
ISBN 978-952-60-5281-6 (pdf) 
ISSN-L 1799-4896 
ISSN 1799-4896 
ISSN 1799-490X (pdf) 
 
Aalto University 
School Electrical Engineering 
Department of Signal Processing and Acoustics 
www.aalto.fi 

BUSINESS + 
ECONOMY 
 
ART + 
DESIGN + 
ARCHITECTURE 
 
SCIENCE + 
TECHNOLOGY 
 
CROSSOVER 
 
DOCTORAL 
DISSERTATIONS 

A
alto-S

T 21
/2

013 

 

Department of Signal Processing and Acoustics 

Use of the Predictable 
Quantum Efficient 
Detector with Light 
Sources of Uncontrolled 
State of Polarization 
Meelis Sildoja, Timo Dönsberg, Henrik 
Mäntynen, Mikko Merimaa, Farshid 
Manoocheri, Erkki Ikonen 

RESEARCH REPORT SCIENCE + 
TECHNOLOGY 

45°

b 





Aalto University publication series 
SCIENCE + TECHNOLOGY 21/2013 

Use of the Predictable Quantum 
Efficient Detector with Light Sources 
of Uncontrolled State of Polarization 

Meelis Sildoja, Timo Dönsberg, Henrik Mäntynen, 
Mikko Merimaa, Farshid Manoocheri, Erkki 
Ikonen 

Aalto University 
School of Electrical Engineering 
Department of Signal Processing and Acoustics 
Metrology Research Institute 



Aalto University publication series 
SCIENCE + TECHNOLOGY 21/2013 
 
© Meelis Sildoja, Timo Dönsberg, Henrik Mäntynen, Mikko Merimaa, Farshid Manoocheri, Erkki Ikonen 
 
ISBN 978-952-60-5281-6 (pdf) 
ISSN-L 1799-4896 
ISSN 1799-4896 (printed) 
ISSN 1799-490X (pdf) 
http://urn.fi/URN:ISBN:978-952-60-5281-6 
 
Unigrafia Oy 
Helsinki 2013 
 
Finland 
 
Aalto University and Centre for Metrology and Accreditation 



Abstract 
Aalto University, P.O. Box 11000, FI-00076 Aalto  www.aalto.fi 

Author 
Meelis Sildoja, Timo Dönsberg, Henrik Mäntynen, Mikko Merimaa, Farshid Manoocheri, Erkki 
Ikonen 
Name of the publication 
Use of the Predictable Quantum Efficient Detector with Light Sources of Uncontrolled State 
of Polarization 
Publisher School of Electrical Engineering 
Unit Department of Signal Processing and Acoustics 

Series Aalto University publication series SCIENCE + TECHNOLOGY 21/2013 

Field of research Optical metrology 

Abstract 
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1 Introduction 

Realization and characterization of the Predictable Quantum Efficient Detector 

(PQED) with seven internal reflections were recently reported by Sildoja et al [1] 

and Müller et al [2]. Those results revealed unprecedented accuracies in the 

determination of the detector spectral responsivity. In suitable conditions the 

external quantum deficiency (EQD) of the PQED is less than 100 ppm (parts per 

million). The predicted and measured EQD values agreed within expanded 

uncertainties, ranging typically between 10 ppm and 180 ppm. Some of the 

limiting factors are related to the reflectance correction of the seven-reflection 

PQED whose relative responsivity may vary up to 500 ppm depending on the 

polarization state of the detected light. 

The recent work on PQED is based on a series of early publications starting 

from the important contributions by references [3-5]. In 2003 Geist et al [6] 

estimated theoretically that a dedicated photodetector based on induced junction 

silicon photodiodes can register incident photons with uncertainties down to 1 

ppm. Detailed analyses of possible detector structures indicated that it should be 

possible to reduce uncertainties due to reflectance losses of p-polarized laser light 

to equally low level [7,8]. Gran et al [9] carried out thorough modelling of the 

internal quantum deficiency (IQD) for real induced junction photodiodes using 

PC1D solar cell software and showed that at low temperatures (78 K) and at 

reverse bias mode (-5 V) the induced junction photodiodes should have IQD 

smaller than 1 ppm in the wavelength range between 400 nm to 600 nm. At room 

temperature the modelled IQD was predicted to be below 100 ppm showing almost 

constant values at visible wavelengths. 

In this paper we first describe the properties of the seven-reflection PQED 

with light sources of uncontrolled state of polarization, such as monochromator 

sources operated without polarizing optics. A new diagnostics method to estimate 

reflectance losses by measuring the photocurrent ratio of the two photodiodes in 
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the PQED is introduced. Then we discuss methods to improve the performance of 

the seven-reflection PQED by introducing the beneficial properties of a nine-

reflection PQED with emphasis on estimating and reducing the reflectance losses 

and polarization dependence of the responsivity. The main interest is in PQED 

operation at room temperature with light sources of uncontrolled state of 

polarization, although some considerations are presented concerning operation with 

p-polarized light at low temperatures.  

 

Table 1. Uncertainty components affecting the reflectance and photocurrent ratio values. 

The magnitudes of the components are taken from reference [1]. 

Standard uncertainty of component (k = 1) and its magnitude 

Angle between photodiodes 0.4° 

Oxide thickness of the 1st diode 2 nm 

Oxide thickness of the 2nd diode 2 nm 

SiO2 index of refraction 0.2 % 

Si index of refraction 0.5 % 

Si extinction coefficient 5 % 

Optical thickness of Si/SiO2 interface layer 8 nm 

 

2 PQED with seven internal reflections 

2.1 Need for improved polarization properties 

The seven-reflection PQE D consists of two custom-made induced junction 

photodiodes mounted in a wedged light trap configuration with an angle of 15º 

between the photodiodes. Thorough characterization of the seven-reflection PQED 

is given in [1]. Main emphasis therein was the measurement and theoretical 

modelling of spectral reflectance with p-polarized light, which is defined to be 

parallel with the plane of incidence of the photodiodes. The use of s-polarized or 

unpolarized light was not relevant due to the requirement of a Brewster-angled 
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entrance window of the PQED for measurements inside a vacuum chamber at low 

temperatures.  

 

Figure 1. Reflectance of the 7-reflection PQED in the case of incident light with different 

combinations of s- and p-polarized components (see text for the definition of the 

polarization components).  

 

The use of PQED with light sources of unknown polarization state becomes of 

high interest at room temperature, where operation of the PQED without a window 

is possible using a nitrogen flow system to prevent dust contamination of the 

photodiodes [10]. The relatively high reflectance of s-polarized light then causes 

increased uncertainties for light with unknown polarization, especially at short and 

long wavelengths as shown in Figure 1. To quantitatively describe the effect of the 

polarization, it is first noted that any polarization state of the incident light has 

definite normalized s- and p-polarization components, perpendicular and parallel to 

the plane of incidence, respectively, which are obtained as the squared amplitude 

of the relative electric field in the corresponding direction. For example, 50 % of 
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both s- and p-polarization components in the incident light of Figure 1 can 

correspond to circularly polarized light, fully unpolarized light, or linearly 

polarized light with equal s- and p-components. 

It is possible to acquire knowledge about the normalized polarization 

components of light entering into the PQED if one monitors the photocurrents from 

the two photodiodes separately and calculates the ratio of these values. Then the 

polarization components at a certain wavelength can be used to obtain an estimate 

for the reflectance loss of the PQED. This methodology is introduced in the next 

sub-sections.  

 

2.2 Parameter values for the calculations 

For calculation of the reflectance and photocurrent ratio, the layered structure 

of the PQED photodiodes is assumed to be similar to that given in [1]: the substrate 

is lightly doped (111)-oriented p-type silicon, the oxide thicknesses covering the 

photodiodes are 301.4 nm and 220.5 nm, the thickness of the interface layer 

between Si and SiO2 is 1 nm, and the thickness of a thin condensed layer of water 

on top of the SiO2 layer is 1 nm. The refractive indices of silicon, interface layer 

and water layer are taken from refs. [11-13] whereas the refractive indices for SiO2 

are compiled based of refs. [12,14,15]. The deviations of the above parameters 

from those measured and used in [16] are much smaller than the standard 

uncertainty estimates of the same parameters as listed in [1]. 

The uncertainty estimation takes into account the largest components affecting 

the reflectance and photocurrent ratio values. These are the uncertainty of the angle 

between the photodiodes, the uncertainties of the oxide thicknesses of the 

photodiodes, the uncertainties of the index of refraction of Si and SiO2, and the 

uncertainty of the optical thickness of the interface layer between Si and SiO2. The 

magnitudes of these uncertainties are repeated in Table 1 according to reference 
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[1]. The alignment of the PQED assumes that the propagating beam inside the 

detector follows similar paths when entering and leaving the detector.  

 

2.3 Reflectance determination by the ratio of photocurrents 

Figure 1 indicates that the PQED reflectance depends strongly on the 

polarization of incident light at the wavelengths between 400 nm to 490 nm and 

between 575 nm to 900 nm. Calculations show that additionally there is a change 

in the distribution of the absorbed photons between the two photodiodes as the 

relative magnitudes of the polarization components change. This distribution can 

be registered as the photocurrent ratio of the photodiodes. Figure 2 shows the 

calculated photocurrent ratio for s- and p-polarized light at wavelengths from 400 

nm to 900 nm where the thin lines indicate the standard uncertainties due to used 

parameter values. It is seen that for most wavelengths the photocurrent ratio is 

significantly different for s- and p-polarized light. Only at two regions around 475 

nm to 495 nm and around 555 nm to 580 nm the ratio of the photocurrents is 

almost equal at any polarization state. At these wavelengths no polarization 

properties of the incident light can be detected based on photocurrent ratio 

measurements.  

Considering the reflectance associated with the normalized polarization 

components as shown in Figure 1, the wavelengths from 555 nm to 580 nm are 

conveniently located in the region where the reflectances of both s- and p-

polarization components are small staying below 25 ppm. More problematic is the 

wavelength region around 485 nm where the dependence of reflectance on 

polarization is most unpredictable. There the reflectance may change from 30 ppm 

for p-polarized light up to 90 ppm for s-polarized light but the photocurrent ratio 

reveals no changes. Outside of the discussed wavelength regions the difference in 

the photocurrent ratio is measurable and the relative polarization components and 

the associated reflectance are predictable.  
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Figure 2. Ratio of photocurrents of the two photodiodes in the 7-reflection PQED if the 

incident light is polarized in the plane of incidence (p-polarized) and perpendicular to that 

(s-polarized). Thin dash-dot lines indicate standard uncertainties due to detector and 

photodiode parameters (see Table 1 and text for details). 

 

The uncertainty of the reflectance estimated by conducting photocurrent ratio 

measurements at the wavelengths of 400 nm and 760 nm is described in detail in 

Appendix A. Further calculations show that the reflectance with a standard 

uncertainty of less than 100 ppm can be determined from the photocurrent ratio 

measurements at all visible wavelengths above 450 nm. This allows the 

7-reflection PQED to be operated at room temperature with light sources of 

unknown polarization over the wavelength range of 450 nm to 800 nm and still 

maintain almost as low uncertainty of responsivity as previously was available only 

for p-polarized light sources. However, further reduction of reflectance losses and 

their uncertainties is required, if direct reflectance measurement is avoided and the 

uncertainty component due to uncontrolled polarization needs to be made 

insignificant as compared with other uncertainty components or the high accuracy 
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reflectance determination needs to be extended to shorter wavelengths than 450 

nm. Methods to meet those requirements are described in next sections. 

 

3 PQED with nine internal reflections 

3.1 Detector structure 

The simplest method to reduce the reflectance losses in a trap-like detector is 

to increase the number of reflections the incident light has to encounter before 

leaving the detector. Figure 3(a) shows the design of a 9-reflection PQED, where 

the photodiodes are aligned in such a way that the beam path between the 

photodiodes is similar for incoming and reflected rays. This can be achieved when 

the angle between the photodiodes is 11.25º and the first reflection occurs at 45º 

angle of incidence. It is assumed that the physical dimensions of the photodiodes 

are similar to those used in the 7-reflection PQED [1, 8] i.e. 11 x 22 mm2 active 

area. The higher number of 9 reflections is possible by reducing the angle and 

distance between the photodiodes.  

We have analysed the use of the 9-reflection PQED with non-collimated 

monochromator radiation. Figure 3(b) summarizes the results with a 7-mm-

diameter entrance aperture for the beam divergence of 4º degree cone angle. The 

upper limiting ray has the ninth reflection at the uppermost corner of the upper 

photodiode, which determines the minimum distance of 9 mm between the 

photodiodes. The lower limiting ray has altogether ten reflections, but the fifth 

reflection is located close to the lowermost corner of the upper photodiode 

indicating that the distance between the photodiodes cannot be much larger than 9 

mm. In addition, the rays also deviate perpendicular to the plane of incidence with 

a maximum displacement of 2 mm for a maximum path length of 60 mm between 

the input aperture and the ninth reflection. The transverse photodiode dimension of 

11 mm then just covers the diverging rays perpendicular to the plane of incidence 

with the aperture diameter of 7 mm. It should be noted that the centre of the 
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aperture is displaced 1 mm down from the mid-point between the uppermost 

corners of the photodiodes.  

 
 

 (a)  (b) 
 

Figure 3. Assembly of PQED photodiodes in a wedged light trapping configuration having 

nine reflections before the beam leaves the detector (a) and use of the nine-reflection PQED 

with a diverging incident beam (b). Coloured (blue and green) rays of incident and reflected 

light are depicted with the beam divergence of 2°, determining the maximum aperture size 

of 7 mm in the vertical direction. 

 

Figure 4 shows the specular reflectance of the 9-reflection PQED with various 

combinations of s- and p-polarized light in the wavelength range from 400 nm to 

900 nm. For p-polarized light the reflectance is around 1 ppm between the 

wavelengths of 500 nm and 640 nm and it stays below 5 ppm between 430 nm and 

900 nm. The reflectance for s-polarized light is approximately 10 times larger 

staying below 10 ppm in the wavelength range of 470 - 640 nm and reaching the 

maxima of 70 ppm at 400 nm and 55 ppm at 730 nm. These low reflectance values 

provide a good starting point for the reduction of reflectance loss uncertainties 

when the 9-reflection PQED is used with light sources of uncontrolled polarization.  
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Figure 4. Reflectance of the 9-reflection detector of Figure 3(a) in the case of incident light 

with different combinations of s- and p-polarized components.  

 

The predicted charge carrier losses of PQED photodiodes at low temperatures 

are of the order of 1 ppm [9]. The p-polarized light in the 9-reflection trap enables 

the reflectance losses to be of the similar order of magnitude in a wide range of 

wavelengths even in the presence of spurious reflectance effects observed in [1] 

and [2] at low temperatures.  

 

3.2 Reflectance determination by the ratio of photocurrents 

Polarization dependent spectral reflectances of 9- and 7-reflection traps are 

similar in shape but differ in magnitude by approximately a factor of ten (Figures 1 

and 4). As shown in Appendix A, the largest uncertainty components at the 

wavelengths of 400 nm and 760 nm are reduced by a factor of eight in the 

determination of reflectance from the photocurrent ratio measurement of the 9-
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reflection PQED as compared with the 7-reflection PQED. Similar improvement is 

reached at most of the other wavelengths.  

In Section 2.3, two wavelength ranges were identified (475 nm to 495 nm and 

555 nm to 580 nm) where the photocurrent ratio measurement does not reveal 

information about the polarization state of the incident light. This applies also to 

the 9-reflection PQED due to similarities of photocurrent ratios (see Figures 2 and 

5). 

 
Figure 5. Ratio of photocurrents of the 9-reflection PQED in the case incident light with 

different combinations of s- and p-polarized components. The relative standard 

uncertainties of the photocurrent ratios are similar to those presented in Figure 2 for the 7-

reflection PQED. The thin dashed lines show photocurrent ratios of the 7-reflection PQED 

from Figure 2 in the case of p- and s-polarized light, indicating that the differences in 

photocurrent ratios for 7- and 9-reflection PQED are within the standard uncertainties of 

the predicted photocurrent ratios. 

 

Comparison of Figures 4 and 5 reveals that the reflectances at these wavelength 

ranges for 9-reflection PQED are relatively small, i.e. below 10 ppm, for both 
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p- and s-polarized light. This is below the typical uncertainty of reflectance of ~15 

ppm, based on the photocurrent ratio modelling at most of the other wavelengths. 

These results verify the important conclusion that the reflectance of the 9-reflection 

PQED can be determined, by photocurrent ratio measurement, for the wavelengths 

from 400 nm to 900 nm within the standard uncertainty smaller than 20 ppm, 

independent of the polarization state on the incident light. The reflectance 

uncertainty values below 20 ppm are much smaller than the uncertainties due to the 

predicted charge carrier losses at room temperature. 

 

4 Detailed algorithm for determining the reflectance losses for 7- and 

9-reflection PQED  

Similar algorithms can be used for determining the reflectance losses from the 

photocurrent ratio of the 7- or 9-reflection PQED. For comparison of the 

corresponding curve shapes, Figures 1, 2, 4 and 5 show the reflectances and 

photocurrent ratios of 7- and 9-reflection PQED in various conditions of polarized 

light. Figures 2 and 5 indicate that photocurrent ratios for 7- and 9-reflection traps 

are very similar having a maximum difference in the wavelength ranges from 560 

nm to 760 nm with p-polarized light and from 500 nm to 570 nm with s-polarized 

light. The latter region is insignificant for reflectance estimation since it resides in 

the wavelength range where the PQED reflectance is in any case low for both s- 

and p-polarization. In the former region the difference is within the uncertainty of 

the photocurrent ratio modelling. 

 Any polarization state of the incident light can be decomposed to the 

components parallel and perpendicular to the plane of incidence. From a plot like 

Figure 5, it is possible to estimate the composition of s- and p-polarized 

components in the incident light if the wavelength and PQED photocurrent ratio 

are known. The corresponding reflectances can be found from Figures 1 and 4 

using the estimated composition of polarization components. For example, if the 
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measured photocurrent ratio at 700 nm is 2.50, such ratio value can be located in 

the middle of the two lowest lines in Figure 5. Then the associated reflectance can 

be read using the corresponding lines in Figure 4. For the 9-reflection PQED the 

reflectance value is in the middle of approximate values of 35 ppm and 45 ppm at 

about 40 ppm. Neglecting the uncertainty in the measured photocurrent ratio, the 

standard uncertainty of this estimate is 3 ppm, as determined by the standard 

uncertainty of the location of the curves in Figures 4 and 5. 

 

5 Discussion 

Estimating the reflectance of PQED by measuring individual photocurrents 

from the two photodiodes avoids the need for developing an experimental 

arrangement for direct reflectance correction measurement. This is of high interest 

in spectral power measurements when using quasi-monochromatic light sources 

with unknown polarization, such as monochromator-based setups where multiple 

mirrors are used to collimate and align the light beam. Also some laser sources do 

not have their polarization plane fully vertical or horizontal or the radiated light is 

randomly or elliptically polarized. The photocurrent ratio measurement and/or use 

of the 9-reflection PQED greatly help in measurements with light sources of 

uncontrolled polarization state. Furthermore, the 9-reflection PQED allows use of a 

7-mm-diameter entrance aperture with a beam divergence cone angle close to 4º.  

A relevant question is whether there is any improvement to be expected with 

even larger number of reflections in the PQED. An 11-reflection design can be 

implemented to discard any concerns about the on-axis reflectance losses [8]. This, 

on the other hand, sets strict limitations to the size of the entrance aperture when 

using similar sized photodiodes as in the present PQED.  We have estimated that 

the maximum distance of the photodiodes at the entrance plane can be 8 mm for 

the 11-reflections and well collimated incident beam. An entrance aperture of this 

size requires a precisely adjusted angle between the photodiodes and perfect 
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alignment of the trap. Minor variations in angular tolerances or tilts of the detector 

from the ideal alignment may cause the multiply reflected beam either to escape 

via the back end of the trap structure or produce undesired travel paths for the laser 

beam. A positive finding is that the high number of 11 reflections allows using 

large photodiodes with almost any oxide thickness between 100 nm and 400 nm to 

maintain low reflectance.  
6 Conclusions 

We have investigated the reflectance losses and reduction of their uncertainty 

without direct reflectance measurement of the Predictable Quantum Efficient 

Detector (PQED), used with light sources of uncontrolled state of polarization.  By 

the photocurrent ratio measurement it is possible to estimate the relative s- and p-

polarization components in the incident light. The knowledge of these components 

allows us to calculate the reflectance of the wedged-trap structure of the PQED. 

The uncertainty of the reflectance is affected by the uncertainty of the photocurrent 

ratio measurement, the material parameters of the PQED photodiodes and the 

uncertainty of the angle between the photodiodes. The analysis was carried out for 

the 7-reflection and 9-reflection PQED in the wavelength range from 400 nm to 

900 nm.  Calculations show that our method allows estimating the reflectance with 

an uncertainty below 100 ppm for the 7-reflection PQED in the wavelength range 

from 450 nm to 900 nm and below 20 ppm for the 9-reflection PQED in the 

wavelength range from 400 nm to 900 nm. Additionally the design of the 

9-reflection PQED reduces the absolute reflectance by about a factor of ten as 

compared with the reflectance of the 7-reflection PQED. These achievements allow 

the wedged-trap design of the PQED to be used with monochromator based and 

other light sources where the polarization properties of the beam are unknown and 

still maintain the low uncertainty previously available only for fully s- or p-

polarized light. 
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Appendix A  

This Appendix describes determination of the reflectance loss from the 

photocurrent ratio for the 7- and 9-reflection PQED at the wavelengths of 400 nm 

and 760 nm. These wavelengths are selected because of the high values of s-

polarized reflectance. 

 Figure 6(a) shows the calculated photocurrent ratio for the 7-reflection PQED 

as a function of the normalized s-polarized component. The reflectances on the 

right-hand-side vertical axis can be estimated using the photocurrent ratio which 

determines the polarization component on the horizontal axis. At the wavelength of 

760 nm the photocurrent ratio can vary from 4.85(20) with p-polarized light down 

to 1.86(6) with s-polarized light, where the numbers in parenthesis denote the 

standard uncertainty in the last digits due to the uncertainty corridors of Figure 6. 

The normalized s-polarized component on the horizontal axis for such photocurrent 

ratios would be in the ranges of 0% to 7% and of 92% to 100%, respectively. The 

reflectances with these polarization components vary from 40 ppm to 85 ppm and 

from 425 ppm to 550 ppm, respectively. At the wavelength of 400 nm the variation 

of the photocurrent ratio can be from 2.25(10) to 0.92(3) with p- and s-polarized 

light, respectively. In the same way as for the 760 nm wavelength, the 

corresponding reflectances can then be estimated to vary from 200 ppm to 325 ppm 

and from 530 ppm to 790 ppm, respectively. Thus the maximum variation in 

reflectance is ±130 ppm at the wavelength of 400 nm, corresponding to the 

standard uncertainties in the photocurrent ratio modelling. This occurs close to s-

polarized light. 

Figure 6(b) shows the ratio of photocurrents and corresponding reflectances of 

the 9-reflection PQED as a function of the normalized s-polarized component. At 

the wavelength of 760 nm, the photocurrent ratio can be as large as 4.75(25) with 

p-polarized light and as low as 1.85(10) with s-polarized light. In the same way as 

for the 7-reflection PQED, the corresponding reflectances can then be estimated to 
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vary from 2.5 ppm to 7.5 ppm and from 40 ppm to 56 ppm, respectively. At the 

wavelength of 400 nm, the variation of the photocurrent ratio is from 2.23(10) with 

p-polarized light to 0.89(5) with s-polarized light, corresponding to reflectances 

from 16 ppm to 34 ppm and from 50 ppm to 83 ppm, respectively. The maximum 

change in reflectance due to the uncertainty of photocurrent ratio modelling in 

Figure 6(b) is 33 ppm at the wavelength of 400 nm, a factor of eight smaller than 

for the 7-reflection PQED. 
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Figure 6. Ratio of photocurrents and corresponding reflectances of the 7-reflection 

PQED (a) and of the 9-reflection PQED (b) as a function of polarization. Thinner lines 

indicate the standard uncertainty corridors due to detector and photodiode parameters of 

Table 1. 
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