
Jon Appelberg

Performance Testing of a Network
Management System in Challenged
Networks

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo 23.1.2013

Thesis supervisor:

Prof. Raimo Kantola

Thesis instructor:

M.Sc. (Tech.) Ismo Kiiski

A’’ Aalto University
School of Electrical
Engineering

aalto-yliopisto
sähkötekniikan korkeakoulu

diplomityön
tiivistelmä

Tekijä: Jon Appelberg

Työn nimi: Performance Testing of a Network Management System in
Challenged Networks

Päivämäärä: 23.1.2013 Kieli: Englanti Sivumäärä: ix+76

Tietoliikenne- ja tietoverkkotekniikan laitos

Professuuri: Tietoverkot Koodi: S-38

Valvoja: Prof. Raimo Kantola

Ohjaaja: DI Ismo Kiiski

Testattaessa sellaisten ohjelmistojen suorituskykyä, jotka viestivät tieto-
verkoissa, on tärkeää suorittaa testaus ympäristössä, jossa verkkoliikenteellä
on samankaltaiset ominaisuudet kuin ohjelmiston kohdeympäristössä. Verkko-
emulaatiota tarvitaan, sillä testauksen suorittaminen oikeassa kohdeverkossa on
harvoin mahdollista.

Tämän diplomityön tavoitteena oli kehittää usean samanaikaisen käyttäjän
suorituskykytestausympäristö Tellabs 8000 Intelligent Network Manager -
verkkohallintajärjestelmän testaukseen haasteellisessa verkossa. Tavoitteena oli
myös suunnitella ja suorittaa testisuunnitelma haasteellisiin verkkoihin liittyen.
Tämä suunnitelma perustui asiakkaiden verkkotopologioihin sekä Tellabsin
suosituksiin.

Diplomityöhön liittyvät testit antoivat tietoa Tellabs 8000 Intelligent Net-
work Manager -verkkohallintajärjestelmän suorituskyvystä haasteellisessa
verkossa. Työssä myös kuvataan suorituskykytestauksen, verkkoemulaattorin ja
testiympäristön suunnitteluvaiheita.

Avainsanat: Verkonhallinta, performanssitestaus, verkkoemulaattori, testi-
automaatio

aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Jon Appelberg

Title: Performance Testing of a Network Management System in Challenged
Networks

Date: 23.1.2013 Language: English Number of pages: ix+76

Department of Communications and Networking

Professorship: Data Networks Code: S-38

Supervisor: Prof. Raimo Kantola

Instructor: M.Sc. (Tech.) Ismo Kiiski

When testing the performance of software that relies on network communication,
it is crucial to do the testing in an environment which has similar network
characteristics as the target environment. Often using real production networks
for testing is not a viable option and network emulation is required.

In this thesis a multiuser performance testing environment has been cre-
ated for the Tellabs 8000 Intelligent Network Manager. Also a test plan was
created and executed based on customer cases and Tellabs recommendations.

The tests related to this thesis gave insight on the performance of the Tellabs
8000 Intelligent Network Manager in impaired networks and on the design. This
thesis also describes the design process of the testing environment and the tools
related to the performance testing and network emulation.

Keywords: Network management, performance testing, network emulator, test
automation

iv

Preface

I would like to sincerely thank my Thesis Instructor, M.Sc Ismo Kiiski, for his

encouragement and support during the work of this thesis. I am also grateful for both

the opportunity to write this thesis and for the opportunity to work in the integration

testing team at Tellabs.

I also wish to thank my Supervisor, Prof. Raimo Kantola for his guidance and for caring

about the quality of the thesis.

Many thanks go to my colleagues at Tellabs for their much appreciated input and

suggestions related to the task of writing this thesis. Especially I would like to thank

B.Sc Taneli Riitaoja for reading my thesis and helping me with the coherence of the

text.

Finally I would like to thank M.Sc Ilmo Savolainen and Sami Pyrrö for the support and

guidance related to the testing framework which was used in the work of this thesis.

Espoo 20.5.2013

Jon Appelberg

v

Figures and Tables

Figure 1 Positive Acknowledgements .. 8

Figure 2 TCP Flow control... 9

Figure 3 Typical Tellabs 8000 INM Configuration [11] .. 14

Figure 4 Screenshot of Tellabs 8600 Node Simulator Graphical user interface... 16

Figure 5 Tellabs 8000 INM workstation toolbox ... 20

Figure 6 The Tellabs 8630 Access Switch [11] .. 22

Figure 7 Screenshot of the TestMonkey software testing tool ... 26

Figure 8 The Joinker client program .. 28

Figure 9 Graphical representation of the network in the virtual environment .. 31

Figure 10: Visualization of the Linux traffic control subsystem for the network emulator 35

Figure 11: Measurement of bandwidth limitation using the network emulator to emulate a 2/1 Mbit DSL

impairment profile .. 38

Figure 12 Measurement of bandwidth limitation using the network emulator to emulate a 100/100 Mbit

LAN connection ... 39

Figure 13 Flowchart of the NetSloth server ... 42

Figure 14 Overview of the communication of the test automation components .. 45

Figure 15 Topology “1-standard”, standard case with no impaired links .. 47

Figure 16 Topology “2-mgmt-ws”, one management server and two standard workstations at remote site

behind a challenged link ... 48

Figure 17 Topology “3-ws”, two standard workstations at remote site behind a challenged link 49

Figure 18 Topology 4-satws, two satellite workstations at remote site behind a challenged link 50

Figure 19 Topology 5-com-node-mgmt-ws; the communications server, one management server and two

standard workstations at remote site behind a challenged link ... 51

Figure 20 Topology 6-com-node, the communications server and node elements at remote site behind a

challenged link .. 52

Figure 21 Topology “7-node”, The node elements at remote site behind a challenged link 53

Figure 22 SoM and SoA for topology “2-mgmt-ws” ... 59

Figure 23 Operation count for topology "2-mgmt-ws" .. 60

Figure 24 Operation count per workstation for topology "2-mgmt-ws" .. 61

Figure 25 SoM and SoA for topology "3-ws" .. 62

Figure 26 Operation count for topology "3-ws" ... 63

Figure 27 Operation count per workstation for topology "3-ws" ... 63

Figure 28 SoM and SoA for topology “4-satws” ... 64

Figure 29 Operation count for topology “4-satws” .. 65

Figure 30 Operation count per workstation for topology “4-satws” .. 66

Figure 31 SoM and SoA for topology "5-com-node-mgmt-ws" .. 67

Figure 32 Operation count for topology "5-com-node-mgmt-ws" ... 67

Figure 33 Operation count per workstation for topology "5-com-node-mgmt-ws" 68

vi

Figure 34 SoM and SoA for topology "6-com-node" ... 69

Figure 35 Operation count for topology "6-com-node" ... 69

Figure 36 Operation count per workstation for topology "6-com-node" .. 70

Table 1 Measurement of amount of data in Megabytes and packets between the Tellabs 8000 INM

management network components, using standard and satellite workstations 12

Table 2 Resource allocation for the virtual machines .. 30

Table 3 Measured base latencies. Compared between a VMware bridge, the network emulator and a real

LAN. 64byte ICMP packets ... 37

Table 4 Measured base latencies. Compared between a VMware bridge, the network emulator and a real

LAN. 25000byte ICMP packets ... 37

Table 5 Multiuser test results with and without the network emulator .. 40

Table 6 Network impairment profiles .. 54

Table 7 Results and analysis for the 11 test runs of the unimpaired test case for topology “1-standard” .. 58

vii

Table of Contents

1 Introduction .. 1

2 Software testing .. 3

2.1 Performance testing .. 3

2.2 Network emulation ... 4

3 Impact of network impairments .. 7

3.1 Latency ... 7

3.2 Packet loss, duplication, corruption and reordering .. 10

3.3 Congestion .. 10

3.4 Measurements and observations about the communication in the management network 11

4 Tellabs 8000 Intelligent Network Manager .. 14

4.1 8600 Node Simulator .. 15

4.2 Database server ... 17

4.3 Communication server .. 17

4.4 Management server ... 18

4.5 Standard workstation .. 19

4.6 Satellite workstation ... 21

4.7 Macro Package ... 21

4.8 Tellabs 8600 Managed edge system ... 22

5 Tellabs INM performance testing ... 23

5.1 Multi-user tests ... 23

5.2 Test macros ... 24

5.3 TestMonkey .. 25

5.4 Virtual machines ... 26

5.5 Result database ... 27

5.6 Joinker .. 27

6 Design of a test set to measure INM management in an impaired network 29

6.1 Architecture of the test environment... 29

6.2 The simulated network ... 32

6.3 Other possible implementations .. 32

6.4 The network emulator ... 34

viii

6.5 Measurements of the network emulator .. 36

6.5.1 Base latency of network emulator .. 36

6.5.2 Bandwidth limitation with the network emulator... 38

6.5.3 Multiuser test results with network emulator ... 39

6.6 Automation of test cases ... 40

6.6.1 NetSloth ... 41

6.6.2 AutoQueue ... 43

6.7 Planning of the test cases .. 46

6.7.1 Topologies ... 46

6.7.2 Network impairment profiles ... 53

6.8 Final test setup .. 54

7 Result from tests ... 56

7.1 Result analysis information .. 56

7.2 Topology “1-standard” ... 58

7.3 Topology “2-mgmt-ws” .. 59

7.4 Topology ”3-ws” .. 61

7.5 Topology “4-satws” .. 64

7.6 Topology “5-com-node-mgmt-ws” ... 66

7.7 Topology “6-com-node” ... 68

7.8 Topology “7-node” ... 70

7.9 Suggestions for improvement of INM code .. 71

8 Summary and conclusions .. 73

8.1 Future research ... 73

9 References .. 75

1

1 Introduction

Modern mobile networks are growing in terms of the amount of data, the amount of

users and the amount of network elements. This growth causes the management

networks to grow larger, more complex and also increases the number of users on the

management network. The operators do not only require high performance, robustness

and reliability from the production network, but also from the management network.

A mobile network of a large telecommunications operator often spans over a large

geographical area. Because all endpoints of the network need to be reachable by the

management network, there is some latency at some links: The speed of light cannot be

surpassed. Also other impairments such as network congestion, packet loss, packet

corruption or packet duplication might degrade the performance of the network.

The Tellabs 8000 Intelligent Network Manager is used for managing networks that

consist of different Tellabs product families, e.g. the 8600 Managed Edge System.

There are operators using the Tellabs 8000 Intelligent Network Manager who already

have over 100 simultaneous users at sites which are spread geographically over a large

area that are often behind slow and relatively unreliable links. Testing the scalability of

the network manager software and performance in different networks should be done in

house so that any issues are noticed before the software is deployed to production

networks.

The purpose of this thesis is to find out what kind of performance degradation the

network management topologies already used by customers might cause to the Tellabs

8000 management network, whether there are alternative topologies for the

management network which could be preferable to customers and whether changes

might be made to the 8000 Intelligent Network Manager to lessen the impact of

impaired management networks. The created test cases and test environment will

provide the basis for later in-house performance testing in challenged networks, so the

test setup should be reliable and maintainable. The testing environment should also be

built in a way that allows other test personnel to add test cases and change parameters of

existing test cases.

2

A lot of work has already been done regarding Tellabs 8000 INM and performance

testing; noteworthy are especially the benchmark test cases and tools created by Ilmo

Savolainen as his master’s thesis with the topic “Benchmark Testing of Network

Management System”. It is known that performance of Tellabs 8000 INM is degraded

in an impaired network, but it has not been thoroughly researched until now. The

interest in the issue has risen now that customers with high load management networks

are interested in increasing the performance in high latency networks. The benchmark

testing tools created in conjunction with Savolainens master’s thesis [1] will be used as

a foundation on which the testing framework described in this thesis will be constructed.

Also the Tellabs 8600 series node simulator created by Mikko Kyllönen as his master’s

thesis will be used to simulate a large amount of 8600 nodes in the testing environment

which is created as a part of this thesis.

The main testing environment used for testing the performance of Tellabs 8000 INM in

an impaired network is built on virtual machines on a VMware ESX. It consists of one

8600 simulator, one Tellabs 8000 communication server, two Tellabs 8000 management

servers and four Tellabs 8000 workstations. The database is a Sybase database running

on a real Windows 2003 server. For emulating the network, with impairments between

all the components of this testing environment, a Linux guest virtual machine will be

used. The Linux guest essentially works as a layer 2 switch, with added functionality

from the Netem kernel module. Netem allows adding emulation of different network

characteristics to the links between computers, in this case the filtering of Netem rules

will be done on layer 3, i.e. IPv4.

The types of impairments on the links will be bundled together as impairment profiles

according to what kind of connections customers might be using in their management

networks. An impairment profile describes the characteristics of the impairments that

are present in a network link. This is done to make the testing closer to the real world

and also to avoid testing unrealistic scenarios. The different impaired links will be used

in different places of the network according to real customer cases and also according to

configurations that Tellabs Oy might suggest to the customer. For example the

management server communicates with the database, the communications servers and

the workstations. It is important to find out which of these links is the most important in

regard to performance.

3

2 Software testing

This chapter briefly explains some theory about the purpose of performance testing and

some testing guidelines. This chapter also contains background information about

network emulators and different tools and methods which can be used for network

emulation.

2.1 Performance testing

For any application, and especially for applications with a user interface, performance is

often an important attribute. Performance of an application will often impact the

usability and the value of the product. The Performance of an application needs to be

measured based on some metric values, for example the amount of operations that can

be completed per hour or how long it takes to process a certain amount of data entries.

[2]

According to Ian Molyneaux [3] automated testing tools are a requirement for effective

performance testing, automated testing tools are especially important for multiuser

testing. Automated testing tools also ensure the repeatability of the test cases.

For a program like the Tellabs 8000 Intelligent Network Manager, which relies heavily

on a user controlling the network manager, the desire is to make the users feel the

application is responsive and reliable. Therefore, we should monitor metrics that

describe the responsiveness of the application and test operations that an operator is

likely to do on a regular basis. We also have to keep in mind that simultaneous users

will have an impact on each other’s perceived performance of the application. The

multiuser test environment created by Ilmo Savolainen for his master’s thesis

Benchmark Testing of Network Management System [1] is designed for the multiuser

performance testing of the Tellabs 8000 INM and will be used as a basis when

designing the test environment and test set related to this thesis. In addition to the

responsiveness and reliability of the program, it is important that the automated tasks in

the network and the monitoring processes also get a good service. This is why it’s also

4

useful to compare the absolute amount of work that can be completed in the

management network during the tests.

2.2 Network emulation

When testing networking hardware or software one should keep in mind that the

product will probably perform differently on different networks. If testing is being done

only on a local area network (LAN), functional problems or degraded performance

might occur on deployment if the product is to be used on a wide area network (WAN).

A local area network is likely to have more bandwidth, less latency and less packet loss.

Creating a real WAN testing environment is expensive, cumbersome and difficult in

terms of varying parameters. To emulate a different kind of network (e.g. WAN) on top

of an existing network (e.g. LAN) a network emulator can be used.

There are several commercial hardware network emulators and software based network

emulators, some only emulate one link and some can emulate networks by

differentiating traffic based on for example the source-destination pairs of Ethernet

ports or IP-addresses. Advantages with hardware network emulators are that they are

easy to set up and there should not be any software-hardware compatibility problems.

Software network emulators on the other hand may be cheaper to deploy (depending on

costs of the host computer and software licensing). To emulate a network on top of a

virtual network, software network emulation is required. [4]

A network emulator works by shaping the network traffic according to the rules defined

by the user. Available parameters differ, but the most common are bandwidth limitation,

latency, packet loss, packet duplication, packet corruption and packet loss. Often a

variance according to a set distribution is available for the parameters.

The two perhaps most popular open source network emulators used today are

Dummynet, which is available for several platforms and based on ipfw, a FreeBSD

firewall, and the Linux Traffic Control subsystem, mainly Netem1 which is a Linux

1 http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

5

kernel component. For my thesis I chose to use the Linux Traffic Control subsystem

together with some additional tools.

The test cases required using a virtual network emulator, because there was a need to

simulate a network with different parameters between different nodes, and several

nodes should be able to share the same network link. As such an additional virtual

machine was needed to work as a router between the Windows hosts. I chose to use a

Linux computer because of administrative reasons (Windows would have required a

license) and in my opinion better networking abilities. I chose to use the Linux Traffic

Control subsystem because its functionality had been tested earlier in house and the fact

that it is native to the Linux kernel gave me an impression of reliability and

performance.

The Linux Traffic Control subsystem is controlled by the tc terminal commands. There

are some open source projects which provide a frontend to the Linux Traffic Control

subsystem, but I decided to create my own instead of trying to customize an existing

one. I wrote a set of tools, dubbed NetSloth, using the ruby programming language and

bash scripts, which allow the parameters of the network emulator to be configured

remotely from the Windows machines using a ruby program, which communicates with

the NetSloth server through TCP. The NetSloth tool chain also logs the states of the

network emulator in tests and collects monitoring data, so the results can be verified

later. The main reason of creating the tool chain was to lessen the chance of human

error while testing. It also allows a new tester to use the environment without any need

to learn the syntax of the tc command.

It is expected for a network emulator to have some additional, unwanted impact on the

traffic of the network. Therefore, testing that the ambient impact of the network

emulator is within acceptable limits is important. The impact of the network emulator is

likely to vary depending on the amount of traffic in the emulated network. One expected

issue is the base latency; there is always some latency introduced from receiving,

processing and sending a packet. This cannot be avoided, but should be accounted for

when looking at the results. Another issue is bandwidth: the network emulator might not

be able to process the traffic fast enough or if the traffic from several links is aggregated

to one network interface then congestion might occur.

6

To test the impact and limits of the network emulator, I used three methods. The

purpose of these assurance tests was to find the limits of the network emulator and

ensure that the planned test cases could give reliable results when run using this

network emulator. The actual results of these assurance tests are presented in section 6.5.

The first assurance test was sending ICMP ping messages through the network emulator.

This was done both during a multiuser performance test run and with the windows

virtual machines idle. For added accuracy, two Linux virtual machines were added to

the network and pinging was done between them. The Linux virtual machines were

bridged each to their own Windows guest machines link: one to the first management

server and the other to the first workstation. The results where compared against a

similar setup where the Linux virtual machines were bridged together directly,

bypassing the network emulator.

The second assurance test was done by using a traffic generator, jperf2 to measure at

which rate data could be sent through the network emulator. This was tested with and

without bandwidth limitations. Windows guests were used for this test.

The third method used was running the actual multiuser test case and studying the

impact of the network emulator without any defined impairments, against the

comparison case, in which no network emulator was used.

2 http://sourceforge.net/projects/jperf/

7

3 Impact of network impairments

In this chapter the theory behind the impact of network impairments is presented.

Because all communication in the Tellabs 8000 INM management network is done

using IP and the recommendation is to use only the TCP protocol, the theory is based on

the impact of the impairments on TCP/IP communication.

3.1 Latency

There are two factors that contribute to the latency in network messaging. Firstly the

time it takes for the signal to pass through the physical medium (e.g. light in an optical

fiber or electric signal in a copper twisted pair cable). The second factor is the

processing and queuing done at the endpoints. In Internet Protocol (IP) based

communication, the messages are sent as blocks of data. The entire block will usually

be read before it is processed, which causes an additional latency which is dependent on

the transmission rate and the size of the block of data.

Separate measurement of the latency caused by signal propagation in a physical

medium and the processing latency is not practical in a real network, especially not

when there is traffic in the network. Measuring the one-way latency of the network is

also cumbersome because it would require very exact synchronizing of the clocks on the

endpoints of the networks. Therefor I will use the widely accepted metric of Round-

Trip-Time (RTT), which is also known as Round-Trip-Delay. Most modern Linux and

Windows operating systems come with a program for measuring the RTT, in both

Linux and Windows this program is called ping. Ping works by sending an Internet

Control Message Protocol (ICMP) [5] Echo message from one network endpoint to the

other, upon receiving the ICMP Echo message, the other network endpoint will reply

with an ICMP Reply message. The computer which sent the ICMP Echo message can

then calculate the RTT by measuring the time it takes from when the ICMP Echo

message was sent until the ICMP Reply message was received.

8

For Tellabs 8000 INM, TCP is used for communication between the communication

servers, management servers, workstations and the database. Communication between

the communication server and network elements can be done also using the UDP

protocol, but TCP is recommended. In reliable connection-oriented protocols, such as

TCP, some method of acknowledging that the data has been received has to be used. In

the IETF RFC793 [6], TCP reliability is stated to be based on positive

acknowledgements being sent when a packet is received. Figure 1 shows the

communication using positive acknowledgements and Stop-And-Wait Automatic

Repeat Request [7] methodology to provide reliability.

Sender Receiver

Send packet 1

Received packet 1

Acknowledge packet 1

Received Acknowledge for
packet 1

Send packet 2

Received packet 2

Acknowledge packet 2

Received Acknowledge for
packet 2

Transmission medium

Figure 1 Positive Acknowledgements

As we can see from Figure 1, latency strongly impacts the performance of the

communication when a protocol is only using positive acknowledgements and Stop-

9

And-Wait methodology. The time the sender spends waiting for acknowledgements for

the sent packets depends on the RTT between the sender and receiver. To lessen the

impact of latency on the performance, a flow control mechanism is implemented in TCP;

the next packet can be sent before the acknowledgment of the previous sent packet has

been received. The amount of packets that the sender is allowed to send before

receiving the next acknowledgement message is quantized in the “Window”-field of the

TCP header. The windowing allows for a better throughput at high latencies. Figure 2

shows how the Flow control using a window works.

Sender Receiver

Send packet 1

Received packet 1
Acknowledge packet 1

Received Acknowledge for
packet 1

Send packet 3

Received packet 2
Acknowledge packet 2

Received Acknowledge for
packet 2

Transmission medium

Send packet 2

Received packet 3
Acknowledge packet 3

Received Acknowledge for
packet 2

Figure 2 TCP Flow control

However, there are cases where using a send “Window” will not help the throughput;

the communication might be implemented using a logic which resembles the Stop-and-

wait method where the next message being sent depends on the response to the previous

one. For example a database client might first request a lock to be activated on the

database server, wait for the response on whether the lock was successful, and then

query the contents of that table from the database, and upon receiving the contents it

will send a update command to alter the table, again waiting for acknowledgement and

10

then unlock the database. This kind of communication cannot always be avoided, and

might cause performance issues in a network with high latency. [8]

3.2 Packet loss, duplication, corruption and reordering

Packet loss might occur because of several reasons on a network link, the packet might

be dropped because of congestion, or because of a failed checksum check. The packet

might be lost if the physical signal does not make it through the physical medium.

Packet loss needs to be dealt with in reliable communication protocols, and TCP has

mechanisms for this. Because TCP is recommended for all the communication in the

Tellabs 8000 INM management network, we can make the assumption that packet

corruption and packet loss will all have the same effect on communication in the

Tellabs 8000 INM management network; after a time out interval, the packet will be

resent. For this reason, when modeling impairments on the emulated links in the Tellabs

8000 INM management network, we can use packet loss to emulate the effects of both

packet loss and packet corruption. Additionally, because the TCP protocol is designed

to handle packet duplication and reordering of packets, the effect of these phenomena

should be equal to or smaller than that of packet loss.

Because the TCP protocol deals with packet loss by resending the packet, the only

impact of loss of packets should be the latency caused by first waiting for the timeout to

occur, and then resending the packet. Sudden spikes in latency between packets like this

might however cause performance or even functional issues in the Tellabs 8000 INM

management network components, which is why emulating packet loss might be

beneficial when emulating a realistic network scenario.

3.3 Congestion

Congestion in a network is a situation when packets enter the network at a rate which is

larger than what the rate at which the network can process them. Congestion can also

occur at a single point, e.g. a network interface on an endpoint which cannot process all

11

the packets at the rate which they could be sent or received. [8] Often networking

interfaces utilize buffers, which allow the endpoint to queue the ingoing and outgoing

packets waiting to be processed. The buffers allow the endpoints to tolerate bursts of

networking traffic without the need to drop any packets, but this might add some

latency as packets are waiting in the queue to be processed. [9]

If the bursts are too long, or the desired amount of traffic is constantly higher than the

rate at which the network can process the packets, the congestion control mechanisms

of TCP will take action. The congestion control mechanisms will slow down the rate at

which new packets are sent on an interface, the detection of congestion is based on

measurements of lost packets and changes in the RTT of the packets. Congestion will

cause packet loss, latency and limit the throughput in the network. [10]

3.4 Measurements and observations about the communication in the

management network

To measure the communication in the management network, it was set up in the test

environment so that all traffic passed through the network emulator. No network

impairments where active on the network emulator when measuring the traffic between

the Tellabs 8000 Network management components. The traffic amount in bytes and in

the number of packets between each host was measured using the program ipaudit3

which was installed on the virtual Linux computer which worked as the network

emulator during the tests related to this thesis. The measurements were collected during

a 1 hour multiuser test. In Table 1 I have collected the results from the measurements of

traffic between the hosts in the testing environment used for the tests in this thesis. For

this test I used the standard installations for two of the workstations and the satellite

installations for the remaining two workstations. The first management server is running

without a satellite service and the second one has the satellite service running. I omitted

the measured values for traffic related to the test framework, DNS servers and other

traffic which was not directly relevant to the Tellabs 8000 INM management network.

Based on the measurements we can see that the most trafficked links are the ones

3 http://ipaudit.sourceforge.net/documentation/manpages/ipaudit.html

12

between the management servers and the database server. The standard workstations

also seem to read a considerable amount of data from the database.

Table 1 Measurement of amount of data in Megabytes and packets between the Tellabs 8000 INM
management network components, using standard and satellite workstations

host1 host2

host1
MegaBytes
received

host2
MegaBytes
received

host1
packets
received

host2
packets
received

Database
server

Management
server 2 1431 2565 3335635 3700644

Database
server

Management
server 1 1411 2466 3250384 3607998

Database
server

Standard
workstation 1 41 782 464262 647539

Database
server

Standard
workstation 2 41 782 463104 646679

Management
server 2

Satellite
workstation 1 31 91 147516 198647

Management
server 2

Satellite
workstation 2 29 89 142459 194599

Communication
server

Management
server 1 24 18 155611 135726

Management
server 2

Communication
server 19 26 143869 164886

Database
server

Communication
server 16 86 77594 80488

Node simulator
Communication
Server 10 12 51934 54443

Management
server 1

Standard
workstation 1 8 7 44576 43832

Management
server 1

Standard
workstation 2 8 7 43014 42401

No traffic was measured between the satellite workstations and the database server.

Additionally, the data amounts between the satellite workstations and the satellite

service enabled management server is considerably larger than for the standard

workstations. The Traffic amounts between the database server and satellite service

enabled management server due to the usage of the satellite service does show a slight

increase in comparison with the management server used by the standard workstations.

Based on Table 1 the conclusion can be made that the satellite workstations send and

receive less data through the management network, this suggests that they might be

more useful for use in challenged networks and at remote sites behind impaired network

13

links than the standard workstations. This observation concurs with the

recommendations made by the Tellabs 8000 INM documentation.

14

4 Tellabs 8000 Intelligent Network Manager

In this chapter the Tellabs 8000 Intelligent Network Manager and the components of the

management network are presented. For the tests in this thesis the release SR4.0 of

Tellabs 8000 INM was used, the SR4.0 release is not meant for general availability (GA)

and should be considered less stable than the GA releases. The SR4.0 release was

selected because it was the newest release at the time when testing was started, thus

ensuring that the results from performance tests are relevant to the current versions of

Tellabs 8000 INM.

Figure 3 Typical Tellabs 8000 INM Configuration [11]

The Tellabs 8000 Intelligent Network manager is a system for managing network

elements, network configurations and services. The Tellabs 8000 INM supports a wide

array of the Tellabs product families, Tellabs 8000 provides solutions related to mobile

15

backhaul, optical networking and business services. For the scope of this thesis, the

8600 Managed Edge System is the product family which has the main focus out of the

supported product families. A typical Tellabs 8000 INM configuration is seen in Figure

3. Note that the Route Master will not be used in the management network of these tests

and is not within the scope of this thesis.

4.1 8600 Node Simulator

The 8600 Node Simulator is not an official part of the Tellabs 8000 Intelligent Network

Manager. It was initially implemented by Mikko Kyllönen in conjunction with his

master’s thesis Designing and Implementing a Router Node Simulator [12]. The

simulator is primarily targeted for automated testing and can simulate thousands of

nodes simultaneously. The simulator, unlike a real Tellabs 8600 network element, is

stateless and mimics the behavior of real nodes based on an initialization file. There are

two modes on the simulator, initialization mode and simulation mode. Figure 4 shows a

screenshot of the graphical user interface of the Tellabs 8600 Node Simulator.

16

Figure 4 Screenshot of Tellabs 8600 Node Simulator Graphical user interface

The initialization mode is used to create an initialization file by recording

communication between the communication server and the real node. The simulator

records the query from the communication server and the reply from the node. It also

records the response time. Based on the entries in the initialization file the simulator is

able to simulate nodes in the simulation mode by selecting the best answer from the

initialization file based on different criteria. The answer is given with the added latency

of the response time recorded from the node for that query.

The node simulator is crucial for the multiuser testing being done at Tellabs, having a

hundred real nodes for a laboratory is not feasible. Its consistency is an advantage in

17

performance testing as it always responds at a response time based on the recorded

value from the real node. Because of the stateless design of the simulator, it does not

need to be reset between tests, unlike real nodes which might be left in an incompatible

state if the test is aborted. [12]

4.2 Database server

A database server is used in the Tellabs 8000 Intelligent Network Manager to store all

the information about inventory and configuration of network elements, which are

managed in the Tellabs 8000 Intelligent Network Manager network. It also stores

performance data and fault information from the network elements. The Tellabs 8000

Intelligent Network Manager has support for Oracle and Sybase database servers. It is

possible to use separate database servers for performance data and configuration data,

but because only one database server can be used for configuration data, it is a likely

bottleneck for performance if it is not fast enough.

Because consistency of the database is an important design factor in the Tellabs 8000

Intelligent Network Manager, many of the operations done in the network will lock

rows in the database until the operation is completed. This might have a strong impact

on performance if a slow database client, e.g. a management server behind a high

latency link blocks the other management servers by keeping a part of the database

locked for a long time. [11]

4.3 Communication server

The communication server communicates with the network elements in the

management network, for example the Tellabs 8600 Managed edge family of nodes.

The node management communication for the 8600 family is based on the Broadband

Management Protocol (BMP) on top of TCP or UDP. TCP communication is preferred,

but the 8600 Node simulator only has support for UDP. The Simple Network

18

Management Protocol (SNMP) can be used for communication with other types of

network elements but this is outside the scope of this thesis.

A management network can have several communication servers. One communication

server will handle the communication of a certain subset of nodes, which are assigned to

what is called an Area in the management network. The communication server is

maintaining the real time clocks of some of the network elements, handling the

performance metrics and fault information messages from the network elements, and

forwarding the management configuration messages from the management server to the

network elements. [11]

4.4 Management server

The management server consists of several service processes which, when grouped

together, contain most of the business logic of the Tellabs 8000. Several management

servers can be used in a Tellabs 8000 INM management network. For the scope of this

thesis, the significant service processes are the EMS service, the VPN Provisioning

Service, the Satellite Service and the Macro Manager Service. The management server

communicates with the communication servers, the workstations and the database. The

management server does not directly communicate with the Tellabs network elements.

The EMS service process is used to configure with the Tellabs 8600 mobile backhaul

network elements, the configuration commands are sent through the appropriate

communication server to the network elements. When doing network element

configurations the management server ensures that the configuration data on the Tellabs

8000 INM database and the configuration on the actual network elements are consistent.

This creates a very likely bottle neck if there are challenges in the network; to ensure

consistency of the configurations parts of the database will likely need to be locked

during the configuration of the network element, latency between the network element

and communication server, the communication server and the management server, and

the management server and the database will all impact how long the database locks are

active. While a part of the database is locked, all other management server processes

which need access to that part of the database will stall the operation while waiting for

19

the unlocking of the database. The VPN Provisioning Service process handles network

provisioning tasks, these tasks put load on the database server connection.

The satellite service serves the Tellabs 8000 Satellite Workstations, essentially the

satellite workstation is run without an object server and the functionality is provided by

the management server instead. A management server can serve both standard and

satellite workstations simultaneously if the satellite service is installed. The Macro

Management service serves the macro applications run on the workstation computers,

this service enables usage of the macro test scripts in the multiuser test cases related to

this thesis. [11]

4.5 Standard workstation

The workstation is the control interface which the operator uses to monitor, configure

and provision a production network, and Tellabs network elements. The workstation is a

set of tools which the operator can use for the tasks related to network management.

Typically the operator will use the provided tools through a graphical user interface.

There is also the option to use the Macro Manager package to create new graphical tools

or automated scripts. The tools provided by the Tellabs 8000 INM for the workstation

computers are reliable and user friendly. Because operators will be using these tools as

their main user interface to network management tasks, it is important for the image of

Tellabs Oy that they give a good impression. If the performance of the network manager

is decreased because of network impairments, the operators will see the effects through

the Workstation computer. This is why the measurements of the performance are done

at the workstation. If decreased performance is measured in macro test scripts, it would

also impact the user experience of the operators. The Tellabs 8000 INM workstation

toolbox is shown in Figure 5

20

Figure 5 Tellabs 8000 INM workstation toolbox

A standard workstation contains the object server that allows direct database

communication and keeping track of the changes in the network through change

notifications. The standard workstation, however, will not communicate with the node

elements or do any network provisioning, so network element configuration and

network provisioning is done through the service processes on the management server.

The standard workstation also does not communicate directly with the communication

server. A standard workstation will typically be installed at the site where the operators

21

are working, often several workstations will be located at one site. It is known that some

Tellabs 8000 INM customers have remote sites with several standard workstations

where the network connection to the main site, containing the management servers,

communication servers and database server, is provided by ADSL connections [13].

Tellabs recommends satellite workstations to be used in situations like this because the

high latency to the database server and management servers is expected to impact

performance of not only the workstations at the remote site behind a challenged network

connection, but also the other components of the Tellabs 8000 INM management

network. [11]

4.6 Satellite workstation

A Satellite Workstation has the exact same user interface as the standard workstation,

but it does not contain an object server. Instead it only communicates with the

management server, even all the database operations are done by the management

server. Because a satellite workstation only communicates with the management server,

and does less processing than a standard workstation, it can be installed on computers

with less computing related resources and on computers which are at a remote site

behind a challenged network connection. Because the satellite workstation does not

communicate directly with the database server, it should cause less performance issues

in a challenged network than a standard workstation. [11]

4.7 Macro Package

The Tellabs 8000 intelligent Network Manager comes with a macro package, which

allows the user to create programs with which network and node management tasks can

be automated. Macros can be created and executed through the Macro Manager tool,

which is available both with a graphical user interface and with a command line based

interface. The macro manager is well integrated with the 8000 Intelligent Network

Manager and can be used to automate most of the tasks an operator might want to do in

an 8600 mobile backhaul network. [11]

22

The macro package is very useful in automated testing; test cases can be created as

macro programs and tests can be run without any need for third party graphical testing

software. The Macro Manager tool, which is based on input through the command line

interface, is easy to control through test management software such as TestMonkey to

create multiuser tests such as the ones created by Savolainen [1]. The programming

language used to create macro programs resembles C++ syntax and allows the writing

of complex programs. This also aids testing because additional functionality, such as

recording operation execution times, can be implemented in the macro programs.

4.8 Tellabs 8600 Managed edge system

The Tellabs 8600 Managed edge system is a Tellabs product family designed for use in

mobile backhaul networks. The 8600 family network elements are designed to be used

at the edge of the MPLS networks in order to extend core services to the access network.

The simulated network elements which are configured by the macro test scripts in the

test cases related to the multiuser performance tests in this thesis are recorded using the

Tellabs 8600 Node Simulator and two Tellabs 8630 Access Switch network elements.

The Tellabs 8630 Access Switch can be seen in Figure 6, it is modular with four slots

for line cards and two reserved slots for a control card and a power card. [11]

Figure 6 The Tellabs 8630 Access Switch [11]

23

5 Tellabs INM performance testing

Automated testing and performance testing has been done at Tellabs for several years to

ensure functionality of the Tellabs 8000 INM. In this chapter the existing tools and

resources which are used in the work of this thesis are presented. Some of the existing

tools were supplemented with new features to enable better interoperability with the

new tools created for the testing environment of this thesis.

5.1 Multi-user tests

Tellabs Oy has dedicated testing resources for performance testing to ensure that the

8000 Intelligent Network Manager works well under the aggregated load created by

several operators monitoring and configuring a production network simultaneously. The

multiuser testing environments and test cases, which are currently in use at Tellabs, are

based on the environment created by Ilmo Savolainen in his master’s thesis Benchmark

testing of Network Management System.

Some of the Multiuser test cases rely on both automated graphical tests and automated

macro test scripts. The graphical tests are implemented using QuickTest Professional by

HP. The automated macro test scripts use the Macro Package of the Tellabs 8000

Intelligent Network Manager. In this thesis I will only concentrate on the automated

macro test scripts. The exclusion of the graphical test scripts was based on both the fact

that graphical test scripts would have required more resources than was available, in this

case computer hardware and QuickTest Professional licenses, but also because the focal

point of this thesis is on the performance of the Tellabs 8000 Intelligent Network

Manager in a challenged network. There is minimal difference in communication

between the components of the management network related to the input method of the

commands.

In the multiuser test cases based on automated macro scripts one user is being simulated

by one macro script. There are several test macros suitable for multiuser testing

available at Tellabs, most of which have been designed by Ilmo Savolainen. Each macro

24

script simulates a user creating a configuration in the network and then removing the

configuration. Related to the result gathering an operation in the test scripts is defined

as a task the user would do through the Tellabs 8000 workstation GUI, an operation

could for example be adding a certain type of interface to a network element. Short wait

times are integrated in the macro scripts between operations to simulate human behavior.

Because every macro first does a configuration task and then restores the original state,

the macro scripts can be looped for a larger sample size and longer test runs. The macro

scripts replicate configuration tasks that are an approximation of what operators might

do on a daily basis. There are both network element management and network

management operations present in the macro scripts.

5.2 Test macros

The macro test-scripts are written in the macro language of the Tellabs 8000 Macro

Package. The test scripts are designed so that one macro represents one operator

modifying configurations on the network. Each macro test-script first creates a

configuration and then reverses the configuration. This allows looping of the test scripts

during the test for a bigger sample size and more accurate results. The separate macro

test-scripts are in no purposeful way synchronized during the test, which means that

there might be situations where several macros happen to synchronize during the test

because of locking of certain parts of the database. Situations where macro test-scripts

happen to synchronize according to certain patterns might have an impact on the results,

which should be considered when analyzing the results.

There are five different macro scripts being used in the testing related to this thesis.

Four of the macro test-scripts do both network element configuration and network

provisioning, one macro test-script does only network element configuration. The

macro test-scripts for network provisioning each use two simulated network elements.

These are first configured and the provisioning is then done using the simulated network

elements as endpoints. The macro test-script, which only does network element

configuration, uses only one node. To add more load to the management network in

these tests, each macro script is being run on several simultaneous sessions of the macro

25

manager using different simulated network elements. In the test cases related to this

thesis, each macro test script is running on 8 simultaneous sessions.

Each macro script records the time used for each Tellabs 8000 INM related

configuration operation into a temporary file on the workstations hard drive. These

recorded execution times are the base of the performance results which are crucial for

the performance analysis of the management network.

5.3 TestMonkey

TestMonkey is a software testing tool created at Tellabs for testing the Tellabs 8000

Intelligent Network Manager. It is mainly used to launch Quick Test Pro test cases or

Tellabs 8000 Macro Package based test cases. The TestMonkey tool has a graphical

user interface for setting test parameters and launching test cases. It also handles the

results from the tests. In the multiuser test cases, the start and stop times of each

separate operation done by the macro test-scripts are logged first on the local hard drive

by the test macros, then uploaded by TestMonkey to the result database. The results

data is uploaded in near real time during the test run; this data is later used to analyze

the performance of the test runs. For further automation of the launching of the test

cases related to this thesis, a new feature was added to TestMonkey; the possibility to

launch tests remotely using network communication. A screenshot of the TestMonkey

tool is shown in Figure 7.

26

Figure 7 Screenshot of the TestMonkey software testing tool

For the multiuser test cases, one workstation computer is assigned the role of Director

computer. The TestMonkey instance running on the Director computer will contact the

other workstations and launch the appropriate test scripts remotely. The computers and

test scripts are defined in each test case.

5.4 Virtual machines

Virtual machines have many advantages over physical computers for test environments,

a new computer can quickly be set up and the actual processing resources can be

allocated according to the requirements of the testing setup. For the virtualization of

computers in the multiuser tests related to this thesis, VMware solutions were used. The

Tellabs 8000 INM can be installed without any custom settings on this kind of virtual

machines.

The Tellabs 8000 INM also has session support for usage with Citrix solutions. The

Citrix solutions are being used for some Tellabs 8000 INM multiuser testing

environments to provide desktop virtualization for running several Tellabs 8000 server

or workstation instances on one physical computer.

27

5.5 Result database

A lot of metrics and data are gathered when running a test case. During one hour

multiuser test in the environment used for the testing related to this thesis, without any

network impairments active, approximately 10 megabytes of data is recorded to the

results database. The database server is running on a Linux server in the Tellabs Oy

LAN. In addition to the database, the server has a result analysis tool which can be

accessed through a web-interface. The results analysis tool can calculate different

comparable metric values based on the execution times of operations in test cases. The

results analysis tool can access the execution times directly from the database and eases

the evaluation of performance of the tested network manager configurations. For the

results presented in this thesis the results analysis tool will mainly be used for providing

the processed results metrics. For some of the results being presented there is however a

need to use either the raw execution times recorded in the database, or using the values

given by the results analysis tool as preprocessed data for further calculations.

5.6 Joinker

The Joinkee server and Joinker client, shown in Figure 8, are tools created at the Tellabs

integration testing team to automate configuration of testing environments. The Joinkee

server runs on the computers of the testing environment as a background process,

waiting for configuration commands which are sent by the Joinker client. The

commands are sent as Microsoft Windows batch files4 which are compressed using the

DEFLATE compressed Data Format [14]. The Joink packages are encoded using the

Base64 data encoding method [15] for sending over a TCP socket from the Joinker

client to the Joinkee server. The compressed package which is sent by the Joinker client

can contain other files in addition to the executable Microsoft Windows batch files, this

allows execution of complex tasks as the package can contain additional executable

files which then can be started from the included batch file. The purpose of the Joinker

4 http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/batch.mspx

28

programs is to minimize the amount of manual labor required to prepare the testing

environment for a test case and also lessen the risk of human error.

Figure 8 The Joinker client program

29

6 Design of a test set to measure INM management in an

impaired network

This chapter describes the design process of the testing environment and the test plan

for the Tellabs 8000 INM performance tests in a challenged network. Also the final test

environment and test plan are presented in this chapter. In software testing the planning

of a balanced and sufficiently comprehensive test set is important; if the test is not

planned well then the results might be unreliable or the test cases may produce results

which cannot be compared as was intended.

6.1 Architecture of the test environment

The test environment used for these performance tests is based on the test environment

created by Ilmo Savolainen for his master’s thesis. The environment consists of a

network of virtual machines running on a VMware ESX server5. The virtual machines

in the network are running the Microsoft Windows 2003 R2 operating system for the

Tellabs 8000 INM servers and Microsoft Windows XP SP3 for the Tellabs 8000 INM

workstations. In addition there is the 8600 node simulator running on Microsoft

Windows XP. The resources for the virtual machines have been distributed as shown in

Table 2. Some of the computers have a variable amount of processing resources, the

lower limit is the required amount of CPU resources; the virtual machine is guaranteed

to receive this amount of CPU time. The upper limit is the maximum amount the virtual

machine is allowed to use. According to the monitoring in the VMware vSphere client,

the resources are adequate.

5 http://www.vmware.com/support/vsphere4/doc/vsp_esx41_vc41_rel_notes.html

30

Table 2 Resource allocation for the virtual machines

Computer CPU Memory

Node simulator 1 x 1.25 GHz 2048 MB

Communication server 2 x 2.5 GHz 3072 MB

Management server 1 2 x 1.25-2.5 GHz 3072 MB

Management server 2 2 x 1.25-2.5 GHz 3072 MB

Workstation 1 1 x 1.25-2.5 GHz 2048 MB

Workstation 2 1 x 1.25-2.5 GHz 2048 MB

Workstation 3 1 x 1.25-2.5 GHz 2048 MB

Workstation 4 1 x 1.25-2.5 GHz 2048 MB

Network emulator 1 x 100-unlimited GHz 8192 MB

These virtual machines were connected to a virtual switch on the VMware ESX, which

allowed routing inside the Tellabs intranet and provided connection to the database

servers. To allow the usage of a virtual network emulator, a Linux virtual machine,

running the Debian Wheezy (testing) Linux distribution was installed on the ESX. The

virtual machines, on which the Tellabs 8000 components and the 8600 Node simulator

are run, were then connected to the network interfaces of the Linux virtual machine.

This allows the Linux machine to handle all the routing between the Tellabs 8000

management components and also the connections to the database server as presented in

Figure 9.

31

Vmware ESX

Virtual switch

Tellabs Espoo, LAN

WS1

WS2

WS3

WS4

MGMT1

MGMT2

DBserver

COMMsrv

Linux, Network emulator

8630
Sim

Figure 9 Graphical representation of the network in the virtual environment

There are two noteworthy details in the network. Firstly, the third and fourth Tellabs

8000 INM workstations share one interface on the network emulator. This was done

because the VMware vSphere client, which is used to configure the virtual machines,

only allowed a certain amount of active interfaces. Tellabs 8000 INM Workstations will

communicate with each other during the startup of the Intelligent Network Manager, but

not after that, so tests should be unaffected. The second noteworthy detail is that the

Tellabs 8000 INM communication server has two Ethernet interfaces connected to the

network emulator. This is because the communication server is configured to use a

dedicated Ethernet interface for communication with the 8600 node simulator. The

other interface is used for communication with the management servers and the

database server.

32

6.2 The simulated network

The Tellabs 8000 management network is used for provisioning and network element

configuration of the actual networks which may consist of thousands of Tellabs network

elements from different product families. The size of the network has an impact on the

performance of certain operations in the management network, especially for some of

the database operations. That is why the simulated network in the multiuser tests has

more network elements than the Tellabs 8600 Network Simulator is set up to simulate.

The database which is used in the multiuser tests has a total of 62085 network elements,

out of which 21039 are from the Tellabs 8600 Managed Edge System product family.

The database is based on a customer network, to which more network elements have

been added. From a performance testing aspect having the network elements in the

database equals to having them in an actual network, as long as no configurations are

being done to them and the performance monitoring service is disabled.

6.3 Other possible implementations

This environment could have been implemented using physical computers; one for each

Tellabs 8000 INM network management endpoint and one for the network emulator.

Using physical computers however would have been cumbersome because of higher

probability of failing hardware, requirement of space in the equipment room, time

required to set up the environment and justifying the binding of processing resources to

one single-purpose testing environment. The resources for the virtual environment

already existed, were proven reliable and can be allocated in a way that allows the

resources to be used for other testing environments also. If the infrastructure for the

virtual machines had not been available, using physical computers might have been a

viable option.

One option would have been a networking setup where all traffic would be routed

outside the ESX server to a hardware network emulator. This would have been

accomplished using VLAN connections. I however chose to not use this method for

several reasons. Firstly, I did not want to add the risk of fluctuating network

33

performance caused by sharing networking resources with the rest of the office.

Secondly, all the networking equipment would have been under IT-administration,

testing methods such as packet sniffing and Ethernet interfaces in promiscuous mode

might have been disallowed. This would have allowed using a commercial network

emulator, but it would have been borrowed from another department, which would have

caused scheduling problems.

Even when I had made the decision to use a network emulator running on a virtual

machine on the VMware ESX, I could have used other tools than the Linux Networking

Subsystem. In chapter 2.2 I described different solutions for implementing a software

network emulator. The requirements on the network emulator in this environment where

so specific that modifications to the other network emulation solutions would had been

required in order to implement all the needed features.

34

6.4 The network emulator

The network emulator is based on a virtual machine running the Debian distribution of

Linux. The tools required to create a network emulator on Linux are available in most

recent Linux distributions. Debian was selected mainly because of my familiarity with

the distribution from before. There was some additional work caused by the fact that the

network emulator is running on a virtual machine. Network bridges are implemented in

the Linux kernel and would have allowed a simpler alternative to routing the network

packets. However my initial tests showed problems on the ESX server when enabling

network bridges on the Linux virtual machine. To ensure the safety of the intranet, the

IT administration requested that no bridges should be used on the virtual Linux

computer running on the ESX server.

Because network bridges could not be used, the network emulator needed to be created

using routing instead. The problem that arose was that the virtual machines relied on

DHCP for address resolution. Local static addressing could not be used because of the

need to contact the database server and the results database. Because the DHCP

protocol relies on the Media Access Control (MAC) address when requesting an address,

additional tools were required for forwarding the DHCP communication to the DHCP

server in the Tellabs intranet. The tools used were bcrelay and parprouted. Because

bcrelay and parprouted create network messages and use CPU resources they are only

used during the startup of the Windows virtual machines. Both are always disabled

when actual tests are running. The bcrelay and parprouted programs are available in the

Debian packet repositories. When the Windows virtual machines have received IP-

addresses, the routing can be done by the Linux kernel6.

The test cases were planned to contain topologies in which several computers might be

sharing the same network link. This created a need for aggregating certain traffic from

several Ethernet interfaces on the virtual Linux machine. To do this, an Intermediate

Functional Block device (IFB-device) was created. Using tc, the program for controlling

the traffic control subsystem of Linux, all ingress traffic from all network interfaces on

the Linux virtual machine is first redirected to the IFB-device. Then there are two

6 http://www.kernel.org/doc/man-pages/online/pages/man7/ip.7.html

35

classes of traffic added to the IFB device, representing the uplink and downlink of the

impaired network link. Filter rules are created based on matching the source and the

destination IP-addresses. Traffic destined between the two sites is assigned to the

classes representing the impaired network link. Traffic with both endpoints within one

site uses the unimpaired root class of the IFB device. Figure 10 shows a visualization of

the configuration of the Linux traffic control subsystem which is used for the network

emulator.

In

ETH1

Out In

ETH2

Out In

ETH3

Out In

ETH4

Out

In

ETH5

Out In

ETH6

Out In

ETH7

Out In

ETH8

Out

IFB (Intermediate Functional Block Device)

HTB Class 1:2

Link from right to left site
according to impairment

profile.
Shapes traffic to

configured maximum rate

Filtering of traffic to HTB Class 1:1, 1:2 or root.
Based on source/destination IP addresses.

HTB Class 1:1

Link from left to right site
according to impairment

profile.
Shapes traffic to

configured maximum rate

NetEm qdisc, handle 11

Adds latency and packet
loss according to
configured values

NetEm qdisc, handle 21

Adds latency and packet
loss according to
configured values

HTB root Class

Link for traffic within a site

Does not add any
impairments to the traffic

Mirroring of ingress
traffic to IFB device

Routing by the
Linux kernel

Figure 10: Visualization of the Linux traffic control subsystem for the network emulator

36

6.5 Measurements of the network emulator

To ensure the proper functionality and reliability of the network emulator a set of tests

was planned. More important than the exact emulation of the network parameters is that

the network emulator performs in a reliable way and provides constant results. While a

comparison against a commercial network emulator would have been interesting, a

comparable product could not be acquired for a time long enough to set up the

environment properly for such a comparison to be made.

6.5.1 Base latency of network emulator

As was described in section 2.2, a set of tests were conducted to study the performance

of the network emulator which was based on the Linux Traffic Control Subsystem. The

first test was studying the impact on latency of having all the traffic of the management

network routed through the network emulator computer. The setup of this test was

described in section 2.2. Table 3 presents the results using 64 byte ICMP packets. The

test was done by sending 500 ICMP packets each 64 bytes of size and measuring the

RTT. The compared connections where: A bridge created by the VMware “Network

label”-method, Routing through the Linux network emulator as described in chapter 2.2

and a real LAN with routing through 3 hops. The results of this test gives confidence in

the reliability of the network emulator, the performance is close to a normal LAN

connection.

37

Table 3 Measured base latencies. Compared between a VMware bridge, the network emulator and a real LAN.
64byte ICMP packets

Configuration min avg max mdev

VMware Bridge, test not running 0,10 ms 0,20 ms 0,64 ms 0,03 ms

Network Emulator, Challenged
configuration. Test not running 0,26 ms 0,52 ms 3,31 ms 0,41 ms

Real LAN, 3 hops 0,20 ms 0,40 ms 7,28 ms 0,37 ms

VMware Bridge, test running 0,18 ms 0,31 ms 2,74 ms 0,29 ms

Network emulator, challenged
configuration, TEST-running 0,27 ms 0,51 ms 8,59 ms 0,54 ms

In addition to the 64 byte ICMP packet test, I rerun the measurements for each of the

measurements using 25000 byte ICMP packets, the size of these packets is considerably

larger than the 1500 byte Maximum Transmission Unit (MTU) of the network. The

large packet size causes packet fragmentation which might impact the performance. In

Table 4 are results for the 25000 byte ICMP ping measurements. With the larger packet

size, the latency of the traffic through the network emulator seems to scale in a similar

way as in the real LAN and in the VMware bridges. Because the results of the test cases

related to this thesis are compared only with each other, the network emulator does not

need to perfectly mimic the behavior of the VMware bridges.

Table 4 Measured base latencies. Compared between a VMware bridge, the network emulator and a real LAN.
25000byte ICMP packets

Configuration min avg max mdev

Vmware Bridge, test not running 0,37 ms 0,47 ms 1,12 ms 0,04 ms

Network Emulator, Challenged
configuration. Test not running 0,64 ms 0,81 ms 1,81 ms 0,09 ms

Real LAN, 3 hops 1,06 ms 1,51 ms 6,58 ms 0,52 ms

Vmware Bridge, test running 0,40 ms 0,77 ms 42,31 ms 1,92 ms

Network emulator, challenged
configuration, TEST-running 0,68 ms 1,36 ms 67,68 ms 3,25 ms

38

6.5.2 Bandwidth limitation with the network emulator

For emulating an impaired link with a certain amount of available bandwidth two details

are important; the emulator should be able to provide a constant maximum throughput

and the emulator should be able to provide the throughput defined in the most high

bandwidth impairment profile. Figure 11 shows the line graph of the measured

throughput when using a “2/1 Mbit DSL” impairment profile on the network emulator.

For this test the probability of packet loss was set to zero on the network emulator. For

this measurement the Jperf [16] program was used to measure the throughput between a

workstation and the communication server in the management network. A 600 second

long test was run, using a 5 second reporting interval, the “trade” option was used to

enable measurements of both the uplink and downlink bandwidths. Based on the

measurements both the uplink and downlink throughput seem stable.

Figure 11: Measurement of bandwidth limitation using the network emulator to emulate a 2/1 Mbit DSL
impairment profile

In Figure 12 the measured uplink and downlink throughputs are plotted based on a JPerf

test with the network emulator configured to emulate a 100/100 Mbit LAN connection.

The same settings were used for JPerf as in the “2/1 Mbit DSL” measurements. The

measurements of the “100/100 Mbit LAN” impairment profile show a bit more

variation than the measurements of the “2/1 Mbit DSL” impairment profile. However,

0

500

1000

1500

2000

2500

0 100 200 300 400 500

M
e

as
u

re
d

 t
h

ro
u

gh
p

u
t

[k
b

it
/s

]

Time [s]

Uplink

Downlink

39

the results confirm that the 100/100 Mbit LAN impairment profile can be emulated

without the link getting congested before the throughput has reached the configured

bandwidth limitation of the impairment profile.

Figure 12 Measurement of bandwidth limitation using the network emulator to emulate a 100/100 Mbit LAN
connection

6.5.3 Multiuser test results with network emulator

This test was done to gather information on the impact the network emulator has on the

results of the multiuser performance tests. All the test cases in this thesis are run with

the network emulator active in the test environment, so there is no need to compare the

results of test cases run with the network emulator with results from test runs without

the network emulator in the final results. This comparison between multiuser test results

from the test environment with and without the network emulator will however give

information that may prove valuable if there is need to use the network emulator in

other environments.

0

20

40

60

80

100

120

0 100 200 300 400 500

M
e

as
u

re
d

 t
h

ro
u

gh
p

u
t

[M
b

it
/s

]

Time [s]

Uplink

Downlink

40

Table 5 Multiuser test results with and without the network emulator

Metric
Without the network
emulator

With the network
emulator

Impact of network
emulator, in percent

SoM 146 164 12 %

SoA 188 213 14 %

Operation count 21018 20321 3 %

Table 5 shows the results of the multiuser test case run with and without the network

emulator. The meaning of the Sum Of Medians of each unique operation (SoM), Sum Of

Averages of each unique operation (SoA) and operation count metrics are explained

later in chapter 7.1. These results prove that the network emulator has an impact on the

results and therefore the results are not directly comparable between the test cases

performed with and without the network emulator. The reasons for the difference in the

results might be due to having an additional computer running on the VMware ESX, i.e.

the Linux computer for the network emulator. Or it might the slightly elevated base

latency as described in chapter 6.5.1.

6.6 Automation of test cases

The Multiuser performance tests created by Ilmo Savolainen are already for the most

part automated. Joinker can be used to set up the environment between test runs. The

macro test scripts run independently for the set amount of time, and TestMonkey can be

used to launch all of the macro test scripts that belong to a test case. Results are

automatically collected to the results database from which they can be analyzed using a

web-interface.

For the test cases related to this thesis, the network emulator was added to the virtual

environment. At first the network emulator required manual setup for each test run. In

addition the large amount of test cases planned for the test set of this thesis would have

caused the testing to use up several weeks of time for just running the test cases. To

avoid the downtime and lessen the risk of human error when starting test runs, two

additional tools were created.

41

6.6.1 NetSloth

NetSloth is a program I wrote to ease the configuration of the network emulator in the

testing environment of this thesis. NetSloth is written in ruby and is built on a client-

server type of management interface. The NetSloth server runs on the network emulator

and sets up the network emulation configurations defined in messages sent over the

network using the TCP protocol. The actual configurations are then done by Linux shell

scripts, which control the Linux Network Subsystem. The NetSloth client is a simple

ruby program with a command line interface, which allows the user to select the

network emulation configuration from given presets. The commands are sent to the

NetSloth server over a TCP/IP connection.

The NetSloth server and client can also be used to start monitoring on the network

emulator. For the test cases related to this thesis, a program called ipaudit was used to

monitor the amount of data and packets that are sent between the computers in the

network. The addition of further monitoring tools is a trivial task, but all monitoring

adds some load on the resources of the network emulator. I chose not to implement any

additional monitoring to ensure that the performance of the network emulator would not

fluctuate because of the possible additional load on processing resources.

The basic functionality of the NetSloth server is illustrated in Figure 13. In the initial

state the NetSloth server is listening for signals, the signals are received through a TCP

socket and may originate from the NetSloth client or the AutoQueue program. There are

three different types of messages supported, all of which cause a specific task to be

executed on the NetSloth server. The server is using a single thread, so while the server

is configuring the network emulator based on a received message, no other messages

can be accepted. The messages are sent as ASCII messages over the TCP connection

and may contain parameters separated by the character “-“ which is used as a sentinel

value in the messaging.

42

Wait for
signal

Remove all
configurations

and
interfaces

Create
networking
interfaces

Start routing
Start

parprouted
and bcrelay

Signal
received

Goto Startup Mode

Stop
parprouted
and bcrelay

Mirror ingress
traffic from
Ethernet

devices to ifb

Create impaired
”network links” as
subclasses of ifb

device

Add filters to the
network traffic on ifb
device. Route traffic

between sites through
the subclasses of ifb

which emulate impaired
network links

Create ifb
device

Signal from
AutoQueue

Signal from
NetSloth client

Goto Impaired Mode

Start the
monitoring

tools

Start Monitoring

Figure 13 Flowchart of the NetSloth server

The most simple of the three tasks is the one executed after receiving a “Start

Monitoring” message, the message must contain a string value as a parameter which

specifies the test run id. Upon receiving the “Start Monitoring” message, the NetSloth

server will start the ipaudit process and ensure that the output of that process is recorded

in a file which is named based on the test run id. The ipaudit process will run for one

hour and then exit, the NetSloth server will return to the state where it is waiting for a

new signal immediately after starting the ipaudit process.

The “Goto Startup Mode” message indicates to the NetSloth server that the network

emulator should be configured to the mode which allows DHCP messaging to work in

the test network. Upon receiving this message the NetSloth server will first remove all

network interface device configurations from the operating system, then recreate the

network interface device configurations and set up the routing of IP packets between the

network interface devices. After that the parprouted and bcrelay processes are started to

allow functionality of the DHCP protocol in the network. When the network is in the

mode which allows the Windows computers in the testing environment to receive the

network settings through DHCP, the NetSloth server will return to the listening state

and wait for a new message. No parameters are allowed in the “Goto Startup Mode”

message.

43

The “Goto Impaired Mode” will cause the NetSloth server to do the tasks related to

setting up the configuration of the network emulator which is used during the test run.

The message must contain the topology id and the network impairment id as separate

string values. Upon receiving the “Goto Impaired Mode” message the NetSloth server

will close the parprouted and bcrelay processes if they are running, then create the IFB

device and mirror all the ingress traffic from each network interface device to the IFB

device. The NetSloth server will then create the emulated impaired network links based

on the impairment profile which was given as a parameter in the “Goto Impaired Mode”

message. The NetSloth server then creates network traffic filters based on the topology

given as a parameter of the “Goto Impaired Mode” message. Then, based on the filters,

the traffic will be routed through the emulated uplink traffic class, the emulated

downlink traffic class or just pass through the unimpaired root IFB traffic class.

6.6.2 AutoQueue

AutoQueue is another program I wrote for this testing environment. Its purpose is to

automate all the remaining parts of the testing, i.e. setting up the testing environment,

launching the test cases based on a list of planned tests and parameters, and labeling the

test runs in the results database to ease the analysis of results. AutoQueue is written in

ruby and uses a client-server type of management interface. A planning requirement of

this tool was that it should communicate with the existing tools, instead of replacing

them. AutoQueue communicates with Joinker, TestMonkey and NetSloth to automate

the running of test cases.

Support for Joinker-messaging was done by analyzing the source code of the Joinker

client and mimicking the communication behavior described earlier between Joinker

and Joinkee. AutoQueue uses Joinker-messaging to: restart the Windows computers of

the test environment, restart the Sybase database server, load the database from a

database dump and start Tellabs 8000 INM servers and workstations.

The communication between AutoQueue and TestMonkey for starting test runs required

some minor changes to TestMonkey, these changes where implemented by the

developer of TestMonkey, Sami Pyrrö. The network messaging used for starting tests

was planned in a generic way, which allows the AutoQueue-tool to be used in other

44

environments and test cases also. The network messaging for informing AutoQueue

about test completion was done by executing a very simple AutoQueue client from the

test script. The AutoQueue client only sends a message to the AutoQueue server, which

indicates that the test is completed.

The network communication between NetSloth and the network emulator for

configuring the network emulator was implemented by integrating the code from the

NetSloth client to the AutoQueue server. Because both NetSloth and AutoQueue are

running on the same server, there was the option to combine them to one program, or to

use another inter-process-communication method instead of TCP-sockets. I, however,

chose to keep them separate to allow both tools to be used independently. This was

done because there was some interest of using AutoQueue without NetSloth in another

testing environment.

Figure 14 shows the communication between the test automation components in the test

environment. The green lines denote Joinker messaging. When using AutoQueue all of

the essential Joinker-messaging is initiated automatically by the AutoQueue program,

but the manual Joinker client may still be used. Joinker messaging is used to restart the

Windows computers and the database service on the database server, load the database

from a dump file and to start the Tellabs 8000 INM components. The blue lines denote

TestMonkey messaging. AutoQueue will first contact TestMonkey on the Director

computer, the TestMonkey instance on the Director computer will then launch the test

case and assign test scripts to the other workstations. The yellow lines denote the results

gathering of the test, each TestMonkey instance will upload the recorded operation

execution times to the results database. The red line denotes the messaging between

AutoQueue and NetSloth, this messaging is related to the configuration of the network

emulator.

45

MySQL

Linux network emulator

Vmware ESX

Tellabs 8000 INM workstation 4

Joinkee

Tellabs 8000 INM servers

Joinkee Joinkee Joinkee

Tellabs 8000 INM workstations 1-3

Joinkee

Joinkee

Joinkee

Testmonkey

Testmonkey

Testmonkey

NetSloth

Sets up the requested
configurations on the network

emulator.

Database server

Joinkee

Autoqueue

Executes tests and ensures
that all components of the
test environment are at the

proper state and
configuration.

Results database

Director
Testmonkey

Figure 14 Overview of the communication of the test automation components

46

6.7 Planning of the test cases

As a base for the test cases are the Multi user test created by Ilmo Savolainen in his

master thesis “Benchmark testing of Network Management System”. 40 users will be

simulated by executing 10 macro test scripts on each of the four Tellabs 8000 INM

workstation computers. The reason for selecting 40 users instead of 50, which has

become a standard amount in many of the multiuser test environments at Tellabs, is that

there are 5 unique macro test scripts and 4 Tellabs 8000 INM workstation computers in

this network. Because the results will also be analyzed by comparing the performance

of the separate workstation computers, they should all be executing the same test scripts.

More than 50 simultaneous test script macros have not been tested in this testing

environment and I did not want to expand the user amount in addition to the network

impairments which were introduced for this testing. 40 simultaneous test macro scripts

equals to two simultaneous instances of each unique macro script on each workstation.

Each test case is a unique combination of a simulated network topology in which the

network is split in two separate sites and a network link impairment profile. There are

seven planned test topologies and four planned network impairment profiles. Because

each test case is run twice to ensure consistency of the results, this adds up to 56 test

runs. While it is likely that some of the planned test cases will have such bad

performance that no reliable numeric performance results can be collected, they might

still provide valuable information about the behavior of the Tellabs 8000 INM in

challenged networks.

6.7.1 Topologies

There are seven network topologies planned for the test tests in this environment. The

topologies are selected based on expectations on how customers might build the

management network, all of the topologies however are not recommended

configurations.

The first topology, named “1-standard”, shown in Figure 15, is a reference case where

all Tellabs 8000 INM management network components are at the same site, all

47

connected together by a Gigabit Ethernet network. This test case will be used as a

reference of the performance in the best case scenario. Because all Tellabs 8000 INM

management network components are at the same emulated network site in this

topology, no network impairment profiles will be applied. This kind of topology is

expected to give the best performance but will often be impractical or even impossible

to implement in production networks. All test topologies except for “1-standard” will

have two network sites, with the emulated impaired network link connecting the

separate sites. The white cloud in the graphical depictions of the topologies is the main

network site, while the yellow cloud is the remote site.

WS1 WS2

WS3

WS4

MGMT1

MGMT2DBserver

COMMsrv

8630
Sim

Figure 15 Topology “1-standard”, standard case with no impaired links

The second topology, named “2-mgmt-ws”, shown in Figure 16, has one management

server and two standard workstation computers at the remote site. This case is based on

a likely customer case, it is not recommended by Tellabs. The network traffic between

the workstations and the database server, the management server and the database

48

server and between the management server and communication server are all

aggregated to the network link which is impaired by the network emulator. Based on the

traffic measurements in chapter 3.4, I expect that this topology will not perform well

when impairments are introduced to the challenged link. Based on the measurements,

the link under the most strain is the one between the management server and the

database server. Also the standard workstation and the database server exchange a lot of

traffic. I expect the aggregated traffic of the management server and the two standard

workstations to cause congestion.

Netem

WS1 WS2

WS3

WS4

MGMT1

MGMT2

DBserver

COMMsrv

8630
Sim

Figure 16 Topology “2-mgmt-ws”, one management server and two standard workstations at remote site
behind a challenged link

The third topology, named “3-ws”, shown in Figure 17, has two standard workstations

at the remote site. This case is based on a known customer network and is still in use

even when Tellabs documentation recommends using the satellite workstations in

situations like this. This test topology was specifically requested by Tellabs related to

the performance testing of satellite workstation computers versus standard workstation

computers. Based on the traffic measurements the workstations receive a considerable

amount of data from the database during the test, possibly causing congestion. Latency

49

is also likely to cause problems and possibly long lasting locks in the database, which

might cause performance issues for the entire management network.

Netem

WS1 WS2

WS3

WS4

MGMT1

MGMT2

DBserver

COMMsrv

8630
Sim

Figure 17 Topology “3-ws”, two standard workstations at remote site behind a challenged link

The fourth topology, named “4-satws”, shown in Figure 18, is identical to the “3-ws”

topology, with the exception that the workstations computers on the remote site are

installed as satellite workstations, instead of standard workstations. It is noteworthy that

the satellite workstations have no direct database connection. This test topology was

also specifically asked for by Tellabs. This is currently the recommended management

network configuration for production networks where workstations are installed at a

remote site. Based on the traffic measurements, the satellite workstations seem less

likely to cause congestion in the challenged network link than the standard workstations.

There is no direct communication with the database from the satellite workstations

which might lessen the risk of long lasting database locks, but this depends on the

implementation of the database communication through the satellite service enabled

management server.

50

Netem

WS1 WS2

MGMT1

MGMT2DBserver

COMMsrv

Sat WS3

Sat WS4

8630
Sim

Figure 18 Topology 4-satws, two satellite workstations at remote site behind a challenged link

The fifth topology, named “5-com-node-mgmt-ws”, shown in Figure 19, is based on a

possible customer case. In this topology, in addition to the management server and two

standard workstations, the communication server and the network simulator are at the

remote site. In a large management network, complex topologies like this might occur.

Comparing the performance of the workstations on different sites in this topology might

give valuable information on how well the management network performs in a situation

where a remote site is used for both the network elements and the workstation

computers with a management server. Based on the traffic measurements I would

expect this to be the worst performing test topology. The management server and

standard workstations on the right side of the network are likely to cause congestion in

the challenged network link. This congestion might then interfere also with the

communication between the management server on left side and the communication

server on the right side of the network.

51

Netem

WS1 WS2

WS3

WS4

MGMT1

MGMT2

DBserver COMMsrv

8630
Sim

Figure 19 Topology 5-com-node-mgmt-ws; the communications server, one management server and two
standard workstations at remote site behind a challenged link

The sixth topology, named “6-com-node”, shown in Figure 20, has the communication

server and the node simulator at the remote site. This is a realistic scenario, the network

elements in the production network of a large operator will most likely be spread over a

large geographical area. In this topology a situation where the communication server is

moved closer to a set of network elements is being emulated. The communication server

does not transmit much traffic from or to the database server after startup. I hope this

test topology will clarify how well the communication between the communication

server and the management servers can tolerate impairments on the network link. Based

on the measurements, the aggregated traffic in the impaired network link should be

modest. Congestion seems unlikely when using the impairment profiles which emulate

the higher bandwidth network links. What remains to be seen is how latency impacts the

performance of the management network in this topology, the additional latency

between the management servers and the communication server might cause longer

database locks.

52

Netem

WS1

WS2

WS3

WS4

MGMT1

MGMT2

DBserver
COMMsrv

8630
Sim

Figure 20 Topology 6-com-node, the communications server and node elements at remote site behind a
challenged link

The seventh and final test topology, named “7-node”, shown in Figure 21, has only the

node simulator at the remote site. This topology is also a realistic scenario, and works as

a comparison versus the “6-com-node” topology. Comparing the topologies “6-com-

node” and “7-node” should give some insight on which has more impact on the

performance; an impaired network link between the communication server and

management servers, or an impaired network link between the communication server

and the network elements. This is the only test case where impairments are active

between the communication server and node simulator. Based on the measurements,

congestion in the impaired network link is unlikely, but latency might cause longer

database locks. There are customers with very high latencies on the network link

between network elements and the communication server, this test topology might shed

some light on the impact on performance of such a configuration.

53

Netem

WS1 WS2

WS3
WS4

MGMT1

MGMT2DBserver

COMMsrv 8630
Sim

Figure 21 Topology “7-node”, The node elements at remote site behind a challenged link

6.7.2 Network impairment profiles

The impairment profiles used in the test cases related to this thesis are designed based

on connections which might be in use in the production management networks of

customers of the Tellabs 8000 INM network management system. The reason for using

specific network impairment profiles instead of varying each of the used impairment

parameters separately is to lessen the amount of unlikely network configurations in the

tests. Using network impairment profiles as opposed to varying the parameters

separately also allows keeping the amount of test cases at a reasonable amount. The

network impairment profiles used in this thesis are listed in Table 6.

54

Table 6 Network impairment profiles

Impairment profile
name

Downlink
rate

Uplink
rate

RTT
latency

Packet loss probability, per
link

ISDN 128/128 kbit 128 kbit/s 128 kbit/s 80ms 0.01%

DSL 2/1 Mbit 2048 kbit/s 1024 kbit/s 20ms 0.01%

DSL 10/2 Mbit 10 Mbit/s 2 Mbit/s 10ms 0.001%

LAN 10/10 Mbit 10 Mbit/s 10 Mbit/s 0ms 0.0%

LAN 100/100 Mbit 100 Mbit/s 100 Mbit/s 0ms 0.0%

The most challenged of the impairment profiles is the “ISDN 128/128 kbit” impairment

profile. While a connection like this is unlikely in a customer’s management network,

the performance of the impairment profile might resemble the performance of a setup

where the connection is being shared with other traffic. According to Tellabs internal

documentation [13], there are customer networks which have Tellabs 8000 INM

management network components connected using DSL connections. The same goes

for LAN connections. The reason for omitting the very likely gigabit Ethernet

connection from the list of planned impairment profiles is because a gigabit Ethernet

connection is the fastest connection type this testing environment can achieve. Testing

with a gigabit Ethernet impairment profile would equate to testing without any

challenged network links, this is done in the test topology “1-standard”.

6.8 Final test setup

The final test setup is built using the components described in chapters 5 and 6. The

base is the VMware virtual environment where the virtual machines have been created.

One of the virtual machines is the Linux computer which is running the NetSloth and

AutoQueue programs. The test cases are configured for AutoQueue using Comma

Separated Value (CSV) formatted files and executed automatically. The test topologies

and network impairment profiles for each test case are defined in the CSV-file.

To avoid systematic errors, logging is implemented in the NetSloth program. From the

logs the state of the network emulator during a test run can be verified. The Linux

system logging daemon is also enabled on the network emulator, the system log can be

used to ensure that the Linux Traffic Control Subsystem does not raise any errors during

55

the tests. In addition to the logs, there is active monitoring which helps ensuring that the

test results are valid, for every test run a batch script is run on the director monkey

workstation. The script monitors the latency to each of the Tellabs 8000 management

network component computers, the results are logged and may be used to verify the

configuration by comparing the logged latency values against the base latency of the

used impairment profile.

To verify the reliability of the measurements, the accuracy of the testing setup will be

estimated for the first test topology based on the results of running the same test case 11

times. For verification of the results each test case is run twice. If the results of the two

test runs differ more than the estimated accuracy then the test should be rerun. The

overall reliability of the multiuser tests are outside the scope of this thesis, these

additional verifications are used to avoid any unexpected errors of measurement.

56

7 Result from tests

In this chapter the results from the multiuser performance tests are presented. These

results were of great interest to Tellabs Oy as they answered many of the open questions

related to the topologies in use at customer management networks. The results also

confirmed that the recommended network topologies provide the best performance and

reliability of the management network. The Tellabs 8000 INM is versatile and can be

configured and used in many different ways, these tests use only a certain subset of the

available features. This should be taken into consideration when making any

conclusions based on the results.

7.1 Result analysis information

All the test cases were not usable configurations, some of the test cases even caused

some component to disconnect or fail because of bad performance. Because of the way

the tests were planned, there were two Tellabs 8000 management server computers and

four Tellabs 8000 workstation computers, one failure does not always mean that all test

scripts stop execution. A case where a part of the test scripts stop, but the others

continue execution will impact the different result metrics in different ways. If for

example one management server shuts down during the test, only half of the test scripts

will continue execution. This means that the remaining test scripts will get better

performance in terms of execution times, as the other components of the network, e.g.

the communication server and database server will receive fewer requests than when all

test scripts were running. The sum of executed operations will on the other hand show a

worse performance than what might reflect the reality. Because the macro test scripts

simulate real users with wait times between the operations, having less test scripts

running will mean a smaller sum of operations.

A single metric will not be too useful when analyzing the results; this is caused by the

test topologies, which are planned in such a way that some test script macros are

directly impacted by the challenged network links, while some have no direct

communication over those links. This means that the average operation times, median

57

operation times and the sum of executed operations will all describe the performance

from different aspects. The median is an important factor in terms of usability, as it is

less impacted by rare maximum values. The average better describes the performance

with taking into account the worst case execution times. The total operation count

should be a good metric on the performance of the entire system, but does not give

direct information on usability.

Because there are so many distinctive INM operations being done in each of the

multiuser tests, rather than comparing the performance of each operation separately, a

couple of aggregated values will be presented. The Sum Of Medians of each unique

operation (SoM) is calculated by first calculating the median time for each unique INM

operation, the SoM-value is then the sum of these median values. The Sum Of Averages

of each unique operation (SoA) is calculated in the same way as the SoM, except that

the arithmetic mean of the unique operations is used instead of the median.

The test cases were planned in a way which has each of the four workstations running

the exact same set of macro test scripts. This means comparisons can be made also

between the performance metrics of the workstation computers, which in many cases

are impacted differently by the challenges in the management network.

Because of the large amount of test cases, all test cases cannot be rerun too many times.

Based on the time I had to use for testing in the environment, I chose to run each test

case twice. This is not enough to estimate the accuracy of the measurements separately

for each test case. The results on the successful test runs, i.e. the ones where no Tellabs

8000 INM components disconnected, seemed reliable. Because of the inability to

calculate good estimates of the accuracy of the results of the individual tests cases, the

test cases which could not be run to the end with all macro test scripts running should be

considered unreliable.

It is important to keep in mind that the results presented in this thesis cannot be used for

comparison with any other network management software or tools. For comparison with

any other network management system the test cases should be defined clearly for a fair

comparison. Also computer resources should be standardized between the tests, the

network size standardized and clear testing guidelines written. Caution should be used

also when using the results as recommendations of the topologies and required network

performance. For different networks different sets of features are used and the tasks

58

which are done in the network differ. A good knowledge of the Tellabs 8000 Intelligent

Network manager is required in order to make recommendations based on the results

presented in this thesis.

7.2 Topology “1-standard”

Table 7 Results and analysis for the 11 test runs of the unimpaired test case for topology “1-standard”

Test run SoM SoA Sample size

1 160 212 19998

2 159 209 20464

3 157 205 20476

4 162 210 20311

5 161 205 20718

6 169 217 20143

7 163 208 20347

8 171 217 20378

9 164 219 20112

10 166 217 20197

11 168 219 20390

average 164 213 20321

min 157 205 19998

MAX 171 219 20718

MAX - min 14 14 720

(MAX - min)/average 9 % 7 % 4 %

The first test topology, “1-standard” shown in Figure 15, has no challenged network

links and is used as a reference. Because there are no challenged network links in this

topology, no impairment profiles will be used on the network emulator. All traffic is

still routed through the network emulator. This test topology will instead be used to

verify the reliability of the test setup. 11 test runs where completed using this test

topology, the results can be seen in Table 7. The difference between the smallest and

largest result of each metric of the test runs, as a percentage of the average value, will

be used as a limit value for reliability. If any test case has a variance bigger than those

percentile values between the two test runs, the results for that test case will be deemed

unreliable. Results which were omitted from this thesis because of unreliable results

were for the test cases which used the topology “7-node” and the SoM and SoA results

59

for configurations which caused a Tellabs 8000 INM component to disconnect during

the test.

7.3 Topology “2-mgmt-ws”

The topology for this test case is drawn in Figure 16. The initial expectation on this test

topology was that congestion might cause performance issues because of the large

traffic amounts on the impaired network link. In Figure 22 the SoM and SoA values for

each impairment profile are plotted in a bar chart for this topology. The grey bars

indicate that the performance of the management network was so bad that some

component disconnected. In this topology the second management server, “MGMT2” in

Figure 22, disconnected during the tests for the “2/1 Mbit DSL” and “128/128 kbit

ISDN” impairment profiles. As I stated in chapter 7.1, the SoM and SoA values might

not always be valid as a measurement of performance of a test case. In this case the

median value for the “10/2 Mbit DSL” impairment profile would indicate a better

performance than the higher bandwidth impairment profiles. Additionally, the SoM and

SoA values for the “2/1 Mbit DSL” and “128/128 kbit ISDN” impairment profiles seem

to indicate a usable configuration.

Figure 22 SoM and SoA for topology “2-mgmt-ws”

0

500

1000

1500

2000

2500

100 Mbit
LAN

10 Mbit
LAN

10/2 Mbit
DSL

2/1 Mbit
DSL

128/128
kbit ISDN

[s
]

Impairment profile

"2-mgmt-ws"

SoM

SoA

60

Figure 23 clarifies why the SoA and SoM values are misleading, in the cases where the

network link is more challenged, the workstations actually get less operations done. The

operations that are done seem to be faster on average and by the median value. There

are four workstations in these tests. In this topology two of them are behind the

impaired network link. The initial expectation would be that the two workstations which

are not behind the impaired network link would complete approximately the same

number of operations, independent of the other workstations. However, as Figure 23

shows, the total operation count in the management network falls considerably below

half of the initial operation count. For the “128/128 kbit ISDN” topology the total

operation count is less than one-eighth of the initial amount. Clearly the impaired link is

disturbing the performance of the entire management network.

Figure 23 Operation count for topology "2-mgmt-ws"

Figure 24 shows the bar chart of the operation counts of this test case per workstation.

The standard workstations 1 and 2 are on the left side of the network, while the standard

workstations 3 and 4 are on right side, behind the impaired network link. Here we see

clearly that for the “100 Mbit LAN”, “10 Mbit LAN” and “10/2 Mbit DSL” impairment

profiles the workstations on the left side of the network are completing approximately

the same amount of operations per test. The workstations on the right side of the

0

5000

10000

15000

20000

25000

100 Mbit LAN 10 Mbit LAN 10/2 Mbit
DSL

2/1 Mbit DSL 128/128 kbit
ISDN

O
p

e
ra

ti
o

n
 c

o
u

n
t

Impairment profile

"2-mgmt-ws" - Operation count

61

network are getting less operations completed as the bandwidth is limited, latency

increased and packet loss probability increased. It seems that when the performance of

the impaired network link is decreased past a certain threshold, the performance of the

left side workstations also starts decreasing. This chart also indicates that an impaired

network link which separates a management server and two workstations from the rest

of the network decreases the performance of the entire network.

Figure 24 Operation count per workstation for topology "2-mgmt-ws"

7.4 Topology ”3-ws”

The topology “3-ws” is similar to the “2-mgmt-ws” topology with the difference that

both management servers are on the left side of the management network. Only the

workstations 3 and 4 are behind the impaired network link. Figure 25 shows the bar

chart for the measured SoM and SoA values for this test topology. The results for the

topology “3-ws” resemble the “2-mgmt-ws” topology, with the difference that the “10

Mbit LAN” impairment profile seems to perform better. In this test the workstations

disconnected from the management server when the “2/1 Mbit DSL” and “128/128 kbit

ISDN” impairment profiles were active on the network emulator. Based on the

similarity of the results of this test topology with the “2-mgmt-ws” topology, it seems to

0

1000

2000

3000

4000

5000

6000

100 Mbit
LAN

10 Mbit LAN 10/2 Mbit
DSL

2/1 Mbit
DSL

128/128
kbit ISDN

"2-mgmt-ws" - Operation count per
workstation

stdwkst1

stdwkst2

stdwkst3

stdwkst4

62

me that traffic to and from the database over the impaired network link should be

avoided to obtain good performance.

Figure 25 SoM and SoA for topology "3-ws"

Figure 26 shows that the “10 Mbit LAN” impairment profile did execute more

operations in total than the “2-mgmt-ws” topology. It appears that this is due to the fact

that the workstations generate less traffic over the impaired link than in the case when

the management server was also behind the impaired network link. However, with the

“10/2 Mbit DSL” we can see that either the latency or the congestion is causing a

considerable decrease in the total amount of executed operations.

0

500

1000

1500

2000

2500

100 Mbit
LAN

10 Mbit
LAN

10/2 Mbit
DSL

2/1 Mbit
DSL

128/128
kbit ISDN

[s
]

Impariment profile

"3-ws" - SoM and SoA

SoM

SoA

63

Figure 26 Operation count for topology "3-ws"

Figure 27 shows the operation count per workstation, this confirms that the “10 Mbit

LAN” impairment profile allowed a larger number of executed operations on the

workstations behind the impaired network link than in topology “2-mgmt-ws”, other

than that the performance measurements of the two topologies are behaving in a similar

fashion. The impaired network link seems to again decrease the performance of the

entire management network.

Figure 27 Operation count per workstation for topology "3-ws"

0

5000

10000

15000

20000

25000

100 Mbit LAN 10 Mbit LAN 10/2 Mbit
DSL

2/1 Mbit DSL 128/128 kbit
ISDN

O
p

e
ra

ti
o

n
 c

o
u

n
t

Impairment profile

"3-ws" - Operation count

0

1000

2000

3000

4000

5000

6000

100 Mbit
LAN

10 Mbit LAN 10/2 Mbit
DSL

2/1 Mbit
DSL

128/128
kbit ISDN

"3-ws" - Operation count per
workstation

stdwkst1

stdwkst2

stdwkst3

stdwkst4

64

7.5 Topology “4-satws”

The fourth test topology, “4-satws” presented in Figure 18, differs from the previous

topology, “3-ws”, only by the fact that the workstations 3 and 4 are installed in satellite

mode. This is the recommended configuration for situations where workstations are

located behind an impaired network link in relation to the management server or

database server. Figure 28 shows the SoM and SoA values for the test topology. In this

topology no component disconnected during the tests, this means that the SoA values

are a good indicator of the performance. The SoM as in the previous topologies does not

give a good metric on the performance of the whole network, but does indicate a good

performance for the standard workstations, which were not located behind the impaired

network link. Based on the measured SoM and SoA values from this test case we see

that all impairment profiles gave good results, except for the “128/128kbit ISDN” which

showed longer average execution times for the operations.

Figure 28 SoM and SoA for topology “4-satws”

Figure 29 confirms what can already be seen Figure 28, the total Operation count in the

management network is hardly impacted except when introducing the worst impairment

profile, “128/128 kbit ISDN”.

0

500

1000

1500

2000

2500

100 Mbit
LAN

10 Mbit
LAN

10/2 Mbit
DSL

2/1 Mbit
DSL

128/128
kbit ISDN

[s
]

Impairment profile

"4-satws" - SoM and SoA

SoM

SoA

65

Figure 29 Operation count for topology “4-satws”

Figure 30, which shows the executed operation count per workstation shows that the

satellite workstations performed well except in the “128/128 kbit ISDN” impairment

profile. But even when the “128/128 kbit ISDN” impairment profile was active on the

network emulator, the performance of the standard workstations on the left side of the

emulated network was not decreased.

0

5000

10000

15000

20000

25000

100 Mbit LAN 10 Mbit LAN 10/2 Mbit
DSL

2/1 Mbit DSL 128/128 kbit
ISDN

O
p

e
ra

ti
o

n
 c

o
u

n
t

Impairment profile

"4-satws" - Operation count

66

Figure 30 Operation count per workstation for topology “4-satws”

7.6 Topology “5-com-node-mgmt-ws”

The fifth topology, “5-com-node-mgmt-ws” show in Figure 19, was the topology for

which I predicted the worst performance. The SoM and SoA values, shown in the bar

chart in Figure 31, show a similar performance to the “2-mgmt-ws” test topology. The

“2/1 Mbit DSL” and “128/128 kbit ISDN” impairment profiles both caused the

management server on the right side of the management network to disconnect. The

“128/128 kbit ISDN” impairment profile shows worse SoM and SoA values than the “3-

mgmt-ws” topology, but I will not analyze this impairment profile based on SoM or

SoA values because of the disconnected management server in both tests cases.

0

1000

2000

3000

4000

5000

6000

100 Mbit
LAN

10 Mbit LAN 10/2 Mbit
DSL

2/1 Mbit
DSL

128/128
kbit ISDN

"4-satws" - Operation count per
workstation

stdwkst1

stdwkst2

satwkst3

satwkst4

67

Figure 31 SoM and SoA for topology "5-com-node-mgmt-ws"

The total operation execution count for the “5-com-node-mgmt-ws” topology also

resembles the results for the topology “2-mgmt-ws”, Figure 32 shows that the impaired

trunk is causing a decrease of performance in the entire management network. Clearly

configurations like this should be avoided.

Figure 32 Operation count for topology "5-com-node-mgmt-ws"

0

500

1000

1500

2000

2500

100 Mbit
LAN

10 Mbit LAN 10/2 Mbit
DSL

2/1 Mbit
DSL

128/128
kbit ISDN

[s
]

Impairment profile

"5-com-node-mgmt-ws" - SoM and
SoA

SoM

SoA

0

5000

10000

15000

20000

25000

100 Mbit LAN 10 Mbit LAN 10/2 Mbit
DSL

2/1 Mbit DSL 128/128 kbit
ISDN

O
p

e
ra

ti
o

n
 c

o
u

n
t

Impairment profile

"5-com-node-mgmt-ws" - Operation
count

68

Figure 33 shows the bar chart where the executed operation count is shown per

workstation. The results are again similar to the case “3-mgmt-ws” with the exception

that the results for the impairment profile “10 Mbit LAN” shows a decrease also in the

executed operation count for the left side workstations. Congestion on the impaired

network link might be interfering with the communication between the left side

management server and the communication server.

Figure 33 Operation count per workstation for topology "5-com-node-mgmt-ws"

7.7 Topology “6-com-node”

In the topology “6-com-node”, shown in Figure 20, the communication server and the

8600 node simulator are located on the right site of the network, separated with the

impaired network link from the other management network components. Because all the

workstations and management servers are on the same site in the network and no

component disconnected during the test, the SoM and SoA values should be reliably

comparable. The SoM and SoA values are plotted in the bar chart in Figure 34, we see

that the impact on performance is minuscule except for the “128/128 kbit ISDN”

impairment profile where the SoM and SoA indicate that the operation execution times

are significantly larger.

0

1000

2000

3000

4000

5000

6000

100 Mbit
LAN

10 Mbit LAN 10/2 Mbit
DSL

2/1 Mbit
DSL

128/128
kbit ISDN

"5-com-node-mgmt-ws" - Operation
count per workstation

stdwkst1

stdwkst2

stdwkst3

stdwkst4

69

Figure 34 SoM and SoA for topology "6-com-node"

The total operation count for the management network, shown in Figure 35, confirms

the observation that this topology performs well until the test run where the “128/128

kbit ISDN” impairment profile is active on the network emulator.

Figure 35 Operation count for topology "6-com-node"

In Figure 36 the executed operation count is shown per workstation, here we see that

every workstation is completing approximately the same amount of operations. The

workstations have a slight difference in how many operations they actually complete,

0

500

1000

1500

2000

2500

100 Mbit
LAN

10 Mbit
LAN

10/2 Mbit
DSL

2/1 Mbit
DSL

128/128
kbit ISDN

[s
]

Impairment profile

"6-com-node" - SoM and SoA

SoM

SoA

0

5000

10000

15000

20000

25000

100 Mbit LAN 10 Mbit LAN 10/2 Mbit
DSL

2/1 Mbit DSL 128/128 kbit
ISDN

O
p

e
ra

ti
o

n
 c

o
u

n
t

Impairment profile

"6-com-node" - Operation count

70

but this is to be expected because the operations in the macro test scripts will often need

to compete for resources of the management server or the database server, causing

slightly longer execution times for some of the macros.

Figure 36 Operation count per workstation for topology "6-com-node"

7.8 Topology “7-node”

The topology “7-node”, shown in Figure 21, is the only one where network impairments

are active on the link between the communication server and the Tellabs 8600 node

simulator. A problem arose when testing this topology, causing a considerable amount

of fluctuation in the results and for that reason no graphs will be shown for this test

topology.

The Tellabs 8600 node simulator is not of production quality and is not developed for

any other purpose than internal testing at Tellabs. The problem that arose is related to

the way the Tellabs 8600 node simulator is implemented, there are actually two issues.

Firstly, the 8600 node simulator can only use UDP for communication, while the

recommendation is to always use TCP. Secondly, the 8600 node simulator responds in a

way that differs from how a real 8600 node responds, this does not matter in normal

cases. But combined with the network emulator which routes the traffic, this seemed to

0

1000

2000

3000

4000

5000

6000

100 Mbit
LAN

10 Mbit LAN 10/2 Mbit
DSL

2/1 Mbit
DSL

128/128
kbit ISDN

"6-com-node" - Operation count per
workstation

stdwkst1

stdwkst2

stdwkst3

stdwkst4

71

cause problems with the communication between the communication server and the

node simulator. The communication problems did not seem to have any relation to the

impairment profiles used in the tests.

While the choice was made to leave out any graphs or numeric results, the testing done

indicated that neither the bandwidth limitations nor the latencies of the planned

impairment profiles had any noticeable impact on the results. A custom impairment

profile with a 128 kbit bandwidth limitation for both directions on the impaired network

link, with a base latency of 1000ms was created for this topology. Even with this

impairment profile the performance was decent; the total operation count was

approximately one third lower than in the “100 Mbit LAN” impairment profile while

the SoM and SoA values were approximately twice as large as in the “100 Mbit LAN”

impairment profile. When taking into account that there were 72 simulated Network

elements which all used the same impaired network link for communication with the

communication server, these results indicate that within reasonable limits, a challenged

network link is not problematic between the communication server and the network

elements.

7.9 Suggestions for improvement of INM code

The results from the tests related to this thesis suggest that the performance degrades the

most in topologies where database communication is done over an impaired network

link. Having management servers or standard workstation with an impaired network

connection to the database server should be avoided. The satellite workstation can be

used to replace the standard workstation, the satellite workstations performed well in an

impaired network according to the test results. The management server still transfers

large amounts of data to and from the database. It should be possible to place the

management servers in such a location that a good network connection can be ensured

to the database server thus avoiding any performance issues.

Overall the results indicate that as long as the recommendations given by Tellabs are

enforced related to the setup of the management network topology there should not be

any performance issues caused by network impairments. This of course also requires

72

that at least ADSL capacity network technologies are used for interconnections in the

management network.

73

8 Summary and conclusions

The work in this thesis consisted of creating the tools and environment for multiuser

performance testing in a challenged network as well as running a set of tests and

analyzing the results. The environment and tools which were created for this became a

complete system for the multiuser tests in challenged networks. The modularity of the

system allows the tools to be used in other testing environments. The testing

environment also supports testing of new test cases with different impairment profiles,

topologies and test scripts.

The test cases were mostly based on requests made by the Tellabs Oy scalability testing

team, so there was a genuine interest in the results. The results provided valuable

information on how the performance of existing customer management networks is

impacted by the network setup. The results also verified that the recommended network

topologies perform well and gave comparable results which can be referred to when

designing management networks.

8.1 Future research

Most of the requests, made by Tellabs Oy, for future work regarding the work done in

this thesis are related to additional test cases and modification of the created tools. The

knowledge of how to use the tools and the environment has been passed on to other

members of the Tellabs integration testing and system testing teams.

A request has been made to port the AutoQueue program to a Microsoft Windows

environment for use in another multiuser performance testing environment. The

AutoQueue program is written in Ruby and should not require much code changes in

order to work on Microsoft windows operating systems. However, the code related to

the Joinker-messaging should be rewritten to better match the messaging done by

Joinker. This would ease the creation of new remotely executable tasks by allowing the

Joinkee server to report whether a task was successful or not, currently the evaluation

on whether a task was successful or not is done by AutoQueue. Also the configurable

74

parameters should be separated to a configuration file; currently they are defined in the

code of AutoQueue. The Linux configuration and the NetSloth program could also be

installed on a physical computer for use in other testing environments as an alternative

to the commercial hardware network emulators.

Several suggested test cases had to be left out of the scope of this thesis. Some were left

out because of lack of resources; they might have required additional virtual computers

or an additional database server. At some time point it is likely that the additional

resources are available and the need to run these test cases can be re-evaluated. Other

suggested test cases were left out because they did not fit in the test plan, they would

have required a different set of test scripts. This would have made them incomparable

with the set of test cases which were selected for this thesis. Finally, some of the

suggested test cases were left out simply because of time limitations.

The test topology “7-node” had a large fluctuation in the results of the multiuser test and

for that reason the numeric results were omitted from this thesis. In my opinion, time

should be allocated for the investigation of the reasons behind this anomaly so that

reliable numeric results could be produced.

The testing environment and set of test cases could be used in the future to test the

performance of upcoming Tellabs 8000 INM test releases or to verify the effect of

changes in the networking code. The testing environment and the results from the test

cases could also be used to provide recommendations on minimum network connection

requirements to the customer documentation. The environment could also be used when

interworking with programmers optimizing the networking code for benchmarking

changes in the code.

75

9 References

[1] I. Savolainen. 2008. Benchmark testing of network management system. M.Sc.

Thesis. Helsinki University of Technology, Espoo.

[2] W. e. Lewis. 2005. Software Testing and Continuous Quality Improvement, 2nd

Edition. Auerbach publications.

[3] I. Molyneaux. 2009. The Art of Application Performance Testing: Help for

Programmers and Quality Assurance. O'Reilly Media, inc.

[4] O. R. Lucas Nussbaum. 2009. A Comparative Study of Network Link Emulators.

In: Proceedings of the 2009 Spring Simulation Multiconference.

[5] J. Postel. 1981. Internet Control Message Protocol. RFC 792.

[6] U. o. S. C. Information Sciences Institute. 1981. Transmission Control Protocol.

RFC 793.

[7] G. Fairhurst and L. Wood. 2002. Advice to link designers on link Automatic

Repeat reQuest (ARQ). RFC 3366.

[8] D. E. Comer. 1995. Internetworking with TCP/IP, Volume I: Principles, protocols,

and architecture. Prentice-Hall, Inc.

[9] F. Halsall. 1995. Data Communications, Computer Networks and Open Systems,

4th Edition. Addison-Wesley Publishing Company.

[10] R. B. D. B. V. Jacobson. 1992. TCP Extensions for High Performance. RFC 1323.

[11] Tellabs® 8000 Intelligent Network Manager SR4.0 System Description.

https://www.portal.tellabs.com/cp/D_1021782/76.8040-70200B.pdf .

[12] M. Kyllönen. 2008. Designing and Implementing a Router Node Simulator for

Network Management Testing. M.Sc. Thesis. Helsinki University of Technology,

Espoo.

76

[13] Tellabs Oy, "Network Scheme".

[14] P. Deutsch. 1996. DEFLATE Compressed Data Format Specification version 1.3.

RFC 1951.

[15] S. Josefsson. 2006. The Base16, Base32, and Base64 Data Encodings. RFC 4648.

	1 Introduction
	2 Software testing
	2.1 Performance testing
	2.2 Network emulation
	3 Impact of network impairments
	3.1 Latency
	3.2 Packet loss, duplication, corruption
	3.3 Congestion
	3.4 Measurements and observations about
	4 Tellabs 8000 Intelligent Network Manag
	4.1 8600 Node Simulator
	4.2 Database server
	4.3 Communication server
	4.4 Management server
	4.5 Standard workstation
	4.6 Satellite workstation
	4.7 Macro Package
	4.8 Tellabs 8600 Managed edge system
	5 Tellabs INM performance testing
	5.1 Multi-user tests
	5.2 Test macros
	5.3 TestMonkey
	5.4 Virtual machines
	5.5 Result database
	5.6 Joinker
	6 Design of a test set to measure INM ma
	6.1 Architecture of the test environment
	6.2 The simulated network
	6.3 Other possible implementations
	6.4 The network emulator
	6.5 Measurements of the network emulator
	6.5.1 Base latency of network emulator
	6.5.2 Bandwidth limitation with the netw
	6.5.3 Multiuser test results with networ
	6.6 Automation of test cases
	6.6.1 NetSloth
	6.6.2 AutoQueue
	6.7 Planning of the test cases
	6.7.1 Topologies
	6.7.2 Network impairment profiles
	6.8 Final test setup
	7 Result from tests
	7.1 Result analysis information
	7.2 Topology “1-standard”
	7.3 Topology “2-mgmt-ws”
	7.4 Topology ”3-ws”
	7.5 Topology “4-satws”
	7.6 Topology “5-com-node-mgmt-ws”
	7.7 Topology “6-com-node”
	7.8 Topology “7-node”
	7.9 Suggestions for improvement of INM c
	8 Summary and conclusions
	8.1 Future research
	9 References

