive methodology for the decision
maker to interact with the algorithm and provide preferences. The fourth
paper focusses on the less explored area of bilevel multi-objective opti-
mization, and takes the domain a step forward by developing a generic
evolutionary algorithm to handle the problem and also proposing test
problems to evaluate the procedure. The fifth and final paper develops the
previous paper by incorporating decision making in the suggested algo-
rithm for bilevel multi-objective optimization. A short summary for each
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of the papers is provided in this section.

1.7.1 An Interactive Evolutionary Multi-Objective Optimization
Method Based on Progressively Approximated Value Func-
tions

The first paper [10] introduces a preference based optimization algorithm
where decision making is incorporated in an evolutionary multi-objective
search procedure. The algorithm requires preference based information
to be elicited from the decision maker after every few generations. The
decision maker is expected to order a given set of alternatives (five in
number) according to preferences and the information is used to model
a value function which emulates the decision maker and drives the algo-
rithm towards more preferred solutions in the subsequent generations. A
polynomial value function has been proposed which is quasi-concave in
nature and is used to map the decision maker’s preferences by optimally
setting the parameters. The study suggests a simple optimization problem
which is solved to determine the optimal parameters of the value function.
The search of the evolutionary multi-objective optimization algorithm is
focussed in the region of decision maker’s interest by modifying the dom-
ination criteria based on the preference information. Further, a termina-
tion criterion based on preferences is also suggested. The methodology is
evaluated on two to five objective unconstrained test problems, and the
computational expense and decision maker calls required to arrive at the
final solution are reported. The study also presents results obtained by
emulating a decision maker who is prone to make errors while providing
preference information.

1.7.2 Progressively Interactive Evolutionary Multi-Objective Op-
timization Method Using Generalized Polynomial Value
Functions

The second paper [28] is an extension of the first paper where the poly-
nomial value function has been augmented into a generalized polynomial
value function. This equips the approach to fit a wider variety of quasi
concave preference information. Further, the value function fitting pro-
cedure is tested on other commonly used value functions like the Cobb-
Douglas value function and the CES value function, and the generality
of the methodology is shown. Results are computed for constrained test
problems up to five objectives. In this study the efficacy of the algorithm
is also evaluated when the decision maker provides preference informa-
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tion in terms of partial ordering of the alternatives. In such cases the value
function is generated by taking into account the indifference of the deci-
sion maker towards a pair of alternatives.

1.7.3 An Interactive Evolutionary Multi-Objective Optimization
Method Based on Polyhedral Cones

The third paper [29] suggests a different progressively interactive algo-
rithm by eliminating the requirement of a value function to progress to-
wards the most preferred solution. This methodology accepts preference
information in a different way during the intermediate steps of the algo-
rithm and explores the region of interest. In this methodology the decision
maker is expected to choose the best point from a provided set of alterna-
tives. The number of alternatives shown to the decision maker is usually
much higher than the number presented in the value function approach.
However, in this case ordering of the points is not expected and the best
alternative is chosen from a presented set using a visually interactive de-
cision aid. The value function is replaced by a polyhedral cone which is
constructed from a small set of points consisting of the best solution cho-
sen by the decision maker and certain other solutions picked up by the
algorithm. The polyhedral cone is used to modify the domination prin-
ciple in order to focus more on the region of interest. The termination
criterion is retained from the previous approach and the algorithm is once
again evaluated on two to five objective test problems.

1.7.4 An Efficient and Accurate Solution Methodology for Bilevel
Multi-Objective Programming Problems Using a Hybrid
Evolutionary-Local-Search Algorithm

After successfully handling high objective problems in the previous pa-
pers, the fourth paper [9] deals with another challenging domain of multi-
objective optimization, i.e. the bilevel multi-objective optimization prob-
lem. Bilevel optimization problems involve an upper and lower level of
optimization tasks where an individual at the upper level can be feasible
only if it is an optimal solution to a lower level problem. These prob-
lems are commonly found in practice but have not extensively been pur-
sued by researchers primarily because of the complexity involved in han-
dling them. Bilevel single objective optimization has received some at-
tention but bilevel multi-objective optimization has largely been an un-
touched domain of optimization practitioners. In this study, the past key
research efforts are highlighted and insights are drawn for solving such
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problems. The study discusses some of the intricate issues involved in
handling bilevel multi-objective optimization problems. A number of test
problems are also developed and a hybrid evolutionary-cum-local-search
technique is proposed to handle the problems. The proposed solution
methodology is made self adaptive such that the parameters of the algo-
rithm need not be supplied by the user. All the test problems are two
objective problems at both levels and the algorithm aims the entire front
which leads to high number of function evaluations. The approach is once
again a posteriori where decision making is performed after finding the
entire front. Once a generic algorithm for handling bilevel multi-objective
problem is available, in the next paper, it is augmented to interact with
a decision maker and seek for the most preferred solution instead of the
entire front.

1.7.5 Bilevel Multi-Objective Optimization Problem Solving Us-
ing Progressively Interactive EMO

In the fifth paper [27] the hybrid bilevel evolutionary multi-objective op-
timization algorithm has been extended to a progressively interactive al-
gorithm such that the decision maker is able to interact during the search
process and the most preferred solution could be obtained quickly and
with much higher accuracy. The progressively interactive approach using
the value function described in the first two papers is used in this algo-
rithm at the upper level which allows decision maker preferences to be
incorporated. Incorporating decision making at the upper level leads to
six to ten times savings in function evaluations for all the considered test
problems and is able to produce a solution much closer to the true solu-
tion. The algorithm, however, accepts decision maker preferences only at
the upper level during the search process. Decision making at both lev-
els during the search process opens an interesting area for researchers to
pursue. Accepting preference information at both levels becomes a sophis-
ticated problem, as it could lead to a conflict; decision maker at one of the
levels should be given priority, or a mutually agreeable solution should be
searched. This scenario has not been studied and does not fall in the realm
of this dissertation.
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An Interactive Evolutionary Multi-Objective
Optimization Method Based on Progressively

Approximated Value Functions
Kalyanmoy Deb, Ankur Sinha, Pekka Korhonen and Jyrki Wallenius

Abstract— This paper suggests a preference based method-
ology, which incorporates an evolutionary multi-objective op-
timization algorithm to lead a decision-maker to the most
preferred solution of her or his choice. The progress towards the
most preferred solution is made by accepting preference based
information progressively from the decision maker after every
few generations of an evolutionary multi-objective optimization
algorithm. This preference information is used to model a strictly
monotone value function, which is used for the subsequent
iterations of the EMO algorithm. In addition to the development
of the value function which satisfies DM’s preference informa-
tion, the proposed progressively interactive EMO (PI-EMO-VF)
approach utilizes the constructed value function in directing
EMO algorithm’s search to more preferred solutions. This is
accomplished using a preference-based domination principle and
utilizing a preference based termination criterion. Results on
two to five-objective optimization problems using the progres-
sively interactive NSGA-II approach shows the simplicity of the
proposed approach and its future promise. A parametric study
involving the algorithm’s parameters reveals interestinginsights
of parameter interactions and indicates useful parameter values.
A number of extensions to this study are also suggested.

Index Terms— Evolutionary multi-objective optimization al-
gorithms, multiple criteria decision-making, interactive multi-
objective optimization algorithm, sequential quadratic program-
ming, preference based multi-objective optimization.

I. I NTRODUCTION

In evolutionary multi-objective optimization (EMO), the
target has usually been to find a set of well-converged and
well-diversified Pareto-optimal solutions [1], [2]. Once an
optimization run is started, usually no further information is
elicited from the decision maker (DM). In anaposteriori EMO
approach, after a set of approximate Pareto-optimal solutions
has been found, preference information is elicited from a DM
to choose the most preferred solution. As discussed elsewhere
[3], [4], EMO procedures are not particularly applicable for
handling a large number of objectives (practically, more than
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three). Firstly, the usual domination principle allows a majority
of the population members to become non-dominated to each
other, thereby not allowing much room for introducing new
solutions in a finite population. This slows down the progress
of an EMO algorithm. Secondly, the representation of a high-
dimensional Pareto-optimal front requires an exponentially
large number of points, thereby requiring a large population
size in running an EMO procedure. Thirdly, the visualization
of a high-dimensional front becomes a non-trivial task for
decision-making purposes.

To alleviate the above problems associated with the apos-
teriori EMO approach, some EMO researchers have adopted
a particular multiple criteria decision-making (MCDM) ap-
proach (apriori approach) and attempted to find a crowded
set of Pareto-optimal points near the most preferred solution.
Since the focus is now on finding a small region on the Pareto-
optimal front, despite the high dimensionality of the problem,
some of the difficulties mentioned above get alleviated and an
EMO algorithm becomes suitable again. The cone-domination
based EMO [5], biased niching based EMO [6], reference
point based EMO approaches [7], [8], the reference direction
based EMO [9], the light beam approach based EMO [10]
are a few attempts in this direction. Also, Greenwood et al.
[11] derived a linear value function from a given ranking of
a few alternatives and then employed an EMO algorithm to
find points which are preferred with respect to the constructed
linear value function. In Greenwood’s method, the preference
information is used prior to employing the EMO algorithm,
thus this qualifies as another apriori method. For a recent
survey, see [12]. These studies have clearly shown that it is
difficult for an EMO algorithm alone to find a good spread
of solutions in 5 or 10-objective problems. When solutions
around a specific Pareto-optimal point (or around a region)
are the target, MCDM-based EMO approaches suggested in
these studies can find satisfactory solutions. However, in these
approaches, the decision maker interacts only at the beginning
of an EMO run. The decision maker provides preference
information such as one or more reference point(s), one or
more reference directions, one or more light beam specifics,
etc. An EMO algorithm then targets its population to converge
near the specific solutions on the Pareto-optimal front.

The above MCDM-based EMO approaches can also be used
in an iterative manner with a DM, similar to the way suggested
elsewhere [13], [14]. In asemi-interactive EMO approach,
some preference information (in terms of reference points,
reference directions or other means) can be obtained from the

30



DM and an MCDM-based EMO algorithm can be employed to
find a set of preferred Pareto-optimal solutions. Thereafter, a
few representative preferred solutions can be shown to the DM
and a second set of preference information in terms of new
reference points or new reference directions can be obtained
and a second MCDM-based EMO run can be made. This
procedure can be continued till a satisfactory solution is found.
This principle has been utilized with the reference direction
[9] and light beam approaches [10] to solve some engineering
design problems.

However, the integration of preference information within
an EMO algorithm can be made in a more effective manner,
as shown in a recent study [15]. Instead of keeping the DM
waiting, to complete an EMO run (either to find a complete
Pareto-optimal front in the aposteriori approach or to find a
preferred set of Pareto-optimal solutions based on an MCDM
principle in an apriori approach), the DM can be involved
to periodically provide preference information as the EMO
iterations are underway. This will be a less time-consuming
and simultaneously more flexible approach than the previously
suggested ones. In such aprogressively interactive EMO
approach using value functions (PI-EMO-VF), the DM is
allowed to modify her/his preference structure as new solutions
evolve. Since the DM gets more frequent chances to provide
new information, the overall process is more DM-oriented.
The DM may feel more in-charge and more involved in the
overall optimization-cum-decision-making process.

In this paper, we have suggested a simplistic framework
of a PI-EMO-VF approach based on a couple of earlier
progressive multi-criterion decision-making approaches[16],
[17]. Periodically, the DM is supplied with a handful of
currently non-dominated points and is asked to rank the
points from best to worst. From here on we refer to this
instance as a ‘DM call’. Based on this preference information,
an optimization problem is formulated and solved to find
a suitable value function, which optimally captures DM’s
preference information. From this iteration till the next DM
call, the derived value function is utilized to drive the EMO
algorithm in major ways: (i) in determining termination of
the overall procedure and (ii) in modifying the domination
principle, which directly affects EMO algorithm’s convergence
and diversity-preserving operators. The PI-EMO-VF concept is
integrated with the well-known NSGA-II algorithm [18]. The
working of the algorithm is demonstrated on four problems
involving two to five objectives. A parameter sensitivity study
is also performed to analyze the influence on working of the
overall algorithm. Thereafter, the sensitivity of the proposed
PI-NSGA-II-VF procedure on the inconsistencies in decision-
maker responses is studied. Finally, a number of important and
immediate future studies are listed and conclusions are drawn.

II. PAST STUDIES ON PROGRESSIVELY INTERACTIVE

METHODS

There exist a plethora of studies involving aposteriori and
apriori EMO approaches. Most methodologies borrow the core
decision-making idea from the MCDM literature and integrate
it with an EMO algorithm. Since the focus of this study is

not to discuss aposteriori or the apriori EMO approaches,
but to concentrate on procedures requiring more frequent
involvements of a DM with an EMO algorithm, we do not
provide a review of aposteriori and apriori approaches, except
to encourage the readers to look at a recent survey [12].

Towards the methodologies involving a progressive use
of preference information by involving a decision-maker in
an evolutionary multi-objective optimization framework,there
are not many studies yet. Some recent studies periodically
presented to the DM one or more pairs of alternative points
found by an EMO algorithm and expected the DM to provide
some preference information about the points. The information
is then used to derive a weighted value function, which is
linear. Phelps and Köksalan [19] optimized the constructed
linearly weighted sum of objectives in subsequent iterations
using an evolutionary algorithm. In their technique, if the
actual value function is non-linear, the method may not be able
to find a linear approximation and may generate an infeasible
solution. This creates a need to reformulate the optimization
problem by deleting constraints one at a time. Fowler et al.
[20] have developed an interactive EMO approach based on
the idea of using convex preference cones. They use such
cones to partially order the population members and further
use the order as the fitness function. They have tested their
algorithm on multi-dimensional (upto 4 dimensions) knapsack
problems. Jaszkiewicz [21] selected a set of linear value
functions (based on weighted sum of objectives) from a set
of randomly created linear value functions, conforming to the
preference information supplied by the DM by pairwise com-
parisons. EMO algorithm’s search is then continued with these
selective weight vectors. Although the assumption of linear
value functions facilitates a quick and easy determinationof
the value function representing DM’s preference information,
linear value functions have limitations in handling non-linear
problems, particularly where the most preferred point lieson
a non-convex part of the Pareto-optimal front. Nevertheless,
each interactive EMO idea suggested in the above-mentioned
studies remains as the main hallmark of these studies.

Branke et al. [15] implemented the GRIP [22] method-
ology in which the DM compares pairs of alternatives and
the preference information thus obtained is used to find all
possible compatible additive value functions (not necessarily
linear). An EMO algorithm (NSGA-II) then used a preference-
based dominance relationship and a preference-based diversity
preserving operator to find new solutions for the next few
generations. Their procedure recommended to make a single
pair of comparison after every few generations in order to
develop the preference structure. Since this procedure gener-
ates not enough preference information after every call of the
DM, the EMO algorithm is likely to keep a wide variety of
points from across the Pareto-optimal front in the population.
The authors have demonstrated their procedure on a two-
objective test problem. To obtain a narrow range of points
close to the true preferred Pareto-optimal point, they had to
call the DM at every generation of the EMO algorithm. It is
not clear how the procedure will perform in higher objective
problems, where dominance-based approaches are too slow
and a reasonably high level of preference information would
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be needed to make a fast and focused search using an EMO
algorithm. However, the use of preference information in EMO
algorithm’s operations remains a significant contributionof
this study.

Korhonen, Moskowitz and Wallenius [16] suggested a pro-
gressive, interactive multi-objective optimization algorithm in
which the DM is presented with a set of alternatives and is
asked to make a set of binary comparisons of the alternatives.
From this information, a linear programming problem is solved
to identify a class of value functions in which the DM’s prefer-
ence information falls. They considered three classes of value
functions for further processing: (i) linear, (ii) quasi-concave
and (iii) no pre-assumed form. Based on this classification,a
dominance structure is defined and either by search or from an
existing sample of alternatives, the expected probabilities of
finding new and better alternatives are determined. If thereis a
reasonable probability of finding better points, the algorithm is
continued, otherwise the currently judged most preferred point
is reported. An extension of this study [17] used a sampling
based statistical procedure to compute expected probabilities
of finding better solutions. It is clear that the algorithm islikely
to perform better if the sampling procedure is replaced by an
evolutionary multi-objective optimization algorithm forfinding
new points. After every decision-making event, an EMO algo-
rithm can be employed for a few generations to find a better
population of points, if available. Motivated by this studyand
recognizing the need for a simple interactive preference-based
approach involving a DM in an EMO framework, we launch
this particular study.

III. PROPOSEDPROGRESSIVELYINTERACTIVE EMO
USING VALUE FUNCTIONS (PI-EMO-VF)

In this section, we propose an interactive EMO algorithm,
where an approximate value function is generated progres-
sively after every few generations. Here, we study optimization
problems of the following form:

Maximize {f1(x), f2(x), . . . , fM (x)},
subject to x ∈ S, (1)

wherex is a solution vector,S denotes the feasible search
space andfi(x) is the i-th objective function. Usually, the
objective functions are in conflict with each other.

A standard EMO algorithm (such as NSGA-II [18], SPEA2
[23] and others) works with a population of points in each
iteration. A sparsed set of non-dominated points is preferred
in a population so that the algorithm progresses towards the
Pareto-optimal front and aims at finding a representative set
over the entire front. However, in our proposed approach,
we are interested in utilizing DM’s preference information
repeatedly as the algorithm progresses and in directing the
search on the corresponding preferred region of the Pareto-
optimal front iteratively.

For this purpose, after everyτ generations of an EMO
algorithm, we provide the decision-maker withη (≥ 2) well-
sparsed non-dominated solutions from the current set of non-
dominated points and expect the decision-maker to provide a
complete or partial preference information about superiority
or indifference of one solution over the other. In an ideal

situation, the DM can provide a complete ranking (from best
to worst) of these solutions, but partial preference information
is also allowed. In the event that the DM is not able to
declare any preferences, the algorithm has the back-tracking
ability in search of new and preferred solutions. With the
given preference information, we then construct a strictly
increasing polynomial value function. The construction proce-
dure involves solving a single-objective optimization problem.
Till the next τ generations, we use the constructed value
function to direct the search for additional such preferred
solutions. A termination condition is also set up based on
the expected progress, which can be made with respect to the
constructed value function. In the following, we provide a step-
by-step procedure of the proposed progressively interactive
EMO using value function (PI-EMO-VF) methodology:

Step 1: Initialize a populationPar0 and set iteration counter
t = 0. SetParold = Par0. Domination of one solution
over another is defined based on the usual definition of
dominance [24] and an EMO algorithm is executed forτ
iterations. The value oft is incremented by one after each
iteration.

Step 2: If ( t mod τ = 0), cluster the current non-dominated
front to chooseη widely distributed points; otherwise,
proceed to Step 5.

Step 3: Obtain decision-maker’s preferences onη points. If
the DM is unable to declare a single preferred point in all
pairwise comparisons, setPart = Parold and proceed to
Step 5 with usual domination principle in EMO operators;
otherwise setParold = Part and proceed with the follow-
ing operations. Construct a value functionV (f ) from this
information by solving an optimization problem (VFOP),
described in Section III-A. If no feasible value function is
found satisfying all DM’s preference information, proceed
to Step 5 and use the usual domination principle in EMO
operators.

Step 4: A termination check (described in Section III-B) is
performed based on the expected improvement in solutions
from the currently judged best solution based on the
value functionV (f). If the expected improvement is not
significant (with respect to a parameterds, defined later),
the algorithm is terminated and the current best solution is
chosen as the final outcome.

Step 5: The parent populationPart is used to create a new
offspring populationOfft by using a modified domination
principle (discussed in Section III-C) based on the current
value functionV (f ) and EMO algorithm’s search opera-
tors.

Step 6: PopulationsPart andOfft are used to determine a
new populationPart+1 using the current value function
and EMO algorithm’s diversity preserving operator. The
iteration counter is incremented ast ← t + 1 and the
algorithm proceeds to Step 2.

The above is a generic progressively interactive PI-EMO-VF
procedure, which can be combined with any existing EMO
algorithm in Step 1 and subsequently in Steps 5 and 6. The
PI-EMO-VF algorithm expects the user to set a value ofτ , η
andds.

32



In Step 2, points in the best non-dominated front are
considered and the k-mean clustering algorithm [1], [23] can
be used to identifyη well-diversified points in the objective
space. Other multi-criteria decision making methodologies
[25] of selecting points from a set of non-dominated points
may also be used.

We now provide the details for the specific procedures used
in this study for Steps 3 to 6.

A. Step 3: Decision Maker’s Preference Information and Con-
struction of a Polynomial Value Function

At an instance of a DM call,η points are presented to the
DM. The DM is expected to provide some preference infor-
mation. One of the usual ways of providing such information
is to make pairwise comparisons of given points and suggest
one of the two scenarios: (i) a solution is more preferred over
the other or (ii) both solutions are incomparable. Based on
such preference statements, it is expected that for some pairs
(i, j) of points, thei-th point is found to be preferred over
the j-th point, thereby establishingPi ≻ Pj and for some
pairs (i, j), they are incomparable, establishing (Pi ≡ Pj). If
the DM is unable to provide a clear preference information
(Pi ≻ Pj) for all pairs, it means that the current set of trade-
off solutions are too diverse or the DM is not satisfied with
any of these solutions. The algorithm then back-tracks to the
previous population for which the DM could make a decisive
action and instead of using the modified domination principle,
the usual domination principle is used to advance the search
process. However, in general, it is expected that the DM is able
to establish at least one pair satisfyingPi ≻ Pj . Thus, at the
end of DM’s preference elicitation task, usually we are likely
to have at least one point which lies in the best category and at
least one point which lies in the second-best category. In the
‘complete ranking’ situation, the DM may provide a complete
ranking of η solutions (say,P1 being the best,P2 being the
second-best and so on tillPη being the least preferred point).

Given such preference information, the task is to construct
a polynomial value function satisfying the given preference
structure. A similar task has been performed for linear utility
functions elsewhere [26], [16]. Here, we construct a simple
mathematical value function to capture the given preference
information ofη points.

1) Polynomial Value Function for Two Objectives:A value
function is formed based on preference information provided
by the decision maker. We first describe the procedure for two
objectives and then present the procedure for the generic case.
The structure of the value function is fixed as follows:

V (f1, f2) = (f1 + k1f2 + l1)(f2 + k2f1 + l2),
where f1, f2 are the objective functions
and k1, k2, l1, l2 are the value function parameters

(2)
The value functionV , for two objectives shown above, is

considered to be the product of two linear functionsS1 :
R2 → R and S2 : R2 → R. The parametersk1, k2,
l1 and l2 are unknown and must be determined from the
preference information concerningη points supplied by the
decision-maker (DM). For this purpose, we solve the following

optimization problem (VFOP):

Maximize ǫ,
subject to V is non-negative at every pointPi,

V is strictly increasing at every pointPi,
V (Pi)− V (Pj) ≥ ǫ, for all (i, j) pairs

satisfyingPi ≻ Pj ,
|V (Pi)− V (Pj)| ≤ δV , for all (i, j) pairs

satisfyingPi ≡ Pj .
(3)

The first two sets of constraints ensure that the derived value
function is non-negative and strictly increasing at allη points.
The value function can always be shifted by adding a constant
term to the function. Without loss of generality, we construct
a value function which assigns a positive value to all the
data points. These conditions satisfy the quasi-concavityof the
value function – a desired property suggested in the economics
literature [27]. This property in fact corresponds with the
convex towards the origin indifference contours. The thirdand
fourth sets of constraints ensure that the preference ordersup-
plied by the decision maker is maintained for respective pairs.
In order to implement the first two constraint sets, we first
sketch the value functionV (f1, f2) with the desired properties
of being non-negative and strictly increasing. Figure 1 shows
a pair of straight lines represented byV (f1, f2) = 0 at which
either (or both) of the two termsS1 or S2 is zero. However, if
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Fig. 1. The proposed value function.

the chosen pointsPi (i = 1, . . . , η) are such that bothS1 and
S2 are non-negative at these points, the first set of constraints
will be satisfied. A generic iso-value curve for whichSm > 0
(for m = 1, 2) is also depicted in the figure. Thus, the first set
of constraints can be satisfied by simply consideringSm ≥ 0
for m = 1, 2. To impose strictly increasing nature of the value
function at the chosen points, we can use∂V/∂fi ≥ 0 for both
objectives. For the two-objective case, these two conditions
yield S2 + k2S1 ≥ 0 andk1S2 + S1 ≥ 0.

The fourth constraint set takes into account all pairs of
incomparable points. For such pairs of points, we would like
to restrict the absolute difference between their value function
values to be within a small range (δV ). To eliminate having
another parameter, we may like to useδV = 0.1ǫ, such that it
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is at most 10% of the maximum difference in value functions
between≻-class of points.

A little thought will reveal that the above optimization
problem attempts to find a value function for which the
minimum difference in the value function values between
the ordered pairs of points is maximum. Considering all the
expressions, we have the following optimization problem:

Maximize ǫ,
subject to Sm(Pi) ≥ 0, i = 1, 2, . . . , η, andm = 1, 2,

S2(Pi) + k2S1(Pi) ≥ 0, i = 1, 2, . . . , η,
k1S2(Pi) + S1(Pi) ≥ 0, i = 1, 2, . . . , η,
V (Pi)− V (Pj) ≥ ǫ, for all (i, j) pairs

satisfyingPi ≻ Pj ,
|V (Pi)− V (Pj)| ≤ δV , for all (i, j) pairs

satisfyingPi ≡ Pj .
(4)

Figure 2 considers five (η = 5) hypothetical points (P1 =
(3.5, 3.7), P2 = (2.6, 4.0), P3 = (5.9, 2.2), P4 = (0.0, 6.0),
andP5 = (15.0, 0.5)) and a complete ranking of the points (P1

being best andP5 being worst). Due to a complete ranking, we
do not have the fourth constraint set. The solution to the above
optimization problem results in a value function, the contours
(iso-utility curves) of which are drawn in the figure. The value
function obtained after the optimization is as follows:

V (f1, f2) = (f1 + 4.3229)(f2 + 0.9401).

The asymptotes of this value function are parallel tof1 and
f2 axes. The optimized value ofǫ is 2.0991. It is interesting to
note the preference order and other restrictions are maintained
by the obtained value function.
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Fig. 2. Value function found by optimization.

Interestingly, if the DM provides a different preference
information:P1 is preferred overP2, P2 is preferred overP3

and no preference exists amongP3, P4 and P5, a different
value function will be obtained. We re-optimize the resulting
problem with the above preference information on the same
set of five points used in Figure 2 and obtain the following
value function:

V (f1, f2) = (f1 + 5.9355)(f2 + 1.6613).

Figure 3 shows the corresponding value function contours.
The contour makes a clear distinction between solutions in
pairsP1-P2 andP2-P3 (within an optimized valueǫ), however,
there is no distinction amongP3, P4 andP5 (with 0.1ǫ), to
establish the given preference structure. Since a value function
maintaining a difference (ǫ) between points in pairsP1-P2 and
P2-P3 is needed and a maximum gap of 10% ofǫ is needed,
a somewhat greaterǫ value to that found in the previous case
is obtained here. The optimizedǫ value is found to be 2.2645
in this case.

Fig. 3. Revised value function with a different preference information.

2) Polynomial Value Function forM Objectives:The above
suggested methodology can be applied to any number of
objectives. For a generalM objective problem the value
function can be written as follows:

V (f ) = (f1 + k11f2 + k12f3 + . . .+ k1(M−1)fM + l1)×
(f2 + k21f3 + k22f4 + . . .+ k2(M−1)f1 + l2)×
. . .

(fM + kM1f1 + kM2f4 + . . .+ kM(M−1)fM−1 + lM )
(5)

The above value function can be expressed more elegantly as
follows:

V (f ) =
M∏

i=1




M∑

j=1

[
Kijfj +Ki(M+1)

]

 . (6)

Since each term in the value function can be normalized, we
can introduce an additional constraint

∑M
j=1 Kij = 1 for each

term denoted byi. As discussed below,Kij ≥ 0 for j ≤ M
and for eachi, howeverKi(M+1) can take any sign. In the
remainder of the paper, we follow the value function definition
given in equation 5.

In the formulation it should be noted that the subscripts
of the objective functions change in a cyclic manner as we
move from one product term to the next. The number of
parameters in the value function isM2. The optimization
problem formulation for the value function suggested above
containsM2+1 variables (kij andli). The variableǫ is to be
maximized. The second set of constraints (strictly increasing
property of V ) will introduce non-linearity. To avoid this,
we simplify the above constraints by restricting the strictly
increasing property of each termSk, instead ofV itself. The
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resulting constraints then becomekij ≥ 0 for all i and j
combinations. The optimization problem (VFOP) to determine
the parameters of the value function can thus be generalized
as follows:

Maximize ǫ,
subject to Sm(Pi) ≥ 0, i = 1, . . . , η andm = 1, . . . ,M,

kij ≥ 0, i = 1, . . . ,M, andj = 1, . . . , (M−1),
V (Pi)− V (Pj) ≥ ǫ, for all (i, j) pairs

satisfyingPi ≻ Pj ,
combinations satisfyingi < j,

|V (Pi)− V (Pj)| ≤ δV , for all (i, j) pairs
satisfyingPi ≡ Pj .

(7)
In the above problem, the objective function and the first

two constraint sets are linear, however the third and fourth
constraint sets are polynomial in terms of the problem vari-
ables. There are a total ofMη+M(M−1) linear constraints.
However, the number of polynomial constraints depends on
the number of pairs for which the preference information is
provided by the DM. For a 10-objective (M = 10) problem
having η = 5 chosen points, the above problem has 101
variables, 140 linear constraints, and at most 10 (

(
5
2

)
) polyno-

mial constraints. Since majority of the constraints are linear,
we suggest using a sequential quadratic programming (SQP)
algorithm to solve the above problem. The non-differentiability
of the fourth constraint set can be handled by converting
each constraint (|g(x)| ≤ δV ) into two constraints (g(x) ≥
−δV and g(x) ≤ δV )). In all our problems, we did not
consider the cases involving the fourth constraint and leave
such considerations for a later study.

B. Step 4: Termination Criterion

Once the value functionV is determined, the EMO algo-
rithm is driven by it in the nextτ generations. The value
function V can also be used for determining whether the
overall optimization procedure should be terminated or not.
To implement the idea we identify the best and second-best
pointsP1 andP2 from the given set ofη points based on the
preference information. In the event of more than one point in
each of the top two categories (best and second-best classes)
which can happen when the ‘≡’-class exists, we chooseP1

andP2 as the points having highest value function value in
each category, respectively.

The constructed value function can provide information
about whether any new pointP is better than the current best
solution (P1) with respect to the value function. Thus, if we
perform a single-objective search along the gradient of the
value function (or∇V ) from P1, we expect to create solutions
more preferred thanP1. We can use this principle to develop
a termination criterion.

We solve the following achievement scalarizing function
(ASF) problem [28] forP1 = zb:

Maximize

(
M

min
i=1

fi(x)−zb
i

∂V
∂fi

)
+ ρ

∑M
j=1

fj(x)−zb
j

∂V
∂fj

.

subject to x ∈ S.
(8)

Here, S denotes the feasible decision variable space of the
original problem. The second term with a smallρ (= 10−10

is used here) prevents the solution from converging to a
weak Pareto-optimal point. Any single-objective optimization
method can be used for solving the above problem and the
intermediate solutions (z(i), i = 1, 2, . . .) can be recorded. If
at any intermediate point, the Euclidean distance betweenz(i)

from P1 is larger than a termination parameterds, we stop the
ASF optimization task and continue with the EMO algorithm.
In this case, we replaceP1 with z(i). Figure 4 depicts this sce-
nario. On the other hand, if at the end of the SQP run, the final
SQP solution (say,zT ) is not greater thands distance away
from P1, we terminate the EMO algorithm and declarezT as
the final preferred solution. This situation indicates thatbased
on the current value function, there does not exist any solution
in the search space which will provide a significantly better
solution thanP1. Hence, we can terminate the optimization
run. Figure 5 shows such a situation, warranting a termination
of the PI-EMO-VF procedure.
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Fig. 4. Local search, when far away from the front, finds a better point
more than distanceds away from the best point. Hence, no termination of
the P-EMO.
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Fig. 5. Local search terminates within distanceds from the best point.
Hence, the P-EMO is terminated.

C. Steps 5 and 6: Modified Domination Principle

The utility functionV can also be used to modify the dom-
ination principle in order to emphasize and create preferred
solutions.

Let us assume that the value function from the most recent
decision-making interaction isV . The value function value
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V(f)=V2

f1

f2

B

A

Fig. 6. Dominated regions of two pointsA and B using the modified
definition.

for the second-best member (P2 defined in the previous
subsection) from the set ofη points given to the DM is
V2. Then, any two feasible solutionsx(1) and x(2) can be
compared with their objective function values by using the
following modified domination criteria:

1. If both solutions have a value function valueless than
V2, then the two points are compared based on the usual
dominance principle.

2. If both solutions have a value function valuemore than
V2, then the two points are compared based on the usual
dominance principle.

3. If one has value function value more thanV2 and the
other has value function value less thanV2, then the
former dominates the latter.

Figure 6 illustrates regions dominated by pointsA and B.
The value function contour having a valueV2 is shown by
the curved line. PointA lies in the region in which the value
function is smaller thanV2. The region dominated by pointA
is shaded. This dominated area is identical to that which canbe
obtained using the usual domination principle. However, point
B lies in the region in which the value function is larger than
V2. For this point, the dominated region is different from that
which would be obtained using the usual domination principle.
In addition to the usual region of dominance, the dominated
region includes all points which have a smaller value function
value thanV2.

We now discuss the reason for choosing the baseline value
function value atP2 (as opposed to atP1) for defining
the modified dominance criterion above. While providing
preference information onη points given to the DM, the
DM has the knowledge ofη points. Consider the scenario
in Figure 7, in which pointz∗ may lie betweenP1 andP2. If
the value function atP1 is considered as the baseline value for
domination, the most preferred pointz∗ will get dominated by
points likeP1. In higher objective problems, the most preferred
point may lie elsewhere and consideringV2 may also be too
stringent. To be more conservative,V (Pη) can be considered
as the baseline value in the modified domination criterion.

Most Preferred Point

f1

f2

Value Function Contour

Pareto−optimal Front P5

P4

P3
P2 P1

Fig. 7. A scenario in which final preferred point may lie between P1 and
P2 for a two-objective problem.

The above modified domination principle can be used in
both steps 5 and 6 for creating the new populationOfft and
for selecting the new populationPart+1.

Although we do not handle constrained problems in this
study, the above modified domination principle can be ex-
tended for handling constraints. As defined in [18], when
both solutions under consideration for a domination check
are feasible, the above domination principle can simply be
used to establish dominance of one over the other. However,
if one point is feasible and the other is not, the feasible
solution can be declared as dominating the other. Finally,
if both points are infeasible, the one having smaller overall
constraint violation may be declared as dominating the other.
We defer consideration of a constrained PI-EMO-VF to a later
study.

IV. PI-NSGA-II-VF PROCEDURE

In the PI-NSGA-II-VF procedure, the firstτ generations are
performed according to the usual NSGA-II algorithm [18].
Thereafter, we modify the NSGA-II algorithm by using the
modified domination principle (discussed in Section III-C)
in the elite-preserving operator and also in the tournament
selection for creating the offspring population. We also use a
different recombination operator in this study. After a child
solutionxC is created by the SBX (recombination) operator
[29], two randomly selected population membersx(1) andx(2)

are chosen and a small fraction of the difference vector is
added to the child solution (similar in principle to a differential
evolution operator [30]), as follows:

xC = xC + 0.1
(
x(1) − x(2)

)
. (9)

The crowding distance operator of NSGA-II has been replaced
with k-means clustering for maintaining diversity among so-
lutions of the same non-dominated front to make the diversity
preservation more meaningful for problems having more than
two objectives.

The success of EMO algorithms to find a set of diverse
trade-off solutions for two and three-objective problems is due
to an appropriate balance between their diversity maintaining
operators (for example, crowding distance, clustering, orother
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mechanisms) and their emphasis of non-dominated solutions
[1]. When preference information is to be implemented in an
EMO, the search focus has to shift more towards emphasizing
currently preferred solutions, as the target becomes finding
a single preferred solution at the end. If a proper balance
between theseexploring and exploiting mechanisms are not
maintained, the resulting preference-based EMO procedure
may not work well and may end up either in a prema-
ture convergence to a sub-optimal solution or in a random-
like search behavior. By modifying the domination principle
with preference information, we have emphasized preferred
solutions. By using a modified recombination operator for
child creation and a clustering operator, instead of crowding
distance operator, for a better diversity preservation, wehave
attempted to make a balance with the enhanced selection
pressure towards the preferred solutions. Simulation results
of the next section demonstrates this aspect on a number of
problems.

The value function optimization problem is solved using the
SQP code of KNITRO software [31]. The termination is set
if the Karush-Kuhn-Tucker (KKT) error measure computed
within KNITRO is less than or equal to10−6.

For termination check (discussed in Section III-B), we also
use the SQP code of KNITRO software and the SQP algorithm
is terminated (if not terminated due tods distance check from
P1 discussed earlier) when the KKT error measure is less than
or equal to10−6.

V. RESULTS

In this section, we present the results of the PI-NSGA-
II-VF procedure on two, three, and five objective test prob-
lems. ZDT1 and DTLZ2 test problems are adapted to create
maximization problems. In all simulations, we have used the
following parameter values:

1) Number of points given to the DM for preference
information:η = 5.

2) Number of generations between two consecutive DM
calls: τ = 5.

3) Termination parameter:ds = 0.01.
4) Crossover probability and the distribution index for the

SBX operator:pc = 0.9 andηc = 15.
5) Mutation probability:pm = 0.
6) Population size:N = 10M , whereM is the number of

objectives.
In the optimization of the VFOP problem (given in equa-
tion 5), we restrict the bounds of parameters as follows:
0 ≤ (k1, k2) ≤ 1000 and−1000 ≤ (l1, l2) ≤ 1000. In the
next section, we perform a parametric study with some of
the above parameters. Here, we present the test problems and
results obtained with the above setting.

A. Two-Objective Test Problem

Problem 1 is adapted from ZDT1 and has 30 variables [32].

Maximize f(x) =

{
x1

10−
√

x1g(x)

g(x)

}
,

where g(x) = 1 + 9
29

∑30
i=2 xi,

0 ≤ xi ≤ 1, for i = 1, 2, . . . , 30,

(10)

The Pareto-optimal front is given byf2 = 10 − √f1 and
is shown in Figure 8. The solutions arexi = 0 for i =
2, 3, . . . , 30 andx1 ∈ [0, 1].

This maximization problem has a non-convex front, there-
fore if the decision maker is not interested in the end points,
the value function has to be non-linear. A linear value function
will always lead to the end points of the front. In our
simulations, we assume a particular value function which acts
as a representative of the DM, but the information is not
explicitly used in creating new solutions by the operators of the
PI-NSGA-II-VF procedure. In such cases, the most preferred
point z∗ can be determined from the chosen value function
beforehand, thereby enabling us to compare our obtained point
with z∗.

In our study, we assume the following non-linear value
function (which acts as a DM in providing a complete ranking
of η solutions at everyτ generations):

V (f1, f2) =
1

(f1 − 0.35)2 + (f2 − 9.6)2
. (11)

This value function gives the most preferred solution asz∗ =
(0.25, 9.50). The contours of this value function are shown
in Figure 8. Since a DM-emulated value function is used to
decide on preference of one point to the other in pairwise
comparisons, we shall have complete ranking information of
all η points in our study. Thus, we shall not have the fourth
set of constraints in determining the value function, as given
in equation 5. In a future study, we shall consider partial
preference information and its effect on the constructed value
function.

f1

Point
Most Preferred

Pareto Front

Contours
Value Function

f2

 9

 0.4  0.6  0.8  1 0

 10
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 9.4
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 0.2

Fig. 8. Contours of the chosen value function (acts as a DM) and the most
preferred point corresponding to the value function.

Table I presents the best, median and worst of 21 different
PI-NSGA-II-VF simulations (each starting with a different
initial population). The performance (accuracy measure) is
computed based on the Euclidean distance of each optimized
point with z∗. Note that this accuracy measure is different
from the termination criterion used in the PI-NSGA-II-VF
procedure. Table II shows minimum, median and maximum
accuracy, the number of overall function evaluations, and
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TABLE I

FINAL SOLUTIONS OBTAINED BY PI-NSGA-II-VF FOR THE MODIFIED

ZDT1 PROBLEM.

z∗ Best Median Worst
f1 0.2500 0.2498 0.2461 0.2713
f2 9.5000 9.5002 9.5038 9.4791

the number of DM calls recorded in the 21 runs. The table
indicates that the proposed PI-NSGA-II-VF procedure is able
to find a solution close to the final preferred solution. Although
the overall number of function evaluations depend on the
initial population, for a 30-variable problem these numbers
are reasonable.

TABLE II

DISTANCE OF OBTAINED SOLUTION FROM THE MOST PREFERRED

SOLUTION, FUNCTION EVALUATIONS, AND THE NUMBER OF DM CALLS

REQUIRED BY THEPI-NSGA-II-VF FOR THE MODIFIEDZDT1 PROBLEM.

Minimum Median Maximum
Accuracy 0.0001 0.0062 0.0197

Func. Evals. 5,408 7,372 11,809
# of DM Calls 14 19 30

We now show the working of the PI-NSGA-II-VF approach
for a particular run, which required 14 DM calls before
termination. Figure 9 shows the value functions optimized
after various DM calls. The first DM call was made after
generation 5. Five chosen points (P1 to P5 shown in shaded
circles) from the non-dominated solutions at generation 5 are
shown in the figure. The best and second-best points are
close to each other. The strictly increasing requirement ofthe
value function imposed in the optimization process createsan
almost linear value function as an optimum choice in this case.
The corresponding parameter values of the value function are:
(k1 = 998.189, k2 = 0.049, l1 = 369.532, andl2 = 137.170).
The value functions are drawn at the second-best point. After
five more generations, the DM is called to provide preference
information the second time. The corresponding value function
drawn at the second-best point is shown in the figure. Five
points used for preference ranking are shown as diamonds.
The figure shows how the PI-NSGA-II-VF procedure finds
better and better points and how progressively the DM calls
enable the overall procedure to find refined value functions.
Eventually, at the 14th DM call, all five solutions come very
close toz∗ and the algorithm terminates with the imposed
ds = 0.01 condition. The optimal parameter values fixing the
value functions at various DM calls are shown in Table III.
Although no pattern in these parameter values is observed from
one DM call to another, every value function thus obtained
is strictly increasing and maximizes the maximum difference
in value function values between any two chosen points.
However, the NSGA-II algorithm with these value functions
in five subsequent generations seems to guide the best point
towards the most preferred point (z∗) progressively.

Figure 10 shows the value functions from the 10th DM
call onwards. In this figure, the value functions are drawn

TABLE III

OPTIMAL PARAMETER VALUES DETERMINING THE VALUE FUNCTION AND

CORRESPONDING BEST POINT AT VARIOUSDM CALLS.

DM k1 k2 l1 l2 P1 = (f1, f2)
Call
#1 998.189 0.049 369.532 137.170 (0.223, 2.600)
#2 999.998 19.699 114.161 359.199 (0.078, 2.898)
#3 821.797 0.003 -15.116 770.050 (0.260, 4.321)
#4 1000.000 440.133 87.366 393.896 (0.282, 4.706)
#6 804.650 0.033 -99.871 567.481 (0.332, 6.525)
#8 807.395 105.691 -30.880 365.454 (0.344, 8.066)
#10 403.750 49.007 -30.667 290.960 (0.254, 9.259)
#14 0.007 0.006 -0.308 -9.488 (0.251, 9.499)

at the second-best point (shown with a diamond) and the
corresponding best point is also shown by a shaded circle. It
is interesting to observe how the value functions get modified
with generations and how the modified value functions help
find better non-dominated solutions progressively with the
help of modified domination and NSGA-II operators. The
final point obtained by the PI-NSGA-II-VF is(f1, f2) =
(0.251, 9.499), which is very close to the most preferred point
z∗ = (0.25, 9.5) corresponding to the optimum of the DM-
emulated value function given in equation 11.

B. Three-Objective Test Problem

The DTLZ2 test problem [33] is scalable to number of
objectives. In the three-objective case, all points (objective
vectors) are bounded by two spherical surfaces in the first
octant. In the case of minimizing all objectives, the inner
surface (close to the origin) becomes the Pareto-optimal front.
But here, we maximize each objective of the DTLZ2 problem.
Thus, the outer spherical surface becomes the corresponding
Pareto-optimal front. AnM -objective DTLZ2 problem for
maximization is given as follows:

Maximize f(x) =



(1.0 + g(x)) cos(π2x1) cos(
π
2x2) · · · cos(π2xM−1)

(1.0 + g(x)) cos(π2x1) cos(
π
2x2) · · · sin(π2xM−1)

...
(1.0 + g(x)) cos(π2x1) sin(

π
2x2)

(1.0 + g(x)) sin(π2x1)





,

subject to 0 ≤ xi ≤ 1, for i = 1, . . . , 12,

where g(x) =
∑12

i=3(xi − 0.5)2.
(12)

The Pareto-optimal front for a three-objective DTLZ2 problem
is shown in Figure 11. The points (objective vectors) on the
Pareto-optimal front follow the relation:f2

1 + f2
2 + f2

3 = 3.52.
The decision variable values correspond tox1 ∈ [0, 1], x2 ∈
[0, 1] andxi = 0 or 1 for i = 3, 4, . . . , 12.

To test the working of PI-NSGA-II-VF on this problem,
we have replaced the decision maker by using a linear value
function (emulating the DM), as follows:

V (f1, f2, f3) = 1.25f1 + 1.50f2 + 2.9047f3. (13)

This value function produces the most preferred solution on
the Pareto-optimal front asz∗ = (1.25, 1.50, 2.9047).

38



Most preferred point (z*)

P5P4

P3
P2

P1 

P3 P5P4
P2P1 

Gen=40 (DM Call #8)

Gen=20 (DM Call #4)

Gen=70 (DM Call #14)
PO front

Gen=50 (DM Call #10)

Gen=30 (DM Call #6)

Gen=5 (DM Call #1)

Gen=10 (DM Call #2)

 0.6  1

f2

f1

 2

 4

 6

 8

 10

 0  0.2  0.4  0.8

Fig. 9. Evolution of value functions after successive DM calls.

Gen=70 (DM Call=14)

Gen=55 (DM Call=11)

Most preferred point (z*)

Gen=65

front
Pareto−optimal

P1

P2

P2

P1

G
en=50

D
M

 C
all=10

Gen=60f2

f1
 0

 9.7

 9.6

 0.2

 9.4

 9.3

 9.2

 9.1

 9.5

 0.4  0.6  0.8  1

Fig. 10. Value functions near the most preferred point.

f1f2

f3

P−O Front

 2
 3

 0
 1

 2

 1

 2

 0

 3

 1

 3

Fig. 11. Final population members after termination of the algorithm
for three-objective modified DTLZ2 problem. The complete Pareto-optimal
surface is marked as ‘P-O front’.

The PI-NSGA-II-VF is run with N = 10 × 3 or 30
population members 21 times, each time with a different
random initial population. In terms of the accuracy measure
from z∗, Table IV presents the minimum, median and worst
performing runs. Table V shows the accuracy, number of
overall function evaluations and number of DM calls needed
by the procedure. It is clear that the obtained points are close
to the most preferred pointz∗. Figure 11 shows the population
at the final generation of a typical PI-NSGA-II-VF run.

TABLE IV

FINAL SOLUTIONS OBTAINED BY PI-NSGA-II-VF FOR THE

THREE-OBJECTIVE MODIFIEDDTLZ2 PROBLEM.

z∗ Best Median Worst
f1 1.2500 1.2459 1.2197 1.3178
f2 1.5000 1.5050 1.4888 1.4755
f3 2.9047 2.9039 2.9233 2.8873

TABLE V

DISTANCE OF OBTAINED SOLUTION FROM THE MOST PREFERRED

SOLUTION, NUMBER OF FUNCTION EVALUATIONS, AND NUMBER OF DM

CALLS REQUIRED BY PI-NSGA-II-VF ON THE THREE-OBJECTIVE

MODIFIED DTLZ2 PROBLEM.

Minimum Median Maximum
Accuracy 0.0008 0.0115 0.0434

Func. Evals. 4,200 6,222 8,982
# of DM Calls 17 25 36

C. Five-Objective Test Problem

We now consider the five-objective (M = 5) version of
the DTLZ2 problem described in the previous subsection. The
Pareto-optimal front is described asf2

1 +f2
2 +f2

3 +f2
4 +f2

5 =
3.52.

For this problem, we choose a non-linear DM-emulated
value function, as follows:

V (f ) = 1/

5∑

i=1

(fi − ai)
2, (14)

where a = (1.1, 1.21, 1.43, 1.76, 2.6468)T . This value
function produces the most preferred point asz∗ =
(1.0, 1.1, 1.3, 1.6, 2.4062).

Table VI presents the obtained solutions by PI-NSGA-
II-VF with 50 population members. Table VII shows the

TABLE VI

FINAL OBJECTIVE VALUES OBTAINED FROM PI-NSGA-II-VF FOR THE

FIVE-OBJECTIVE MODIFIEDDTLZ2 PROBLEM.

z∗ Best Median Worst
f1 1.0000 0.9931 0.9785 0.9455
f2 1.1000 1.1382 1.0502 1.1467
f3 1.3000 1.3005 1.3382 1.3208
f4 1.6000 1.5855 1.5947 1.6349
f5 2.4062 2.4007 2.4199 2.3714
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accuracy measure, the number of overall function evaluations,
and the number of DM calls. Although the points close

TABLE VII

DISTANCE OF OBTAINED SOLUTION FROM THE MOST PREFERRED

SOLUTION, FUNCTION EVALUATIONS, AND THE NUMBER OF DM CALLS

REQUIRED BY PI-NSGA-II-VF FOR THE FIVE-OBJECTIVE MODIFIED

DTLZ2 PROBLEM.

minimum median maximum
Accuracy 0.0084 0.0240 0.0902

# of Function Eval. 23,126 27,202 41,871
# of DM Calls 57 67 102

to the most preferred point are obtained in each run, the
higher dimensionality of the problem requires more function
evaluations and DM calls compared to two and three-objective
test problems. However, the above results are obtained for a
strict termination criterion withds = 0.01. Smaller number
of DM calls and evaluations are expected if this termination
criterion is relaxed. We discuss these matters in the next
section. It is worth mentioning that the application of a usual
EMO (including the original NSGA-II) is reported to face
difficulties in converging to theentirefive-dimensional Pareto-
optimal front with an identical number of function evaluations
in an earlier study [34]. However, since our target is one
particular preferred point on the Pareto-optimal front (dictated
by a sequence of preference information provided by the DM),
our proposed PI-EMO-VF is able to find a near Pareto-optimal
solution for the same five-objective optimization problem.This
ability of an EMO to handle problems with a large number of
objectives demonstrated in this study remains as an evidence
of an advantage of using preference information within an
EMO.

D. Five-Objective Test Problem with an Intermediate Change
in Decision

Next, we use the same five-objective DTLZ2 problem, but
simulate a rather realistic scenario in which the DM changes
his/her preference information while the optimization process
is on. We use three DM-emulated functions of type given
in equation 14 with the parameters shown in Table VIII.
The first DM-emulated function is used to provide preference

TABLE VIII

PARAMETERS OF VALUE FUNCTIONS AND CORRESPONDINGDM CALLS IN

WHICH THEY ARE USED. CORRESPONDINGPARETO-OPTIMAL SOLUTIONS

ARE SHOWN.

DM
calls

a Corresponding P-O Solution

1–10 (2.75, 1.65, 1.10, 1.32, 1.26) (2.50, 1.50, 1.00, 1.20, 1.14)
11–20 (1.87, 1.54, 1.82, 1.16, 3.18) (1.70, 1.40, 1.65, 1.05, 2.89)
21–
terminate

(1.10, 1.21, 1.43, 1.76, 2.65) (1.00, 1.10, 1.30, 1.60, 2.40)

information for the first 10 DM calls, thereafter for some
reason the DM changes his/her mind and the second function
is used to provide preference information. Again, after 10

more DM calls, a third DM-emulated function is used. The
parameters are quite different from each other, meaning that
the corresponding Pareto-optimal solutions lie on different
parts of the Pareto-optimal front (shown in the table). Such
a simulation will demonstrate the flexibility of the proposed
procedure in its ability to find the Pareto-optimal solutions
corresponding to the third DM-emulated function, although
being distracted by the initial influence of different functions.

We use an identical parameter setting as used in the previous
problem. Figure 12 shows the value of the three DM-emulated
functions for the most preferred solution after every DM
call. It is clear from the figure that during the first 10 DM
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Fig. 12. Values of three DM-emulated functions corresponding to the most
preferred solution in each DM call.

calls, the corresponding DM-emulated function value for the
most preferred solution steadily increases, as if the DM were
interested in maximizing this value function. The fact thatthe
first DM-emulated function value after the 11th call reduces,
indicates that the algorithm is able to respond to the new
function. Thereafter, again after 21st DM call, the third DM-
emulated function is active and the preferred solutions get
tuned to this new value function. Eventually, the proposed
method is able to converge to the Pareto-optimal solution
corresponding to the third DM-emulated function.

VI. PARAMETRIC STUDY

Besides the usual parameters associated with an evolu-
tionary algorithm, such as population size, crossover and
mutation probabilities and indices, tournament size etc.,in the
proposed PI-NSGA-II-VF we have introduced a few additional
parameters which may effect the accuracy and number of DM
calls. They are the number of points used in obtaining DM’s
preference information (η), the number of generations between
DM calls (τ ), termination parameter (ds), KKT error limit
for terminating SQP algorithm in value function optimization
and in single-objective optimization used for the termination
check, and the parameterρ used in the ASF function optimiza-
tion. Of these parameters, the first three have shown to have
an effect on the chosen performance measures — accuracy,
the number of overall function evaluations, and the number of
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DM calls. As mentioned earlier, the parameterη is directly
related to the maximum number of pairwise comparisons a
DM would like to do in a single DM call. Of course, if more
points can be compared, a more appropriate value function can
be obtained. However, based on a maximum of 10 pairwise
comparisons per DM call, we restrictη = 5 in this study and
do not do a parametric study with this parameter. Thus, in
this section, we study the effect of two parameters (τ andds),
while keeping the other PI-NSGA-II-VF parameters identical
to that mentioned in the previous section. In each case, we use
the same three test problems.

A. Effect of Frequency of DM Calls (τ )

First we study the effect ofτ by considering four different
values: 2, 5, 10 and 20 generations. The parameterds is kept
fixed to 0.01. To investigate the dependence of the performance
of the procedure on the initial population, in each case, we run
PI-NSGA-II-VF from 21 different initial random populations
and plot the best, median and worst performance measures.

We plot three different performance measures — accuracy,
number of DM calls and number of function evaluations
obtained for the modified ZDT1 problem in Figure 13. It is
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Fig. 13. Three performance measures on modified ZDT1 problemfor
different τ values.

interesting to note that all three median performance measures
are best forτ = 10, althoughτ = 5 also results in a similar
accuracy and the number of DM calls. A small value ofτ
means that DM calls are to be made more frequently. Clearly,
this results in higher number of DM calls, as evident from
the figure. Frequent DM calls result in more single-objective
optimization runs for termination check, thereby increasing the
number of overall function evaluations. On the other hand, a
large value ofτ captures too little preference information to
focus the search near the most preferred point, thereby causing
a large number of generations to satisfy termination conditions
and a large number of DM calls.

Figure 14 shows the same three performance measures
on the three-objective modified DTLZ2 problem. For this
problem, the number of DM calls is similar forτ = 5 and
10 generations, whereas accuracy and the number of function

evaluations are better forτ = 5 generations. Once again, too
small or too largeτ is found to be detrimental.
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Fig. 14. Three performance measures on three-objective modified DTLZ2
problem for differentτ values.

For the five-objective modified DTLZ2 problem,τ = 5
produces optimal median performance on the number of DM
calls and accuracy (Figure 15). However, the overall function
evaluations is smaller with smallerτ .
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Fig. 15. Three performance measures on five-objective modified DTLZ2
problem for differentτ values.

Based on these simulation studies on two, three and five-
objective optimization problems, one can conclude that a value
of τ within 5 to 10 generations is better in terms of an overall
performance of the PI-NSGA-II-VF procedure. This range of
τ provides a good convergence accuracy, requires less function
evaluations, and less DM calls to converge near the most
preferred point.

B. Effect of Termination Parameterds
Next, we investigate the effect of the termination parameter

ds on the three performance measures on all three problems.
In this study, we fixη = 5 and τ = 5. Figure 16 shows
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the positive correlation between accuracy andds. As ds
is increased (meaning a relaxed termination), the obtained
accuracy (distance fromz∗) gets worse. Interestingly, the
associated variation in obtained accuracy over number of runs
also gets worse. The flip side of increasingds is that the
number of function evaluations reduces, as a comparatively
lesser number of generations are now needed to satisfy the
termination condition. Similarly, the number of DM calls also
reduces with an increase inds.
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Fig. 16. Three performance measures on modified ZDT1 problemfor
different ds values.

Similar observations are made for three-objective and five-
objective modified DTLZ2 problem, as evident from Fig-
ures 17 and 18, respectively.
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Fig. 17. Three performance measures on three-objective modified DTLZ2
problem for differentds values.

These results clearly reveal the behavior of our proposed
algorithm with regard to the choice ofds. Unlike in the
parametric study ofτ , we find a monotonic variation in
performance measures withds, however with a trade-off
between accuracy and the number of DM calls (or, the number
of function evaluations). This indicates thatds need not be
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Fig. 18. Three performance measures on modified five-objective modified
DTLZ2 problem for differentds values.

chosen as an arbitrarily small value. If approximate solutions
are acceptable, they can be achieved with a smaller number of
function evaluations and DM calls. Figure 19 shows the trade-
off of these quantities for the modified three and five-objective
DTLZ2 problems. The nature of the trade-off between ac-
curacy and the number of DM calls indicates thatds =
0.05 makes a good compromise between these performance
indicators for these problems. A smallerds setting calls for
substantially more DM calls, and a largerds setting, although
reduces the number of DM calls, makes a substantially large
deviation from the most preferred solution.

d_s=0.001

d_s=0.1d_s=0.05

d_s=0.01 3−obj.
problem

5−objective problem

d_s=0.001

d_s=0.05
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Fig. 19. Trade-off between accuracy and the number of DM calls for the
modified three and five-objective DTLZ problems.

VII. R ANDOM ERROR IN PREFERENCEINFORMATION

In the above simulations, a mathematical value function is
used to emulate the preference information to be given by a
DM. However, in practice, the DM is a human being. There
is bound to be some level of inconsistencies in providing
preference information. To simulate the effect of this factor, we
consider a DM-emulating value function which is stochastic
in nature.
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A linear value function similar to the one used before is
chosen, but the coefficients of the value function are made
stochastic. The stochasticity is reduced with the increasein
the number of generations. This has been done to simulate
a realistic DM who is likely to make errors during the start
of the algorithm when he/she is in the process of learning
his/her preferences. Later, the decision maker is likely tomake
more consistent decisions. A successful convergence of an
algorithm in this case verifies that the algorithm does not
get misdirected by inconsistent preference based information
during the beginning of the run.

The DM-emulated value function used for the three-
objective modified DTLZ2 problem is as follows:

V (f1, f2, f3) = noise(1.25, σ)f1 + noise(1.50, σ)f2
+noise(2.9047, σ)f3, (15)

whereσ is set asexp(−t/10) (t is the generation counter)
and noise(µ, σ) refers to a random normal distribution with
a meanµ and standard deviationσ. This setting ensures that
the standard deviation of the noise around the mean reduces
as the number of generations of the algorithm increases. With
σ = 0, this value function gives the most preferred point as
z∗ = (1.25, 1.50, 2.9047). At the first instance of DM calls
(that is, att = τ = 5 generations),σ = exp(−0.5) = 0.606,
meaning a significantly different value function than what is
required for the algorithm to converge to the most preferred
point.

Table IX shows the best, median and worst points obtained
by the PI-NSGA-II-VF procedure withη = 5, τ = 5,
ds = 0.01 and other parameter values used in Section V-
B. Again, 21 different runs were performed from different
initial random populations. As clearly shown in Table X, the

TABLE IX

FINAL SOLUTIONS OBTAINED BY PI-NSGA-II-VF FOR THE

THREE-OBJECTIVE MODIFIEDDTLZ2 PROBLEM WITH A STOCHASTIC

DM-EMULATED VALUE FUNCTION .

z∗ Best Median Worst
f1 1.2500 1.2555 1.2695 1.2902
f2 1.5000 1.5105 1.5205 1.6437
f3 2.9047 2.8969 2.8856 2.8078

accuracy for the best and median runs is good, despite the large
stochasticities involved in the early stages of the optimization
process. Although the number of function evaluations and the

TABLE X

DISTANCE OF OBTAINED SOLUTION FROM THE MOST PREFERRED

SOLUTION, FUNCTION EVALUATIONS, AND THE NUMBER OF DM CALLS

BY PI-NSGA-II-VF FOR THE THREE-OBJECTIVE MODIFIEDDTLZ2

PROBLEM WITH A STOCHASTICDM-EMULATED VALUE FUNCTION .

Minimum Median Maximum
Accuracy 0.0142 0.0342 0.1779

Func. Evals. 5,841 7,608 9,663
# of DM Calls 24 31 39

number of DM calls are 20 to 40% more compared to that in

the deterministic DM-emulated value function case (Table IV),
the accuracy of the final point is good. This indicates that
the final point is close to the most preferred solution for the
deterministic case.

Next, we apply the PI-NSGA-II-VF procedure to the
five-objective modified DTLZ2 problem with the following
stochastic value function to emulate the DM:

V (f) = noise(1.0, σ)f1 + noise(1.1, σ)f2 + noise(1.3, σ)f3
+noise(1.6, σ)f4 + noise(2.4062, σ)f5. (16)

The best, median, and worst points obtained by PI-NSGA-
II-VF are shown in Table XI. As shown by the performance
measures in Table XII, despite somewhat larger function eval-
uations and number of DM calls, final points obtained by PI-
NSGA-II-VF are reasonably close to the most preferred point
obtained for the deterministic version of the DM-emulated
value function.

TABLE XI

FINAL SOLUTIONS OBTAINED BY PI-NSGA-II-VF FOR THE

FIVE-OBJECTIVE MODIFIEDDTLZ2 PROBLEM WITH A STOCHASTIC

DM-EMULATED VALUE FUNCTION .

z∗ Best Median Worst
f1 1.0000 1.0103 1.0875 1.0557
f2 1.1000 1.1171 1.1495 1.2394
f3 1.3000 1.3037 1.3525 1.4915
f4 1.6000 1.6025 1.5942 1.4977
f5 2.4062 2.4140 2.4125 2.4889

TABLE XII

DISTANCE OF OBTAINED SOLUTION FROM THE MOST PREFERRED

SOLUTION, FUNCTION EVALUATIONS, AND THE NUMBER OF DM CALLS

BY PI-NSGA-II-VF FOR THE FIVE-OBJECTIVE MODIFIEDDTLZ2

PROBLEM WITH A STOCHASTICDM-EMULATED VALUE FUNCTION .

Minimum Median Maximum
Accuracy 0.0219 0.1137 0.2766

Func. Evals. 33,653 39,264 52,564
# of DM Calls 72 87 136

1) Effect of Extent of Stochasticity:In the above study, we
used a noise factor on the coefficients of the DM-emulated
value function, given as a function of generation countert as
follows: σ = exp(−t/10). As discussed above, at the first
DM call with τ = 5, this has an effect of having a standard
deviation of 0.606 on each objective. We now investigate the
effect of increasing the standard deviation by modifying the σ
term as follows:

σ = s exp(−t/10), (17)

where s is a stochasticity factor. Fors = 1, we have an
identical stochastic effect as in the previous subsection.By
using a larger value ofs, we can simulate a situation with
more inconsistencies in the decision-making process. We use
four different values ofs: 1, 5, 10 and 100.

With a large value ofs, it is expected that the DM-emulated
value function provides a different ranking ofη points than an
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ideal ranking (which would have been obtained without the
stochasticity effect). We count the number of times the ranking
of top three points is different from the ideal ranking of the
same three points and tabulate it in Table XIII for a typical
run. The corresponding function evaluations and accuracy in
the final optimized point fromz∗ are also shown in the table.
An increase in stochasticity in the decision-making process
requires more DM calls and more function evaluations to
achieve an acceptable accuracy and termination. Importantly,
since all runs are terminated withds = 0.01 condition, despite
large stochasticities involved in the beginning of PI-NSGA-
II-VF runs, the algorithm is able to find a point close to
the most preferred Pareto-optimal point corresponding to the
deterministic version of the DM-emulated value function.

TABLE XIII

EFFECT OF STOCHASTIC FACTOR ON PERFORMANCE MEASURES FOR

THREE-OBJECTIVE MODIFIEDDTLZ2 PROBLEM.

s Incorrect ranking Total DM Calls Func. Evals. Accuracy
1 12 20 6,786 0.0399
5 17 23 7,528 0.0437
10 19 28 8,572 0.0498
100 23 31 9,176 0.0512

VIII. E XTENSIONS OFCURRENT STUDY

This study has suggested a simple yet elegant methodology
by which the DM’s preferences can be incorporated with an
EMO algorithm so that the final target is not a complete
Pareto-optimal set (as is usual in an EMO application), but a
single preferred solution on the Pareto-optimal set. The ideas
suggested can be extended in a number of different ways,
which we discuss in the following paragraphs.

• Incomparable class and constrained problems:In this
study, we have not simulated the case in which the DM
judges some of theη points to be incomparable. Although
our optimization problem formulation (equation 5) con-
siders this situation and we have demonstrated its use
in constructing the respective value function in Figure 3,
a complete study is needed to implement the idea with
the proposed PI-EMO-VF procedure and particularly in
analyzing the effect ofδV in the development of the value
function. Since some cases may occur, in which a value
function satisfying all DM’s preferences is not possible,
this study will also test the specific part (Step 3) of the
proposed PI-EMO-VF algorithm.
Moreover, we have not tested constrained optimization
problems in this study. The modified constrained dom-
ination principle should be used and tested on some
challenging problems.

• Other value functions:In this study, we have restricted
the value function to be of certain form (equation 5).
Other more generic value function structures can also
be considered. Our suggested value function construction
procedure results in strictly increasing functions. How-
ever, a more generic non-concave value function may be

obtained by using different conditions in the optimization
problem formulation.

• Robust value functions:The optimization problem for
deriving the value function can include a robustness
consideration, in which the insensitivity of the value
function coefficients in producing an identical ranking of
η points can be ensured. This would be a different way
of handling inconsistencies in decision-making.

• Other termination conditions:Our proposed PI-EMO-VF
algorithm terminates when there does not exist a far away
point with a better value function value than the currently
judged preferred point. Although this indicates somewhat
the probability of creating better preferred points than
the currently judged preferred point, other termination
indicators are certainly possible. In this direction, instead
of terminating based on Euclidean distance between the
two points, the difference in value function values can be
checked.

• Reduction in DM calls:One outcome of the parametric
study is that by fixing a relaxed termination criterion
(relatively larger value ofds), the number of DM calls
can be reduced. However, there are other extensions to
this study which may also reduce the number of DM
calls. The basic operators in the suggested algorithm can
be extended so that the modified procedure requires a
reduced number of overall DM calls. The issue of having
more points in each DM call, thereby reducing the overall
number of DM calls to achieve a comparable accuracy
will constitute an important study. Instead of keeping a
fixed interval of τ generations for each DM call, DM
call interval can be varied (or self-adapted) based on
the extent of improvement achieved from the previous
value function. Varying the number of points (η) in each
DM call in a self-adaptive manner would be another
important task. Since the points early on in the PI-EMO-
VF procedure are not expected to be close to the Pareto-
optimal front, the number of DM calls and points per
call can be made small. Thereafter, when the procedure
approaches the Pareto-optimal front, more points can be
included per DM call and the frequency of DM calls can
be controlled by the observed rate of improvement of
the performance of the procedure. Also, it would be an
interesting study to ascertain the effect of cumulating the
preference information from one decision call to the next
and use it in approximating the value function.

• Fixed budget of DM calls:In this study, we have kept
a termination criterion which is related to the extent
of improvements in currently judged preferred solution.
We then recorded the number of DM calls which were
needed until the termination criteria was met. However,
a comparative study, in which different algorithms are
compared for a fixed number of DM calls may be
performed.

• Value function based recombination and mutation oper-
ators: In this study, we have modified the domination
principles to emphasize points which have better value
function value. However, EMO algorithm’s recombina-
tion and mutation operators can also be modified based

44



on developed value function. For example, restricting one
of the top two currently judged preferred solutions as
one parent in the SBX operator may help generate better
preferred solutions.

• PI-EMO-VF with other EMO algorithms:In this study,
we have integrated the preference information in NSGA-
II algorithm. A natural extension of this study would be to
incorporate the preference handling approach with other
popular EMO methodologies, such as SPEA2 [23], PESA
[35], and others.

IX. CONCLUSIONS

In this paper, we have suggested a simple preference
based evolutionary multi-objective optimization (PI-EMO-VF)
procedure, which iteratively finds new solutions by using an
EMO algorithm that progressively sends a representative set
of trade-off solutions to a DM for obtaining a complete or
partial preference ranking. DM’s preference information has
been used in the following three ways in developing the new
algorithm:

• Firstly, a strictly increasing value function is derived by
solving an optimization problem, which maximizes the
value function value between ranked points.

• Secondly, the resulting value function is then utilized to
redefine the domination principle between the points. The
modified domination principle is used to drive the EMO
search.

• Thirdly, the resulting value function is used to design a
termination criterion for the PI-EMO-VF algorithm by
executing a single-objective search along the gradient
direction of the value function.

The above generic preference based EMO approach has been
implemented with the NSGA-II procedure. The PI-NSGA-II-
VF procedure has then been applied to three different test-
problems involving two, three and five objectives. By using
a DM-emulated utility function, we have shown that the PI-
NSGA-II-VF is capable of finding the most preferred solution
corresponding to the emulated utility function. A parametric
study on the additional parameters has clearly indicated opti-
mal parameter settings. Finally, to simulate inconsistencies,
which may arise in providing preference information was
simulated by considering a stochastic value function with
a noise effect reducing over time. Even in such cases, the
PI-NSGA-II-VF has been able to come closer to the most
preferred point corresponding to the deterministic version of
the DM-emulated value function.

Combining the ideas from EMO algorithms and multiple
criteria decision making (MCDM) seems an encouraging di-
rection for future research in multi-objective optimization. In
this paper, we have suggested one particular integration of
DM’s direct preference information into an EMO algorithm.
The method is generic and the obtained results indicate thatit
is a promising approach. More emphasis must now be placed
for developing pragmatic hybrid algorithms for multi-objective
optimization and decision-making.
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Progressively Interactive Evolutionary

Multi-Objective Optimization Method Using

Generalized Polynomial Value Functions

Ankur Sinha, Kalyanmoy Deb, Pekka Korhonen and Jyrki Wallenius

Abstract—This paper advances and evaluates a recently
proposed progressively interactive evolutionary multi-objective
optimization algorithm. The algorithm uses preference in-
formation from the decision maker during the intermediate
generations of the EMO and produces the most preferred
solution on the Pareto-optimal front. The progress towards

the Pareto-optimal front is made by approximating decision
maker’s value function. In this paper, a generalized polynomial
value function has been proposed and the procedure to fit the
value function to the decision maker’s preference information
has been described. The generality of the procedure of fitting
a value function to the decision maker’s preferences has
been shown by using other existing value functions from the
literature. The proposed generic polynomial value function has
been incorporated in the PI-EMO-VF algorithm to efficiently
approximate the decision maker’s value function. The paper
then evaluates the performance of the PI-EMO-VF algorithm
on three and five objective test problems with constraints. It also
evaluates the efficacy of the procedure in producing the most
preferred solution when the decision maker is unable to provide
perfect information, i.e., the decision maker finds certain pairs
of solutions in the objective space to be incomparable. Results
have been presented for three and five objective constrained
test problems using the procedure.

Index Terms—Evolutionary multi-objective optimization al-
gorithm, multiple criteria decision-making, interactive multi-
objective optimization algorithm, value/utility function, prefer-
ence based multi-objective optimization.

I. INTRODUCTION

The efficacy of the progressively interactive evolutionary

multi-objective algorithms in handling high objective prob-

lems with a relatively less number of function evaluations has

been shown recently [1], [2]. These methods are able to find

the most preferred solution on the Pareto-optimal front, with

the intervention of the decision maker in the intermediate

generations of the algorithm. The PI-EMO-VF [1] procedure

has been used in this study. The simplicity of the procedure

incorporating decision making with EMO and its ability to
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solve high objective test problems makes the approach quite

promising when EMO algorithms tend to suffer [3], [4] in

such problems. In this paper, a generalized polynomial value

function has been proposed which can be used to fit any

preference information (quasi-concave) from the decision

maker. This generalized polynomial value function has been

incorporated in the PI-EMO-VF algorithm to approximate

the preferences of the decision maker during the intermediate

steps of the algorithm.

Very often in practice, whenever preferences are elicited

from a decision maker about a pair of points (solutions in

objective space), the decision maker finds the points in the

pair as incomparable. Translating this decision of a decision

maker to a value function may mean either of the two things.

Firstly, that the two points lie on the same indifference curve,

the probability of which is very less, and secondly, that the

difference in the values of the two points is too small for the

decision maker to perceive. The PI-EMO-VF algorithm while

approximating the decision maker’s value function takes such

kind of preference information into account. Though this idea

has already been mooted by the authors in their previous

study but the algorithm has not been evaluated for any such

test cases.

In this paper we make an attempt to evaluate the al-

gorithm’s performance with high objective constrained test

problems. Further, we also test the performance when the

algorithm is provided with information about some pairs

being incomparable, instead of a strict preference of one

member over the other. We begin the paper with some of

the past studies done in the area of progressively interactive

evolutionary multi-objective optimization algorithms. There-

after we propose the generalized version of the polynomial

value function. The value function fitting procedure to the

decision maker’s preferences has also been shown for two

commonly used value functions in the economics literature.

Finally, the results for the performance of the PI-EMO-VF

procedure on constrained test problems have been produced

and discussed.

II. PAST STUDIES ON PROGRESSIVELY INTERACTIVE

METHODS

Not many studies are yet available in the direction of

a progressive use of preference information provided by

the decision maker during the intermediate steps of the

algorithm. Some recent studies periodically presented to the
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DM one or more pairs of alternative points found by an EMO

algorithm and expected the DM to provide some preference

information about the points. Some of the work in this

direction has been done by Phelps and Köksalan [10], Fowler

et al. [15], Jaszkiewicz [11], Branke et al. [6] and Korhonen

et al. [7], [8].

In a couple of recent studies [1], [2], the authors have

proposed a progressively interactive approach where the

information from the decision maker is elicited and used to

direct the search of the EMO in a preferred region. The first

study fits a quasi-concave value function to the preferences

provided by the decision maker and then uses it to drive

the EMO. The second study uses the preference information

from the decision maker to construct a polyhedral cone which

is again used to drive the EMO procedure towards the region

of interest.

A. Approximating Decision Maker’s Preference Information

with a Value Function

Information from the decision maker is usually elicited

in the the form of his/her preferences. The DM (decision

maker) is required to compare certain number of points in

the objective space. The points are presented to the DM and

pairwise comparisons of the given points result in either a

solution being more preferred over the other or the solutions

being incomparable. Based on such preference statements, a

partial ordering of the points is done. If Pk, k ∈ {1, . . . , η}
represents a set of η points in the decision space then

for a given pair (i, j) the i-th point is either preferred

over the j-th point (Pi ≻ Pj ), or they are incomparable

(Pi ≡ Pj). This information is used to fit a value function

which matches the DM’s preferences. A number of available

value functions can be chosen from the literature and the

preference information can be fitted. Here, we describe the

preference fitting task with three different value functions.

The first value function is the CES [16] value function and

the second one is the Cobb-Douglas [16] value function.

These two value functions are commonly used in economics

literature. The Cobb-Douglas value function is a special form

of the CES value function. As the two value functions have a

limited number of parameters, they can be used to fit only a

certain class of convex preferences. In this study we propose

a generalized polynomial value function which can be used

to fit any kind of convex preference information. A special

form of this value function has been suggested in an earlier

study by Deb, Sinha, Korhonen and Wallenius [1]. They used

this special form of the polynomial value function in the PI-

EMO-VF procedure. In this section we discuss the process of

fitting preference information to any value function and then

incorporate the generalized value function in the PI-EMO-VF

procedure in the later part of the paper.

1) CES Value Function:

V (f1, f2, . . . , fM ) = (
∑M

i=1 αif
ρ
i )

1
ρ ,

such that

αi ≥ 0, i = 1, . . . ,m∑M
i=1 αi = 1

where fi are the objective functions

and ρ, αi are the value function parameters
(1)

2) Cobb-Douglas Value Function:

V (f1, f2, . . . , fM ) =
∏M

i=1 f
αi

i ,
such that

αi ≥ 0, i = 1, . . . ,m∑M
i=1 αi = 1

where fi are the objective functions

and αi are the value function parameters
(2)

3) Polynomial Value Function: A generalized polynomial

value function has been suggested which can be utilized to fit

any number of preference information by choosing a higher

degree polynomial.

V (f1, f2, . . . , fM ) =
∏p

j=1

∑M
i=1(αijfi + βj)

such that

0 = 1−∑M
i=0 αij , j = 1, . . . , p

Sj =
∑M

i=1(αijfi + βj) > 0, j = 1, . . . , p
0 ≤ αij ≤ 1, j = 1, . . . , p

where fi are the objective functions

αij , βi, p are the value function parameters

and Sj are the linear product terms in

the value function
(3)

A special form of this value function suggested by Deb,

Sinha, Korhonen and Wallenius [1] used p = M , where M is

the number of objectives. Choosing a value of p = M makes

the shape of the value function easily deductible with each

product term, Sj , j = 1, . . . ,M , representing an asymptote

(a hyper-plane). However, any positive integer value of p

can be chosen. More the number of parameters in the value

function, more is the flexibility and any type of quasi-concave

indifference curve can be fitted by increasing the value of

p. Once the preference information is given, the task is to

figure out the parameters of the value function which capture

the preference information optimally. Next, we frame the

optimization problem which needs to be solved to figure out

the value function parameters.

4) Value Function Optimization: Following is a generic

approach which could be used to fit any value function to

the preference information provided by the decision maker.

In the equations, V represents the value function being

used and P is a vector of objectives. V (P ) represents a

scalar assigned to the objective vector P such that the

scalar represents the utility/value of the objective vector. The

optimization problem attempts to find such parameters for

the value function for which the minimum difference in the

value function values between the ordered pairs of points is
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maximum.

Maximize ǫ,
subject to Value Function Constraints

V (Pi)− V (Pj) ≥ ǫ, for all (i, j) pairs

satisfying Pi ≻ Pj ,
|V (Pi)− V (Pj)| ≤ δV , for all (i, j) pairs

satisfying Pi ≡ Pj .
(4)

The first set of constraints ensure that the constraints spec-

ified in the construction of the value function are met. It

includes variable bounds for the value function parameters

or any other equality or inequality constraints which need

to be satisfied to obtain feasible parameters for the value

function. The second and third set of constraints ensure

that the preference order specified by the decision maker

is maintained for each pair. The second set ensures the dom-

ination of one point over the other such that the difference

in their values is at least ǫ. The third constraint set takes

into account all pairs of incomparable points. For such pairs

of points, we would like to restrict the absolute difference

between their value function values to be within a small

range (δV ). δV = 0.1ǫ has been used in the entire study

to avoid introducing another parameter in the optimization

problem. It is noteworthy that the value function optimization

task is considered to be successful, with all the preference

orders satisfied, only if a positive value of ǫ is obtained by

solving the above problem. A non-positive value of ǫ means

that the chosen value function is unable to fit the preference

information provided by the decision maker.

Now, we consider a case where five (η = 5) hypothetical

points (P1 = (3.6, 3.9), P2 = (2.5, 4.1), P3 = (5.5, 2.5),
P4 = (0.5, 5.2), and P5 = (6.9, 1.8)) are presented to a

decision maker. Let us say that the decision maker provides

strict preference of one point over the other and a complete

ranking of points is obtained with P1 being the best, P2
being the second best, P3 being the third best, P4 being

the fourth best and P5 being the worst. Due to a complete

ranking, third constraint set will not exist while framing the

value function optimization problem. Trying to fit a linear

value function to the preferences reveals that there does

not exist any such linear function which could take all the

preference information into account. Next we resort to non-

linear value functions. CES value function, Cobb-Douglas

value function as well as the Polynomial value function are

found to satisfy all the preference constraints. Figure 1, 3

and 5 represent the indifference curves corresponding to the

respective value functions and the points.

Next we consider a case where the decision maker finds a

pair or pairs incomparable. The points mentioned in the pre-

vious paragraph have been used again. From the preference

information provided by the decision maker a partial ordering

of the points is done with P1 being the best, P2 being the

second best, P3 being the third best and P4, P5 being the

worst. In this case the decision maker finds the pair (P4, P5)
incomparable. This introduces the third set of constraints as

well in the value function optimization problem. Figure 2,

4 and 6 represent the points and the indifference curves

corresponding to the respective value functions for the case

where the DM finds a pair incomparable.
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Fig. 1. CES value function for P1 ≻ P2 ≻ P3 ≻ P4 ≻ P5. The
equation for the value function is V (f1, f2) = 0.28f0.13

1 + 0.72f0.13
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Fig. 2. CES value function for P1 ≻ P2 ≻ P3 ≻ P4 ≡ P5. The
equation for the value function is V (f1, f2) = 0.31f0.26

1 + 0.69f0.26
2

III. PROGRESSIVELY INTERACTIVE EMO USING VALUE

FUNCTIONS (PI-EMO-VF)

A progressively interactive EMO [1] was proposed by

Deb, Sinha, Korhonen and Wallenius where an approximate

value function is generated after every τ generations of

the EMO. Ideas from the multiple criteria decision making

(MCDM) were combined with NSGA-II [9] to implement the

procedure. The decision maker is provided with η well sparse

non-dominated solutions from the current population of non-

dominated points of the EMO algorithm. The DM is then

expected to provide a complete or partial preference informa-

tion about the superiority or indifference of one solution over

the other. Based on the DM preferences the parameters of a

strictly monotone value function are determined by solving

the value function optimization problem discussed above.
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Fig. 3. Cobb-Douglas value function for P1 ≻ P2 ≻ P3 ≻ P4 ≻ P5.
The equation for the value function is V (f1, f2) = f0.27

1 f0.73
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Fig. 4. Cobb-Douglas value function for P1 ≻ P2 ≻ P3 ≻ P4 ≡ P5.
The equation for the value function is V (f1, f2) = f0.29

1 f0.71
2

The determined value function is used to guide the search

of the EMO towards the region of interest. A local search

based termination criteria was also proposed in the study.

The termination condition is set-up based on the expected

progress which can be made with respect to the constructed

value function.

In this study we replace the previously used polynomial

value function with a generalized polynomial value function.

To begin with, a polynomial value function with p = 1 is

optimized. In case the optimization process is unsuccessful

with a negative ǫ, the value of p is incremented by 1. This

is done until a value function is found which is able to fit

the preference information. This ensured that any information

received by the decision maker always gets fitted with a value

function. This makes the algorithm more efficient eliminating

cases where a value function cannot be fitted to the DM

preferences.

In the previous study two, three and five objective un-

constrained test problems were successfully solved using the

algorithm. The algorithm was able to produce solutions close
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Fig. 5. Polynomial value function for P1 ≻ P2 ≻ P3 ≻ P4 ≻ P5. The
equation for the value function is V (f1, f2) = f2(f1 + 0.54f2 − 0.54)
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Fig. 6. Polynomial value function for P1 ≻ P2 ≻ P3 ≻ P4 ≡ P5. The
equation for the value function is V (f1, f2) = f2(f1 + 0.49f2 − 0.49)

to the most preferred point with a very high accuracy. A

decision maker (DM) was replaced with a DM emulated

value function which was used to provide preference in-

formation during the progress of the algorithm. Though the

possibility of the decision maker’s indifference towards a pair

of solutions was discussed but the algorithm was evaluated

only with a DM emulated value function which provides

perfect ordering of the points. In the following part of this

paper we evaluate the efficacy of the algorithm on three

and five objective test problems with constraints. We also

evaluate, how does the efficiency of the algorithm change in

case the decision maker is unable to provide perfectly ordered

set of points i.e. he/she finds some of the pairs incomparable.

IV. RESULTS

In this section, we present the results of the PI-NSGA-

II-VF procedure on three, and five objective test problems.

DTLZ8 and DTLZ9 test problems are adapted to create

maximization problems. In all simulations, we have used the

following parameter values:
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1) Number of points given to the DM for preference

information: η = 5.

2) Number of generations between two consecutive DM

calls: τ = 5.

3) Termination parameter: ds = 0.01, 0.1.

4) Crossover probability and the distribution index for the

SBX [13] operator: pc = 0.9 and ηc = 15.

5) Mutation probability: pm = 0.

6) Population size: N = 10M , where M is the number

of objectives.

Now, we present the test problems and results obtained with

the above setting.

A. Three-Objective Test Problem

The DTLZ8 [14] test problem is scalable to any number

of objectives. Here, we consider a three objective DTLZ8

problem. As suggested in [14] the number of variables has

been chosen as 30 (n = 10M ). The original problem is

a minimization problem but since we wish to maximize

the objectives, a negative sign has been used before both

the objectives to turn the problem into a maximization

problem. The description of the test problem for M number

of objectives and n number of variables is as follows:

Maximize fj(x) = − 1
⌊ n
M ⌋

∑⌊j n
M ⌋

i=⌊(j−1) n
M ⌋ xi,

j = 1, 2, . . . ,M,
subject to gj(x) = fM (x) + 4fj(x)− 1 ≥ 0,

j = 1, 2, . . . ,M − 1,
gM (x) = 2fM (x)+

min
M − 1

i, j = 1
i 6= j

[fi(x) + fj(x)]− 1 ≥ 0,

0 ≤ xi ≤ 1, for i = 1, . . . , n,
(5)

For an M objective test problem the number of constraints

are equal to M−1. The Pareto-optimal front is a combination

of a straight line and a hyper plane. The straight line is

the intersection of first M − 1 constraints with f1 = f2 =
. . . = fM−1 and the hyper-plane is represented by the plane

gM . The Pareto-optimal front for a three-objective DTLZ8

problem is shown in Figure 7.

To test the working of PI-NSGA-II-VF on this problem,

we have replaced the decision maker by using a non-linear

value function (emulating the DM), as follows:

V (f) = 1/
3∑

i=1

(fi − ai)
2, (6)

where a = (0.0, 0.0,−0.775)T . This value function produces

the most preferred solution on the Pareto-optimal front as

z∗ = (−0.05,−0.05,−0.80).
The PI-NSGA-II-VF is run with N = 10 × 3 or 30

population members 21 times, each time with a different

random initial population. In terms of the accuracy measure

from z∗, Table I presents the best, median and worst per-

forming runs. Table II shows the accuracy, number of overall

function evaluations and number of DM calls needed by the
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Fig. 7. Final population members after termination of the algorithm for
three-objective modified DTLZ8 problem.

procedure. It is clear that the obtained points are close to the

most preferred point z∗.

TABLE I

FINAL SOLUTIONS OBTAINED BY PI-NSGA-II-VF FOR THE

THREE-OBJECTIVE DTLZ8 PROBLEM.

z∗ Best Median Worst

f1 -0.0500 -0.0501 -0.0503 -0.0512

f2 -0.0500 -0.0501 -0.0504 -0.0514

f3 -0.8000 -0.7996 -0.7988 -0.7952

TABLE II

DISTANCE OF OBTAINED SOLUTION FROM THE MOST PREFERRED

SOLUTION, NUMBER OF FUNCTION EVALUATIONS, AND NUMBER OF DM

CALLS REQUIRED BY PI-NSGA-II-VF ON THE THREE-OBJECTIVE

DTLZ8 PROBLEM. ds = 0.01

Minimum Median Maximum

Accuracy 0.0004 0.0013 0.0051

# of Function Eval. 11274 13636 15264

# of DM Calls 24 29 36

In Table III, the termination parameter ds has been relaxed

to 0.1. This leads to reduction in function evaluations as

well as reduction in the number of DM-calls. This reduction

comes with a trade-off and the accuracy in turn becomes low.

The ds parameter offers a flexibility to go for high number

of DM-calls if a very high accuracy is desirable or reduce

the number of DM-calls and be satisfied with an adequate

accuracy. A low value of ds leads to a high accuracy with

an increased number of DM-calls. In a future study, we plan

to eliminate this parameter ds with a fixed number of DM-

calls, i.e., instead of fixing this parameter ds, the user of

the algorithm will have to provide an input indicating the

maximum number of times the decision maker can be called

to provide preference information.

B. Five-Objective Test Problem

We now consider the five-objective (M = 5) version of

the DTLZ9 [14] problem. This is also a scalable problem and

the number of variables have been suggested to be chosen
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TABLE III

DISTANCE OF OBTAINED SOLUTION FROM THE MOST PREFERRED

SOLUTION, NUMBER OF FUNCTION EVALUATIONS, AND NUMBER OF DM

CALLS REQUIRED BY PI-NSGA-II-VF ON THE THREE-OBJECTIVE

DTLZ8 PROBLEM. ds = 0.1.

Minimum Median Maximum

Accuracy 0.0074 0.0230 0.0819

# of Function Eval. 3706 4625 4665

# of DM Calls 8 11 18

as n = 10M . So the five objective test problem which

we consider here has 50 number of decision variables. The

original problem once again is a minimization problem but

since we wish to maximize the objectives a negative sign

has been used before each of the objectives to turn the

problem into a maximization problem. The description of

the test problem for M number of objectives and n number

of variables is as follows:

Maximize fj(x) = −∑⌊j n
M ⌋

i=⌊(j−1) n
M ⌋ x

0.1
i , j = 1, 2, . . . ,M,

subject to gj(x) = f2
M (x) + f2

j (x)− 1 ≥ 0,
j = 1, 2, . . . ,M − 1,

0 ≤ xi ≤ 1, for i = 1, . . . , n,
(7)

For this test problem, the Pareto-optimal front is a curve

with f1 = f2 = . . . = fM−1. The Pareto-optimal curve

lies on the intersection of all M − 1 constraints. A two

dimensional plot of the Pareto-optimal front with fM and

any other objective represents a circular arc of radius 1.

The Pareto-optimal front for a five-objective DTLZ9 problem

is shown in Figure 8 with objectives f1 and f5. The other

objective values (f2, f3, f4) are equal to f1.

For this problem, we choose a non-linear DM-emulated

value function, as follows:

V (f) = 1/

5∑

i=1

(fi − ai)
2, (8)

where a = (−0.175,−0.175,−0.175,−0.175,−0.4899)T .

This value function produces the most preferred point as

z∗ = (−0.2,−0.2,−0.2,−0.2,−0.9798).
Table IV presents the obtained solutions by PI-NSGA-II-

VF with 50 population members. Table V shows the accuracy

TABLE IV

FINAL OBJECTIVE VALUES OBTAINED FROM PI-NSGA-II-VF FOR THE

FIVE-OBJECTIVE DTLZ9 PROBLEM.

z∗ Best Median Worst

f1 -0.2000 -0.2012 -0.2023 -0.2610

f2 -0.2000 -0.2002 -0.2008 -0.2408

f3 -0.2000 -0.2008 -0.2024 -0.2111

f4 -0.2000 -0.2005 -0.2004 -0.2007

f5 -0.9798 -0.9798 -0.9797 -0.9797

measure, the number of overall function evaluations, and
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Fig. 8. Final population members after termination of the algorithm for
five-objective DTLZ9 problem.

TABLE V

DISTANCE OF OBTAINED SOLUTION FROM THE MOST PREFERRED

SOLUTION, FUNCTION EVALUATIONS, AND THE NUMBER OF DM CALLS

REQUIRED BY PI-NSGA-II-VF FOR THE FIVE-OBJECTIVE DTLZ9

PROBLEM. ds = 0.01.

minimum median maximum

Accuracy 0.0015 0.0034 0.0742

# of Function Eval. 25452 29035 38043

# of DM Calls 59 63 89

the number of DM calls. Although the points close to the

most preferred point are obtained in each run, the higher

dimensionality of the problem requires more function eval-

uations and DM calls compared to the three-objective test

problem. However, the above results are obtained for a strict

termination criterion with ds = 0.01. Smaller number of DM

calls and evaluations are expected if this termination criterion

is relaxed. In Table VI, the termination parameter ds has been

relaxed to 0.1. Once again we find that this leads to reduction

in function evaluations as well as reduction in the number of

DM-calls. The accuracy also becomes low.

TABLE VI

DISTANCE OF OBTAINED SOLUTION FROM THE MOST PREFERRED

SOLUTION, FUNCTION EVALUATIONS, AND THE NUMBER OF DM CALLS

REQUIRED BY PI-NSGA-II-VF FOR THE FIVE-OBJECTIVE DTLZ9

PROBLEM. ds = 0.1

minimum median maximum

Accuracy 0.0284 0.0673 1.3836

# of Function Eval. 8201 9273 12806

# of DM Calls 19 24 33

It is worth mentioning that the application of a usual EMO

(including the original NSGA-II) is reported to face diffi-

culties in converging to the entire five-dimensional Pareto-

optimal front with an identical number of function evalua-
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tions in an earlier study [14]. However, our target is a single

preferred point on the Pareto-optimal front (dictated by a

sequence of preference information provided by the DM), our

procedure is able to find a near Pareto-optimal solution for

the five-objective optimization problem. The results demon-

strate the increased efficacy of an EMO when preference

information is used in the intermediate generations.

V. PERFORMANCE IN ABSENCE OF PERFECT

INFORMATION

Next, we consider a case where the decision maker is

unable to provide strict preference for some of the pairs in

the η set of solutions given to him. In this case the algorithm

does not have the complete ranking of the η points, instead

some of the members are equally good as the other. In

order to simulate a decision maker who is unable to provide

preferences for some of the pairs, we again consider a DM-

emulated value function which provides strict preference.

From this value function, the values of each of the η points

are calculated. Once we have all the values, the difference

between the minimum and the maximum value is taken. Let

us call the difference to be D. Now, if for any given pair

the absolute difference between the value functions is less

than or equal to αD,α < 1, then the decision maker is

said to be unable to make a comparison between those two

points. To illustrate the procedure, let us consider a set of η
points P1, P2, . . . , Pη . Let the DM-emulated value function

be VDM . The values for each of the η points are calculated

and the points are ranked as P1 � P2 � . . . � Pη such

that VDM (P1) ≥ VDM (P2) ≥ . . . ≥ VDM (Pη). This means

that the difference between the maximum and the minimum

value is D = VDM (P1) − VDM (Pη). For any given pair

(Pi, Pj) if the absolute difference in the values is found to

be less than αD, then the decision maker marks that pair as

incomparable.

An interesting case occurs for three points Pi, Pj , Pk,

when VDM (Pi)−VDM (Pj) ≤ αD, VDM (Pj)−VDM (Pk) ≤
αD but VDM (Pi) − VDM (Pk) > αD. In this case, when

the decision maker is asked to compare (Pi, Pj), he/she

concludes (Pi ≡ Pj) and when he/she is asked to compare

(Pj , Pk), he/she concludes that (Pj ≡ Pk). Transitivity

should imply that (Pi ≡ Pk) but such a decision maker would

defy transitivity by concluding (Pi ≻ Pk) as VDM (Pi) −
VDM (Pk) > αD. However, such a decision maker will

always be transitive in case of the following preferences i.e.,

Pl ≻ Pm ≻ Pn implies Pl ≻ Pn and Pl � Pm � Pn implies

Pl � Pn.

The procedure mentioned above has been used to emulate

a decision maker who finds some of the pairs incomparable.

The decision maker is also intransitive when it comes to

the equivalence relation. Once the information is elicited

from such a decision maker, it is given as input to the

algorithm which tries to fit an approximated value function

to the preference information and uses it in the subsequent τ
generations. Now, we present the results for three objective

DTLZ8 and five objective DTLZ9 test problems where α
has been varied as {0, 0.10, 0.15, 0.20, 0.25}. Figure 9 and 10

show the change in accuracy, number of function evaluations

and number of DM calls as α increases. With increase in in-

conclusiveness i.e., with more and more pairs being assigned

as incomparable, the number of function evaluations and the

number of DM calls are found to increase. The accuracy also

gets affected and becomes poorer as α increases.
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Fig. 9. Change in accuracy, function evaluations and DM calls with increase
in α for three objective DTLZ-8 problem.
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Fig. 10. Change in accuracy, function evaluations and DM calls with
increase in α for five objective DTLZ-9 problem.

VI. CONCLUSIONS

In this paper, we have described a technique to fit value

functions to the preferences of the decision maker. To fit the

preference information, a couple of commonly used value

functions have been picked up from the literature. With a

limited number of parameters in these value functions, it is

not possible to fit all kinds of convex preference information,

hence, we proposed a generic polynomial value function

whose complexity can be increased by adding more number

of product terms and any kind of convex preferences can be

fitted. The value function optimization technique allows to

figure out the best parameters for the value function. The

PI-EMO-VF algorithm used a special form of the generic

polynomial value function which has been replaced. The

algorithm now uses a generic polynomial value function.
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The PI-EMO-VF algorithm has been tested with a three

and a five objective constrained test problem. The algorithm

is able to successfully find the most preferred point in these

high objective difficult test problems. A technique is also

suggested to emulate a decision maker who is inconclusive

with some of the pairs given for preference information.

Such a decision maker finds the points incomparable if the

utility of the two points are quite close. The algorithm has

been further evaluated for such a decision maker and the

results have been presented. It is found that the algorithm

is able to efficaciously respond to the preferences from the

decision maker and gets close to the most preferred solution.

Though, the accuracy gets hampered with an increasing

inconclusiveness of the decision maker.

Incorporating the aspects of decision making in the inter-

mediate steps of EMO algorithms appears to be a promising

approach to handle high objective optimization problems.

This paper is an attempt by the authors to evaluate the idea

and demonstrate the effectiveness of the hybrid procedure.
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Abstract. This paper suggests a preference based methodology, where the infor-
mation provided by the decision maker in the intermediate runs of an evolution-
ary multi-objective optimization algorithm is used to construct a polyhedral cone.
This polyhedral cone is used to eliminate a part of the searchspace and conduct
a more focussed search. The domination principle is modified, to look for better
solutions lying in the region of interest. The search is terminated by using a local
search based termination criterion. Results have been presented on two to five
objective problems and the efficacy of the procedure has beentested.

Keywords: Evolutionary multi-objective optimization, multiple criteria decision-
making, interactive multi-objective optimization, sequential quadratic programming,
preference based multi-objective optimization.

1 Introduction

Most of the existing evolutionary multi-objective optimization (EMO) algorithms aim
to find a set of well-converged and well-diversified Pareto-optimal solutions [1, 2]. As
discussed elsewhere [3, 5], finding the entire set of Pareto-optimal solutions has its own
intricacies. Firstly, the usual domination principle allows a majority of the population
members to become non-dominated, thereby not allowing muchroom for introducing
new solutions in a finite population. This slows down the progress of an EMO algo-
rithm. Secondly, the representation of a high-dimensionalPareto-optimal front requires
an exponentially large number of points, thereby requiringa large population size in
running an EMO procedure. Thirdly, the visualization of a high-dimensional front be-
comes a non-trivial task for decision-making purposes.

In most of the existing EMO algorithms the decision maker is usually not involved
during the optimization process. The decision maker is called only at the end of the
optimization run after a set of approximate Pareto-optimalsolutions has been found.
The decision making process is then executed by choosing themost preferred solution
from the set of approximate Pareto-optimal solutions obtained. This approach is called

⋆⋆ Also Department of Mechanical Engineering, Indian Institute of Technology Kanpur, PIN
208016, India (deb@iitk.ac.in).
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theaposteriori approach. This approach makes it necessary for the algorithm to produce
the entire set of approximate Pareto-optimal solutions so that a decision making process
can be executed.

Some EMO researchers adopt a particular multiple criteria decision-making (MCDM)
approach (apriori approach) to avoid the problems associated with finding the en-
tire front. In such an approach the entire Pareto-optimal set is not aimed at rather a
crowded set of Pareto-optimal solutions near the most preferred solution is targeted. In
this approach the decision maker interacts at the beginningof an EMO run. The cone-
domination based EMO [6, 1], biased niching based EMO [7], reference point based
EMO approaches [8, 9], the reference direction based EMO [10], the light beam ap-
proach based EMO [11] are a few attempts in this direction.

In asemi-interactive EMO approach, the decision maker is involved iteratively [13,
14] in the optimization process. Some preference information (in terms of reference
points or reference directions or others) is accepted from the decision maker and an
MCDM-based EMO algorithm is employed to find a set of preferred Pareto-optimal
solutions. Thereafter, a few representative preferred solutions are shown to the DM and
a second set of preference information in terms of new reference points or new reference
directions is obtained and a second MCDM-based EMO run is made. This procedure is
continued till a satisfactory solution is found.

However, the decision maker could be integrated with the optimization run of an
EMO algorithm in a much more effective way, as shown in recentstudies [4, 15]. These
approaches require progressive interaction with the decision maker during the interme-
diate generations of the optimization process to converge towards the most preferred
solution. Such aprogressively interactive EMO approach(PI-EMO), allows the deci-
sion maker to modify her/his preference structure as new solutions evolve, thus making
the process more DM-oriented.

This paper discusses a simple PI-EMO where the decision maker is provided with
a set of points perodically and asked to pick the most preferred solution from the set.
Each time the decision maker is asked to make a choice of the most preferred solution,
we call the instance as a ‘DM call’. With the information obtained from the decision
maker a polyhedral cone is constructed and the domination principle is modified. The
obtained polyhedral cone is further utilized to figure out a direction in which a local
search is performed to determine the termination of the PI-EMO algorithm. The PI-
EMO concept has been integrated with the NSGA-II algorithm [18] and the working
of the algorithm has been demonstrated on three test problems having two, three and
five objectives. A parametric study of the algorithm has alsobeen done to determine the
overall working of the algorithm.

2 Past Studies on Progressively Interactive Methods

Towards the methodologies involving a progressive use of preference information by
involving a decision-maker in an evolutionary multi-objective optimization framework,
there are not many studies yet. Some recent studies periodically presented to the DM
one or more pairs of alternative points found by an EMO algorithm and expected the
DM to provide some preference information about the points.Some of the work in this
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direction has been done by Phelps and Köksalan [20], Fowleret al. [29], Jaszkiewicz
[21], Branke et al. [15] and Korhonen, Moskowitz and Wallenius [16].

In a recent study [4], the authors have proposed a progressively interactive approach
(PI-EMO-VF) where the information from the decision maker is used to arrive at a
quasi-concave value function which is used to drive the EMO.The approach based on
DM interaction, generates a rank order of a set of points. In the same paper a local
search based termination criterion has been proposed, the efficacy of which motivates
us to use the same termination criterion for this study as well.

3 Progressively Interactive EMO Based on Polyhedral Cones
(PI-EMO-PC)

In this section, we propose a progressively interactive EMOalgorithm (PI-EMO-PC),
where a polyhedral cone is used to modify the domination criteria of an EMO and drives
it towards a single most preferred point on anM objective maximization problem. The
polyhedral cone is arrived at using the preference information provided by the decision
maker. The principle may be integrated with any standard EMOalgorithm (such as
NSGA-II [18], SPEA2 [22] and others) which works with a population of points in
each iteration and prefers a sparsed set of non-dominated points in a population. The
integration of the above principle with an EMO algorithm modifies the working of the
algorithm and helps in finding the most preferred solution instead of the entire Pareto-
optimal set.

For this purpose, after everyτ generations of an EMO algorithm, we provide the
decision-maker with an archive set containing non-dominated solutions and expect
him/her to choose the best solution. The decision maker picks the best solution from the
archive set of non-dominated solutions using an advanced selection technique known as
VIMDA [30]. It is a visual interactive method which uses the reference point technique
to allow the decision maker to select the best point from a setof non-dominated points.
Its efficacy could be well demonstrated for high dimensionalobjective vectors when
a geometrical representation is not possible. Once the bestsolution has been picked,
the end points of the non-dominated front from the current parent population are cho-
sen as the other points. It is noteworthy that the end points of the front are the points
with best function value in one of the objectives. Such points are exactlyM in number.
This provides us withη (= M + 1, M is the number of objectives) points which is
used to constructM different hyperplanes i.e., sides of a polyhedral cone. (described in
Section 3.1).

The modified domination criterion is used until the nextτ generations. The sug-
gested termination criterion also uses the information from the polyhedral cone to de-
cide when to terminate the algorithm. The following gives a step-by-step procedure of
the proposed progressively interactive EMO (PI-EMO) methodology:

Step 1: Initialize a populationPar0 and set iteration countert = 0. Initialize archive
setA 1. Domination of one solution over another is defined based on the usual
definition of dominance [23] and an EMO algorithm is executedfor τ iterations

1 The initial size of the archive is|A| = 0. The maximum size the archive can have is|A|max.
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(generations). The value oft is incremented by one after each iteration. At each it-
eration of the EMO all the feasible non-dominated solutionsfound in the population
are added to the archiveA. The archive, at each iteration, is updated by removing
the non-dominated solutions. If the archive size exceeds|A|max, k-mean cluster-
ing is used to keep the diversed set of|A|max clusters and rest of the solutions are
deleted.

Step 2: If ( t mod τ = 0), the DM chooses the best solutionAbest
t , from the archiveAt

using VIMDA. Choose the end points from the non-dominated front of the current
parent populationPart as rest of the solutions. This makes the chosen solution
count asη = M + 1: otherwise, proceed to Step 5.

Step 3: Construct the sides of the polyhedral cone from the chosen set of points, de-
scribed in Section 3.1.

Step 4: A termination check (described in Section 3.2) is performedbased on the ex-
pected improvement in solutions from the currently judged best solution. If the
expected improvement is not significant (with respect to a parameterds), the algo-
rithm is terminated and the current best solution is chosen as the final outcome.

Step 5: The parent populationPart is used to create a new populationOfft (off-
springs) by using a modified domination principle (discussed in Section 3.3) based
on the current polyhedral cone and EMO algorithm’s search operators.

Step 6: PopulationsPart andOfft are used to determine a new populationPart+1

using the polyhedral cone and EMO algorithm’s diversity preserving operator. The
iteration counter is incremented ast← t+ 1 and the algorithm proceeds to Step 2.

The above is a generic progressively interactive procedure, which can be combined with
any existing EMO algorithm in Step 1 and subsequently in Steps 5 and 6. The PI-EMO
algorithm expects the user to set a value forτ , ds and|A|max.

We now provide the details for the specific procedures used inthis study for Steps 3
to 6.

3.1 Step 3: Polyhedral Cone

At an instance of a DM call,η members need to be selected to createM different
hyperplanes which form the sides of the polyhedral cone. Thedecision maker is asked
to choose the best solution from the archive set and the end points (M in number) of the
non-dominated front in the parent population are selected as other members. Therefore,
for M number of objectives we haveη = M + 1. Now,M + 1 number of different
hyperplanes can be constructed usingM + 1 points in anM -dimensional hyperspace.
From the set ofM+1 hyperplanes the hyperplane not containing the best point from the
archive is removed which leaves us with remainingM hyperplanes. Since all the points
are non-dominated with respect to each other, the normals toall theM hyperplanes will
have positive direction cosines. TheM planes together form a polyhedral cone with the
best member from the archive as the vertex. Each hyperplane represents one of the sides
of the polyhedral cone.

For instance figure 1 and figure 2 show the polyhedral cones in two and three
dimensions. The equation of each hyperplane can be written as Pi(f1, . . . , fM ) =

0, i ∈ {1, . . . ,M}. If a given point(f (1)
1 , . . . , f

(1)
M ), in the objective space hasPi >
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0 ∀ i ∈ {1, . . . ,M}, then the point lies inside the polyhedral cone otherwise itlies
outside. In figure 1, the shaded region hasPi < 0 for at least onei ∈ {1, . . . ,M}
and the unshaded region hasPi > 0 ∀ i ∈ {1, . . . ,M}. In figure 2, the shaded poly-
hedral cone representsPi < 0 ∀ i ∈ {1, . . . ,M} and the unshaded polyhedral cone
representsPi > 0 ∀ i ∈ {1, . . . ,M}. The region outside the two cones hasPi <
0 for at least onei ∈ {1, . . . ,M}

V2

Current Population
End Points of

V1

From Archive

V1+V2

f1

f2

Best Point

Fig. 1. Cone in two dimensions.

V2

V1

V3

V1+V2+V3

From Archive
Best Point

End Points of
Current Population

f2

f3

Polyhedral
Cone

f1

Fig. 2. Polyhedral cone in three dimensions.

3.2 Step 4: Termination Criterion

Once the polyhedral cone is determined, it provides an idea for a search direction. The
normal unit vectors (̂Vi) of all theM hyperplanes can be summed up to get a search
direction (W =

∑n
i=1 V̂i). Ŵ is the unit vector alongW andWi ∀ i ∈ {1, . . . ,M}

represents the direction cosines of the vectorW . This direction has been used to de-
termine if the optimization process should be terminated ornot. To implement this idea
we perform a single-objective search along the identified direction.

We solve the following achievement scalarizing function (ASF) problem [24] for
the best point from the archiveAbest

t = zb:

Maximize

(
M
min
i=1

fi(x)−zb
i

Wi

)
+ ρ

∑M
j=1

fj(x)−zb
j

Wj
.

subject tox ∈ S.
(1)

HereS denotes the feasible decision variable space of the original problem. The second
term with a smallρ (= 10−10 is suggested) prevents the solution from converging to
a weak Pareto-optimal point. Any single-objective optimization method can be used
for solving the above problem and the intermediate solutions (z(i), i = 1, 2, . . .) can
be recorded. If at any intermediate point, the Euclidean distance betweenz(i) from
Abest

t is larger than a termination parameterds, we stop the ASF optimization task
and continue with the EMO algorithm. In this case, we replaceAbest

t with z(i) in the
archive set, and update the archive setAt, by deleting the dominated members.Abest

t

replaces the member closest to it in the parent populationPart. Figure 3 depicts this
scenario. On the other hand, if at the end of the SQP run, the final SQP solution (say,
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zT ) is not greater thands distance away fromAbest
t , we terminate the EMO algorithm

and declarezT as the final preferred solution. This situation indicates that based on the
search direction, there does not exist any solution in the search space which will provide
a significantly better solution thanAbest

t . Hence, we can terminate the optimization run.
Figure 4 shows such a situation, warranting a termination ofthe PI-EMO procedure.

Best Point

V1+V2

Pareto Front

Created by
Local Search

V1

V2
Current
Population

from Archive

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fig. 3. Local search, when far away from the
front, finds a better point more than distance
ds away from the best point. Hence, no termi-
nation of the P-EMO.
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Fig. 4.Local search terminates within distance
ds from the best point. Hence, the P-EMO is
terminated.

3.3 Steps 5 and 6: Modified Domination Principle

The polyhedral cone has been used to modify the domination principle in order to em-
phasize and create preferred solutions.

Let us assume that the polyhedral cone from the most recent decision-making inter-
action is represented by a set of hyperplanesPi(f1, . . . , fM ) = 0 for i ∈ {1, . . . ,M}.
Then, any two feasible solutionsx(1) andx(2) can be compared with their objective
function values by using the following modified domination criteria:

1. If for both the solutions,Pi(f1, . . . , fM ) > 0 ∀ i ∈ {1, . . . ,M}, then the two
points are compared based on the usual dominance principle.

2. If for both the solutions,Pi(f1, . . . , fM ) < 0 for at least one i ∈ {1, . . . ,M},
then the two points are compared based on the usual dominanceprinciple.

3. If one solution hasPi(f1, . . . , fM ) > 0 ∀ i ∈ {1, . . . ,M}, and the other so-
lution hasPi(f1, . . . , fM ) < 0 for at least onei ∈ {1, . . . ,M}, then the former
dominates the latter.

Figure 5 illustrates the region dominated by two pointsA andB. The cone formed
by the linear equations have been shown. The pointA lies in the region in which
Pi(f1, . . . , fM ) < 0 for at least onei ∈ {1, . . . ,M}. The region dominated by pointA
is shaded. This dominated area is identical to that which canbe obtained using the
usual domination principle. However, pointB lies in the regionPi(f1, . . . , fM ) >
0 for i ∈ {1, . . . ,M}. For this point, the dominated region is different from that
which would be obtained using the usual domination principle. In addition to the usual
region of dominance, the dominated region includes all points which havePi(f1, . . . , fM ) <
0 for at least onei ∈ {1, . . . ,M}.
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Fig. 5. Dominated regions of
two pointsA andB using the
modified definition.

Although we do not handle constrained problems
in this study, the above modified domination princi-
ple can be extended for handling constraints. As de-
fined in [18], when both solutions under consideration
for a domination check arefeasible, the above domi-
nation principle can simply be used to establish dom-
inance of one over the other. However, if one point
is feasible and the other is not, the feasible solution
can be declared as dominating the other. Finally, if
both points are infeasible, the one having smaller over-
all constraint violation may be declared as dominating
the other. We defer consideration of a constrained PI-
EMO to a later study.

4 PI-NSGA-II-PC Procedure

In the PI-NSGA-II-PC procedure, the firstτ generations are performed according to the
usual NSGA-II algorithm [18]. Thereafter, we modify the NSGA-II algorithm by us-
ing the modified domination principle (discussed in Section3.3) in the elite-preserving
operator and also in the tournament selection for creating the offspring population. We
also use a different recombination operator in this study. After a child solutionxC is
created by the SBX (recombination) operator [25], two randomly selected population
membersx(1) andx(2) are chosen and a small fraction of the difference vector is added
to the child solution (similar in principle to a differential evolution operator [26]), as
follows:

xC = xC + 0.1
(
x(1) − x(2)

)
. (2)

The crowding distance operator of NSGA-II has been replacedwith k-mean clustering
for maintaining diversity among solutions of the same non-dominated front.

An archiveA is maintained which contains all the non-dominated membersfound
in the current as well as the previous iterations of the optimization run. The maximum
size the archive can have is|A|max. This makes sure that none of the non-dominated
solutions generated is lost even if the decision maker makesan error while providing
preference information.

For termination check (discussed in Section 3.2), we use theSQP code of KNITRO
[27] software to solve the single objective optimization problem and the SQP algorithm
is terminated (if not terminated due tods distance check fromAbest

t discussed earlier)
when the KKT error measure is less than or equal to10−6.

5 Results

In this section we present the results of the PI-NSGA-II procedure on two, three, and
five objective test problems. ZDT1 and DTLZ2 test problems are adapted to create max-
imization problems. In all simulations, we have used the following parameter values:

1. Number of generations between two consecutive DM calls:τ = 5.
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2. Termination parameter:ds = 0.01 andds = 0.1.
3. Crossover probability and the distribution index for theSBX operator:pc = 0.9

andηc = 15.
4. Mutation probability:pm = 0.1.
5. Population size:N = 10M , whereM is the number of objectives.
6. Maximum Archive Size:Amax = 10N , whereN is the population size.

In the next section, we perform a parametric study with some of the above parameters.
Here, we present the test problems and results obtained withthe above setting.

5.1 Two-Objective Test Problem

Problem 1 is adapted from ZDT1 and has 30 variables.

Maximizef(x) =

{
x1

10−
√

x1g(x)

g(x)

}
,

whereg(x) = 1 + 9
29

∑30
i=2 xi,

0 ≤ xi ≤ 1, for i = 1, 2, . . . , 30,

(3)

The Pareto-optimal front is given byf2 = 10 − √f1 and is shown in Figure 6. The
solutions arexi = 0 for i = 2, 3, . . . , 30 andx1 ∈ [0, 1].

f1

Point
Most Preferred

Pareto Front

Contours
Value Function

f2

 9

 0.4  0.6  0.8  1 0

 10

 9.8

 9.6

 9.4

 9.2

 0.2

Fig. 6. Contours of the chosen
value function (acts as a DM) and
the most preferred point corre-
sponding to the value function.

This maximization problem has a non-convex
front. In order to emulate the decision maker, in
our simulations, we assume a particular value func-
tion which acts as a representative of the DM, but
the information is not explicitly used in creating
new solutions by the operators of the PI-NSGA-II
procedure. In such cases, the most preferred point
z∗ can be determined from the chosen value func-
tion beforehand, thereby enabling us to compare
our obtained point withz∗.

In our study, we assume the following non-
linear value function (which acts as a DM) in find-
ing the best point from the archive at everyτ gen-
erations:

V (f1, f2) =
1

(f1 − 0.35)2 + (f2 − 9.6)2
. (4)

This value function gives the most preferred solution asz∗ = (0.25, 9.50). The contours
of this value function are shown in Figure 6.

Table 1 presents the best, median and worst of 21 different PI-NSGA-II simulations
(each starting with a different initial population). The performance (accuracy measure)
is computed based on the Euclidean distance of each optimized point with z∗. Note
that this accuracy measure is different from the termination criterion used in the PI-
NSGA-II procedure. Results have been presented for two values of the termination
criteriads. As expected, when the termination criteria is relaxed from0.01 to 0.1, the
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Table 1.Final solutions obtained by PI-NSGA-II for the modified ZDT1problem.

ds = 0.01 ds = 0.1

z∗ Best Median Worst Best Median Worst
f1 0.25000.2482 0.2466 0.24010.2616 0.2733 0.3355
f2 9.50009.5018 9.5034 9.51019.4885 9.4772 9.4208

accuracy reduces, the number of function evaluations as well as the number of DM calls
also reduce. Table 2 shows minimum, median and maximum accuracy, the number of
overall function evaluations, and the number of DM calls recorded in the 21 runs. The
table indicates that the proposed PI-NSGA-II procedure is able to find a solution close
to the final preferred solution.

Table 2. Distance of obtained solution from the most preferred solution, function evaluations,
and the number of DM calls required by the PI-NSGA-II for the modified ZDT1 problem.

ds = 0.01 ds = 0.1

Minimum MedianMaximum Minimum MedianMaximum
Accuracy 0.0020 0.0048 0.0142 0.0170 0.0326 0.0726

Func. Evals. 5680 7698 11202 4159 6052 11176
# of DM Calls 15 20 29 10 14 25

5.2 Three-Objective Test Problem

The DTLZ2 test problem [28] is scalable to any number of objectives. In the three-
objective case, all points (objective vectors) are boundedby two spherical surfaces in
the first octant. In the case of minimizing all objectives, the inner surface (close to the
origin) becomes the Pareto-optimal front. But here, we maximize each objective of the
DTLZ2 problem. Thus, the outer spherical surface becomes the corresponding Pareto-
optimal front. AnM -objective DTLZ2 problem for maximization is given as follows:

Maximizef (x) =



(1.0 + g(x)) cos(π2x1) cos(
π
2x2) · · · cos(π2xM−1)

(1.0 + g(x)) cos(π2x1) cos(
π
2x2) · · · sin(π2xM−1)

...
(1.0 + g(x)) cos(π2x1) sin(

π
2x2)

(1.0 + g(x)) sin(π2x1)





,

subject to0 ≤ xi ≤ 1, for i = 1, . . . , 12,

whereg(x) =
∑12

i=3(xi − 0.5)2.

(5)

The Pareto-optimal front for a three-objective DTLZ2 problem is shown in Figure 8.
The points (objective vectors) on the Pareto-optimal frontfollow the relation:f2

1 +
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f2
2 + f2

3 = 3.52. The decision variable values correspond tox1 ∈ [0, 1], x2 ∈ [0, 1] and
xi = 0 or 1 for i = 3, 4, . . . , 12.

To test the working of PI-NSGA-II on this problem, we have replaced the decision
maker by using a linear value function (emulating the DM), asfollows:

V (f1, f2, f3) = 1.25f1 + 1.50f2 + 2.9047f3. (6)

This value function produces the most preferred solution onthe Pareto-optimal front as
z∗ = (1.25, 1.50, 2.9047).
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Fig. 7. Final population members after termi-
nation of the algorithm for two-objective mod-
ified ZDT1 problem.
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Fig. 8. Final population members after ter-
mination of the algorithm for three-objective
modified DTLZ2 problem.

The PI-NSGA-II is run withN = 10 × 3 or 30 population members 21 times,
each time with a different random initial population. In terms of the accuracy measure
from z∗, Table 3 presents the best, median and worst performing runs. Results have
been presented for two values of parameterds. Table 4 shows the accuracy, number
of overall function evaluations and number of DM calls needed by the procedure. It is
clear that the obtained points are close to the most preferred pointz∗. Figure 8 shows
the population at the final generation of a typical PI-NSGA-II run.

Table 3. Final solutions obtained by PI-NSGA-II for the three-objective modified DTLZ2 prob-
lem.

ds = 0.01 ds = 0.1

z∗ Best Median Worst Best Median Worst
f1 1.25001.2474 1.2444 1.23671.2388 1.2159 1.1434
f2 1.50001.4971 1.4956 1.48351.5445 1.5912 1.7482
f3 2.90472.9074 2.9094 2.91892.8861 2.8705 2.8083
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Table 4. Distance of obtained solution from the most preferred solution, number of function
evaluations, and number of DM calls required by PI-NSGA-II on the three-objective modified
DTLZ2 problem.

ds = 0.01 ds = 0.1

Minimum MedianMaximum Minimum MedianMaximum
Accuracy 0.0048 0.0085 0.0255 0.0495 0.1032 0.2868

Func. Evals. 4125 6514 8227 2577 3544 5223
# of DM Calls 14 22 34 8 10 14

5.3 Five-Objective Test Problem

We now consider the five-objective (M = 5) version of the DTLZ2 problem described
in the previous subsection. The Pareto-optimal front is described asf2

1 + f2
2 + f2

3 +
f2
4 + f2

5 = 3.52.
For this problem, we choose a non-linear DM-emulated value function, as follows:

V (f) =
1

(f1 − 1.1)2 + (f2 − 1.21)2 + (f3 − 1.43)2 + (f4 − 1.76)2 + (f5 − 2.6468)2
.(7)

This value function produces the most preferred point asz∗ = (1.0, 1.1, 1.3, 1.6, 2.4062).
Table 5 presents the obtained solutions by PI-NSGA-II with50 population mem-

bers. Once again, we present the results for two different values of the termination
parameterds. Table 6 shows the accuracy measure, the number of overall function eval-

Table 5.Final objective values obtained from PI-NSGA-II for the five-objective modified DTLZ2
problem.

ds = 0.01 ds = 0.1

z∗ Best Median Worst Best Median Worst
f1 1.00000.9915 0.9721 0.89191.0220 1.0368 1.0893
f2 1.10001.1041 1.1112 1.13731.1130 1.1324 1.2136
f3 1.30001.2963 1.2942 1.28811.3072 1.3155 1.3382
f4 1.60001.5986 1.5966 1.59181.6115 1.6346 1.7164
f5 2.40622.4108 2.4179 2.44302.3793 2.3432 2.2031

uations, and the number of DM calls. Although the points close to the most preferred
point are obtained in each run, the higher dimensionality ofthe problem requires more
function evaluations and DM calls compared to two and three-objective test problems.
When, the above results are computed for a strict termination criterion withds = 0.01,
we observe a very high number of DM calls. However, with a relaxed value ofds = 0.1
a much smaller number of DM calls and evaluations are required.

It is worth mentioning that the application of an EMO (including NSGA-II) will face
difficulties in converging to the five-dimensional Pareto-optimal front with an identical
number of function evaluations.
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Table 6.Distance of obtained solution from the most preferred solution, function evaluations, and
the number of DM calls required by PI-NSGA-II for the five-objective modified DTLZ2 problem.

ds = 0.01 ds = 0.1

Minimum MedianMaximum Minimum MedianMaximum
Accuracy 0.0112 0.0329 0.1210 0.0395 0.0884 0.2777

Func. Evals. 20272 29298 37776 5083 6872 9919
# of DM Calls 51 69 96 9 12 17

6 Parametric Study

Besides the usual parameters associated with an evolutionary algorithm, such as pop-
ulation size, crossover and mutation probabilities and indices, tournament size etc., in
the proposed PI-NSGA-II we have introduced a few additionalparameters which may
effect the accuracy and number of DM calls. They are the number of generations be-
tween DM calls (τ ), termination parameter (ds), maximum archive size (|A|max), KKT
error limit for terminating SQP algorithm in single-objective optimization used for the
termination check, and the parameterρ used in the ASF function optimization. Of these
parameters, the first two have shown to have an effect on the chosen performance mea-
sures — accuracy, the number of overall function evaluations, and the number of DM
calls.

A parametric study fords has not been done in this section as results for two differ-
ent values ofds have already been presented in the previous section. The results show
an expected behavior, that is, a strictds provides higher accuracy and requires a larger
number of DM calls and function evaluations, a relaxedds provides lower accuracy and
requires less number of DM calls and function evaluations.

Thus, in this section, we study the effect of the parameterτ , while keepingds =
0.01 and the other PI-NSGA-II parameters identical to that mentioned in the previous
section. Here, we use the two objective ZDT1 and three objective DTLZ2 test problems.

6.1 Effect of Frequency of DM Calls (τ )

We study the effect ofτ by considering four different values: 2, 5, 10 and 20 gener-
ations. The parameterds is kept fixed at 0.01. To investigate the dependence of the
performance of the procedure on the initial population, in each case, we run PI-NSGA-
II from 21 different initial random populations and plot thebest, median and worst
performance measures.

We plot three different performance measures — accuracy, number of DM calls and
number of function evaluations obtained for the modified ZDT1 problem in Figure 9.
It is interesting to note that all three median performance measures are best forτ =
5. A small value ofτ means that DM calls are to be made more frequently. Clearly,
this results in higher number of DM calls, as evident from thefigure. Frequent DM
calls result in more single-objective optimization runs for termination check, thereby
increasing the number of overall function evaluations. On the other hand, a large value
of τ captures too little information from the DM to focus the search near the most
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objective modified DTLZ2 problem for differ-
entτ values.

preferred point, thereby causing a large number of generations to satisfy termination
conditions and a large number of DM calls.

Figure 10 shows the same three performance measures on the three-objective mod-
ified DTLZ2 problem. For this problem, the number of DM calls is minimum forτ = 5
and accuracy and the number of function evaluations are alsobetter forτ = 5 genera-
tions. Once again, too small or too largeτ is found to be detrimental.

Based on these simulation studies on two and three-objective optimization prob-
lems, one can conclude that a value ofτ close to 5 generations is better in terms of
an overall performance of the PI-NSGA-II procedure. This value of τ provides a good
convergence accuracy, requires less function evaluations, and less DM calls to converge
near the most preferred point.

7 Conclusions

In this paper, we have proposed a preference based evolutionary multi-objective opti-
mization (PI-EMO) procedure which uses a polyhedral cone tomodify domination. It
accepts preference information from the decision maker in terms of the best solution
from the archive set. The preference information from the decision maker and informa-
tion from the non-dominated set of the parent population of the evolutionary algorithm
have been used together to construct a polyhedral cone. Progressive information from
the population of the evolutionary algorithm as well as the decision maker is used to
modify the polyhedral cone after every few iterations. Thisapproach helps in approach-
ing towards the most preferred point on the Pareto-front by focussing the search on the
region of interest.

The direction provided by the cone has been used to develop a termination criterion
for the algorithm. The procedure has then been applied to three different test-problems
involving two, three and five objectives. The procedure has been successful in finding
the most preferred solution corresponding to the DM-emulated utility function. A para-
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metric study has also been performed to determine the optimal settings. The parametric
study gives an insight about the trade-off between the number of calls to the decision
maker, number of function evaluations and the accuracy of the solution obtained.
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Abstract
Bilevel optimization problems involve two optimization tasks (upper and lower level),
in which every feasible upper level solution must correspond to an optimal solution
to a lower level optimization problem. These problems commonly appear in many
practical problem solving tasks including optimal control, process optimization, game-
playing strategy developments, transportation problems, and others. However, they
are commonly converted into a single level optimization problem by using an approx-
imate solution procedure to replace the lower level optimization task. Although there
exists a number of theoretical, numerical, and evolutionary optimization studies in-
volving single-objective bilevel programming problems, there does not exist too many
studies in the context of multiple conflicting objectives in each level of a bilevel pro-
gramming problem. In this paper, we address certain intricate issues related to solving
multi-objective bilevel programming problems, present challenging test problems, and
propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solu-
tion methodology. The hybrid approach performs better than a number of existing
methodologies and scales well up to 40-variable difficult test problems used in this
study. The population sizing and termination criteria are made self-adaptive, so that
no additional parameters need to be supplied by the user. The study clearly indicates
a clear niche of evolutionary algorithms in solving such difficult problems of practical
importance compared to their usual solution by a computationally expensive nested
procedure. The study opens up many issues related to multi-objective bilevel pro-
gramming and hopefully this study will motivate EMO and other researchers to pay
more attention to this important and difficult problem solving activity.

Keywords
Bilevel optimization, evolutionary multi-objective optimization, NSGA-II, test prob-
lem development, problem difficulties, hybrid evolutionary algorithms, self-adaptive
algorithm, sequential quadratic programming.

1 Introduction

Optimization problems are usually considered to have a single level consisting of one
or more objective functions which are to be optimized, and constraints, if present, must
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be satisfied (Reklaitis et al., 1983; Rao, 1984). Optimization problems come in many
different forms and complexities involving the type and size of the variable vector,
objective and constraint functions, nature of problem parameters, modalities of objec-
tive functions, interactions among objectives, extent of feasible search region, computa-
tional burden and inherent noise in evaluating solutions, etc. (Deb, 2001). While these
factors are keeping optimization researchers and practitioners busy in devising efficient
solution procedures, the practice always seems to have more to offer than what the re-
searchers have been able to comprehend and implement in the realm of optimization
studies.

Bilevel programming problems have two levels of optimization problems – upper
and lower levels (Colson et al., 2007; Vicente and Calamai, 2004). In the upper level
optimization task, a solution, in addition to satisfying its own constraints, must also
be an optimal solution to another optimization problem, called the lower level opti-
mization problem. Although the concept is intriguing, bilevel programming problems
commonly appear inmany practical optimization problems (Bard, 1998). Thinking sim-
ply, the bilevel scenario occurs when a solution in an (upper level) optimization task
must be a physically or a functionally acceptable solution, such as being a stable solu-
tion or being a solution in equilibrium or being a solution which must satisfy certain
conservation principles, etc. Satisfaction of one or more of these conditions can then be
posed as another (lower level) optimization task. However, often in practice (Bianco
et al., 2009; Dempe, 2002; Pakala, 1993), such problems are not usually treated as bilevel
programming problems, instead some approximate methodologies are used to replace
the lower level problem. In many scenarios it is observed that approximate solution
methodologies are not available or practically and functionally unacceptable. Ideally
such problems involving an assurance of a physically or functionally viable solution
must be posed as bilevel programming problems and solved.

Bilevel programming problems involving a single objective function in upper and
lower levels have received some attention from theory (Dempe et al., 2006), algorithm
development and application (Alexandrov and Dennis, 1994; Vicente and Calamai,
2004), and even using evolutionary algorithms (Yin, 2000; Wang et al., 2008). However,
apart from a few recent studies (Eichfelder, 2007, 2008; Halter andMostaghim, 2006; Shi
and Xia, 2001) and our recent evolutionary multi-objective optimization (EMO) studies
(Deb and Sinha, 2009a,b; Sinha and Deb, 2009), multi-objective bilevel programming
studies are scarce in both classical and evolutionary optimization fields. The lack of
interests for handling multiple conflicting objectives in a bilevel programming context
is not due to lack of practical problems, but more due to the need for searching and
storing multiple trade-off lower level solutions for a single upper level solution and
due to the complex interactions which upper and lower level optimization tasks can
provide. In this paper, we make a closer look at the intricacies of multi-objective bilevel
programming problems, present a set of difficult test problems by using an extended
version of our earlier proposed test problem construction procedure, and propose and
evaluate a hybrid EMO-cum-local-search bilevel programming algorithm (H-BLEMO).

In the remainder of this paper, we briefly outline a generic multi-objective bilevel
optimization problem and then provide an overview of existing studies both on single
and multi-objective bilevel programming. Past evolutionary methods are particularly
highlighted. Thereafter, we list a number of existing multi-objective bilevel test prob-
lems and then discuss an extension of our recent suggestion. The proposed hybrid and
self-adaptive bilevel evolutionary multi-objective optimization algorithm (H-BLEMO)
is then described in detail by providing a step-by-step procedure. Simulation results on
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eight different problems are shown. A comparison of the performance of the proposed
algorithm with our previously-proposed methodology and with a nested optimization
strategy is made. The test problem construction procedure allowed us to create prob-
lems which exhibit conflicting goals between lower and upper level optimization tasks.
The use of local search and self-adaptive methodologies enabled us to solve such diffi-
cult problems using H-BLEMO, whereas these same problems are found to be unsolv-
able by our earlier methods. Further, a scalability study of the proposed algorithm is
made by considering different problem sizes ranging from 10 to 40 decision variables.
Finally, conclusions of the study are presented.

2 Multi-Objective Bilevel Optimization Problems

A multi-objective bilevel optimization problem has two levels of multi-objective opti-
mization problems such that a feasible solution of the upper level problem must be a
member of the Pareto-optimal set of the lower level optimization problem. A general
multi-objective bilevel optimization problem can be described as follows:

Minimize(xu,xl) F(x) = (F1(x), . . . , FM (x)) ,
subject to xl ∈ argmin(xl)

{
f(x) = (f1(x), . . . , fm(x))

∣∣g(x) ≥ 0,h(x) = 0
}
,

G(x) ≥ 0,H(x) = 0,

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, . . . , n.

(1)
In the above formulation, F1(x), . . . , FM (x) are upper level objective functions and

f1(x), . . . , fm(x) are lower level objective functions. The functions g(x) and h(x) de-
termine the feasible space for the lower level problem. The decision vector is x which
comprises of two smaller vectors xu and xl, such that x = (xu,xl). It should be noted
that the lower level optimization problem is optimized only with respect to the vari-
ables xl and the variables xu act as fixed parameters for the problem. Therefore, the
solution set of the lower level problem can be represented as a function of xu, or as
x∗
l (xu). This means that the upper level variables (xu), act as a parameter to the lower

level problem and hence the lower level optimal solutions (x∗
l ) are a function of the up-

per level vector xu. The functions G(x) and H(x) along with the Pareto-optimality to
the lower level problem determine the feasible space for the upper level optimization
problem. Both sets xl and xu are decision variables for the upper level problem.

2.1 Practical Importance

Bilevel multi-objective optimization problems arise from hierarchical problems in prac-
tice in which a strategy for solving the overall system depends on optimal strategies of
solving a number of subsystems. Let us consider two different examples to illustrate
these problems.

Many engineering design problems in practice involve an upper level optimization
problem requiring that a feasible solution to the problem must satisfy certain physical
conditions, such as satisfying a network flow balance or satisfying stability conditions
or satisfying some equilibrium conditions. If simplified mathematical equations for
such conditions are easily available, often they are directly used as constraints and the
lower level optimization task is avoided. But in many problems establishing whether
a solution is stable or in equilibrium can be established by ensuring that the solution
is an optimal solution to a derived optimization problem. Such a derived optimiza-
tion problem can then be formulated as a lower level problem in a bilevel optimization
problem. A common source of bilevel problems is in chemical process optimization
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problems, in which the upper level problem optimizes the overall cost and quality of
product, whereas the lower level optimization problem optimizes error measures indi-
cating how closely the process adheres to different theoretical process conditions, such
as mass balance equations, cracking, or distillation principles (Dempe, 2002).

The bilevel problems are also similar in principle to the Stackelberg games (Fuden-
berg and Tirole, 1993; Wang and Periaux, 2001) in which a leader makes the first move
and a follower then maximizes its move considering the leader’s move. The leader has
an advantage in that it can control the game by making its move in a way so as to max-
imize its own gain knowing that the follower will always maximize its own gain. For
an example (Zhang et al., 2007), a company CEO (leader) may be interested in maxi-
mizing net profits and quality of products, whereas heads of branches (followers) may
maximize their own net profit and worker satisfaction. The CEO knows that for each
of his/her strategy, the heads of branches will optimize their own objectives. The CEO
must then adjust his/her own decision variables so that CEO’s own objectives are max-
imized. Stackelberg’s gamemodel and its solutions are used in many different problem
domains, including engineering design (Pakala, 1993), security applications (Paruchuri
et al., 2008), and others.

3 Existing Classical and Evolutionary Methodologies

The importance of solving bilevel optimization problems, particularly problems having
a single objective in each level, has been recognized amply in the optimization litera-
ture. The research has been focused in both theoretical and algorithmic aspects. How-
ever, there has been a lukewarm interest in handling bilevel problems having multiple
conflicting objectives in any or both levels. Here we provide a brief description of the
main research outcomes so far in both single and multi-objective bilevel optimization
areas.

3.1 Theoretical Developments

Several studies exist in determining the optimality conditions for a upper level solution.
The difficulty arises due to the existence of another optimization problem as a hard con-
straint to the upper level problem. Usually the Karush-Kuhn-Tucker (KKT) conditions
of the lower level optimization problems are first written and used as constraints in for-
mulating the KKT conditions of the upper level problem, involving second derivatives
of the lower level objectives and constraints as the necessary conditions of the upper
level problem. However, as discussed in Dempe et al. (2006), although KKT optimality
conditions can be written mathematically, the presence of many lower level Lagrange
multipliers and an abstract term involving coderivatives makes the procedure difficult
to be applied in practice.

Fliege and Vicente (2006) suggested a mapping concept in which a bilevel single-
objective optimization problem (one objective each in upper and lower level problems)
can be converted to an equivalent four-objective optimization problem with a special
cone dominance concept. Although the idea may apparently be extended for bilevel
multi-objective optimization problems, no such suggestion with an exact mathematical
formulation is made yet. Moreover, derivatives of original objectives are involved in
the problem formulation, thereby making the approach limited to only differentiable
problems.
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3.2 Algorithmic Developments

One simple algorithm for solving bilevel optimization problems using a point-by-point
approach would be to directly treat the lower level problem as a hard constraint. Every
solution (x = (xu,xl)) must be sent to the lower level problem as an initial point and
an optimization algorithm can then be employed to find the optimal solution x∗

l of the
lower level optimization problem. Then, the original solution x of the upper level prob-
lemmust be repaired as (xu,x

∗
l ). The employment of a lower level optimizer within the

upper level optimizer for every upper level solution makes the overall search a nested
optimization procedure, which may be computationally an expensive task. Moreover,
if this idea is to be extended for multiple conflicting objectives in the lower level, for ev-
ery upper level solution, multiple Pareto-optimal solutions for the lower level problem
need to be found and stored by a suitable multi-objective optimizer.

Another idea (Herskovits et al., 2000; Bianco et al., 2009) of handling the lower level
optimization problem having differentiable objectives and constraints is to include the
explicit KKT conditions of the lower level optimization problem directly as constraints
to the upper level problem. This will then involve Lagrange multipliers of the lower
level optimization problem as additional variables to the upper level problem. As KKT
points need not always be optimumpoints, further conditionsmust have to be included
to ensure the optimality of lower level problem. For multi-objective bilevel problems,
corresponding multi-objective KKT formulations need to be used, thereby involving
further Lagrangemultipliers and optimality conditions as constraints to the upper level
problem.

Despite these apparent difficulties, there exist some useful studies, including re-
views on bilevel programming (Colson et al., 2007; Vicente and Calamai, 2004), test
problem generators (Calamai and Vicente, 1994), nested bilevel linear programming
(Gaur and Arora, 2008), and applications (Fampa et al., 2008; Abass, 2005; Koh, 2007),
mostly in the realm of single-objective bilevel optimization.

Recent studies by Eichfelder (2007, 2008) concentrated on handling multi-objective
bilevel problems using classical methods. While the lower level problem uses a nu-
merical optimization technique, the upper level problem is handled using an adaptive
exhaustive search method, thereby making the overall procedure computationally ex-
pensive for large-scale problems. This method uses the nested optimization strategy to
find and store multiple Pareto-optimal solutions for each of finitely-many upper level
variable vectors.

Another study by Shi and Xia (2001) transformed a multi-objective bilevel pro-
gramming problem into a bilevel ǫ-constraint approach in both levels by keeping one
of the objective functions and converting remaining objectives to constraints. The ǫ
values for constraints were supplied by the decision-maker as different levels of ‘satis-
factoriness’. Further, the lower-level single-objective constrained optimization problem
was replaced by equivalent KKT conditions and a variable metric optimization method
was used to solve the resulting problem.

Certainly, more efforts are needed to devise effective classical methods for multi-
objective bilevel optimization, particularly to handle the upper level optimization task
in a more coordinated way with the lower level optimization task.

3.3 Evolutionary Methods

Several researchers have proposed evolutionary algorithm based approaches in solv-
ing single-objective bilevel optimization problems. As early as in 1994, Mathieu et al.
(1994) proposed a GA-based approach for solving bilevel linear programming prob-
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lems having a single objective in each level. The lower level problem was solved using
a standard linear programming method, whereas the upper level was solved using
a GA. Thus, this early GA study used a nested optimization strategy, which may be
computationally too expensive to extend for nonlinear and large-scale problems. Yin
(2000) proposed another GA based nested approach in which the lower level problem
was solved using the Frank-Wolfe gradient based linearized optimization method and
claimed to solve non-convex bilevel optimization problems better than an existing clas-
sical method. Oduguwa and Roy (2002) suggested a coevolutionary GA approach in
which two different populations are used to handle variable vectors xu and xl indepen-
dently. Thereafter, a linking procedure is used to cross-talk between the populations.
For single-objective bilevel optimization problems, the final outcome is usually a sin-
gle optimal solution in each level. The proposed coevolutionary approach is viable
for finding corresponding single solution in xu and xl spaces. But in handling multi-
objective bilevel programming problems, multiple solutions corresponding to each up-
per level solution must be found and maintained during the coevolutionary process. It
is not clear how such a coevolutionary algorithm can be designed effectively for han-
dling multi-objective bilevel optimization problems. We do not address this issue in
this paper, but recognize that Oduguwa and Roy’s study (2002) was the first to suggest
a coevolutionary procedure for single-objective bilevel optimization problems. Since
2005, a surge in research in this area can be found in algorithm development mostly
using the nested approach and the explicit KKT conditions of the lower level problem,
and in various application areas (Hecheng and Wang, 2007; Li and Wang, 2007; Dim-
itriou et al., 2008; Yin, 2000; Mathieu et al., 1994; Sun et al., 2006; Wang et al., 2007; Koh,
2007; Wang et al., 2005, 2008).

Li et al. (2006) proposed particle swarm optimization (PSO) based procedures for
both lower and upper levels, but instead of using a nested approach, they proposed
a serial application of upper and lower levels iteratively. This idea is applicable in
solving single-objective problems in each level due to the sole target of finding a single
optimal solution. As discussed above, in the presence of multiple conflicting objectives
in each level, multiple solutions need to be found and preserved for each upper level
solution and then a serial application of upper and lower level optimization does not
make sense for multi-objective bilevel optimization. Halter and Mostaghim (2006) also
used PSO on both levels, but since the lower level problem in their application problem
was linear, they used a specialized linear multi-objective PSO algorithm and used an
overall nested optimization strategy at the upper level.

Recently, we have proposed a number of EMO algorithms through conference
publications (Deb and Sinha, 2009a,b; Sinha and Deb, 2009) using NSGA-II to solve
both level problems in a synchronous manner. First, our methodologies were generic
so that they can be used to linear/nonlinear, convex/non-convex, differentiable/non-
differentiable and single/multi-objective problems at both levels. Second, our method-
ologies did not use the nested approach, nor did they use a serial approach, but em-
ployed a structured intertwined evolution of upper and lower level populations. But
they were computationally demanding. However, these initial studies made us under-
stand the complex intricacies by which both level problems can influence each other.
Based on this experience, in this paper, we suggest a less-structural, self-adaptive, com-
putationally fast, and a hybrid evolutionary algorithm coupled with a local search pro-
cedure for handling multi-objective bilevel programming problems.

Bilevel programming problems, particularly with multiple conflicting objectives,
should have been paid more attention than what has been made so far. As more and

79



more studies are performed, the algorithms must have to be tested and compared
against each other. This process needs an adequate number of test problems with tun-
able difficulties. In the next section, we suggest a generic procedure for developing test
problems and suggest a test suite.

4 Test Problems for Multi-Objective Bilevel Programming

There does not exist any systematic past study in developing test problems for multi-
objective bilevel programming. However, Eichfelder (2007) used a number of test prob-
lems in her study, in which some problems were not analyzed for their exact Pareto-
optimal fronts. Here, we first describe some of these existing test problems (we refer
to them as ‘TP’ here) and then discuss an extension of our recently proposed test prob-
lem development procedure (Deb and Sinha, 2009a) for any number of objectives and
scenarios. The principle is used to generate five test problems (we refer to them as ‘DS’
here).

4.1 Problem TP1

Problem TP1 has a total of three variables with xl = (x1, x2)
T and xu = (y) (Eichfelder,

2007):

Minimize F(x) =

(
x1 − y
x2

)
,

subject to (x1, x2) ∈ argmin
(x1,x2)

{
f(x) =

(
x1

x2

) ∣∣∣∣g1(x) = y2 − x2
1 − x2

2 ≥ 0

}
,

G1(x) = 1 + x1 + x2 ≥ 0,
−1 ≤ x1, x2 ≤ 1, 0 ≤ y ≤ 1.

(2)

The Pareto-optimal set for the lower-level optimization task for a fixed y is the bottom-
left quarter of the circle: {(x1, x2) ∈ R2 | x2

1 + x2
2 = y2, x1 ≤ 0, x2 ≤ 0}. The linear

constraint in the upper level optimization task does not allow the entire quarter circle
to be feasible for some y. Thus, at most a couple of points from the quarter circle
belongs to the Pareto-optimal set of the overall problem. Eichfelder (2007) reported the
following Pareto-optimal solutions for this problem:

x∗ =

{
(x1, x2, y) ∈ R3

∣∣ x1 = −1− x2, x2 = −1

2
± 1

4

√
8y2 − 4, y ∈

[
1√
2
, 1

]}
. (3)

Figure 1 shows the Pareto-optimal front for the problem TP1. Lower level Pareto-
optimal fronts of some representative y values are also shown in the figure using
dashed lines, indicating that at most two such Pareto-optimal solutions (such as points
B and C for y = 0.9) of a lower level optimization problem become the candidate
Pareto-optimal solutions of the upper level problem.

4.2 Problem TP2

We created a simplistic bilevel two-objective optimization problem elsewhere (Deb and
Sinha, 2009b), having xl = (x1, . . . , xK) and xu = (y):

Minimize F(x) =

(
(x1 − 1)2 +

∑K
i=2 x

2
i + y2

(x1 − 1)2 +
∑K

i=2 x
2
i + (y − 1)2

)
,

subject to

(x1, x2, . . . , xK) ∈ argmin
(x1,x2,...,xK)

{
f(x) =

(
x2
1 +

∑K
i=2 x

2
i

(x1 − y)2 +
∑K

i=2 x
2
i

) }
,

−1 ≤ (x1, x2, . . . , xK , y) ≤ 2.

(4)
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Figure 1: Pareto-optimal fronts of up-
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Figure 2: Pareto-optimal front of the up-
per level problem for problem TP2 with
xi = 0 for i = 2, . . . ,K .

For a fixed value of y, the Pareto-optimal solutions of the lower level optimization prob-

lem are given as follows: {xl ∈ RK
∣∣x1 ∈ [0, y], xi = 0, for i = 2, . . . ,K}. However, for

the upper level problem, Pareto-optimal solutions correspond to following conditions:

{x ∈ RK+1
∣∣x1 = y, xi = 0, for i = 2, . . . ,K, y ∈ [0.5, 1.0]}. If an algorithm fails to

find the true Pareto-optimal solutions of the lower level problem and ends up finding
a solution below the ‘x1 = y’ curve in Figure 2 (such as solution C), it can potentially
dominate a true Pareto-optimal point (such as point A) therebymaking the task of find-
ing true Pareto-optimal solutions a difficult task. We use K = 14 here, so that the total
number of variables is 15 in this problem.

4.3 Test Problem TP3

This problem is taken from (Eichfelder, 2007):

Minimize F(x) =

(
x1 + x2

2 + y + sin2(x1 + y)
cos(x2)(0.1 + y)(exp(− x1

0.1+x2
)

)
,

subject to

(x1, x2) ∈





argmin
(x1,x2)

f(x) =

(
(x1−2)2+(x2−1)2

4
+ x2y+(5−y1)

2

16
+ sin(x2

10
)

x2
1+(x2−6)4−2x1y1−(5−y1)

2

80

) ∣∣∣∣
g1(x) = x2 − x2

1 ≥ 0
g2(x) = 10− 5x2

1 − x2 ≥ 0
g3(x) = 5− y

6
− x2 ≥ 0

g4(x) = x1 ≥ 0





,

G1(x) ≡ 16− (x1 − 0.5)2 − (x2 − 5)2 − (y − 5)2 ≥ 0,
0 ≤ x1, x2, y ≤ 10.

(5)

For this problem, the exact Pareto-optimal front of the lower or the upper level opti-
mization problem are not derived mathematically. For this reason, we do not consider
this problem any further here. Some results using our earlier BLEMO procedure can be
found elsewhere (Deb and Sinha, 2009b).
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4.4 Test Problem TP4

The next problem comes from a company scenario dealing with the management de-
cisions between a CEO (leader) and heads of branches (follower) (Zhang et al., 2007).
Although fuzziness in the coefficients were used in the original study, here we present
the deterministic version of the problem:

Maximize F(x,y) = subject to (x) ∈ argmin
(x)




(1, 9)(y1, y2)
T

+(10, 1, 3)(x1, x2, x3)
T

(9, 2)(y1, y2)
T

+(2, 7, 4)(x1, x2, x3)
T


 ,





f (x) =

(
(4, 6)(y1, y2)

T + (7, 4, 8)(x1, x2, x3)
T

(6, 4)(y1, y2)
T + (8, 7, 4)(x1, x2, x3)

T

) ∣∣∣∣
g1 = (3,−9)(y1, y2)

T + (−9,−4, 0)(x1, x2, x3)
T ≤ 61

g2 = (5, 9)(y1, y2)
T + (10,−1,−2)(x1, x2, x3)

T ≤ 924
g3 = (3,−3)(y1, y2)

T + (0, 1, 5)(x1, x2, x3)
T ≤ 420





,

G1 = (3, 9)(y1, y2)
T + (9, 5, 3)(x1, x2, x3)

T ≤ 1039,
G2 = (−4,−1)(y1, y2)

T + (3,−3, 2)(x1, x2, x3)
T ≤ 94,

x1, x2, y1, y2, y3 ≥ 0.
(6)

4.5 Development of Tunable Test Problems

Bilevel multi-objective optimization problems are different from single-level multi-
objective optimization problems in that the Pareto-optimality of a lower level multi-
objective optimization problem is a requirement to the upper level problem. Thus,
while developing a bilevel multi-objective test problem, we should have ways to test
an algorithm’s ability to handle complexities in both lower and upper level problems
independently and additionally their interactions. Further, the test problems should be
such that we would have a precise knowledge about the exact location (and relation-
ships) of Pareto-optimal points. Thinking along these lines, we outline a number of
desired properties in a bilevel multi-objective test problem:

1. Exact location of Pareto-optimal solutions in both lower and upper level problems are pos-
sible to be established. This will facilitate a user to evaluate the performance of an al-
gorithm easily by comparing the obtained solutions with the exact Pareto-optimal
solutions.

2. Problems are scalable with respect to number of variables. This will allow a user to
investigate whether the proposed algorithm scales well with number of variables
in both lower and upper levels.

3. Problems are scalable with respect to number of objectives in both lower and upper levels.
This will enable a user to evaluate whether the proposed algorithm scales well
with the number of objectives in each level.

4. Lower level problems are difficult to solve to Pareto-optimality. If the lower level Pareto-
optimal front is not found exactly, the corresponding upper level solution are not
feasible. Therefore, these problems will test an algorithm’s ability to converge to
the correct Pareto-optimal front. Here, ideas can be borrowed from single-level
EMO test problems (Deb et al., 2005) to construct difficult lower level optimization
problems. The shape (convex, non-convex, disjointedness and multi-modality) of
the Pareto-optimal front will also play an important role in this respect.

5. There exists a conflict between lower and upper level problem solving tasks. For two
solutions x and y of which x is Pareto-optimal and y is a dominated solution in
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the lower level, solution y can be better than solution x in the upper level. Due
to these discrepancies, these problems will cause a conflict in converging to the
appropriate Pareto-optimal front in both lower and upper level optimization tasks.

6. Extension to higher level optimization problems is possible. Although our focus here is
for bilevel problems only, test problems scalable to three or higher levels would
be interesting, as there may exist some practical problems formulated in three or
higher levels. On the other hand, it will also be ideal to have bilevel test problems
which will degenerate to challenging single level test problems, if a single objective
function is chosen for each level.

7. Different lower level problems may contribute differently to the upper level front in terms of
their extent of representative solutions on the upper level Pareto-optimal front. These test
problemswill test an algorithm’s ability to emphasis different lower level problems
differently in order to find a well-distributed set of Pareto-optimal solutions at the
upper level.

8. Test problems must include constraints at both levels. This will allow algorithms to be
tested for their ability to handle constraints in both lower and upper level opti-
mization problems.

Different principles are possible to construct test problems following the above
guidelines. Here, we present a generalized version of a recently proposed procedure
(Deb and Sinha, 2009a).

4.5.1 A Multi-Objective Bilevel Test Problem Construction Procedure

We suggest a test problem construction procedure for a bilevel problem having M and
m objectives in the upper and lower level, respectively. The procedure needs at most
three functional forms and is described below:

Step 1: First, a parametric trade-off function ΦU : RM−1 → RM which determines a
trade-off frontier (v1(u), . . . , vM (u)) on the F-space as a function of (M − 1) pa-
rameters u (can be considered as a subset of xu) is chosen. Figure 3 shows such a
v1-v2 relationship on a two-objective bilevel problem.

Step 2: Next, for every point v on the ΦU -frontier, a (M − 1)-dimensional enve-
lope (U1(t), . . . , UM (t))v) on the F-space as a function of t (having (M − 1)
parameters) is chosen. The non-dominated part of the agglomerate envelope
∪v ∪t

[
(v1(u) + U1(t)

v), . . . , (vM (u) + UM (t)v)
]
constitutes the overall upper

level Pareto-optimal front. Figure 3 indicates this upper level Pareto-optimal front
and some specific Pareto-optimal points (markedwith bigger circles) derived from
specific v-vectors.

Step 3: Next, for every point v on the ΦU -frontier, a mapping function ΦL : RM−1 →
Rm−1 which maps every v-point from the U-frontier to the lower level Pareto-
optimal front (f∗

1 (s), . . . , f
∗
m(s))v is chosen. Here, s is a (m−1)-dimensional vector

and can be considered as a subset of xl. Figure 3 shows this mapping The envelope
A′C′B′ (a circle in the figure) is mapped to the lower level Pareto-optimal frontier
ACB (inlet figure on top).

Step 4: After these three functions are defined, the lower level problem can be con-
structed by using a bottom-up procedure adopted in Deb et al. (2005) through ad-
ditional terms arising from other lower level decision variables: fj(xl) = f∗

j (s) +
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Figure 3: A multi-objective bilevel test problem construction procedure is illustrated
through two objectives in both upper and lower levels.

ej(xl\s) with ej ≥ 0. The task of the lower level optimization task would be to
make the ej term zero for each objective. The term ej can be made complex (multi-
modal, non-linear, or large-dimensional) to make the convergence to the lower
level Pareto-optimal front difficult by an optimization algorithm.

Step 5: Finally, the upper level objectives can be formed from uj functions by including
additional terms from other upper level decision variables. An additive form is as
follows: Fj(x) = uj(u) + Ej(xu\u) with Ej ≥ 0. Like the ej term, the term Ej can
also be made complex for an algorithm to properly converge to the upper level
Pareto-optimal front.

Step 6: Additionally, a number of linked terms lj(xu\u,xl\s) and Lj(xu\u,xl\s) (non-
negative terms) involving remaining xu (without u) and xl (without s) variables
can be added to both lower and upper level problems, respectively, to make sure a
proper coordination between lower and upper level optimization tasks is needed
to converge to the respective Pareto-optimal fronts.

Another interesting yet a difficult scenario can be created with the linked terms. An
identical link term can be added to the lower level problem, but subtracted from the
the upper level problem. Thus, an effort to reduce the value of the linked term will
make an improvement in the lower level, whereas it will cause a deterioration in the
upper level. This will create a conflict in the working of both levels of optimization.
The following two-objective test problems are constructed using the above procedure.
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4.5.2 Problem DS1

This problem has 2K variables with K real-valued variables each for lower and upper
levels. Since in this study we consider bilevel optimization problems having m = M =
2, the vectors u, t and s all have a single element. Following three parametric functions
are used for DS1:

Step 1: Here, one of the upper level variables y1 is chosen as u. The mapping ΦU is
chosen as follows: v1 = (1 + r) − cos(πy1) and v2 = (1 + r) − sin(πy1) (r is a
user-supplied constant). Depending on the value of y1, the v1-v2 point lies on the
quarter of a circle of radius one and center at (1+ r, 1+ r) in the F-space, as shown
in Figure 4.

Step 2: For every (v1, v2) point on the F-space, the following one-dimensional (t) en-

velope is chosen: v1(y1) = −r cos
(
γ π

2
t
y1

)
and v2(y1) = −r sin

(
γ π

2
t
y1

)
, where

t ∈ [0, y1] and γ (=1) is a constant. The envelope is a quarter of a circle of radius
r and center located at (v1, v2) point. Although for each (v1, v2) point, the en-
tire envelope (quarter circle) is a non-dominated front, when all (v1, v2) points are
considered, only one point from each envelope qualifies to be on the upper level
Pareto-optimal front. Thus, the Pareto-optimal front for the upper level problem
lies on the quarter of a circle having radius (1 + r) and center at (1 + r, 1 + r) on
the F-space, as indicated in the figure.

Step 3: Each U1-U2 point is then mapped to a (f∗
1 , f

∗
2 ) point by the following mapping:

f∗
1 = s2, f∗

2 = (s− y1)
2, where s = t is assumed.

Step 4: We do not use any function lj here.

Step 5: But, we use Ej = (yj − j−1
2 )2 for j = 2, . . . ,K in the upper level problem. This

will ensure that yj = (j− 1)/2 (for j = 2, . . . ,K) will correspond to the upper level
Pareto-optimal front.

Step 6: Different lj andLj terms are usedwith (K−1) remaining upper and lower level
variables such that all lower level Pareto-optimal solutions must satisfy xi = yi for
i = 2, . . . ,K .

The complete DS1 problem is given below:

Minimize F(y,x) =


(1 + r − cos(απy1)) +
∑K

j=2(yj − j−1
2

)2

+τ
∑K

i=2(xi − yi)
2 − r cos

(
γ π

2
x1
y1

)

(1 + r − sin(απy1)) +
∑K

j=2(yj − j−1
2

)2

+τ
∑K

i=2(xi − yi)
2 − r sin

(
γ π

2
x1
y1

)




,

subject to (x) ∈ argmin
(x)

f(x) =






x2
1 +

∑K
i=2(xi − yi)

2

+
∑K

i=2 10(1− cos( π
K
(xi − yi)))∑K

i=1(xi − yi)
2

+
∑K

i=2 10| sin( π
K
(xi − yi)|








,

−K ≤ xi ≤ K, for i = 1, . . . , K,
1 ≤ y1 ≤ 4, −K ≤ yj ≤ K, j = 2, . . . ,K.

(7)
For this test problem, we suggest K = 10 (overall 20 variables), r = 0.1, α = 1, γ = 1,
and τ = 1. Since τ = 1 is used, for every lower level Pareto-optimal point, xi = yi for
i = 2, . . . ,K and both lj and Lj terms are zero, thereby making an agreement between
this relationship between optimal values of xi and yi variables in both levels.

An interesting scenario happens when τ = −1 is set. If any x is not Pareto-optimal
to a lower level problem (meaning xi 6= yi for i = 2, . . . ,K), a positive quantity is
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Figure 4: Pareto-optimal front for problem DS1.

deducted from the upper level objectives from each Lj term, thereby indicating that
this point will dominate some true Pareto-optimal points of the upper level problem.
In fact, such points are infeasible to the upper level problem due to their non-optimality
property at the lower level problem and if allowed to exist in the upper level, they will
dominate the true upper level Pareto-optimal front. Thus, this problem with τ = −1
will be difficult to solve, in general, compared to problems with τ = 1.

The problemDS1 is likely to provide following difficulties to a bilevel optimization
algorithm:

• Lower level problem has multi-modalities, thereby making the lower level prob-
lem difficult to solve to Pareto-optimality.

• The problem is scalable to any even number of variables (by adjusting K).

• By choosing τ = −1 in the linked term, a conflict in the working of lower and
upper level problems can be introduced.

• By adjusting α, a small fraction of y1 values can be made responsible for the upper
level Pareto-optimal front, thereby making an algorithm difficult to locate the true
Pareto-optimal points.

• By adjusting γ, only a part of the U1-U2 envelope (and thereby only a part of the
f∗
1 -f

∗
2 front) can be made responsible for the upper level Pareto-optimal front.
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4.6 Problem DS2

The next problem uses ΦU parametric function which causes a few discrete values of y1
to determine the upper level Pareto-optimal front. The ΦU mapping function is chosen
as follows and is shown in Figure 5.

v1(y1) =





cos(0.2π)y1 + sin(0.2π)
√

|0.02 sin(5πy1)|,
for 0 ≤ y1 ≤ 1,

y1 − (1− cos(0.2π)), y1 > 1

v2(y1) =





− sin(0.2π)y1 + cos(0.2π)
√

|0.02 sin(5πy1)|,
for 0 ≤ y1 ≤ 1,

0.1(y1 − 1)− sin(0.2π), for y1 > 1.

(8)

The U1-U2 parametric function is identical to that used in DS1, but here we use γ = 4.
This will cause the U1-U2 envelope to be a complete circle, as shown by dashed lines in
the figure. The f∗

1 -f
∗
2 mapping is chosen identical to that in DS1. Again, the term ej is

not considered here and amultimodal Ej term is used. Different linked terms lj and Lj

compared to those used in DS1 are used here. The overall problem is given as follows:

Minimize F(x,y) =


v1(y1) +
∑K

j=2

[
y2
j + 10(1− cos( π

K
yi))

]

+τ
∑K

i=2(xi − yi)
2 − r cos

(
γ π

2
x1
y1

)

v2(y1) +
∑K

j=2

[
y2
j + 10(1− cos( π

K
yi))

]

+τ
∑K

i=2(xi − yi)
2 − r sin

(
γ π

2
x1
y1

)




,

subject to (x) ∈ f(x) =

argmin
(x)

{(
x2
1 +

∑K
i=2(xi − yi)

2

∑K
i=1 i(xi − yi)

2

)}
,

−K ≤ xi ≤ K, i = 1, . . . ,K,
0.001 ≤ y1 ≤ K, −K ≤ yj ≤ K, j = 2, . . . ,K,

(9)
Due to the use of periodic terms in v1 and v2 functions, the upper level Pareto-optimal
front corresponds to only six discrete values of y1 (=0.001, 0.2, 0.4, 0.6, 0.8 and 1), despite
y1 taking any real valuewithin [0.001,K]. We suggest using r = 0.25here. This problem
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Figure 5: Pareto-optimal front for problem
DS2.
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Figure 6: Pareto-optimal front for prob-
lem DS3.

has following specific properties:
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• The upper level problem has multi-modalities, thereby causing an algorithm diffi-
culty in finding the upper level Pareto-optimal front.

• With τ = −1, the conflict between upper and lower level problems can be intro-
duced, as in DS1.

• The dimension of both upper and lower level problems can be increased by in-
creasingK .

• The parameter γ can be adjusted to cause a small proportion of lower level Pareto-
optimal points to be responsible for the upper level Pareto-optimal front.

4.7 Problem DS3

In this problem, the ΦU2 and the f∗
1 -f

∗
2 -frontiers lie on constraints and thus are not

defined parametrically as in DS1 and DS2 here, but are defined directly as a function
of problem variables. Since a constraint function determines the lower level Pareto-
optimal front, ΦU and ΦL-frontiers are defined with M variables. The linked terms
(lj = (xi − yi)

2 for i = 3, . . . ,K) are included. We use Lj = τlj . Like before, we do
not use any ej term, but use a Ej term in the upper level problem. The variable y1 is
considered to be discrete, thereby causing only a few y1 values to represent the upper
level Pareto-optimal front. The overall problem is given below:

Minimize F(x,y) =
 y1 +

∑K
j=3(yj − j/2)2 + τ

∑K
i=3(xi − yi)

2 −R(y1) cos(4 tan
−1
(

y2−x2
y1−x1

)

y2 +
∑K

j=3(yj − j/2)2 + τ
∑K

i=3(xi − yi)
2 −R(y1) sin(4 tan

−1
(

y2−x2
y1−x1

)

 ,

subject to (x) ∈ argmin
(x){

f (x) =

(
x1 +

∑K
i=3(xi − yi)

2

x2 +
∑K

i=3(xi − yi)
2

) ∣∣∣∣g1(x) = (x1 − y1)
2 + (x2 − y2)

2 ≤ r2
}
,

G(y) = y2 − (1− y2
1) ≥ 0,

−K ≤ xi ≤ K, for i = 1, . . . ,K, 0 ≤ yj ≤ K, for j = 1, . . . ,K,
y1 is a multiple of 0.1.

(10)

Here we suggest a periodically changing radius: R(y1) = 0.1 + 0.15| sin(2π(y1 − 0.1)|
and use r = 0.2. For the upper level Pareto-optimal points, yi = j/2 for j ≤ 3. The
variables y1 and y2 take values satisfying constraint G(y) = 0. For each such combi-
nation, variables x1 and x2 lie on the third quadrant of a circle of radius r and center
at (y1, y2) in the F-space. Notice in Figure 6, how lower level Pareto-optimal solutions
for y1 = 0.1 and 0.2 (shown in dashed lines in the figure) mapped to corresponding
circles in the upper level problem get dominated by that for y1 = 0 and 0.3. Following
properties are observed for this problem:

• The Pareto-optimal fronts for both lower and upper level lie on constraint bound-
aries, thereby requiring good constraint handling strategies to solve both problems
optimally.

• Not all lower level Pareto-optimal solutions qualify as upper level Pareto-optimal
solutions.

• Every lower level front has an unequal contribution to the upper level Pareto-
optimal front.

• By choosing τ = −1, conflict between two levels of optimization can be introduced.
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4.8 Problem DS4

In this problem, the v1-v2 relationship is linear (v1 = 2 − y1, v2 = 2(y1 − 1)), spanning
in the first quadrant of F-space. The mapping U1-U2 is not considered here. For every
(v1, v2) point, the following relationship is chosen for the lower level Pareto-optimal
front: f∗

1 + f∗
2 = y1. Additional terms having a minimum value of one are multiplied

to form the lower and upper level search spaces. This problem hasK +L+1 variables,
which are all real-valued:

Minimize F(x,y) =(
(1− x1)(1 +

∑K
j=2 x

2
j)y1

x1(1 +
∑K

j=2 x
2
j)y1

)
,

subject to (x) ∈ argmin
(x)

f (x) ={(
(1− x1)(1 +

∑K+L
j=K+1 x

2
j)y1

x1(1 +
∑K+L

j=K+1 x
2
j)y1

)}
,

G1(x) = (1− x1)y1 +
1
2
x1y1 − 1 ≥ 0,

−1 ≤ x1 ≤ 1, 1 ≤ y1 ≤ 2,
−(K + L) ≤ xi ≤ (K + L), i = 2, . . . , (K + L).

(11)

The upper level Pareto-optimal front is formed with xi = 0 for all i = 2, . . . , (K + L)
and x1 = 2(1− 1/y1) and y1 ∈ [1, 2]. This problem has following properties:

• By increasing K and L, the problem complexity in converging to the appropriate
lower and upper level fronts can be increased.

• Only one Pareto-optimal point from each participating lower level problem quali-
fies to be on the upper level front.

For our study here, we choose K = 5 and L = 4 (an overall 10-variable problem).
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Figure 7: Pareto-optimal front for prob-
lem DS4.
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Figure 8: Pareto-optimal front for prob-
lem DS5.

4.9 Problem DS5

This problem is similar to problemDS4 except that the upper level Pareto-optimal front
is constructed frommultiple points from a few lower level Pareto-optimal fronts. There
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areK + L+ 1 real-valued variables in this problem as well:

Minimize F(x,y) =(
(1− x1)(1 +

∑K
j=2 x

2
j )y1

x1(1 +
∑K

j=2 x
2
j )y1

)
,

subject to (x) ∈ argmin
(x)

f(x) ={(
(1− x1)(1 +

∑K+L
j=K+1 x

2
j)y1

x1(1 +
∑K+L

j=K+1 x
2
j)y1

)}
,

G1(x) = (1− x1)y1 +
1
2
x1y1 − 2 + 1

5
[5(1− x1)y1 + 0.2] ≥ 0, [·] denotes greatest int. function,

−1 ≤ x1 ≤ 1, 1 ≤ y1 ≤ 2,
−(K + L) ≤ xi ≤ (K + L), i = 2, . . . , (K + L).

(12)

For the upper level Pareto-optimal front, xi = 0 for i = 2, . . . , (K + L), x1 ∈ [2(1 −
1/y1), 2(1− 0.9/y1)], y1 ∈ {1, 1.2, 1.4, 1.6, 1.8} (Figure 8). For this test problem we have
chosen K = 5 and L = 4 (an overall 10-variable problem). This problem has similar
difficulties as in DS4, except that only a finite number of y1 qualifies at the upper level
Pareto-optimal front and that a consecutive set of lower level Pareto-optimal solutions
now qualify to be on the upper level Pareto-optimal front.

5 Hybrid Bilevel Evolutionary Multi-Objective Optimization (H-BLEMO)
Algorithm

The proposed hybrid BLEMO procedure is motivated from our previously suggested
algorithms (Deb and Sinha, 2009a,b), but differs in many different fundamental ways.
Before we describe the differences, we first outline the proposed hybrid procedure.

A sketch of the population structure is shown in Figure 9. The initial population

t=0
NSGA−II Local search

t=1

Lower level

t=t*

T=0
T=1

Upper level NSGA−II

x_l x_l x_l

Archive

x_u ND

ND

ND

Archive

Figure 9: A sketch of the proposed bilevel optimization algorithm.

(marked with upper level generation counter T = 0 of size Nu) has a subpopulation of
lower level variable set xl for each upper level variable set xu. Initially the subpopu-

lation size (N
(0)
l ) is kept identical for each xu variable set, but it is allowed to change

adaptively with generation T . Initially, an empty archiveA0 is created. For each xu, we
perform a lower level NSGA-II operation on the corresponding subpopulation having
variables xl alone, not till the true lower level Pareto-optimal front is found, but only
till a small number of generations at which the specified lower level termination cri-
terion (discussed in subsection 5.2) is satisfied. Thereafter, a local search is performed
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on a few rank-one lower level solutions until the local search termination criterion is
met (discussed in Step 3 in subsection 5.3). The archive is maintained at the upper
level containing solution vectors (xua ,xla), which are optimal at the lower level and
non-dominated at the upper level. The solutions in the archive are updated after ev-
ery lower level NSGA-II call. The members of the lower level population undergoing
a local search are lower level optimal solutions and hence are assigned an ‘optimality
tag’. These local searched solutions (xl) are then combined with corresponding xu vari-
ables and become eligible to enter the archive if it is non-dominated when compared
to the existing members of the archive. The dominated members in the archive are
then eliminated. The solutions obtained from the lower level (xl) are combined with
corresponding xu variables and are processed by the upper level NSGA-II operators
to create a new upper level population. This process is continued till an upper level
termination criterion (described in subsection 5.2) is satisfied.

To make the proposed algorithm computationally faster, we have used two dif-
ferent strategies: (i) for every upper level variable vector xu, we do not completely
solve the lower level multi-objective optimization problem, thereby not making our ap-
proach a nested procedure, and (ii) the subpopulation size and number of generations
for a lower level NSGA-II simulation are computed adaptively based on the relative lo-
cation of xu compared to archive solutions, therebymaking the overall proceduremore
less parametric and more computationally efficient in terms of overall function evalu-
ations. However, before we present a detailed step-by-step procedure, we discuss the
automatic update procedure of population size and termination criteria of the lower
level NSGA-II.

5.1 Update of Population Sizes

The upper level population size Nu is kept fixed and is chosen to be proportional to
the number of variables. However, the subpopulation size (Nl) for each lower level
NSGA-II is sized in a self-adaptive manner. Here we describe the procedure.

In a lower level problem, xl is updated by a modified NSGA-II procedure and the
corresponding xu is kept fixed throughout. Initially, The population size of each lower

level NSGA-II (N
(0)
l ) is set depending upon the dimension of lower and upper level

variables (|xl| and |xu|, respectively). The number of lower level subpopulations (n
(0)
s )

signifies the number of independent population members for xu in a population. Our

intention is to set the population sizes (n
(0)
s and N

(0)
l ) for xu and xl proportionately to

their dimensions, yielding

n
(0)
s

N
(0)
l

=
|xu|
|xl|

. (13)

Noting also that n
(0)
s N

(0)
l = Nu, we obtain the following sizing equations:

n(0)
s =

√
|xu|
|xl|

Nu, (14)

N
(0)
l =

√
|xl|
|xu|

Nu. (15)

For an equal number of lower and upper level variables, n
(0)
s = N

(0)
l =

√
Nu. The

above values are set for the initial population only, but are allowed to get modified
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thereafter in a self-adaptive manner by directly relating the location of the correspond-
ing xu variable vector from the points in the archive in the variable space. As shown in
Figure 10, first the maximum Euclidean distance (δU ) in the xu-space among the mem-
bers of the archive is computed. Then, the Euclidean distance (δu) between the current

u

δU

x1

x2

Archive

Current x_u
x_u space

δ

Figure 10: Computation of δu and δU .

xu vector and the closest archive member is computed. The subpopulation size Nl is
then set proportional to the ratio of δu and δU as follows:

Nl = (round)
δu
δU

N
(0)
l . (16)

To eliminate the cases with too low or too large population sizes, Nl is restricted be-
tween four (due to the need of two binary tournament selection operations to choose

two parent solutions for a single recombination event in the NSGA-II) and N
(0)
l . If the

current xu variable vector is far away from the archivemembers, a large number of gen-
erations must have to be spent in the corresponding lower level NSGA-II, as dictated
by equation (16).

5.2 Termination Criteria

In a bilevel optimization, it is clear that the lower level optimizationmust have to be run
more often than the upper level optimization, as the former task acts as a constraint to
the upper level task. Thus, any judicial and efficient efforts in terminating a lower level
optimization can make a substantial saving in the overall computational effort. For this
purpose, we first gauge the difficulty of solving all lower level problems by observing
the change in their hypervolume measures only in the initial generation (T = 0) of the
upper level optimization.

The maximum (Hmax) and minimum (Hmin) hypervolume is calculated from the
lower level non-dominated set (with a reference point constructed from the worst ob-
jective values of the set) in every τ generations of a lower level run. The Hl-metric is
then computed as follows:

Hl =
Hmax

l −Hmin
l

Hmax
l +Hmin

l

. (17)

If Hl ≤ ǫl (a threshold parameter) is encountered, indicating that an adequate conver-
gence in the hypervolume measure is obtained, the lower level NSGA-II simulation is
terminated. The number of lower level generations needed to meet the above criterion
is calculated for each subpopulation during the initial generation (T = 0) of the upper
level NSGA-II and an average (denoted here as tmax

l ) is computed. Thereafter, no sub-
sequent lower level NSGA-II simulations are allowed to proceed beyond tl generations
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(derived from tmax
l , as calculated below) or the above Hl ≤ ǫl is satisfied. We bound

the limiting generation (tl) to be proportional to the distance of current xu from the
archive, as follows:

tl = (int)
δu
δU

tmax
l . (18)

For terminating the upper level NSGA-II, the normalized change in hypervolume
measureHu of the upper level population (as in equation (17) except that the hypervol-
ume measure is computed in the upper level objective space) is computed in every τ
consecutive generations. When Hu ≤ ǫu (a threshold parameter) is obtained, the over-
all algorithm is terminated. We have used τ = 10, ǫl = 0.1 (for a quick termination) and
ǫu = 0.0001 (for a reliable convergence of the upper level problem) for all problems in
this study.

Now, we are ready to describe the overall algorithm for a typical generation in a
step-by-step format.

5.3 Step-by-Step Procedure

At the start of the upper level NSGA-II generation T , we have a population PT of size
Nu. Every population member has the following quantities computed from the previ-
ous iteration: (i) a non-dominated rankNDu corresponding to F andG, (ii) a crowding
distance value CDu corresponding to F, (iii) a non-dominated rank NDl correspond-
ing to f and g, and (iv) a crowding distance value CDl using f . In addition to these
quantities, for the members stored in the archive AT , we have also computed (v) a
crowding distance value CDa corresponding to F and (vi) a non-dominated rank NDa

corresponding to F andG.

Step 1a: Creation of new xu: We apply two binary tournament selection operations on
members (x = (xu,xl)) of PT using NDu and CDu lexicographically. Also, we ap-
ply two binary tournament selections on the archive population AT using NDa

and CDa lexicographically. Of the four selected members, two participate in the
recombination operator based on stochastic events. The members from AT par-

ticipate as parents with a probability of |AT |
|AT |+|PT | , otherwise the members from

PT become the parents for recombination. The upper level variable vectors xu of
the two selected parents are then recombined using the SBX operator (Deb and
Agrawal, 1995) to obtain two new vectors of which one is chosen for further pro-
cessing at random. The chosen vector is then mutated by the polynomial mutation

operator (Deb, 2001) to obtain a child vector (say, x
(1)
u ).

Step 1b: Creation of new xl: First, the population size (Nl(x
(1)
u )) for the child solution

x
(1)
u is determined by equation (16). The creation of xl depends on how close the

new variable set x
(1)
u is compared to the current archive, AT . IfNl = N

(0)
l (indicat-

ing that the xu is away from the archive members), new lower level variable vec-

tors x
(i)
l (for i = 1, . . . , Nl(x

(1)
u )) are created by applying selection-recombination-

mutation operations on members of PT and AT . Here, a parent member is cho-

sen from AT with a probability |AT |
|AT |+|PT | , otherwise a member from PT is cho-

sen at random. A total of Nl(x
(1)
u ) child solutions are created by concatenating

upper and lower level variable vectors together, as follows: ci = (x
(1)
u ,x

(i)
l ) for

i = 1, . . . , Nl(x
(1)
u ). Thus, for the new upper level variable vector x

(1)
u , a subpop-
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ulation of Nl(x
(1)
u ) lower level variable vectors are created by genetic operations

from PT and AT .

However, if the lower level population size (Nl(x
(1)
u )) is less than N

(0)
l (indicat-

ing that the variable set xu is close to the archive members), a different strategy

is used. First, a specific archive member (say, x
(a)
u ) closest to x

(1)
u is identified. In-

stead of creating new lower level variable vectors,Nl(x
(1)
u ) vectors are chosen from

the subpopulation to which x
(a)
u belongs. Complete child solutions are created by

concatenating upper and lower level variables vectors together. If however the

previous subpopulation does not have Nl(x
(1)
u ) members, the remaining slots are

filled by creating new child solutions by the procedure of the previous paragraph.

Step 2: Lower level NSGA-II: For each subpopulation, we now perform a NSGA-II
procedure using lower level objectives (f ) and constraints (g) for tl generations
(equation (18)). It is important to reiterate that in each lower level NSGA-II run,
the upper level variable vector xu is not changed. The selection process is different
from that in the usual NSGA-II procedure. If the subpopulation has no member
in the current archive AT , the parent solutions are chosen as usual by the binary
tournament selection using NDl and CDl lexicographically. If, however, the sub-
population has a member or members which already exist in the archive, only
these solutions are used in the binary tournament selection. This is done to em-
phasize already-found good solutions. The mutation operator is applied as usual.
After the lower level NSGA-II simulation is performed on a subpopulation, the
members are sorted according to the constrained non-domination level (Deb et al.,
2002) and are assigned their non-dominated rank (NDl) and crowding distance
value (CDl) based on lower level objectives (f ) and lower level constraints (g).

Step 3: Local search: The local search operator is employed next to provide us with
a solution which is guaranteed to be on a locally Pareto-optimal front. Since the
local search operator can be expensive, we use this operator sparingly. We apply
the local search operator to good solutions having the following properties: (i) it
is a non-dominated solution in the lower level having NDl = 1, (ii) it is a non-
dominated solution in the upper level having NDu = 1, and (iii) it does not get
dominated by any current archive member, or it is located at a distance less than

δUNl/N
(0)
l from any of the current archivemembers. In the local search procedure,

the achievement scalarizing function problem (Wierzbicki, 1980) formulated at the
current NSGA-II solution (xl) with zj = fj(xl) is solved:

Minimizep
m

max
j=1

fj(p)−zj
fmax
j −fmin

j
+ ρ

∑m
j=1

fj(p)−zj
fmax
j −fmin

j
,

subject to p ∈ Sl,
(19)

where Sl is the feasible search space for the lower level problem. The minimum
and maximum function values are taken from the NSGA-II minimum and max-
imum function values of the current generation. The optimal solution p∗ to the
above problem is guaranteed to be a Pareto-optimal solution to the lower level
problem (Miettinen, 1999). Here, we use ρ = 10−6, which prohibits the local search
to converge to a weak Pareto-optimal solution. We use a popular software KNI-
TRO (Byrd et al., 2006) (which employs a sequential quadratic programming (SQP)
algorithm) to solve the above single objective optimization problem. The KNI-
TRO software terminates when a solution satisfies the Karush-Kuhn-Tucker (KKT)
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conditions (Reklaitis et al., 1983) with a pre-specified error limit. We fix this er-
ror limit to 10−2 in all problems of this study here. The solutions which meet
this KKT satisfaction criterion are assigned an ‘optimal tag’ for further process-
ing. For handling non-differentiable problems, a non-gradient, adaptive step-size
based hill-climbing procedure (Nolle, 2006) can be used.

Step 4: Updating the archive: The optimally tagged members, if feasible with respect
to the upper level constraints (G), are then compared with the current archive
members. If these members are non-dominated when compared to the members
of the archive, they become eligible to be added into the archive. The dominated
members in the archive are also eliminated, thus the archive always keeps non-
dominated solutions. We limit the size of archive to 10Nu. If and when more
members are to be entered in the archive, the archive size is maintained to the
above limit by eliminating extra members using the crowding distance (CDa) mea-
sure.

Step 5: Formation of the combined population: Steps 1 to 4 are repeated until the
population QT is filled with newly created solutions. Each member of QT is now
evaluated with F and G. Populations PT and QT are combined together to form
RT . The combined population RT is then ranked according to constrained non-
domination (Deb et al., 2002) based on upper level objectives (F) and upper level
constraints (G). Solutions are thus, assigned a non-dominated rank (NDu) and
members within an identical non-dominated rank are assigned a crowding dis-
tance (CDu) computed in the F-space.

Step 7: Choosing half the population: From the combined populationRT of size 2Nu,
half of its members are retained in this step. First, the members of rank NDu = 1
are considered. From them, solutions having NDl = 1 are noted one by one in
the order of reducing crowding distance CDu. For each such solution, the entire
Nl subpopulation from its source population (either PT or QT ) are copied in an
intermediate population ST . If a subpopulation is already copied in ST and a
future solution from the same subpopulation is found to have NDu = NDl =
1, the subpopulation is not copied again. When all members of NDu = 1 are
considered, a similar consideration is continued with NDu = 2 and so on till ST

has Nu population members.

Step 6: Upgrading old lower level subpopulations: Each subpopulation of ST which
are not created in the current generation are modified using the lower level NSGA-
II procedure (Step 2) applied with f and g. This step helps progress each lower
level population towards their individual Pareto-optimal frontiers.

The final population is renamed as PT+1. This marks the end of one generation of the
overall H-BLEMO algorithm.

5.4 Algorithmic Complexity

With self-adaptive operations to update population sizes and number of generations,
it becomes difficult to compute an exact number of function evaluations (FE) needed
in the proposed H-BLEMO algorithm. However, using the maximum allowable values
of these parameters, we estimate that the worst case function evaluations is Nu(2Tu +
1)(tmax

l + 1) + FELS. Here Tu is the number of upper level generations and FELS is
the total function evaluations used by the local search (LS) algorithm. Lower level
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NSGA-II is able to bring the members close to the Pareto-optimal front which requires
a relatively small number of function evaluations required by the local search operator.
Moreover, towards the end of a simulation, most upper level solutions are close to the
archive, thereby requiring a much smaller number of function evaluations than that
used in the above expression. As an evidence to this fact, Figure 22 can be referred for
a variation in Nl and tl for two test problems of this study.

However, it is important to note that the computations needed in the local search
may be substantial and any effort to reduce the computational effort will be useful. In
this regard, the choice of the local search algorithm and the chosen KKT error limit for
terminating the local search will play an important role. Also, the termination param-
eter for lower level NSGA-II run (parameter ǫl) may also make an important contribu-
tion. For both these parameters, we have used reasonable values (KKT error threshold
of 0.01 and ǫl = 0.1) for a good balance between accuracy and computational efficiency.
In section 6.9, we shall discuss more about these issues by empirical evidence of inde-
pendent computations needed in the local search, in the lower level NSGA-II, and in
the upper level NSGA-II.

5.5 Review of the Drawbacks in Earlier Approaches

The proposed self-adaptive and hybrid bilevel procedure is quite different from our
earlier rather rigid and computationally expensive BLEMOprocedures (Deb and Sinha,
2009a,b). We carry out a review of the drawbacks in the earlier approaches and eluci-
date how these drawbacks have been tackled in H-BLEMO.

1. The previous approaches did not perform a local search at the lower level NSGA-II
and hence did not guarantee a lower level solution to be optimal. The methods re-
lied on the solutions provided by the EMO at the lower level. The H-BLEMO pro-
cedure incorporates a local search to the best non-dominated lower level NSGA-II
solutions so that an indication of distance and direction of lower Pareto-optimal
front from the current solution can be obtained. Moreover, in later generations, the
use of local search in the lower level optimization guarantees convergence to the
locally Pareto-optimal front, thereby satisfying the principle of bilevel program-
ming which requires that the final archive solutions are true lower level Pareto-
optimal solutions.

2. The earlier approaches were rigid in the sense that every time it made a call to the
lower level NSGA-II, a fixed population size and number of generations were used
for the lower level run. This was done irrespective of the solutions being close to
the front. The approaches did not have a measure to estimate the proximity of
the solutions from the lower level Pareto-optimal front which made it necessary
to run the lower level NSGA-II with a sufficient number of generations and with
an adequate population size to obtain near Pareto-optimal solutions. Moreover in
the absence of local search, it is necessary to have sufficient population size and
number of generations otherwise the run would provide solutions which are not
close to the true Pareto-optimal front at the lower level and hence infeasible at
the upper level. This led to unnecessary lower level evaluations which has been
avoided in the H-BLEMO. The H-BLEMO procedure is self-adaptive in nature.
This allows each lower level NSGA-II to use a different population size and run
for a different number of generations adaptively depending on the proximity of
the upper level variable vector to current archive solutions. This should allow the
H-BLEMO procedure to allocate function evaluations as and where needed.
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3. The previous approaches had a fixed population size for the lower level. Thismade
the number of upper level variable vectors fixed from one generation to another
for these approaches, whereas in H-BLEMO, the use of a variable population size
for different lower level NSGA-IIs establishes that the upper level population can
hold varying number of upper level variable vectors. This allows the H-BLEMO
procedure to provide a varying importance between the extent of upper and lower
level optimizations, as may be demanded by a problem.

4. The earlier procedures did not have a algorithmically sensible termination criteria
for the upper or the lower level NSGA-II and had to run for a fixed number of gen-
erations. In H-BLEMO a hypervolume based termination criteria has been used
where both lower and upper level terminate, based on the dynamic performance
of the algorithms. The criteria ensures the termination of each NSGA-II whenever
the corresponding non-dominated front has stabilized, thereby avoiding unneces-
sary function evaluations.

6 Results on Test Problems

We use the following standard NSGA-II parameter values in both lower and upper
levels on all problems of this study: Crossover probability of 0.9, distribution index for
SBX of 15, mutation probability of 0.1, distribution index for the polynomial mutation
of 20. The upper level population size is set proportional to the total number of vari-
ables (n): Nu = 20n. As described in the algorithm, all other parameters including the
lower level population size, termination criteria are all set in a self-adaptive manner
during the optimization run. In all cases, we have used 21 different simulations start-
ing from different initial populations and show the 0, 50, and 100% attainment surfaces
(Fonseca and Fleming, 1996) to describe the robustness of the proposed procedure.

6.1 Problem TP1

This problem has three variables (one for upper level and two for lower level). Thus,
we use Nu = 60 population members. Figure 11 shows the final archive members of
a single run on the upper level objective space. It can be observed that our proposed
procedure is able to find solutions on the true Pareto-optimal front. Conditions for
the exact Pareto-optimal solutions are given in equation (3). For each of the obtained
solutions, we use the upper level variable (y) value to compute lower level optimal
variable (x∗

1 and x∗
2) values using the exact conditions for Pareto-optimality and com-

pare the values with H-BLEMO solutions. The average error
∑2

i=1(xi − x∗
i )

2/2 for
each obtained solution is computed and then averaged over all archive solutions. This
error value for our H-BLEMO is found to be 7.0318 × 10−5, whereas the same error
value computed for the solutions reported with our earlier algorithm (Deb and Sinha,
2009a) is found to be 2.2180 × 10−3. The closer adherence to optimal variable values
with H-BLEMO indicates a better performance of our hybrid algorithm. Theminimum,
median and worst number of function evaluations needed over 21 different runs of H-
BLEMO are 567,848, 643,753, and 716,780, respectively. Although for a three-variable
problem, these numbers may seem too large, one needs to realize that the bilevel prob-
lems have one optimization algorithm nested into another and Pareto-optimality for
the lower level problem is essential for an upper level solution. In comparison, our
previous algorithm (Sinha and Deb, 2009) required 1,030,316, 1,047,769 and 1,065,935
function evaluations for best, median and worst performing runs. Despite using about
40% less function evaluations, our H-BLEMO also finds more accurate solutions.
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Figure 11: Final archive solutions for
problem TP1.
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Figure 12: Attainment surfaces (0%, 50%
and 100%) for problem TP1 from 21 runs.

The attainment surfaces obtained for the archive solutions over 21 runs are shown
in Figure 12. All three surfaces are so close to each other that they are difficult to be
distinguished from one another. This indicates the robustness of the procedure. The
hypervolume values are computed after normalizing the upper level objective values
by their minimum andmaximum values. The hypervolumes for the 0%, 50% and 100%
attainment surfaces are 0.3583, 0.3678 and 0.3700, respectively. The difference in the
hypervolume value over 21 runs is only about 3%.

In order to investigate the effect of Nu on the performance of the algorithm, next,
we use different Nu values but maintain an identical termination criteria. Figure 13
shows the function evaluations needed for lower (including the local search) and upper
level optimization tasks for differentNu values ranging from 40 to 200. It is clear from
the figure that a population size of Nu = 60 (which we used in Figures 11 and 12)
performs the best, on an average, in both lower and upper level optimization tasks.

6.2 Problem TP2

The second test problem has n = 15 variables. Thus, we use Nu = 300. Figure 14
shows the final archive population of a typical run. The attainment surface plot in Fig-
ure 15 shows that the proposed algorithm is fairly robust in all 21 different simulations.
The algorithm finds an almost an identical front close to the true Pareto-optimal front
in multiple runs. The hypervolumes for the obtained attainment surfaces are 0.8561,
0.8582 and 0.8589, making a maximum difference of 0.3% only. A comparison of our
current local search based algorithm with our previously proposed BLEMO procedure
(Sinha and Deb, 2009) in terms of an error measure (as discussed for problem TP1) from
the exact Pareto-optimal solutions indicates a smaller error for our current approach.
Despite the use of 15 variables here, as opposed to 7 variables used in the previous
study, the error in the current approach is 7.920× 10−6, compared to 11.158× 10−6 in
the previous study. In terms of the median performance, H-BLEMO requires 338,232
function evaluations for the 15-variable problem, as opposed to 771,404 function eval-
uations needed by our previous approach (Sinha and Deb, 2009) on a seven-variable
version of the problem.
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Figure 13: Average lower and upper level function evaluations with different popula-
tion sizes (Nu) for problemTP1. The average has been taken for 21 runs. On an average,
Nu = 60 is found to perform the best.
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Figure 14: Final archive solutions for
problem TP2.
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Figure 15: Attainment surfaces (0%, 50%
and 100%) for problem 2 from 21 runs for
problem TP2.

Interestingly the function evaluation plots (Figure 16) for the lower and upper level
tasks indicate that the proposed Nu = 20n (300 in this case) works the best in terms of
achieving a similar performance with the smallest number of function evaluations.

For brevity and space limitations, we do not show results on TP3, but similar re-
sults are found for this problem as well. But, we show results on TP4 to highlight a
comparison of H-BLEMOwith a previous study.

6.3 Problem TP4

This problem is linear and has five variables in total. Thus, we useNu = 100. Figure 17
shows the final archive which follows a linear relationship among upper level objec-
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Figure 16: Average lower and upper level function evaluations with different popula-
tion sizes for problem TP2 indicatesNu = 300 is the best choice. 21 runs are performed
in each case.

tives. This multi-objective bilevel problem was solved in the original study (Zhang
et al., 2007) by converting two objectives into a single objective by the weighted-sum
approach. The reported solution is marked on the figure with a star. It is interesting to
note that this solution is one of the extreme solutions of our obtained front. For a prob-
lem having a linear Pareto-optimal front, the solution of a weighted-sum optimization
approach is usually one of the extreme points. To this account, this result signifies the
accuracy and efficiency of the H-BLEMO procedure.
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Figure 17: Final archive solutions for
problem TP4. The point marked with a
star is taken from Zhang et al. (2007).
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Figure 18: Attainment surfaces (0%, 50%
and 100%) for problem TP4 from 21 runs.

Figure 18 shows three attainment surface plots which are close to each other, like
they are in the previous two problems. The hypervolumes for the obtained attainment
surfaces are 0.5239, 0.5255 and 0.5260, with a maximum difference of 0.4% only, indi-
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cating the robustness of our procedure.

6.4 Problem DS1

This problem has 10 upper and 10 lower level variables. Thus, an overall population of
size Nu = 400 is used here. For this problem, we first consider τ = 1. Figure 19 shows
the obtained archive solutions for a typical run. It is worth mentioning here that this
problem was possible to be solved up to only six variables (in total) by our earlier fixed
BLEMO approach (Deb and Sinha, 2009a). But here with our hybrid and self-adaptive
approach, we are able to solve 20-variable version of the problem. Later, we present
results with 40 variables as well for this problem.
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Figure 19: Final archive solutions for
problem DS1.
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Figure 20: Attainment surfaces (0%, 50%
and 100%) for problemDS1 from 21 runs.

The attainment surface plots in Figure 20 further show the robustness of the pro-
posed algorithm. The hypervolumes for the obtained attainment surfaces are 0.7812,
0.7984 and 0.7992, with a maximum difference of about 2%. The parametric study with
Nu in Figure 21 shows that Nu = 400 is the best choice in terms of achieving a simi-
lar performance on the hypervolume measure using the smallest number of function
evaluations, thereby supporting our setting Nu = 20n.

Since this problem is more difficult compared to the previous problems (TP1, TP2,
and TP4), we investigate the effect of self-adaptive changes in lower level NSGA-II pa-
rameters (Nl and tl) with the generation counter. In the left side plot of Figure 22, we
show the average value of these two parameters for every upper level generation (T )
from a typical simulation run. It is interesting to note that, starting with an average
of 20 members in each lower level subpopulation, the number reduces with genera-
tion counter, meaning that smaller population sizes are needed for later lower level
simulations. The average subpopulation size reduces to its lower permissible value
of four in 32 generations. Occasional increase in average Nl indicates that an upper
level variable vector may have been found near a previously undiscovered region of
the Pareto-optimal front. The hybrid algorithm increases its lower level population to
explore the region better in such occasions.

The variation of number of lower level generations (tl) before termination also fol-
lows a similar trend, except that at the end only 3-9 generations are required to fulfill
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Figure 21: Average lower and upper level function evaluations with different popu-
lation sizes for problem DS1 indicates an optimal population size of Nu = 400. The
average has been taken for 21 runs.
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Figure 22: Variation of Nl and tl with upper level generation for problems DS1 (left
figure) and DS2 (right figure). The algorithm adapts these two important parameters
automatically.

the lower level termination condition, although initially as large as 47 generations were
needed. Interestingly, whenever there is a surge inNl, a similar surge is noticed for tl as
well. This supports our argument about possible discovery of new and isolated xu vari-
able vectors occasionally. Our previous implementation (Deb and Sinha, 2009a) used
predefined fixed values for Nl and tl throughout, thereby requiring a unnecessarily
large computational effort. In our current hybrid algorithm, we reduce the computa-
tional burden by using the self-adaptive updates of the two most crucial parameters
involving computations in the lower level optimization task.

6.5 Problem DS2

This problem also has 20 variables in total, thereby motivating us to use Nu = 400.
Here too, we use τ = 1 at first and postpone a discussion on the difficult version of
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the problem with τ = −1 later. Figure 23 shows the final archive solutions from a
typical run, indicating the efficiency of our procedure. Our earlier BLEMO algorithm
(Deb and Sinha, 2009a) could only solve at most a four-variable version of this problem.
The hypervolumes for the obtained attainment surfaces are 0.5776, 0.6542 and 0.6629,
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Figure 23: Final archive solutions for
problem DS2.
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Figure 24: Attainment surfaces (0%, 50%,
75% and 100%) for problem DS2 from 21
runs.

respectively. The 0%, 50%, and 75% attainment surfaces (Figure 24) are very close to
each other, indicating that at least 75% of the runs are close to each other. The gap
between 75% and 100% attainment surfaces indicates that a few solutions are found to
be not so close to the true Pareto-optimal frontier in this problem.

Figure 25 confirms that Nu = 400 is the best choice of Nu to achieve a similar
hypervolume measure with the smallest number of overall function evaluations. The
right side plot of Figure 22 shows that Nl and tl starts with large values but drops to
small values adaptively tomake the optimization process efficient and computationally
fast.

6.6 Problem DS3

This problem has 20 variables. Thus, we have used Nu = 400. Figure 26 shows the
final archive population and Figure 27 shows corresponding attainment surface plot.
Our earlier algorithm was able to solve a maximum of eight-variable version of this
problem. The hypervolumes for the attainment surfaces are 0.5528, 0.5705 and 0.5759,
respectively. All 21 runs find the entire Pareto-optimal front with a maximum differ-
ence in hypervolume value of about 4%.

6.7 Problem DS4

This problem is considered for 10 variables; thus we use Nu = 200. Figures 28 and
29 show the archive population and the attainment surface for this problem. The hy-
pervolumes for the obtained attainment surfaces are 0.5077, 0.5241 and 0.5264, respec-
tively. The maximum difference in hypervolume measures in 21 runs is about 3.6%
only, indicating the robustness of the proposed procedure.
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Figure 25: Average lower and upper level function evaluations with different popula-
tion sizes for problem DS2 indicatesNu = 400 is the best choice. 21 runs are performed
in each case.
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Figure 26: Final archive solutions for
problem DS3.
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Figure 27: Attainment surfaces (0%, 50%
and 100%) for problemDS3 from 21 runs.

6.8 Problem DS5

This problem is also considered with 10 variables. We have used Nu = 200. Figure 30
shows the final archive population for a typical run. Figure 31 shows the corresponding
attainment surface plots, which are very close to each other indicating the efficacy of the
procedure. The hypervolumes for the obtained attainment surfaces are 0.5216, 0.5281
and 0.5308, respectively. The difference in hypervolume is only 1.7% for this problem.

6.9 Computational Efforts

Next, we investigate two aspects related to the computational issues. First, we record
the total function evaluations needed by the overall algorithm to achieve the specified
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Figure 28: Final archive solutions for
problem DS4.
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Figure 29: Attainment surfaces (0%, 50%
and 100%) for problemDS4 from 21 runs.
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Figure 30: Final archive solutions for
problem DS5.
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Figure 31: Attainment surfaces (0%, 50%
and 100%) for problemDS5 from 21 runs.

termination criterion (ǫu = 0.0001) and the same needed exclusively for the lower level
optimization task, which includes the local search. Table 1 shows these values for the
best, median and worst of 21 simulation runs for all eight problems. It is clear from
the table that the most of the computational efforts are spent in the lower level solution
evaluations. Despite our efforts being different from a nested algorithm in not solving
a lower level problem all the way for every upper level solution, the nature of bilevel
programming problem demands that the lower level optimization task must be em-
phasized. The use of archive in sizing lower level subpopulations in a self-adaptive
manner and the use of a coarse terminating condition for lower level optimization task
enabled our algorithm to use comparatively smaller number of function evaluations
than that would be needed in a nested algorithm. We compare the function evalua-
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Table 1: Total function evaluations for the upper and lower level (21 runs). The lower
level function evaluations include the evaluations of local search as well.

Pr. No. # Best Median Worst
var. Total LL Total UL Total LL Total UL Total LL Total UL

FE FE FE FE FE FE
TP1 3 555,410 12,438 629,590 14,163 70,0634 16,146
TP2 15 264,675 17,262 319,499 18,733 355,904 21,429
TP4 5 1,624,658 37,218 1,927,022 39,960 2,036,208 41,570
DS1 20 2,819,770 87,582 3,423,544 91,852 3,829,812 107,659
DS2 20 4,484,580 105,439 4,695,352 116,605 5,467,633 138,107
DS3 20 3,970,411 112,560 4,725,596 118,848 5,265,074 125,438
DS4 10 1,356,598 38,127 1,435,344 53,548 1,675,422 59,047
DS5 10 1,666,953 47,127 1,791,511 56,725 2,197,470 71,246

tions of H-BLEMO with a nested bilevel optimization algorithm later in Subsection 9
to illustrate this fact.

To investigate the computational efforts needed in the local search operator, we
record the average function evaluations in the local search procedure and in the over-
all lower level optimization task. Table 2 presents the results. The local search efforts

Table 2: Function evaluations needed by the local search.

Pr. No. Avg. Local FE per call Avg. Lower % Local
search FE of local search level FE search FE

TP1 91,382.2 19.89 640,696.1 0.14
TP2 232,426.9 108.59 324,093.8 0.72
TP4 504,084.2 43.93 1,940,248.9 0.26
DS1 1,996,769.6 77.90 3,744,071.8 0.53
DS2 2,620,456.7 97.79 5,039,594.9 0.52
DS3 2,867,432.3 75.43 4,841,572.7 0.59
DS4 1,020,262.2 60.24 1,472,883.7 0.69
DS5 1,427,828.6 68.56 1,893,837.5 0.75

vary from problem to problem. However, it contributes to more than half the computa-
tions in the lower level optimization task in most problems. Thus, putting both tables
together, we conclude that the effort of the local search is about 50% to the overall
computational efforts of the proposed H-BLEMO algorithm. Of course, this quantity
depends on the chosen termination criteria for the lower level, upper level, and the
local search optimization tasks. Nevertheless, the termination conditions chosen for
this study seemed to be adequate for the overall algorithm to work on all the prob-
lems of this paper and an effort of about 50% for achieving guaranteed convergence
(with respect to satisfying KKT conditions) by the local search may seem a reasonable
proposition. However, future effortsmay be spent on devising quicker local search and
lower level optimization tasks for reducing the overall computational effort. Aswe find
next, the local search operator may have a bigger role to play than simply guaranteeing
convergence to a locally Pareto-optimal frontier.
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7 Introducing Further Difficulties in DS1 and DS2

In this section, we use τ = −1 in 20-variableDS1 andDS2 problems (refer to equations 7
and 9, respectively). As discussed earlier, this choice makes a conflicting scenario in the
working principles between upper and lower level optimization tasks. To demonstrate
the difficulties caused by this setting, we consider three different algorithms: (i) A1:
H-BLEMO procedure with local search, (ii) A2: H-BLEMO procedure without local
search, and (iii) A3: BLEMO procedure (Deb and Sinha, 2009a). All parameter values
are the same as before and are maintained for all three algorithms. To compare the
performances, we first identify the nadir point in each problem and then compute the
true hypervolume measure H∗ by computing 10,000 well-distributed Pareto-optimal
points. Thereafter, we record a normalized hypervolume measure DH(T ) = (H(T ) −
H∗)/H∗ at each upper level generation T from the hypervolume (H(T )) computed
using the true nadir point as the reference point. Note that if the DH(T ) value reaches
zero, the corresponding algorithm can be said to reach the true Pareto-optimal front. A
negative value of DH(T ) indicates that the obtained set of solutions lie above the true
Pareto-optimal front so that the hypervolumeH(T ) is smaller thanH∗. This is an usual
scenario of a multi-objective optimization run, where solutions are usually worse than
the true Pareto-optimal front in the beginning of a run (having negativeDH(T ) values)
and then the solutions come closer to the Pareto-optimal front with generation.

However, in the case of τ = −1 for both DS1 and DS2 problems, if the lower level
problem is unable to find the true Pareto-optimal points, the corresponding solutions
lie much below the true Pareto-optimal front in the upper level objective space. Thus,
the hypervolume measure H(T ) in the upper level objective space will be very large,
but this may be construed as a case in which the obtained solutions are infeasible. Since
H(T )will be larger thanH∗ in this case, the DH(T ) value will be positive.

Figures 32 shows the DH(T ) measure for all three algorithms with generation
counter T for problem DS1. It is clear that only our proposed hybrid algorithm (A1) is
able to find the true Pareto-optimal front, by approaching a DH(T ) value of zero from
an initial negative value. Other two algorithms get stuck to a large positive DH(T )
value, indicating that the obtained set of solutions lie in the infeasible region beneath
the true Pareto-optimal front in the upper level objective space. Our hybrid algorithm
without the local search (A2) is somewhat better than our previous algorithm (A3). A
similar performance is also observed for problem DS2, shown in Figure 33. These sce-
narios clearly indicate the importance of using the local search approach in the lower
level optimization task.

Having shown the importance of the local search and self-adaptive update of
NSGA-II parameters for the lower level optimization task, we now investigate the pro-
posed H-BLEMO algorithm’s extent of sensitivity to the parameter τ . We compare the
function evaluations for both DS1 and DS2 problems with τ = +1 and τ = −1 in
Table 3. It is interesting to note that both problems are harder with τ = −1, but the
H-BLEMO algorithm is not overly sensitive to the difficulty caused by the discrepancy
in search directions in lower and upper level problems achieved with τ = −1. For the
median performance, DS1 and DS2 require an increase in overall function evaluations
of 5.1% and 5.6%, respectively. However, an absence of local search or our previous
BLEMO algorithm is unable to solve the τ = −1 version of both problems (Figures 32
and 33).
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Table 3: Comparison of function evaluations for τ = −1 and τ = +1 cases with the
H-BLEMO algorithm.

Prob. Best Median Worst
No. Total LL Total UL Total LL Total UL Total LL Total UL

FE FE FE FE FE FE
DS1 (τ = +1) 2,819,770 87,582 3,423,544 91,852 3,829,812 107,659
DS1 (τ = −1) 3,139,381 92,624 3,597,090 98,934 4,087,557 113,430
DS2 (τ = +1) 4,484,580 105,439 4,695,352 116,605 5,467,633 138,107
DS2 (τ = −1) 4,796,131 112,563 4,958,593 122,413 5,731,016 144,428

8 Scalability Study

In this section, we consider DS1 and DS2 (with τ = 1) and show the scalability of our
proposed procedure up to 40 variables. For this purpose, we consider four different
variable sizes: n = 10, 20, 30 and 40. Based on parametric studies performed on these
problems in section 6, we setNu = 20n. All other parameters are automatically set in a
self-adaptive manner during the course of a simulation, as before.

Figure 34 shows the variation of function evaluations for obtaining a fixed termina-
tion criterion on normalized hypervolume measure (Hu < 0.0001) calculated using the
upper level objective values for problem DS1. Since the vertical axis is plotted in a log-
arithmic scale and the relationship is found to be sub-linear, the hybrid methodology
performs better than an exponential algorithm. The break-up of computations needed
in the local search, lower level NSGA-II and upper level NSGA-II indicate that majority
of the computations is spent in the lower level optimization task. This is an important
insight to the working of the proposed H-BLEMO algorithm and suggests that further
efforts must be put in making the lower level optimization more computationally ef-
ficient. Figure 35 shows the similar outcome for problem DS2, but a comparison with
that for problem DS1 indicates that DS2 is more difficult to be solved with an increase
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tions with problem size n for DS2.

in problem size than DS1.

9 Comparison with a Nested Algorithm

We have argued before that by allowing lower level and upper level NSGA-IIs to pro-
ceed partially in tandem, we have created a computationally efficient and accurate al-
gorithm which progresses towards the true Pareto-optimal front on a number of dif-
ficult problems (Section 6). The algorithm is even found to converge in problems in
which there is a conflict between upper and lower level problems (Section 7). The
proposed algorithm is also found to solve scaled-up problems up to 40 real-parameter
variables (Section 8). In this section, we compare the proposed H-BLEMO algorithm
with an efficient yet nested bilevel optimization algorithm using the NSGA-II-cum-
local-search procedure. This algorithm uses a fixed population structure, but for ev-
ery xu, the lower level optimization is terminated by performing a local search to all
non-dominated solutions of the final lower level NSGA-II population. The termination
criterion for lower and upper level NSGA-IIs and that for the local search procedure
are identical to that in H-BLEMO algorithm. Since for every xu, we find a set of well-
converged and well-distributed lower level Pareto-optimal solutions, this approach is
truly a nested bilevel optimization procedure.

For the simulation with this nested algorithm on DS1 and DS2 problems (τ = 1),
we useNu = 400. To make a fair comparison, we use the same subpopulation sizeNl as
that was used in the very first iteration of our H-BLEMO algorithm using equation (15).
The number of generations for the lower level NSGA-II is kept fixed for all upper level
generations to that computed by equation (14) in the initial generation. Similar archiv-
ing strategy and other NSGA-II parameter values are used as before. Table 4 shows
the comparison of overall function evaluations needed by the nested algorithm and
by the hybrid BLEMO algorithm. The table shows that for both problems, the nested
algorithm takes at least one order of magnitude of more function evaluations to find
a set of solutions having an identical hypervolume measure. The difference between
our proposed algorithm and the nested procedure widens with an increase in number
of decision variables. The median number of function evaluations are also plotted in
Figures 34 and 35. The computational efficacy of our proposed hybrid approach and
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Table 4: Comparison of function evaluations needed by a nested algorithm and by H-
BLEMO on problems DS1 and DS2. Results from 21 runs are summarized.

Problem DS1
n Algo. Median Min. overall Max. overall

Lower FE Upper FE Overall FE FE FE
10 Nested 12,124,083 354,114 12,478,197 11,733,871 14,547,725
10 Hybrid 1,454,194 36,315 1,490,509 1,437,038 1,535,329
20 Nested 51,142,994 1,349,335 52,492,329 42,291,810 62,525,401
20 Hybrid 3,612,711 94,409 3,707,120 2,907,352 3,937,471
30 Nested 182,881,535 4,727,534 187,609,069 184,128,609 218,164,646
30 Hybrid 7,527,677 194,324 7,722,001 6,458,856 8,726,543
40 Nested 538,064,283 13,397,967 551,462,250 445,897,063 587,385,335
40 Hybrid 12,744,092 313,861 13,057,953 10,666,017 15,146,652

Problem DS2
n Algo. Median Min. overall Max. overall

Lower FE Upper FE Overall FE FE FE
10 Nested 13,408,837 473,208 13,882,045 11,952,650 15,550,144
10 Hybrid 1,386,258 50,122 1,436,380 1,152,015 1,655,821
20 Nested 74,016,721 1,780,882 75,797,603 71,988,726 90,575,216
20 Hybrid 4,716,205 117,632 4,833,837 4,590,019 5,605,740
30 Nested 349,242,956 5,973,849 355,216,805 316,279,784 391,648,693
30 Hybrid 13,770,098 241,474 14,011,572 14,000,057 15,385,316
40 Nested 1,248,848,767 17,046,212 1,265,894,979 1,102,945,724 1,366,734,137
40 Hybrid 28,870,856 399,316 29,270,172 24,725,683 30,135,983

difference of our approach from a nested approach are clearly evident from these plots.

10 Conclusions

Bilevel programming problems appear commonly in practice, however due to compli-
cations associated in solving them, often they are treated as single-level optimization
problems by adopting approximate solution principles for the lower level problem. Al-
though single-objective bilevel programming problems are studied extensively, there
does not seem to be enough emphasis for multi-objective bilevel optimization studies.
This paper has made a significant step in presenting past key research efforts, identify-
ing insights for solving such problems, suggesting scalable test problems, and imple-
menting a viable hybrid evolutionary-cum-local-search algorithm. The proposed algo-
rithm is also self-adaptive, allowing an automatic update of the key parameters from
generation to generation. Simulation results on eight different multi-objective bilevel
programming problems and their variants, and a systematic overall analysis amply
demonstrate the usefulness of the proposed approach. Importantly, due to the multi-
solution nature of the problem and intertwined interactions between both levels of op-
timization, this study helps to showcase the importance of evolutionary algorithms in
solving such complex problems.

The study of multi-objective bilevel problem solving methodologies elevates every
aspect of an optimization effort at a higher level, thereby making them interesting and
challenging to pursue. Although formulation of theoretical optimality conditions is
possible and has been suggested, viable methodologies to implement them in practice
are challenging. Although a nested implementation of lower level optimization from
the upper level is an easy fix-up and has been attempted by many researchers, suit-
able practical algorithms coupling the two levels of optimizations in a computationally
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efficient manner is not easy and definitely challenging. Developing hybrid bilevel opti-
mization algorithms involving various optimization techniques, such as evolutionary,
classical, mathematical, simulated annealing methods etc., are possible in both levels
independently or synergistically, allowing a plethora of implementational opportuni-
ties. This paper has demonstrated one such implementation involving evolutionary
algorithms, a classical local search method, and a mathematical optimality condition
for termination, but certainly many other ideas are possible and must be pursued ur-
gently.

Every upper level Pareto-optimal solution comes from a lower level Pareto-
optimal solution set. Thus, a decision making technique for choosing a single preferred
solution in such scenarios must involve both upper and lower level objective space
considerations, which may require and give birth to new and interactive multiple cri-
terion decision making (MCDM) methodologies. Finally, a successful implementation
and understanding of multi-objective bilevel programming tasks should motivate us to
understand and develop higher level (say, three or four-level) optimization algorithms,
which should also be of great interest to computational science due to the hierarchical
nature of systems approach often followed in complex computational problem solving
tasks today.
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Abstract
Bilevel multi-objective optimization problems are known to be highly complex optimization
tasks which require every feasible upper-level solution tosatisfy optimality of a lower-level
optimization problem. Multi-objective bilevel problems are commonly found in practice and
high computation cost needed to solve such problems motivates to use multi-criterion decision
making ideas to efficiently handle such problems. Multi-objective bilevel problems have been
previously handled using an evolutionary multi-objectiveoptimization (EMO) algorithm where
the entire Pareto set is produced. In order to save the computational expense, a progressively
interactive EMO for bilevel problems has been presented where preference information from
the decision maker at the upper level of the bilevel problem is used to guide the algorithm
towards the most preferred solution (a single solution point). The procedure has been evaluated
on a set of five DS test problems suggested by Deb and Sinha. A comparison for the number
of function evaluations has been done with a recently suggested Hybrid Bilevel Evolutionary
Multi-objective Optimization algorithm which produces the entire upper level Pareto-front for
a bilevel problem.

Keywords
Genetic algorithms, evolutionary algorithms, bilevel optimization, multi-objective optimization,
evolutionary programming, multi-criteria decision making, hybrid evolutionary algorithms, se-
quential quadratic programming.

1 Introduction

Bilevel programming problems are often found in practice [25] where the feasibility of an up-
per level solution is decided by a lower level optimization problem. The qualification for an
upper level solution to be feasible is that it should be an optimal candidate from a lower level
optimization problem. This requirement consequentially makes a bilevel problem very diffi-
cult to handle. Multiple objectives at both the levels of a bilevel problem further adds to the
complexity. Because of difficulty in searching and defining optimal solutions for bilevel multi-
objective optimization problems [11], not many solution methodologies to such problems have
been explored. One of the recent advances made in this direction is by Deb and Sinha [9] where
the entire Pareto set at the upper level of the bilevel multi-objective problem is explored. The
method, though successful in handling complex bilevel multi-objective test problems, is compu-
tationally expensive and requires high function evaluations, particularly at the lower level. High
computational expense associated to such problems provides a motivation to explore a different
solution methodology.

Concepts from a Progressively Interactive Evolutionary Multi-objective Optimization al-
gorithm (PI-EMO-VF) [10] has been integrated with the Hybrid Bilevel Evolutionary Multi-
objective Optimization algorithm (HBLEMO) [9] in this paper. In the suggested methodology,
preference information from the decision maker at the upperlevel is used to direct the search
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towards the most preferred solution. Incorporating preferences from the decision maker in the
optimization run makes the search process more efficient in terms of function evaluations as
well as accuracy. The integrated methodology proposed in this paper, interacts with the decision
maker after every few generations of an evolutionary algorithm and is different from an a pos-
teriori approach, as it explores only the most preferred point. An a posteriori approach like the
HBLEMO and other evolutionary multi-objective optimization algorithms [5, 26] produce the
entire efficient frontier as the final solution and then a decision maker is asked to pick up the
most preferred point. However, an a posteriori approach is not a viable methodology for prob-
lems which are computationally expensive and/or involve high number of objectives (more than
three) where EMOs tend to suffer in convergence as well as maintaining diversity.

In this paper, the bilevel multi-objective problem has beendescribed initially and then the
integrated procedure, Progressively Interactive Hybrid Bilevel Evolutionary Multi-objective Op-
timization (PI-HBLEMO) algorithm, has been discussed. Theperformance of the PI-HBLEMO
algorithm has been shown on a set of five DS test problems [9, 6]and a comparison for the
savings in computational cost has been done with a posteriori HBLEMO approach.

2 Recent Studies

In the context of bilevel single-objective optimization problems a number of studies exist, in-
cluding some useful reviews [3, 21], test problem generators [2], and some evolutionary algo-
rithm (EA) studies [18, 17, 24, 16, 23]. Stackelberg games [13, 22], which have been widely
studied, are also in principle similar to a single-objective bilevel problem. However, not many
studies can be found in case of bilevel multi-objective optimization problems. The bilevel multi-
objective problems have not received much attention, either from the classical researchers or
from the researchers in the evolutionary community.

Eichfelder [12] worked on a classical approach on handling multi-objective bilevel prob-
lems, but the nature of the approach made it limited to handleonly problems with few decision
variables. Halter et al. [15] used a particle swarm optimization (PSO) procedure at both the lev-
els of the bilevel multi-objective problem but the application problems they used had linearity in
the lower level. A specialized linear multi-objective PSO algorithm was used at the lower level,
and a nested strategy was utilized at the upper level.

Recently, Deb and Sinha have proposed a Hybrid Bilevel Evolutionary Multi-objective
Optimization algorithm (HBLEMO) [9] using NSGA-II to solveboth level problems in a syn-
chronous manner. Former versions of the HBLEMO algorithm can be found in the conference
publications [6, 8, 19, 7]. The work in this paper extends theHBLEMO algorithm by allowing
the decision maker to interact with the algorithm.

3 Multi-Objective Bilevel Optimization Problems

In a multi-objective bilevel optimization problem there are two levels of multi-objective opti-
mization tasks. A solution is considered feasible at the upper level only if it is a Pareto-optimal
member to a lower level optimization problem [9]. A generic multi-objective bilevel optimiza-
tion problem can be described as follows. In the formulationthere areM number of objectives
at the upper level andm number of objectives at the lower level:

Minimize(xu,xl) F(x) = (F1(x), . . . , FM (x)) ,
subject toxl ∈ argmin(xl)

{
f(x) = (f1(x), . . . , fm(x))

∣∣g(x) ≥ 0,h(x) = 0
}
,

G(x) ≥ 0,H(x) = 0,

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, . . . , n.

(1)

In the above formulation,F1(x), . . . , FM (x) are upper level objective functions which are
M in number andf1(x), . . . , fm(x) are lower level objective functions which arem in number.
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The constraint functionsg(x) andh(x) determine the feasible space for the lower level problem.
The decision vector,x, contains the variables to be optimized at the upper level. It is composed of
two smaller vectorsxu andxl, such thatx = (xu,xl). While solving the lower level problem, it
is important to note that the lower level problem is optimized with respect to the variablesxl and
the variablesxu act as fixed parameters for the problem. Therefore, the Pareto-optimal solution
set to the lower level problem can be represented asx∗

l (xu). This representation means that the
upper level variablesxu, act as a parameter to the lower level problem and hence the lower level
optimal solutionsx∗

l are a function of the upper level vectorxu. The functionsG(x) andH(x)
define the feasibility of a solution at the upper level along with the Pareto-optimality condition
to the lower level problem.

4 Progressively Interactive Hybrid Bilevel Evolutionary Multi-objective
Optimization Algorithm (PI-HBLEMO)

In this section, the changes made to the Hybrid Bilevel Evolutionary Multi-objective Optimiza-
tion (HBLEMO) [9] algorithm have been stated. The major change made to the HBLEMO algo-
rithm is in the domination criteria. The other change which has been made is in the termination
criteria.

The Progressively Interactive EMO using Value Function (PI-EMO-VF) [10] is a generic
procedure which can be integrated with any Evolutionary Multi-objective Optimization (EMO)
algorithm. In this section we integrate the procedure at theupper level execution of the
HBLEMO algorithm.

After everyτ upper level generations of the HBLEMO algorithm, the decision-maker is
provided withη (≥ 2) well-sparse non-dominated solutions from the upper levelset of non-
dominated points. The decision-maker is expected to provide a complete or partial preference
information about superiority of one solution over the other, or indifference towards the two
solutions. In an ideal situation, the DM can provide a complete ranking (from best to worst)
of these solutions, but partial preference information is also allowed. With the given preference
information, a strictly increasing polynomial value function is constructed. The value function
construction procedure involves solving another single-objective optimization problem. Till the
nextτ upper level generations, the constructed value function isused to direct the search towards
additional preferred solutions.

The termination condition used in the HBLEMO algorithm is based on hypervolume. In the
modified PI-HBLEMO algorithm the search is for the most preferred point and not for a pareto
optimal front, therefore, the hypervolume based termination criteria can no longer be used. The
hypervolume based termination criteria at the upper level has been replaced with a criteria based
on distance of an improved solution from the best solutions in the previous generations.

In the following, we specify the steps required to blend the HBLEMO algorithm within the
PI-EMO-VF framework and then discuss the termination criteria.

1. Set a countert = 0. Execute the HBLEMO algorithm with the usual definition of domi-
nance [14] at the upper level forτ generations. Increment the value oft by one after each
generation.

2. If t is perfectly divisible byτ , then use the k-mean clustering approach ([4, 26]) to choose
η diversified points from the non-dominated solutions in the archive; otherwise, proceed to
Step 5.

3. Elicitate the preferences of the decision-maker on the chosenη points. Construct a value
functionV (f ), emulating the decision maker preferences, from the information. The value
function is constructed by solving an optimization problem(VFOP), described in Sec-
tion 4.1. If a feasible value function is not found which satisfies all DM’s preferences then
proceed to Step 5 and use the usual domination principle in HBLEMO operators.
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4. Check for termination. The termination check (describedin Section 4.2) is based on the dis-
tance of the current best solution from the previous best solutions and requires a parameter
ǫu. If the algorithm terminates, the current best point is chosen as the final solution.

5. An offspring population at the upper level is produced from the parent population at the
upper level using a modified domination principle (discussed in Section 4.3) and HBLEMO
algorithm’s search operators.

6. The parent and the offspring populations are used to create a new parent population for
the next generation using the modified domination based on the current value function and
other HBLEMO algorithm’s operators. The iteration counteris incremented ast ← t + 1
and the algorithm proceeds to Step 2.

The parameters used in the PI-HBLEMO algorithm areτ , η andǫu.

4.1 Step 3: Elicitation of Preference Information and Construction of a Polynomial
Value Function

Whenever a DM call is made, a set ofη points are presented to the decision maker (DM). The
preference information from the decision maker is acceptedin the form of pairwise comparisons
for each pair in the set ofη points. A pairwise comparison of a give pair could lead to three
possibilities, the first being that one solution is preferred over the other, the second being that
the decision maker is indifferent to both the solutions and the third being that the two solutions
are incomparable. Based on such preference information from a decision maker, for a given
pair (i, j), if i-th point is preferred overj-th point, thenPi ≻ Pj , if the decision maker is
indifferent to the two solutions then it establishes thatPi ≡ Pj . There can be situations such
that the decision maker finds a given pair of points as incomparable and in such a case the
incomparable points are dropped from the list ofη points. If the decision maker is not able to
provide preference information for any of the given solution points then algorithm moves back
to the previous population where the decision maker was ableto take a decisive action, and uses
the usual domination instead of modified domination principle to proceed the search process.
But such a scenario where no preference is established by a decision maker is rare, and it is
likely to have at least one point which is better than anotherpoint. Once preference information
is available, the task is to construct a polynomial value function which satisfies the preference
statements of the decision maker.

Polynomial Value Function for Two Objectives
A polynomial value function is constructed based on the preference information provided by the
decision maker. The parameters of the polynomial value function are optimally adjusted such
that the preference statements of the decision maker are satisfied. We describe the procedure for
two objectives as all the test problems considered in this paper have two objectives. The value
function procedure described below is valid for a maximization problem therefore we convert
the test problems used in this paper into a maximization problem while implementing the value
function procedure. However, while reporting the results for the test problems they are converted
back to minimization problems.

V (F1, F2) = (F1 + k1F2 + l1)(F2 + k2F1 + l2),
whereF1, F2 are the objective values
and k1, k2, l1, l2 are the value function parameters

(2)

The description of the two objective value function has beentaken from [10]. In the above
equations it can been seen that the value functionV , for two objectives, is represented as a
product of two linear functionsS1 : R2 → R andS2 : R2 → R. 1 The parameters in this

1 A generalized version of the polynomial value function can be found in [20].
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value function which are required to be determined optimally from the preference statements
of the decision maker arek1, k2, l1 andl2. Following is the value function optimization prob-
lem (VFOP) which should be solved with the value function parameters (k1, k2, l1 andl2) as
variables. The optimal solution to the VFOP assigns optimalvalues to the value function pa-
rameters. The above problem is a simple single objective optimization problem which can be
solved using any single objective optimizer. In this paper the problem has been solved using a
sequential quadratic programming (SQP) procedure from theKNITRO [1] software.

Maximizeǫ,
subject toV is non-negative at every pointPi,

V is strictly increasing at every pointPi,
V (Pi)− V (Pj) ≥ ǫ, for all (i, j) pairs

satisfyingPi ≻ Pj ,
|V (Pi)− V (Pj)| ≤ δV , for all (i, j) pairs

satisfyingPi ≡ Pj .

(3)

The above optimization problem adjusts the value function parameters in such a way that
the minimum difference in the value function values for the ordered pairs of points is maximum.

4.2 Termination Criterion

Distance of the current best point is computed from the best points in the previous generations. In
the simulations performed, the distance is computed from the current best point to the best points
in the previous 10 generations and if each of the computed distancesδu(i), i ∈ {1, 2, . . . , 10} is
found to be less thanǫu then the algorithm is terminated. A value ofǫu = 0.1 has been chosen
for the simulations done in this paper.

4.3 Modified Domination Principle

In this sub-section we define the modified domination principle proposed in [10]. The value
functionV is used to modify the usual domination principle so that morefocussed search can be
performed in the region of interest to the decision maker. Let V (F1, F2) be the value function
for a two objective case. The parameters for this value function are optimally determined from
the VFOP. For the givenη points, the value function assigns a value to each point. Letthe values
beV1, V2, . . . , Vη in the descending order. Now any two feasible solutions (x(1) andx(2)) can
be compared with their objective function values by using the following modified domination
criteria:

1. If both points have a value function valuelessthanV2, then the two points are compared
based on the usual dominance principle.

2. If both points have a value function valuemorethanV2, then the two points are compared
based on the usual dominance principle.

3. If one point has a value function value more thanV2 and the other point has a value function
value less thanV2, then the former dominates the latter.

The modified domination principle has been explained through Figure 1 which illustrates
regions dominated by two pointsA andB. Let us consider that the second best point from a
given set ofη points has a valueV2. The functionV (F ) = V2 represents a contour which has
been shown by a curved line2. The first pointA has a valueVA which is smaller thanV2 and
the region dominated byA is shaded in the figure. The region dominated byA is identical to
what can be obtained using the usual domination principle. The second pointB has a valueVB

2 The reason for using the contour corresponding to the secondbest point can be found in [10]

120



which is larger thanV2, and, the region dominated by this point is once again shaded. It can be
observed that this point no longer follows the usual domination principle. In addition to usual
region of dominance this point dominates all the points having a smaller value function value
thanV2.

The above modified domination principle can easily be extended for handling constraints
as in [5]. When two solutions under consideration for a dominance check are feasible, then the
above modified domination principle should be used. If one solution is feasible and the other is
infeasible, then the feasible solution is considered as dominating the other. If both the solutions
are found to be infeasible then the one with smaller overall feasibility violation (sum of all
constraint violations) is considered to be dominating the other solution.

5 Parameter Setting

In the next section, results of the PI-HBLEMO and the HBLEMO procedure on the set of DS test
problems ([9]) have been presented. In all simulations, we have used the following parameter
values for PI-HBLEMO:

1. Number of points given to the DM for preference information: η = 5.
2. Number of generations between two consecutive DM calls:τ = 5.
3. Termination parameter:ǫu = 0.1.
4. Crossover probability and the distribution index for theSBX operator:pc = 0.9 andηc =

15.
5. Mutation probability and the distribution index for polynomial mutation:pm = 0.1 and

ηm = 20.
6. Population size:N = 40

6 Results

In this section, results have been presented on a set of 5 DS test problems. All the test prob-
lems have two objectives at both the levels. A point,(F

(b)
1 , F

(b)
2 ), on the Pareto-front of the

upper level is assumed as the most preferred point and then a DM emulated value function is se-
lected which assigns a maximum value to the most preferred point. The value function selected
is V (F1, F2) = 1

1+(F1−F
(b)
1 )2+(F2−F

(b)
2 )2

. It is noteworthy that the value function selected to

emulate a decision maker is a simple distance function and therefore has circles as indifference
curves which is not a true representative of a rational decision maker. A circular indifference
curve may lead to assignment of equal values to a pair of points where one dominates the other.
For a pair of points it may also lead assignment of higher value to a point dominated by the other.
However, only non-dominated set of points are presented to adecision maker, therefore, such
discrepancies are avoided and the chosen value function is able to emulate a decision maker by
assigning higher value to the point closest to the most preferred point and lower value to others.

The DS test problems are minimization problems and the progressively interactive proce-
dure using value function works only on problems to be maximized. Therefore, the procedure
has been executed by converting the test problems into a maximization problem by putting a
negative sign before each of the objectives. However, the final results have once again been con-
verted and the solution to the minimization problem has beenpresented. The upper level and
lower level function evaluations have been reported for each of the test problems. A comparison
has been made between the HBLEMO algorithm and PI-HBLEMO procedure in the tables 1, 2,
3, 4 and 5. The tables show the savings in function evaluations which could be achieved moving
from an a posteriori approach to a progressively interactive approach. The total lower level func-
tion evaluations (Total LL FE) and the total upper level function evaluations (Total UL FE) are
presented separately. Table 6 shows the accuracy achieved and the number of DM calls required
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to get close to the most preferred point. The accuracy is the Euclidean distance of the best point
achieved by the algorithm from the most preferred point. Themost preferred point has been
represented on the Pareto-optimal fronts of the test problems.

6.1 Problem DS1

Problem DS1 has been taken from [9]. A point on the Pareto-optimal front of the test problem
is chosen as the most-preferred point and then the PI-HBLEMOalgorithm is executed to obtain
a solution close to the most preferred point. This problem has2K variables withK real-valued
variables each for lower and upper levels. The complete DS1 problem is given below:

V(F)=V2

F1

F2

B

A

Fig. 1. Dominated regions of two pointsA andB
using the modified definition. Taken from [10].
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Fig. 2. Pareto-optimal front for problem DS1. Fi-
nal parent population members have been shown
close to the most preferred point.

Figure 2 shows the Pareto-optimal front for the test problem, and the most-preferred so-
lution is marked on the front. The final population members from a particular run of the PI-
HBLEMO algorithm are also shown. Table 1 presents the function evaluations required to arrive
at the best solution using PI-HBLEMO and also the function evaluations required to achieve an
approximated Pareto-frontier using the HBELMO algorithm.The third row in the table presents
the ratio of function evaluations using HBLEMO and PI-HBLEMO.

Minimize F(x,y) =


(1 + r − cos(απy1)) +
∑K

j=2(yj − j−1
2 )2

+τ
∑K

i=2(xi − yi)
2 − r cos

(
γ π

2
x1

y1

)

(1 + r − sin(απy1)) +
∑K

j=2(yj − j−1
2 )2

+τ
∑K

i=2(xi − yi)
2 − r sin

(
γ π

2
x1

y1

)




,

subject to (x) ∈ argmin(x)f(x) =






x2
1 +

∑K
i=2(xi − yi)

2

+
∑K

i=2 10(1− cos( π
K (xi − yi)))∑K

i=1(xi − yi)
2

+
∑K

i=2 10| sin( π
K (xi − yi)|








,

−K ≤ xi ≤ K, for i = 1, . . . ,K,
1 ≤ y1 ≤ 4, −K ≤ yj ≤ K, j = 2, . . . ,K.

(4)
For this test problem,K = 10 (overall 20 variables),r = 0.1, α = 1, γ = 1, andτ = 1 has
been used.
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Table 1.Total function evaluations for the upper and lower level (21runs) for DS1.

Algo. 1, Algo. 2, Best Median Worst
Savings Total LL Total UL Total LL Total UL Total LL Total UL

FE FE FE FE FE FE
HBLEMO 2,819,770 87,582 3,423,544 91,852 3,829,812107,659

PI-HBLEMO 329,412 12,509 383,720 12,791 430,273 10,907
HBLEMO

PI−HBLEMO
8.56 7.00 8.92 7.18 8.90 9.87

6.2 Problem DS2

Problem DS2 has been taken from [9]. A point on the Pareto-optimal front of the test problem is
chosen as the most-preferred point and then the PI-HBLEMO algorithm is executed to obtain a
solution close to the most preferred point. This problem uses discrete values ofy1 to determine
the upper level Pareto-optimal front. The overall problem is given as follows:

u1(y1) =





cos(0.2π)y1 + sin(0.2π)
√
|0.02 sin(5πy1)|,

for 0 ≤ y1 ≤ 1,
y1 − (1− cos(0.2π)), y1 > 1

u2(y1) =




− sin(0.2π)y1 + cos(0.2π)

√
|0.02 sin(5πy1)|,

for 0 ≤ y1 ≤ 1,
0.1(y1 − 1)− sin(0.2π), for y1 > 1.

(5)

Minimize F(x,y) =


u1(y1) +
∑K

j=2

[
y2j + 10(1− cos( π

K yi))
]

+τ
∑K

i=2(xi − yi)
2 − r cos

(
γ π

2
x1

y1

)

u2(y1) +
∑K

j=2

[
y2j + 10(1− cos( π

K yi))
]

+τ
∑K

i=2(xi − yi)
2 − r sin

(
γ π

2
x1

y1

)




,

subject to (x) ∈ f(x) =

argmin(x)

{(
x2
1 +

∑K
i=2(xi − yi)

2

∑K
i=1 i(xi − yi)

2

)}
,

−K ≤ xi ≤ K, i = 1, . . . ,K,
0.001 ≤ y1 ≤ K, −K ≤ yj ≤ K, j = 2, . . . ,K,

(6)
Due to the use of periodic terms inu1 andu2 functions, the upper level Pareto-optimal front
corresponds to only six discrete values ofy1 (=0.001, 0.2, 0.4, 0.6, 0.8 and 1).r = 0.25 has
been used.

In this test problem the upper level problem has multi-modalities, thereby causing an al-
gorithm difficulty in finding the upper level Pareto-optimalfront. A value ofτ = −1 has been
used, which introduces a conflict between upper and lower level problems. The results have been
produced for 20 variables test problem.

The Pareto-optimal front for this test problem is shown in Figure 3. The most-preferred
solution is marked on the Pareto-front along with the final population members obtained from a
particular run of the PI-HBLEMO algorithm. Table 2 presentsthe function evaluations required
to arrive at the best solution using PI-HBLEMO. The functionevaluations required to achieve
an approximated Pareto-frontier using the HBELMO algorithm is also reported.

6.3 Problem DS3

Problem DS3 has been taken from [9]. A point on the Pareto-optimal front of the test problem
is chosen as the most-preferred point and then the PI-HBLEMOalgorithm is executed to obtain
a solution close to the most preferred point. In this test problem, the variabley1 is considered
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Table 2.Total function evaluations for the upper and lower level (21runs) for DS2.

Algo. 1, Algo. 2, Best Median Worst
Savings Total LL Total UL Total LL Total UL Total LL Total UL

FE FE FE FE FE FE
HBLEMO 4,796,131112,563 4,958,593122,413 5,731,016144,428

PI-HBLEMO 509,681 14,785 640,857 14,535 811,588 15,967
HBLEMO

PI−HBLEMO
9.41 7.61 7.74 8.42 7.06 9.05

to be discrete, thereby causing only a fewy1 values to represent the upper level Pareto-optimal
front. The overall problem is given below:

Minimize F(x,y) =
y1 +

∑K
j=3(yj − j/2)2 + τ

∑K
i=3(xi − yi)

2 −R(y1) cos(4 tan
−1
(

y2−x2

y1−x1

)

y2 +
∑K

j=3(yj − j/2)2 + τ
∑K

i=3(xi − yi)
2 −R(y1) sin(4 tan

−1
(

y2−x2

y1−x1

)

 ,

subject to (x) ∈ argmin(x){
f (x) =

(
x1 +

∑K
i=3(xi − yi)

2

x2 +
∑K

i=3(xi − yi)
2

) ∣∣∣∣g1(x) = (x1 − y1)
2 + (x2 − y2)

2 ≤ r2

}
,

G(y) = y2 − (1− y21) ≥ 0,
−K ≤ xi ≤ K, for i = 1, . . . ,K, 0 ≤ yj ≤ K, for j = 1, . . . ,K,
y1 is a multiple of 0.1.

(7)

Here a periodically changing radius has been used:R(y1) = 0.1 + 0.15| sin(2π(y1 − 0.1)| and
user = 0.2. For the upper level Pareto-optimal points,yi = j/2 for j ≤ 3. The variablesy1 and
y2 take values satisfying constraintG(y) = 0. For each such combination, variablesx1 andx2

lie on the third quadrant of a circle of radiusr and center at (y1, y2) in theF-space. For this test
problem, the Pareto-optimal fronts for both lower and upperlevel lie on constraint boundaries,
thereby requiring good constraint handling strategies to solve the problem adequately.τ = 1
has been used for this test problem with 20 number of variables.
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Table 3.Total function evaluations for the upper and lower level (21runs) for DS3.

Algo. 1, Algo. 2, Best Median Worst
Savings Total LL Total UL Total LL Total UL Total LL Total UL

FE FE FE FE FE FE
HBLEMO 3,970,411112,560 4,725,596118,848 5,265,074125,438

PI-HBLEMO 475,600 11,412 595,609 16,693 759,040 16,637
HBLEMO

PI−HBLEMO
8.35 9.86 7.93 7.12 6.94 7.54

The Pareto-front, most-preferred point and the final population members from a particular
run are shown in Figure 4. Table 3 presents the function evaluations required by PI-HBLEMO
to produce the final solution and the function evaluations required by HBELMO to produce an
approximate Pareto-front.

6.4 Problem DS4

Problem DS4 has been taken from [9]. A point on the Pareto-optimal front of the test problem
is chosen as the most-preferred point and then the PI-HBLEMOalgorithm is executed to obtain
a solution close to the most preferred point. This problem hasK + L + 1 variables, which are
all real-valued:

Minimize F(x,y) =(
(1− x1)(1 +

∑K
j=2 x

2
j )y1

x1(1 +
∑K

j=2 x
2
j)y1

)
,

subject to (x) ∈ argmin(x)f(x) ={(
(1− x1)(1 +

∑K+L
j=K+1 x

2
j)y1

x1(1 +
∑K+L

j=K+1 x
2
j )y1

)}
,

G1(x) = (1 − x1)y1 +
1
2x1y1 − 1 ≥ 0,

−1 ≤ x1 ≤ 1, 1 ≤ y1 ≤ 2,
−(K + L) ≤ xi ≤ (K + L), i = 2, . . . , (K + L).

(8)

The upper level Pareto-optimal front is formed withxi = 0 for all i = 2, . . . , (K + L) and
x1 = 2(1−1/y1) andy1 ∈ [1, 2]. By increasingK andL, the problem complexity in converging
to the appropriate lower and upper level fronts can be increased. Only one Pareto-optimal point
from each participating lower level problem qualifies to be on the upper level front. For our
study here, we chooseK = 5 andL = 4 (an overall 10-variable problem).

Table 4.Total function evaluations for the upper and lower level (21runs) for DS4.

Algo. 1, Algo. 2, Best Median Worst
Savings Total LL Total UL Total LL Total UL Total LL Total UL

FE FE FE FE FE FE
HBLEMO 1,356,598 38,127 1,435,344 53,548 1,675,422 59,047

PI-HBLEMO 149,214 5,038 161,463 8,123 199,880 8,712
HBLEMO

PI−HBLEMO
9.09 7.57 8.89 6.59 8.38 6.78

The Pareto-front, most-preferred point and the final population members from a particular
run are shown in Figure 5. Table 4 presents the function evaluations required by PI-HBLEMO
to produce the final solution and the function evaluations required by HBELMO to produce an
approximate Pareto-front.
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6.5 Problem DS5

Problem DS5 has been taken from [9]. A point on the Pareto-optimal front of the test problem
is chosen as the most-preferred point and then the PI-HBLEMOalgorithm is executed to obtain
a solution close to the most preferred point. This problem issimilar to problem DS4 except that
the upper level Pareto-optimal front is constructed from multiple points from a few lower level
Pareto-optimal fronts. There areK + L+ 1 real-valued variables in this problem as well:

Minimize F(x,y) =(
(1− x1)(1 +

∑K
j=2 x

2
j)y1

x1(1 +
∑K

j=2 x
2
j )y1

)
,

subject to (x) ∈ argmin(x)f(x) ={(
(1− x1)(1 +

∑K+L
j=K+1 x

2
j )y1

x1(1 +
∑K+L

j=K+1 x
2
j)y1

)}
,

G1(x) = (1− x1)y1 +
1
2x1y1 − 2 + 1

5 [5(1− x1)y1 + 0.2] ≥ 0,
[·] denotes greatest integer function,
−1 ≤ x1 ≤ 1, 1 ≤ y1 ≤ 2,
−(K + L) ≤ xi ≤ (K + L), i = 2, . . . , (K + L).

(9)

For the upper level Pareto-optimal front,xi = 0 for i = 2, . . . , (K+L),x1 ∈ [2(1−1/y1), 2(1−
0.9/y1)], y1 ∈ {1, 1.2, 1.4, 1.6, 1.8} (Figure 6). For this test problem we have chosenK = 5
andL = 4 (an overall 10-variable problem). This problem has similardifficulties as in DS4,
except that only a finite number ofy1 qualifies at the upper level Pareto-optimal front and that
a consecutive set of lower level Pareto-optimal solutions now qualify to be on the upper level
Pareto-optimal front.

The Pareto-front, most-preferred point and the final population members from a particular
run are shown in Figure 6. Table 5 presents the function evaluations required by PI-HBLEMO
to produce the final solution and the function evaluations required by HBELMO to produce an
approximate Pareto-front.

7 Accuracy and DM calls

Table 6 represents the accuracy achieved and the number of decision maker calls required while
using the PI-HBLEMO procedure. In the above test problems the most preferred point which
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Table 5.Total function evaluations for the upper and lower level (21runs) for DS5.

Algo. 1, Algo. 2, Best Median Worst
Savings Total LL Total UL Total LL Total UL Total LL Total UL

FE FE FE FE FE FE
HBLEMO 1,666,953 47,127 1,791,511 56,725 2,197,470 71,246

PI-HBLEMO 168,670 5,105 279,568 6,269 304,243 9,114
HBLEMO

PI−HBLEMO
9.88 9.23 6.41 9.05 7.22 7.82

the algorithm is seeking is pre-decided and the value function emulating the decision maker
is constructed. When the algorithm terminates it provides the best achieved point. The accu-
racy measure is the Euclidean distance between the best point achieved and the most preferred
point. It can be observed from the results of the PI-HBLEMO procedure that preference in-
formation from the decision maker leads to a high accuracy (Table 6) as well as huge savings
(Table 1,2,3,4,5) in function evaluations. Producing the entire front using the HBLEMO proce-
dure has its own merits but it comes with a cost of huge function evaluations and there can be
instances when the entire set of close Pareto-optimal solutions will be difficult to achieve even
after high number of evaluations. The accuracy achieved using the HBLEMO procedure has
been reported in the brackets; the final choice made from a setof close Pareto-optimal solutions
will lead to a poorer accuracy than a progressively interactive approach.

Table 6. Accuracy and the number of decision maker calls for the PI-HBLEMO runs (21 runs). The dis-
tance of the closest point to the most preferred point achieved from the HBLEMO algorithm has been
provided in the brackets.

Best Median Worst
DS1 Accuracy0.0426 (0.1203)0.0888 (0.2788)0.1188 (0.4162)

DM Calls 12 13 29
DS2 Accuracy0.0281 (0.0729)0.0804 (0.4289)0.1405 (0.7997)

DM Calls 12 15 25
DS3 Accuracy0.0498 (0.0968)0.0918 (0.3169)0.1789 (0.6609)

DM Calls 7 17 22
DS4 Accuracy0.0282 (0.0621)0.0968 (0.0981)0.1992 (0.5667)

DM Calls 7 15 23
DS5 Accuracy0.0233 (0.1023)0.0994 (0.1877)0.1946 (0.8946)

DM Calls 7 14 22

8 Conclusions

There are not many approaches yet to handle multi-objectivebilevel problems. The complexity
involved in solving a bilevel multi-objective problem has deterred researchers, keeping the area
unexplored. The Hybrid Bilevel Evolutionary Multi-objective Optimization Algorithm is one of
the successful procedures towards handling a general bilevel multi-objective problem. However,
the procedure involves heavy computation, particularly atthe lower level, to produce the entire
Pareto-optimal set of solutions at the upper level.

In this paper, the Hybrid Bilevel Evolutionary Multi-objective Optimization Algorithm has
been blended with a progressively interactive technique. An evaluation of the Progressively
Interactive HBLEMO (PI-HBLEMO) technique against the HBLEMO procedure shows an im-
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provement in terms of function evaluations as well as accuracy. The savings in function evalu-
ations at the lower as well as upper level is in the range of sixto ten times. This is a significant
improvement particularly for cases where a function evaluation is computationally very expen-
sive. Moreover, for problems where EMOs tend to suffer in converging towards the front, a
progressively interactive approach provides a viable solution to such problems and leads to a
higher accuracy. Therefore, an integration of the progressively interactive procedure with an
EMO algorithm offers a dual advantage of reduced function evaluations and increased accuracy.
Such kind of an integrated procedure, with EMO algorithm’s parallel search and concepts from
the field of MCDM, can be a useful tool to efficiently handle difficult multi-objective problems.
The power of such an amalgamation has been shown in this studywith its successful application
on the challenging domain of multi-objective bilevel problems.
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